WO2019101202A1 - 一种发送信号的方法及设备 - Google Patents

一种发送信号的方法及设备 Download PDF

Info

Publication number
WO2019101202A1
WO2019101202A1 PCT/CN2018/117533 CN2018117533W WO2019101202A1 WO 2019101202 A1 WO2019101202 A1 WO 2019101202A1 CN 2018117533 W CN2018117533 W CN 2018117533W WO 2019101202 A1 WO2019101202 A1 WO 2019101202A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
power
transmit power
channel
determined
Prior art date
Application number
PCT/CN2018/117533
Other languages
English (en)
French (fr)
Inventor
刘哲
张兴炜
时洁
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019101202A1 publication Critical patent/WO2019101202A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a signal.
  • uplink power control is a very important component of wireless resource management and a very important factor affecting system performance and capacity.
  • the main purpose of uplink power control is to compensate for slow changes in the channel environment and reduce neighbor interference.
  • closed-loop power control can be divided into cumulative closed-loop power and absolute closed-loop power.
  • the accumulated closed-loop power refers to the power of transmitting the SRS on the current time slot, which is accumulated on the basis of the SRS power transmitted in the adjacent time slot
  • the absolute closed-loop power refers to the power of transmitting the SRS in the current time slot, without The accumulation is performed on the basis of transmitting SRS power in adjacent time slots.
  • the power of transmitting SRS on slot 3 is the basis for transmitting SRS power on slot 1.
  • the accumulated power is increased in the time slot 5, and the power of the SRS is accumulated on the basis of the SRS power transmitted on the time slot 3.
  • the adjacent time slot refers to a time slot in which the SRS is transmitted, for example, the terminal device is in the time slot 1, the time slot 3, and the time slot 5.
  • a physical uplink shared channel (PUSCH) and an SRS can be simultaneously transmitted in one slot, and the SRS can be configured to be associated with or not associated with a transmit power parameter of the PUSCH.
  • PUSCH physical uplink shared channel
  • SRS can be configured to be associated with or not associated with a transmit power parameter of the PUSCH.
  • the present application provides a method and a device for transmitting a signal, which are used to determine how to determine the transmit power of a reference signal when the reference signal is associated with a transmit power parameter of the first channel.
  • a method for transmitting a signal comprising: transmitting, by a first device, a reference signal to a second device at a first transmit power in a first time unit, the reference signal being configured to transmit power with a first channel
  • the parameter is associated with or not associated with the second device, and the second sending power is sent to the second device by using the second sending power, where the second sending power is determined by resetting the closed loop power, or
  • the second transmit power is determined by absolute power adjustment, or the second transmit power is determined by the first transmit power and the offset value.
  • the method before the first device sends the reference signal to the second device by using the first transmit power in the first time unit, the method further includes: the first device is in the third time unit, The reference signal is transmitted to the second device at a third transmit power.
  • the second transmit power may also be determined by performing cumulative power adjustment on the third transmit power.
  • the method further includes: the first device receiving the first indication information sent by the second device, where the first indication information is used to indicate the offset value.
  • the first device determines the second transmit power by using the first transmit power and the offset value
  • the reference signal is configured to transmit power with the first channel
  • the first device determines the offset value by using a transmit power parameter of the first channel.
  • the first device determines the second transmit power by using the first transmit power and the offset value
  • the reference signal is configured to transmit power with the first channel
  • the first device determines the offset value by using at least one of a transmit power parameter of the first channel and a transmit power parameter of the reference signal.
  • the first transmit power is sent according to the reference signal on the first time unit Determined by at least one of power and power to transmit the first channel.
  • the method before the first device sends the reference signal to the second device by using the second transmit power in the second time unit, the method further includes: the first device receiving the a second indication information that is sent by the second device, where the second indication information is used to indicate a determining manner of the second sending power, where, when the second indication information indicates a first value, the second sending power is Determined by the reset closed loop power; or, when the second indication information indicates a second value, the second transmit power is determined by absolute power adjustment; or, when the second indication information When the third value is indicated, the second transmit power is determined by the first transmit power and the offset value; or, when the second indication information indicates a fourth value, the second closed loop power is Determined by performing cumulative power adjustment on the third transmit power.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the first channel is a physical uplink shared channel, a physical uplink control channel, or a physical random access channel; wherein the sounding reference signal includes At least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal, the synchronization signal being at least one of a primary synchronization signal and a secondary synchronization signal.
  • a method for receiving a signal comprising: receiving, by a second device, a reference signal sent by a first device at a first transmit power in a first time unit, the reference signal being configured to transmit with a first channel
  • the second parameter is received by the second device in the second time unit, and the second sending power is determined by resetting the closed loop power.
  • the second transmit power is determined by an absolute power adjustment, or the second transmit power is determined by the first transmit power and the offset value.
  • the method before the second device receives the reference signal sent by the first device at the first transmit power in the first time unit, the method further includes: the second device is in the third time unit Receiving, by the first device, the reference signal sent by the third sending power.
  • the second transmit power may also be determined by cumulative power adjustment of the third transmit power.
  • the second device when the second transmit power is determined by the first transmit power and the offset value, the second device receives the first device to send the second device in the second time unit. Before the transmitting the reference signal, the method further includes: the second device sending, to the first device, first indication information, where the first indication information is used to indicate the offset value.
  • the transmit power parameter of the first channel determines the offset value
  • the first device determines the second transmit power by using the first transmit power and the offset value
  • the reference signal is configured to transmit power with the first channel
  • the offset value is determined by at least one of a transmit power parameter of the first channel and a transmit power parameter of the reference signal.
  • the first transmit power is sent according to the reference signal on the first time unit The power is determined by the power of the first channel transmitted.
  • the method before the second device receives the reference signal sent by the first device by using the second sending power, the method further includes: the second device The first device sends the second indication information, where the second indication information is used to indicate the determining manner of the second sending power, where the second sending information is when the second indication information indicates the first value
  • the power is determined by the reset closed loop power; or, when the second indication information indicates the second value, the second transmit power is determined by absolute power adjustment; or, when the second indication information
  • the third value is indicated, the second transmit power is determined by the first transmit power and the offset value; or, when the second indication information indicates the fourth value, the second closed loop power is passed
  • the third transmission power is determined by performing cumulative power adjustment.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the first channel is a physical uplink shared channel, a physical uplink control channel, or a physical random access channel; wherein the sounding reference signal includes At least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal, the synchronization signal being at least one of a primary synchronization signal and a secondary synchronization signal.
  • a third aspect provides a method for transmitting a signal, including: receiving, by a first device, first information sent by a second device, where the first information is used to activate transmission of a reference signal and indicating a power adjustment value, where the power adjustment value is And configured to determine a transmit power of the reference signal; the first device sends the reference signal to the second device according to the first information.
  • the first device receives the first information sent by the second device, where the first device receives the downlink control information sent by the second device, where the downlink control information carries the First information.
  • the reference signal is a sounding reference signal or a synchronization signal; wherein the sounding reference signal comprises at least one of a periodic sounding reference signal, an aperiodic sounding reference signal, and a semi-static sounding reference signal.
  • the synchronization signal is at least one of a primary synchronization signal and a secondary synchronization signal.
  • the power adjustment value when the reference signal is a semi-stationary sounding reference signal, the power adjustment value includes an adjustment value, and the one adjustment value is used to determine during activation of the semi-static sounding reference signal a power adjustment value of all sounding reference signals; or the power adjustment value includes a set of adjustment values, wherein the set of adjustment values includes at least one adjustment value, and an ith adjustment value of the set of adjustment values corresponds to a power adjustment value of an ith sounding reference signal transmitted during activation of the semi-static reference signal, the i being an integer greater than zero and less than or equal to N, the N being during activation of the semi-static reference signal The number of the sounding reference signals transmitted.
  • a fourth aspect provides a method for receiving a signal, including: generating, by a second device, first information, where the first information is used to activate transmission of a reference signal and indicating a power adjustment value, where the power adjustment value is used to determine the Transmitting power of the reference signal; the second device transmitting the first information to the first device.
  • the second device sends the first information to the first device, where the second device sends downlink control information to the first device, where the downlink control information carries The first information.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the sounding reference signal includes at least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal
  • the synchronization The signal is at least one of a primary synchronization signal and a secondary synchronization signal.
  • the power adjustment value when the reference signal is a semi-stationary sounding reference signal, the power adjustment value includes an adjustment value, and the one adjustment value is used to determine during activation of the semi-static sounding reference signal a power adjustment value of all sounding reference signals; or the power adjustment value includes a set of adjustment values, wherein the set of adjustment values includes at least one adjustment value, and an ith adjustment value of the set of adjustment values corresponds to a power adjustment value of an ith sounding reference signal transmitted during activation of the semi-static reference signal, the i being an integer greater than zero and less than or equal to N, the N being during activation of the semi-static reference signal The number of the sounding reference signals transmitted.
  • a fifth aspect provides a method for transmitting a signal, including: receiving, by a first device, first information sent by a second device, where the first information is used to activate transmission of a reference signal; Transmitting, by the first sending power, the reference signal to the second device, where the first sending power is determined according to the power of sending the first channel on the first time unit, or the first The transmission power is determined according to the preset adjustment value.
  • the first device receives the first information sent by the second device, where the first device receives the radio resource control information sent by the second device, where the radio resource control information carries The first information is received by the first device.
  • the first device receives the media access control information sent by the second device, where the media access control information carries the first information.
  • the first transmit power is sent according to the first time unit, the first The power of the channel is determined.
  • the first transmit power is determined according to the preset adjustment value.
  • the method before the first device transmits the reference signal to the second device by using the first sending power, the method further includes: the first device is in the second time The unit sends the reference signal to the second device by using the second sending power, where the first device determines the first sending power according to the preset adjustment value, including: the first device according to the The second transmit power and the preset adjustment value determine the first transmit power.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the first channel is a physical uplink shared channel, a physical uplink control channel, or a physical random access channel; wherein the sounding reference signal includes At least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal, the synchronization signal being at least one of a primary synchronization signal and a secondary synchronization signal.
  • the present application provides a method for receiving a signal, including: sending, by a second device, first information to a first device, where the first information is used to activate transmission of a reference signal; a unit, receiving, by the first device, a reference signal that is sent by using the first sending power, where the first sending power is determined according to the power of sending the first channel on the first time unit, or The first transmission power is determined according to a preset adjustment value.
  • the second device sends the first information to the first device, where the second device sends the radio resource control information to the first device, where the radio resource control information carries The first information is sent by the second device to the first device, where the media access control information carries the first information.
  • the first transmit power is sent according to the first time unit, the first The power of the channel is determined.
  • the first transmit power is determined according to the preset adjustment value.
  • the method before the second device receives the reference signal sent by the first device by using the first sending power, the method further includes: the second device is in the second a time unit, configured to receive the reference signal that is sent by the first device by using the second power, where determining the first transmit power according to the preset adjustment value, including: according to the second transmit power, and the preset The adjustment value determines the first transmission power.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the first channel is a physical uplink shared channel, a physical uplink control channel, or a physical random access channel; wherein the sounding reference signal includes At least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal, the synchronization signal being at least one of a primary synchronization signal and a secondary synchronization signal.
  • a first device includes: a processor, configured to determine a first transmit power and a second transmit power, where the second transmit power is determined by resetting a closed loop power, or The second transmit power is determined by absolute power adjustment, or the second transmit power is determined by the first transmit power and the offset value; the transceiver is configured to use the first time unit Transmitting, by the first transmit power, a reference signal to the second device and transmitting, at the second time unit, the reference signal to the second device at the second transmit power, wherein the reference signal is configured to transmit power parameters with the first channel Associated or not associated.
  • the transceiver before the transceiver transmits the reference signal to the second device by using the first transmit power in the first time unit, the transceiver is further configured to: send the third in the third time unit The power transmits the reference signal to the second device.
  • the second transmit power may also be determined by performing cumulative power adjustment on the third transmit power.
  • the transceiver when the first device determines the second transmit power by using the first transmit power and the offset value, the transceiver is further configured to receive a first indication sent by the second device. Information, the first indication information is used to indicate the offset value.
  • the processor may determine the offset value by using a transmit power parameter of the first channel.
  • the processor may determine the offset value by using at least one of a transmit power parameter of the first channel and a transmit power parameter of the reference signal.
  • the first transmit power is sent according to the reference signal on the first time unit Determined by at least one of power and power to transmit the first channel.
  • the transceiver is further configured to receive second indication information that is sent by the second device, where the second indication information is used to indicate a manner of determining the second transmit power, where When the second indication information indicates the first value, the second transmission power is determined by the reset closed loop power; or, when the second indication information indicates the second value, the second The transmit power is determined by the absolute power adjustment; or, when the second indication information indicates the third value, the second transmit power is determined by the first transmit power and the offset value; or When the second indication information indicates a fourth value, the second closed loop power is determined by performing cumulative power adjustment on the third transmit power.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the first channel is a physical uplink shared channel, a physical uplink control channel, or a physical random access channel; wherein the sounding reference signal includes At least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal, the synchronization signal being at least one of a primary synchronization signal and a secondary synchronization signal.
  • a second device includes: a transceiver, configured to receive, at a first time unit, a reference signal sent by a first device at a first transmit power, and, in a second time unit, receive the first The reference signal sent by a device with a second transmit power, wherein the reference signal is configured to be associated with or not associated with a transmit power parameter of a first channel, the second transmit power being determined by resetting closed loop power Or the second transmit power is determined by absolute power adjustment, or the second transmit power is determined by the first transmit power and the offset value; The reference signal is processed accordingly.
  • the transceiver is further configured to receive, at a third time unit, the reference signal that is sent by the first device at a third transmit power.
  • the second transmit power may also be determined by performing cumulative power adjustment on the third transmit power.
  • the transceiver is further configured to: send, to the first device, first indication information, where the first indication information is used to indicate the offset value.
  • the transmit power parameter of the first channel determines the offset value
  • the first device determines the second transmit power by using the first transmit power and the offset value
  • the reference signal is configured to transmit power with the first channel
  • the offset value is determined by at least one of a transmit power parameter of the first channel and a transmit power parameter of the reference signal.
  • the first transmit power is sent according to the reference signal on the first time unit The power is determined by the power of the first channel transmitted.
  • the transceiver is further configured to send, to the first device, second indication information, where the second indication information is used to indicate a manner of determining the second transmit power, where When the second indication information indicates the first value, the second transmit power is determined by the reset closed loop power; or, when the second indication information indicates the second value, the second transmit power Or determined by the absolute power adjustment; or, when the second indication information indicates the third value, the second transmit power is determined by the first transmit power and the offset value; or, when the first When the second indication information indicates the fourth value, the second closed loop power is determined by performing cumulative power adjustment on the third transmission power.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the first channel is a physical uplink shared channel, a physical uplink control channel, or a physical random access channel; wherein the sounding reference signal includes At least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal, the synchronization signal being at least one of a primary synchronization signal and a secondary synchronization signal.
  • a first device including: a transceiver, configured to receive first information sent by a second device, where the first information is used to activate transmission of a reference signal and indicate a power adjustment value, the power adjustment The value is used to determine the transmit power of the reference signal, the processor is configured to determine the reference signal according to the first information, and the transceiver is further configured to send the reference signal to the second device.
  • the transceiver receives the first information sent by the second device, including: the transceiver receives downlink control information sent by the second device, where the downlink control information carries the first information.
  • the reference signal is a sounding reference signal or a synchronization signal; wherein the sounding reference signal comprises at least one of a periodic sounding reference signal, an aperiodic sounding reference signal, and a semi-static sounding reference signal.
  • the synchronization signal is at least one of a primary synchronization signal and a secondary synchronization signal.
  • the power adjustment value when the reference signal is a semi-stationary sounding reference signal, the power adjustment value includes an adjustment value, and the one adjustment value is used to determine during activation of the semi-static sounding reference signal a power adjustment value of all sounding reference signals; or the power adjustment value includes a set of adjustment values, wherein the set of adjustment values includes at least one adjustment value, and an ith adjustment value of the set of adjustment values corresponds to a power adjustment value of an ith sounding reference signal transmitted during activation of the semi-static reference signal, the i being an integer greater than zero and less than or equal to N, the N being during activation of the semi-static reference signal The number of the sounding reference signals transmitted.
  • a second device includes: a processor, configured to generate first information, where the first information is used to activate transmission of a reference signal and indicate a power adjustment value, where the power adjustment value is used to determine And a transceiver, configured to send the first information to the first device.
  • the transceiver sends the first information to the first device, where the transceiver sends downlink control information to the first device, where the downlink control information carries the First information.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the sounding reference signal includes at least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal
  • the synchronization The signal is at least one of a primary synchronization signal and a secondary synchronization signal.
  • the power adjustment value when the reference signal is a semi-stationary sounding reference signal, the power adjustment value includes an adjustment value, and the one adjustment value is used to determine during activation of the semi-static sounding reference signal a power adjustment value of all sounding reference signals; or the power adjustment value includes a set of adjustment values, wherein the set of adjustment values includes at least one adjustment value, and an ith adjustment value of the set of adjustment values corresponds to a power adjustment value of an ith sounding reference signal transmitted during activation of the semi-static reference signal, the i being an integer greater than zero and less than or equal to N, the N being during activation of the semi-static reference signal The number of the sounding reference signals transmitted.
  • a first device including: a transceiver, configured to receive first information sent by a second device, where the first information is used to activate transmission of a reference signal, and a processor is configured to The first information is used to activate the sending of the reference signal; the transceiver is further configured to send, by using the first sending power, the reference signal to the second device in the first time unit, where the first sending power is based on And determining, by the first time unit, a power of the first channel, or the first sending power is determined according to a preset adjustment value.
  • the transceiver receives the first information sent by the second device, where the transceiver receives the radio resource control information sent by the second device, where the radio resource control information carries the The first information is received by the first device, where the first device receives the media access control information that is sent by the second device, where the media access control information carries the first information.
  • the first transmit power is sent according to the first time unit, the first The power of the channel is determined.
  • the first transmit power is determined according to the preset adjustment value.
  • the transceiver is further configured to send, at a second time unit, the reference signal to the second device by using a second transmit power, where the first device is according to the pre- And determining, by the adjustment value, the first sending power, that: the first device determines the first sending power according to the second sending power and the preset adjustment value.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the first channel is a physical uplink shared channel, a physical uplink control channel, or a physical random access channel; wherein the sounding reference signal includes At least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal, the synchronization signal being at least one of a primary synchronization signal and a secondary synchronization signal.
  • a second device comprising: a processor, configured to generate first information; a transceiver, configured to send the first information to a first device, and receive the a reference signal sent by the first device at a first transmit power, where the first information is used to activate transmission of a reference signal, where the first transmit power is based on transmitting, on the first time unit, the first channel The power is determined, or the first transmit power is determined according to a preset adjustment value.
  • the transceiver sends the first information to the first device, where the transceiver sends the radio resource control information to the first device, where the radio resource control information carries the
  • the first information is sent by the transceiver to the first device, where the media access control information carries the first information.
  • the first transmit power is sent according to the first time unit, the first The power of the channel is determined.
  • the first transmit power is determined according to the preset adjustment value.
  • the transceiver is further configured to receive, at a second time unit, a reference signal that is sent by the first device by using a second power, where the determining is determined according to the preset adjustment value.
  • the first transmit power includes: determining the first transmit power according to the second transmit power and the preset adjustment value.
  • the reference signal is a sounding reference signal or a synchronization signal
  • the first channel is a physical uplink shared channel, a physical uplink control channel, or a physical random access channel; wherein the sounding reference signal includes At least one of a periodic sounding reference signal, a non-periodic sounding reference signal, and a semi-static sounding reference signal, the synchronization signal being at least one of a primary synchronization signal and a secondary synchronization signal.
  • a thirteenth aspect a computer readable storage medium comprising instructions that, when executed on a communication device, cause the communication device to perform the method of any of the first to sixth aspects described above.
  • a chip is provided, the chip being coupled to a memory for reading and executing a software program stored in the memory to implement the method of any of the first to sixth aspects.
  • an apparatus comprising: a processor and a memory, wherein the memory stores a program or an instruction, and when the program or the instruction is executed by the processor, implementing the first aspect to the sixth aspect One of the methods described.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is another schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for transmitting a signal according to an embodiment of the present application
  • FIG. 4 is another flowchart of a method for transmitting a signal according to an embodiment of the present application.
  • FIG. 5 is still another flowchart of a method for transmitting a signal according to an embodiment of the present application
  • FIG. 6 is an application scenario provided by an embodiment of the present application.
  • FIG. 7 is another application scenario provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for transmitting a signal according to an embodiment of the present disclosure
  • FIG. 9 is still another schematic flowchart of a method for sending a signal according to an embodiment of the present disclosure.
  • FIG. 10 is another schematic flowchart of a method for transmitting a signal according to an embodiment of the present disclosure.
  • FIG. 11 is an application scenario provided by an embodiment of the present application.
  • FIG. 12 is another application scenario provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • the present application provides a method and a device for transmitting a signal, which are used to determine how to determine the transmit power of a reference signal when the reference signal is associated with a transmit power parameter of the first channel.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the embodiments of the method and the device can be referred to each other, and the repeated description is not repeated.
  • FIG. 1 shows a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 includes a base station 101 and a terminal device 102.
  • the base station 101 is responsible for providing the terminal device 102 with services related to radio access, implementing radio physical layer functions, resource scheduling and radio resource management, quality of service (QoS) management, radio access control, and mobility. Sex management function.
  • the terminal device 102 is a device that accesses the network through the base station 101.
  • the base station 101 and the terminal device 102 are connected by a Uu interface, thereby implementing communication between the terminal device 102 and the base station 101.
  • the base station 101 can use a sounding reference signal (SRS) to estimate the uplink channel quality of different frequency bands, and allocate a resource block (RB) with a good instantaneous channel state to the UE.
  • SRS sounding reference signal
  • RB resource block
  • the base station 101 is a device deployed in a radio access network to provide a wireless communication function for the terminal device 102.
  • the base station 101 can include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In the 3rd generation (3G) system, it is called Node B.
  • eNB evolved Node B
  • 3G 3rd generation
  • gNB In the NR system, it is called gNB.
  • devices that provide wireless communication functions for UE2 are collectively referred to as base stations.
  • the terminal device 102 may include various handheld devices, wireless devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the UE may also be referred to as a mobile station (MS), a terminal, a terminal equipment, and may also include a subscriber unit, a cellular phone, and a smart phone.
  • Phone personal digital assistant
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine type communication
  • the communication system 100 may be various radio access technology (RAT) systems, such as, for example, code division multiple access (CDMA), time division multiple access (time division multiple access) , TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA) and Other systems, etc.
  • RAT radio access technology
  • CDMA code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement a wireless technology such as a global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • An OFDMA system can implement such as evolved universal radio land access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • the various versions of 3GPP in long term evolution (LTE) and LTE-based evolution are new versions of UMTS that use E-UTRA.
  • the communication system can also be applied to the future-oriented communication technology, and the technical solution provided by the embodiment of the present application is applicable to the communication system including the new communication technology, including the establishment of the bearer.
  • the system architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 2 shows a communication system 200, which is mainly applied to a device to device (D2D), an eD2D, a vehicle-to-vehicle (V2V), and a vehicle.
  • the scenario of interconnecting V2X with the Internet of things may include the terminal device 201 and the terminal device 202.
  • the terminal device 201 and the terminal device 202 can be two peer user nodes, and the two can directly communicate.
  • the communication system 100 only one base station 101 and one terminal device 102 are illustrated, and the number of the base station 101 and the terminal device 102 is not limited to the application.
  • the communication system 100 can be configured according to requirements. Any number of base stations 101 and terminal devices 102 are provided.
  • the communication system 200 also shows only one terminal device 201 and one terminal device 202. The number of the terminal device 201 and the terminal device 202 is not limited to the application.
  • the communication system 200 can be configured according to requirements. Any number of terminal devices 201 and terminal devices 202 are provided.
  • Reference signal mainly used to estimate the uplink channel quality of different frequency bands.
  • the reference signal may also include a sounding reference signal (SRS), and the type of the SRS may be specifically a periodic SRS, an aperiodic SRS, and a semi-persistent SRS (semi-persistant SRS). At least one of SP-SRS).
  • the reference signal may further include a synchronization signal (SS), and the type of the SS may be specifically a primary synchronization signal (PSS) or a secondary synchronization signal (SSS).
  • SRS sounding reference signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • First channel mainly refers to the uplink channel.
  • the first channel may include only a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (physical). Random access channel, PRACH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • Time unit mainly refers to the time slot used to transmit the reference signal.
  • the time unit may be an uplink time slot in a new radio (NR) system, or the target time slot may be a downlink-based self-contained time slot, or an upper behavior.
  • the primary self-contained time slot or dynamic time slot.
  • the downlink-based self-contained time slot mainly includes a DL control region, a DL data region, a gap region, and an uplink control region.
  • the uplink-based self-contained time slot mainly includes an DL control region, a gap region, an uplink data region, and an uplink control region.
  • the dynamic time slot refers to whether the time slot is an uplink-based self-contained time slot or whether the downlink-based self-contained time slot is dynamically configurable, that is, the dynamic time slot can be configured as an uplink-based self-contained
  • the time slot can also be configured as a downlink-based self-contained time slot.
  • the “time unit” in the embodiment of the present application actually refers to a time resource unit, which may be referred to as, but not limited to, a time slot, a subframe, a symbol, a frame, and the like.
  • the present application provides a method for transmitting a signal
  • the first device in FIG. 3 may be specifically the terminal in FIG.
  • the device 102, the second device may be specifically the base station 101 in FIG. 1, or the first device in FIG. 3 may be specifically the terminal device 201 in FIG. 2, and the second device may be specifically the terminal device 202 in FIG.
  • the method includes:
  • Step S301 The first device sends a reference signal to the second device by using the first transmit power in the first time unit, where the reference signal is configured to be associated with or not associated with the transmit power parameter of the first channel.
  • the reference signal may be an SRS, and the SRS may be at least one of a periodic SRS, an aperiodic SRS, and a semi-static SRS, or the parameter information may be an SS, and the SS may be PSS or SSS.
  • the first channel may be a PUSCH, a PUCCH, or a PRACH.
  • the reference signal being associated with the transmit power parameter of the first channel means that the reference signal is in a transmission bandwidth with the first channel, a power reference value, a power compensation factor, a path loss, a modulation and coding mode, a transmission information type, and a bit number.
  • One or more associations, the parameter signal being unrelated to the transmit power of the first channel refers to a transmission bandwidth of the reference signal and the first channel, a power reference value, a power compensation factor, a path loss, a modulation and coding mode, a transmission information type, and The number of bits is not related.
  • the reference signal may be configured to be associated with or not associated with a transmit power parameter of the first channel, and if the reference signal is configured to be associated with a transmit power parameter of the first channel, according to the first channel
  • the transmit power determines the first transmit power, such as the transmit power of the first channel as the first transmit power.
  • the reference signal is configured not to be associated with the transmit power parameter of the first channel, determining the first transmit power according to the power of the reference signal transmitted on the first time unit and the power of the first channel, eg Comparing the power of the reference signal and the power of the first channel, and using the smaller of the two as the first transmit power, or the larger of the two as the first transmit power Or, synthesizing (for example, averaging) the power of the transmission reference signal and the power of transmitting the first channel, and using the integrated power as the first transmission power.
  • Step S302 The second device sends the second indication information to the first device.
  • the power of the parameter signal is sent on the second time unit, and various determination manners are provided, such as determining by resetting the closed loop power, determining by absolute power adjustment, and The first transmission power and the offset value are determined and the like.
  • the second indication information is used to indicate, in the multiple manners, the manner in which the first device specifically determines the power of transmitting the reference signal on the second time unit.
  • the power of the first device on the second time unit to transmit the reference signal may be referred to as the second transmit power.
  • the first device when the second indication information indicates the first value, the first device may determine the second transmit power by resetting the closed loop power; when the second indication information indicates the second value, The first device may determine the second transmit power by using an absolute power adjustment; when the second indication information indicates a third value, the first device may be determined by the first transmit power and the offset value The second transmission power.
  • Step S303 The first device sends the reference signal to the second device by using the second sending power in the second time unit, where the second sending power is determined by resetting the closed loop power, or the second sending The power is determined by absolute power adjustment, or the second transmit power is determined by the first transmit power and the offset value.
  • the resetting the closed loop refers to recalculating the second transmit power by using an accumulated closed loop power algorithm
  • the absolute power adjustment refers to calculating the second transmit power by using an absolute closed loop power algorithm. Determining, by the first transmit power and the offset value, the second transmit power, by adding one of the offset values, or at the first transmit power, based on the first transmit power Based on the subtraction of one of the offset values.
  • the second transmit power when the reference signal is configured to be associated with or not associated with the transmit power parameter of the first channel, the second transmit power may be determined by resetting the closed loop power, or may be determined by absolute power adjustment. The second transmit power, or the second transmit power is determined by the first transmit power and the offset value.
  • the present application provides a method for transmitting a signal
  • the first device in FIG. 4 may be specifically the terminal in FIG.
  • the device 102, the second device may be specifically the base station 101 in FIG. 1, or the first device in FIG. 4 may be specifically the terminal device 201 in FIG. 2, and the second device may be specifically the terminal device 202 in FIG.
  • the method includes:
  • Step S401 The first device sends the reference signal to the second device by using the third sending power in the third time unit.
  • Step S402 The first device sends a reference signal to the second device by using the first transmit power in the first time unit, where the reference signal is configured to be associated with or not associated with the transmit power parameter of the first channel.
  • Step S403 The second device sends second indication information to the first device, where the second indication information is used to indicate a determining manner of the second sending power.
  • the second indication information and the second transmission power refer to the description of the embodiment shown in FIG. 3 above, and details are not described herein again.
  • the second transmit power is determined by the reset closed loop power; when the second indication information indicates a second value, the second Transmit power is determined by absolute power adjustment; when the second indication information indicates a third value, the second transmit power is determined by the first transmit power and the offset value; When the second indication information indicates the fourth value, the second closed loop power is determined by performing cumulative power adjustment on the third transmission power.
  • Step S404 The first device sends the reference signal to the second device by using the second sending power in the second time unit, where the second sending power is determined by resetting the closed loop power, or the second sending The power is determined by the absolute power adjustment, or the second transmit power is determined by the first transmit power and the offset value, or the second transmit power may also pass the third The transmit power is determined by the cumulative power adjustment.
  • the second transmit power when the reference signal is configured to be associated with or not associated with the transmit power parameter of the first channel, the second transmit power may be determined by resetting the closed loop power, or by absolute power adjustment. Determining a second transmit power, or determining a second transmit power by using the first transmit power and the offset value, or determining a second transmit power by performing cumulative power adjustment on the third transmit power.
  • the present application provides a method for transmitting a signal
  • the first device in FIG. 5 may be specifically the terminal in FIG.
  • the device 102, the second device may be specifically the base station 101 in FIG. 1, or the first device in FIG. 5 may be specifically the terminal device 201 in FIG. 2, and the second device may be specifically the terminal device 202 in FIG.
  • the method includes:
  • Step S501 The first device sends a reference signal to the second device by using the first transmit power in the first time unit, where the reference signal is configured to be associated with or not associated with the transmit power parameter of the first channel.
  • how to determine the second transmit power for transmitting the reference signal on the second time unit may be determined based on the first transmit power and the offset value.
  • an implicit manner and a display mode can be employed.
  • the first device may determine the bias by using a transmit power parameter of the first channel. a value of shifting; if the reference signal is configured to be unrelated to a transmit power parameter of the first channel, at least one of a transmit power parameter of the first channel and a transmit power parameter of the reference signal, Determining the offset value, for example, determining the offset value according to a transmit power parameter of the first channel, or determining the offset value only according to a transmit power parameter of the reference signal, or The offset value is determined by a transmit power parameter of the reference signal and a transmit power parameter of the first channel.
  • Step S502 The second device sends first indication information to the first device, where the first indication information is used to indicate the offset value.
  • Step S503 The first device sends the reference signal to the second device by using the second sending power in the second time unit.
  • the second transmit power is determined according to the first transmit power and the offset value.
  • the offset value when the second sending power is determined according to the first sending power and the offset value, the offset value may be displayed by an indication or may be implicitly indicated.
  • the present application provides a method for transmitting a signal, where the SRS in the method may be specifically a reference signal in FIG. 3 to FIG. 5, a slot. It may be specifically the first time unit, the second time unit or the third time unit in FIG. 3 to FIG. 5, as follows:
  • the UE periodically transmits SRS in slot#1, slot#6, and slot#11, and the SRS is transmitted using an accumulated closed-loop power algorithm. If the UE receives the PUSCH transmission with dynamic scheduling in slot #6 in slot 6, the PUSCH and SRS are simultaneously transmitted in slot #6, and the SRS occupies the last N orthogonal frequency division multiplexing in one slot ( Orthogonal Frequency Division Multiplexing (OFDM) symbols, such as N, can be 1, 2 or 4.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the UE is configured to associate the SRS with the transmit power parameter of the PUSCH.
  • the power of the SRS sent by the slot #6 needs to be accumulated on the basis of the SRS power sent by the slot #1, and the power of the SRS sent by the slot #11 is required in the slot#. Accumulate on the basis of 6.
  • the SRS is configured to be associated with the transmit power parameter of the PUSCH. Therefore, in slot #6, the UE uses the transmit power parameter of the PUSCH as the transmit power parameter of the transmit power of the SRS in slot #6. Therefore, slot #11 is obviously no longer suitable for accumulating based on the transmission power of slot #6.
  • the following manner is provided to determine the power of sending the SRS in slot #11:
  • the SRS transmitted in slot #11 accumulates power based on the transmission of SRS in slot #1;
  • Slot#11 independently calculates the closed-loop power of the transmitted SRS, such as resetting the cumulative closed-loop power in slot#11 or
  • the UE specifically adopts the mode 1) or the mode 2) to calculate the power of the SRS transmitted in the slot #11, which can be configured through signaling, for example, can be configured through high layer or physical layer signaling, and the high layer signaling can be wireless.
  • Radio resource control (RRC) signaling or media access control (MAC), and physical layer signaling may be downlink control information (DCI) signaling.
  • DCI downlink control information
  • the UE is configured such that the SRS is not associated with the PUSCH transmit power parameter. .
  • the PUSCH and the SRS may be transmitted with the transmission power of the PUSCH, or the PUSCH and the SRS may be transmitted with the transmission power of the SRS, or the transmission power of the PUSCH and the transmission of the SRS may be used.
  • a transmission power that satisfies a condition (such as a transmission power is large or small) is selected to jointly transmit the PUSCH and the SRS, or the transmission power of the PUSCH and the transmission power of the SRS may be integrated (for example, averaging).
  • the combined transmission power is used as the transmission power of the PUSCH and the SRS.
  • the power of transmitting the SRS in Slot#11 can be determined as follows:
  • the SRS transmitted in slot #11 accumulates power based on the transmission power of the SRS transmitted in slot #1;
  • Slot#11 independently calculates the transmit power of the transmitted SRS, such as resetting the closed loop power in slot#11
  • slot#11 will still accumulate based on the closed-loop power of slot#6, but the offset value will be added.
  • the offset value can be carried by the scheduling signaling DCI of the PUSCH.
  • the present application provides a method for transmitting a signal
  • the first device in FIG. 8 may be specifically the terminal in FIG.
  • the device 102, the second device may be specifically the base station 101 in FIG. 1, or the first device in FIG. 8 may be specifically the terminal device 201 in FIG. 2, and the second device may be specifically the terminal device 202 in FIG.
  • the method includes:
  • Step S801 The second device sends the first information to the first device.
  • the first information is used to activate transmission of the reference signal and to indicate a power adjustment value, where the power adjustment value is used to determine a transmission power of the reference signal.
  • the second device may send DCI signaling to the first device, where the first information may be carried in the DCI signaling.
  • the reference signal may be an SRS, and the SRS includes at least one of a periodic SRS, an aperiodic SRS, and a semi-static SRS.
  • Step S802 The first device sends the reference signal to the second device according to the first information.
  • the power adjustment value when the reference signal is a semi-static SRS, includes an adjustment value, where the one adjustment value is used to determine all the sounding reference signals during activation of the semi-static SRS.
  • Power adjustment value For example, during the activation of the semi-static SRS, the UE needs to report 5 SRSs in total, and then the 5 SRSs perform power adjustment according to an adjustment value indicated in the first information. For another example, if the adjustment value indicated in the first information is 1 dB, then during the reporting period of the semi-static SRS, the five SRBs are adjusted according to the power of 1 dB.
  • the power adjustment value may also include a set of adjustment values, where the set of adjustment values includes at least one adjustment value, and an ith adjustment value of the set of adjustment values corresponds to a power adjustment value of an ith sounding reference signal transmitted during activation of the semi-static reference signal, the i being an integer greater than zero and less than or equal to N, the N being sent during activation of the semi-static reference signal The number of sounding reference signals.
  • the above example is still used.
  • the UE needs to report 5 SRSs in total, and the set of adjustment values may include 5 adjustment values, such as 1 dB, 3 dB, 0 dB, 1 dB, and 3 dB, respectively.
  • 1 dB may correspond to the adjustment value of the first SRS during the activation of the semi-static SRS; 3 dB may correspond to the adjustment value of the second SRS during the activation period of the semi-static SRS; 0 dB may correspond to the activation period of the semi-static SRS, The adjustment value of the third SRS; 1 dB may correspond to the adjustment value of the fourth SRS during the activation period of the semi-static SRS; 3 dB may correspond to the adjustment value of the fifth SRS during the activation period of the semi-static SRS.
  • the second device activates the transmission of the reference signal and the indicated power adjustment value by using the first information, so that no additional signaling is required to indicate the power adjustment value, thereby reducing signaling overhead.
  • the present application provides a method for transmitting a signal
  • the first device in FIG. 9 may be specifically the terminal in FIG.
  • the device 102, the second device may be specifically the base station 101 in FIG. 1, or the first device in FIG. 9 may be specifically the terminal device 201 in FIG. 2, and the second device may be specifically the terminal device 202 in FIG.
  • the method includes:
  • Step S901 The second device sends first information to the first device, where the first information is used to activate transmission of the reference signal.
  • the first information may be RRC signaling, or MAC signaling.
  • Step S902 The first device sends the reference signal to the second device by using the first sending power in the first time unit.
  • the first transmit power is sent according to the first time unit, and the first The transmission power of the channel is determined;
  • the first transmit power is determined according to a preset adjustment value.
  • the reference signal may be an SRS
  • the SRS may include at least one of a periodic SRS, an aperiodic SRS, and a semi-static SRS
  • the parameter information may be an SS
  • the SS may be PSS or SSS.
  • the first channel may be a PUSCH, a PUCCH, or a PRACH.
  • the first device may only send the first information for activating the transmission of the reference signal, and the second device may send the power adjustment value of the SRS, and the second device may determine according to the condition set by the second device. Without the need for the first device to indicate, saving signaling overhead.
  • the present application provides a method for transmitting a signal
  • the first device in FIG. 10 may be specifically the terminal in FIG.
  • the device 102, the second device may be specifically the base station 101 in FIG. 1, or the first device in FIG. 10 may be specifically the terminal device 201 in FIG. 2, and the second device may be specifically the terminal device 202 in FIG.
  • the method includes:
  • Step S1001 The second device sends first information to the first device, where the first information is used to activate transmission of the reference signal.
  • Step S1002 The first device sends the reference signal to the second device by using the second sending power in the second time unit.
  • Step S1003 The first device sends the reference signal to the second device by using the first sending power in the first time unit.
  • the first transmit power is sent according to the first time unit, and the first The power of the channel is determined;
  • the first transmit power is determined according to the preset adjustment value, and the first transmit power is according to a preset adjustment value. And determined by the second transmit power.
  • step S1002 may be performed before step S1001.
  • the adjustment value reported by the reference signal is not required by the first device, and the signaling overhead is saved.
  • the present application provides a method for transmitting a signal, where the SRS may be specifically the reference signal in FIG. 9 or FIG. 10, and the slot may be specifically In the first time unit or the second time unit in FIG. 9 or FIG. 10, the method is mainly used for processing a semi-static SRS, as follows:
  • the base station will send activation information to the UE to activate the transmission of the SRS, and after receiving the activation information, the UE starts to transmit the SRS.
  • the reporting of the semi-static SRS may be dynamically activated by the DCI signaling, or the reporting of the semi-static SRS may be activated by using the high layer signaling, such as RRC or MAC signaling.
  • the DCI signaling may be carried in the DCI signaling reported by the activated semi-static SRS, where the TPC command is used to indicate the power adjustment of all SRSs during the current activation, that is, each time the SRS is sent.
  • the power adjustment value of the accumulated TPC indication is added on the previous basis.
  • the activating the semi-static SRS reporting the DCI signaling may specifically be a triggering of a semi-static SRS (Trigger SP-SRS Activation), and it should be noted that, in the embodiment of the present application, for the semi-static SRS For example, if the reporting of the SRS is to be ended, the base station needs to perform the indication. In the embodiment of the present application, reference may still be made to 11.
  • the signaling for ending the semi-static SRS reporting may be referred to as triggering the deactivation of the semi-static SRS (Trigger SP). -SRS deactivation)
  • the TCI signaling that is used to activate the semi-static SRS is also carried, and the TPC command is used to indicate a set of TPC values corresponding to the SP-SRS adjustment values of different slot transmissions.
  • the corresponding scenario may be that if the tree hopping frequency in LTE is adopted in the NR, the value of the accumulated TPC carried by the SRS transmission bandwidth and the frequency domain location may be determined to adjust the closed loop. power.
  • mode 2 can flexibly indicate the power adjustment value of the SRS.
  • the second case if triggered by high-level signaling (for example, MAC-CE or RRC):
  • high-level signaling for example, MAC-CE or RRC
  • the transmit power parameters and closed loop power control of the PUSCH are shared.
  • each network element such as a UE, a base station, a control node, etc.
  • each network element such as a UE, a base station, a control node, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • FIG. 13 is a schematic diagram showing a possible structure of a base station involved in the above embodiment.
  • the base station may be the base station 101 as shown in FIG. 1, or may be the second device in FIG. 3 to FIG. 10, and the base station 130 may include a transceiver 131, a controller/processor 132, as shown in FIG.
  • the transceiver 131 may be configured to support receiving and receiving information between the base station and the UE in the foregoing embodiment, and supporting radio communication between the UE and other UEs.
  • the controller/processor 132 can be used to perform various functions for communicating with a UE or other network device.
  • the uplink signal from the UE is received via the antenna, coordinated by the transceiver 131, and further processed by the controller/processor 132 to recover the traffic data and signaling information transmitted by the UE.
  • traffic data and signaling messages are processed by controller/processor 132 and mediated by transceiver 131 to generate downlink signals for transmission to the UE via the antenna.
  • the transceiver 131 is further configured to receive hybrid automatic repeat request information sent by the UE.
  • the transceiver 131 may also be configured to perform the processes involved in the base station of FIGS.
  • the base station 130 can also include a memory 133 that can be used to store program codes and data of the base station.
  • the base station may further include a communication unit 134 for supporting the base station to communicate with other network entities.
  • Figure 13 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • FIG. 14 is a simplified schematic diagram of a possible design structure of a UE involved in the foregoing embodiment.
  • the UE 140 may be the UE 102 as shown in FIG. 1 or the UE 201 or the UE 202 of FIG. 2, or may be It is the first device in FIGS. 3 to 10.
  • the UE 140 may include a transceiver 141, a controller/processor 142, and may also include a memory 143 and a modem processor 144.
  • the transceiver 141 conditions (e.g., analog conversion, filtering, amplifying, upconverting, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Transceiver 141 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 1441 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 1442 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 1444 processes (e. g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1443 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 1441, modulator 1442, demodulator 1444, and decoder 1443 may be implemented by a composite modem processor 144. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the transceiver 141 is configured to perform communication with the base station, for example, sending a reference signal to the base station by using the first transmit power in the first time unit, and transmitting the reference signal to the base station by using the second transmit power in the second time unit, and executing the figure 3 to FIG. 10 relate to the action of the UE.
  • the memory 143 is used to store program codes and data for the UE.
  • the present application also provides a computer readable storage medium comprising instructions that, when run on a communication device, cause the communication device to perform the method of transmitting a signal or the method of receiving a signal as shown in the above embodiments.
  • the present application further provides a chip connected to a memory for reading and executing a software program stored in the memory to implement the method for transmitting a signal or the method for receiving a signal described in the above embodiments.
  • the present application also provides an apparatus, including a processor and a memory, wherein the memory stores a program or an instruction, when the program or the instruction is executed by the processor, to implement the foregoing embodiment.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请公开了一种发送信号的方法及设备,该方法包括:第一设备在第一时间单元,以第一发送功率向第二设备发送参考信号,所述参考信号被配置为与第一信道的发射功率参数关联或不关联;所述第一设备在第二时间单元,以第二发送功率向第二设备发送所述参考信号,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;采用本申请的方法及设备,可解决当参考信号与第一信道的发射功率参数关联时,如何确定参考信号的发送功率的问题。

Description

一种发送信号的方法及设备
本申请要求在2017年11月27日提交中国专利局、申请号为201711207718.8、发明名称为“一种发送信号的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种发送信号的方法及设备。
背景技术
在无线通信系统中,上行功率控制是无线资源管理的一个非常重要的组成部分,也是影响系统性能和容量的一个非常重要的因素。上行功率控制的主要目的是:补偿信道环境的缓慢变化,减少邻区干扰。
目前,在新通信(new radio,NR)系统中,对于探测参考信号(sounding reference signal,SRS),可采用开环功率控制,也可采用闭环功率控制。其中,闭环功率控制又可分为累积闭环功率和绝对闭环功率。其中,累积闭环功率是指在当前时隙上发送SRS的功率,是在相邻时隙发送SRS功率的基础上进行累加的,而绝对闭环功率是指在当前时隙上发送SRS的功率,无需在相邻时隙发送SRS功率的基础上进行累加。比如,终端设备周期性在时隙1、时隙3以及时隙5中发送SRS,且采用累积闭环功率控制,那么在时隙3上发送SRS的功率是在时隙1上发送SRS功率的基础上进行累加的,在时隙5中发送SRS的功率是在时隙3上发送SRS功率的基础上进行累加的。需要说明的是,当采用累积闭环功率计算SRS的发送功率时,所述相邻时隙指的发送SRS相邻的时隙,比如,终端设备在时隙1、时隙3以及时隙5上发送SRS,那么时隙1与时隙3称为相邻时隙,时隙3与时隙5称为相邻时隙。
同时,在NR系统中,提出在一个时隙中可同时发送物理上行共享信道(physical uplink shared channel,PUSCH)和SRS,而SRS可被配置为与PUSCH的发射功率参数关联或不关联。在此种场景下,如何确定SRS的发送功率,并没有相关的解决方案。
发明内容
本申请提供一种发送信号的方法及设备,用以解决当参考信号与第一信道的发射功率参数关联时,如何确定参考信号的发送功率。第一方面,提供一种发送信号的方法,包括:第一设备在第一时间单元,以第一发送功率向第二设备发送参考信号,所述参考信号被配置为与第一信道的发射功率参数关联或不关联;所述第一设备在第二时间单元,以第二发送功率向第二设备发送所述参考信号,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的。
在一种可能的设计中,所述第一设备在第一时间单元,以第一发送功率向第二设备发 送参考信号之前,所述方法还包括:所述第一设备在第三时间单元,以第三发送功率向第二设备发送所述参考信号。
在一种可能的设计中,所述第二发送功率还可通过对所述第三发送功率进行累积功率调整所确定。
在一种可能的设计中,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率时,所述第一设备在第二时间单元,以第二发送功率发送所述参考信号之前,所述方法还包括:所述第一设备接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述偏移值。
在一种可能的设计中,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一设备通过所述第一信道的发射功率参数,确定所述偏移值。
在一种可能的设计中,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率不关联时,所述第一设备通过所述第一信道的发射功率参数和所述参考信号的发射功率参数中的至少一个,确定所述偏移值。
在一种可能的设计中,当所述参考信号被配置为与所述第一信道的发射功率不关联时,所述第一发送功率根据在所述第一时间单元上,发送所述参考信号的功率和发送所述第一信道的功率中的至少一个所确定。
在一种可能的设计中,所述第一设备在第二时间单元,以第二发送功率向第二设备发送所述参考信号之前,所述方法还包括:所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示所述第二发送功率的确定方式;其中,当所述第二指示信息指示第一值时,所述第二发送功率为通过所述重置闭环功率所确定的;或者,当所述第二指示信息指示第二值时,所述第二发送功率为通过绝对功率调整所确定的;或者,当所述第二指示信息指示第三值时,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;或者,当所述第二指示信息指示第四值时,所述第二闭环功率为通过对所述第三发送功率进行累积功率调整所确定。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
第二方面,提供一种接收信号的方法,包括:第二设备在第一时间单元,接收第一设备以第一发送功率发送的参考信号,所述参考信号被配置为与第一信道的发射功率参数关联或不关联;所述第二设备在第二时间单元,接收所述第一设备以第二发送功率发送的所述参考信号,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的。
在一种可能的设计中,所述第二设备在第一时间单元,接收第一设备以第一发送功率发送的参考信号之前,所述方法还包括:所述第二设备在第三时间单元,接收所述第一设备以第三发送功率发送的所述参考信号。
在一种可能的设计中,所述第二发送功率还可通过对所述第三发送功率进行累积功率 调整所确定。
在一种可能的设计中,当通过所述第一发送功率和偏移值确定所述第二发送功率时,所述第二设备在第二时间单元,接收所述第一设备以第二发送功率发送的所述参考信号之前,所述方法还包括:所述第二设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示所述偏移值。
在一种可能的设计中,当通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率参数关联时,通过所述第一信道的发射功率参数,确定所述偏移值。
在一种可能的设计中,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率不关联时,通过所述第一信道的发射功率参数和所述参考信号的发射功率参数中的至少一个,确定所述偏移值。
在一种可能的设计中,当所述参考信号被配置为与所述第一信道的发射功率不关联时,所述第一发送功率根据在所述第一时间单元上,发送所述参考信号的功率和发送所述第一信道的功率所确定。
在一种可能的设计中,所述第二设备在第二时间单元,接收所述第一设备以第二发送功率发送的所述参考信号之前,所述方法还包括:所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示所述第二发送功率的确定方式;其中,当所述第二指示信息指示第一值时,所述第二发送功率为通过所述重置闭环功率所确定;或者,当所述第二指示信息指示第二值时,所述第二发送功率为通过绝对功率调整所确定;或者,当所述第二指示信息指示第三值时,所述第二发送功率为通过所述第一发送功率和偏移值所确定;或者,当所述第二指示信息指示第四值时,所述第二闭环功率为通过对所述第三发送功率进行累积功率调整所确定。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
第三方面,提供一种发送信号的方法,包括:第一设备接收第二设备发送的第一信息,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率;所述第一设备根据所述第一信息,向第二设备发送所述参考信号。
在一种可能的设计中,所述第一设备接收第二设备发送的第一信息,包括:所述第一设备接收第二设备发送的下行控制信息,所述下行控制信息中携带有所述第一信息。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
在一种可能的设计中,当所述参考信号为半静态探测参考信号时,所述功率调整值包括一个调整值,所述一个调整值用于确定在所述半静态探测参考信号的激活期间所有探测参考信号的功率调整值;或者,所述功率调整值包括一组调整值,所述一组调整值中包括至少一个调整值,所述一组调整值中的第i个调整值对应于在所述半静态参考信号的激活期间所发送的第i个探测参考信号的功率调整值,所述i为大于零小于等于N的整数,所述N为在所述半静态参考信号的激活期间所发送所述探测参考信号的数量。
第四方面,提供一种接收信号的方法,包括:第二设备生成第一信息,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率;所述第二设备向第一设备发送所述第一信息。
在一种可能的设计中,所述第二设备向第一设备发送所述第一信息,包括:所述第二设备向所述第一设备发送下行控制信息,所述下行控制信息中携带有所述第一信息。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
在一种可能的设计中,当所述参考信号为半静态探测参考信号时,所述功率调整值包括一个调整值,所述一个调整值用于确定在所述半静态探测参考信号的激活期间所有探测参考信号的功率调整值;或者,所述功率调整值包括一组调整值,所述一组调整值中包括至少一个调整值,所述一组调整值中的第i个调整值对应于在所述半静态参考信号的激活期间所发送的第i个探测参考信号的功率调整值,所述i为大于零小于等于N的整数,所述N为在所述半静态参考信号的激活期间所发送所述探测参考信号的数量。
第五方面,提供一种发送信号的方法,包括:第一设备接收第二设备发送的第一信息,所述第一信息用于激活参考信号的发送;所述第一设备在第一时间单元,以第一发送功率向第二设备发送所述参考信号,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定,或者,所述第一发送功率为根据预设调整值所确定的。
在一种可能的设计中,所述第一设备接收第二设备发送的第一信息,包括:所述第一设备接收第二设备发送的无线资源控制信息,所述无线资源控制信息中携带有所述第一信息;或者,所述第一设备接收第二设备发送的媒体接入控制信息,所述媒体接入控制信息中携带有所述第一信息。
在一种可能的设计中,在所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一发送功率根据在所述第一时间单元上,发送所述第一信道的功率所确定。
在一种可能的设计中,在所述参考信号被配置为与所述第一信道的发射功率参数不关联时,所述第一发送功率根据所述预设调整值所确定。
在一种可能的设计中,所述第一设备在第一时间单元,以第一发送功率向第二设备发送所述参考信号之前,所述方法还包括:所述第一设备在第二时间单元,以第二发送功率向所述第二设备发送所述参考信号;其中,所述第一设备根据所述预设调整值确定所述第一发送功率,包括:所述第一设备根据所述第二发送功率以及所述预设调整值确定所述第一发送功率。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
第六方面,本申请提供一种接收信号的方法,包括:第二设备向第一设备发送第一信息,所述第一信息用于激活参考信号的发送;所述第二设备在第一时间单元,接收所述第一设备以第一发送功率发送的参考信号,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定,或者,所述第一发送功率为根据预设调整值所确定的。
在一种可能的设计中,所述第二设备向第一设备发送第一信息,包括:所述第二设备向所述第一设备发送无线资源控制信息,所述无线资源控制信息中携带有所述第一信息;或者,所述第二设备向所述第一设备发送媒体接入控制信息,所述媒体接入控制信息中携带有所述第一信息。
在一种可能的设计中,在所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一发送功率根据在所述第一时间单元上,发送所述第一信道的功率所确定。
在一种可能的设计中,在所述参考信号被配置为与所述第一信道的发射功率参数不关联时,所述第一发送功率根据所述预设调整值所确定。
在一种可能的设计中,所述第二设备在第一时间单元,接收所述第一设备以第一发送功率发送的参考信号之前,所述方法还包括:所述第二设备在第二时间单元,接收所述第一设备以第二功率发送的的参考信号;其中,根据所述预设调整值确定所述第一发送功率,包括:根据所述第二发送功率以及所述预设调整值确定所述第一发送功率。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
第七方面,提供一种第一设备,包括:处理器,用于确定第一发送功率和第二发送功率,其中,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;收发器,用于在第一时间单元,以第一发送功率向第二设备发送参考信号和在第二时间单元,以第二发送功率向第二设备发送所述参考信号,其中,所述参考信号被配置为与第一信道的发射功率参数关联或不关联。
在一种可能的设计中,所述收发器在第一时间单元,以第一发送功率向第二设备发送参考信号之前,所述收发器还用于:在第三时间单元,以第三发送功率向第二设备发送所述参考信号。
在一种可能的设计中,所述第二发送功率还可通过对所述第三发送功率进行累积功率调整所确定。
在一种可能的设计中,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率时,所述收发器还用于接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述偏移值。
在一种可能的设计中,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述处理器可通过所述第一信道的发射功率参数,确定所述偏移值。
在一种可能的设计中,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率不关联时,所述处理器可通过所述第一信道的发射功率参数和所述参考信号的发射功率参数中的至少一个,确定所述偏移值。
在一种可能的设计中,当所述参考信号被配置为与所述第一信道的发射功率不关联时,所述第一发送功率根据在所述第一时间单元上,发送所述参考信号的功率和发送所述第一信道的功率中的至少一个所确定。
在一种可能的设计中,所述收发器,还用于接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示所述第二发送功率的确定方式;其中,当所述第二指示信息指示第一值时,所述第二发送功率为通过所述重置闭环功率所确定的;或者,当所述第二指示信息指示第二值时,所述第二发送功率为通过绝对功率调整所确定的;或者,当所述第二指示信息指示第三值时,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;或者,当所述第二指示信息指示第四值时,所述第二闭环功率为通过对所述第三发送功率进行累积功率调整所确定。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
第八方面,提供一种第二设备,包括:收发器,用于在第一时间单元,接收第一设备以第一发送功率发送的参考信号,以及,在第二时间单元,接收所述第一设备以第二发送功率发送的所述参考信号,其中,所述参考信号被配置为与第一信道的发射功率参数关联或不关联,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;处理器,用于对所述参考信号进行相应的处理。
在一种可能的设计中,所述收发器,还用于在第三时间单元,接收所述第一设备以第三发送功率发送的所述参考信号。
在一种可能的设计中,所述第二发送功率还可通过对所述第三发送功率进行累积功率调整所确定。
在一种可能的设计中,所述收发器还用于:向所述第一设备发送第一指示信息,所述第一指示信息用于指示所述偏移值。
在一种可能的设计中,当通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率参数关联时,通过所述第一信道的发射功率参数,确定所述偏移值。
在一种可能的设计中,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率不关联时,通过所述第一信道的发射功率参数和所述参考信号的发射功率参数中的至少一个,确定所述偏移值。
在一种可能的设计中,当所述参考信号被配置为与所述第一信道的发射功率不关联时,所述第一发送功率根据在所述第一时间单元上,发送所述参考信号的功率和发送所述第一信道的功率所确定。
在一种可能的设计中,所述收发器,还用于向所述第一设备发送第二指示信息,所述第二指示信息用于指示所述第二发送功率的确定方式;其中,当所述第二指示信息指示第一值时,所述第二发送功率为通过所述重置闭环功率所确定;或者,当所述第二指示信息指示第二值时,所述第二发送功率为通过绝对功率调整所确定;或者,当所述第二指示信息指示第三值时,所述第二发送功率为通过所述第一发送功率和偏移值所确定;或者,当所述第二指示信息指示第四值时,所述第二闭环功率为通过对所述第三发送功率进行累积功率调整所确定。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述第一信道为物 理上行共享信道、物理上行控制信道或物理随机接入信道;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
第九方面,提供一种第一设备,包括:收发器,用于接收第二设备发送的第一信息,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率;处理器,用于根据所述第一信息,确定所述参考信号;所述收发器,还用于向所述第二设备发送所述参考信号。
在一种可能的设计中,所述收发器接收第二设备发送的第一信息,包括:所述收发器接收第二设备发送的下行控制信息,所述下行控制信息中携带有所述第一信息。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
在一种可能的设计中,当所述参考信号为半静态探测参考信号时,所述功率调整值包括一个调整值,所述一个调整值用于确定在所述半静态探测参考信号的激活期间所有探测参考信号的功率调整值;或者,所述功率调整值包括一组调整值,所述一组调整值中包括至少一个调整值,所述一组调整值中的第i个调整值对应于在所述半静态参考信号的激活期间所发送的第i个探测参考信号的功率调整值,所述i为大于零小于等于N的整数,所述N为在所述半静态参考信号的激活期间所发送所述探测参考信号的数量。
第十方面,提供一种第二设备,包括:处理器,用于生成第一信息,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率;收发器,用于向第一设备发送所述第一信息。
在一种可能的设计中,所述收发器向第一设备发送所述第一信息,包括:所述收发器向所述第一设备发送下行控制信息,所述下行控制信息中携带有所述第一信息。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
在一种可能的设计中,当所述参考信号为半静态探测参考信号时,所述功率调整值包括一个调整值,所述一个调整值用于确定在所述半静态探测参考信号的激活期间所有探测参考信号的功率调整值;或者,所述功率调整值包括一组调整值,所述一组调整值中包括至少一个调整值,所述一组调整值中的第i个调整值对应于在所述半静态参考信号的激活期间所发送的第i个探测参考信号的功率调整值,所述i为大于零小于等于N的整数,所述N为在所述半静态参考信号的激活期间所发送所述探测参考信号的数量。
第十一方面,提供一种第一设备,包括:收发器,用于接收第二设备发送的第一信息,所述第一信息用于激活参考信号的发送;处理器,用于根据所述第一信息,激活所述参考信号的发送;所述收发器,还用于在第一时间单元,以第一发送功率向第二设备发送所述参考信号,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定,或者,所述第一发送功率为根据预设调整值所确定的。
在一种可能的设计中,所述收发器接收第二设备发送的第一信息,包括:所述收发器接收第二设备发送的无线资源控制信息,所述无线资源控制信息中携带有所述第一信息;或者,所述第一设备接收第二设备发送的媒体接入控制信息,所述媒体接入控制信息中携 带有所述第一信息。
在一种可能的设计中,在所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一发送功率根据在所述第一时间单元上,发送所述第一信道的功率所确定。
在一种可能的设计中,在所述参考信号被配置为与所述第一信道的发射功率参数不关联时,所述第一发送功率根据所述预设调整值所确定。
在一种可能的设计中,所述收发器,还用于在第二时间单元,以第二发送功率向所述第二设备发送所述参考信号;其中,所述第一设备根据所述预设调整值确定所述第一发送功率,包括:所述第一设备根据所述第二发送功率以及所述预设调整值确定所述第一发送功率。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
第十二方面,提供一种第二设备,包括:处理器,用于生成第一信息;收发器,用于向第一设备发送所述第一信息,以及在第一时间单元,接收所述第一设备以第一发送功率发送的参考信号,所述第一信息用于激活参考信号的发送,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定,或者,所述第一发送功率为根据预设调整值所确定的。
在一种可能的设计中,所述收发器向第一设备发送第一信息,包括:所述收发器向所述第一设备发送无线资源控制信息,所述无线资源控制信息中携带有所述第一信息;或者,所述收发器向所述第一设备发送媒体接入控制信息,所述媒体接入控制信息中携带有所述第一信息。
在一种可能的设计中,在所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一发送功率根据在所述第一时间单元上,发送所述第一信道的功率所确定。
在一种可能的设计中,在所述参考信号被配置为与所述第一信道的发射功率参数不关联时,所述第一发送功率根据所述预设调整值所确定。
在一种可能的设计中,所述收发器,还用于在第二时间单元,接收所述第一设备以第二功率发送的的参考信号;其中,根据所述预设调整值确定所述第一发送功率,包括:根据所述第二发送功率以及所述预设调整值确定所述第一发送功率。
在一种可能的设计中,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
第十三方面,提供一种计算机可读存储介质,包括指令,当其在通信设备上运行时,使得所述通信设备执行上述第一方面至第六方面任一方面所述的方法。
第十四方面,提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第六方面任一方面所述的方法。
第十五方面,提供一种装置,包含处理器和存储器,所述存储器上存储有程序或指令,当所述程序或指令由所述处理器执行时,实现上述第一方面至第六方面任一项所述的方法。
附图说明
图1为本申请实施例提供的通信系统的一示意图;
图2为本申请实施例提供的通信系统的另一示意图;
图3为本申请实施例提供的发送信号的方法的一流程图;
图4为本申请实施例提供的发送信号的方法的另一流程图;
图5为本申请实施例提供的发送信号的方法的又一流程图;
图6为本申请实施例提供的一应用场景;
图7为本申请实施例提供的另一应用场景;
图8为本申请实施例提供的发送信号的方法的一流程示意图;
图9为本申请实施例提供的发送信号的方法的又一流程示意图;
图10为本申请实施例提供的发送信号的方法的另一流程示意图;
图11为本申请实施例提供的一应用场景;
图12为本申请实施例提供的另一应用场景;
图13为本申请实施例提供的基站的一结构示意图;
图14为本申请实施例提供的UE的一结构示意图。
具体实施方式
本申请提供一种发送信号的方法及设备,用以解决当参考信号与第一信道的发射功率参数关联时,如何确定参考信号的发送功率。其中,方法及设备是基于同一发明构思的,由于方法及设备解决问题的原理相似,因此方法与设备的实施例可以相互参见,重复之处不再赘述。
图1示出了本申请实施例提供的一种通信系统100,该通信系统100包括基站101以及终端设备102。
其中,基站101,负责为所述终端设备102提供无线接入有关的服务,实现无线物理层功能、资源调度和无线资源管理、服务质量(Quality of Service,QoS)管理、无线接入控制以及移动性管理功能。终端设备102,为通过所述基站101接入网络的设备。所述基站101和所述终端设备102之间通过Uu接口连接,从而实现所述终端设备102和所述基站101之间的通信。
进一步的,在通信系统100中,基站101可使用探测参考信号(sounding reference signal,SRS)来估计不同频段的上行信道质量,且将瞬时信道状态好的资源块(resource block,RB)分配给UE的上行共享。
在本申请实施例中,所述基站101,是一种部署在无线接入网中用以为终端设备102提供无线通信功能的装置。所述基站101可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B),在NR系统中,称为gNB等。为方便描述,本申请所有实施例中,将为UE2提供无线通信功能的装置统称为基站。
在本申请实施例中,所述终端设备102,可以包括各种具有无线通信功能的手持设备、 车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述UE也可以称为移动台(mobile station,简称MS),终端(terminal),终端设备(terminal equipment),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端设备。
在本申请实施例中,通信系统100可以为各种无线接入技术(radio access technology,RAT)系统,譬如例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。此外,所述通信系统还可以适用于面向未来的通信技术,只要采用新通信技术的通信系统包括承载的建立,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图2示出了本申请实施例提供一种通信系统200,该通信系统200主要应用于点到点(device to device,D2D)、eD2D,车到车(vehicle-to-vehicle,V2V),车与万物互联V2X等场景,可包括终端设备201和终端设备202。
其中,终端设备201和终端设备202可为两个对等的用户节点,两者可直接进行通信。
需要说明的是,在通信系统100仅是示意的示出了一个基站101和一个终端设备102,基站101和终端设备102的数量并不作为对本申请的限定,所述通信系统100可根据需求,设置任意数量的基站101和终端设备102。同理,通信系统200也仅是示意的示出了一个终端设备201和一个终端设备202,终端设备201和终端设备202的数量并不作为对本申请的限定,所述通信系统200可根据需求,设置任意数量的终端设备201和终端设备202。
为了便于理解,示例的给出了与本申请的实施例相关概念的说明以供参考,如下所示:
1)参考信号:主要用于估计不同频段的上行信道质量。在一种示例中,所述参考信号也可包括探测参考信号(sounding reference signal,SRS),所述SRS的类型可具体为周期性SRS、非周期性SRS和半静态SRS(semi-persistant SRS,SP-SRS)中的至少一个。 所述参考信号还可以包括同步信号(synchronization signal,SS),所述SS的类型可具体为主同步信号(primary synchronization signal,PSS)或辅同步信号(secondary synchronization signal,SSS)。
2)第一信道:主要指上行信道。在一种示例中,所述第一信道可包括仅不限于为物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)和物理随机接入信道(physical random access channel,PRACH)。
3)时间单元:主要指用于发送参考信号的时隙。在一种示例中,所述时间单元,可为新通信协议(new radio,NR)系统中的上行时隙,或者,所述目标时隙可为下行为主的自包含时隙,或上行为主的自包含时隙,或动态时隙。其中,下行为主的自包含时隙主要包括下行控制区域(DL control region)、下行数据区域(DL data region)、间隔区域(gap region)和上行控制区域(UL control region)。上行为主的自包含时隙主要包括上行控制区域(DL control region)、间隔区域(gap region)、上行数据区域(UL data region)和上行控制区域(UL control region)。所述动态时隙是指一个时隙是上行为主的自包含时隙,还是下行为主的自包含时隙是可动态配置的,即该动态时隙可被配置为上行为主的自包含时隙,也可被配置为下行为主的自包含时隙。应当理解,本申请实施例中“时间单元”实际上指一种时间资源单元,可称为但不限于时隙、子帧、符号、帧等名称。
11)多个:是指两个或两个以上,其它量词与之类似。
12)“和/或”:描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
基于图1所示的通信系统100或图2所示的通信系统200,如图3所示,本申请提供一种发送信号的方法,图3中的第一设备可具体为图1中的终端设备102,第二设备可具体为图1中的基站101,或者,图3中的第一设备可具体为图2中的终端设备201,第二设备可具体为图2中的终端设备202,所述方法包括:
步骤S301:第一设备在第一时间单元,以第一发送功率向第二设备发送参考信号,所述参考信号被配置为与第一信道的发射功率参数关联或不关联。
在本申请实施例中,所述参考信号可为SRS,所述SRS可为周期SRS、非周期SRS和半静态SRS中的至少一个,或者,所述参数信息可为SS,所述SS可为PSS或SSS。所述第一信道可为PUSCH、PUCCH或PRACH。所述参考信号为与第一信道的发射功率参数关联是指参考信号为与第一信道的传输带宽,功率基准值,功率补偿因子,路径损耗,调制编码方式,传输信息类型以及比特数中的一个或多个关联,所述参数信号与第一信道的发射功率不关联是指参考信号与第一信道的传输带宽,功率基准值,功率补偿因子,路径损耗,调制编码方式,传输信息类型以及比特数均不关联。
在本申请实施例中,所述参考信号可被配置为与第一信道的发射功率参数关联或不关联,且若参考信号被配置为与第一信道的发射功率参数关联,则根据第一信道的发送功率确定所述第一发送功率,比如可将第一信道的发送功率作为所述第一发送功率。若参考信号被配置为与第一信道的发射功率参数不关联,则根据在所述第一时间单元上,发送参考 信号的功率和发送第一信道的功率,确定所述第一发送功率,比如,可比较发送参考信号的功率和发送第一信道的功率,且将两者中较小的功率作为所述第一发送功率,或者,将两者中较大的功率作为所述第一发送功率,或者,对所述发送参考信号的功率和发送第一信道的功率进行综合(比如求平均),将综合后的功率作为所述第一发送功率。
可选的,在步骤S301之后,还可包括,步骤S302:第二设备向第一设备发送第二指示信息。
在本申请实施例中,对于第一设备在第二时间单元上,发送参数信号的功率,提供多种确定方式,比如通过重置闭环功率确定、通过绝对功率调整所确定的,以及通过所述第一发送功率以及偏移值确定等。所述第二指示信息用于指示在所述多种方式中,第一设备具体采用那一种方式确定在所述第二时间单元上,发送参考信号的功率。在以下实施例中,为了方便论述,可将第一设备在第二时间单元上,发送参考信号的功率称为第二发送功率。
在本申请的一示例中,当所述第二指示信息指示第一值时,所述第一设备可通过重置闭环功率确定第二发送功率;当第二指示信息指示第二值时,所述第一设备可通过绝对功率调整所确定所述第二发送功率;当所述第二指示信息指示第三值时,所述第一设备可通过所述第一发送功率和偏移值所确定所述第二发送功率。
步骤S303:第一设备在第二时间单元,以第二发送功率向第二设备发送所述参考信号,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的。
在本申请实施例中,所述重置闭环是指利用累积闭环功率算法,重新计算所述第二发送功率,所述绝对功率调整是指利用绝对闭环功率算法,计算所述第二发送功率,所述通过第一发送功率以及偏移值确定所述第二发送功率,是指在所述第一发送功率的基础上,加上一个所述偏移值,或者,在所述第一发送功率的基础上,减去一个所述偏移值。
由上可见,在本申请实施例中,可在参考信号被配置为与第一信道的发射功率参数关联或不关联时,可通过重置闭环功率确定第二发送功率,或通过绝对功率调整确定第二发送功率,或者,通过所述第一发送功率和偏移值确定第二发送功率。
基于图1所示的通信系统100或图2所示的通信系统200,如图4所示,本申请提供一种发送信号的方法,图4中的第一设备可具体为图1中的终端设备102,第二设备可具体为图1中的基站101,或者,图4中的第一设备可具体为图2中的终端设备201,第二设备可具体为图2中的终端设备202,所述方法包括:
步骤S401:第一设备在第三时间单元,以第三发送功率向第二设备发送所述参考信号。
步骤S402:第一设备在第一时间单元,以第一发送功率向第二设备发送参考信号,所述参考信号被配置为与第一信道的发射功率参数关联或不关联。
可选的,在步骤S402之后,还可包括:步骤S403:第二设备向第一设备发送第二指示信息,所述第二指示信息用于指示所述第二发送功率的确定方式。关于所述第二指示信息以及第二发送功率的说明,可参见上述图3所示实施例的介绍,在此不再赘述。
其中,当所述第二指示信息指示第一值时,所述第二发送功率为通过所述重置闭环功率所确定的;当所述第二指示信息指示第二值时,所述第二发送功率为通过绝对功率调整所确定的;当所述第二指示信息指示第三值时,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;当所述第二指示信息指示第四值时,所述第二闭环功率为通过对所 述第三发送功率进行累积功率调整所确定。
步骤S404:第一设备在第二时间单元,以第二发送功率向第二设备发送所述参考信号,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的,或者,所述第二发送功率还可通过对所述第三发送功率进行累积功率调整所确定。
由上可见,在本申请实施例中,可在参考信号被配置为与第一信道的发射功率参数关联或不关联时,可通过重置闭环功率确定第二发送功率,或者,通过绝对功率调整确定第二发送功率,或者通过所述第一发送功率和偏移值确定第二发送功率,或者通过对所述第三发送功率进行累积功率调整确定第二发送功率。
基于图1所示的通信系统100或图2所示的通信系统200,如图5所示,本申请提供一种发送信号的方法,图5中的第一设备可具体为图1中的终端设备102,第二设备可具体为图1中的基站101,或者,图5中的第一设备可具体为图2中的终端设备201,第二设备可具体为图2中的终端设备202,所述方法包括:
步骤S501:第一设备在第一时间单元,以第一发送功率向第二设备发送参考信号,所述参考信号被配置为与第一信道的发射功率参数关联或不关联。
在本申请实施例中,关于如何确定在第二时间单元上发送参考信号的第二发送功率,可基于第一发送功率和偏移值所确定。关于如何确定所述偏移值,可采用隐式方式和显示方式。
若隐式方式,具体为:若所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一设备可通过所述第一信道的发射功率参数,确定所述偏移值;若所述参考信号被配置为与所述第一信道的发射功率参数不关联时,可通过所述第一信道的发射功率参数和所述参考信号的发射功率参数中的至少一个,确定所述偏移值,比如可仅根据第一信道的发射功率参数,确定所述偏移值,或者,可仅根据参考信号的发射功率参数,确定所述偏移值,或者,可同时根据参考信号的发射功率参数和第一信道的发射功率参数,确定所述偏移值。
若显式方式,可选的,在步骤S501之后,还可包括:步骤S502:第二设备向第一设备发送第一指示信息,所述第一指示信息用于指示所述偏移值。
步骤S503:第一设备在第二时间单元,以第二发送功率向第二设备发送所述参考信号。
其中,所述第二发送功率是根据所述第一发送功率和所述偏移值所确定的。
由上可见,在本申请实施例中,当根据第一发送功率和偏移值,确定第二发送功率时,所述偏移值可通过显示指示,也可通过隐式指示,方式灵活。
基于图3、图4或图5所提供的发送信号的方法,本申请提供一种发送信号的方法,该方法中的SRS可具体为图3至图5中的参考信号,时隙(slot)可具体为图3至图5中的第一时间单元、第二时间单元或第三时间单元,具体如下:
设定以下场景,如图6或图7所示,UE周期性在slot#1、slot#6以及slot#11发送SRS,且SRS的发送采用累积闭环功率算法。如果UE在slot6接收到动在slot#6有动态调度的PUSCH传输,那么在时隙#6中会同时传输PUSCH和SRS,且SRS会占用一个slot内最后的N个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,比如 N可为1、2或4。以下分两种情况进行说明:
第一种情况,UE被配置SRS与PUSCH的发射功率参数关联。在本申请实施例中,在正常累积闭环的处理流程中,slot#6发送SRS的功率,需要在slot#1发送SRS功率的基础上进行累加,slot#11发送SRS的功率,需要在slot#6的基础上进行累加。
由于在本应用场景中,SRS被配置为与PUSCH的发射功率参数关联,因此,在slot#6中,UE会采用PUSCH的发射功率参数,作为SRS在slot#6中发送功率的发射功率参数。因此,slot#11显然不再适用于在slot#6发送功率的基础上进行累加。在本申请实施例中,提供以下方式,确定slot#11中发送SRS的功率:
slot#11中传输的SRS在slot#1中传输SRS的基础上累积功率;
slot#11独立计算传输SRS的闭环功率,比如在slot#11中重置累积闭环功功率或以
绝对功率调整计算。
在本申请实施例中,UE具体采用方式1)或方式2)计算slot#11中传输SRS的功率可通过信令配置,比如,可以通过高层或物理层信令配置,高层信令可以是无线资源控制(radio resource control,RRC)信令或媒体接入控制(media access control,MAC),物理层信令可以是下行控制信息(down control information,DCI)信令。
第二种情况,UE被配置为SRS与PUSCH发射功率参数不关联。。
在本申请中,为了避免在一个slot内功率的跳变,因此在slot#6中需要保持PUSCH和SRS的发送功率相一致。在一示例中,可在slot#6中,以PUSCH的发送功率,传输PUSCH和SRS,或者,也可以SRS的发送功率,传输PUSCH和SRS,或者,也可以在PUSCH的传输功率和SRS的传输功率中,选择一满足条件(比如传输功率较大或较小)的发送功率,来共同传输PUSCH和SRS,或者,也可对PUSCH的发送功率和SRS的发送功率进行综合(比如求平均),且将综合后的发送功率作为PUSCH和SRS的发送功率。
此时,Slot#11中发送SRS的功率,可按照以下方式确定:
slot#11中传输的SRS在slot#1中传输SRS的发送功率基础上累积功率;
slot#11独立计算传输SRS的发送功率,比如在slot#11中重置闭环功率
或绝对功率调整计算。
3)slot#11会仍然在slot#6的闭环功率基础上进行累积,但会加上offset值,作为一种可能性,offset值可以通过PUSCH的调度信令DCI携带。
基于图1所示的通信系统100或图2所示的通信系统200,如图8所示,本申请提供一种发送信号的方法,图8中的第一设备可具体为图1中的终端设备102,第二设备可具体为图1中的基站101,或者,图8中的第一设备可具体为图2中的终端设备201,第二设备可具体为图2中的终端设备202,所述方法包括:
步骤S801:第二设备向第一设备发送第一信息。
其中,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率。具体的,所述第二设备可向第一设备发送DCI信令,所述DCI信令中可携带所述第一信息。所述参考信号可为SRS,所述SRS包括周期SRS、非周期SRS和半静态SRS中的至少一个。
步骤S802:第一设备根据所述第一信息,向第二设备发送所述参考信号。
在本申请实施例中,当所述参考信号为半静态SRS时,所述功率调整值包括一个调整值,所述一个调整值用于确定在所述半静态SRS的激活期间所有探测参考信号的功率调整值。比如,在半静态SRS的激活期间,UE一共需上报5个SRS,那么5个SRS均照所述第一信息中所指示的一个调整值进行功率调整。再如,所述第一信息中所指示的调整值为1dB,那么在整个半静态SRS的上报期间,5个SRB均按照1dB的功率进行调整。
在本申请实施例中,所述功率调整值也可包括一组调整值,所述一组调整值中包括至少一个调整值,所述一组调整值中的第i个调整值对应于在所述半静态参考信号的激活期间所发送的第i个探测参考信号的功率调整值,所述i为大于零小于等于N的整数,所述N为在所述半静态参考信号的激活期间所发送所述探测参考信号的数量。
比如,仍沿用上述举例,在半静态SRS的激活期间,UE一共需上报5个SRS,那么上述一组调整值中可包括5个调整值,比如分别为1dB、3dB、0dB、1dB以及3dB,那么1dB可对应于半静态SRS的激活期间,第一个SRS的调整值;3dB可对应于半静态SRS的激活期间,第二个SRS的调整值;0dB可对应于半静态SRS的激活期间,第三个SRS的调整值;1dB可对应于半静态SRS的激活期间,第四个SRS的调整值;3dB可对应于半静态SRS的激活期间,第五个SRS的调整值。
由上可见,在本申请实施例中,第二设备通过第一信息,同时激活参考信号的发送和指示功率调整值,从而无需额外信令指示功率调整值,从而减少信令开销。
基于图1所示的通信系统100或图2所示的通信系统200,如图9所示,本申请提供一种发送信号的方法,图9中的第一设备可具体为图1中的终端设备102,第二设备可具体为图1中的基站101,或者,图9中的第一设备可具体为图2中的终端设备201,第二设备可具体为图2中的终端设备202,所述方法包括:
步骤S901:第二设备向第一设备发送第一信息,所述第一信息用于激活参考信号的发送。
在本申请实施例中,所述第一信息可为RRC信令,或MAC信令。
步骤S902:第一设备在第一时间单元,以第一发送功率向第二设备发送所述参考信号。
在本申请实施例中,在所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的发送功率所确定;
在所述参考信号被配置为与所述第一信道的发射功率参数不关联时,所述第一发送功率为根据预设调整值所确定的。
在本申请实施例中,所述参考信号可为SRS,所述SRS可包括周期SRS、非周期SRS和半静态SRS中的至少一个,或者,所述参数信息可为SS,所述SS可为PSS或SSS。所述第一信道可为PUSCH、PUCCH或PRACH。由上可见,在本申请实施例中,第一设备可仅发送第一信息用于激活参考信号的发送,而第二设备发送SRS的功率调整值,第二设备可根据自身设置的条件所确定,而无需第一设备进行指示,从而节省信令开销。
基于图1所示的通信系统100或图2所示的通信系统200,如图10所示,本申请提供一种发送信号的方法,图10中的第一设备可具体为图1中的终端设备102,第二设备可具体为图1中的基站101,或者,图10中的第一设备可具体为图2中的终端设备201,第二 设备可具体为图2中的终端设备202,所述方法包括:
步骤S1001:第二设备向第一设备发送第一信息,所述第一信息用于激活参考信号的发送。
步骤S1002:第一设备在第二时间单元,以第二发送功率向所述第二设备发送所述参考信号。
步骤S1003:第一设备在第一时间单元,以第一发送功率向第二设备发送所述参考信号。
在本申请实施例中,在所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定;
在所述参考信号被配置为与所述第一信道的发射功率参数不关联时,所述第一发送功率根据所述预设调整值所确定,所述第一发送功率为根据预设调整值和所述第二发送功率所确定的。
需要说明的是,本申请实施例中,并不限步骤S1001至步骤1003执行的先后顺序,比如,可在步骤S1001之前,执行步骤S1002。
由上可见,在本申请实施例中,同样无需第一设备指示参考信号上报的调整值,节省信令开销。
基于图9或图10所提供的发送信号的方法,本申请提供一种发送信号的方法,该方法中的SRS可具体为图9或图10中的参考信号,时隙(slot)可具体为图9或图10中的第一时间单元或第二时间单元,该方法主要用于对半静态SRS的处理,具体如下:
基站会向UE发送激活信息,以激活SRS的传输,而UE在接收到所述激活信息后,则开始传输SRS。在本申请实施例中,可通过DCI信令动态激活半静态SRS的上报,也可通过高层信令,例如RRC或MAC信令激活半静态SRS的上报。
第一种情况:若通过DCI激活半静态SRS的上报:
1)如图11所示,可在激活半静态SRS上报的DCI信令中,携带TPC命令,所述TPC命令用于指示在本次激活期间所有SRS的功率调整,即每次发送的SRS会在前一次的基础上加上累积TPC指示的功率调整值。在本申请实施例中,所述激活半静态SRS上报DCI信令可具体为触发半静态SRS的激活(Trigger SP-SRS Activation),需要说明的是,在本申请实施例中,对于半静态SRS而言,如果需结束SRS的上报,也需基站进行指示,在本申请实施例中,仍可参照11,对于结束半静态SRS上报的信令可称为触发半静态SRS的去激活(Trigger SP-SRS deactivation)
2)如图12所示,同样可在激活半静态SRS上报的DCI信令中,携带TPC命令,所述TPC命令用于指示一组TPC值,对应不同slot传输的SP-SRS的调整值。如图12所示;此时对应的场景可以是,NR中若采用LTE中的树状跳频,可以根据SRS传输的带宽和频域位置来确定携带的一组累积TPC的值,来调整闭环功率。
需要说明的是,在上述方式1)和方式2)中均无需额外的指示信息,用于指示调整值,节省信令开销。同时方式2)可灵活指示SRS的功率调整值。
第二种情况:若通过高层信令(比如,MAC-CE或RRC)触发:
1)若SRS功率被配置为与PUSCH的发射功率参数关联,且在同一slot内有PUSCH传输,则共享PUSCH的发射功率参数和闭环功率控制。
2)若SRS功率与PUSCH发射功率参数不关联或在同一slot内没有PUSCH传输,则预定义默认调整值,例如预定义调整值为0,即闭环功率控制为h(i)=h(i-1),直接复用上一次SRS传输的闭环功率,所述i代表传输SRS的时隙号,所述i为大于零小于等于N的整数,所述N代表在半静态SRS激活期间,总共传输SRS的数量。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的信息发送的方法进行了介绍。可以理解的是,各个网元,例如UE、基站,控制节点等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图13示出了上述实施例中所涉及的基站的一种可能的结构示意图。该基站可以是如图1中所示的基站101,或者可以为图3至图10中的第二设备,如图13所示基站130可包括收发器131,控制器/处理器132。所述收发器131可以用于支持基站与上述实施例中的所述的UE之间收发信息,以及支持所述UE与其它UE之间进行无线电通信。所述控制器/处理器132可以用于执行各种用于与UE或其他网络设备通信的功能。在上行链路,来自所述UE的上行链路信号经由天线接收,由收发器131进行调解,并进一步由控制器/处理器132进行处理来恢复UE所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器132进行处理,并由收发器131进行调解来产生下行链路信号,并经由天线发射给UE。所述收发器131还用于接收UE发送的混合自动重传请求信息。所述收发器131还可以用于执行图3至图10中涉及基站的处理过程和/或用于本申请所描述的技术的其他过程,譬如在第一时间单元,接收UE以第一功率发送的参考信号,和在第二时间单元,接收UE以第二功率发送的参考信号等。所述基站130还可以包括存储器133,可以用于存储基站的程序代码和数据。所述基站还可以包括通信单元134,用于支持基站与其他网络实体进行通信。
可以理解的是,图13仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的基站都在本发明的保护范围之内。
图14示出了上述实施例中所涉及的UE的一种可能的设计结构的简化示意图,所述UE140可以是如图1所示中的UE102,也可以为图2的UE201或UE202,也可以为图3至图10中的第一设备。所述UE140可包括收发器141,控制器/处理器142,还可以包括存储器143和调制解调处理器144。
收发器141调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。收发器141调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器144中,编码器1441接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1442进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1444处理(例如,解调)该输入 采样并提供符号估计。解码器1443处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器1441、调制器1442、解调器1444和解码器1443可以由合成的调制解调处理器144来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
收发器141用于执行与基站的通信,比如在第一时间单元,以第一发送功率向基站发送参考信号,以及,在第二时间单元,以第二发送功率向基站发送参考信号,执行图3至图10中涉及UE的动作。存储器143用于存储用于所述UE的程序代码和数据。
本申请还提供一种计算机可读存储介质,其特征在于,包括指令,当其在通信设备上运行时,使得所述通信设备执行上述实施例所示的发送信号的方法或接收信号的方法。
本申请还提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述实施例所记载的发送信号的方法或接收信号的方法。
在本申请还提供一种装置,包含处理器和存储器,其特征在于,所述存储器上存储有程序或指令,当所述程序或指令由所述处理器执行时,以实现上述实施例所记载的发送信号的方法或接收信号的方法。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指 令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (47)

  1. 一种发送信号的方法,其特征在于,包括:
    第一设备在第一时间单元,以第一发送功率向第二设备发送参考信号,所述参考信号被配置为与第一信道的发射功率参数关联或不关联;
    所述第一设备在第二时间单元,以第二发送功率向第二设备发送所述参考信号,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备在第一时间单元,以第一发送功率向第二设备发送参考信号之前,所述方法还包括:
    所述第一设备在第三时间单元,以第三发送功率向第二设备发送所述参考信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第二发送功率还可通过对所述第三发送功率进行累积功率调整所确定。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率时,所述第一设备在第二时间单元,以第二发送功率发送所述参考信号之前,所述方法还包括:
    所述第一设备接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述偏移值。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一设备通过所述第一信道的发射功率参数,确定所述偏移值。
  6. 根据权利要求1至3任一项所述的方法,其特征在于,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率不关联时,所述第一设备通过所述第一信道的发射功率参数和所述参考信号的发射功率参数中的至少一个,确定所述偏移值。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,当所述参考信号被配置为与所述第一信道的发射功率不关联时,所述第一发送功率根据在所述第一时间单元上,发送所述参考信号的功率和发送所述第一信道的功率中的至少一个所确定。
  8. 根据权利要求3至7任一项所述的方法,其特征在于,所述第一设备在第二时间单元,以第二发送功率向第二设备发送所述参考信号之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示所述第二发送功率的确定方式;
    其中,当所述第二指示信息指示第一值时,所述第二发送功率为通过所述重置闭环功率所确定的;
    或者,当所述第二指示信息指示第二值时,所述第二发送功率为通过绝对功率调整所确定的;
    或者,当所述第二指示信息指示第三值时,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;
    或者,当所述第二指示信息指示第四值时,所述第二闭环功率为通过对所述第三发送 功率进行累积功率调整所确定。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;
    其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
  10. 一种接收信号的方法,其特征在于,包括:
    第二设备在第一时间单元,接收第一设备以第一发送功率发送的参考信号,所述参考信号被配置为与第一信道的发射功率参数关联或不关联;
    所述第二设备在第二时间单元,接收所述第一设备以第二发送功率发送的所述参考信号,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述第二设备在第一时间单元,接收第一设备以第一发送功率发送的参考信号之前,所述方法还包括:
    所述第二设备在第三时间单元,接收所述第一设备以第三发送功率发送的所述参考信号。
  12. 根据权利要求11所述的方法,其特征在于,所述第二发送功率还可通过对所述第三发送功率进行累积功率调整所确定。
  13. 根据权利要求10至12任一项所述的方法,其特征在于,当通过所述第一发送功率和偏移值确定所述第二发送功率时,所述第二设备在第二时间单元,接收所述第一设备以第二发送功率发送的所述参考信号之前,所述方法还包括:
    所述第二设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示所述偏移值。
  14. 根据权利要求10至12任一项所述的方法,其特征在于,当通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率参数关联时,通过所述第一信道的发射功率参数,确定所述偏移值。
  15. 根据权利要求10至12任一项所述的方法,其特征在于,当所述第一设备通过所述第一发送功率和偏移值确定所述第二发送功率,且所述参考信号被配置为与所述第一信道的发射功率不关联时,通过所述第一信道的发射功率参数和所述参考信号的发射功率参数中的至少一个,确定所述偏移值。
  16. 根据权利要求10至15任一项所述的方法,其特征在于,当所述参考信号被配置为与所述第一信道的发射功率不关联时,所述第一发送功率根据在所述第一时间单元上,发送所述参考信号的功率和发送所述第一信道的功率所确定。
  17. 根据权利要求12至16任一项所述的方法,其特征在于,所述第二设备在第二时间单元,接收所述第一设备以第二发送功率发送的所述参考信号之前,所述方法还包括:
    所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示所述第二发送功率的确定方式;
    其中,当所述第二指示信息指示第一值时,所述第二发送功率为通过所述重置闭环功率所确定;
    或者,当所述第二指示信息指示第二值时,所述第二发送功率为通过绝对功率调整所确定;
    或者,当所述第二指示信息指示第三值时,所述第二发送功率为通过所述第一发送功率和偏移值所确定;
    或者,当所述第二指示信息指示第四值时,所述第二闭环功率为通过对所述第三发送功率进行累积功率调整所确定。
  18. 根据权利要求10至17任一项所述的方法,其特征在于,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;
    其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
  19. 一种发送信号的方法,其特征在于,包括:
    第一设备接收第二设备发送的第一信息,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率;
    所述第一设备根据所述第一信息,向第二设备发送所述参考信号。
  20. 根据权利要求19所述的方法,其特征在于,所述第一设备接收第二设备发送的第一信息,包括:
    所述第一设备接收第二设备发送的下行控制信息,所述下行控制信息中携带有所述第一信息。
  21. 根据权利要求19或20所述的方法,其特征在于,所述参考信号为探测参考信号或同步信号;
    其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
  22. 根据权利要求21所述的方法,其特征在于,当所述参考信号为半静态探测参考信号时,所述功率调整值包括一个调整值,所述一个调整值用于确定在所述半静态探测参考信号的激活期间所有探测参考信号的功率调整值;或者,所述功率调整值包括一组调整值,所述一组调整值中包括至少一个调整值,所述一组调整值中的第i个调整值对应于在所述半静态参考信号的激活期间所发送的第i个探测参考信号的功率调整值,所述i为大于零小于等于N的整数,所述N为在所述半静态参考信号的激活期间所发送所述探测参考信号的数量。
  23. 一种接收信号的方法,其特征在于,包括:
    第二设备生成第一信息,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率;
    所述第二设备向第一设备发送所述第一信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第二设备向第一设备发送所述第一信息,包括:
    所述第二设备向所述第一设备发送下行控制信息,所述下行控制信息中携带有所述第一信息。
  25. 根据权利要求23或24所述的方法,其特征在于,所述参考信号为探测参考信号或同步信号,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探 测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
  26. 根据权利要求25所述的方法,其特征在于,当所述参考信号为半静态探测参考信号时,所述功率调整值包括一个调整值,所述一个调整值用于确定在所述半静态探测参考信号的激活期间所有探测参考信号的功率调整值;或者,所述功率调整值包括一组调整值,所述一组调整值中包括至少一个调整值,所述一组调整值中的第i个调整值对应于在所述半静态参考信号的激活期间所发送的第i个探测参考信号的功率调整值,所述i为大于零小于等于N的整数,所述N为在所述半静态参考信号的激活期间所发送所述探测参考信号的数量。
  27. 一种发送信号的方法,其特征在于,包括:
    第一设备接收第二设备发送的第一信息,所述第一信息用于激活参考信号的发送;
    所述第一设备在第一时间单元,以第一发送功率向第二设备发送所述参考信号,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定,或者,所述第一发送功率为根据预设调整值所确定的。
  28. 根据权利要求27所述的方法,其特征在于,所述第一设备接收第二设备发送的第一信息,包括:
    所述第一设备接收第二设备发送的无线资源控制信息,所述无线资源控制信息中携带有所述第一信息;
    或者,所述第一设备接收第二设备发送的媒体接入控制信息,所述媒体接入控制信息中携带有所述第一信息。
  29. 根据权利要求27或28所述的方法,其特征在于,在所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一发送功率根据在所述第一时间单元上,发送所述第一信道的功率所确定。
  30. 根据权利要求27或28所述的方法,其特征在于,在所述参考信号被配置为与所述第一信道的发射功率参数不关联时,所述第一发送功率根据所述预设调整值所确定。
  31. 根据权利要求27至30任一项所述的方法,其特征在于,所述第一设备在第一时间单元,以第一发送功率向第二设备发送所述参考信号之前,所述方法还包括:
    所述第一设备在第二时间单元,以第二发送功率向所述第二设备发送所述参考信号;
    其中,所述第一设备根据所述预设调整值确定所述第一发送功率,包括:所述第一设备根据所述第二发送功率以及所述预设调整值确定所述第一发送功率。
  32. 根据权利要求27至31任一项所述的方法,其特征在于,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;
    其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
  33. 一种接收信号的方法,其特征在于,包括:
    第二设备向第一设备发送第一信息,所述第一信息用于激活参考信号的发送;
    所述第二设备在第一时间单元,接收所述第一设备以第一发送功率发送的参考信号,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定,或者,所述第一发送功率为根据预设调整值所确定的。
  34. 根据权利要求33所述的方法,其特征在于,所述第二设备向第一设备发送第一 信息,包括:
    所述第二设备向所述第一设备发送无线资源控制信息,所述无线资源控制信息中携带有所述第一信息;
    或者,所述第二设备向所述第一设备发送媒体接入控制信息,所述媒体接入控制信息中携带有所述第一信息。
  35. 根据权利要求33或34所述的方法,其特征在于,在所述参考信号被配置为与所述第一信道的发射功率参数关联时,所述第一发送功率根据在所述第一时间单元上,发送所述第一信道的功率所确定。
  36. 根据权利要求33或34所述的方法,其特征在于,在所述参考信号被配置为与所述第一信道的发射功率参数不关联时,所述第一发送功率根据所述预设调整值所确定。
  37. 根据权利要求33至36任一项所述的方法,其特征在于,所述第二设备在第一时间单元,接收所述第一设备以第一发送功率发送的参考信号之前,所述方法还包括:
    所述第二设备在第二时间单元,接收所述第一设备以第二功率发送的的参考信号;
    其中,根据所述预设调整值确定所述第一发送功率,包括:根据所述第二发送功率以及所述预设调整值确定所述第一发送功率。
  38. 根据权利要求33至37任一项所述的方法,其特征在于,所述参考信号为探测参考信号或同步信号,所述第一信道为物理上行共享信道、物理上行控制信道或物理随机接入信道;
    其中,所述探测参考信号包括周期探测参考信号、非周期探测参考信号和半静态探测参考信号中的至少一个,所述同步信号为主同步信号和辅同步信号中的至少一个。
  39. 一种第一设备,其特征在于,包括:
    处理器,用于确定第一发送功率和第二发送功率,其中,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;
    收发器,用于在第一时间单元,以第一发送功率向第二设备发送参考信号和在第二时间单元,以第二发送功率向第二设备发送所述参考信号,其中,所述参考信号被配置为与第一信道的发射功率参数关联或不关联。
  40. 一种第二设备,其特征在于,包括:
    收发器,用于在第一时间单元,接收第一设备以第一发送功率发送的参考信号,以及,在第二时间单元,接收所述第一设备以第二发送功率发送的所述参考信号,其中,所述参考信号被配置为与第一信道的发射功率参数关联或不关联,所述第二发送功率为通过重置闭环功率所确定的,或者,所述第二发送功率为通过绝对功率调整所确定的,或者,所述第二发送功率为通过所述第一发送功率和偏移值所确定的;
    处理器,用于对所述参考信号进行相应的处理。
  41. 一种第一设备,其特征在于,包括:
    收发器,用于接收第二设备发送的第一信息,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率;
    处理器,用于根据所述第一信息,确定所述参考信号;
    所述收发器,还用于向所述第二设备发送所述参考信号。
  42. 一种第二设备,其特征在于,包括:
    处理器,用于生成第一信息,所述第一信息用于激活参考信号的发送以及指示功率调整值,所述功率调整值用于确定所述参考信号的发送功率;
    收发器,用于向第一设备发送所述第一信息。
  43. 一种第一设备,其特征在于,包括:
    收发器,用于接收第二设备发送的第一信息,所述第一信息用于激活参考信号的发送;
    处理器,用于根据所述第一信息,激活所述参考信号的发送;
    所述收发器,还用于在第一时间单元,以第一发送功率向第二设备发送所述参考信号,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定,或者,所述第一发送功率为根据预设调整值所确定的。
  44. 一种第二设备,其特征在于,包括:
    处理器,用于生成第一信息;
    收发器,用于向第一设备发送所述第一信息,以及在第一时间单元,接收所述第一设备以第一发送功率发送的参考信号,所述第一信息用于激活参考信号的发送,所述第一发送功率为根据在所述第一时间单元上,发送所述第一信道的功率所确定,或者,所述第一发送功率为根据预设调整值所确定的。
  45. 一种计算机可读存储介质,其特征在于,包括指令,当其在通信设备上运行时,使得所述通信设备执行如权利要求1至38任一项所述的方法。
  46. 一种芯片,其特征在于,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1至38任一项所述的方法。
  47. 一种装置,包含处理器和存储器,其特征在于,所述存储器上存储有程序或指令,当所述程序或指令由所述处理器执行时,实现如权利要求1至38任一项所述的方法。
PCT/CN2018/117533 2017-11-27 2018-11-26 一种发送信号的方法及设备 WO2019101202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711207718.8 2017-11-27
CN201711207718.8A CN109842473B (zh) 2017-11-27 2017-11-27 一种发送信号的方法及设备

Publications (1)

Publication Number Publication Date
WO2019101202A1 true WO2019101202A1 (zh) 2019-05-31

Family

ID=66630507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117533 WO2019101202A1 (zh) 2017-11-27 2018-11-26 一种发送信号的方法及设备

Country Status (2)

Country Link
CN (1) CN109842473B (zh)
WO (1) WO2019101202A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585065A (zh) * 2020-11-30 2022-06-03 华为技术有限公司 一种参考信号发送方法、装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
US20130077571A1 (en) * 2011-09-27 2013-03-28 Samsung Electronics Co., Ltd. Method and apparatus for transmission power control for a sounding reference signal
CN103369654A (zh) * 2012-04-09 2013-10-23 电信科学技术研究院 功控参数的指示及功控方法和设备
CN105723781A (zh) * 2014-01-24 2016-06-29 Lg电子株式会社 在tdd型无线通信系统中在特殊子帧上控制探测参考信号的发射功率的方法及其设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102835033B (zh) * 2010-04-30 2015-07-29 松下电器(美国)知识产权公司 无线通信装置及发送功率控制方法
CN102938930B (zh) * 2011-08-16 2015-07-08 华为技术有限公司 CoMP系统中上行功率控制的补偿方法及基站、用户设备
WO2013051206A1 (ja) * 2011-10-03 2013-04-11 パナソニック株式会社 端末、基地局および通信方法
CN102869080B (zh) * 2011-12-22 2015-03-25 电信科学技术研究院 一种上行传输的功率控制方法及装置
KR102222880B1 (ko) * 2013-10-11 2021-03-04 삼성전자 주식회사 셀룰러 이동 통신 시스템에서 srs 전송 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130077571A1 (en) * 2011-09-27 2013-03-28 Samsung Electronics Co., Ltd. Method and apparatus for transmission power control for a sounding reference signal
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
CN103369654A (zh) * 2012-04-09 2013-10-23 电信科学技术研究院 功控参数的指示及功控方法和设备
CN105723781A (zh) * 2014-01-24 2016-06-29 Lg电子株式会社 在tdd型无线通信系统中在特殊子帧上控制探测参考信号的发射功率的方法及其设备

Also Published As

Publication number Publication date
CN109842473A (zh) 2019-06-04
CN109842473B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN110063075B (zh) 控制上行功率的方法和设备
JP6333980B2 (ja) 拡張された上りリンク電力制御のためのユーザ装置及び方法
EP3440794B1 (en) Dynamic sounding reference signal scheduling
KR102588187B1 (ko) 사운딩 참조 신호 전송 방법, 네트워크 디바이스 및 단말기 디바이스
WO2017173920A1 (zh) 一种功率控制方法及设备
KR20200009014A (ko) 무선 통신 방법 및 디바이스
RU2731769C1 (ru) Сетевое устройство, терминальное устройство и связанные с ними способы
JP2022160706A (ja) Srs信号の送信方法と端末装置及びsrs信号の受信方法とネットワーク装置
US11496963B2 (en) Uplink channel sending method and device
WO2019101202A1 (zh) 一种发送信号的方法及设备
US20230156609A1 (en) Method and Apparatus for Power Control
CN116456445A (zh) 无线通信方法、终端设备和网络设备
JP2020507231A (ja) 無線通信方法、ネットワーク機器及び端末装置
WO2022036653A1 (en) Power control considerations for small data transfer
US20230254769A1 (en) Method and apparatus for additional reference signal monitoring
WO2022036499A1 (en) Use equipment, base station and method for frequency hopping
US20230397250A1 (en) Method and apparatus for multiple uplink transmissions
WO2022148235A1 (zh) 功率控制方法和相关设备
JP2023500096A (ja) 上りリンク伝送の送信方法、装置及び通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880349

Country of ref document: EP

Kind code of ref document: A1