WO2019100968A1 - 一种电源系统的控制方法及其设备 - Google Patents

一种电源系统的控制方法及其设备 Download PDF

Info

Publication number
WO2019100968A1
WO2019100968A1 PCT/CN2018/115157 CN2018115157W WO2019100968A1 WO 2019100968 A1 WO2019100968 A1 WO 2019100968A1 CN 2018115157 W CN2018115157 W CN 2018115157W WO 2019100968 A1 WO2019100968 A1 WO 2019100968A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
module
power unit
unit
control signal
Prior art date
Application number
PCT/CN2018/115157
Other languages
English (en)
French (fr)
Inventor
刘向强
王勋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019100968A1 publication Critical patent/WO2019100968A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Definitions

  • the present application relates to the field of circuits, and in particular, to a method and a device for controlling a power system.
  • a distributed solution is mainly adopted, that is, one or more subsystem power sources are controlled by one main system controller, and when the main system is in a power-on state (power-on system initial power-on, power on) Through the main system, the subsystem power supply is unidirectionally controlled to complete the power-on and power-off operation of the subsystem power supply.
  • the main system can power the subsystem power supply by sending a control signal or a single pulse to the subsystem. So that the enable end of the subsystem becomes high level, then the subsystem enters the working state and executes the power-on process. After the subsystem power is powered on, it can supply power to other devices or function modules to realize the corresponding functions.
  • the subsystem cannot perform power-on or power-off operations because the enabled end of the subsystem cannot be triggered.
  • the existing distributed power supply design scheme is completely controlled by the main system because the power-on and power-off operations of the subsystem are completely controlled, so even if the main system powers up or powers off the subsystem, the main system also In standby mode, perform the next power-on or power-off operation.
  • the main system since the power-up and power-down of the operating subsystem are completely controlled by the main system, as long as the subsystem is in the working state, the main system cannot be turned off and is always in the standby state, and the current required for the main system to maintain the standby state is increased.
  • the power consumption of the entire power system increases the total power consumption burden, resulting in waste of power consumption.
  • the embodiment of the present application discloses a method for controlling a power system and a device thereof for acquiring a second voltage signal from a feedback logic unit and using the voltage signal to maintain the second power unit in a power-on state.
  • a first aspect of the embodiments of the present application provides a control method for a power system, where the method is applied to a power system including a first power unit, wherein the power system further includes a second power unit, and the second The electrical unit includes a feedback logic module, wherein the control method of the power system includes:
  • the first control signal is output, and then the second power unit can receive the first control signal sent by the first power unit;
  • the first control signal can be applied to the second power unit, the second power unit is controlled to perform a power-on operation, and the second power unit is powered up and outputs the first voltage signal to the feedback logic module for processing;
  • the second power unit obtains a second voltage signal from the feedback logic module, and the voltage value of the second voltage signal is theoretically not less than a voltage value that maintains the second power unit in a power-on state, and the second voltage signal is The first voltage signal after processing;
  • the second power unit can use the second voltage signal to maintain the second power unit in a power-on state.
  • the first voltage signal can be processed to output a second voltage signal, and the second voltage signal is used to operate independently after the first power unit is powered off.
  • the second power unit further includes a control module, and the second power unit utilizes the second voltage After the signal is maintained in the power-on state, the method further includes:
  • the control module generates a second control signal
  • control module may send the second control signal to the feedback logic module, and the feedback logic module can process the second control signal;
  • the second power unit obtains a third control signal from the feedback logic module, and the third control signal is the processed second control signal;
  • the second power unit can perform a power-off operation using the third control signal.
  • the second power unit uses the third control signal to power off itself, which increases the utility and diversity of the solution.
  • the second power-consuming unit performs a power-off operation by using the third control signal, including :
  • the second power unit can control the enable terminal to be in a second level state by using the third control signal, and the second level is an inactive level for the enable end, so the second power can be controlled
  • the unit is powered off.
  • the second power unit further includes a control module, and the second power unit utilizes the second voltage After the signal is maintained in the power-on state, the method further includes:
  • the control module generates a fourth control signal
  • the control module sends the fourth control signal to the first power unit, and the fourth control signal is used to control the first power unit to perform a power-on operation.
  • control module can generate a fourth control signal to control the power-on of the first power-consuming unit, and increase the diversity of task types that can be completed after the second power-consuming unit operates independently.
  • the second power generating unit sends the fourth control signal to the After using the electrical unit, the method further includes:
  • the control module can generate a fifth control signal by using a control module of the second power unit;
  • control module can send the fifth control signal to the first power consumption unit, and the fifth control signal is used to control the first power consumption unit to perform a power-off operation.
  • control module controls the power-off of the first power-consuming unit by generating the fifth control signal, which increases the diversity of the task types that can be completed after the second power-consuming unit operates independently.
  • the fifth aspect of the first aspect of the first aspect of the present application characterized in that the The maintaining, by the second power unit, the second power unit in the power-on state by using the second voltage signal includes:
  • the second power unit can use the second voltage signal to lock the enable end of the second power unit to be in a first level state, that is, to provide a continuously stable first level signal to the enable end to trigger the operation of the enable end, Since the first level is an active level for the enable terminal, the second power unit can be maintained in a powered state.
  • the second aspect of the embodiment of the present application provides a second power unit, wherein the second power unit includes:
  • the receiving module is configured to receive a first control signal sent by the first power unit, where the first control signal can control the powering of the second power unit;
  • a first execution module configured to perform a power-on operation according to the first control signal, where the second power-on unit is powered on and outputs a voltage signal;
  • the output module can output the first voltage signal to the feedback logic module after the second power unit is powered on;
  • the feedback logic module obtains the first voltage signal output by the output module, and outputs the second voltage signal to the feedback logic module;
  • the power-on module when the first power-consuming unit is in a power-off state, can be used to maintain the second power-on unit in a power-on state by using the second voltage signal.
  • the first voltage signal can be processed to output a second voltage signal, and the second voltage signal is used to operate independently after the first power unit is powered off.
  • the second power unit further includes:
  • control module configured to generate a second control signal
  • a first sending module configured to send the second control signal to the feedback logic module, where the feedback logic module can process the second control signal
  • the feedback logic module after acquiring the second control signal sent by the first sending module, outputting the third control signal to the second power-consuming unit;
  • the second execution module is configured to perform a power-off operation by using the third control signal.
  • the second power unit uses the third control signal to power off itself, which increases the utility and diversity of the solution.
  • the second execution module includes:
  • a lower electronic module capable of controlling, by the third control signal, the enable terminal to be in a second level state, the second level being an inactive level for the enable terminal, and thus capable of controlling the second power consumption unit Power off.
  • the second power unit further includes:
  • control module which can generate a fourth control signal
  • the second sending module is configured to send the fourth control signal to the first power-consuming unit, where the fourth control signal is used to control the first power-consuming unit to perform a power-on operation.
  • the second electric power unit can generate a fourth control signal to control the power-on of the first electric power unit, and increase the diversity of the task types after the second electric power unit works independently.
  • the second power unit further includes:
  • control module which can generate a fifth control signal
  • a third sending unit configured to send the fifth control signal to the first power-consuming unit, where the fifth control signal controls the first power-consuming unit to perform a power-on operation.
  • the second power unit controls the power-off of the first power unit by generating the fifth control signal, and increases the diversity of the task types after the second power unit operates independently.
  • the power-on module includes:
  • the second voltage signal can be used to lock the enable end of the second power-consuming unit to be in a first level state, that is, to provide a continuous stable first-level signal to maintain the enable end, because The first level is an active level for the enable terminal, thus maintaining the second power unit in a powered state.
  • the third aspect of the embodiment of the present application provides a second power unit, wherein the second power unit includes:
  • Power module feedback logic module
  • the power module receives the first control signal sent by the first power unit
  • the power module performs a power-on operation according to the first control signal
  • the power module After the power is turned on, the power module outputs a first voltage signal to the feedback logic module, and the feedback logic module processes the first voltage signal;
  • the power module acquires a second voltage signal from the feedback logic module
  • the power module may use the second voltage signal to maintain the power module in a power-on state.
  • the power module can receive the first control signal sent by the first power unit and perform a power-on operation according to the signal. After power-on, the power module outputs the first voltage signal to the feedback logic module for processing, and the feedback logic module outputs The second voltage signal is sent to the power module. Therefore, when the first power unit is in the power-off state, the power module can use the second voltage signal to maintain the power module in a power-on state, so that the power module can be used for the first time. After the power unit is powered off, it can still be in the power-on state and output a voltage signal for the entire second power unit to operate.
  • the feedback logic module may include a control resistor R1;
  • the enable end of the power module is connected to the first power unit through a diode, and the enable end is located at a positive pole of the power module;
  • the negative end of the power module is connected to one end of the control resistor R1, and the other end of the control resistor R1 is connected to the enable end of the power module.
  • circuit composition of the power module when the first power unit is still powered down is introduced in detail, which increases the implementability of the solution.
  • the second power unit further includes a control module, where the feedback logic module further includes Transistor or MOS tube;
  • One end of the control module is connected to a negative pole of the power module
  • a base of the transistor or a gate of the MOS transistor is connected to another end of the control module via a resistor R2, a collector of the transistor or a drain of the MOS transistor and the power module
  • the energy source is connectable, and the emitter of the transistor or the source of the MOS transistor is connected to the ground GND;
  • the control module may send the second control signal to the triode or the MOS transistor, and the second control signal is used to increase a voltage of a base of the triode or a gate of the MOS transistor, so that The triode or the MOS transistor is electrically connected to the ground GND, and the collector of the triode or the drain of the MOS transistor is in a second level state, so that the enable end of the power module is enabled The second level state.
  • the second level is a level when the second power unit is in a power-off state.
  • the second electrical unit is applied to the in-vehicle wireless communication terminal Tbox, and the control module include:
  • the power management chip outputs a voltage signal to the radio frequency RF circuit, the baseband chip, and the storage, and the voltage signal is used to supply power to the radio frequency RF circuit, the baseband chip, and the storage device.
  • the RF RF circuit, the baseband chip and the storage are connected in parallel, and the baseband chip transmits the second control signal to the transistor or the MOS transistor through the RF RF circuit.
  • composition and connection relationship of the communication module when the second electric unit is applied to the Tbox system of the in-vehicle wireless communication terminal is specifically described, which increases the practicability of the solution.
  • a fourth aspect of the present application provides a computer readable storage medium, which may include instructions that, when executed on a computer, cause the computer to perform the first to fifth implementations of the first aspect and the first aspect, A fifth aspect and a fifth implementation of the second aspect, and a method of any one of the third aspect and the third implementation of the third aspect.
  • a fifth aspect of the present application provides a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the first to fifth implementations, the second aspect of the first aspect and the first aspect And a fifth implementation of the second aspect and a method of any one of the third aspect and the third implementation of the third aspect.
  • the embodiment of the present application has the following advantages: the second power unit receives the first control signal, and triggers the second power unit to work by using the first control signal, and then the second power unit completes power-on. After the operation, the output first voltage signal is sent to the feedback logic module, and then the second power unit obtains the second voltage signal from the feedback logic module. After the first power unit is powered off, the second power unit can utilize the second The voltage signal causes the second powered unit to be in a powered state. In this embodiment, after the second power-on unit is powered on, the output first voltage signal is sent to the feedback logic module, and the second voltage signal is obtained from the feedback logic module, so that when the first power-consuming unit is in the power-off state.
  • the second power unit can maintain the operation of the second power unit by using the second voltage signal, that is, when the first power unit is powered off, the second power unit is also in an active state, thereby avoiding the second use.
  • the first electric unit When the electric unit is working, the first electric unit must be in the power-on state, which reduces the power consumption of the entire power system.
  • Figure 1 is a structural diagram of a prior art power system control mode
  • FIGS. 2(a) to 2(d) are schematic diagrams showing different control modes of the power supply system of the present application.
  • FIG. 2(e) is a schematic block diagram of the entire power supply system of the present application.
  • FIG. 3(a) is a schematic block diagram of the present application when applied to a Tbox system
  • FIG. 3 (b) is a schematic block diagram of the Tbox system communication module
  • 3(c) is a schematic diagram of a triode amplifying circuit in the embodiment.
  • FIG. 4(a) is a schematic diagram of a method for controlling a power supply system according to an embodiment of the present application
  • Figure 4 (b) is a circuit diagram corresponding to Figure 4 (a);
  • FIG. 5(a) is a schematic diagram of another method for controlling a power supply system according to an embodiment of the present application.
  • Figure 5 (b) is a corresponding circuit diagram when the second power unit itself is powered off
  • FIG. 6(a) is a schematic diagram of another method of controlling a power supply system according to an embodiment of the present application.
  • Figure 6 (b) is a circuit diagram corresponding to the second power-on unit when the first power-consuming unit is powered on;
  • FIG. 7(a) is a schematic diagram of another method for controlling a power supply system according to an embodiment of the present application.
  • Figure 7 (b) is a circuit diagram corresponding to the second power-consuming unit after the first power-on unit is powered on and then powered off;
  • FIG. 8 is a schematic diagram of an embodiment of a second power unit according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of a second power unit according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a second power unit according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of a second power unit according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of a second power unit according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another embodiment of a second power unit according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a physical structure of a second power unit according to an embodiment of the present application.
  • 15 is a connection diagram of a physical structure of a second power unit according to an embodiment of the present application.
  • 16 is another connection diagram of a physical structure of a second power unit according to an embodiment of the present application.
  • the embodiment of the present application provides a control method for a power supply system, which can implement mutual control of powering on and off the first power unit and the second power unit, and the control manner can be based on the first power unit or the second power unit.
  • One of the parties is in the power-on state, and there are various possible implementation scenarios: as shown in FIG. 2(a), the first power unit and the second power unit may be one-to-one related control.
  • the first power unit is in a power-on state, and after the second power unit is powered on, the first power unit can be powered down, and then the second power unit in the power-on state can implement the first power.
  • the control of the unit, secondly can also achieve control of itself. As shown in FIG.
  • the first power unit can realize mutual control with the plurality of second power units, and the first power unit can simultaneously power up the plurality of second power units, but only A second power unit sends a control signal, and the first power unit can be powered down.
  • the implementation method is that a first power unit sends a control signal to power on and off the second power unit, and a second power unit can control the plurality of first power units. Power on and off.
  • FIG. 2(d) a scenario in which multiple subsystems are associated with multiple primary systems is described, and implementations thereof are not described herein.
  • the power supply system is controlled by a one-to-one mutual control between the first power unit and the second power unit.
  • the specific principle block diagram is shown in FIG. 2(e). It can be understood that the control method in this embodiment is also applicable to the other possible implementation scenarios described above.
  • the components of the power system 20 are the first power unit 201 and the second power unit 202, respectively, wherein the second power unit 202 further includes a one-way isolation module 2021 for unidirectional conduction.
  • the method can be applied to smart mobile terminals, such as mobile phones, tablets, etc., and can also be applied to circuit systems of other devices, such as in-vehicle systems, large and small circuit power supply systems, for example, can be applied to telematics terminals (Tbox). ) in the design.
  • Tbox telematics terminals
  • control method of the power supply system is applied to the Tbox, and the main power system of the Tbox, that is, the first power-saving unit and the subsystem, that is, the second power-on unit, is taken as an example, as shown in FIG. 3(a).
  • the Tbox includes a micro control unit (MCU) processor 311, a diode module 301, a power module 302, a communication module 303, a first resistor module 304, a driving circuit module 305, a second resistor module 306, and the like.
  • the unit processor 311 is a component of the first power unit 31.
  • the diode module 301, the power module 302, the communication module 303, the first resistor module 304, the driving circuit module 305, and the second resistor module 306 form a second power component.
  • Unit 30 it will be understood by those skilled in the art that the Tbox structure shown in FIG. 3(a) does not constitute a limitation on the Tbox, may include more or less components than those illustrated, or may combine certain components, or different Parts layout.
  • the MCU processor 311 is a control center of the first power unit in the power system, and connects various parts of the entire first power unit by using various interfaces and lines, by running or executing software stored in the memory of the first power unit. Programs and/or modules, as well as recalling data stored in the memory, perform various functions and processing data of the first power unit to thereby integrally monitor the first power unit.
  • the diode module 301 is also called a crystal diode, and is used for unidirectional isolation of the current/voltage signal sent from the first power unit to the second power unit.
  • the unidirectional isolation is realized by unidirectional conduction of the diode. Sex, current or voltage can only flow from the anode of the diode to the cathode of the diode, but not reverse conduction.
  • the power module 302 is located in the second power unit of the Tbox, and performs power conversion, distribution, detection, and other power management functions.
  • the first resistor module 304 is connected to the driving circuit module and connected to the base of the transistor or the gate of the MOS transistor for providing a forward bias voltage to the base.
  • the driving circuit module 305 can be a triode or a MOS tube (metal-oxide-semiconductor), and the amplification of the second power-consuming unit is mainly controlled by the amplification function in the circuit.
  • the triode is a current amplifying component
  • the CMOS tube complementary metal oxide semiconductor
  • the emitter is grounded, and the base current is increased.
  • the collector voltage and the emitter voltage are pulled to the same value, that is, the collector and the ground are turned on, and the enable end of the power module 302 is equivalent to the ground, thereby completing the power-off operation.
  • the second resistor module 306 is configured to connect an enable end of the power system, and output a stable high level to the enable end, thereby maintaining the second power unit power module to operate;
  • the communication module 303 is used to support communication between the Tbox and other network entities, such as communication with an onboard server. As shown in FIG. 3(b), the communication module 304 includes:
  • the functions implemented by the power management chip 3031 are similar to those of the power module 302 described above, and are not described herein again.
  • a radio frequency (RF) circuit 3032 the RF circuit can be used for receiving and transmitting signals during transmission and reception or during a call. For example, the downlink information of the base station is received and then sent to the processor for processing, and the uplink data is sent to the base station.
  • the RF circuit 3032 is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, or the like.
  • RF circuitry 3032 can also communicate with the network and other devices via wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code) Division multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short messaging service (SMS), and the like.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • code code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • SMS short messaging service
  • the baseband chip 3033 is configured to synthesize a baseband signal or decode the received baseband signal. Specifically, when transmitting, the audio signal is translated into a baseband code for transmission, and when received, the received baseband code is interpreted as audio signal.
  • the memory 3034 can be used to store software programs and modules that can be executed by a processor internal to the power system to perform various functional applications and data processing of the power system.
  • the memory 3034 may mainly include a storage program area and a storage data area.
  • memory 3034 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the communication module 303 supplies power to the radio frequency RF circuit 3032, the baseband chip 3033, and the storage device 3034 through the power management chip 3031, the radio frequency RF circuit 3032, the baseband chip 3033, and the The memory 3034, the baseband chip 3033 sends a control signal to the transistor or the MOS transistor through the RF RF circuit 3032.
  • the power system also includes a bus system, which refers to a channel for transmitting information between components of the microcomputer.
  • the work of the bus system is simply to control and manage the devices connected to the bus through the bus device interface under the action of the bus controller.
  • the MCU processor When the first power unit is in the power-on state, the MCU processor outputs the first control signal for unidirectional isolation through the diode, and the first control signal may be a single pulse for triggering the power module of the second power unit.
  • the power terminal enters a working state, that is, the power module performs a power-on operation, and after the power module of the second power unit is powered on, outputs a first voltage signal, and the first voltage signal needs to be processed by the second resistance module to generate a second a voltage signal, when the power system enters the low power mode, that is, after the first power unit is powered off, the second power unit uses the second voltage signal to provide an effective current for the second power unit to be stable.
  • the second power unit is maintained in a powered state.
  • the communication module keeps working independently. For example, the communication module can enter the idle mode, and the power consumption can be minimized at this time. It should be added that the second power unit can perform other series of operations at this time, as exemplified below.
  • the second power unit powers off itself.
  • the control signal can be output to the drive circuit module (for example, an NPN type transistor) through its own output port.
  • the collector current is controlled by the base current and the base current is small, the collector current is very large. Change, so if we add a small signal with a small change between the base and the emitter, a base bias resistor is connected between the base and the emitter, and the bias resistor is used to generate the bias current.
  • the current flowing from the base b to the emitter e is called the collector current ib
  • the current flowing from the collector c to the emitter e is called the collector current ic
  • the direction of the two currents is the outgoing emission set. Since the emitter is grounded, the collector voltage is equivalent to 0V. Since the collector is connected to the enable terminal of the power management chip, the equivalent is also connected to the ground GND. When the enable level is lower than the power management chip.
  • the driving circuit module herein can be an NPN type transistor or a device with amplifying function, such as a CMOS tube.
  • the second power unit powers up the first power unit.
  • a control signal may be output to the first power consumption unit through its own output port, and the control signal may be a single pulse.
  • the enable end for triggering the first power unit power management chip starts to work, that is, triggers the first power unit to perform a power-on operation.
  • the order in which the first power unit and the second power unit are not powered on can be implemented as a main and sub-scenario from the power-on logic. It should be noted that the examples of the embodiments of the present application are all described by the first power-on unit being powered on first, that is, the first power-consuming unit is the main power-on device and the second power-consuming unit is the second power-consuming unit. Sub-electrical device.
  • the second power unit powers off the first power unit and then powers down the first power unit.
  • the second power unit first powers up the first power unit, and sends a control signal to the first power unit.
  • the first power unit is powered down and the second power unit is similar to the second power unit.
  • the enable level is lower than the threshold voltage value required by the power module of the first power unit, the power module output of the first power unit stops and completes. Power off operation.
  • the second power unit can be powered on and off.
  • the second power unit when the first power unit is in the power-off state, the second power unit can be powered off, or the first power unit can be powered on, or the first power unit can be powered on. Then power off. At the same time, the first power unit can also power up the second power unit, and can also power down the second power unit, and can also power off itself. Therefore, it can be understood that the first power unit and the first power unit
  • the second power unit is only the "first" and "second" in the name, and does not indicate the order of power-on and power-on.
  • the first power-consuming unit may also be the second power-consuming unit.
  • a transmission voltage signal or a control signal that is, a voltage signal or a control signal, is output from one module/unit to another module/unit.
  • a voltage signal or a control signal is obtained from a certain unit or module, that is, a certain unit or module processes the voltage signal or the control signal and outputs it to another module or unit.
  • the difference between performing the power-on operation and maintaining the power-on state is that the second power-consuming unit performs the power-on operation time, and cannot separate from the first power-consuming unit, and needs to output the voltage signal through a series of After processing, a stable level pulse signal is generated to be connected to the power module enable end, thereby maintaining the operation of the second power unit from the control of the first power unit; otherwise, the first power unit is still required to stand by to the second
  • the power unit provides a stable pulse signal. Therefore, the execution of the power-on operation does not mean that the second power-consuming unit can work independently when the power-on operation is completed. It is still necessary to go through a series of operations before the second power unit can be powered on after the first power unit is powered off.
  • the power-on is a pulse signal of the power supply part of the first power-consuming unit or the second power-consuming unit, triggering the power supply to start working, and outputting a stable voltage signal.
  • powering up Different expressions have different words, which can also be called power-on, or can be expressed as the power supply enters the working state or the power supply starts to output electrical signals, which is not limited herein.
  • FIG. 4(a) shows that the second power unit can be powered off after the first power unit is powered off.
  • FIG. 4(b) is a specific implementation circuit corresponding to the flowchart. The following describes an embodiment of the present application from the perspective of a control method of a power supply system.
  • the second power unit receives the first control signal sent by the first power unit.
  • the first control signal is sent to the second power unit.
  • the first control signal may be a single pulse trigger level, and is used to trigger a pulse signal to the enable end of the second power unit.
  • the second power unit is powered on.
  • the enable terminal is a control signal input terminal and is an input port of the circuit. Only when the port is activated, the circuit can start working.
  • the enable side has two states, an input state and a disable input state. The circuit is activated when the circuit enable is in the allowable input state.
  • the first control signal can be unidirectionally isolated.
  • the specific device can be a diode, and the unidirectional conductive performance of the diode is utilized.
  • the anode is connected to the first power unit, and the cathode is connected to the second power unit. It can only flow from the first power unit to the second power unit.
  • the second power unit performs a power-on operation according to the first control signal.
  • the first control signal is unidirectionally isolated and flows into the power module enable end of the second power unit, and an active level signal is activated to activate the enable terminal, and the second power unit starts. Power-on.
  • the second power unit power module starts to work, but at this moment, the second power unit cannot be separated from the first power unit to work independently, that is, at the moment, the first use The electrical unit must be in a powered state.
  • the second power unit outputs a first voltage signal to the feedback logic module according to the power-on operation.
  • a voltage signal is output, and the voltage signal can be directly sent to the feedback logic module for processing as the first voltage signal in this embodiment.
  • the second power unit may further include a control module connected in parallel with the feedback logic module, and the function of the control module is to generate a control signal to control powering off of the second power unit, where the first power unit is Power-on operation, in this case, after the second power unit is powered on, the output current signal will be shunted, part of the input feedback logic module, and some input control module, because it is a parallel circuit, the voltage value of the feedback logic module Same as the control module.
  • the first level signal may fluctuate between high and low levels
  • the feedback logic module may be a control resistor, such as a pull-up resistor or a pull-down resistor, for clamping the first level signal at a high level.
  • Level or low level may be a control resistor, such as a pull-up resistor or a pull-down resistor, for clamping the first level signal at a high level.
  • Level or low level may be a control resistor, such as a pull-up resistor or a pull-down resistor
  • clamping means limiting the potential of a certain point to a predetermined potential
  • the circuit for generating this measure may be called a clamp circuit
  • the function of the clamp circuit is to change the top of the waveform of the period or The bottom is held at a certain DC level, so the feedback logic module clamps the signal to a high or low level to change the signal from a dynamically changing level to a continuously stable high or low level.
  • the second power unit obtains the second voltage signal from the feedback logic module.
  • the second voltage signal obtained by the first voltage signal processed by the feedback logic module is a stable high level or low level signal.
  • the voltage value of the second voltage signal is not less than a voltage value required to maintain the second power unit in a power-on state.
  • the second power unit maintains the second power unit in a power-on state by using the second voltage signal.
  • the second power unit can use the second voltage signal to send a stable effective level level pulse to the power module enable end of the second power unit. Thereby maintaining the second power unit in a powered state.
  • the first power unit before the second power unit maintains the second power unit in the power-on state by using the second voltage signal, the first power unit has performed a power-off operation, and the power-off operation may be performed in the second power unit.
  • the control module starts to operate, sending a control signal to the first power unit, causing the first power unit to be powered down, or after the first power unit sends a control signal to the second power unit, the first power unit Automatically power off according to its own needs, which is not limited here.
  • the manner in which the first power unit is powered off may be to set a stable high level or a low level to the enable end of the first power unit, and the enable end is in the forbidden input state, so the first use The electrical unit begins to power down.
  • the first voltage signal is sent to the feedback logic module for processing, and the feedback logic module outputs a stable level second voltage signal, and the second voltage signal is used to The enable terminal of the second power unit continues a steady pulse to maintain the second power unit in a powered state.
  • the second power unit can perform more types of operations, for example, the second power unit powers off itself, powers the first power unit, and supplies power to the first power unit.
  • a power unit is powered off. Therefore, the feedback logic module can also include more other components, which will be separately described below.
  • the second power unit powers off itself.
  • the second power-consuming unit can generate the second control signal to control the self-powering, please refer to FIG. 5(a) and FIG. 5(b), and FIG. 5(a) shows the second power unit to itself.
  • the electric flow chart, FIG. 5(b) is a specific implementation circuit corresponding to the flow chart, which will be described below.
  • the first power unit sends the first control signal to the second power unit;
  • the second power unit performs a power-on operation according to the first control signal.
  • the first power signal of the second power unit is sent to the feedback logic module.
  • the second power unit obtains the second voltage signal from the feedback logic module.
  • the second power unit maintains the second power unit in a power-on state by using the second voltage signal.
  • the steps performed by the embodiment 501 to the embodiment 505 are similar to the steps performed by the embodiment 401 to the embodiment 405 shown in FIG. 4, and details are not described herein again.
  • the control module generates a second control signal.
  • the second power unit includes a control module, and the control module is used as a function module.
  • the second control signal is generated, that is, the control module generates a second control signal as a function module.
  • the control module sends the second control signal to the feedback logic module.
  • the control module of the second power unit outputs the second control signal to the feedback logic module.
  • the feedback logic module mainly functions as a driving circuit, and may be a triode or a MOS tube, which is not limited herein.
  • the second power unit obtains a third control signal from the feedback logic module.
  • the second control signal is processed by the feedback logic module to generate a third control signal.
  • the feedback logic module is taken as an example for the triode.
  • the base is connected to the bias resistor to make the triode work in the amplification region.
  • the collector and the emitter are pulled to the same voltage value of 0V. Since the power module of the second power unit operates when the enable terminal is connected to a high level, the second power unit is enabled. The terminal is pulled low, and the power module of the second power module performs a power-off operation.
  • the second electric power unit can lock the enable end of the second electric power unit to be in a first level state by using the second voltage signal, and the first level is that the second electric power unit is in the power-on state.
  • the level of time It is to be understood that, in an actual application, the enable terminal may be active high or low, and the first level may be a high level or a low level, which is not limited herein.
  • the second power unit performs a power-off operation by using the third control signal.
  • the enable terminal of the second power unit is connected to the third control signal, and then the enable terminal presents a disable input state, and the second power unit performs a power-off operation.
  • the resistor R1 in the circuit shown in FIG. 5(b) is connected in parallel with the transistor, indicating that the second power unit can only be selected and executed at the same time after power-on or power-off.
  • the second power unit when the first power unit is in the power-down state, the second power unit performs processing by outputting the second control signal to the feedback logic module, and then outputs the third control signal, and the second power unit according to the The third control signal performs a power-off operation.
  • the second power unit powers up the first power unit.
  • the second power unit can generate a fourth control signal to control the powering of the first power unit, please refer to FIG. 6(a) and FIG. 6(b), and FIG. 6(a) is the second power.
  • the unit provides a flow chart for powering up the first power unit, and FIG. 6(b) is a specific implementation circuit corresponding to the flowchart, which will be described below.
  • the second power unit performs a power-on operation according to the first control signal.
  • the second power unit outputs the first voltage signal to the feedback logic module.
  • the second power unit obtains the second voltage signal from the feedback logic module.
  • the second power unit maintains the second power unit in a power-on state by using the second voltage signal.
  • the steps performed by the embodiment 601 to the embodiment 605 are similar to the steps performed by the embodiment 401 to the embodiment 405 shown in FIG. 4, and details are not described herein again.
  • the second power unit generates a fourth control signal by using a control module of the second power unit.
  • the control module of the second power unit may generate a fourth control signal for controlling the first power unit to perform a power-on operation.
  • the first power unit acquires a fourth control signal.
  • the second electric power unit sends the fourth control signal to the first electric power unit, and the fourth control signal controls the first electric power unit to be powered on, or when the fourth control signal is a stable level signal, directly
  • the enable terminal of the first power unit is activated to power on the first power unit.
  • the fourth control signal is an unstable level signal, the processing of the feedback logic unit of the second power unit or the signal processed by the first power unit itself to become a stable level is also required to be applied to An electric unit.
  • the first power unit performs a power-off operation by using the fourth control signal.
  • the principle of powering down the first power unit in this embodiment is similar to that of the second power unit, and details are not described herein again. It can be understood that the first power unit can directly process the fourth control signal to process the fourth control signal to control the power-on operation, or the second power unit can perform the series control on the fourth control signal. After the processing, the processed fifth control signal is sent to the first power unit to control the first power unit to be powered off, which is not limited herein.
  • the specific processing may be that the control unit generates a fourth control signal and then sends the signal to the feedback logic unit, thereby outputting a stable level control signal.
  • control module of the second power unit activates the enable terminal of the first power unit by outputting the fourth control signal to the first power unit, so that the first power unit is powered on.
  • the first power unit is powered off.
  • the fifth control signal may be generated and then powered off by the first control unit, please refer to FIG. 7( a ) and 7(b), FIG. 7(a) is a flow chart of powering down and then powering down the first power unit by the second power unit, and FIG. 7(b) is a specific implementation circuit corresponding to the flowchart, which will be performed below. Description.
  • the second power unit receives the first control signal sent by the first power unit.
  • the second power unit performs a power-on operation according to the first control signal.
  • the second power unit outputs the first voltage signal to the feedback logic module.
  • the second power unit obtains the second voltage signal from the feedback logic module.
  • the second power unit maintains the second power unit in a power-on state by using the second voltage signal.
  • the second power unit generates a fourth control signal by using a control module of the second power unit.
  • the second power unit sends the fourth control signal to the first power unit.
  • the first power unit performs a power-off operation by using the fourth control signal.
  • the steps performed by the embodiment 701 to the embodiment 708 are similar to the steps performed by the embodiment 601 to the embodiment 608 shown in FIG. 6, and details are not described herein again.
  • the second power unit generates a fifth control signal by using a control module of the second power unit.
  • the control module of the second power unit may generate a fifth control signal for controlling the first power unit to perform a power-off operation.
  • the second power unit sends the fifth control signal to the first power unit.
  • the second power unit outputs a fifth control signal to the enable end of the first power unit, and controls the first power unit to be powered down by controlling the state of the enable unit.
  • the manner in which the first power unit is powered off is similar to the manner in which the second power unit is powered off, and details are not described herein.
  • the first power unit performs a power-on operation by using the fifth control signal.
  • the principle of powering on the first power unit in this embodiment is similar to that of the second power unit, and details are not described herein again. It can be understood that the first power unit can directly acquire the fifth control signal and then process the fifth control signal to control the power-on operation, or the second power unit can perform a series of the fifth control signal. After the processing, the processed fifth control signal is sent to the first power unit to control the first power unit to be powered off, which is not limited herein.
  • the specific processing may be that the control unit generates the fifth control signal and sends the signal to the feedback logic unit, thereby outputting the second level to the second power unit enable end, where the second level is that the second power unit is powered off. The level at the time of the state.
  • the first power unit controls the first power unit to be powered down by transmitting the fifth control signal to the first power unit.
  • FIG. 4(a) to 7(b) illustrate the embodiment of the present application from the perspective of the control method of the power supply system. Referring to FIG. 8, the embodiment of the present application will be described from the perspective of the second power unit.
  • the second power unit includes:
  • the receiving module 801 is configured to receive a first control signal sent by the first power unit
  • the first execution module 802 is configured to perform a power-on operation according to the first control signal
  • the output module 803 is configured to output a first voltage signal to the feedback logic module according to the power-on operation, and the feedback logic module includes a control resistor, and the first voltage signal can be converted into a stable high-level or low-level signal output;
  • a feedback logic module 804 configured to output a second voltage signal to the second power unit, wherein the second level signal is a stable high level or low level signal;
  • the power-on module 805 is configured to maintain the second power-on unit in a power-on state by using the second voltage signal when the first power-on unit is in a power-off state.
  • the first executing module 802 performs a power-on operation.
  • the output module 803 outputs a first voltage signal to the feedback logic module 804, and the feedback logic module 804 outputs a second.
  • the voltage signal is sent to the second power unit, so that the power-on module 805 can maintain the power-on state by using the second voltage signal when the first power unit is in the power-off state. Therefore, when the first power unit is powered off, the second power unit can work independently.
  • the second power-on unit is powered on by controlling the enable end. Please refer to FIG. 9 and the following description will be made.
  • the receiving module 901 is configured to receive a first control signal sent by the first power unit
  • the first execution module 902 is configured to perform a power-on operation according to the first control signal
  • the output module 903 is configured to output a first voltage signal to the feedback logic module according to the power-on operation, and the feedback logic module includes a control resistor, and the first voltage signal can be converted into a stable high-level or low-level signal output;
  • a feedback logic module 904 configured to output a second voltage signal to the second power unit, wherein the second level signal is a stable high level or low level signal;
  • the power-on module 905 is configured to maintain the second power-on unit in a power-on state by using the second voltage signal when the first power-on unit is in a power-off state.
  • the power-on unit includes:
  • the locking sub-module 9051 locks, by the second voltage signal, an enable end of the second power-consuming unit in a first level state, where the first level is when the second power-consuming unit is in a power-on state Level.
  • the locking module 9051 uses the second voltage signal to lock the enable end in a first level state, and the first level is used for the enable end to be a continuously stable active level, thereby achieving Maintaining the purpose of the second power unit being in a powered state.
  • the second power unit can perform a series of operations after working independently, and several operations are exemplified below.
  • the second power unit powers off itself. Please refer to FIG. 10, which will be described below.
  • the receiving module 1001 is configured to receive a first control signal sent by the first power unit;
  • the first execution module 1002 is configured to perform a power-on operation according to the first control signal
  • the output module 1003 is configured to output a first voltage signal to the feedback logic module according to the power-on operation, and the feedback logic module includes a control resistor, and the first voltage signal can be converted into a stable high-level or low-level signal output;
  • the feedback logic module 1004 is configured to output a second voltage signal to the second power consumption unit, where the second level signal is a stable high level or low level signal;
  • the power-on module 1005 is configured to maintain the second power-on unit in a power-on state by using the second voltage signal when the first power-on unit is in a power-off state.
  • the second power unit further includes:
  • control module 1006 configured to generate a second control signal
  • the first sending module 1007 is configured to send the second control signal to the feedback logic module, where the feedback logic module comprises a triode or a MOS tube;
  • a feedback logic module 1004 configured to output a third control signal to the second power unit
  • the second execution module 1008 is configured to perform a power-off operation by using the third control signal.
  • the feedback logic module 1004 receives the second control signal and outputs the third control signal.
  • the principle of the third control signal generation is similar to the principle of the triode amplifier circuit shown in FIG. 3(c), and details are not described herein.
  • the feedback logic module 1004 outputs the third control signal, so that the second executing unit 1008 can perform the third control signal. Electrical operation.
  • the manner in which the second power unit is powered off is controlled by its enable end. Please refer to FIG. 11 and the following description will be made.
  • the receiving module 1101 is configured to receive a first control signal sent by the first power unit
  • the first execution module 1102 is configured to perform a power-on operation according to the first control signal
  • the output module 1103 is configured to output a first voltage signal to the feedback logic module according to the power-on operation, and the feedback logic module includes a control resistor, and the first voltage signal can be converted into a stable high-level or low-level signal output;
  • a feedback logic module 1104 configured to output a second voltage signal to the second power unit, wherein the second level signal is a stable high level or low level signal;
  • the power-on module 1105 is configured to maintain the second power-consuming unit in a power-on state by using the second voltage signal when the first power-consuming unit is in a power-off state.
  • the second power unit further includes:
  • control module 1106 configured to generate a second control signal
  • a first sending module 1107 configured to send the second control signal to the feedback logic module, where the feedback logic module includes a triode or a MOS tube;
  • a feedback logic module 1104 configured to output a third control signal to the second power unit
  • the second executing module 1108 is configured to perform a power-off operation by using the third control signal.
  • the feedback logic module 1104 receives the second control signal and outputs the third control signal.
  • the principle of the third control signal generation is similar to the principle of the triode amplifier circuit shown in FIG. 3(c), and details are not described herein.
  • the second execution module includes:
  • the lower electronic module 11081 controls the enable terminal to be in a second level state by using the third control signal, and the second level is a level when the second power-consuming unit is in a power-off state.
  • the lower electronic module 11081 controls the enable terminal to be in the second level state by using the third control signal. Since the second level is inactive to the enable end, the second level can be achieved. The purpose of powering down the power unit.
  • the second power unit powers up the first power unit. Please refer to FIG. 12, which will be described below.
  • the receiving module 1201 is configured to receive a first control signal sent by the first power unit
  • the first execution module 1202 is configured to perform a power-on operation according to the first control signal
  • the output module 1203 is configured to output a first voltage signal to the feedback logic module according to the power-on operation, and the feedback logic module includes a control resistor, and the first voltage signal can be converted into a stable high-level or low-level signal output;
  • the feedback logic module 1204 is configured to output a second voltage signal to the second power unit, where the second level signal is a stable high level or low level signal;
  • the power-on module 1205 is configured to maintain the second power-on unit in a power-on state by using the second voltage signal when the first power-on unit is in a power-off state.
  • the second power unit further includes:
  • control module 1206, configured to generate a fourth control signal
  • the second sending module 1207 is configured to send the fourth control signal to the first power-consuming unit, where the fourth control signal is used to control the first power-consuming unit to perform a power-on operation.
  • control module 1206 generates a fourth control signal and then sends it to the first power-consuming unit through the second sending module 1207, thereby controlling the first power-consuming unit to perform a power-on operation.
  • the principle of powering on the first power unit may be similar to the power-on principle of the second power unit, that is, a power supply enable end of the first power unit is triggered, and the power source is enabled.
  • the input state is allowed, and the power of the first power unit performs a power-on operation.
  • the second power unit powers off the first power unit and then powers down the first power unit. Please refer to FIG. 13, which will be described below.
  • the receiving module 1301 is configured to receive a first control signal sent by the first power unit
  • the first execution module 1302 is configured to perform a power-on operation according to the first control signal
  • the output module 1303 is configured to output a first voltage signal to the feedback logic module according to the power-on operation, and the feedback logic module includes a control resistor, and the first voltage signal can be converted into a stable high-level or low-level signal output;
  • a feedback logic module 1304, configured to output a second voltage signal to the second power unit, wherein the second level signal is a stable high level or low level signal;
  • the power-on module 1305 is configured to maintain the second power-on unit in a power-on state by using the second voltage signal when the first power-on unit is in a power-off state.
  • the second power unit further includes:
  • control module 1306, configured to generate a fourth control signal
  • the second sending module 1307 is configured to send the fourth control signal to the first power-consuming unit, where the fourth control signal is used to control the first power-consuming unit to perform a power-on operation.
  • control module 1306, configured to generate a fifth control signal
  • the third sending module 1308 is configured to send the fifth control signal to the first power-consuming unit, and the fifth control signal controls the first power-consuming unit to perform a power-off operation.
  • control module 1306 After the second power unit is powered on the first power unit, the control module 1306 generates a fifth control signal and sends the first power unit to the first power unit through the third sending module 1308, thereby controlling the first power consumption. The unit is powered off.
  • FIG. 14 is a schematic structural diagram of another second power unit according to an embodiment of the present disclosure.
  • the second power unit 140 may have a large difference due to different configurations or performances, including a power module 1401 and a feedback logic module 1402. ;
  • the power module receives the first control signal sent by the first power unit
  • the power module performs a power-on operation according to the first control signal
  • the power module After performing the power-on operation, the power module outputs the first voltage signal to the feedback logic module according to the output;
  • the power module acquires a second voltage signal from the feedback logic module
  • the power module When the first power unit is in the power-off state, the power module maintains the power module in a power-on state by using the second voltage signal.
  • the first power unit is outputted to the feedback logic module, and the feedback logic module outputs the second voltage signal to the power module.
  • the second voltage signal can be powered off after the first power unit is powered off. Keep the power module in the power-on state.
  • FIG. 15 is a schematic structural diagram of another second power unit according to an embodiment of the present application, which illustrates a specific device composition and a connection relationship of the second power unit;
  • the enable terminal of the power module is connected to the first power unit through a diode, the diode is used for one-way conduction, the positive pole is connected to the first power unit, and the cathode is connected to the power module, so that the first control of the output of the first power unit is performed.
  • the signal can only be output from the first power unit to the second power unit, and the enable terminal is located at the positive pole of the power module.
  • the negative pole of the power module is connected to one end of the control resistor R1, and the control signal outputted by the power module enters the control resistor R1.
  • the other end of the control resistor R1 is connected to the enable end of the power module, indicating that the control resistor is processed.
  • the voltage signal output value is the enable terminal, and the voltage signal can control the operation of the enable terminal.
  • the diode is used for unidirectional isolation.
  • the unidirectional isolation is achieved by utilizing the unidirectional conductivity of the diode.
  • the current or voltage can only flow from the anode of the diode to the cathode of the diode, and cannot be reversed.
  • FIG. 16 is a schematic structural diagram of another second power unit according to an embodiment of the present application.
  • the structure diagram is applicable to a scenario in which the second power unit is powered off.
  • One end of the control module is connected to a negative pole of the power module
  • a base b of the transistor or a gate g of the MOS transistor is connected to the other end of the control module via a resistor R2, a collector c of the transistor or a drain d of the MOS transistor and the power module
  • the enable end enables connection, the emitter e of the transistor or the source s of the MOS transistor is connected to the ground GND;
  • the resistor R2 is a base resistor for providing a forward bias voltage to the base, so that the PN junction between the base emitters is positively biased.
  • the control module sends the second control signal to the transistor or the MOS transistor, and the second control signal is used to increase a voltage of a base of the transistor or a gate of the MOS transistor, so that The triode or the MOS transistor is electrically connected to the ground GND, and the collector of the triode or the drain of the MOS transistor is in a second level state, so that the enable end of the power module is enabled.
  • the second level state is a level at which the second power unit is in a power down state.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present application in essence or the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, local client, or network device, etc.) to perform all or part of the steps of the various embodiments of Figures 4(a) through 7(b) of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Sources (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种电源系统的控制方法及其设备,用于从反馈逻辑单元(2024)中获取第二电压信号并利用该电压信号维持第二用电单元(202)处于上电状态。该控制方法包括:第二用电单元接收第一用电单元发送的第一控制信号(401);第二用电单元根据第一控制信号执行上电操作(402);第二用电单元根据上电操作输出第一电压信号至反馈逻辑模块(403);第二用电单元从反馈逻辑模块中获取第二电压信号(404);当第一用电单元处于下电状态时,第二用电单元利用第二电压信号维持第二用电单元处于上电状态(405)。

Description

一种电源系统的控制方法及其设备
本申请要求于2017年11月27日提交中国专利局、申请号为201711211124.4、名称为“一种电源系统的控制方法及其设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路领域,尤其涉及一种电源系统的控制方法及其设备。
背景技术
对电源系统的控制长期以来一直是电子行业研究的课题,在满足用户的便利性之后,如何做到节能省电越来越引发专业人士的重视。
现有电源系统的设计方案中,主要采用分布式方案,即一个或多个子系统电源受控于一个主系统控制器,当主系统处于上电状态时(上电即系统初始加电,power on),通过主系统对子系统电源进行单向开关控制,从而完成对子系统电源的上电和下电操作,主系统给子系统电源上电的方法可以是发送一个控制信号或者单脉冲至子系统,使得子系统的使能端变为高电平,随后子系统进入工作状态并执行上电流程,子系统电源上电后可以给其他设备或者功能模块供电使其实现相应的功能。当主系统处于下电状态时,由于无法触发子系统的使能端工作,子系统无法执行上电或下电操作。
现有的分布式电源设计方案,如图1所示,由于子系统的上电和下电操作完全受控于主系统,因此即使主系统给子系统上电或下电完成后,主系统也处于待机状态,以执行下一步上电或者下电操作。简而言之,由于操作子系统的上电和下电完全由主系统控制,只要子系统处于工作状态,主系统就无法关闭并时刻处于待机状态,主系统维持待机状态所需要的电流会增加整个电源系统的功耗,增大了总功耗负担,导致功耗的浪费。
发明内容
本申请实施例公开了一种电源系统的控制方法及其设备,用于从反馈逻辑单元中获取第二电压信号并利用该电压信号维持第二用电单元处于上电状态。
本申请实施例第一方面提供了一种电源系统的控制方法,该方法应用于包括第一用电单元的电源系统,其特征在于,该电源系统还包括第二用电单元,该第二用电单元包括反馈逻辑模块,其特征在于,该电源系统的控制方法包括:
第一用电单元上电后,输出第一控制信号,随后第二用电单元可以接收第一用电单元发送的第一控制信号;
第一控制信号能作用于第二用电单元,控制第二用电单元执行上电操作,第二用电单元上电并输出第一电压信号至其反馈逻辑模块进行处理;
随后,第二用电单元从反馈逻辑模块中获取第二电压信号,该第二电压信号的电压值 理论上不小于维持第二用电单元处于上电状态的电压值,该第二电压信号即为处理后的第一电压信号;
当所述第一用电单元处于下电状态时,第二用电单元能够利用该第二电压信号维持第二用电单元处于上电状态。
在本实施例中,第二用电单元上电后能对第一电压信号进行处理后输出第二电压信号,并利用该第二电压信号在第一用电单元下电后独立工作。
基于第一方面,在本申请实施例第一方面的第一种实施方式中,其特征在于,所述第二用电单元还包括控制模块,所述第二用电单元利用所述第二电压信号维持所述第二用电单元处于上电状态之后,所述方法还包括:
该控制模块生成第二控制信号;
随后,该控制模块可以将所述第二控制信号发送至反馈逻辑模块,反馈逻辑模块能对该第二控制信号进行处理;
第二用电单元从反馈逻辑模块中获取第三控制信号,第三控制信号即为处理后的第二控制信号;
第二用电单元能够利用第三控制信号执行下电操作。
在本实施例中,第二用电单元利用第三控制信号给自身下电,增加了方案的实用性和多样性。
基于第一方面的第一种实施方式,在本申请实施例第一方面的第二种实施方式中,其特征在于,所述第二用电单元利用所述第三控制信号执行下电操作包括:
第二用电单元能够利用所述第三控制信号控制所述使能端处于第二电平状态,该第二电平对于该使能端而言属于无效电平,因此能控制第二用电单元下电。
在本实施例中,详细介绍如何利用第三控制信号控制第二用电单元下电,增加了方案的可实施性。
基于第一方面,在本申请实施例第一方面的第三种实施方式中,其特征在于,所述第二用电单元还包括控制模块,所述第二用电单元利用所述第二电压信号维持所述第二用电单元处于上电状态之后,所述方法还包括:
该控制模块生成第四控制信号;
该控制模块将所述第四控制信号发送至第一用电单元,该第四控制信号用于控制第一用电单元执行上电操作。
在本实施例中,控制模块能生成第四控制信号控制第一用电单元的上电,增加了第二用电单元独立工作后能完成任务种类的多样性。
基于第一方面的第三种实施方式,在本申请实施例第一方面的第四种实施方式中,其特征在于,所述第二用电单元将所述第四控制信号发送至所述第一用电单元之后,所述方法还包括:
该控制模块可以通过第二用电单元的控制模块生成第五控制信号;
随后,该控制模块可以将第五控制信号发送至第一用电单元,该第五控制信号用于控制该第一用电单元执行下电操作。
在本申请实施例中,控制模块通过生成第五控制信号控制第一用电单元的下电,增加 了第二用电单元独立工作后能完成任务种类的多样性。
基于第一方面及其第一方面的第一种至第四种实施方式中的任一种实施方式,在本申请实施例第一方面的第五种实施方式中,其特征在于,所述第二用电单元利用所述第二电压信号维持所述第二用电单元处于上电状态包括:
第二用电单元能够利用第二电压信号锁定所述第二用电单元的使能端处于第一电平状态,即给使能端提供连续稳定的第一电平信号触发使能端的工作,由于第一电平对使能端而言是有效电平,因此能维持第二用电单元处于上电状态。
在本实施例中,详细介绍了第二电压信号如何维持第二用电单元处于上电状态,增加了方案的可实施性。
本申请实施例第二方面提供了一种第二用电单元,其特征在于,所述第二用电单元包括:
接收模块,可以用于接收第一用电单元发送的第一控制信号,该第一控制信号能控制第二用电单元上电;
第一执行模块,可以用于根据所述第一控制信号执行上电操作,第二用电单元上电并输出电压信号;
输出模块,在第二用电单元上电后,可以输出第一电压信号至反馈逻辑模块;
反馈逻辑模块,获取输出模块输出的第一电压信号后,输出第二电压信号至反馈逻辑模块;
上电模块,当所述第一用电单元处于下电状态时,可以用于利用所述第二电压信号维持所述第二用电单元处于上电状态。
在本实施例中,第二用电单元上电后能对第一电压信号进行处理后输出第二电压信号,并利用该第二电压信号在第一用电单元下电后独立工作。
基于第二方面,在本申请实施例第二方面的第一种实施方式中,其特征在于,所述第二用电单元还包括:
控制模块,用于生成第二控制信号;
第一发送模块,用于将所述第二控制信号发送至所述反馈逻辑模块,反馈逻辑模块能对该第二控制信号进行处理;
反馈逻辑模块,获取第一发送模块发送的第二控制信号后,输出第三控制信号至第二用电单元;
第二执行模块,可以用于利用所述第三控制信号执行下电操作。
在本实施例中,第二用电单元利用第三控制信号给自身下电,增加了方案的实用性和多样性。
基于第二方面的第一种实施方式,在本申请实施例第二方面的第二种实施方式中,其特征在于,所述第二执行模块包括:
下电子模块,能够利用所述第三控制信号控制所述使能端处于第二电平状态,该第二电平对于该使能端而言属于无效电平,因此能控制第二用电单元下电。
在本实施例中,详细介绍如何利用第三控制信号控制第二用电单元下电,增加了方案的可实施性。
基于第二方面,在本申请实施例第一方面的第三种实施方式中,其特征在于,所述第二用电单元还包括:
控制模块,可以生成第四控制信号;
第二发送模块,可以用于将所述第四控制信号发送至所述第一用电单元,该第四控制信号用于控制第一用电单元执行上电操作。
在本实施例中,第二用电单元能生成第四控制信号控制第一用电单元的上电,增加了第二用电单元独立工作后能完成任务种类的多样性。
基于第二方面的第三种实施方式,在本申请实施例第二方面的第四种实施方式中,其特征在于,所述第二用电单元还包括:
控制模块,可以生成第五控制信号;
第三发送单元,能够用于将所述第五控制信号发送至所述第一用电单元,所述第五控制信号控制所述第一用电单元执行上电操作。
在本申请实施例中,第二用电单元通过生成第五控制信号控制第一用电单元的下电,增加了第二用电单元独立工作后能完成任务种类的多样性。
基于第二方面及其第二方面的第一种至第四种实施方式,在本申请实施例第一方面的第五种实施方式中,其特征在于,所述上电模块包括:
锁定子模块,能够利用第二电压信号锁定所述第二用电单元的使能端处于第一电平状态,即给使能端提供连续稳定的第一电平信号维持使能端的工作,由于第一电平对使能端而言是有效电平,因此能维持第二用电单元处于上电状态。
在本实施例中,通过细化上电单元为锁定模块详细介绍了第二电压信号如何维持第二用电单元处于上电状态,增加了方案的可实施性。
本申请实施例第三方面提供了一种第二用电单元,其特征在于,所述第二用电单元包括:
电源模块、反馈逻辑模块;
首先,所述电源模块接收第一用电单元发送的第一控制信号;
随后,所述电源模块根据所述第一控制信号执行上电操作;
上电完成后,所述电源模块输出第一电压信号至所述反馈逻辑模块,所述反馈逻辑模块对所述第一电压信号进行处理;
所述电源模块从所述反馈逻辑模块中获取第二电压信号;
当所述第一用电单元处于下电状态时,所述电源模块可以利用所述第二电压信号维持所述电源模块处于上电状态。
在本实施例中,电源模块能接收第一用电单元发送的第一控制信号并根据该信号执行上电操作,上电后电源模块输出第一电压信号至反馈逻辑模块处理,反馈逻辑模块输出第二电压信号至该电源模块,因此,在第一用电单元处于下电状态时,电源模块能利用该第二电压信号维持电源模块处于上电的状态,从而实现电源模块能在第一用电单元下电后,仍可以处于上电状态并输出电压信号供整个第二用电单元运行。
基于第三方面,在本申请实施例第三方面的第一种实施方式中,其特征在于,所述反馈逻辑模块可以包括控制电阻R1;
所述电源模块的使能端enable通过二极管与所述第一用电单元连接,所述使能端enable位于所述电源模块的正极;
所述电源模块负极与所述控制电阻R1的一端连接,所述控制电阻R1的另一端与所述电源模块的所述使能端enable连接。
在本实施例中,详细介绍了电源模块在第一用电单元下电后仍可工作时的电路组成,增加了方案的可实施性。
基于第三方面的第一种实施方式,在本申请实施例第三方面的第二种实施方式中,其特征在于,所述第二用电单元还包括控制模块,所述反馈逻辑模块还包括三极管或MOS管;
所述控制模块的一端与所述电源模块负极连接;
所述三极管的基极或所述MOS管的栅极通过电阻R2与所述控制模块的另一端连接,所述三极管的集电极或所述MOS管的漏极与所述电源模块的所述使能端enable连接,所述三极管的发射极或所述MOS管的源极与地端GND连接;
所述控制模块可以发送所述第二控制信号至所述三极管或所述MOS管,所述第二控制信号用于增加所述三极管的基极或所述MOS管的栅极的电压,以使得所述三极管或所述MOS管与所述地端GND导通,所述三极管的集电极或所述MOS管的漏极处于第二电平状态,从而使得所述电源模块的使能端enable处于所述第二电平状态。
其中,所述第二电平为所述第二用电单元处于下电状态时的电平。
在本实施例中,详细介绍了电源模块独立工作后给自身下电的情况下的电路组成,增加了方案的可实施性。
基于第三方面的第二种实施方式,在本申请实施例第三方面的第三种实施方式中,其特征在于,所述第二用电单元应用于车载无线通讯终端Tbox,所述控制模块包括:
电源管理芯片、射频RF电路、基带芯片和储存器;
所述电源管理芯片输出电压信号至所述射频RF电路、所述基带芯片和所述储存器,所述电压信号用于给所述射频RF电路、所述基带芯片和所述储存器供电,所述射频RF电路、所述基带芯片和所述储存器并联,所述基带芯片通过所述射频RF电路发送所述第二控制信号至所述三极管或所述MOS管。
在本实施例中,具体说明了第二用电单元应用于车载无线通讯终端Tbox系统时通信模块的组成与连接关系,增加了方案的实用性。
本申请实施例四方面提供了一种计算机可读存储介质,可以包括指令,当指令在计算机上运行时,使得计算机执行如第一方面以及第一方面的第一种至第五种实现方式、第二方面及其第二方面的第五种实现方式以及第三方面及其第三方面的第三种实现方式中的任一种实现方式的方法。
本申请实施例五方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如第一方面以及第一方面的第一种至第五种实现方式、第二方面及其第二方面的第五种实现方式以及第三方面及其第三方面的第三种实现方式中的任一种实现方式的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:第二用电单元接收第一控制信号,并利用第一控制信号触发第二用电单元工作,随后第二用电单元完成上电操作后输 出第一电压信号发送至反馈逻辑模块,随后第二用电单元从反馈逻辑模块中获取第二电压信号,当第一用电单元下电完成后,第二用电单元能够利用第二电压信号使得第二用电单元的处于上电状态。在本实施例中,第二用电单元上电完成后将输出第一电压信号发送至反馈逻辑模块,再从反馈逻辑模块获取第二电压信号,使得在第一用电单元处于下电状态时,第二用电单元能利用该第二电压信号维持第二用电单元的工作,即在第一用电单元下电的情况下,第二用电单元也处于工作状态,避免了第二用电单元工作时第一用电单元必须处于上电状态的情况,降低了整个电源系统的功耗。
附图说明
图1现有技术电源系统控制方式的结构图;
图2(a)至图2(d)为本申请电源系统的不同控制方式的示意图;
图2(e)为本申请整个电源系统的原理框图;
图3(a)为本申请应用于Tbox系统时的原理框图;
图3(b)为Tbox系统通信模块的原理框图;
图3(c)为本实施例中三极管放大电路的原理图;
图4(a)为本申请实施例的一种电源系统的控制方法的示意图;
图4(b)为图4(a)对应的电路图;
图5(a)为本申请实施例的另一种电源系统的控制方法的示意图;
图5(b)为第二用电单元自身下电时对应的电路图;
图6(a)为本申请实施例的另一种电源系统的控制方法的示意图;
图6(b)为第二用电单元给第一用电单元上电时对应的电路图;
图7(a)为本申请实施例的另一种电源系统的控制方法的示意图;
图7(b)为第二用电单元给第一用电单元上电后再下电时对应的电路图;
图8为本申请实施例第二用电单元的一个实施例示意图;
图9为本申请实施例第二用电单元的另一个实施例示意图;
图10为本申请实施例第二用电单元的另一个实施例示意图;
图11为本申请实施例第二用电单元的另一个实施例示意图;
图12为本申请实施例第二用电单元的另一个实施例示意图;
图13为本申请实施例第二用电单元的另一个实施例示意图;
图14为本申请实施例第二用电单元的一个实体结构示意图;
图15为本申请实施例第二用电单元的一个实体结构连接图;
图16为本申请实施例第二用电单元的另一个实体结构连接图。
具体实施方式
本申请实施例提供一种电源系统的控制方法,该方法可实现第一用电单元与第二用电单元上下电的相互控制,该控制方式可以基于第一用电单元或第二用电单元有一方处于先上电状态,可能的实现场景有多种:如图2(a)所示,第一用电单元与第二用电单元可以是一对一的相关控制。例如第一用电单元处于上电状态,给第二用电单元上电后,此时第一用电单元才能下电,随后处于上电状态的第二用电单元能实现对第一用电单元的控制, 其次,也可以实现对自身的控制。如图2(b)所示,第一用电单元可实现与多个第二用电单元实现相互控制,一个第一用电单元可同时给多个第二用电单元上电,而只需要一个第二用电单元发出控制信号,第一用电单元即可下电。如图2(c)所示,其实现方法是一个第一用电单元发出控制信号即可给第二用电单元上下电,而一个第二用电单元能控制对多个第一用电单元的上下电。如图2(d)所示,描述了多个子系统与多个主系统相关控制的场景,其实现方式此处不再赘述。
在本实施例中,电源系统中以第一用电单元与第二用电单元一对一相互控制为例,具体的原理框图如图2(e)所示。可以理解的是,本实施例中的控制方法也适用于上述其他可能的实现场景。图2(e)中,电源系统20的组成分别是第一用电单元201、第二用电单元202,其中第二用电单元202又包括用于单向导通的单向隔离模块2021、第二用电单元的电源模块2022、控制第二用电单元运作的控制模块2023、具有驱动作用的反馈逻辑单元2024。
该方法可应用于智能移动终端,例如手机、平板等,也可应用于其它设备的电路系统,例如车载系统、大型及小型电路供电系统,例如,可以应用于车载无线通讯终端(telematics box,Tbox)的设计中。
下面以该电源系统的控制方法应用于Tbox,控制Tbox内部主系统即第一用电单元和子系统即第二用电单元的上下电为例,如图3(a)所示进行说明。
该Tbox包括微型控制单元(micro control unit,MCU)处理器311、二极管模块301、电源模块302、通信模块303、第一电阻模块304、驱动电路模块305、第二电阻模块306等部件,微型控制单元处理器311是第一用电单元31的组成部分,二极管模块301、电源模块302、通信模块303、第一电阻模块304、驱动电路模块305、第二电阻模块306等部件组成第二用电单元30,本领域技术人员可以理解,图3(a)中示出的Tbox结构并不构成对Tbox的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面分别对Tbox的各功能组件进行介绍:
MCU处理器311是电源系统中第一用电单元的控制中心,利用各种接口和线路连接整个第一用电单元的各个部分,通过运行或执行存储在第一用电单元的存储器内的软件程序和/或模块,以及调用存储在该存储器内的数据,执行第一用电单元的各种功能和处理数据,从而对第一用电单元进行整体监控。
二极管模块301又称晶体二极管,用于单向导通,对第一用电单元送入第二用电单元的电流/电压信号作单向隔离,该单向隔离的实现即利用二极管的单向导电性,电流或电压只能从二极管的正极流向二极管负极,而不能反向导通。
电源模块302位于Tbox的第二用电单元中,执行对电能的变换、分配、检测及其他电能管理功能。
第一电阻模块304与驱动电路模块相连,接在三极管的基极或MOS管的栅极,用于给基极提供一个正向偏置电压。
驱动电路模块305,可以是三极管或者MOS管(metal-oxide-semiconductor),在电路中主要利用其放大作用实现对第二用电单元使能端的控制。具体的,三极管是一种电流放大元器件,CMOS管(complementary metal oxide semiconductor)是一种电压放大元器件,在本实施例中,例如一个NPN型三极管,发射极接地,通过加大基级电流,将集电极电压与发 射极电压拉到相同值,即集电极与地导通,电源模块302的使能端相当于接地,从而完成下电操作。
第二电阻模块306用于连接所述电源系统的使能端,输出稳定的高电平至该使能端,从而维持第二用电单元电源模块工作;
通信模块303用于支持Tbox与其他网络实体的通信,例如与车载服务器之间的通信。如图3(b)所示,通信模块304包括:
电源管理芯片3031所实现的功能与上述电源模块302类似,此处不再赘述。
射频(radio frequency,RF)电路3032,RF电路可用于收发信息或通话过程中信号的接收和发送,例如将基站的下行信息接收后交给处理器处理,将上行的数据发送给基站。通常,RF电路3032不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路3032还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
基带芯片3033,用于合成基带信号或对接收到的基带信号进行解码,具体的说就是发射时,把音频信号翻译成用来发射的基带码,接收时,把收到的基带码解译为音频信号。
储存器3034,存储器可用于存储软件程序以及模块,该软件程序及模块可被电源系统内部的处理器运行,从而执行电源系统的各种功能应用以及数据处理。存储器3034可主要包括存储程序区和存储数据区。此外,存储器3034可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
在本实施例中,通信模块303通过电源管理芯片3031给所述射频RF电路3032、所述基带芯片3033和所述储存器3034供电,所述射频RF电路3032、所述基带芯片3033和所述储存器3034,所述基带芯片3033通过所述射频RF电路3032发送控制信号至所述三极管或所述MOS管。
此外,该电源系统还包括总线系统,总线系统是指微型计算机各部件之间传送信息的通道。总线系统的工作简单地说就是在总线控制器的作用下,通过总线设备接口控制、管理连接在总线上的设备使用总线。
当第一用电单元处于上电状态时,MCU处理器输出第一控制信号通过二极管作单向隔离,第一控制信号可以是一个单脉冲,用于触发第二用电单元的电源模块的使能端进入工作状态,即该电源模块执行上电操作,第二用电单元的电源模块上电后,输出第一电压信号,该第一电压信号需要经过第二电阻模块的处理后生成第二电压信号,电源系统进入低功耗模式时,即当第一用电单元下电后,第二用电单元利用所述第二电压信号提供第二用电单元的使能端持续稳定的有效电平,从而在第一用电单元下电后,维持所述第二用电单元处于上电状态。此时通信模块保持独立工作,例如通信模块可以进入idle模式,此时可以最大程度的降低功耗。需要补充的是,第二用电单元此时还可以执行其他一系列操作, 下面举例说明。
一、第二用电单元给自身下电。当通信模块作为功能模块,完成功能设定的任务(例如:执行输出上述第二控制信号的指令)后,可以通过自身的输出端口输出控制信号给驱动电路模块(例如NPN型三极管)较强的驱动能力来拉低电源管理芯片的使能端,具体的,请参照图3(c),由于集电极电流受基极电流的控制,并且基极电流很小的变化会引起集电极电流很大的变化,因此如果我们将一个很小变化的小信号加在基极与发射极之间,基极与发射极之间连接一个基极偏置电阻,偏置电阻用于产生偏置电流,当ib小范围发生变化,从而引起ic较大变化,基极b电位高于发射极e电位,集电极c电位高于基极b电位,三极管导通处于放大状态,发射极正偏,集电极反偏。我们把从基极b流至发射极e的电流叫集电极电流ib,把从集电极c流向发射极e的电流叫作集电极电流ic,此时这两个电流的方向都是流出发射集的,由于发射极接地,集电极电压相当于0V,由于集电极与电源管理芯片使能端连接,因此相当于使能端也与地极GND连接,当使能电平低于电源管理芯片需要的门限电压值时,第二用电单元的电源模块302输出停止,完成下电操作。可以理解的是,这里的驱动电路模块可以NPN型三极管,也可以由具有放大功能的其他器件组成,例如CMOS管。
二、第二用电单元给第一用电单元上电。当通信模块完成功能设定的任务(例如:执行输出上述第三控制信号的指令)后,可以通过自身的输出端口输出一个控制信号至第一用电单元,该控制信号可以为一个单脉冲,用于触发第一用电单元电源管理芯片的使能端开始工作,即触发第一用电单元执行上电操作。
可以理解的是,在本申请实施例中,第一用电单元与第二用电单元没有上电的先后顺序,从上电逻辑而言可以实现互为主、子的场景。需要说明的是本申请实施例的例子均以第一用电单元先上电进行说明,即相对第二用电单元而言,第一用电单元是主用电装置,第二用电单元是子用电装置。
三、第二用电单元给第一用电单元上电后再给第一用电单元下电。在本实施例中,第二用电单元先给第一用电单元上电,在发送控制信号至第一用电单元,第一用电单元下电原理与第二用电单元类似,同样可以经过反馈逻辑模块的处理,具体处理方式此处不再赘述,当使能电平低于第一用电单元的电源模块需要的门限电压值时,第一用电单元的电源模块输出停止,完成下电操作。
需要说明的是,第一用电单元在上电状态时还可以给第二用电单元上下电。
在本申请实施例中,第一用电单元处于下电状态时,第二用电单元可以给自身下电,也可以给第一用电单元上电,也可以给第一用电单元先上电再下电。同时,第一用电单元也可以给第二用电单元上电,也可以给第二用电单元下电,还可以给自身下电,因此,可以理解的是,第一用电单元与第二用电单元只是名称上的“第一”、“第二”,并不表示上下电的先后顺序,第一用电单元也可以是第二用电单元。
在本实施例中,发送电压信号或控制信号即电压信号或控制信号从一个模块/单元输出至另一个模块/单元。
在本实施例中,从某某单元或模块中获取压信号或控制信号即某某单元或模块处理该电压信号或控制信号后输出至另一模块或单元。
在本实施例中,执行上电操作和维持处于上电状态的区别在于,第二用电单元执行完 上电操作时刻,并不能脱离第一用电单元独立工作,需要输出电压信号经过一系列处理后才能产生稳定电平的脉冲信号接入到电源模块使能端,从而脱离第一用电单元的控制维持第二用电单元的工作,否则,仍需第一用电单元待机给第二用电单元提供稳定的脉冲信号。因此执行上电操作并不代表执行完上电操作时刻第二用电单元就可独立工作。仍需要经过一系列操作后才能使第二用电单元在第一用电单元下电后能处于上电状态。
在本实施例中,上电是给指第一用电单元或第二用电单元的电源部分一个脉冲信号,触发该电源开始工作,并输出稳定的电压信号,具体的,“上电”在不同的表达方式中有不同的用词,也可叫做通电,也可以表达为电源进入工作状态或电源开始输出电信号,具体此处不作限定。
上面从具体的应用场景对本申请实施例进行了描述,下面请参照图4(a)和图4(b),图4(a)为第二用电单元能在第一用电单元下电后独立工作的流程图,图4(b)为该流程图对应的具体实现电路,下面将从电源系统的控制方法的角度对本申请实施例进行说明。
401、第二用电单元接收第一用电单元发送的第一控制信号;
第一用电单元上电后,发送第一控制信号至第二用电单元,第一控制信号可以为单脉冲触发电平,用于给第二用电单元的使能端一个脉冲信号,触发第二用电单元上电。
在本实施例中,使能端是控制信号输入端,是电路的一个输入端口,只有该端口被激活,电路才能开始工作。使能端有两种状态,允许输入状态和禁止输入状态。电路使能端处于允许输入状态时,电路被激活。
在本实施例中,第一控制信号可以做单向隔离,具体采用的器件可以为二极管,利用二极管的单向导电性能,二极管正极接第一用电单元,负极接第二用电单元,电流只能从第一用电单元流向第二用电单元。
402、第二用电单元根据第一控制信号执行上电操作;
在本实施例中,第一控制信号做单向隔离后流入第二用电单元的电源模块使能端,给该使能端一个有效电平信号激活该使能端,第二用电单元开始上电。
在本实施例中,执行上电操作后,第二用电单元电源模块开始工作,但是在这个时刻,第二用电单元还不能脱离第一用电单元独立工作,即此时刻,第一用电单元必须处于上电状态。
403、第二用电单元根据上电操作输出第一电压信号至反馈逻辑模块;
第二用电单元上电完成后,输出一个电压信号,该电压信号可以直接作为本实施例中的第一电压信号送入反馈逻辑模块进行处理。
需要说明的是,该第二用电单元还可以包括一个与反馈逻辑模块并联的控制模块,该控制模块的作用在于产生控制信号来控制第二用电单元的下电,第一用电单元的上电等操作,这种情况下,第二用电单元上电完成后,输出的电流信号会进行分流,一部分输入反馈逻辑模块,一部分输入控制模块,由于是并联电路,反馈逻辑模块的电压值与控制模块相同。
在本实施例中,第一电平信号可以在高低电平之间波动,此时反馈逻辑模块可以为控制电阻,例如上拉电阻或下拉电阻,用于将第一电平信号钳位在高电平或低电平。
在本实施例中,在电路中“钳位”即将某点的电位限制在规定电位的措施,产生这个 措施的电路可以叫钳位电路,钳位电路的作用是将周期变化的波形的顶部或底部保持在某一确定的直流电平上,因此反馈逻辑模块将信号钳位在高电平或低电平表示将该信号从动态变化的电平变为持续稳定的高电平或低电平。
404、第二用电单元从反馈逻辑模块中获取第二电压信号;
在本实施例中,第一电压信号经过反馈逻辑模块处理后得到的第二电压信号为一个稳定的高电平或低电平信号。
在本实施例中,第二电压信号的电压值不小于维持所述第二用电单元处于上电状态所需的电压值。
405、当第一用电单元处于下电状态时,第二用电单元利用第二电压信号维持第二用电单元处于上电状态。
在本实施例中,第一用电单元下电后,第二用电单元可以利用该第二电压信号给第二用电单元的电源模块使能端一个稳定的有效电平的电平脉冲,从而维持第二用电单元处于上电状态。
在本实施例中,第二用电单元利用第二电压信号维持第二用电单元处于上电状态前,第一用电单元已执行下电操作,该下电操作可以在第二用电单元的控制模块开始运作后,发送控制信号至第一用电单元,致使第一用电单元下电,也可以为第一用电单元发送控制信号给第二用电单元后,第一用电单元根据自身需要自动下电,具体此处不作限定。
在本实施例中,第一用电单元下电的方式可以是给第一用电单元的使能端一个稳定的高电平或低电平,使能端处于禁止输入状态,因此第一用电单元开始下电。
在本实施例中,第二用电单元执行上电操作后,将第一电压信号发送至反馈逻辑模块处理,反馈逻辑模块输出稳定电平的第二电压信号,该第二电压信号用于给第二用电单元的使能端持续稳定的脉冲,以使得第二用电单元维持上电状态。
可以理解的是,第一用电单元下电后,第二用电单元还可以执行更多类型的操作,例如第二用电单元给自身下电、给第一用电单元上电、给第一用电单元下电。因此反馈逻辑模块还可以包括更多其他的组成部分,下面将分别进行说明。
一、第二用电单元给自身下电。
在本实施例中,第二用电单元可以生成第二控制信号控制自身下电,请参照图5(a)和图5(b),图5(a)为第二用电单元给自身下电的流程图,图5(b)为该流程图对应的具体实现电路,下面将进行说明。
501、第一用电单元发送第一控制信号至第二用电单元;
502、第二用电单元根据第一控制信号执行上电操作;
503、第二用电单元第一电压信号至反馈逻辑模块;
504、第二用电单元从反馈逻辑模块中获取第二电压信号;
505、当第一用电单元处于下电状态时,第二用电单元利用第二电压信号维持第二用电单元处于上电状态;
在本实施例中,实施例501到实施例505所执行的步骤和与图4所示实施例401到实施例405所执行的步骤类似,具体此处不再赘述。
506、控制模块生成第二控制信号;
在本实施例中,第二用电单元包括控制模块,该控制模块作为一个功能模块使用。
在本实施例中,生成第二控制信号即控制模块作为功能模块产生第二控制信号。
507、控制模块将第二控制信号发送至反馈逻辑模块;
第二用电单元的控制模块输出第二控制信号至反馈逻辑模块,此时反馈逻辑模块主要发挥驱动电路的作用,可以采用三极管,也可以采用MOS管,具体此处不作限定。
508、第二用电单元从反馈逻辑模块中获取第三控制信号;
第二控制信号经过反馈逻辑模块处理后生成第三控制信号,请参照上述图3(c),以反馈逻辑模块为三极管为例进行说明,基极接偏置电阻使三极管工作在放大区,同时通过加大基极电压,把集电极与发射极拉到相同的电压值0V,由于第二用电单元的电源模块在使能端接高电平时工作,此时第二用电单元的使能端被拉低,第二用电模块的电源模块执行下电操作。
在本实施例中,第二用电单元可以利用第二电压信号锁定所述第二用电单元的使能端处于第一电平状态,第一电平为第二用电单元处于上电状态时的电平。可以理解的是,在实际应用中,使能端可以是高电平有效,也可以是低电平有效,因此该第一电平可以为高电平或者低电平,具体此处不作限定。
509、第二用电单元利用第三控制信号执行下电操作。
第二用电单元的使能端连接该第三控制信号,随后使能端呈现禁止输入状态,第二用电单元执行下电操作。
可以理解的是,第一用电单元下电后,图5(b)所示电路中电阻R1与三极管并联连接,表示第二用电单元上电或下电一次只能选择一样执行。
在本实施例中,当第一用电单元处于下电状态时,第二用电单元通过输出第二控制信号至反馈逻辑模块进行处理,随后输出第三控制信号,第二用电单元根据该第三控制信号执行下电操作。
二、第二用电单元给第一用电单元上电。
在本实施例中,第二用电单元可以生成第四控制信号控制第一用电单元上电,请参照图6(a)和图6(b),图6(a)为第二用电单元给第一用电单元上电的流程图,图6(b)为该流程图对应的具体实现电路,下面将进行说明。
601、第一用电单元发送的第一控制信号至第二用电单元;
602、第二用电单元根据第一控制信号执行上电操作;
603、第二用电单元输出第一电压信号至反馈逻辑模块;
604、第二用电单元从反馈逻辑模块中获取第二电压信号;
605、当第一用电单元处于下电状态时,第二用电单元利用第二电压信号维持第二用电单元处于上电状态;
在本实施例中,实施例601到实施例605所执行的步骤和与图4所示实施例401到实施例405所执行的步骤类似,具体此处不再赘述。
606、第二用电单元通过第二用电单元的控制模块生成第四控制信号;
第二用电单元的控制模块可以生成第四控制信号,该第四控制信号用于控制第一用电单元执行上电操作。
607、第一用电单元获取第四控制信号;
第二用电单元发送该第四控制信号至第一用电单元,第四控制信号控制第一用电单元上电的方式可以是,当第四控制信号是一个稳定电平的信号时,直接激活第一用电单元的使能端,使第一用电单元上电。当第四控制信号是一个不稳定电平的信号时,同样需要第二用电单元的反馈逻辑单元的处理或经过第一用电单元自身处理使其变成稳定电平的信号再作用于第一用电单元。
608、第一用电单元利用第四控制信号执行下电操作。
在本实施例中第一用电单元下电的原理与第二用电单元类似,具体此处不再赘述。可以理解的是,第一用电单元可以直接获取第四控制信号后对自己对第四控制信号进行处理从而控制执行上电操作,也可以由第二用电单元对第四控制信号进行一系列处理后将处理后的第五控制信号发送至第一用电单元控制第一用电单元下电,具体此处不作限定。具体处理的方式可以是控制单元生成第四控制信号后发送至反馈逻辑单元,从而输出稳定电平的控制信号。
在本实施例中,第二用电单元的控制模块通过输出第四控制信号至第一用电单元,从而激活第一用电单元的使能端,使第一用电单元上电。
三、第二用电单元给第一用电单元上电后,给第一用电单元下电。
在本实施例中,第二用电单元生成第三控制信号控制第一用电单元上电后,可以生成第五控制信号再给第一控制单元下电,请参照图7(a)和图7(b),图7(a)为第二用电单元给第一用电单元上电后再下电的流程图,图7(b)为该流程图对应的具体实现电路,下面将进行说明。
701、第二用电单元接收第一用电单元发送的第一控制信号;
702、第二用电单元根据第一控制信号执行上电操作;
703、第二用电单元输出第一电压信号至反馈逻辑模块;
704、第二用电单元从反馈逻辑模块中获取第二电压信号;
705、当第一用电单元处于下电状态时,第二用电单元利用第二电压信号维持第二用电单元处于上电状态;
706、第二用电单元通过第二用电单元的控制模块生成第四控制信号;
707、第二用电单元将第四控制信号发送至所述第一用电单元。
708、第一用电单元利用第四控制信号执行下电操作。
在本实施例中,实施例701到实施例708所执行的步骤和与图6所示实施例601到实施例608所执行的步骤类似,具体此处不再赘述。
709、第二用电单元通过第二用电单元的控制模块生成第五控制信号;
第二用电单元的控制模块可以生成第五控制信号,该第五控制信号用于控制第一用电单元执行下电操作。
710、第二用电单元将第五控制信号发送至所述第一用电单元。
第二用电单元输出第五控制信号至第一用电单元的使能端,通过控制该使能端的状态从而控制第一用电单元下电。
在本实施例中,第一用电单元下电的方式与第二用电单元下电的方式类似,具体此处 不在赘述。
711、第一用电单元利用第五控制信号执行上电操作。
在本实施例中第一用电单元上电的原理与第二用电单元类似,具体此处不再赘述。可以理解的是,第一用电单元可以直接获取第五控制信号后对自己对第五控制信号进行处理从而控制执行上电操作,也可以由第二用电单元对第五控制信号进行一系列处理后将处理后的第五控制信号发送至第一用电单元控制第一用电单元下电,具体此处不作限定。具体处理的方式可以是控制单元生成第五控制信号后发送至反馈逻辑单元,从而输出第二电平至第二用电单元使能端,该第二电平为第二用电单元处于下电状态时的电平。
在本实施例中,第一用电单元通过发送第五控制信号至第一用电单元,从而控制第一用电单元下电。
上面图4(a)至图7(b)从电源系统的控制方法的角度对本申请实施例进行了描述,请参照图8,下面将从第二用电单元的角度对本申请实施例进行说明。
该第二用电单元包括:
接收模块801,用于接收第一用电单元发送的第一控制信号;
第一执行模块802,用于根据所述第一控制信号执行上电操作;
输出模块803,用于根据所述上电操作输出第一电压信号至反馈逻辑模块,反馈逻辑模块包括控制电阻,可以把第一电压信号变成稳定的高电平或低电平信号输出;
反馈逻辑模块804,用于输出第二电压信号至所述第二用电单元,该第二电平信号即为稳定的高电平或低电平信号;
上电模块805,当所述第一用电单元处于下电状态时,用于利用所述第二电压信号维持所述第二用电单元处于上电状态。
在本实施例中,接收模块801接收第一控制信号后,第一执行模块802执行上电操作,上电后输出模块803输出第一电压信号至反馈逻辑模块804,反馈逻辑模块804输出第二电压信号至第二用电单元,以便于上电模块805能在第一用电单元处于下电状态时利用该第二电压信号维持上电状态。从而实现第一用电单元下电时,第二用电单元能独立的工作。
在本实施例中,第二用电单元上电的方式是通过对使能端进行控制,请参照图9,下面进行说明。
接收模块901,用于接收第一用电单元发送的第一控制信号;
第一执行模块902,用于根据所述第一控制信号执行上电操作;
输出模块903,用于根据所述上电操作输出第一电压信号至反馈逻辑模块,反馈逻辑模块包括控制电阻,可以把第一电压信号变成稳定的高电平或低电平信号输出;
反馈逻辑模块904,用于输出第二电压信号至所述第二用电单元,该第二电平信号即为稳定的高电平或低电平信号;
上电模块905,当所述第一用电单元处于下电状态时,用于利用所述第二电压信号维持所述第二用电单元处于上电状态。
其中,上电单元包括:
锁定子模块9051,利用所述第二电压信号锁定所述第二用电单元的使能端处于第一电平状态,所述第一电平为所述第二用电单元处于上电状态时的电平。
在本实施例中,锁定模块9051利用第二电压信号锁定使能端处于第一电平状态,该第一电平用于对于使能端而言,是连续稳定的有效电平,因此能达到维持所述第二用电单元处于上电状态的目的。
在本实施例中,第二用电单元独立工作后可执行一系列操作,下面举例说明几种操作。
一、第二用电单元给自身下电。请参照图10,下面进行说明。
接收模块1001,用于接收第一用电单元发送的第一控制信号;
第一执行模块1002,用于根据所述第一控制信号执行上电操作;
输出模块1003,用于根据所述上电操作输出第一电压信号至反馈逻辑模块,反馈逻辑模块包括控制电阻,可以把第一电压信号变成稳定的高电平或低电平信号输出;
反馈逻辑模块1004,用于输出第二电压信号至所述第二用电单元,该第二电平信号即为稳定的高电平或低电平信号;
上电模块1005,当所述第一用电单元处于下电状态时,用于利用所述第二电压信号维持所述第二用电单元处于上电状态。
第二用电单元还包括:
控制模块1006,用于生成第二控制信号;
第一发送模块1007,用于将所述第二控制信号发送至所述反馈逻辑模块,反馈逻辑模块包括三极管或MOS管;
反馈逻辑模块1004,用于输出第三控制信号至所述第二用电单元;
第二执行模块1008,用于利用所述第三控制信号执行下电操作。
在本实施例中,反馈逻辑模块1004接收第二控制信号后输出第三控制信号,第三控制信号产生的原理与图3(c)所示三极管放大电路的原理类似,具体此处不赘述。
在本实施例中,控制模块1006能生成第二控制信号通过第一发送模块1007发送后,反馈逻辑模块1004输出第三控制信号,从而第二执行单元1008能利用所述第三控制信号执行下电操作。
在本实施例中,第二用电单元下电的方式是通过对其使能端的控制,请参照图11,下面进行说明。
接收模块1101,用于接收第一用电单元发送的第一控制信号;
第一执行模块1102,用于根据所述第一控制信号执行上电操作;
输出模块1103,用于根据所述上电操作输出第一电压信号至反馈逻辑模块,反馈逻辑模块包括控制电阻,可以把第一电压信号变成稳定的高电平或低电平信号输出;
反馈逻辑模块1104,用于输出第二电压信号至所述第二用电单元,该第二电平信号即为稳定的高电平或低电平信号;
上电模块1105,当所述第一用电单元处于下电状态时,用于利用所述第二电压信号维持所述第二用电单元处于上电状态。
第二用电单元还包括:
控制模块1106,用于生成第二控制信号;
第一发送模块1107,用于将所述第二控制信号发送至所述反馈逻辑模块,反馈逻辑模块包括三极管或MOS管;
反馈逻辑模块1104,用于输出第三控制信号至所述第二用电单元;
第二执行模块1108,用于利用所述第三控制信号执行下电操作。
在本实施例中,反馈逻辑模块1104接收第二控制信号后输出第三控制信号,第三控制信号产生的原理与图3(c)所示三极管放大电路的原理类似,具体此处不赘述。
其中,第二执行模块包括:
下电子模块11081,利用所述第三控制信号控制所述使能端处于第二电平状态,所述第二电平为所述第二用电单元处于下电状态时的的电平。
在本实施例中,下电子模块11081通过利用第三控制信号控制使能端处于第二电平状态,由于该第二电平对使能端而言属于无效电平,因此能达到给第二用电单元下电的目的。
二、第二用电单元给第一用电单元上电。请参照图12,下面进行说明。
接收模块1201,用于接收第一用电单元发送的第一控制信号;
第一执行模块1202,用于根据所述第一控制信号执行上电操作;
输出模块1203,用于根据所述上电操作输出第一电压信号至反馈逻辑模块,反馈逻辑模块包括控制电阻,可以把第一电压信号变成稳定的高电平或低电平信号输出;
反馈逻辑模块1204,用于输出第二电压信号至所述第二用电单元,该第二电平信号即为稳定的高电平或低电平信号;
上电模块1205,当所述第一用电单元处于下电状态时,用于利用所述第二电压信号维持所述第二用电单元处于上电状态。
第二用电单元还包括:
控制模块1206,用于生成第四控制信号;
第二发送模块1207,用于将所述第四控制信号发送至所述第一用电单元,所述第四控制信号用于控制第一用电单元执行上电操作。
在本实施例中,控制模块1206生成第四控制信号后通过第二发送模块1207发送至第一用电单元,从而控制第一用电单元执行上电操作。
在本实施例中,第一用电单元上电的原理可以与第二用电单元的上电原理类似,即给第一用电单元的电源使能端一个触发脉冲,该电源使能端进入允许输入状态,第一用电单元的电源执行上电操作。
三、第二用电单元给第一用电单元上电后再给第一用电单元下电。请参照图13,下面进行说明。
接收模块1301,用于接收第一用电单元发送的第一控制信号;
第一执行模块1302,用于根据所述第一控制信号执行上电操作;
输出模块1303,用于根据所述上电操作输出第一电压信号至反馈逻辑模块,反馈逻辑模块包括控制电阻,可以把第一电压信号变成稳定的高电平或低电平信号输出;
反馈逻辑模块1304,用于输出第二电压信号至所述第二用电单元,该第二电平信号即为稳定的高电平或低电平信号;
上电模块1305,当所述第一用电单元处于下电状态时,用于利用所述第二电压信号维持所述第二用电单元处于上电状态。
第二用电单元还包括:
控制模块1306,用于生成第四控制信号;
第二发送模块1307,用于将所述第四控制信号发送至所述第一用电单元,所述第四控制信号用于控制第一用电单元执行上电操作。
控制模块1306,用于生成第五控制信号;
第三发送模块1308,用于将所述第五控制信号发送至所述第一用电单元,所述第五控制信号控制所述第一用电单元执行下电操作。
在本实施例中,第二用电单元给第一用电单元上电后,控制模块1306生成第五控制信号并通过第三发送模块1308发送至第一用电单元,从而控制第一用电单元下电。
图14是本申请实施例提供的另一种第二用电单元的结构示意图,该第二用电单元140可因配置或性能不同而产生比较大的差异,包括电源模块1401、反馈逻辑模块1402;
首先,电源模块接收第一用电单元发送的第一控制信号;
随后,电源模块根据第一控制信号执行上电操作;
执行完上电操作时刻,电源模块根据输出第一电压信号至所述反馈逻辑模块;
随后,电源模块从反馈逻辑模块中获取第二电压信号;
当第一用电单元处于下电状态时,电源模块利用第二电压信号维持电源模块处于上电状态。
在本实施例中,电源模块上电后输出第一用电单元至反馈逻辑模块,反馈逻辑模块再输出第二电压信号至电源模块,该第二电压信号能在第一用电单元下电后维持电源模块处于上电状态。
图15是本申请实施例提供的另一种第二用电单元的结构示意图,该示意图介绍了第二用电单元具体的器件组成及其连接关系;
电源模块的使能端enable通过二极管与第一用电单元连接,二极管用于单向导通,正极与第一用电单元连接,负极与电源模块连接,使第一用电单元输出的第一控制信号只能从第一用电单元输出至第二用电单元,使能端enable位于电源模块的正极,使能端在允许输入状态时,可控制电源模块执行上电操作;
电源模块负极与所述控制电阻R1的一端连接,表示电源模块输出的控制信号进入所述控制电阻R1,控制电阻R1的另一端与电源模块的使能端enable连接,表示经过该控制电阻处理后的电压信号输出值该使能端,该电压信号可以控制该使能端的工作。
在本实施例中,二极管用于单向隔离,该单向隔离的实现即利用二极管的单向导电性,电流或电压只能从二极管的正极流向二极管负极,而不能反向导通。
图16是本申请实施例提供的另一种第二用电单元的结构示意图,该结构示意图适用于第二用电单元给自身下电的场景。
所述控制模块的一端与所述电源模块负极连接;
所述三极管的基极b或所述MOS管的栅极g通过电阻R2与所述控制模块的另一端连接,所述三极管的集电极c或所述MOS管的漏极d与所述电源模块的所述使能端enable连接,所述三极管的发射极e或所述MOS管的源极s与地端GND连接;
在本实施例中,电阻R2为基极电阻,用于给基极提供一个正向偏置电压,使基极发射极间的PN结正偏导通。
所述控制模块发送所述第二控制信号至所述三极管或所述MOS管,所述第二控制信号用于增加所述三极管的基极或所述MOS管的栅极的电压,以使得所述三极管或所述MOS管与所述地端GND导通,所述三极管的集电极或所述MOS管的漏极处于第二电平状态,从而使得所述电源模块的使能端enable处于所述第二电平状态,所述第二电平为所述第二用电单元处于下电状态时的电平。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,本地客户端,或者网络设备等)执行本申请图4(a)至图7(b)各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (18)

  1. 一种电源系统的控制方法,所述方法应用于包括第一用电单元的电源系统,其特征在于,所述电源系统还包括第二用电单元,所述第二用电单元包括反馈逻辑模块,所述电源系统的控制方法包括:
    所述第二用电单元接收第一用电单元发送的第一控制信号;
    所述第二用电单元根据所述第一控制信号执行上电操作;
    所述第二用电单元根据所述上电操作输出第一电压信号至所述反馈逻辑模块;
    所述第二用电单元从所述反馈逻辑模块中获取第二电压信号;
    当所述第一用电单元处于下电状态时,所述第二用电单元利用所述第二电压信号维持所述第二用电单元处于上电状态。
  2. 根据权利要求1所述的方法,其特征在于,所述第二用电单元还包括控制模块,所述第二用电单元利用所述第二电压信号维持所述第二用电单元处于上电状态之后,所述方法还包括:
    所述控制模块生成第二控制信号;
    所述控制模块将所述第二控制信号发送至所述反馈逻辑模块;
    所述第二用电单元从所述反馈逻辑模块中获取第三控制信号;
    所述第二用电单元利用所述第三控制信号执行下电操作。
  3. 根据权利要求2所述的方法,其特征在于,所述第二用电单元利用所述第三控制信号执行下电操作包括:
    所述第二用电单元利用所述第三控制信号控制所述使能端处于第二电平状态,所述第二电平为所述第二用电单元处于下电状态时的电平。
  4. 根据权利要求1所述的方法,其特征在于,所述第二用电单元还包括控制模块,所述第二用电单元利用所述第二电压信号维持所述第二用电单元处于上电状态之后,所述方法还包括:
    所述控制模块生成第四控制信号;
    所述控制模块将所述第四控制信号发送至所述第一用电单元,所述第四控制信号用于控制所述第一用电单元执行上电操作。
  5. 根据权利要求4所述的方法,其特征在于,所述控制模块将所述第四控制信号发送至所述第一用电单元之后,所述方法还包括:
    所述控制模块生成第五控制信号;
    所述控制模块将所述第五控制信号发送至所述第一用电单元,所述第五控制信号用于控制所述第一用电单元执行下电操作。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第二用电单元利用所述第二电压信号维持所述第二用电单元处于上电状态包括:
    所述第二用电单元利用所述第二电压信号锁定所述第二用电单元的使能端处于第一电平状态,所述第一电平为所述第二用电单元处于上电状态时的电平。
  7. 一种第二用电单元,其特征在于,所述第二用电单元包括:
    接收模块,用于接收第一用电单元发送的第一控制信号;
    第一执行模块,用于根据所述第一控制信号执行上电操作;
    输出模块,用于根据所述上电操作输出第一电压信号至反馈逻辑模块;
    反馈逻辑模块,用于输出第二电压信号至所述第二用电单元;
    上电模块,当所述第一用电单元处于下电状态时,用于利用所述第二电压信号维持所述第二用电单元处于上电状态。
  8. 根据权利要求7所述的第二用电单元,其特征在于,所述第二用电单元还包括:
    控制模块,用于生成第二控制信号;
    第一发送模块,用于将所述第二控制信号发送至所述反馈逻辑模块;
    反馈逻辑模块,用于输出第三控制信号至所述第二用电单元;
    第二执行模块,用于利用所述第三控制信号执行下电操作。
  9. 根据权利要求8所述的第二用电单元,其特征在于,所述第二执行模块包括:
    下电子模块,利用所述第三控制信号控制所述使能端处于第二电平状态,所述第二电平为所述第二用电单元处于下电状态时的电平。
  10. 根据权利要求7所述的第二用电单元,其特征在于,所述第二用电单元还包括:
    控制模块,用于生成第四控制信号;
    第二发送模块,用于将所述第四控制信号发送至所述第一用电单元,所述第四控制信号用于控制所述第一用电单元执行上电操作。
  11. 根据权利要求10所述的第二用电单元,其特征在于,所述第二用电单元还包括:
    控制模块,用于生成第五控制信号;
    第三发送模块,用于将所述第五控制信号发送至所述第一用电单元,所述第五控制信号控制所述第一用电单元执行下电操作。
  12. 根据权利要求7至11中任一项所述的第二用电单元,其特征在于,所述上电模块包括:
    锁定子模块,用于利用所述第二电压信号锁定所述第二用电单元的使能端处于第一电平状态,所述第一电平为所述第二用电单元处于上电状态时的电平。
  13. 一种第二用电单元,其特征在于,所述第二用电单元包括:
    电源模块、反馈逻辑模块;
    所述电源模块接收第一用电单元发送的第一控制信号;
    所述电源模块根据所述第一控制信号执行上电操作;
    所述电源模块根据所述上电操作输出第一电压信号至所述反馈逻辑模块;
    所述电源模块从所述反馈逻辑模块中获取第二电压信号;
    当所述第一用电单元处于下电状态时,所述电源模块利用所述第二电压信号维持所述电源模块处于上电状态。
  14. 根据权利要求13所述的第二用电单元,其特征在于,所述反馈逻辑模块包括控制电阻R1;
    所述电源模块的使能端enable通过二极管与所述第一用电单元连接,所述使能端enable位于所述电源模块的正极;
    所述电源模块负极与所述控制电阻R1的一端连接,所述控制电阻R1的另一端与所述 电源模块的所述使能端enable连接。
  15. 根据权利要求14所述的第二用电单元,其特征在于,所述第二用电单元还包括控制模块,所述反馈逻辑模块还包括三极管或MOS管;
    所述控制模块的一端与所述电源模块负极连接;
    所述三极管的基极或所述MOS管的栅极通过电阻R2与所述控制模块的另一端连接,所述三极管的集电极或所述MOS管的漏极与所述电源模块的所述使能端enable连接,所述三极管的发射极或所述MOS管的源极与地端GND连接;
    所述控制模块发送所述第二控制信号至所述三极管或所述MOS管,所述第二控制信号用于增加所述三极管的基极或所述MOS管的栅极的电压,以使得所述三极管或所述MOS管与所述地端GND导通,所述三极管的集电极或所述MOS管的漏极处于第二电平状态,从而使得所述电源模块的使能端enable处于所述第二电平状态,所述第二电平为所述第二用电单元处于下电状态时的电平。
  16. 根据权利要求15所述的第二用电单元,其特征在于,所述第二用电单元应用于车载无线通讯终端Tbox,所述控制模块包括:
    电源管理芯片、射频RF电路、基带芯片和储存器;
    所述电源管理芯片输出电压信号至所述射频RF电路、所述基带芯片和所述储存器,所述射频RF电路、所述基带芯片和所述储存器并联,所述基带芯片通过所述射频RF电路发送所述第二控制信号至所述三极管或所述MOS管。
  17. 一种计算机可读存储介质,其特征在于,所述计算机存储介质用于存储计算机指令,当其在计算机上运行时,使得计算机可以执行上述权利要求1至6中任一项所述的电源系统的控制方法。
  18. 一种计算机程序产品,其特征在于,包括计算机指令,当其在计算机上运行时,使得计算机可以执行上述权利要求1至6中任一项所述的电源系统的控制方法。
PCT/CN2018/115157 2017-11-27 2018-11-13 一种电源系统的控制方法及其设备 WO2019100968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711211124.4A CN109857180B (zh) 2017-11-27 2017-11-27 一种电源系统的控制方法及其设备
CN201711211124.4 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019100968A1 true WO2019100968A1 (zh) 2019-05-31

Family

ID=66630892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115157 WO2019100968A1 (zh) 2017-11-27 2018-11-13 一种电源系统的控制方法及其设备

Country Status (2)

Country Link
CN (1) CN109857180B (zh)
WO (1) WO2019100968A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116719376B (zh) * 2022-09-26 2024-04-19 荣耀终端有限公司 电压控制方法、装置、设备和存储介质
WO2024065509A1 (zh) * 2022-09-29 2024-04-04 华为技术有限公司 控制装置、控制系统及运载工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119075A (zh) * 2007-07-06 2008-02-06 清华大学 无线式零静态功耗供电控制装置
CN102231553A (zh) * 2011-07-06 2011-11-02 天津市松正电动汽车技术股份有限公司 带电源控制的电池管理系统
CN204156835U (zh) * 2014-07-14 2015-02-11 深圳市明日系统集成有限公司 待机启动电路及电子设备
US20150286274A1 (en) * 2014-04-04 2015-10-08 Zippy Technology Corp. Power supply device and method for reducing power consumption of the same
CN205986612U (zh) * 2016-08-03 2017-02-22 宝沃汽车(中国)有限公司 电机控制器的电源管理系统及具有其的车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425506B (zh) * 2013-05-20 2016-12-07 华为技术有限公司 关机方法及开机方法及通信终端
CN104039053B (zh) * 2014-06-20 2016-05-18 美芯晟科技(北京)有限公司 低电压供电控制方法、电路及应用其的低电压供电电路
CN105244981B (zh) * 2015-11-20 2017-12-26 深圳市祝你快乐科技有限公司 一种能自动断电的节能充电器
CN107215740B (zh) * 2017-07-24 2023-12-08 苏州通润驱动设备股份有限公司 一种电梯安全保护装置的控制电路及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119075A (zh) * 2007-07-06 2008-02-06 清华大学 无线式零静态功耗供电控制装置
CN102231553A (zh) * 2011-07-06 2011-11-02 天津市松正电动汽车技术股份有限公司 带电源控制的电池管理系统
US20150286274A1 (en) * 2014-04-04 2015-10-08 Zippy Technology Corp. Power supply device and method for reducing power consumption of the same
CN204156835U (zh) * 2014-07-14 2015-02-11 深圳市明日系统集成有限公司 待机启动电路及电子设备
CN205986612U (zh) * 2016-08-03 2017-02-22 宝沃汽车(中国)有限公司 电机控制器的电源管理系统及具有其的车辆

Also Published As

Publication number Publication date
CN109857180A (zh) 2019-06-07
CN109857180B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
US20150288192A1 (en) Power source and power source voltage regulating method
US9336976B2 (en) Relay driving device and method for driving a relay
JP2016063543A5 (ja) 電力増幅器のモジュール、無線周波数通信のデバイス、及び無線周波数信号を増幅する方法
WO2019100968A1 (zh) 一种电源系统的控制方法及其设备
KR100630340B1 (ko) 전력증폭기의 바이어스 제어 회로
KR102538997B1 (ko) 퀵-스타트 고전압 부스트
US20150188429A1 (en) Power-supply device, method for controlling the same, and communication device including the same
CN113965993A (zh) 直接通信启动控制方法及相关设备
CN109660364B (zh) 一种供电系统
US20130241295A1 (en) Power management circuit and electronic device
US7990744B2 (en) Power supply saving system for an electronic device
US20130318368A1 (en) Power management system and method for server
WO2011124116A1 (zh) 功率放大器的电压驱动装置、功率放大系统、射频功率放大器的供电设备和通信设备
US11264864B2 (en) Flat-motor driving method and drive circuit, and electronic device
EP3301606B1 (en) A bandgap with system sleep mode
CN106998195B (zh) 开关放大器
US9225374B2 (en) Mobile device having SIM card, base station connected thereto, and battery management method thereof
CN116208249B (zh) 光模块及其控制方法、终端以及存储介质
JP2012019500A (ja) バイアス回路および無線通信機
US20110252246A1 (en) Timing control circuit and power supply using the same
EP4006658A1 (en) Flashing apparatus, booting and recovery apparatus, and electronic device
CN110798325A (zh) 一种自动调整供电电压的供电电路
US20150326226A1 (en) Load switch for controlling electrical coupling between power supply and load
CN114256963A (zh) 一种主备电源切换装置及方法
CN102611292A (zh) 一种启动电路及具启动电路的电流源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881668

Country of ref document: EP

Kind code of ref document: A1