WO2019100928A1 - 智慧能源系统 - Google Patents

智慧能源系统 Download PDF

Info

Publication number
WO2019100928A1
WO2019100928A1 PCT/CN2018/113884 CN2018113884W WO2019100928A1 WO 2019100928 A1 WO2019100928 A1 WO 2019100928A1 CN 2018113884 W CN2018113884 W CN 2018113884W WO 2019100928 A1 WO2019100928 A1 WO 2019100928A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
heat
component
collecting device
thermal
Prior art date
Application number
PCT/CN2018/113884
Other languages
English (en)
French (fr)
Inventor
曾智勇
李珂
崔小敏
Original Assignee
深圳市爱能森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱能森科技有限公司 filed Critical 深圳市爱能森科技有限公司
Publication of WO2019100928A1 publication Critical patent/WO2019100928A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts

Definitions

  • the present disclosure relates to the field of energy, for example to a smart energy system.
  • the microgrid mainly combines new energy sources such as wind power generation and solar heat collection with small fossil energy power generation.
  • the microgrid is still too limited, and the control of energy is only reflected in the control of electricity, ignoring heat and cold energy.
  • the micro-grid in the related technology can only convert the heat energy collected by the new energy source such as solar heat collection into electric energy, and then convert the electric energy into heat energy to provide to the outside world, so that the energy loss is great. Lead to energy waste and reduce energy efficiency.
  • the present disclosure provides a smart energy system capable of co-powering and storing electricity, heat, and cold, and improving energy use efficiency.
  • a smart energy system comprising: a current collecting device configured to collect electrical energy; a heat collecting device configured to collect and store waste heat generated by the current collecting device; a heating device, and the collecting device a cooling device connected to the current collecting device; and a control device, wherein the heat collecting device, the cooling device, and the heating device are connected to the control device, and the control device is configured to The heat stored by the heat collecting device is transmitted to the heating device, and the heating device is controlled to supply heat to the outside, the heat stored by the heat collecting device is transmitted to the cooling device, and the supply is controlled.
  • the cooling device converts the received heat into cold energy to supply cooling to the outside; wherein the collecting device is configured to collect electrical energy and to be the heat collecting device, the heating device, the cooling device, and The control device provides electrical energy.
  • Embodiment 1 is a smart energy system provided in Embodiment 1;
  • FIG. 1 is a schematic structural diagram of a smart energy system according to Embodiment 1.
  • the smart energy system includes a power collecting device 110 , a heat collecting device 120 , a heating device 130 , a cooling device 140 , and a control device 150 .
  • the heating device 130, the cooling device 140 and the control device 150 are all connected to the collecting device 110, and the collecting device 110 is arranged to collect electric energy and provide the heat collecting device 120, the heating device 130, the cooling device 140 and the control device 150. Electrical energy.
  • the heat collecting device 120 collects waste heat generated by the current collecting device 110 and stores it.
  • the control device 150 is connected to the heat collecting device 120 and the heating device 130.
  • the control device 150 is arranged to transmit the heat collected by the heat collecting device 120 to the heating device 130, thereby controlling the heating device 130 to supply heat to the outside.
  • the control device 150 is also connected to the cooling device 140.
  • the control device 150 is further configured to transmit the heat stored by the heat collecting device 120 to the cooling device 140, and control the cooling device 140 to convert the received heat into cold energy, thereby controlling The cooling device 140 supplies cooling to the outside.
  • the smart energy system works as follows:
  • the collecting device 110 collects electric energy to supply power to the entire smart energy system, and the collecting device 120 collects heat energy and stores it.
  • the control device 150 controls the heat collecting device 120 to transmit a part of the heat energy to the heating device according to the demand of the heating. 130 is to supply heat to the outside; when the outside world needs to supply cooling, the control device 150 controls the heat collecting device 120 to transmit a part of the heat energy to the cooling device 130 according to the demand of the cooling, and the cooling device 130 converts the heat energy into cold energy and then supplies the cold to the outside.
  • the collector device 110 generates a certain amount of waste heat during operation, so the current collecting device 110 is connected to the heat collecting device 120, and the heat collecting device 120 collects the waste heat generated by the current collecting device 110 and stores it.
  • the present embodiment provides a smart energy system.
  • the heat collecting device 120, the heating device 130, the cooling device 140 and the control device 150 are all connected to the power collecting device 110, so that the collecting device 110 supplies power to the entire smart energy system.
  • the control device 150 is connected to the cooling device 140, so that the control device 150 controls the heat collected by the heat collecting device 120 to be transferred to the heating device 130 to supply heat to the outside.
  • the cooling device 140 is sent to the outside for cooling; the waste heat generated by the collecting device 110 is collected by the heat collecting device 120 and stored to avoid waste of energy.
  • the smart energy system provided by the embodiment solves the problem of energy waste caused by the electric, heat and cold individual control of the existing energy device, realizes the coordinated energy supply and storage of electricity, heat and cold, and improves the energy use efficiency.
  • the smart energy system further includes a plurality of switch valves (not shown), the switch valve may be a solenoid valve, and the switch valve is connected in series to the current collecting device 110, the heat collecting device 120, and the heating device. 130, between the cooling device 140 and the control device 150, the control device 150 is electrically connected to the plurality of switch valves, and the switch valve is opened or closed according to the supply amount and the demand amount of the energy.
  • the switch valve may be a solenoid valve, and the switch valve is connected in series to the current collecting device 110, the heat collecting device 120, and the heating device. 130, between the cooling device 140 and the control device 150, the control device 150 is electrically connected to the plurality of switch valves, and the switch valve is opened or closed according to the supply amount and the demand amount of the energy.
  • the smart energy system is optimized to:
  • the control device 150 includes a controller 151 and an energy balance component 152 that is configured to collect and monitor data.
  • the power collecting device 110, the heat collecting device 120, the heating device 130, and the cooling device 140 are all connected to the controller 151, and the controller 151 is configured to monitor the energy source data of the collecting device 110 and the heat collecting device 120 in real time, and Energy consumption data of the heating device 130 and the cooling device 140.
  • the energy balance component controller 151, the current collecting device 110, the heat collecting device 120, the heating device 130, and the cooling device 140 are all connected to the energy balance component 152, and the energy balance component 152 is configured to control the wisdom according to the energy source data and the energy consumption data. Energy system energy supply and consumption are balanced.
  • the control device 150 including the controller 151 and the energy balance component 152
  • the remote monitoring function of the smart energy system can be realized, and when the heat energy provided by the renewable energy source can satisfy the external heating and cooling, the control Without the use of fossil energy, when the heat energy provided by renewable energy cannot meet the external cooling and heating, the use of fossil energy supply to supplement can increase the utilization efficiency of renewable energy and reduce the use of fossil energy.
  • the control device 150 allocates energy according to the energy source data and the energy consumption data to achieve the balance of the hot and cold supply, thereby reducing the loss of energy, achieving high living comfort and minimizing resource consumption.
  • the controller 151 can be selected as a Supervisory Control And Data Acquisition (SCADA).
  • SCADA is a computer-based data transmission system and power automation monitoring system, which mainly includes monitoring computer, Remote Terminal Unit (RTU), Programmable Logic Controller (PLC), communication infrastructure and people. Machine interface, etc., can be widely used in data acquisition and monitoring and process control in the field of power and other fields.
  • RTU Remote Terminal Unit
  • PLC Programmable Logic Controller
  • Machine interface, etc. can be widely used in data acquisition and monitoring and process control in the field of power and other fields.
  • the energy source data of the collecting and monitoring collecting device 110 and the heat collecting device 120 can be realized, and the collecting and monitoring of the energy consumption data of the heating device 130 and the cooling device 140 can be realized.
  • the data acquisition and monitoring controller 151 may be selectively connected to the power collecting device 110, the heat collecting device 120, the heating device 130, and the cooling device 140, respectively, which is only the embodiment.
  • the power collecting device 110 the heat collecting device 120, the heating device 130, and the cooling device 140, respectively.
  • the energy balance component 152 includes a thermal balance unit (not shown), and the controller 151, the heat collection device 120, the heating device 130, and the cooling device 140 are all coupled to the thermal balance unit to achieve thermal energy requirements and The consumption is balanced to ensure the stability of the system.
  • the smart energy system can be optimized to:
  • the power collecting device 110 includes a power collecting component 111 and an electrical energy storage component 112; the power collecting component 111 is connected to the electrical energy storage component 112, and the electrical energy storage component 112 is connected to the energy balancing component 152; the electrical energy collecting component 111 includes a renewable energy generating device 113 and a fossil The energy power generation device 114; the renewable energy power generation device 113 and the fossil energy power generation device 114 are all connected to the electrical energy storage component 112, and the fossil energy power generation device 114 is connected to the heat collection device 120.
  • the renewable energy power generation device 113 may be selected as one or more of a wind power generation device, a photovoltaic power generation device, a tidal power generation device, a wave power generation device, and a biomass power generation device according to actual conditions in the application area, in FIG. 2, Illustratively, the renewable energy power generation device 113 includes a wind power generation device 115, a photovoltaic power generation device 116, and a tidal power generation device 117.
  • the fossil energy power generation equipment 114 can be selected from coal, gas, oil, and the like depending on the actual situation of the application area. When the electric energy provided by the renewable energy power generation equipment 113 is sufficient to meet the power demand of the system, the fossil energy power generation equipment 114 stops working; when the electric energy provided by the renewable energy power generation equipment 113 cannot meet the power demand of the smart energy system, fossil energy generation The device 114 can assist the renewable energy power generation device 113 to provide electrical energy, improving the stability of the power.
  • the electrical energy storage component 112 can be a battery, a supercapacitor, a flywheel energy storage, etc., and the electrical energy storage component 112 can maintain the stability of the smart energy system and regulate the renewable energy application.
  • the smart energy system can also be optimized to:
  • the heat collecting device 120 includes a thermal energy collecting component 121 and a first thermal energy storage component 122; the thermal energy collecting component 121 is coupled to the first thermal energy storage component 122, and the first thermal energy storage component 122 is coupled to the energy balancing component 152.
  • the thermal energy collection component 121 may be selected from one or more of a solar collector, a waste heat collection device, a geothermal energy collection device, and an air thermal energy collection device according to actual conditions in the application area.
  • exemplary The heat energy collection component 121 includes a solar heat collector 123 and a waste heat collection device 124.
  • the first thermal energy storage component 122 can be selected as a heat storage tank, and the size of the thermal storage tank can be selected according to the actual situation of the application area.
  • the heat collecting device 120 further includes a power conversion component 125.
  • the first end of the power conversion component 125 is connected to the power collecting device 110, and the second end of the power converting component 125 is connected to the first thermal energy storage component 122.
  • the power converting component 125 is configured to The electrical energy stored by the current collecting device 110 is converted into thermal energy and transmitted to the first thermal energy storage component 122 for storage.
  • the smart energy system can also be optimized to:
  • the heating device 130 includes a second thermal energy storage component 131 and a thermal energy output component 132; both the energy balance component 152 and the thermal energy output component 132 are coupled to the second thermal energy storage component 131.
  • the cooling device 140 includes a refrigeration unit 141, a cold energy storage assembly 142, and a cold energy output assembly 143; the refrigeration unit 141 is coupled to the energy balance assembly 152, and the cold energy storage assembly 142 is coupled to both the refrigeration unit 141 and the cold energy output assembly 143.
  • the heating device 130 is configured to provide external heat, and the stability of the heating of the smart energy system can be improved by providing the second heat storage component 131.
  • the cooling device 140 is cooled by utilizing thermal energy, wherein the refrigeration unit 141 can be selected as a lithium bromide unit, and the provision of the cold energy storage assembly 142 can improve the stability of the smart energy system for cooling.
  • the smart energy system may further include a thermal cycle recovery device 210 and a cold cycle recovery device 220.
  • the first end of the thermal cycle recovery device 210 is connected to the cooling device 140, the second end of the thermal cycle recovery device 210 is connected to the energy balance assembly 152, and the thermal cycle recovery device 210 is configured to recover the waste heat generated by the cooling device 140.
  • the first end of the cold cycle recovery device 220 is connected to the heating device 130, the second end of the cold cycle recovery device 220 is connected to the energy balance component 152, and the cold cycle recovery device 220 is arranged to recover the waste cold generated by the cooling device 140. .
  • the waste heat generated by the cooling device 140 and the waste cold generated by the heat supply device 130 can be recycled to the energy balance component 152 for recycling, thereby fully utilizing the heat energy and the cold energy. Energy use is more efficient and environmentally friendly.
  • the present embodiment provides a smart energy system.
  • the heat collecting device 120, the heating device 130, the cooling device 140 and the control device 150 are all connected to the power collecting device 110, so that the collecting device 110 supplies power to the entire smart energy system.
  • the control device 150 is connected to the cooling device 140, so that the control device 150 controls the heat collected by the heat collecting device 120 to be transmitted to the heating device 130 to supply heat to the outside or
  • the cooling device 140 is sent to the outside for cooling; the waste heat generated by the current collecting device 110 is collected by the heat collecting device 120 and stored to avoid waste of energy.
  • the invention solves the problem of energy waste caused by the separate control of electric, heat and cold of the energy device, realizes the coordinated energy supply and storage of electricity, heat and cold, and improves the energy use efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种智慧能源系统,包括集电装置(110),设置为采集电能;集热装置(120),设置为采集废热并存储;供热装置(130),与集电装置(110)连接;供冷装置(140),与集电装置(110)连接;及控制装置(150),集热装置(120)、供冷装置(140)和供热装置(130)均与控制装置(150)相连,控制装置(150)设置为控制供热装置(130)向外界供热,将集热装置(120)存储的热量传输至供冷装置(140),以及控制供冷装置(140)向外界供冷。

Description

智慧能源系统
本申请要求申请日为2017年11月22日、申请号为201721573938.8、名称为“一种智慧能源装置”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及能源领域,例如涉及一种智慧能源系统。
背景技术
随着经济的高速发展,人类对能源的需求越来越大,人类在不断开发新能源的同时,提高能源的利用效率也是至关重要的。其中的关键点是多种新能源与老式能源的融合,尽可能的提高新能源的利用率,减少传统化石能源的使用。
相关技术中,已有微电网的概念提出,微电网主要是通过将风力发电,太阳能集热等新式能源与小型的化石能源发电相结合。然而微电网仍然过于局限,对能源的控制仅仅体现在对电的控制上,忽略了热能和冷能等。当外界需要热能时,相关技术中的微电网只能将太阳能集热等新式能源采集的热能转化成电能,然后在将电能转化成热能向外界提供,如此多次转换,能量的损失很大,导致能量浪费,降低了能源的使用效率。
发明内容
本公开提供了一种智慧能源系统,能够实现电、热、冷的协同供能和存储,和提高能源的使用效率。
一种智慧能源系统,包括:集电装置,设置为采集电能;集热装置,所述集热装置设置为采集所述集电装置产生的废热并存储;供热装置,与所述集电装置连接;供冷装置,与所述集电装置连接;及控制装置,所述集热装置、所述供冷装置和所述供热装置均与所述控制装置相连,所述控制装置设置为将所述集热装置存储的热量传输至所述供热装置,并控制所述供热装置向外界供热,将所述集热装置存储的热量传输至所述供冷装置,以及控制所述供冷装置将接收到的所述热量转换成冷能以向外界供冷;其中,所述集电装置设置为采集电能并为所述集热装置、所述供热装置、所述供冷装置和所述控制装置提供电能。
附图说明
图1为实施例一提供的一种智慧能源系统;
图2为实施例二提供的一种智慧能源系统。
具体实施方式
在一些情况下,风力发电和光伏发电由于自身的不稳定性等原因,与大电网融合的非常差。微电网因其体量小,相比于大电网容易控制,微电网主要应用于远离大陆的岛屿。
实施例一
图1为本实施例一提供的一种智慧能源系统的结构示意图,参见图1,该智慧能源系统包括集电装置110,集热装置120,供热装置130,供冷装置140和控制装置150。供热装置130,供冷装置140和控制装置150均与集电装置110相连,集电装置110设置为采集电能并为集热装置120、供热装置130、供冷装置140和控制装置150提供电能。集热装置120采集集电装置110产生的废热并进行存储。
控制装置150与集热装置120和供热装置130相连,控制装置150设置为将集热装置120采集的热量传输至供热装置130,进而控制供热装置130向外界供热。控制装置150还与供冷装置140相连,控制装置150还设置为将集热装置120存储的热量传输至供冷装置140,并控制供冷装置140将接收到的热量转换成冷能,进而控制供冷装置140向外界供冷。
该智慧能源系统的工作原理为:
集电装置110采集电能为整个智慧能源系统供电,集热装置120采集热能并进行存储,当外界需要供热时,控制装置150根据供热的需求控制集热装置120传输一部分热能至供热装置130向外界供热;当外界需要供冷时,控制装置150根据供冷的需求控制集热装置120传输一部分热能至供冷装置130,供冷装置130将热能转化成冷能后向外界供冷。集电装置110在工作过程中,会产生一定的废热,因此将集电装置110与集热装置120连接,集热装置120收集集电装置110产生的废热并进行存储。
本实施例提供了一种智慧能源系统,通过将集热装置120,供热装置130,供冷装置140和控制装置150均与集电装置110相连,使集电装置110为整个智慧能源系统供电;通过将控制装置150与集热装置120和供热装置130相连,控制装置150与供冷装置140相连,使控制装置150控制集热装置120采集的热量传输至 供热装置130向外界供热或传输至供冷装置140向外界供冷;通过集热装置120采集集电装置110产生的废热并进行存储,避免能源的浪费。本实施例提供的智慧能源系统解决了现有能源装置电、热、冷单独控制造成的能源浪费问题,实现了电、热、冷的协同供能和存储,提高了能源的使用效率。
在一实施例中,该智慧能源系统还包括多个开关阀门(图中未示出),该开关阀门可选为电磁阀,开关阀门串联于集电装置110、集热装置120,供热装置130,供冷装置140和控制装置150之间,控制装置150与多个开关阀门电连接,根据能源的供应量和需求量控制开关阀门开启或闭合。
实施例二
图2为实施例二提供的一种智慧能源系统,参见图2,在上述实施例的基础上,将智慧能源系统优化为:
控制装置150包括控制器151和能源平衡组件152,控制器151设置为采集与监视数据。其中,集电装置110、集热装置120、供热装置130和供冷装置140均与控制器151连接,控制器151设置为实时监控集电装置110和集热装置120的能源来源数据,以及供热装置130和供冷装置140的能源消耗数据。能源平衡组件控制器151、集电装置110、集热装置120、供热装置130和供冷装置140均与能源平衡组件152相连,能源平衡组件152设置为根据能源来源数据和能源消耗数据控制智慧能源系统能源的供应和消耗保持平衡。
在本实施例中,通过设置控制装置150包括控制器151和能源平衡组件152,可实现智慧能源系统的远程监控功能,当可再生能源提供的热能可以满足外界的供热和供冷时,控制不使用化石能源,当可再生能源提供的热能无法满足外界的供冷和供热时,控制使用化石能源供能进行补充,可实现增加可再生能源的利用效率,减小化石能源的使用;通过控制装置150根据能源来源数据和能源消耗数据合理分配能源以达到冷热供应的平衡,可实现减少能源的流失,达到生活舒适度高的同时资源消耗最小。
在一实施例中,控制器151可选为数据采集与监控系统(Supervisory Control And Data Acquisition,SCADA)。SCADA是以计算机为基础的数据传输系统与电力自动化监控系统,主要包括监控计算机、远程终端单元(Remote Terminal Unit,RTU)、可编辑逻辑控制器(Programmable Logic Controller,PLC)、通信基础设施和人机界面等,可广泛应用于电力等领域的数据采集与监控以及过程控制等诸多领域。本实施例通过设置控制器151,可实现采集与监控 集电装置110和集热装置120的能源来源数据,以及实现对供热装置130和供冷装置140的能源消耗数据的采集与监控。
在图2中,示例性的,数据采集与监控控制器151可选为分别与集电装置110、集热装置120、供热装置130和供冷装置140无线连接,这仅是本实施例的一个具体示例,而非对公开的限制。
在一实施例中,能源平衡组件152包括热平衡机组(图中未示出),控制器151、集热装置120、供热装置130和供冷装置140均与热平衡机组相连,实现热能的需求和消耗保持平衡,保证系统的稳定性。
参见图2,在上述实施例的基础上,可以将智慧能源系统优化为:
集电装置110包括电能采集组件111和电能存储组件112;电能采集组件111与电能存储组件112连接,电能存储组件112与能源平衡组件152连接;电能采集组件111包括可再生能源发电设备113和化石能源发电设备114;可再生能源发电设备113和化石能源发电设备114均与电能存储组件112连接,化石能源发电设备114与集热装置120连接。
其中,可再生能源发电设备113根据应用地区的实际情况可选为风力发电设备、光伏发电设备、潮汐发电设备、波浪发电设备和生物质发电设备中的一种或多种,在图2中,示例性地,可再生能源的发电设备113包括风力发电设备115、光伏发电设备116及潮汐发电设备117。
化石能源发电设备114根据应用地区的实际情况可选为煤、燃气及油等火力发电能够等。当可再生能源发电设备113提供的电能足以满足系统的电力需求时,化石能源发电设备114停止工作;当可再生能源发电设备113提供的电能无法满足该智慧能源系统的电力需求时,化石能源发电设备114可辅助可再生能源发电设备113提供电能,提高电力的稳定性。在化石能源发电设备114工作时,会产生废热,将化石能源发电设备114与集热装置120连接,可将化石能源发电设备114工作时产生的废热存储再利用,提高能源的利用率,实现充分利用可再生能源为该智慧能源系统供能,降低不可再生能源的开发和利用。
在一实施例中,电能存储组件112可以为蓄电池,超级电容器及飞轮储能等,设置电能存储组件112可以保持该智慧能源系统的稳定性,以及对可再生能源应用的调控。
请继续参见图2,在上述实施例的基础上,还可以将该智慧能源系统优化为:
集热装置120包括热能采集组件121和第一热能存储组件122;热能采集组件 121和第一热能存储组件122连接,第一热能存储组件122与能源平衡组件152连接。
其中,热能采集组件121根据应用地区的实际情况可选为包括太阳能集热器、废热采集设备、地热能源采集设备和空气热能源采集设备中的一种或多种,在图2中,示例性的,热能采集组件121包括太阳能集热器123和废热采集设备124。
在一实施例中,第一热能存储组件122可选为储热罐,储热罐的大小可根据应用地区的实际情况进行选择。
在一实施例中,在实际应用中,部分地区可能存在可再生能源并不丰富,通过可再生能源采集的热量无法满足外界的供热和供冷需求,因此,在上述实施例的技术上,集热装置120还包括电能转换组件125,电能转换组件125的第一端与集电装置110连接,电能转换组件125的第二端与第一热能存储组件122连接,电能转换组件125设置为将集电装置110存储的电能转换成热能并传输至第一热能存储组件122进行存储。通过这样的设置,可以实现充分利用可再生能源的基础上,保证外界的供热和供冷需求,更好地实现该智慧能源系统电、热、冷的协同供能。
请继续参见图2,在上述实施例的基础上,还可以将该智慧能源系统优化为:
供热装置130包括第二热能存储组件131和热能输出组件132;能源平衡组件152和热能输出组件132均与第二热能存储组件131连接。供冷装置140包括制冷机组141、冷能存储组件142和冷能输出组件143;制冷机组141与能源平衡组件152连接,冷能存储组件142与制冷机组141和冷能输出组件143均连接。
其中,供热装置130实现为外界供热,通过设置第二热量存储组件131可提高该智慧能源系统供热的稳定性。供冷装置140通过利用热能制冷,其中的制冷机组141可选为溴化锂机组,设置冷能存储组件142可提高该智慧能源系统供冷的稳定性。
参见图2,该智慧能源系统还可以包括热循环回收装置210和冷循环回收装置220。热循环回收装置210的第一端与供冷装置140连接,热循环回收装置210的第二端与能源平衡组件152连接,热循环回收装置210设置为回收供冷装置140产生的废热。冷循环回收装置220的第一端与供热装置130连接,冷循环回收装置220的第二端与能源平衡组件152连接,冷循环回收装置220设置为回收所述供冷装置140产生的废冷。通过设置热循环回收装置210和冷循环回收装置220可以将供冷装置140产生的废热和供热装置130产生的废冷回收至能源平衡组件152 再次循环利用,充分利用了热能和冷能,实现能源利用更高效更环保。
本实施例提供了一种智慧能源系统,通过将集热装置120,供热装置130,供冷装置140和控制装置150均与集电装置110相连,使集电装置110为整个智慧能源系统供电。通过将控制装置150与集热装置120和供热装置130相连,控制装置150与供冷装置140相连,使控制装置150控制集热装置120采集的热量传输至供热装置130向外界供热或传输至供冷装置140向外界供冷;通过集热装置120采集集电装置110产生的废热并存储,避免能源的浪费。本公开解决了能源装置电、热、冷单独控制造成的能源浪费问题,实现了电、热、冷的协同供能和存储,提高了能源的使用效率。

Claims (10)

  1. 一种智慧能源系统,包括:
    集电装置,设置为采集电能;
    集热装置,所述集热装置设置为采集所述集电装置产生的废热并存储;
    供热装置,与所述集电装置连接;
    供冷装置,与所述集电装置连接;及
    控制装置,所述集热装置、所述供冷装置和所述供热装置均与所述控制装置相连,所述控制装置设置为将所述集热装置存储的热量传输至所述供热装置,并控制所述供热装置向外界供热,将所述集热装置存储的热量传输至所述供冷装置,以及控制所述供冷装置将接收到的所述热量转换成冷能以向外界供冷;
    其中,所述集电装置设置为采集电能并为所述集热装置、所述供热装置、所述供冷装置和所述控制装置提供电能。
  2. 根据权利要求1所述的智慧能源系统,其中,所述控制装置包括:
    控制器,设置为采集与监视数据,所述集电装置、所述集热装置、所述供热装置和所述供冷装置均与所述控制器连接,所述控制器设置为实时监控所述集电装置和所述集热装置的能源来源数据,以及实时监控所述供热装置和所述供冷装置的能源消耗数据;及
    能源平衡组件,所述控制器、所述集电装置、所述集热装置、所述供热装置和所述供冷装置均与所述能源平衡组件相连,所述能源平衡组件设置为根据所述能源来源数据和所述能源消耗数据控制所述智慧能源系统能源的供应和消耗保持平衡。
  3. 根据权利要求2所述的智慧能源系统,其中,所述集电装置包括电能采集组件和电能存储组件;
    所述电能采集组件与所述电能存储组件连接,所述电能存储组件与所述能源平衡装置连接;
    所述电能采集组件包括可再生能源发电设备和化石能源发电设备;
    所述可再生能源发电设备和化石能源发电设备均与所述电能存储组件连接,所述化石能源发电设备与所述集热装置连接。
  4. 根据权利要求3所述的智慧能源系统,其中,所述可再生能源供电设备包括风力发电设备、光伏发电设备、潮汐发电设备、波浪发电设备和生物质发电设备中的至少一种。
  5. 根据权利要求2所述的智慧能源系统,其中,所述集热装置包括热能采 集组件和第一热能存储组件;
    所述热能采集组件和所述第一热能存储组件连接,所述第一热能存储组件与所述能源平衡组件连接。
  6. 根据权利要求5所述的智慧能源系统,其中,所述集热装置还包括电能转换组件;
    所述电能转换组件的第一端与所述集电装置连接,所述电能转换组件的第二端与所述第一热能存储组件连接,所述电能转换组件设置为将所述集电装置存储的电能转换成热能并传输至所述第一热能存储组件进行存储。
  7. 根据权利要求6所述的智慧能源系统,其中,所述热能采集组件包括太阳能集热器、废热采集设备、地热能源采集设备和空气热能源采集设备中的至少一种。
  8. 根据权利要求2所述的智慧能源系统,其中,所述供热装置包括第二热能存储组件和热能输出组件;
    所述能源平衡组件和所述热能输出组件均与所述第二热能存储组件连接。
  9. 根据权利要求2所述的智慧能源系统,其中,所述供冷装置包括制冷机组、冷能存储组件和冷能输出组件;
    所述制冷机组与所述能源平衡组件连接;
    所述制冷机组和所述冷能输出组件均与所述冷能存储组件连接。
  10. 根据权利要求2所述的智慧能源系统,还包括热循环回收装置和冷循环回收装置;
    所述热循环回收装置的第一端与所述供冷装置连接,所述热循环回收装置的第二端与所述能源平衡组件连接,所述热循环回收装置设置为回收所述供冷装置产生的废热;
    所述冷循环回收装置的第一端与所述供热装置连接,所述冷循环回收装置的第二端与所述能源平衡组件连接,所述冷循环回收装置设置为回收所述供冷装置产生的废冷。
PCT/CN2018/113884 2017-11-22 2018-11-05 智慧能源系统 WO2019100928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721573938.8 2017-11-22
CN201721573938.8U CN207488797U (zh) 2017-11-22 2017-11-22 一种智慧能源装置

Publications (1)

Publication Number Publication Date
WO2019100928A1 true WO2019100928A1 (zh) 2019-05-31

Family

ID=62474959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113884 WO2019100928A1 (zh) 2017-11-22 2018-11-05 智慧能源系统

Country Status (2)

Country Link
CN (1) CN207488797U (zh)
WO (1) WO2019100928A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207488797U (zh) * 2017-11-22 2018-06-12 深圳市爱能森科技有限公司 一种智慧能源装置
CN111336628A (zh) * 2020-04-03 2020-06-26 北京燃气能源发展有限公司 区域能源的冷热能量环供能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760520B1 (ko) * 2006-11-01 2007-09-20 (주)성도 폐열을 이용한 소형 열병합설비
CN102331110A (zh) * 2011-08-31 2012-01-25 北京中科华誉能源技术发展有限责任公司 基于吸收式换热的区域热电冷联合能源系统及其方法
CN102359739A (zh) * 2011-09-14 2012-02-22 张军 零能源损耗率热电厂的燃蒸循环热电冷三联供系统与方法
CN202209817U (zh) * 2011-08-31 2012-05-02 北京中科华誉能源技术发展有限责任公司 基于吸收式换热的区域热电冷联合能源系统
CN103256119A (zh) * 2012-06-19 2013-08-21 湖南大学 一种区域建筑用能集成系统
CN207488797U (zh) * 2017-11-22 2018-06-12 深圳市爱能森科技有限公司 一种智慧能源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760520B1 (ko) * 2006-11-01 2007-09-20 (주)성도 폐열을 이용한 소형 열병합설비
CN102331110A (zh) * 2011-08-31 2012-01-25 北京中科华誉能源技术发展有限责任公司 基于吸收式换热的区域热电冷联合能源系统及其方法
CN202209817U (zh) * 2011-08-31 2012-05-02 北京中科华誉能源技术发展有限责任公司 基于吸收式换热的区域热电冷联合能源系统
CN102359739A (zh) * 2011-09-14 2012-02-22 张军 零能源损耗率热电厂的燃蒸循环热电冷三联供系统与方法
CN103256119A (zh) * 2012-06-19 2013-08-21 湖南大学 一种区域建筑用能集成系统
CN207488797U (zh) * 2017-11-22 2018-06-12 深圳市爱能森科技有限公司 一种智慧能源装置

Also Published As

Publication number Publication date
CN207488797U (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
CN112329259B (zh) 一种多能互补冷热电联供微电网框架及其建模方法
CN201757455U (zh) 风力发电供电供热系统
CN103728881A (zh) 一种多楼宇冷热电联供系统的优化运行方法
CN106385056A (zh) 一种适用于高端制造企业的能源路由器
CN202957612U (zh) 含风光储的智能微网及其控制系统
CN111442326A (zh) 一种新型太阳能智能热电联供系统
CN106677990A (zh) 光热发电系统
WO2019100928A1 (zh) 智慧能源系统
CN102738905B (zh) 整合自然能源的储能与供能系统
CN113806952B (zh) 一种考虑源-荷-储的冷热电综合能源系统及其优化运行方法
CN203481843U (zh) 一种风光柴蓄微网发电系统
CN103390903B (zh) 新型风光储智能联合发电系统及其控制方法
CN104410171A (zh) 一种用于智能电网的储能方法及其装置
CN210350803U (zh) 一种多源协同的综合供能系统
CN205081546U (zh) 一种太阳能供电装置
CN204089214U (zh) 一种太阳能光、热发电智能控制型输、配电微电网
CN204373257U (zh) 一种家用太阳能冷热电三联产系统
CN202918016U (zh) 一种太阳能光电、光热综合利用的电动汽车充电站
CN204615717U (zh) 可再生能源集群式电源发电系统
CN212671885U (zh) 利用采煤矿坑空气压缩储能的新能源协同发电系统
CN205811640U (zh) 一种给空调供电的风光互补控制系统
CN110363397B (zh) 一种基于可转换自由度的综合能源系统规划方法
CN210829421U (zh) 联合超临界水氧化技术的超临界二氧化碳发电系统
CN204119112U (zh) 一种家用500w太阳能供电系统
CN209593000U (zh) 一种多能互补分布式能源与资源综合供能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18881777

Country of ref document: EP

Kind code of ref document: A1