WO2019100830A1 - 进行数据传输的方法、网络侧设备及终端 - Google Patents

进行数据传输的方法、网络侧设备及终端 Download PDF

Info

Publication number
WO2019100830A1
WO2019100830A1 PCT/CN2018/106496 CN2018106496W WO2019100830A1 WO 2019100830 A1 WO2019100830 A1 WO 2019100830A1 CN 2018106496 W CN2018106496 W CN 2018106496W WO 2019100830 A1 WO2019100830 A1 WO 2019100830A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
interval
quasi
location information
network side
Prior art date
Application number
PCT/CN2018/106496
Other languages
English (en)
French (fr)
Inventor
左君
童辉
韩双锋
王森
倪吉庆
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to EP18880411.6A priority Critical patent/EP3716517A4/en
Priority to US16/765,630 priority patent/US11284410B2/en
Publication of WO2019100830A1 publication Critical patent/WO2019100830A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method for performing data transmission, a network side device, and a terminal.
  • the multi-antenna system adopts a digital domain and analog domain hybrid architecture to balance coverage and complexity.
  • a plurality of analog beams are configured between the base station and the user end, and beam management is required to use a beam with better channel quality between the user and the base station to ensure the communication transmission rate.
  • the downlink beam management mainly sends a beam management reference signal by the base station, and the user measures and reports the beam measurement result.
  • the base station selects the downlink transmission beam and indicates the user-related beam information, so that the user receives the downlink data by using the beam matched with the base station transmission beam.
  • the beam indication information of the downlink control channel can be sent to the user through high-level signaling, and the beam indication information of the downlink data channel can be dynamically indicated by the Downlink Control Information (DCI).
  • the DCI includes a 3-bit Transmission Configuration Indication (TCI) field, and the TCI indicates Quasi Co-Location (QCL) information of a Demodulation Reference Signal (DMRS) of the downlink data channel.
  • TCI Transmission Configuration Indication
  • QCL Quasi Co-Location
  • DMRS Demodulation Reference Signal
  • the 3rd Generation Partnership Project (3GPP) in the related art supports flexible scheduling, that is, the physical downlink shared channel (PDSCH) of the DCI scheduling is not fixed at the beginning of the time slot. Both can have a certain scheduling interval.
  • the scheduling interval information ie, the start time information of the PDSCH is included in the DCI.
  • the present disclosure provides a method for performing data transmission, a network side device, and a terminal, which are used to solve the problem of how data is processed when the scheduling interval is smaller than the processing interval in the process of data transmission in the related art.
  • Embodiments of the present disclosure provide a method for performing data transmission, the method comprising:
  • the network side device determines the processing interval of the terminal according to the parameter information reported by the terminal;
  • the network side device compares a scheduling interval used for resource allocation for the terminal with a determined processing interval of the terminal;
  • the network side device uses the pre-configured quasi-co-location information corresponding to the terminal to send data through the PDSCH after the scheduling interval.
  • the embodiment of the present disclosure further provides a method for performing data transmission, the method comprising:
  • the terminal reports the parameter information to the network side device, where the parameter information is used to determine a processing interval of the terminal.
  • the embodiment of the present disclosure further provides a network side device that performs data transmission, where the network side device includes: a processor and a transceiver:
  • the processor is configured to determine, according to parameter information reported by the terminal, a processing interval of the terminal, compare a scheduling interval used for resource allocation for the terminal, and determine a processing interval of the determined terminal; where the scheduling interval is smaller than the processing interval Then, the transceiver is used to send data through the PDSCH after the scheduling interval by using the pre-configured quasi-co-location information corresponding to the terminal.
  • An embodiment of the present disclosure further provides a terminal for performing data transmission, where the terminal includes: a transceiver:
  • the transceiver is configured to report the parameter information to the network side device; and receive data through the PDSCH by using the pre-configured quasi-co-location information corresponding to the terminal in the processing interval.
  • An embodiment of the present disclosure further provides a network side device that performs data transmission, where the network side device includes: at least one processing unit and at least one storage unit, wherein the storage unit stores program code, when the program code is When the processing unit is executed, the processing unit is caused to perform the steps of any of the methods for the network side device to perform data transmission.
  • An embodiment of the present disclosure further provides a terminal for performing data transmission, the terminal comprising: at least one processing unit and at least one storage unit, wherein the storage unit stores program code, when the program code is executed by the processing unit And causing the processing unit to perform the step of any of the methods of the terminal assisting the network side device to perform data transmission.
  • Embodiments of the present disclosure also provide a computing device readable storage medium, including program code for causing the computing device to perform a network side device when the program code is run on a computing device The step of any of the methods of performing data transmission or the step of the terminal assisting the network side device in performing data transmission.
  • the network side device determines the processing interval of the terminal according to the parameter information reported by the terminal; and then compares the scheduling interval used for resource allocation for the terminal with the determined processing interval of the terminal; After the processing interval, the pre-configured quasi-co-location information corresponding to the terminal is used to send data through the PDSCH after the scheduling interval.
  • the disclosure is based on the size relationship between the processing interval and the scheduling interval, determining that the scheduling interval is smaller than the processing At the time of the interval, the pre-configured quasi-co-location information is used for data transmission, so that the network side device and the terminal can transmit data through the PDSCH when the scheduling interval is smaller than the processing interval, and since the processing interval ends before the scheduling interval Data transmission can be performed through the PDSCH, and resource utilization is also improved.
  • FIG. 1 is a schematic structural diagram of a system for performing data transmission according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a downlink beam indication when a scheduling interval is smaller than a processing interval according to an embodiment of the present disclosure, or a schematic diagram of a starting location information of a PDSCH in a processing interval;
  • FIG. 3 is a schematic diagram of a downlink beam indication when a scheduling interval is not less than a processing interval according to an embodiment of the present disclosure, or a schematic diagram of a starting location information of a PDSCH after a processing interval;
  • FIG. 4 is a schematic diagram of controlling a resource mapping in a first slot in a time slot in an embodiment of the present disclosure
  • 5A is a schematic diagram of controlling a resource set mapping in front of a time slot in the implementation of the present disclosure, and controlling channel information to occupy a first symbol of a control resource set;
  • FIG. 5B is a schematic diagram of the control resource set mapping in front of the time slot in the first embodiment of the disclosure, and the control channel information occupying the second symbol in the control resource set;
  • FIG. 5C is a schematic diagram of the control resource set mapping in the first two symbols of the slot in the embodiment of the disclosure, and the control channel information occupies all symbols of the control resource set;
  • 6A is a schematic diagram of a control resource set mapping in front of three symbols in a slot, and control channel information occupying a first symbol of a control resource set according to an embodiment of the present disclosure
  • FIG. 6B is a schematic diagram of the control resource set mapping in the first three symbols of the time slot, and the control channel information occupying the second symbol of the control resource set in the embodiment of the present disclosure
  • FIG. 6C is a schematic diagram of the control resource set mapping in the first three symbols of the time slot in the embodiment of the disclosure, and the control channel information occupies the first two symbols of the control resource set;
  • FIG. 6D is a schematic diagram of the control resource set mapping in the first three symbols of the time slot in the embodiment of the present disclosure, and the control channel information occupies the last symbol of the control resource set;
  • 6E is a schematic diagram of two symbols after the control resource set is mapped to the first three symbols in the slot, and the control channel information occupies the control resource set in the embodiment of the present disclosure
  • FIG. 6F is a schematic diagram of the control resource set mapping in front of the three symbols in the slot, and the control channel information occupying all the symbols of the control resource set in the embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a network side device for performing data transmission according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a second network side device for performing data transmission according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a third network side device for performing data transmission according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a fourth terminal for performing data transmission according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a terminal for performing data transmission according to a fifth embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a sixth terminal for performing data transmission according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of a first method for performing data transmission according to an embodiment of the present disclosure
  • FIG. 14 is a schematic flowchart of a second method for performing data transmission according to an embodiment of the present disclosure.
  • a system for performing data transmission includes:
  • the network side device 10 is configured to determine, according to the parameter information reported by the terminal, a processing interval of the terminal, compare a scheduling interval used for resource allocation for the terminal, and determine a processing interval of the determined terminal; where the scheduling interval is smaller than the processing interval Thereafter, data is transmitted through the PDSCH after the scheduling interval using the pre-configured quasi-co-location information corresponding to the terminal.
  • the scheduling interval and the processing interval respectively have attributes of interval length. For example, if the scheduling interval is smaller than the processing interval, it means that the length of the scheduling interval is less than the long stiffness of the processing interval.
  • the beam indication information is obtained by the quasi-co-location information of the TypeD. Therefore, the quasi-co-location information may also be referred to as beam information.
  • the terminal 20 is configured to report the parameter information to the network side device, where the parameter information is used to determine a processing interval of the terminal.
  • the pre-configured quasi-co-location information corresponding to the terminal is used to send data through the PDSCH after the scheduling interval. Receiving data through the PDSCH using the pre-configured quasi-co-location information corresponding to the terminal in the processing interval.
  • the network side device determines the processing interval of the terminal according to the parameter information reported by the terminal; and then compares the scheduling interval used for resource allocation for the terminal with the determined processing interval of the terminal; After the processing interval, the pre-configured quasi-co-location information corresponding to the terminal is used to send data through the PDSCH after the scheduling interval.
  • the disclosure is based on the size relationship between the processing interval and the scheduling interval, determining that the scheduling interval is smaller than the processing At the time of the interval, the pre-configured quasi-co-location information is used for data transmission, so that the network side device and the terminal can transmit data through the PDSCH when the scheduling interval is smaller than the processing interval, and since the processing interval ends before the scheduling interval Data transmission can be performed through the PDSCH, and resource utilization is also improved.
  • the parameters used by the network side device to determine the processing interval include, but are not limited to, part or all of the following:
  • the algorithm for determining the length of the processing interval includes: the processing interval is equal to the processing time reported by the user or the processing interval is equal to the sum of the processing time reported by the user and the switching time of the terminal, wherein the terminal switching beam time can be a predefined typical value. .
  • the parameter information reported by the terminal is any information that enables the network side device to determine a processing interval of the terminal, for example, the parameter information reported by the terminal includes processing capability of the terminal and/or the processing. interval.
  • the processing capability of the terminal includes its own hardware capability, antenna configuration, and the like.
  • the terminal reports each parameter in the processing capability of the terminal, or the processing interval, to the network side device, and the network side device may determine the processing interval, and then compare with the scheduling interval to determine the scheduling interval.
  • the processing interval is accurately configured to accurately transmit the beam of the data to improve the flexibility of system scheduling.
  • the quasi-co-location information used by the network side device is used for data transmission, which is mainly determined by the scheduling interval and the processing interval relationship.
  • Network side mode 1 When the scheduling interval is smaller than the processing interval, the network side device sends data through the PDSCH through the pre-configured quasi-co-location information after the scheduling interval.
  • the network side device determines the processing interval of the terminal according to the parameter information reported by the terminal; and then compares the scheduling interval used for resource allocation for the terminal with the determined terminal processing interval;
  • the pre-configured quasi-co-location information corresponding to the terminal is used to transmit data through the PDSCH after the scheduling interval.
  • the pre-configured quasi-co-location information corresponding to the terminal may be:
  • the quasi-co-location information 1 is configured by the radio resource control (RRC) signaling or the medium access control-control unit (MAC-CE) signaling;
  • RRC radio resource control
  • MAC-CE medium access control-control unit
  • the quasi-co-location information 2 the pre-configured quasi-co-location information corresponding to the terminal is the same as the quasi-co-location information used by the receiving DCI signaling.
  • the quasi-co-location information 1 and the quasi-co-location information 2 may be fixed only in one manner, that is, the network side device is configured by using RRC signaling or MAC-CE signaling, or both are used for receiving DCI signaling.
  • the quasi-co-location information is the same.
  • the pre-configuration corresponding to the terminal is configured by the network side device by using RRC signaling or MAC-CE signaling;
  • the pre-configuration corresponding to the terminal is the same as the quasi-co-location information used for receiving the DCI signaling.
  • the scheduling interval is smaller than the processing interval, and the pre-configured quasi-co-location information corresponding to the terminal should be used for data transmission.
  • Network side mode 2 When the scheduling interval is not less than the processing interval, the network side device sends data through the PDSCH after the scheduling interval after using the corresponding quasi-co-location in the DCI signaling of the terminal after the scheduling interval. .
  • the network side device determines the processing interval of the terminal according to the parameter information reported by the terminal; and then compares the scheduling interval used for resource allocation for the terminal with the determined terminal processing interval; if the interval is not less than the processing interval, Then, the corresponding quasi-co-location information in the DCI signaling of the terminal is used to send data through the PDSCH after the scheduling interval.
  • the scheduling interval is not less than the processing interval, and the corresponding quasi-co-location information in the DCI signaling of the terminal is used to send data through the PDSCH after the scheduling interval.
  • the corresponding quasi-co-location information in the DCI signaling of the terminal refers to the quasi-co-location information indicated by the DCI signaling received by the terminal.
  • the network side device determines, according to the scheduling interval and the processing interval relationship, which quasi co-location information is used for data transmission, thereby improving the flexibility of system scheduling.
  • the data received by the PDSCH for the quasi-co-location information of the terminal is determined by the relationship between the start position of the PDSCH and the processing interval determined by the terminal after the DCI information is identified, and is introduced in the following manner.
  • Terminal mode 1 According to the relationship between the start location information of the PDSCH and the processing interval, if the starting position of the PDSCH is in the processing interval, the terminal uses the pre-configured quasi-co-location information corresponding to the terminal.
  • the terminal reports the parameter information to the network side device, and receives DCI signaling;
  • the network side device determines the processing interval of the terminal according to the parameter information reported by the terminal; compares the scheduling interval used for resource allocation for the terminal with the determined processing interval of the terminal; if the scheduling interval is smaller than the processing interval, Transmitting data through the PDSCH by using the pre-configured quasi-co-location information corresponding to the terminal after the scheduling interval;
  • the terminal identifies the DCI signaling received before the processing interval, and determines the starting position of the PDSCH.
  • the terminal receives data through the PDSCH in the processing interval by using the pre-configured quasi-co-location information corresponding to the terminal.
  • the starting position of the PDSCH is adjacent to the scheduling interval, and the scheduling interval is smaller than the processing interval. At this time, the starting position of the PDSCH is in the processing interval, and should be used.
  • the pre-configured quasi-co-location information corresponding to the terminal is used for data reception.
  • the network side device transmits data through the PDSCH by using the pre-configured quasi-co-location information corresponding to the terminal after the scheduling interval, and the terminal uses the pre-configured quasi-co-location information corresponding to the terminal to receive data in the processing interval. Therefore, the terminal can receive the data sent by the network side device through the PDSCH after the scheduling interval.
  • the pre-configured quasi-co-location information corresponding to the terminal may be:
  • the network side device is configured by RRC signaling or MAC-CE signaling;
  • the quasi-co-location information 2 the pre-configured quasi-co-location information corresponding to the terminal is the same as the quasi-co-location information used by the receiving DCI signaling.
  • the quasi-co-location information 1 and the quasi-co-location information 2 may be fixed only in one manner, that is, the network side device is configured by using RRC signaling or MAC-CE signaling, or both are used for receiving DCI signaling.
  • the quasi-co-location information is the same.
  • the pre-configuration corresponding to the terminal is configured by the network side device by using RRC signaling or MAC-CE signaling;
  • the pre-configuration corresponding to the terminal is the same as the quasi-co-location information used for receiving the DCI signaling.
  • the terminal uses the terminal after the processing interval.
  • the pre-configured quasi-co-location information receives data through the PDSCH.
  • the location of the PDSCH determined by the DCI signaling at this time is in the processing interval, and the data is received through the PDSCH by using the pre-configured quasi-co-location information corresponding to the terminal.
  • the terminal reports the parameter information of the processing capability or the processing time length to the network side device, and the network side device calculates the processing time according to the parameter reported by the terminal, and further, the network side The device compares the scheduling interval determined by the service type and the packet size of each terminal. After determining that the scheduling interval is smaller than the processing interval, the quasi-co-location information corresponding to the terminal is configured after the scheduling interval. Transmitting data through the PDSCH; after receiving the DCI signaling, the terminal performs decoding processing on the received signaling, determines the starting position of the PDSCH, and determines the starting position of the PDSCH according to the starting location information of the PDSCH.
  • the terminal receives data through the PDSCH through the pre-configured quasi-co-location information of the terminal; but after the terminal completes decoding of the DCI signaling, the PDSCH starts to transmit data at the starting position. Received, therefore, the first few symbols of the start position of the PDSCH contain the demodulation reference signal required to decode the PDSCH (Demodula) Tion Reference Signal (DMRS) is used for correlation demodulation of the PDSCH channel. In order to ensure correct decoding, the DMRS needs to use the same quasi-co-location information as the PDSCH to receive data. Therefore, when using pre-configured quasi-co-location information, it should be used. All PDSCH symbols of the user are included in the slot, and the corresponding PDSCH is decoded according to the start location information of the PDSCH in the DCI signaling.
  • Demodula Tion Reference Signal DMRS Tion Reference Signal
  • the terminal uses the terminal after the processing interval.
  • the pre-configured quasi-co-location information receives data through the PDSCH.
  • Terminal mode 2 According to the relationship between the start location information of the PDSCH and the processing interval, if the starting position of the PDSCH is after the processing interval, the terminal uses the quasi-co-location information in the DCI signaling.
  • the terminal reports the parameter information to the network side device, and receives the DCI signaling;
  • the network side device determines the processing interval of the terminal according to the parameter information reported by the terminal; compares the scheduling interval used for resource allocation for the terminal with the determined processing interval of the terminal; and the scheduling interval is not less than the processing interval. Then, the data is transmitted through the PDSCH after the scheduling interval by using the corresponding quasi-co-location information in the DCI signaling of the terminal.
  • the terminal identifies the previously received DCI signaling at the processing interval, and determines the starting position of the PDSCH.
  • the terminal receives data through the PDSCH by using the quasi-co-location information in the DCI signaling after the processing interval.
  • the starting position of the PDSCH is adjacent to the scheduling interval, and the scheduling interval is not less than the processing interval, and the starting position of the PDSCH is after the processing interval.
  • Data is received over the PDSCH using quasi co-location information in the DCI signaling.
  • the network side device uses the quasi co-location information in the DCI signaling of the terminal after the scheduling interval to send data through the PDSCH after the scheduling interval, and the terminal uses the quasi-co-location information in the DCI signaling after the processing interval.
  • the data is received through the PDSCH, so the terminal can receive the data sent by the network side device through the PDSCH after the scheduling interval.
  • the terminal determines the start position of the PDSCH by using the received DCI signaling, if the start position of the PDSCH is after the processing interval, the terminal uses the DCI letter after the processing interval.
  • the quasi-co-location information in the order receives data through the PDSCH.
  • the location of the PDSCH determined by the DCI signaling at this time is received by the PDSCH using the quasi-co-location information in the DCI signaling after the processing interval.
  • the terminal determines the starting position of the PDSCH by identifying the received DCI, and determines, according to the relationship between the starting location information of the PDSCH and the processing interval, which quasi-co-location information is used to receive data through the PDSCH. And determining the data that the terminal should receive through the PDSCH, thereby improving the utilization of resources, and further enhancing the flexibility of system scheduling.
  • the method further includes:
  • the terminal is according to the DCI.
  • the quasi-co-location information in the signaling performs beam switching.
  • the DCI includes the start location information of the PDSCH, and after the terminal decodes the DCI information, the location of the PDSCH in the DCI and the corresponding quasi-co-location information in the DCI may be determined, if the determined PDSCH starts.
  • the location information is after the processing interval, and the quasi-co-location information in the DCI is different from the pre-configured quasi-co-location information corresponding to the terminal, and the terminal performs beam switching according to the quasi-co-location information in the DCI signaling.
  • the terminal determines the quasi-co-location information to perform beam switching according to the start location information of the PDSCH decoded by the DCI and the quasi-co-location information in the DCI, thereby improving the flexibility of system scheduling.
  • the network side device determines the time domain location of the user-specific control information according to the mapping location of the control resource set corresponding to the terminal and the location of the DCI corresponding to the terminal in the control resource set;
  • the network side device configures the terminal according to the determination result.
  • the set of control resources may be mapped to a position at the forefront of the time slot, and the user-specific control channel information occupies part or all of the symbols of the control resource set.
  • the control resource set may be mapped to N symbols in front of the time slot, where the control resource set is represented by a padding symbol in the time slot, where the value of N may be 1, 2, 3.
  • the DCI occupies all the symbols of the control resource set, that is, DCI occupation #0;
  • the DCI can occupy some or all of the symbols of the control resource set, that is, the DCI can occupy #0 or #1.
  • #2 DCI can occupy #0 and #1, DCI can occupy #1 and #2, DCI can occupy #0 and #2, DCI can occupy #0 and #1 and #2.
  • the DCI includes the quasi-co-location indication information, and the quasi-co-location indication information may be located in the #0, #1, or #2 symbols of the slot, and is consistent with the position of the DCI in the time domain.
  • the time interval is a time required for converting quasi co-location indication information included in the DCI into data information that the PDSCH can receive.
  • the network side device determines, according to the determined time domain location, whether to set a time interval between the control resource set and the PDSCH, if the user-specific control channel information occupies a non-last symbol in the control resource set. Part or all of the symbols, the network side device determines that no time interval is set between the control resource set and the physical downlink shared channel PDSCH; or if the user specific control channel information occupies the last symbol in the control resource set, the network The side device determines a time interval between the control resource set and the physical downlink shared channel PDSCH.
  • determining whether a time interval needs to be set between the control resource set and the PDSCH is mainly determined according to a time domain position occupied by the DCI in the control control resource set, and the DCI only occupies part of the symbol of the control resource set, and does not occupy the control resource.
  • the last one of the N symbols is aggregated, there is no need to set a time interval between the control resource set and the PDSCH, and in other cases, a time interval needs to be set. This is because the symbols occupied by the control resource set before the PDSCH after the control channel information can be used to perform beam switching.
  • the location of the control resource set mapped to the time slot in the time domain is represented by a padding symbol.
  • the control resource set is mapped to the #0th slot in the time domain.
  • the DCI containing the quasi-co-located information is located at the #0th symbol.
  • the user-specific DCI (UE-specific DCI) occupies all the symbols of the control resource set, and the time interval is 1 symbol, and the time interval is in the time domain.
  • the terminal determines that it is PDSCH from the #1th symbol.
  • the control resource set is mapped to the first two symbols of the time slot in the time domain, that is, the #0 and #1 symbols, and the DCI occupying the control resource set containing the quasi-co-located information at this time is not the last one. All the symbols of the symbol, that is, the first symbol in the DCI occupation control resource set, are located at the #0th symbol.
  • the network side device determines that no time interval is set between the control resource set and the physical downlink shared channel PDSCH. The terminal determines that the PDSCH is from the #1th symbol.
  • the control resource set is mapped to the first two symbols of the time slot in the time domain, that is, the #0 and #1 symbols.
  • the DCI occupation control including the quasi-co-location information in FIG. 6B is performed.
  • the last symbol in the resource set, that is, the #1th symbol the network side device determines the time interval between the control resource set and the physical downlink shared channel PDSCH; the DCI occupation control resource set including the quasi-co-location information in FIG.
  • the network side device determines that a time interval is also set between the control resource set and the physical downlink shared channel PDSCH, and the terminal determines the slave The #2 symbol is followed by the PDSCH.
  • the network side device determines that the control resource set and the physical downlink shared channel PDSCH are not Setting a time interval, the PDSCH in the terminal receives data information from the #3 symbol according to the quasi-co-location information; as shown in FIG. 6D, 6E, and 6F, the DCI has the last symbol in the set of occupied control resources.
  • the network side device determines a time interval between the control resource set and the physical downlink shared channel PDSCH, and the terminal determines that the PDSCH is after the #3 symbol.
  • the user-specific control channel information occupies part or all of the symbols in the non-last symbol in the control resource set, and the network side device determines that the control resource set and the physical downlink shared channel PDSCH are not
  • all control resource symbols after the control resource set symbol is occupied by the user-specific control channel information can be used to switch between the quasi-co-location information and the data information.
  • the user-specific control channel information occupies the #0th symbol in the control resource set, and no time interval is set between the control resource set and the physical downlink shared channel PDSCH. At this time, the #1 in the control resource set is controlled.
  • the symbols have the same effect as the time interval, and the beam can be switched.
  • data is not sent during the time interval, so the terminal does not receive downlink data during the time interval; if data is sent during the time interval, a predefined The quasi-co-location information is used for information transmission, and the terminal within the time interval does not receive the data information with the optimal beam.
  • the time interval needs to be set between the control resource set and the PDSCH it is determined whether the time interval needs to be set between the control resource set and the PDSCH, and whether the time interval needs to be set dynamically can be improved, and the scheduling flexibility is improved.
  • the network side device determines a time interval between the control resource set and the physical downlink shared channel (PDSCH)
  • the network side device determines, according to the beam switching processing time reported by the terminal, the number of symbols occupied by the time interval.
  • the network side device further determines, according to the information reported by the terminal, the symbol that needs to be occupied in the time domain. Quantity.
  • the network side device determines the number of symbols occupied by the time interval according to the beam conversion processing time reported by the terminal.
  • a symbol in the time interval of the implementation indicates that the time for switching the quasi-co-location information and the data information is 6S, and when the beam conversion processing time reported by the terminal is less than or equal to 6S, the network side device receives the message.
  • a time interval is configured on the time slot according to the time domain and the frequency domain, that is, the time interval occupies one symbol in the time domain, but when the beam switching time reported by the terminal is greater than 6S, the network side device is based on The specific time is used to configure the number of symbols in the time interval. It is assumed that the beam conversion processing time reported by the terminal is any one of 6S to 12S. Since there is no time required for more than two time intervals, the network side device will Determining that the time interval requires two symbols in the time domain.
  • the information reported by the terminal to the network side device includes not only the beam conversion processing time but also the number of beams in the terminal, the service type and the like.
  • the network side device determines the number of symbols of the extra time interval according to the processing interval reported by the terminal, and flexibly schedules the quasi-co-location information included in the DCI, and switches to the time required for the data information that the PDSCH can receive. That is to ensure that the beam can be switched normally, and the time domain resource utilization is guaranteed.
  • the network side device determines a location of the PDSCH according to the determination result; and configures the terminal according to the determined location of the PDSCH.
  • the position of the PDSCH will be different for different judgment results.
  • the PDSCH is located after the time interval and is adjacent to the time interval;
  • the PDSCH is located after the control resource set and is adjacent to the control resource set.
  • FIG. 4 there is a time interval between the control resource set and the PDSCH, and the PDSCH is set after the time interval and adjacent to the time interval; as shown in FIG. 5A, There is no time interval between the control resource set and the PDSCH. At this time, the PDSCH is set after the control resource set and adjacent to the control resource set.
  • the PDSCH is set after the time interval and adjacent to the time interval, if not There is a time interval, and the PDSCH is located after the control resource set and is adjacent to the control resource set.
  • the location of the PDSCH in the time domain can be accurately determined according to whether there is a time interval, and the utilization of the time domain resource is ensured.
  • an embodiment of the present disclosure provides a network side device for performing data transmission, where the network side device includes: a processor 700 and a transceiver 701:
  • the processor 700 is configured to determine, according to parameter information reported by the terminal, a processing interval of the terminal, compare a scheduling interval used for resource allocation for the terminal, and determine a processing interval of the determined terminal; after the scheduling interval is smaller than the processing interval,
  • the transceiver 701 uses the pre-configured quasi-co-location information corresponding to the terminal to transmit data through the PDSCH after the scheduling interval.
  • processor 700 is further configured to:
  • the quasi-co-location information in the DCI signaling corresponding to the terminal is used to send data through the PDSCH after the scheduling interval.
  • the pre-configured quasi-co-location information corresponding to the terminal is configured by the network side device by using RRC signaling or MAC-CE signaling; or pre-configured quasi-co-location information and receiving corresponding to the terminal
  • the quasi-co-location information used by DCI signaling is the same.
  • processor 700 is further configured to:
  • processor 700 is specifically configured to:
  • the user-specific control channel information occupies part or all of the symbols in the non-last symbol of the control resource set, determining that no time interval is set between the control resource set and the PDSCH; or if the user-specific control channel information occupies the control resource set The last symbol in the middle determines the set time interval between the control resource set and the PDSCH.
  • processor 700 is further configured to:
  • the number of symbols occupied by the time interval is determined according to the beam conversion processing time reported by the terminal.
  • processor 700 is specifically configured to:
  • Determining the location of the PDSCH according to the determination result configuring the terminal according to the determined location of the PDSCH.
  • the PDSCH is located after the time interval and is adjacent to the time interval; or if the judgment result is that there is no time interval, the PDSCH is located in the control resource set. Thereafter, and adjacent to the set of control resources.
  • a network side device for performing data transmission includes: at least one processing unit 800 and at least one storage unit 801, wherein the storage unit 801 stores program code when the program code is When the processing unit 800 is executed, the processing unit 800 is caused to perform the step of any scheme in which the network side device performs data transmission.
  • an embodiment of the present disclosure provides a network side device that performs data transmission, and the network side device includes:
  • the determining module 900 is configured to determine a processing interval of the terminal according to the parameter information reported by the terminal;
  • the comparing module 901 is configured to compare a scheduling interval used for resource allocation for the terminal with a determined processing interval of the terminal;
  • the sending module 902 is configured to send data through the PDSCH after the scheduling interval by using the pre-configured quasi-co-location information corresponding to the terminal after the scheduling interval is smaller than the processing interval.
  • the comparison module 901 is further configured to:
  • the corresponding quasi-co-location information in the DCI signaling of the terminal is used to send data through the PDSCH after the scheduling interval.
  • the pre-configured quasi-co-location information corresponding to the terminal is configured by the network side device by using RRC signaling or MAC-CE signaling; or pre-configured quasi-co-location information and receiving corresponding to the terminal
  • the quasi-co-location information used by DCI signaling is the same.
  • the determining module 900 is further configured to determine a time domain location of the user-specific control information according to the mapping location of the control resource set corresponding to the terminal and the location of the DCI corresponding to the terminal in the control resource set;
  • the comparing module 901 is further configured to determine, according to the determined time domain location, whether to set a time interval between the control resource set and the PDSCH;
  • the sending module 902 is further configured to configure the terminal according to the determination result.
  • comparison module 901 is specifically configured to:
  • the user-specific control channel information occupies part or all of the symbols in the non-last symbol of the control resource set, determining that no time interval is set between the control resource set and the PDSCH; or if the user-specific control channel information occupies control resources The last symbol in the set determines the time interval between the control resource set and the PDSCH.
  • the comparison module 901 is further configured to:
  • the number of symbols occupied by the time interval is determined according to the beam conversion processing time reported by the terminal.
  • the sending module 902 is specifically configured to:
  • Determining the location of the PDSCH according to the determination result configuring the terminal according to the determined location of the PDSCH.
  • the PDSCH is located after the time interval and is adjacent to the time interval; or if the judgment result is that there is no time interval, the PDSCH is located in the control resource set. Thereafter, and adjacent to the set of control resources.
  • a terminal for performing data transmission the terminal includes: a transceiver 1001;
  • the transceiver 1001 is configured to report the parameter information to the network side device, and receive data through the PDSCH by using the pre-configured quasi-co-location information corresponding to the terminal in the processing interval.
  • the terminal further includes a processor 1000;
  • the processor 1000 is used to:
  • the processor 1000 determines that the starting position of the PDSCH is in the processing interval, and the transceiver 1001 is configured to receive data through the PDSCH by using the pre-configured quasi-co-location information corresponding to the terminal after the processing interval; Or the processor 1000 determines that the start position of the PDSCH is after the processing interval, and the transceiver 1001 is configured to receive data through the PDSCH by using the quasi-co-location information in the DCI signaling after the processing interval.
  • processor 1000 is further configured to:
  • the quasi-co-location information is used for beam switching.
  • the corresponding pre-configured quasi-co-location information is configured by the network side device by using RRC signaling or MAC-CE signaling; or corresponding pre-configured quasi-co-location information and the use of receiving DCI signaling.
  • the co-location information is the same.
  • the parameter information includes a processing capability of the terminal and/or a length of the processing interval.
  • an embodiment of the present disclosure provides a terminal for performing data transmission, where the terminal includes: at least one processing unit 1100 and at least one storage unit 1101, wherein the storage unit 1101 stores program code when the program code is When the processing unit 1100 is executed, the processing unit 1100 is caused to perform the steps of any scheme in which the terminal assists the network side device to perform data transmission.
  • an embodiment of the present disclosure provides a terminal for performing data transmission, where the terminal includes:
  • the reporting module 1200 is configured to report the parameter information to the network side device.
  • the receiving module 1201 is configured to receive data through the PDSCH by using the pre-configured quasi-co-location information corresponding to the terminal in the processing interval.
  • reporting module 1200 is further configured to:
  • reporting module 1200 is further configured to:
  • the quasi-co-location information is used for beam switching.
  • the corresponding pre-configured quasi-co-location information is configured by the network side device by using RRC signaling or MAC-CE signaling; or pre-configured quasi-co-location information corresponding to the terminal and receiving DCI signaling.
  • the quasi-co-location information used is the same.
  • the parameter information includes a processing capability of the terminal and/or the processing interval.
  • various aspects of data transmission provided by embodiments of the present disclosure may also be implemented in the form of a program product, including program code, when the program code is run on a computer device, The program code is for causing the computer device to perform the steps in the method of performing data transmission according to various exemplary embodiments of the present disclosure described in the present specification.
  • the program product can employ any combination of one or more readable media.
  • the readable medium can be a readable signal medium or a readable storage medium.
  • the readable storage medium can be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above. More specific examples of non-exhaustive storage media (non-exhaustive list) include: electrical connections with one or more wires, portable disk, hard disk, random access memory (RAM), read only memory (Read Only Memory, ROM), Erasable Programmable Read Only Memory (EPROM) or flash memory, optical fiber, compact disc read only memory (CD-ROM), optical storage device, Magnetic memory device, or any suitable combination of the above.
  • a program product for data forwarding control which may employ (CD-ROM) and includes program code, and may run on a server device.
  • the program product of the present disclosure is not limited thereto, and in the present document, the readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an information transmission, apparatus or device.
  • the readable signal medium can include a data signal that is propagated in the baseband or as part of a carrier, carrying readable program code. Such propagated data signals can take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium can also be any readable medium other than a readable storage medium that can transmit, propagate, or transport a program for use by or in connection with a periodic network motion system, apparatus, or device.
  • the program code embodied on the readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wireline, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language, such as Java, C++, etc., including conventional procedural Programming language—such as the "C" language or a similar programming language.
  • the program code can execute entirely on the user computing device, partially on the user device, as a stand-alone software package, partially on the remote computing device on the user computing device, or entirely on the remote computing device or server. Execute on.
  • the remote computing device can be connected to the user computing device through any kind of network, or can be connected to an external computing device, such as a local area network (LAN) or a wide area network (Wide Area Network, WAN).
  • LAN local area network
  • WAN Wide Area Network
  • the method for performing data transmission by the network side device in the embodiment of the present disclosure further provides a computing device readable storage medium, that is, the content is not lost after power off.
  • the method for assisting a network side device to perform data transmission in the embodiment of the present disclosure further provides a computing device readable storage medium, that is, the content is not lost after power off.
  • the terminal assists the network side device in data transmission.
  • the terminal corresponding to the method is a method corresponding to the terminal for performing data transmission in the embodiment of the present disclosure, and the principle of the method for solving the problem is similar to the terminal. Therefore, the implementation of the terminal can be referred to the implementation of the terminal, and the repeated description is not repeated.
  • a method for performing data transmission includes the following steps:
  • Step 1300 The network side device determines, according to parameter information reported by the terminal, a processing interval of the terminal.
  • Step 1301 The network side device compares a scheduling interval used for resource allocation for the terminal with a determined processing interval of the terminal.
  • Step 1302 After the scheduling interval is smaller than the processing interval, the network side device uses the pre-configured quasi-co-location information corresponding to the terminal to send data through the PDSCH after the scheduling interval.
  • the method further includes:
  • the network side device uses the corresponding quasi-co-location information in the DCI signaling of the terminal to send data through the PDSCH after the scheduling interval.
  • the pre-configured quasi-co-location information corresponding to the terminal is configured by the network side device by using RRC signaling or MAC-CE signaling; or pre-configured quasi-co-location information and receiving corresponding to the terminal
  • the quasi-co-location information used by DCI signaling is the same.
  • a method for performing data transmission includes the following steps:
  • Step 1400 The terminal reports the parameter information to the network side device, so that the network side device uses the corresponding terminal after the scheduling interval for resource allocation for the terminal is smaller than the processing interval determined according to the parameter information.
  • the pre-configured quasi-co-location information transmits data through the PDSCH after the scheduling interval;
  • Step 1401 The terminal receives data through the PDSCH by using the pre-configured quasi-shared address corresponding to the terminal in the processing interval.
  • the method further includes:
  • the terminal receives data through the PDSCH by using the pre-configured quasi-co-location information corresponding to the terminal after the processing interval; or if the PDSCH starts from After the processing interval, the terminal receives data through the PDSCH using the quasi-co-location information in the DCI signaling after the processing interval.
  • the method further includes:
  • the terminal is according to the DCI.
  • the quasi-co-location information in the signaling performs beam switching.
  • the pre-configured quasi-co-location information corresponding to the terminal is configured by the network side device by using RRC signaling or MAC-CE signaling; or pre-configured quasi-co-location information and receiving corresponding to the terminal
  • the quasi-co-location information used by DCI signaling is the same.
  • the parameter information includes a processing capability of the terminal and/or the processing interval.
  • the present disclosure may also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the present disclosure may take the form of a computer program product on a computer usable or computer readable storage medium having computer usable or computer readable program code embodied in a medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
  • a computer usable or computer readable medium can be any medium that can contain, store, communicate, communicate, or transport a program for use by an instruction execution system, apparatus or terminal, or in conjunction with an instruction execution system, Used by the device or terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种进行数据传输的方法、网络侧设备及终端,本公开实施例中网络侧设备根据终端上报的参数信息确定终端的处理间隔;然后将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;在所述调度间隔小于所述处理间隔后,使用与所述终端对应的预配置的准共址信息在调度间隔之后通过物理下行共享信道发送数据。

Description

进行数据传输的方法、网络侧设备及终端
相关申请的交叉引用
本公开主张在2017年11月21日在中国提交的中国专利申请号No.201711168723.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种进行数据传输的方法、网络侧设备及终端。
背景技术
第五代移动通信技术(5th-Generation,5G)中,多天线系统采用数字域和模拟域混合架构以兼顾覆盖范围和复杂度。基站端和用户端之间配置了多个模拟波束,则需要通过波束管理使得用户和基站间使用信道质量较好的波束以保证通信的传输速率。下行波束管理主要通过基站发送波束管理参考信号,用户测量并上报波束测量结果,基站选择下行发送波束并指示用户相关波束信息,使得用户使用与基站发送波束相匹配的波束接收下行数据。下行控制信道的波束指示信息可通过高层信令等方式发送给用户,而下行数据信道的波束指示信息可通过控制信道信息(Downlink Control Information,DCI)动态指示。DCI中包括3-bit的发送配置指示(Transmission Configuration Indication,TCI)域,TCI指示了下行数据信道的解调参考信(Demodulation Reference Signal,DMRS)的准共址(Quasi Co-Location,QCL)信息,波束指示信息通过TypeD的QCL获得,从而用户可从DCI中获得波束指示信息。考虑到用户从接收到波束指示信息到完成波束切换需要一定的时间,所以在时域上从接收控制信道信息到接收下行数据信息需要一定的时间间隔,称为处理间隔。
相关技术中的第三代移动通信标准化组织(3rd Generation Partnership Project,3GPP)支持灵活调度,即DCI调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)在该时隙的起始位置不是固定的,两者 可有一定的调度间隔。其中调度间隔信息(即PDSCH的起始时间信息)包含在DCI中。
根据调度间隔与处理间隔的大小关系,如何在PDSCH上进行数据传输目前还没有相关方案。
综上所述,目前还没有根据调度间隔与处理间隔的大小关系在PDSCH上进行数据传输的方案。
发明内容
本公开提供一种进行数据传输的方法、网络侧设备及终端,用以解决在相关技术中进行数据传输的过程中,没有一种在调度间隔小于处理间隔时对数据如何处理的问题。本公开实施例提供一种进行数据传输的方法,该方法包括:
网络侧设备根据终端上报的参数信息确定终端的处理间隔;
所述网络侧设备将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;
所述网络侧设备在所述调度间隔小于所述处理间隔后,使用与所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据。
本公开实施例还提供一种进行数据传输的方法,该方法包括:
终端将参数信息上报给所述网络侧设备,其中,所述参数信息用于确定终端的处理间隔。
本公开实施例还提供一种进行数据传输的网络侧设备,该网络侧设备包括:处理器以及收发机:
所述处理器,用于根据终端上报的参数信息确定终端的处理间隔;将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;在所述调度间隔小于所述处理间隔后,利用所述收发机使用所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据。
本公开实施例还提供一种进行数据传输的终端,该终端包括:收发机:
所述收发机用于将参数信息上报给所述网络侧设备;以及在所述处理间隔中使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
本公开实施例还提供一种进行数据传输的网络侧设备,该网络侧设备包括:至少一个处理单元以及至少一个存储单元,其中,所述存储单元存储有程序代码,当所述程序代码被所述处理单元执行时,使得所述处理单元执行网络侧设备进行数据发送的任一所述方法的步骤。
本公开实施例还提供一种进行数据传输的终端,该终端包括:至少一个处理单元以及至少一个存储单元,其中,所述存储单元存储有程序代码,当所述程序代码被所述处理单元执行时,使得所述处理单元执行终端协助网络侧设备进行数据发送的任一所述方法的步骤。
本公开实施例还提供一种计算设备可读存储介质,其特征在于,包括程序代码,当所述程序代码在计算设备上运行时,所述程序代码用于使所述计算设备执行网络侧设备进行数据发送的任一所述方法的步骤或终端协助网络侧设备进行数据发送的任一所述方法的步骤。
本公开实施例中网络侧设备根据终端上报的参数信息确定终端的处理间隔;然后将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;在所述调度间隔小于所述处理间隔后,使用与所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据,由于本公开根据处理间隔与调度间隔的大小关系,在确定所述调度间隔小于所述处理间隔的时候,采用预配置的准共址信息进行数据的传输,从而在调度间隔小于处理间隔时网络侧设备和终端之间可以通过PDSCH进行数据传输,并且由于在调度间隔之后处理间隔结束前也可以通过PDSCH进行数据传输,还提高了资源的利用率。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例一种进行数据传输的系统结构示意图;
图2为本公开实施例调度间隔小于处理间隔时下行波束指示示意图,或 PDSCH的起始位置信息在处理间隔中的示意图;
图3为本公开实施例调度间隔不小于处理间隔时下行波束指示示意图,或PDSCH的起始位置信息在处理间隔之后的示意图;
图4为本公开实施例中控制资源映射在时隙中最前面第一个符号的示意图;
图5A为本公开实施中控制资源集合映射在时隙前两个符号,且控制信道信息占用控制资源集合第一个符号的示意图;
图5B为本公开实施例中控制资源集合映射在时隙前两个符号,且控制信道信息占用控制资源集合第二个符号的示意图;
图5C为本公开实施例中控制资源集合映射在时隙前两个符号,且控制信道信息占用控制资源集合全部符号的示意图;
图6A为本公开实施例中控制资源集合映射在时隙前三个符号,且控制信道信息占用控制资源集合第一个符号的示意图;
图6B为本公开实施例中控制资源集合映射在时隙前三个符号,且控制信道信息占用控制资源集合第二个符号的示意图;
图6C为本公开实施例中控制资源集合映射在时隙前三个符号,且控制信道信息占用控制资源集合前两个符号的示意图;
图6D为本公开实施例中控制资源集合映射在时隙前三个符号,且控制信道信息占用控制资源集合最后一个符号的示意图;
图6E为本公开实施例中控制资源集合映射在时隙前三个符号,且控制信道信息占用控制资源集合后两个符号的示意图;
图6F为本公开实施例中控制资源集合映射在时隙前三个符号,且控制信道信息占用控制资源集合全部符号的示意图;
图7为本公开实施例第一种进行数据传输的网络侧设备的示意图;
图8为本公开实施例第二种进行数据传输的网络侧设备的示意图;
图9为本公开实施例第三种进行数据传输的网络侧设备的示意图;
图10为本公开实施例第四种进行数据传输的终端的示意图;
图11为本公开实施例第五种进行数据传输的终端的示意图;
图12为本公开实施例第六种进行数据传输的终端的示意图;
图13为本公开实施例第一种进行数据传输的方法流程示意图;
图14为本公开实施例第二种进行数据传输的方法流程示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
如图1所示,本公开实施例一种进行数据传输的系统包括:
网络侧设备10,用于根据终端上报的参数信息确定终端的处理间隔;将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;在所述调度间隔小于所述处理间隔后,使用与所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据。
其中,所述调度间隔和所述处理间隔分别具有间隔长度的属性。例如:调度间隔小于处理间隔,则表示调度间隔的长度小于处理间隔的长刚度。
另外,波束指示信息通过TypeD的准共址信息获得,因此,也可将准共址信息称之为波束信息。
终端20,用于将参数信息上报给所述网络侧设备,其中,所述参数信息用于确定终端的处理间隔。以使所述网络侧设备在用于为终端进行资源分配的调度间隔小于根据所述参数信息确定的处理间隔后使用所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据;在所述处理间隔中使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
本公开实施例中网络侧设备根据终端上报的参数信息确定终端的处理间隔;然后将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;在所述调度间隔小于所述处理间隔后,使用与所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据,由于本公开根据处理间隔与调度间隔的大小关系,在确定所述调度间隔小于所述处理间隔的时候,采用预配置的准共址信息进行数据的传输,从而在调度间隔小于处理间 隔时网络侧设备和终端之间可以通过PDSCH进行数据传输,并且由于在调度间隔之后处理间隔结束前也可以通过PDSCH进行数据传输,还提高了资源的利用率。
其中,所述网络侧设备确定所述处理间隔所用的参数包括但不限于下列的部分或全部:
业务类型、数据包大小等。
需要说明的是,不同的网络侧设备生产厂商在根据上述参数确定处理间隔的长度时所采用的算法也不一定相同。比如确定处理间隔长度的算法包括:处理间隔等于用户上报的处理时间(processing time)或处理间隔等于用户上报的处理时间与终端切换波束时间之和,其中终端切换波束时间可为预定义的典型值。
在实施中,所述终端上报的参数信息是任何能够使所述网络侧设备确定所述终端的处理间隔的信息,比如,所述终端上报的参数信息包括终端的处理能力和/或所述处理间隔。
其中,所述终端的处理能力中包括自身硬件能力、天线配置等。
在实施中,终端将终端的处理能力中的各个参数,或处理间隔上报给网络侧设备,网络侧设备可以确定出所述处理间隔,进而跟所述调度间隔进行比较,确定出所述调度间隔与处理间隔关系,准确的配置发送数据的波束,提高系统调度的灵活性。
在实施过程中网络侧设备具体采用何种准共址信息进行数据的发送,主要由调度间隔与处理间隔关系决定,下面进行介绍;
网络侧方式一:在所述调度间隔小于所述处理间隔时,所述网络侧设备在调度间隔之后通过预配置的准共址信息通过PDSCH发送数据。
具体的,网络侧设备根据终端上报的参数信息确定终端的处理间隔;然后将用于为终端进行资源分配的调度间隔和确定的终端处理间隔进行比较;
若所述间隔小于所述处理间隔,则使用与所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据。
其中,所述终端对应的预配置的准共址信息可以是:
准共址信息1、所述网络侧设备通过无线资源控制(Radio Resource  Control,RRC)信令或媒体接入控制-控制单元(MAC-Control Element,MAC-CE)信令配置的;
准共址信息2、所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
其中,上述准共址信息1和准共址信息2可以只固定一种方式,即都是网络侧设备通过RRC信令或MAC-CE信令配置的,或者都是与接收DCI信令使用的准共址信息相同。
还有一种方式是:如果网络侧设备通过RRC信令或MAC-CE信令配置的准共址信息,则终端对应的预配置是网络侧设备通过RRC信令或MAC-CE信令配置的;
如果网络侧设备没有通过RRC信令或MAC-CE信令配置的准共址信息则终端对应的预配置是与接收DCI信令使用的准共址信息相同。
如图2所示,此时所述调度间隔小于所述处理间隔,应采用所述终端对应的预配置的准共址信息进行数据发送。
网络侧方式二:在所述调度间隔不小于所述处理间隔时,所述网络侧设备在调度间隔之后,使用所述终端的DCI信令中对应的准共址在调度间隔之后通过PDSCH发送数据。
具体的,网络侧设备根据终端上报的参数信息确定终端的处理间隔;然后将用于为终端进行资源分配的调度间隔和确定的终端处理间隔进行比较;若所述间隔不小于所述处理间隔,则使用所述终端的DCI信令中对应的准共址信息在调度间隔之后通过PDSCH发送数据。
如图3所示,此时所述调度间隔不小于所述处理间隔,使用所述终端的DCI信令中对应的准共址信息在调度间隔之后通过PDSCH发送数据。
终端的DCI信令中对应的准共址信息是指终端接收到的DCI信令指示的准共址信息。
在实施中,网络侧设备根据调度间隔与处理间隔关系,确定具体采用何种准共址信息来进行数据的传输,提高系统调度的灵活性。
对于终端具体采用何种准共址信息通过PDSCH接收数据,主要由终端对DCI信息进行识别后所确定出的PDSCH的起始位置与处理间隔的关系决 定,分别从下面方式进行介绍。
终端方式一:根据所述PDSCH的起始位置信息与处理间隔的关系,若PDSCH的起始位置在所述处理间隔之中,则终端采用所述终端对应的预配置的准共址信息。
具体的,终端将参数信息上报给所述网络侧设备,并接收DCI信令;
相应的,网络侧设备根据终端上报的参数信息确定终端的处理间隔;将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;若所述调度间隔小于所述处理间隔,则在调度间隔之后使用与所述终端对应的预配置的准共址信息通过PDSCH发送数据;
终端在处理间隔之前接收的DCI信令进行识别,确定PDSCH的起始位置。
若确定的所述PDSCH的起始位置在所述处理间隔中,则所述终端在所述处理间隔中使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
如图2所示,所述PDSCH的起始位置于所述调度间隔相邻,且所述调度间隔小于所述处理间隔,此时PDSCH的起始位置在所述处理间隔之中,应使用所述终端对应的预配置的准共址信息进行数据的接收。
由于网络侧设备在调度间隔之后使用与所述终端对应的预配置的准共址信息通过PDSCH发送数据,而终端在处理间隔中使用所述终端对应的预配置的准共址信息通过PDSCH接收数据,所以终端可以将网络侧设备在调度间隔后通过PDSCH发送的数据都接收下来。
其中,终端对应的预配置的准共址信息可以是:
准共址信息1、所述网络侧设备通过RRC信令或MAC-CE信令配置的;
准共址信息2、所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
其中,上述准共址信息1和准共址信息2可以只固定一种方式,即都是网络侧设备通过RRC信令或MAC-CE信令配置的,或者都是与接收DCI信令使用的准共址信息相同。
还有一种方式是:如果网络侧设备通过RRC信令或MAC-CE信令配置 的准共址信息,则终端对应的预配置是网络侧设备通过RRC信令或MAC-CE信令配置的;
如果网络侧设备没有通过RRC信令或MAC-CE信令配置的准共址信息则终端对应的预配置是与接收DCI信令使用的准共址信息相同。
基于此,所述终端通过接收的DCI信令确定PDSCH的起始位置后,若所述PDSCH的起始位置在所述处理间隔中,则所述终端在所述处理间隔后使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
如图2所示,此时DCI信令确定的PDSCH的位置在处理间隔之中,使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
具体的,在实施过程中,所述终端向网络侧设备上报处理能力或处理时间的长度的等参数信息,网络侧设备会根据所述终端上报的参数计算出所述处理时间,进而与网络侧设备根据各个终端的业务类型、数据包大小等确定出来的调度间隔进行比较;在确定所述调度间隔小于所述处理间隔后,通过与所述终端对应的配置的准共址信息在调度间隔之后通过PDSCH发送数据;在终端接收到DCI信令后,终端对接收到的信令进行解码处理,确定出PDSCH的起始位置,根据PDSCH的起始位置信息判断出,所述PDSCH的起始位置在所述处理间隔中,此时终端通过所述终端预配置的准共址信息通过PDSCH接收数据;但是在终端完成DCI信令的解码后,PDSCH在起始位置就已经开始进行数据的传输与接收,因此,在PDSCH的起始位置的前几个符号中包含有解码PDSCH所需的解调参考信号(Demodulation Reference Signal,DMRS)用于PDSCH信道的相关解调,为了保证译码正确,DMRS需要使用与PDSCH相同的准共址信息进行接收数据,所以此时应使用预配置的准共址信息接收时隙内该用户的所有的PDSCH符号,并根据DCI信令中的PDSCH的起始位置信息解码相应的PDSCH。
基于此,所述终端通过接收的DCI信令确定PDSCH的起始位置后,若所述PDSCH的起始位置在所述处理间隔中,则所述终端在所述处理间隔后使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
终端方式二:根据PDSCH的起始位置信息与处理间隔的关系,若PDSCH的起始位置在所述处理间隔之后,则终端使用所述DCI信令中的准共址信息。
具体的,终端将参数信息上报给所述网络侧设备,并接收的DCI信令;
相应的,网络侧设备根据终端上报的参数信息确定终端的处理间隔;将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;在所述调度间隔不小于所述处理间隔后,则使用所述终端的DCI信令中对应的准共址信息在调度间隔之后通过PDSCH发送数据。
所述终端在处理间隔对之前接收的DCI信令进行识别,确定PDSCH的起始位置。
若确定的所述PDSCH的起始位置在所述处理间隔后,则所述终端在所述处理间隔后使用所述DCI信令中的准共址信息通过PDSCH接收数据。
如图3所示,所述PDSCH的起始位置与所述调度间隔相邻,且所述调度间隔不小于所述处理间隔,此时所述PDSCH的起始位置在所述处理间隔之后,应使用所述DCI信令中的准共址信息通过PDSCH接收数据。
由于网络侧设备在调度间隔之后使用所述终端的DCI信令中对应的准共址信息在调度间隔之后通过PDSCH发送数据,而终端在处理间隔后使用所述DCI信令中的准共址信息通过PDSCH接收数据,所以终端可以将网络侧设备在调度间隔后通过PDSCH发送的数据都接收下来。
基于此,所述终端通过接收的DCI信令确定PDSCH的起始位置后,若所述PDSCH的起始位置在所述处理间隔后,则所述终端在所述处理间隔后使用所述DCI信令中的准共址信息通过PDSCH接收数据。
如图3所示,此时DCI信令确定的PDSCH的位置在处理间隔之后,使用所述DCI信令中的准共址信息通过PDSCH接收数据。
在实施中,终端通过对接收到的DCI进行识别,确定出PDSCH的起始位置,并根据PDSCH的起始位置信息与处理间隔的关系,确定具体采用何种准共址信息通过PDSCH接收数据,并确定所述终端通过PDSCH应接收的数据,从而提高了资源的利用率,进一步增强了系统调度的灵活性。
可选地,所述终端通过DCI信令确定PDSCH的起始位置之后,还包括:
若所述PDSCH的起始位置在所述处理间隔后,且所述DCI信令中的准共址信息与所述终端对应的预配置的准共址信息不同,则所述终端根据所述DCI信令中的准共址信息进行波束切换。
具体的,在DCI中包含有PDSCH的起始位置信息,在终端对DCI信息进行解码后才可以确定出DCI中的PDSCH的位置和DCI中相应的准共址信息,若确定的PDSCH的起始位置信息在所述处理间隔之后,并且DCI中的准共址信息与所述终端对应的预配置的准共址信息不同,终端就会根据DCI信令中的准共址信息进行波束切换。
在实施中,终端根据DCI解码出来的PDSCH的起始位置信息与DCI中的准共址信息来确定准共址信息进行波束的切换,提高系统调度的灵活性。
基于上面内容,本公开实施例还存在另一种进行数据传输的方式,下面具体介绍。
网络侧设备根据终端对应的控制资源集合在时隙的映射位置和所述终端对应的DCI在控制资源集合中的位置,确定用户特定控制信息的时域位置;
所述网络侧设备根据确定的所述时域位置,判断是否在控制资源集合和PDSCH之间设置时间间隔;
所述网络侧设备根据判断结果对所述终端进行配置。
具体的,所述控制资源集合可映射到时隙最前面的位置,所述用户特定控制信道信息占用控制资源集合的部分或全部符号。
比如,如图4~图6F所示,控制资源集合可映射到时隙前面的N个符号,其中所述控制资源集合在时隙中用填充符号表示,其中N的值可以为1、2、3,当N=1时表示控制资源集合映射到时隙最前面的第一个符号,第一个符号用#0表示,此时DCI占用控制资源集合的全部符号,即DCI占用#0;当N=2时表示控制资源集合映射到时隙最前面的两个符号#0和#1,此时DCI可以占用控制资源集合的部分或全部符号,即DCI可以占用#0或/和#1;当N=3时表示控制资源集合占用时隙最前面的三个符号#0、#1、#2,此时DCI可以占用控制资源集合的部分或全部符号,即DCI可以占用#0或#1或#2、DCI可以占用#0和#1、DCI可以占用#1和#2、DCI可以占用#0和#2、DCI可以占用#0和#1和#2。
其中,所述DCI中是包含有准共址指示信息的,准共址指示信息可以位于时隙的#0、#1或#2个符号,与DCI在时域中的位置一致。
其中,所述时间间隔为用于将所述DCI中包含的准共址指示信息,转换 为PDSCH可以接收的数据信息所需的时间。
可选地,所述网络侧设备根据确定的所述时域位置,判断是否在控制资源集合和PDSCH之间设置时间间隔时,若所述用户特定控制信道信息占用控制资源集合中非最后一个符号中的部分或全部符号,所述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之间不设置时间间隔;或若所述用户特定控制信道信息占用控制资源集合中最后一个符号,所述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之间设置时间间隔。
具体的,在判断控制资源集合与PDSCH之间是否需要设置时间间隔,主要根据DCI在控制控制资源集合中占用的时域位置决定,当DCI只占用控制资源集合的部分符号,且不占用控制资源集合N个符号中的最后一个符号时,在控制资源集合与PDSCH之间不需要设置时间间隔,其他情况下时需要设置时间间隔。这是因为在所述控制信道信息之后所述PDSCH之前的控制资源集合占用的符号可用于进行波束的切换。
如图4所示,所述控制资源集合在时域上映射到时隙的位置用填充符号表示,从图4中可知,所述控制资源集合在时域上映射到时隙的第#0个符号,则包含准共址信息的DCI位于第#0个符号,此时用户专用的DCI(UE-specific DCI)占用控制资源集合的全部符号,假设时间间隔为1个符号,时间间隔在时域上占用第#1符号,则所述终端确定从第#1符号以后是PDSCH。
如图5A所示,所述控制资源集合在时域上映射到时隙的前两个符号,即#0和#1符号,此时包含准共址信息的DCI占用控制资源集合中非最后一个符号的全部符号,即DCI占用控制资源集合中第一个符号,位于第#0个符号,此时所述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之间不设置时间间隔,则所述终端确定从第#1符号以后是PDSCH。
如图5B及5C所示,所述控制资源集合在时域上映射到时隙的前两个符号,即#0和#1符号,此时,图6B中包含准共址信息的DCI占用控制资源集合中的最后一个符号,即位于第#1个符号,述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之间设置时间间隔;图5C中包含准共址信息的DCI占用控制资源集合中的全部符号,包含最后一个符号,即位于第#0和#1个符号,所述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之 间也要设置时间间隔,则所述终端确定从第#2符号以后是PDSCH。
同理,如图6A、6B、6C所示,其中的DCI占用控制资源集合中非最后一个符号中的部分或全部符号,所述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之间不设置时间间隔,所述终端中的PDSCH从第#3符号根据准共址信息接收数据信息;如图6D、6E、6F所示,其中的DCI都有占用控制资源集合中的最后一个符号,所述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之间设置时间间隔,则所述终端确定从第#3符号以后是PDSCH。
需要说明的是,在实施中,所述用户特定控制信道信息占用控制资源集合中非最后一个符号中的部分或全部符号,所述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之间不设置时间间隔时,则在被所述用户特定控制信道信息占用控制资源集合符号之后的所有控制资源符号都可用于进行准共址信息与数据信息之间进行切换。以图5A为例,此时用户特定控制信道信息占用控制资源集合中第#0个符号,控制资源集合和物理下行共享信道PDSCH之间不设置时间间隔,此时控制资源集合中的第#1个符号就具有与时间间隔相同的作用,可以进行波束的切换。
在具体的实施过程中,所述时间间隔内是不发送数据的,所以在所述的时间间隔内终端是不接收下行数据的;若是在所述时间间隔内进行数据发送,则采用预定义的准共址信息进行信息的发送,此时在所述时间间隔内的终端就不会以最优的波束接收数据信息。
在实施中,根据用户特定信息占用控制资源集合的符号,确定控制资源集合和PDSCH之间是否需要设置时间间隔,可以动态配置是否需要设置时间间隔,提高了调度的灵活性。
可选地,所述网络侧设备确定控制资源集合和物理下行共享信道PDSCH之间设置时间间隔时,所述网络侧设备根据终端上报的波束转换处理时间,确定所述时间间隔占用的符号数量。
具体的,在实施中所述网络侧设备在确定所述控制资源集合和PDSCH之间需要设置时间间隔之后,还会根据终端上报的信息来确定所述时间间隔具体需要在时域中占用的符号数量。
其中,网络侧设备主要根据终端上报的波束转换处理时间,来确定所述时间间隔占用的符号数量。
比如,在实施中时间间隔的一个符号表示准共址信息与数据信息进行切换的时间为6S,当终端上报的波束转换处理时间为小于或者等于6S的时刻,在网络侧设备收到此消息的时候就会根据时域及频域在时隙上配置一个时间间隔,即时间间隔会在时域上占用一个符号,但当终端上报的波束转换时间大于6S的时刻时,网络侧设备就会根据具体的时间来配置时间间隔的符号数量,假设此时终端上报的波束转换处理时间为6S~12S中的任一时间,由于没有超过两个时间间隔所需的时间,此时网络侧设备就会确定出所述时间间隔需要在时域上占用两个符号。
需要说明的是,所述终端向网络侧设备上报的信息中不止包括波束转换处理时间,还包括终端中的波束个数,业务类型等信息。
在实施中,网络侧设备根据终端上报的处理间隔,来确定所述额外时间间隔的符号数量,灵活调度所述DCI中包含的准共址信息,切换为PDSCH可以接收的数据信息所需的时间,即保证了波束可以正常切换,又保证了时域资源利用率。
可选地,所述网络侧设备根据判断的结果对所述终端进行配置时,所述网络侧设备根据判断结果,确定PDSCH的位置;根据确定的PDSCH的位置对所述终端进行配置。
在实施中,不同的判断结果PDSCH的位置也会不同。
具体的,若判断结果为存在时间间隔,所述PDSCH位于所述时间间隔之后,且与所述时间间隔相邻;或
若判断结果为不存在时间间隔,所述PDSCH位于所述控制资源集合之后,且与所述控制资源集合相邻。
以图4和图5A为例,如图4所示,在控制资源集合与PDSCH之间存在时间间隔,此时PDSCH设置在时间间隔之后,且与时间间隔相邻;如图5A所示,在控制资源集合与PDSCH之间没有设置时间间隔,此时PDSCH设置在控制资源集合之后,且与控制资源集合相邻。
需要说明的是,上述只是以图4及图5A举例说明,在实施中,若控制 资源集合与PDSCH之间存在时间间隔,PDSCH就会设置在时间间隔之后,且与时间间隔相邻,若是不存在时间间隔,PDSCH则位于控制资源集合之后,且与控制资源集合相邻。
在实施中,根据是否存在时间间隔可以准确的确定出PDSCH在时域中的位置,保证了时域资源的利用率。
如图7所示,本公开实施例一种进行数据传输的网络侧设备,该网络侧设备包括:处理器700以及收发机701:
处理器700,用于根据终端上报的参数信息确定终端的处理间隔;将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;在所述调度间隔小于所述处理间隔后,利用收发机701使用所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据。
可选地,处理器700还用于:
若所述调度间隔不小于所述处理间隔,则使用所述终端对应的DCI信令中的准共址信息在调度间隔之后通过PDSCH发送数据。
可选地,所述终端对应的预配置的准共址信息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
可选地,处理器700还用于:
根据终端对应的控制资源集合在时隙的映射位置和所述终端对应的DCI在控制资源集合中的位置,确定用户特定控制信息的时域位置;根据确定的所述时域位置,判断是否在控制资源集合和PDSCH之间设置时间间隔;根据判断结果对所述终端进行配置。
可选地,处理器700具体用于:
若所述用户特定控制信道信息占用控制资源集合中非最后一个符号中的部分或全部符号,确定控制资源集合和PDSCH之间不设置时间间隔;或若所述用户特定控制信道信息占用控制资源集合中最后一个符号,确定控制资源集合和PDSCH之间设置时间间隔。
可选地,处理器700还用于:
根据终端上报的波束转换处理时间,确定所述时间间隔占用的符号数量。
可选地,处理器700具体用于:
根据判断结果,确定PDSCH的位置;根据确定的PDSCH的位置对所述终端进行配置。
可选地,若判断结果为存在时间间隔,所述PDSCH位于所述时间间隔之后,且与所述时间间隔相邻;或若判断结果为不存在时间间隔,所述PDSCH位于所述控制资源集合之后,且与所述控制资源集合相邻。
如图8所示,一种进行数据传输的网络侧设备,该网络侧设备包括:至少一个处理单元800以及至少一个存储单元801,其中,存储单元801存储有程序代码,当所述程序代码被处理单元800执行时,使得处理单元800执行网络侧设备进行数据发送的任一方案的步骤。
如图9所示,本公开实施例一种进行数据传输的网络侧设备,该网络侧设备包括:
确定模块900,用于根据终端上报的参数信息确定终端的处理间隔;
比较模块901,用于将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;
发送模块902,用于在所述调度间隔小于所述处理间隔后,使用与所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据。
可选地,比较模块901还用于:
若所述调度间隔不小于所述处理间隔,则使用所述终端的DCI信令中对应的准共址信息在调度间隔之后通过PDSCH发送数据。
可选地,所述终端对应的预配置的准共址信息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
可选地,确定模块900还用于根据终端对应的控制资源集合在时隙的映射位置和所述终端对应的DCI在控制资源集合中的位置,确定用户特定控制信息的时域位置;
比较模块901,还用于根据确定的所述时域位置,判断是否在控制资源集合和PDSCH之间设置时间间隔;
发送模块902,还用于根据判断结果对所述终端进行配置。
可选地,比较模块901具体用于:
若所述用户特定控制信道信息占用控制资源集合中非最后一个符号中的部分或全部符号,则确定控制资源集合和PDSCH之间不设置时间间隔;或若所述用户特定控制信道信息占用控制资源集合中最后一个符号,则确定控制资源集合和PDSCH之间设置时间间隔。
可选地,比较模块901还用于:
根据终端上报的波束转换处理时间,确定所述时间间隔占用的符号数量。
可选地,发送模块902具体用于:
根据判断结果,确定PDSCH的位置;根据确定的PDSCH的位置对所述终端进行配置。
可选地,若判断结果为存在时间间隔,所述PDSCH位于所述时间间隔之后,且与所述时间间隔相邻;或若判断结果为不存在时间间隔,所述PDSCH位于所述控制资源集合之后,且与所述控制资源集合相邻。
如图10所示,本公开实施例一种进行数据传输的终端,该终端包括:收发机1001;
收发机1001用于将参数信息上报给所述网络侧设备;以及在所述处理间隔中使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
可选地,终端还包括处理器1000;
处理器1000用于:
通过接收的DCI信令确定PDSCH的起始位置;
其中,处理器1000判断所述PDSCH的起始位置在所述处理间隔中,则收发机1001用于在所述处理间隔后使用所述终端对应的预配置的准共址信息通过PDSCH接收数据;或处理器1000判断所述PDSCH的起始位置在所述处理间隔后,则收发机1001用于在所述处理间隔后使用所述DCI信令中的准共址信息通过PDSCH接收数据。
可选地,处理器1000还用于:
若所述PDSCH的起始位置在所述处理间隔后,且所述DCI信令中的准共址信息与所述终端对应的预配置的准共址信息不同,则根据所述DCI信令中的准共址信息进行波束切换。
可选地,对应的预配置的准共址信息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
可选地,所述参数信息包括终端的处理能力和/或所述处理间隔的长。
如图11所示,本公开实施例一种进行数据传输的终端,该终端包括:至少一个处理单元1100以及至少一个存储单元1101,其中,存储单元1101存储有程序代码,当所述程序代码被处理单元1100执行时,使得处理单元1100执行终端协助网络侧设备进行数据传输的任一方案的步骤。
如图12所示,本公开实施例一种进行数据传输的终端,该终端包括:
上报模块1200,用于将参数信息上报给所述网络侧设备;
接收模块1201,用于在所述处理间隔中使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
可选地,上报模块1200还用于:
通过接收的DCI信令确定PDSCH的起始位置;若所述PDSCH的起始位置在所述处理间隔中,则在所述处理间隔后使用所述终端对应的预配置的准共址信息通过PDSCH接收数据;或若所述PDSCH的起始位置在所述处理间隔后,则在所述处理间隔后使用所述DCI信令中的准共址信息通过PDSCH接收数据。
可选地,上报模块1200还用于:
若所述PDSCH的起始位置在所述处理间隔后,且所述DCI信令中的准共址信息与所述终端对应的预配置的准共址信息不同,则根据所述DCI信令中的准共址信息进行波束切换。
可选地,对应的预配置的准共址信息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
可选地,所述参数信息包括终端的处理能力和/或所述处理间隔。
在一些可能的实施方式中,本公开实施例提供的进行数据传输的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序代码在计算机设备上运行时,所述程序代码用于使所述计算机设备执行本说明书中 描述的根据本公开各种示例性实施方式的进行数据传输的方法中的步骤。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)或闪存、光纤、便携式紧凑盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
根据本公开的实施方式的用于数据转发控制的程序产品,其可以采用(CD-ROM)并包括程序代码,并可以在服务器设备上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被信息传输、装置或者器件使用或者与其结合使用。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由周期网络动作系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、有线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络连接到用户计算设备,或者,可以连接到外部计算设备,例如:局域网(Local Area Network, LAN)或广域网(Wide Area Network,WAN)。
本公开实施例针对网络侧设备进行数据传输的方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当所述程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本公开实施例上面任何一种网络侧设备进行数据传输的方案。
本公开实施例针对终端协助网络侧设备进行数据传输的方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当所述程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本公开实施例上面任何一种终端协助网络侧设备进行数据传输的方案。
基于同一发明构思,本公开实施例中还提供了进行数据传输的方法,由于该方法对应的终端是本公开实施例进行数据传输的终端对应的方法,并且该方法解决问题的原理与该终端相似,因此该终端的实施可以参见终端的实施,重复之处不再赘述。
如图13所示,本公开实施例一种进行数据传输的方法,具体包括如下步骤:
步骤1300,网络侧设备根据终端上报的参数信息确定终端的处理间隔;
步骤1301,所述网络侧设备将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;
步骤1302,所述网络侧设备在所述调度间隔小于所述处理间隔后,使用与所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据。
可选地,所述网络侧设备将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较之后,还包括:
若所述调度间隔不小于所述处理间隔,则所述网络侧设备使用所述终端的DCI信令中对应的准共址信息在调度间隔之后通过PDSCH发送数据。
可选地,所述终端对应的预配置的准共址信息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或所述终端对应的预配置的准共址信息与 接收DCI信令使用的准共址信息相同。
如图14所示,本公开实施例一种进行数据传输的方法,具体包括如下步骤:
步骤1400,终端将参数信息上报给所述网络侧设备,以使所述网络侧设备在用于为终端进行资源分配的调度间隔小于根据所述参数信息确定的处理间隔后使用所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据;
步骤1401,所述终端在所述处理间隔中使用所述终端对应的预配置的准共址息通过PDSCH接收数据。
可选地,所述终端将所述参数信息上报给所述网络侧设备之后,还包括:
所述终端通过接收的DCI信令确定PDSCH的起始位置;
若所述PDSCH的起始位置在所述处理间隔中,则所述终端在所述处理间隔后使用所述终端对应的预配置的准共址信息通过PDSCH接收数据;或若所述PDSCH的起始位置在所述处理间隔后,则所述终端在所述处理间隔后使用所述DCI信令中的准共址信息通过PDSCH接收数据。
可选地,所述终端通过DCI信令确定PDSCH的起始位置之后,还包括:
若所述PDSCH的起始位置在所述处理间隔后,且所述DCI信令中的准共址信息与所述终端对应的预配置的准共址信息不同,则所述终端根据所述DCI信令中的准共址信息进行波束切换。
可选地,所述终端对应的预配置的准共址信息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
可选地,所述参数信息包括终端的处理能力和/或所述处理间隔。
以上参照示出根据本公开实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本公开。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动 作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本公开。更进一步地,本公开可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本公开上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或终端使用,或结合指令执行系统、装置或终端使用。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若对本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动。

Claims (17)

  1. 一种进行数据传输的方法,包括:
    网络侧设备根据终端上报的参数信息确定终端的处理间隔;
    所述网络侧设备将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;
    所述网络侧设备在所述调度间隔小于所述处理间隔后,使用与所述终端对应的预配置的准共址信息在调度间隔之后通过物理下行共享信道PDSCH发送数据。
  2. 如权利要求1所述的方法,其中,所述网络侧设备将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较之后,还包括:
    若所述调度间隔不小于所述处理间隔,则所述网络侧设备使用所述终端的控制信道信息DCI信令中TCI域所指示的准共址信息在调度间隔之后通过PDSCH发送数据。
  3. 如权利要求1所述的方法,其中,所述终端对应的预配置的准共址信息是所述网络侧设备通过无线资源控制RRC信令或媒体接入控制控制单元MAC-CE信令配置的;或所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
  4. 一种进行数据传输的方法,包括:
    终端将参数信息上报给所述网络侧设备,其中,所述参数信息用于确定终端的处理间隔。
  5. 如权利要求4所述的方法,其中,所述终端将所述参数信息上报给所述网络侧设备之后,还包括:
    所述终端通过接收的DCI信令确定调度间隔;
    若所述调度间隔小于所述处理间隔,则所述终端使用所述终端对应的预配置的准共址信息通过PDSCH接收数据;或若所述调度间隔大于或者等于所述处理间隔,则所述终端在所述处理间隔后使用所述DCI信令中TCI域指示的准共址信息通过PDSCH接收数据。
  6. 如权利要求4所述的方法,其中,所述终端对应的预配置的准共址信 息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
  7. 如权利要求4~6中任一项所述的方法,其中,所述参数信息包括终端的处理能力和/或所述处理间隔。
  8. 一种进行数据传输的网络侧设备,包括:处理器以及收发机:
    所述处理器,用于根据终端上报的参数信息确定终端的处理间隔;将用于为终端进行资源分配的调度间隔和确定的终端的处理间隔进行比较;在所述调度间隔小于所述处理间隔后,利用所述收发机使用所述终端对应的预配置的准共址信息在调度间隔之后通过PDSCH发送数据。
  9. 如权利要求8所述的网络侧设备,其中,所述处理器还用于:
    若所述调度间隔不小于所述处理间隔,则使用所述终端对应的DCI信令中的TCI域指示的准共址信息在调度间隔之后通过PDSCH发送数据。
  10. 如权利要求8所述的网络侧设备,其中,所述终端对应的预配置的准共址信息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或所述终端对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
  11. 一种进行数据传输的终端,包括:收发机:
    所述收发机用于将参数信息上报给所述网络侧设备;以及在所述处理间隔中使用所述终端对应的预配置的准共址信息通过PDSCH接收数据。
  12. 如权利要求11所述的终端,其中,所述终端还包括处理器,所述处理器用于:
    通过接收的DCI信令确定调度间隔;
    其中,所述处理器判断所述调度间隔小于所述处理间隔,则所述收发机用于在所述处理间隔后使用所述终端对应的预配置的准共址信息通过PDSCH接收数据;或所述处理器判断所述调度间隔大于或者等于所述处理间隔,则所述收发机用于在所述处理间隔后使用所述DCI信令中的TCI域指示的空间准共址信息通过PDSCH接收数据。
  13. 如权利要求11所述的终端,其中,对应的预配置的准共址信息是所述网络侧设备通过RRC信令或MAC-CE信令配置的;或对应的预配置的准共址信息与接收DCI信令使用的准共址信息相同。
  14. 如权利要求11~13中任一项所述的终端,其中,所述参数信息包括终端的处理能力和/或所述处理间隔。
  15. 一种进行数据传输的网络侧设备,包括:至少一个处理单元以及至少一个存储单元,其中,所述存储单元存储有程序代码,当所述程序代码被所述处理单元执行时,使得所述处理单元执行权利要求1~3中任一项所述方法的步骤。
  16. 一种进行数据传输的终端,包括:至少一个处理单元以及至少一个存储单元,其中,所述存储单元存储有程序代码,当所述程序代码被所述处理单元执行时,使得所述处理单元执行权利要求4~7中任一项所述方法的步骤。
  17. 一种计算设备可读存储介质,包括程序代码,当所述程序代码在计算设备上运行时,所述程序代码用于使所述计算设备执行权利要求1~3中任一项所述方法的步骤或权利要求4~7中任一项所述方法的步骤。
PCT/CN2018/106496 2017-11-21 2018-09-19 进行数据传输的方法、网络侧设备及终端 WO2019100830A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18880411.6A EP3716517A4 (en) 2017-11-21 2018-09-19 METHOD OF DATA TRANSFER, NETWORK EQUIPMENT AND TERMINAL DEVICE
US16/765,630 US11284410B2 (en) 2017-11-21 2018-09-19 Data transmission method, network device and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711168723.2A CN109818723B (zh) 2017-11-21 2017-11-21 一种进行数据传输的方法、网络侧设备及终端
CN201711168723.2 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019100830A1 true WO2019100830A1 (zh) 2019-05-31

Family

ID=66600653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106496 WO2019100830A1 (zh) 2017-11-21 2018-09-19 进行数据传输的方法、网络侧设备及终端

Country Status (4)

Country Link
US (1) US11284410B2 (zh)
EP (1) EP3716517A4 (zh)
CN (1) CN109818723B (zh)
WO (1) WO2019100830A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720052B (zh) * 2015-11-10 2021-03-01 美商Idac控股公司 無線傳輸/接收單元和無線通訊方法
EP4055764A1 (en) * 2019-11-08 2022-09-14 Qualcomm Incorporated Downlink control channel monitoring switching for unlicensed spectrum
CN111212437B (zh) * 2020-01-22 2022-07-19 北京紫光展锐通信技术有限公司 Pdsch接收波束的确定方法及装置、存储介质、终端
CN114269005B (zh) * 2020-09-16 2023-06-27 大唐移动通信设备有限公司 卫星通信系统的通信方法、装置、设备及可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932111A (zh) * 2011-08-10 2013-02-13 中兴通讯股份有限公司 无线信道状态信息上报方法及装置
CN103687029A (zh) * 2013-12-30 2014-03-26 大唐移动通信设备有限公司 一种资源分配方法和基站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252918B2 (en) * 2011-08-15 2016-02-02 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
US9680591B2 (en) * 2014-03-07 2017-06-13 Lg Electronics Inc. Method for reporting channel state information having reflected interference cancellation capability therein, and apparatus therefor
US10425835B2 (en) * 2015-12-04 2019-09-24 Industrial Technology Research Institute Post network entry connection method in millimeter wave communication system and related apparatuses using the same
US10285170B2 (en) * 2016-01-19 2019-05-07 Samsung Electronics Co., Ltd. Method and apparatus for frame structure for advanced communication systems
CN107294688B (zh) * 2016-03-31 2021-01-15 华为技术有限公司 数据传输的方法以及基站
KR102188271B1 (ko) * 2016-08-11 2020-12-08 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
JP6877296B2 (ja) * 2016-08-12 2021-05-26 華碩電腦股▲ふん▼有限公司 無線通信システムにおける測定のためのヌメロロジ帯域幅を決定する方法及び装置
WO2018232090A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Unified beam management in a wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932111A (zh) * 2011-08-10 2013-02-13 中兴通讯股份有限公司 无线信道状态信息上报方法及装置
CN103687029A (zh) * 2013-12-30 2014-03-26 大唐移动通信设备有限公司 一种资源分配方法和基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on Beam Indication for PDSCH", 3GPP TSG RAN WG1 MEETING #90BIV, RL-1717612, 13 October 2017 (2017-10-13), XP051352474 *
SAMSUNG: "On Beam Indication", 3GPP TSG RAN WG1 MEETING 90BIS, RL-1717627, 13 October 2017 (2017-10-13), XP051352484 *
See also references of EP3716517A4 *

Also Published As

Publication number Publication date
US11284410B2 (en) 2022-03-22
CN109818723A (zh) 2019-05-28
EP3716517A4 (en) 2021-07-21
CN109818723B (zh) 2020-12-29
US20200281001A1 (en) 2020-09-03
EP3716517A1 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
WO2020035069A1 (zh) 一种上行传输指示的方法、终端、基站及计算机存储介质
WO2019100830A1 (zh) 进行数据传输的方法、网络侧设备及终端
US10805895B2 (en) Methods, devices and systems for initial grant-free transmission determination
WO2019136728A1 (zh) 传输配置方法及相关产品
US20190081765A1 (en) Transmission resource indication method, base station, user equipment and transmission resource indication system
CN111294194B (zh) 一种无线传输中的方法和装置
TW201824910A (zh) 用於傳輸信號的方法、終端設備和網絡設備
WO2020164590A1 (zh) 传输资源检测方法、传输资源确定方法和通信设备
WO2020029973A1 (zh) 一种信息的处理方法和通信装置
CN110268773A (zh) 上行数据传输方法及相关设备
WO2019153896A1 (zh) 一种确定dci中信息域取值的方法及装置
TW201818706A (zh) 通訊方法、終端和網路設備
US20220361211A1 (en) Support of enhanced dynamic codebook with different dci formats
WO2017175606A1 (ja) 中央集約装置と張出装置との間のインタフェース方法及び無線ネットワーク制御システム
CN115516805A (zh) 涉及子时隙物理上行链路控制信道(pucch)重复的系统和方法
WO2019062604A1 (zh) 利用控制资源集的预编码粒度进行信道估计的方法和设备
WO2022042689A1 (zh) 传输方法、装置、通信设备及终端
JP2022530668A (ja) クロススロットスケジューリング適応化のための装置及び方法
KR20220146374A (ko) 무선 통신 시스템에서 제어 정보 디코딩 방법 및 장치
WO2017080271A1 (zh) 传输调度信息的方法和装置
EP3496480B1 (en) Method, apparatus and system for sending control information
US12096428B2 (en) Communication method and apparatus
CN111769916B (zh) 通信方法、通信装置和系统
WO2019114467A1 (zh) 一种信道资源集的指示方法及装置、计算机存储介质
CN116437476A (zh) 用户设备、服务小区及其操作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880411

Country of ref document: EP

Effective date: 20200622