WO2019100742A1 - User equipment, next generation radio access network node, and method of wireless communication of same - Google Patents

User equipment, next generation radio access network node, and method of wireless communication of same Download PDF

Info

Publication number
WO2019100742A1
WO2019100742A1 PCT/CN2018/097812 CN2018097812W WO2019100742A1 WO 2019100742 A1 WO2019100742 A1 WO 2019100742A1 CN 2018097812 W CN2018097812 W CN 2018097812W WO 2019100742 A1 WO2019100742 A1 WO 2019100742A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnb
bits
indicator
identity length
nci
Prior art date
Application number
PCT/CN2018/097812
Other languages
French (fr)
Inventor
Yixue Lei
Qianxi Lu
Shukun Wang
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN201880048212.3A priority Critical patent/CN111034348B/en
Publication of WO2019100742A1 publication Critical patent/WO2019100742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to a user equipment, a next generation radio access network node, and a method of wireless communication of same.
  • E-UTRAN evolved UMTS terrestrial radio access network
  • E-CGI cell global identity
  • eNB evolved node B
  • the UE can know which bits are eNB identity.
  • R3-173643 discloses that in a new radio (NR) , per current agreement of radio access network 3 (RAN3) , NR cell identity (NCI) is changed according to the following:
  • the NCI has fixed length of 36 bits
  • the leftmost bits of the NCI correspond to a next generation node B (gNB) identity (ID) ;
  • the gNB ID has flexible and multiple lengths to accommodate different deployment scenarios.
  • An object of the present disclosure is to propose a user equipment (UE) , a next generation radio access network (NG-RAN) node, and a method of wireless communication of same for solving the described problems in existing technologies by introducing a first indicator of a first next generation node B (gNB) identity length.
  • UE user equipment
  • NG-RAN next generation radio access network
  • gNB next generation node B
  • a user equipment includes a receiver circuitry and a control circuitry coupled to the receiver circuitry.
  • the receiver circuitry is configured to receive, from a first next generation node B (gNB) , a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) .
  • SIB system information block
  • NCI new radio cell identity
  • the control circuitry is configured to distinguish a first gNB identity from the first NCI according to the first indicator of the first gNB identity length.
  • the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.
  • a method of handling a new radio cell identity of a user equipment includes receiving, from a first next generation node B (gNB) , a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , and distinguishing a first gNB identity from the first NCI according to the first indicator of the first gNB identity length.
  • SIB system information block
  • NCI new radio cell identity
  • the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.
  • a next generation radio access network (NG-RAN) node for wireless communication includes a first next generation node B (gNB) including a first control circuitry and a first transmitter circuitry coupled to the first receiver circuitry.
  • the first control circuitry is configured to generate a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , and the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, and the first transmitter circuitry is configured to transmit the first SIB including the first indicator of the first gNB identity length and the first NCI to a user equipment.
  • SIB system information block
  • NCI new radio cell identity
  • a method of handling a new radio cell identity of a next generation radio access network (NG-RAN) node includes generating a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) using a first next generation node B (gNB) , wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, and transmitting the first SIB including the first indicator of the first gNB identity length and the first NCI to a user equipment.
  • SIB system information block
  • NCI new radio cell identity
  • a non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method.
  • the user equipment, the next generation radio access network (NG-RAN) node, and the method of wireless communication of same solve the described problems in existing technologies by introducing the first indicator of the first gNB identity length, the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, such that the first gNB identity can be distinguished from the first NCI.
  • N is an integer greater than or equal to 22 and less than or equal to 32
  • FIG. 1 is a diagram of a structure of a next generation radio access network (NG-RAN) in relation to a fifth generation (5G) system according to an embodiment of the present disclosure.
  • NG-RAN next generation radio access network
  • 5G fifth generation
  • FIG. 2 is a diagram of a structure of a UMTS terrestrial radio access network (E-UTRAN) according to an embodiment of the present disclosure.
  • E-UTRAN UMTS terrestrial radio access network
  • FIG. 3 is a block diagram of a user equipment for wireless communication according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram of a structure of an automatic neighbor relation (ANR) according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating a method of handling a new radio cell identity of a user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a block diagram of a first next generation node B (gNB) for wireless communication according to an embodiment of the present disclosure.
  • gNB next generation node B
  • FIG. 7 is a block diagram of a second gNB for wireless communication according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method of handling a new radio cell identity of a NG-RAN node according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • FIG. 1 illustrates that, in some embodiments, a next generation radio access network (NG-RAN) 10 in relation to a fifth generation (5G) system.
  • the NG-RAN 10 provides both new radio (NR) and long term evolution (LTE) radio access.
  • An NG-RAN node such as a base station, is either a next generation node B (gNB) 12, such as a 5G base station, providing NR user plane and control plane services, or an evolved node B (eNB) 14, providing LTE/evolved UMTS terrestrial radio access network (E-UTRAN) services towards a user equipment (UE) .
  • the gNBs 12 and eNBs 14 are interconnected with each other using an Xn interface.
  • the gNBs 12 and eNBs 14 are also connected using NG interfaces to the 5G core (5GC) 20, such as an access and mobility management function (AMF) /user plane function (UPF) 22, more specifically to an access and mobility management function (AMF) using an NG control plane (NG-C) interface and to a user plane function (UPF) using an NG user plane (NG-U) interface.
  • the NG-RAN node means either eNB which is enhanced to support LTE NR interoperation e.g. capable of being connected to 5GC or running in an LTE/NR dual-connectivity (EN-DC) mode.
  • FIG. 2 illustrates that, in some embodiments, a structure of an E-UTRAN 30.
  • the E-UTRAN 30 includes a plurality of eNBs 32.
  • the eNBs 32 are interconnected using an X2 interface, and the eNBs 32 and an evolved packet core (EPC) 40 are connected using an S1 interface, and the eNBs 32 are interconnected with a user equipment 50 (UE) using an LTE air (Uu) interface.
  • EPC evolved packet core
  • FIG. 3 illustrates a user equipment 50 in accordance with various embodiments.
  • the user equipment 50 may include a transmitter circuitry 52 and a receiver circuitry 54 coupled to a control circuitry 56.
  • the transmitter circuitry 52 and the receiver circuitry 54 may be coupled to one or more antennas 58 for transmission over an air.
  • “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC application specific integrated circuit
  • the user equipment 50 may be implemented in, or perform functions associated with one or more software or firmware modules.
  • FIG. 4 illustrates an automatic neighbor relation (ANR) in accordance with various embodiments.
  • the user equipment 50 reports a measurement report to a gNB 16 such as a serving gNB, for example, reporting all detected cells.
  • the gNB 16 requests X2 interface setup to a gNB 18 such as a target gNB.
  • the eNB 18 joins the gNB 16 to a neighbor relation table (NRT) of the gNB 18, the gNB 18 sends corresponding data to the gNB 16, and the gNB 16 in turn joins the gNB 18 to a neighbor relation table (NRT) of the gNB 16.
  • NRT neighbor relation table
  • the receiver circuitry 54 is configured to receive, from a first next generation node B (gNB) such as one gNB 12 of FIG. 1 or gNB 16 of FIG. 4, a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) .
  • the control circuitry 56 is configured to distinguish a first gNB identity from the first NCI according to the first indicator of the first gNB identity length.
  • the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.
  • the receiver circuitry 54 is configured to receive, from a second gNB, such as another gNB 12 of FIG. 1 or gNB 18 of FIG. 4, a second SIB including a second indicator of a second gNB identity length and a second NCI, and the control circuitry 54 is configured to distinguish a second gNB identity from the second NCI according to the second indicator of the second gNB identity length, wherein the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits.
  • a second gNB such as another gNB 12 of FIG. 1 or gNB 18 of FIG. 4
  • a second SIB including a second indicator of a second gNB identity length and a second NCI
  • the control circuitry 54 is configured to distinguish a second gNB identity from the second NCI according to the second indicator of the second gNB identity length, wherein the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal
  • the first indicator of the first gNB identity length is introduced in NR system information block (SIB) in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  • SIB NR system information block
  • MSI minimum system information
  • RMSI remaining minimum system information
  • OSI system information
  • the first indicator of the first gNB identity length and the first NCI are in the MSI to reduce a number of bits.
  • the first indicator of the first gNB identity length can also be provided and an information element (IE) can be as an example defined as INTEGER type as follows.
  • the user equipment 50 solves the described problems in existing technologies by introducing the first indicator of the first gNB identity length.
  • the second indicator of the second gNB identity length is introduced in NR system information block (SIB) in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  • SIB NR system information block
  • MSI minimum system information
  • RMSI remaining minimum system information
  • OSI system information
  • the second indicator of the second gNB identity length and the second NCI are in the MSI to reduce a number of bits.
  • the second indicator of the second gNB identity length can also be provided and an information element (IE) can be as an example defined as INTEGER type as follows.
  • the first indicator of the first gNB identity length further defines the first gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  • An information element (IE) can be as an example defined as ENUMERTATED type as follows.
  • the second indicator of the second gNB identity length further defines the second gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  • An information element (IE) can be as an example defined as ENUMERTATED type as follows.
  • the first indicator of the first gNB identity length further defines the first gNB identity length being a bit string including M bits and M is equal to N.
  • An information element (IE) can be as an example defined as bit string type as follows.
  • the second indicator of the second gNB identity length further defines the second gNB identity length being a bit string including M bits and M is equal to N.
  • An information element (IE) can be as an example defined as bit string type as follows.
  • control circuitry 54 is configured to determine the first gNB and the second gNB being neighboring new radio cells.
  • the receiver circuitry 52 is configured to receive, from the first gNB, a first request instructing the control circuitry 56 to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB, and the control circuitry 56 is configured to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB to the first gNB.
  • control circuitry 54 is configured to determine the first gNB and the second gNB being neighboring new radio cells
  • the receiver circuitry 52 is configured to receive, from the first gNB, a first request instructing the control circuitry 56 to report the second NCI without requesting the second indicator of the second gNB identity length of the second gNB when the first gNB knows the second gNB identity length
  • the control circuitry 54 is configured to report the second NCI of the second gNB to the first gNB.
  • the first gNB knows the second gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the first gNB.
  • the first gNB is a serving cell and the second gNB is a target cell.
  • the first gNB is configured to compare the second NCI with existing entries in an automatic neighbor relation (ANR) table when the control circuitry 54 reports the second NCI to the first gNB.
  • the first gNB is configured to route a handover (HO) message to the second NCI properly when HO occurs.
  • the control circuitry 54 is configured to perform in a long term evolution-new radio (LTE-NR) dual connectivity (DC) , such that the eNB 14 routes X2/Xn messages to the first gNB using the first indicator of the first gNB identity length.
  • LTE-NR long term evolution-new radio
  • control circuitry 54 is configured to determine the first gNB and the second gNB being neighboring new radio cells
  • the receiver circuitry 52 is configured to receive, from the second gNB, a second request instructing the control circuitry 54 to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB
  • the control circuitry 54 is configured to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB to the second gNB.
  • the control circuitry 54 is configured to determine the first gNB and the second gNB being neighboring new radio cells
  • the receiver circuitry 52 is configured to receive, from the second gNB, a second request instructing the control circuitry 54 to report the first NCI without requesting the first indicator of the first gNB identity length of the first gNB when the second gNB knows the first gNB identity length
  • the control circuitry 54 is configured to report the first NCI of the first gNB to the second gNB.
  • the second gNB knows the first gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the second gNB.
  • the first gNB is a target cell and the second gNB is a serving cell.
  • the second gNB is configured to compare the first NCI with existing entries in an automatic neighbor relation (ANR) table when the control circuitry 54 reports the first NCI to the second gNB.
  • ANR automatic neighbor relation
  • the user equipment 50 of FIGS. 3 and 4 may be configured to perform one or more processes, such as a method 500 illustrated in FIG. 5.
  • the method 500 includes: at block 502, receiving, from a first next generation node B (gNB) , a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , at block 504, distinguishing a first gNB identity from the first NCI according to the first indicator of the first gNB identity length, wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, at block 506, receiving, from a second gNB, a second SIB including a second indicator of a second gNB identity length and a second NCI and distinguishing a second gNB identity from the second NCI according to the second indicator of the second g
  • SIB system information block
  • FIG. 6 illustrates a first gNB in accordance with various embodiments.
  • the first gNB may include a first transmitter circuitry 62 and a first receiver circuitry 64 coupled to a first control circuitry 66.
  • the first transmitter circuitry 62 and the first receiver circuitry 64 may be coupled to one or more first antennas 68 for transmission over the air.
  • “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • the first gNB may be implemented in, or perform functions associated with one or more software or firmware modules.
  • FIG. 7 illustrates a second gNB in accordance with various embodiments.
  • the second gNB may include a second transmitter circuitry 72 and a second receiver circuitry 74 coupled to a second control circuitry 76.
  • the second transmitter circuitry 72 and the second receiver circuitry 74 may be coupled to one or more second antennas 78 for transmission over the air.
  • “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • the second gNB may be implemented in, or perform functions associated with one or more software or firmware modules.
  • the NG-RAN node includes the first next generation node B (gNB) .
  • the first control circuitry 66 is configured to generate a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , and the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, and the first transmitter circuitry 62 is configured to transmit the first SIB including the first indicator of the first gNB identity length and the first NCI to the user equipment 50.
  • SIB system information block
  • NCI new radio cell identity
  • the NG-RAN node further includes a second gNB.
  • the second control circuitry 76 is configured to generate a second SIB including a second indicator of a second gNB identity length and a second NCI, the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits, and the second transmitter circuitry 72 is configured to transmit the second SIB including the second indicator of the second gNB identity length and the second NCI to the user equipment.
  • the NG-RAN node of FIGS. 1, 6 and 7 may be configured to perform one or more processes, such as a method 800 illustrated in FIG. 8.
  • the method 800 includes: at block 802, generating a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) using a first next generation node B (gNB) , wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, at block 804, transmitting the first SIB including the first indicator of the first gNB identity length and the first NCI to a user equipment, at block 806, generating a second SIB including a second indicator of a second gNB identity length and a second NCI using a second gNB, wherein the second indicator of the second gNB identity length defines the second gNB identity length being
  • SIB system information block
  • the transmitter circuitry 52, the first transmitter circuitry 62, the second transmitter circuitry 72, the receiver circuitry 54, the first receiver circuitry 64, and the second receiver circuitry 74 may include one or more antennas, one or more modulators/demodulators, one or more analog signal processing circuits, and/or one or more digital processing circuits for communicating with other devices.
  • the control circuitry 56, the first control circuitry 66, and the second control circuitry 76 may be realized with one or more microprocessors, one or more network processors, one or more digital signal processing circuits, and/or other suitable processing circuits.
  • the embodiment in addition to the first gNB and/or the second gNB broadcast the system information to the user equipment, the embodiment also discloses usage of the first indicator of the first gNB identity length and/or the second indicator of the second gNB identity length in other signaling messages such as measurement report for ANR purpose which means if gNB such as the first gNB or the second gNB requests the user equipments to report neighbor cell’s NCI and/or an indicator of a gNB identity length.
  • the gNB may only request the user equipment 50 to report NCI without requesting the indicator of the gNB identity length if the gNB knows network configures unified a gNB identity length by other approach such as pre-configuration that all neighboring NR cells have the same gNB identity length with a serving cell.
  • the embodiment may work when a report of gNB identity length is not urgent for a serving gNB.
  • the serving gNB can firstly request the user equipment 50 to report the NCI of neighbor cell and compare with existing entries in the ANR table.
  • ANR table it is assumed that gNB identity of the neighboring cells have been provided. Then, if the left most bits of reported NCI matches one of the gNB identity, then gNB can resolve the ambiguity.
  • the gNB identity is unique and the serving gNB needs to request the user equipment 50 to report the indicator of the gNB identity length there is no entry matched in the maintained ANR table.
  • the serving gNB can route a handover (HO) message a neighboring gNB properly when HO occurs.
  • HO handover
  • Some embodiments can be implemented by measurement configuration performed by LTE eNB or NR gNB.
  • LTE-NR dual connectivity if a LTE eNB needs to know the gNB identity to route X2/Xn message, the LTE eNB needs to know the gNB identity from NCI.
  • NR gNB is a mater node for DC operation or the NR gNB works in a single connectivity (SC) mode, the NR gNB needs to resolve the gNB identity using the embodiments.
  • the embodiments of the present disclosure introduce the indicator to the user equipment 50, such that the user equipment 50 can distinguish the gNB identity from the NCI. Also, during ANR operation, the embodiments also enable the user equipment 50 to report neighbor cells gNB identity length to the serving gNB so that the serving gNB can route the HO message a neighboring gNB properly when HO occurs. The embodiments also contribute to LTE NR interoperation in EN-DC case where enable LTE eNB to correctly route X2/Xn messages to gNB using a correctly resolved gNB identity.
  • FIG. 9 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 9 illustrates, for one embodiment, an example system comprising a radio frequency (RF) circuitry, a baseband circuitry, an application circuitry, a memory/storage, a display, a camera, a sensor, and an input/output (I/O) interface, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-
  • the baseband circuitry may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • RF circuitry may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment or eNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • Memory/storage may be used to load and store data and/or instructions, for example, for system.
  • Memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • the I/O interface may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • sensor may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display may include a display, such as a liquid crystal display and a touch screen display.
  • system may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the user equipment, the next generation radio access network (NG-RAN) node, and the method of wireless communication of same solve the described problems in existing technologies by introducing the first indicator of the first gNB identity length, the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, such that the first gNB identity can be distinguished from the first NCI.
  • N is an integer greater than or equal to 22 and less than or equal to 32
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Abstract

A user equipment includes a receiver circuitry and a control circuitry coupled to the receiver circuitry. The receiver circuitry is configured to receive, from a first next generation node B (gNB), a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI). The control circuitry is configured to distinguish a first gNB identity from the first NCI according to the first indicator of the first gNB identity length. The first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.

Description

USER EQUIPMENT, NEXT GENERATION RADIO ACCESS NETWORK NODE, AND METHOD OF WIRELESS COMMUNICATION OF SAME
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of communication systems, and more particularly, to a user equipment, a next generation radio access network node, and a method of wireless communication of same.
2. Description of the Related Art
In long term evolution (LTE) radio access technologies, evolved UMTS terrestrial radio access network (E-UTRAN) cell global identity (E-CGI) is 28 bits long and the most significant 20 bits are evolved node B (eNB) Identity and the left 8 bits are cell index within one eNB. As the allocation between eNB identity and cell index are fixed, thus when a user equipment (UE) receives the E-CGI from system information or other signaling messages, the UE can know which bits are eNB identity.
"LS on length of NR Cell Identity" , 3GPP TSG-RAN WG3 Meeting #97, R3-173643 is a related prior art for this field. More particularly, R3-173643 discloses that in a new radio (NR) , per current agreement of radio access network 3 (RAN3) , NR cell identity (NCI) is changed according to the following:
1) the NCI has fixed length of 36 bits;
2) the leftmost bits of the NCI correspond to a next generation node B (gNB) identity (ID) ; and
3) the gNB ID has flexible and multiple lengths to accommodate different deployment scenarios.
Thus, how the UE distinguishes the gNB ID from the NCI when the UE receives the NCI from new radio system information block (NR-SIB) is a problem that needs to be solved.
SUMMARY
An object of the present disclosure is to propose a user equipment (UE) , a next generation radio access network (NG-RAN) node, and a method of wireless communication of same for solving the described problems in existing technologies by introducing a first indicator of a first next generation node B (gNB) identity length.
In a first aspect of the present disclosure, a user equipment includes a receiver circuitry and a control circuitry coupled to the receiver circuitry. The receiver circuitry is configured to receive, from a first next generation node B (gNB) , a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) . The control circuitry is configured to distinguish a first gNB identity from the first NCI according to the first indicator of the first gNB identity length. The first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.
In a second aspect of the present disclosure, a method of handling a new radio cell identity of a user equipment includes receiving, from a first next generation node B (gNB) , a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , and distinguishing a first gNB identity from the first NCI according to the first indicator of the first gNB identity length. The first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.
In a third aspect of the present disclosure, a next generation radio access network (NG-RAN) node for wireless communication includes a first next generation node B (gNB) including a first control circuitry and a first transmitter circuitry coupled to the first receiver circuitry. The first control circuitry is configured to generate a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , and the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, and the first transmitter circuitry is configured to transmit the first SIB including the first indicator of the first gNB identity length and the first NCI to a user equipment.
In a fourth aspect of the present disclosure, a method of handling a new radio cell identity of a next generation radio access network (NG-RAN) node includes generating a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) using a first next generation node B (gNB) , wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, and transmitting the first SIB including the first indicator of the first gNB identity length and the first NCI to a user equipment.
In the embodiment of the present disclosure, a non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method.
In the embodiment of the present disclosure, the user equipment, the next generation radio access network (NG-RAN) node, and the method of wireless communication of same solve the described problems in existing technologies by introducing the first indicator of the first gNB identity length, the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, such that the first gNB identity can be distinguished from the first NCI.
BRIEF DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a diagram of a structure of a next generation radio access network (NG-RAN) in relation to a fifth generation (5G) system according to an embodiment of the present disclosure.
FIG. 2 is a diagram of a structure of a UMTS terrestrial radio access network (E-UTRAN) according to an embodiment of the present disclosure.
FIG. 3 is a block diagram of a user equipment for wireless communication according to an embodiment of the present disclosure.
FIG. 4 is a diagram of a structure of an automatic neighbor relation (ANR) according to an embodiment of the present disclosure.
FIG. 5 is a flowchart illustrating a method of handling a new radio cell identity of a user equipment according to an embodiment of the present disclosure.
FIG. 6 is a block diagram of a first next generation node B (gNB) for wireless communication according to an embodiment of the present disclosure.
FIG. 7 is a block diagram of a second gNB for wireless communication according to an embodiment of the present disclosure.
FIG. 8 is a flowchart illustrating a method of handling a new radio cell identity of a NG-RAN node according to an embodiment of the present disclosure.
FIG. 9 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
FIG. 1 illustrates that, in some embodiments, a next generation radio access network (NG-RAN) 10 in relation to a fifth generation (5G) system. The NG-RAN 10 provides both new radio (NR) and long term evolution (LTE) radio access. An NG-RAN node, such as a base station, is either a next generation node B (gNB) 12, such as a 5G base station, providing NR user plane and control plane services, or an evolved node B (eNB) 14, providing LTE/evolved UMTS terrestrial radio access network (E-UTRAN) services towards a user equipment (UE) . The gNBs 12 and eNBs 14 are interconnected with each other using an Xn interface. The gNBs 12 and eNBs 14 are also connected using NG interfaces to the 5G core (5GC) 20, such as an access and mobility management function (AMF) /user plane function (UPF) 22, more specifically to an access and mobility management function (AMF) using an NG control plane (NG-C) interface and to a user plane function (UPF) using an NG user plane (NG-U) interface. In another embodiment, the NG-RAN node means either eNB which is enhanced to support LTE NR interoperation e.g. capable of being connected to 5GC or running in an LTE/NR dual-connectivity (EN-DC) mode.
FIG. 2 illustrates that, in some embodiments, a structure of an E-UTRAN 30. The E-UTRAN 30 includes a plurality of eNBs 32. The eNBs 32 are interconnected using an X2 interface, and the eNBs 32 and an evolved packet core (EPC) 40 are connected using an S1 interface, and the eNBs 32 are interconnected with a user equipment 50 (UE) using an LTE air (Uu) interface.
FIG. 3 illustrates a user equipment 50 in accordance with various embodiments. In the embodiments, the user equipment 50 may include a transmitter circuitry 52 and a receiver circuitry 54 coupled to a control circuitry 56. The transmitter circuitry 52 and the receiver circuitry 54 may be coupled to one or more antennas 58 for transmission over an air. As used herein, “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.  In some embodiments, the user equipment 50 may be implemented in, or perform functions associated with one or more software or firmware modules.
FIG. 4 illustrates an automatic neighbor relation (ANR) in accordance with various embodiments. In the embodiments, the user equipment 50 reports a measurement report to a gNB 16 such as a serving gNB, for example, reporting all detected cells. The gNB 16 requests X2 interface setup to a gNB 18 such as a target gNB. The eNB 18 joins the gNB 16 to a neighbor relation table (NRT) of the gNB 18, the gNB 18 sends corresponding data to the gNB 16, and the gNB 16 in turn joins the gNB 18 to a neighbor relation table (NRT) of the gNB 16.
In some embodiments, the receiver circuitry 54 is configured to receive, from a first next generation node B (gNB) such as one gNB 12 of FIG. 1 or gNB 16 of FIG. 4, a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) . The control circuitry 56 is configured to distinguish a first gNB identity from the first NCI according to the first indicator of the first gNB identity length. The first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.
In some embodiments, the receiver circuitry 54 is configured to receive, from a second gNB, such as another gNB 12 of FIG. 1 or gNB 18 of FIG. 4, a second SIB including a second indicator of a second gNB identity length and a second NCI, and the control circuitry 54 is configured to distinguish a second gNB identity from the second NCI according to the second indicator of the second gNB identity length, wherein the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits.
In the embodiment, the first indicator of the first gNB identity length is introduced in NR system information block (SIB) in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) . In some embodiments, the first indicator of the first gNB identity length and the first NCI are in the MSI to reduce a number of bits. When the first gNB broadcasting the NCI, the first indicator of the first gNB identity length can also be provided and an information element (IE) can be as an example defined as INTEGER type as follows.
gNBIDLength  INTEGER (22…32)
In the embodiment of the present disclosure, the user equipment 50 solves the described problems in existing technologies by introducing the first indicator of the first gNB identity length.
In the embodiment, the second indicator of the second gNB identity length is introduced in NR system information block (SIB) in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) . In some embodiments, the second indicator of the second gNB identity length and the second NCI are in the MSI to reduce a number of bits. When the second gNB broadcasting the NCI, the second indicator of the second gNB identity length can also be provided and an information element (IE) can be as an example defined as INTEGER type as follows.
gNBIDLength  INTEGER (22…32)
In another embodiment, the first indicator of the first gNB identity length further defines the first gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits. An information element (IE) can be as an example defined as ENUMERTATED type as follows.
gNBIDLength ENUMERATED {twenty-two, twenty-three, twenty-four, twenty-five, twenty-sixth, twenty-seven, twenty-eight, twenty-nine, thirty, thirty-one, thirty-two}
In another embodiment, the second indicator of the second gNB identity length further defines the second gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits. An information element (IE) can be as an example defined as ENUMERTATED type as follows.
gNBIDLength ENUMERATED {twenty-two, twenty-three, twenty-four, twenty-five, twenty-sixth, twenty-seven, twenty-eight, twenty-nine, thirty, thirty-one, thirty-two}
In another embodiment, the first indicator of the first gNB identity length further defines the first gNB identity length being a bit string including M bits and M is equal to N. An information element (IE) can be as an example defined as bit string type as follows.
gNBIDLength BIT STRING (SIZE (22.. 32) )
In another embodiment, the second indicator of the second gNB identity length further defines the second gNB identity length being a bit string including M bits and M is equal to N. An information element (IE) can be as an example defined as bit string type as follows.
gNBIDLength BIT STRING (SIZE (22.. 32) )
Further, the control circuitry 54 is configured to determine the first gNB and the second gNB being neighboring new radio cells. The receiver circuitry 52 is configured to receive, from the first gNB, a first request instructing the control circuitry 56 to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB, and the control circuitry 56 is configured to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB to the first gNB.
In another embodiment, the control circuitry 54 is configured to determine the first gNB and the second gNB being neighboring new radio cells, the receiver circuitry 52 is configured to receive, from the first gNB, a first request instructing the control circuitry 56 to report the second NCI without requesting the second indicator of the second gNB identity length of the second gNB when the first gNB knows the second gNB identity length, and the control circuitry 54 is configured to report the second NCI of the second gNB to the first gNB. The first gNB knows the second gNB identity length by pre-configuration that all neighboring new  radio cells have a same gNB identity length with the first gNB. The first gNB is a serving cell and the second gNB is a target cell.
In detail, the first gNB is configured to compare the second NCI with existing entries in an automatic neighbor relation (ANR) table when the control circuitry 54 reports the second NCI to the first gNB. The first gNB is configured to route a handover (HO) message to the second NCI properly when HO occurs. The control circuitry 54 is configured to perform in a long term evolution-new radio (LTE-NR) dual connectivity (DC) , such that the eNB 14 routes X2/Xn messages to the first gNB using the first indicator of the first gNB identity length.
In some embodiments, the control circuitry 54 is configured to determine the first gNB and the second gNB being neighboring new radio cells, the receiver circuitry 52 is configured to receive, from the second gNB, a second request instructing the control circuitry 54 to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB and the control circuitry 54 is configured to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB to the second gNB.
In some embodiments, the control circuitry 54 is configured to determine the first gNB and the second gNB being neighboring new radio cells, the receiver circuitry 52 is configured to receive, from the second gNB, a second request instructing the control circuitry 54 to report the first NCI without requesting the first indicator of the first gNB identity length of the first gNB when the second gNB knows the first gNB identity length, and the control circuitry 54 is configured to report the first NCI of the first gNB to the second gNB. The second gNB knows the first gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the second gNB. The first gNB is a target cell and the second gNB is a serving cell.
In detail, the second gNB is configured to compare the first NCI with existing entries in an automatic neighbor relation (ANR) table when the control circuitry 54 reports the first NCI to the second gNB.
In the embodiments, the user equipment 50 of FIGS. 3 and 4 may be configured to perform one or more processes, such as a method 500 illustrated in FIG. 5. In the embodiments, the method 500 includes: at block 502, receiving, from a first next generation node B (gNB) , a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , at block 504, distinguishing a first gNB identity from the first NCI according to the first indicator of the first gNB identity length, wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, at block 506, receiving, from a second gNB, a second SIB including a second indicator of a second gNB identity length and a second NCI and distinguishing a second gNB identity from the second NCI according to the second indicator of the second gNB identity length, wherein the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits, at block 508, determining the first gNB and the second gNB being neighboring new radio cells, at block 510, receiving, from the first gNB, a first request instructing the user equipment to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB, and at block 512, reporting the second NCI and/or the second indicator of the second gNB identity length of the second gNB to the first gNB. In the  embodiments, the user equipment 50 may be configured to perform one or more additional or alternative process elements, as described elsewhere in this specification.
FIG. 6 illustrates a first gNB in accordance with various embodiments. In the embodiments, the first gNB may include a first transmitter circuitry 62 and a first receiver circuitry 64 coupled to a first control circuitry 66. The first transmitter circuitry 62 and the first receiver circuitry 64 may be coupled to one or more first antennas 68 for transmission over the air. As used herein, “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the first gNB may be implemented in, or perform functions associated with one or more software or firmware modules.
FIG. 7 illustrates a second gNB in accordance with various embodiments. In the embodiments, the second gNB may include a second transmitter circuitry 72 and a second receiver circuitry 74 coupled to a second control circuitry 76. The second transmitter circuitry 72 and the second receiver circuitry 74 may be coupled to one or more second antennas 78 for transmission over the air. As used herein, “circuitry” may refer to, be part of, or include an application specific integrated circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the second gNB may be implemented in, or perform functions associated with one or more software or firmware modules.
In some embodiments, the NG-RAN node includes the first next generation node B (gNB) . The first control circuitry 66 is configured to generate a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , and the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, and the first transmitter circuitry 62 is configured to transmit the first SIB including the first indicator of the first gNB identity length and the first NCI to the user equipment 50.
In some embodiments, the NG-RAN node further includes a second gNB. The second control circuitry 76 is configured to generate a second SIB including a second indicator of a second gNB identity length and a second NCI, the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits, and the second transmitter circuitry 72 is configured to transmit the second SIB including the second indicator of the second gNB identity length and the second NCI to the user equipment.
In the embodiments, the NG-RAN node of FIGS. 1, 6 and 7 may be configured to perform one or more processes, such as a method 800 illustrated in FIG. 8. In the embodiments, the method 800 includes: at block 802, generating a first system information block (SIB) including a first indicator of a first gNB identity length and a first new radio cell identity (NCI) using a first next generation node B (gNB) , wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being  equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, at block 804, transmitting the first SIB including the first indicator of the first gNB identity length and the first NCI to a user equipment, at block 806, generating a second SIB including a second indicator of a second gNB identity length and a second NCI using a second gNB, wherein the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits, and at block 808, transmitting the second SIB including the second indicator of the second gNB identity length and the second NCI to the user equipment. In the embodiments, the NG-RAN node may be configured to perform one or more additional or alternative process elements, as described elsewhere in this specification.
In some embodiments, in practice, the transmitter circuitry 52, the first transmitter circuitry 62, the second transmitter circuitry 72, the receiver circuitry 54, the first receiver circuitry 64, and the second receiver circuitry 74 may include one or more antennas, one or more modulators/demodulators, one or more analog signal processing circuits, and/or one or more digital processing circuits for communicating with other devices. The control circuitry 56, the first control circuitry 66, and the second control circuitry 76 may be realized with one or more microprocessors, one or more network processors, one or more digital signal processing circuits, and/or other suitable processing circuits.
In some embodiments, in addition to the first gNB and/or the second gNB broadcast the system information to the user equipment, the embodiment also discloses usage of the first indicator of the first gNB identity length and/or the second indicator of the second gNB identity length in other signaling messages such as measurement report for ANR purpose which means if gNB such as the first gNB or the second gNB requests the user equipments to report neighbor cell’s NCI and/or an indicator of a gNB identity length. The gNB may only request the user equipment 50 to report NCI without requesting the indicator of the gNB identity length if the gNB knows network configures unified a gNB identity length by other approach such as pre-configuration that all neighboring NR cells have the same gNB identity length with a serving cell.
The embodiment may work when a report of gNB identity length is not urgent for a serving gNB. In the embodiment, the serving gNB can firstly request the user equipment 50 to report the NCI of neighbor cell and compare with existing entries in the ANR table. In ANR table, it is assumed that gNB identity of the neighboring cells have been provided. Then, if the left most bits of reported NCI matches one of the gNB identity, then gNB can resolve the ambiguity. The gNB identity is unique and the serving gNB needs to request the user equipment 50 to report the indicator of the gNB identity length there is no entry matched in the maintained ANR table.
In some embodiments, the serving gNB can route a handover (HO) message a neighboring gNB properly when HO occurs. Some embodiments can be implemented by measurement configuration performed by LTE eNB or NR gNB.
In some embodiments, in case of LTE-NR dual connectivity (EN-DC) , if a LTE eNB needs to know the gNB identity to route X2/Xn message, the LTE eNB needs to know the gNB identity from NCI. When NR gNB is a mater node for DC operation or the NR gNB works in a single connectivity (SC) mode, the NR gNB needs to resolve the gNB identity using the embodiments.
The embodiments of the present disclosure introduce the indicator to the user equipment 50, such that the user equipment 50 can distinguish the gNB identity from the NCI. Also, during ANR operation, the embodiments also enable the user equipment 50 to report neighbor cells gNB identity length to the serving gNB so that the serving gNB can route the HO message a neighboring gNB properly when HO occurs. The embodiments also contribute to LTE NR interoperation in EN-DC case where enable LTE eNB to correctly route X2/Xn messages to gNB using a correctly resolved gNB identity.
FIG. 9 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 9 illustrates, for one embodiment, an example system comprising a radio frequency (RF) circuitry, a baseband circuitry, an application circuitry, a memory/storage, a display, a camera, a sensor, and an input/output (I/O) interface, coupled with each other at least as illustrated.
The application circuitry may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
RF circuitry may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
In various embodiments, the RF circuitry may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment or eNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
Memory/storage may be used to load and store data and/or instructions, for example, for system. Memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments sensor may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display may include a display, such as a liquid crystal display and a touch screen display.
In various embodiments, the system may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures.
Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
In summary, in the embodiment of the present disclosure, the user equipment, the next generation radio access network (NG-RAN) node, and the method of wireless communication of same solve the described problems in existing technologies by introducing the first indicator of the first gNB identity length, the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32, such that the first gNB identity can be distinguished from the first NCI.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure.
It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (91)

  1. A user equipment for wireless communication, comprising:
    a receiver circuitry configured to receive, from a first next generation node B (gNB) , a first system information block (SIB) comprising a first indicator of a first gNB identity length and a first new radio cell identity (NCI) ; and
    a control circuitry coupled to the receiver circuitry, configured to distinguish a first gNB identity from the first NCI according to the first indicator of the first gNB identity length, wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.
  2. The user equipment of claim 1, wherein the first indicator of the first gNB identity length further defines the first gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  3. The user equipment of any one of claims 1 and 2, wherein the first indicator of the first gNB identity length further defines the first gNB identity length being a bit string comprising M bits and M is equal to N.
  4. The user equipment of any one of claims 1 to 3, wherein the first indicator of the first gNB identity length is in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  5. The user equipment of any one of claims 1 to 4, wherein the first indicator of the first gNB identity length and the first NCI are in the MSI.
  6. The user equipment of any one of claims 1 to 5, wherein the receiver circuitry is configured to receive, from a second gNB, a second SIB comprising a second indicator of a second gNB identity length and a second NCI, and the control circuitry is configured to distinguish a second gNB identity from the second NCI according to the second indicator of the second gNB identity length, wherein the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits.
  7. The user equipment of claim 6, wherein the second indicator of the second gNB identity length further defines the second gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  8. The user equipment of claim 6, wherein the second indicator of the second gNB identity length further defines the second gNB identity length being a bit string comprising M bits and M is equal to N.
  9. The user equipment of claim 6, wherein the second indicator of the second gNB identity length is in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  10. The user equipment of claim 6, wherein the second indicator of the second gNB identity length and the second NCI are in the MSI.
  11. The user equipment of claim 6, wherein the control circuitry is configured to determine the first gNB and the second gNB being neighboring new radio cells, the receiver circuitry is configured to receive, from the first gNB, a first request instructing the control circuitry to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB, and the control circuitry is configured to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB to the first gNB.
  12. The user equipment of claim 6, wherein the control circuitry is configured to determine the first gNB and the second gNB being neighboring new radio cells, the receiver circuitry is configured to receive, from the first gNB, a first request instructing the control circuitry to report the second NCI without requesting the second indicator of the second gNB identity length of the second gNB when the first gNB knows the second gNB identity length, and the control circuitry is configured to report the second NCI of the second gNB to the first gNB.
  13. The user equipment of claim 12, wherein the first gNB knows the second gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the first gNB.
  14. The user equipment of claim 12, wherein the first gNB is a serving cell and the second gNB is a target cell.
  15. The user equipment of claim 14, wherein the first gNB is configured to compare the second NCI with existing entries in an automatic neighbor relation (ANR) table when the control circuitry reports the second NCI to the first gNB.
  16. The user equipment of claim 14, wherein the first gNB is configured to route a handover (HO) message to the second NCI properly when HO occurs.
  17. The user equipment of any one of claims 1 to 16, wherein the control circuitry is configured to perform in a long term evolution-new radio (LTE-NR) dual connectivity (DC) , such that an evolved node B (eNB) routes X2/Xn messages to the first gNB using the first indicator of the first gNB identity length.
  18. The user equipment of claim 6, wherein the control circuitry is configured to determine the first gNB and the second gNB being neighboring new radio cells, the receiver circuitry is configured to receive, from the  second gNB, a second request instructing the control circuitry to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB and the control circuitry is configured to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB to the second gNB.
  19. The user equipment of claim 6, wherein the control circuitry is configured to determine the first gNB and the second gNB being neighboring new radio cells, the receiver circuitry is configured to receive, from the second gNB, a second request instructing the control circuitry to report the first NCI without requesting the first indicator of the first gNB identity length of the first gNB when the second gNB knows the first gNB identity length, and the control circuitry is configured to report the first NCI of the first gNB to the second gNB.
  20. The user equipment of claim 18, wherein the second gNB knows the first gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the second gNB.
  21. The user equipment of claim 18, wherein the first gNB is a target cell and the second gNB is a serving cell.
  22. The user equipment of claim 21, wherein the second gNB is configured to compare the first NCI with existing entries in an automatic neighbor relation (ANR) table when the control circuitry reports the first NCI to the second gNB.
  23. A method of handling a new radio cell identity of a user equipment, comprising:
    receiving, from a first next generation node B (gNB) , a first system information block (SIB) comprising a first indicator of a first gNB identity length and a first new radio cell identity (NCI) ; and
    distinguishing a first gNB identity from the first NCI according to the first indicator of the first gNB identity length, wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32.
  24. The method of claim 23, wherein the first indicator of the first gNB identity length further defines the first gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  25. The method of any one of claims 23 and 24, wherein the first indicator of the first gNB identity length further defines the first gNB identity length being a bit string comprising M bits and M is equal to N.
  26. The method of any one of claims 23 to 25, wherein the first indicator of the first gNB identity length is in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system  information (OSI) .
  27. The method of any one of claims 23 to 26, wherein the first indicator of the first gNB identity length and the first NCI are in the MSI.
  28. The method of any one of claims 23 to 27, further comprising receiving, from a second gNB, a second SIB comprising a second indicator of a second gNB identity length and a second NCI, distinguishing a second gNB identity from the second NCI according to the second indicator of the second gNB identity length, wherein the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits.
  29. The method of claim 28, wherein the second indicator of the second gNB identity length further defines the second gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  30. The method of claim 28, wherein the second indicator of the second gNB identity length further defines the second gNB identity length being a bit string comprising M bits and M is equal to N.
  31. The method of claim 28, wherein the second indicator of the second gNB identity length is in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  32. The method of claim 28, wherein the second indicator of the second gNB identity length and the second NCI are in the MSI.
  33. The method of claim 28, further comprising determining the first gNB and the second gNB being neighboring new radio cells, receiving, from the first gNB, a first request instructing the user equipment to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB, and reporting the second NCI and/or the second indicator of the second gNB identity length of the second gNB to the first gNB.
  34. The method of claim 28, further comprising determining the first gNB and the second gNB being neighboring new radio cells, receiving, from the first gNB, a first request instructing the user equipment to report the second NCI without requesting the second indicator of the second gNB identity length of the second gNB when the first gNB knows the second gNB identity length, and reporting the second NCI of the second gNB to the first gNB.
  35. The method of claim 34, wherein the first gNB knows the second gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the first gNB.
  36. The method of claim 34, wherein the first gNB is a serving cell and the second gNB is a target cell.
  37. The method of claim 36, wherein the first gNB is configured to compare the second NCI with existing entries in an automatic neighbor relation (ANR) table when the user equipment reports the second NCI to the first gNB.
  38. The method of claim 36, wherein the first gNB is configured to route a handover (HO) message to the second NCI properly when HO occurs.
  39. The method of any one of claims 23 to 38, further comprising performing in a long term evolution-new radio (LTE-NR) dual connectivity (DC) , such that an evolved node B (eNB) routes X2/Xn messages to the first gNB using the first indicator of the first gNB identity length.
  40. The method of claim 28, further comprising determining the first gNB and the second gNB being neighboring new radio cells, receiving, from the second gNB, a second request instructing the user equipment to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB, and reporting the first NCI and/or the first indicator of the first gNB identity length of the first gNB to the second gNB.
  41. The method of claim 28, further comprising determining the first gNB and the second gNB being neighboring new radio cells, receiving, from the second gNB, a second request instructing the user equipment to report the first NCI without requesting the first indicator of the first gNB identity length of the first gNB when the second gNB knows the first gNB identity length, and reporting the first NCI of the first gNB to the second gNB.
  42. The method of claim 40, wherein the second gNB knows the first gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the second gNB.
  43. The method of claim 40, wherein the first gNB is a target cell and the second gNB is a serving cell.
  44. The method of claim 43, wherein the second gNB is configured to compare the first NCI with existing entries in an automatic neighbor relation (ANR) table when the user equipment reports the first NCI to the second gNB.
  45. A next generation radio access network (NG-RAN) node for wireless communication, comprising:
    a first next generation node B (gNB) comprising a first control circuitry and a first transmitter circuitry coupled to the first receiver circuitry, wherein the first control circuitry is configured to generate a first system information block (SIB) comprising a first indicator of a first gNB identity length and a first new radio cell identity (NCI) , and the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal  to 32, and the first transmitter circuitry is configured to transmit the first SIB comprising the first indicator of the first gNB identity length and the first NCI to a user equipment.
  46. The NG-RAN node of claim 45, wherein the first indicator of the first gNB identity length further defines the first gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  47. The NG-RAN node of any one of claims 45 to 46, wherein the first indicator of the first gNB identity length further defines the first gNB identity length being a bit string comprising M bits and M is equal to N.
  48. The NG-RAN node of any one of claims 45 to 47, wherein the first indicator of the first gNB identity length is in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  49. The NG-RAN node of any one of claims 45 to 48, wherein the first indicator of the first gNB identity length and the first NCI are in the MSI.
  50. The NG-RAN node of any one of claims 45 to 49, further comprising a second gNB comprising a second control circuitry and a second transmitter circuitry coupled to the second receiver circuitry, wherein the second control circuitry is configured to generate a second SIB comprising a second indicator of a second gNB identity length and a second NCI, the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits, and the second transmitter circuitry is configured to transmit the second SIB comprising the second indicator of the second gNB identity length and the second NCI to the user equipment.
  51. The NG-RAN node of claim 50, wherein the second indicator of the second gNB identity length further defines the second gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  52. The NG-RAN node of claim 50, wherein the second indicator of the second gNB identity length further defines the second gNB identity length being a bit string comprising M bits and M is equal to N.
  53. The NG-RAN node of claim 50, wherein the second indicator of the second gNB identity length is in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  54. The NG-RAN node of claim 50, wherein the second indicator of the second gNB identity length and the second NCI are in the MSI.
  55. The NG-RAN node of claim 50, wherein the first gNB and the second gNB are neighboring new radio  cells, the first gNB is configured to instruct the user equipment to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB.
  56. The NG-RAN node of claim 50, wherein the first gNB and the second gNB are neighboring new radio cells, the second gNB is configured to instruct the user equipment to report the second NCI without requesting the second indicator of the second gNB identity length of the second gNB when the first gNB knows the second gNB identity length.
  57. The NG-RAN node of claim 56, wherein the first gNB knows the second gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the first gNB.
  58. The NG-RAN node of claim 56, wherein the first gNB is a serving cell and the second gNB is a target cell.
  59. The NG-RAN node of claim 56, wherein the first gNB is configured to compare the second NCI with existing entries in an automatic neighbor relation (ANR) table when the user equipment reports the second NCI to the first gNB.
  60. The NG-RAN node of claim 56, wherein the first gNB is configured to route a handover (HO) message to the second NCI properly when HO occurs.
  61. The NG-RAN node of any one of claims 45 to 60, wherein the NG-RAN node is configured to perform in a long term evolution-new radio (LTE-NR) dual connectivity (DC) , such that an evolved node B (eNB) routes X2/Xn messages to the first gNB using the first indicator of the first gNB identity length.
  62. The NG-RAN node of any one of claims 45 to 61, wherein the first gNB and the second gNB are neighboring new radio cells, the second gNB is configured to instructing the user equipment to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB.
  63. The NG-RAN node of any one of claims 45 to 62, wherein the first gNB and the second gNB are neighboring new radio cells, the second gNB is configured to instruct the user equipment to report the first NCI without requesting the first indicator of the first gNB identity length of the first gNB when the second gNB knows the first gNB identity length.
  64. The NG-RAN node of claim 62, wherein the second gNB knows the first gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the second gNB.
  65. The NG-RAN node of claim 62, wherein the first gNB is a target cell and the second gNB is a serving cell.
  66. The NG-RAN node of claim 65, wherein the second gNB is configured to compare the first NCI with  existing entries in an automatic neighbor relation (ANR) table when the user equipment reports the first NCI to the second gNB.
  67. A method of handling a new radio cell identity of a next generation radio access network (NG-RAN) node, comprising:
    generating a first system information block (SIB) comprising a first indicator of a first gNB identity length and a first new radio cell identity (NCI) using a first next generation node B (gNB) , wherein the first indicator of the first gNB identity length defines the first gNB identity length being a fixed value and being equal to N bits, where N is an integer greater than or equal to 22 and less than or equal to 32; and
    transmitting the first SIB comprising the first indicator of the first gNB identity length and the first NCI to a user equipment.
  68. The method of claim 67, wherein the first indicator of the first gNB identity length further defines the first gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  69. The method of any one of claims 67 and 68, wherein the first indicator of the first gNB identity length further defines the first gNB identity length being a bit string comprising M bits and M is equal to N.
  70. The method of any one of claims 67 to 69, wherein the first indicator of the first gNB identity length is in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  71. The method of any one of claims 67 to 70, wherein the first indicator of the first gNB identity length and the first NCI are in the MSI.
  72. The method of any one of claims 67 to 71, further comprising generating a second SIB comprising a second indicator of a second gNB identity length and a second NCI using a second gNB, wherein the second indicator of the second gNB identity length defines the second gNB identity length being a fixed value and being equal to N bits, transmitting the second SIB comprising the second indicator of the second gNB identity length and the second NCI to the user equipment.
  73. The method of claim 72, wherein the second indicator of the second gNB identity length further defines the second gNB identity length being 22 bits, 23 bits, 24 bits, 25 bits, 26 bits, 27 bits, 28 bits, 29 bits, 30 bits, 31 bits, or 32 bits.
  74. The method of claim 72, wherein the second indicator of the second gNB identity length further defines the second gNB identity length being a bit string comprising M bits and M is equal to N.
  75. The method of claim 72, wherein the second indicator of the second gNB identity length is in minimum system information (MSI) , remaining minimum system information (RMSI) , or other system information (OSI) .
  76. The method of claim 72, wherein the second indicator of the second gNB identity length and the second NCI are in the MSI.
  77. The method of claim 72, wherein the first gNB and the second gNB are neighboring new radio cells, the first gNB is configured to instruct the user equipment to report the second NCI and/or the second indicator of the second gNB identity length of the second gNB.
  78. The method of claim 72, wherein the first gNB and the second gNB are neighboring new radio cells, the second gNB is configured to instruct the user equipment to report the second NCI without requesting the second indicator of the second gNB identity length of the second gNB when the first gNB knows the second gNB identity length.
  79. The method of claim 78, wherein the first gNB knows the second gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the first gNB.
  80. The method of claim 78, wherein the first gNB is a serving cell and the second gNB is a target cell.
  81. The method of claim 78, wherein the first gNB is configured to compare the second NCI with existing entries in an automatic neighbor relation (ANR) table when the user equipment reports the second NCI to the first gNB.
  82. The method of claim 78, wherein the first gNB is configured to route a handover (HO) message to the second NCI properly when HO occurs.
  83. The method of claim 77, wherein the NG-RAN node is configured to perform in a long term evolution-new radio (LTE-NR) dual connectivity (DC) , such that an evolved node B (eNB) routes X2/Xn messages to the first gNB using the first indicator of the first gNB identity length.
  84. The method of claim 72, wherein the first gNB and the second gNB are neighboring new radio cells, the second gNB is configured to instructing the user equipment to report the first NCI and/or the first indicator of the first gNB identity length of the first gNB.
  85. The method of claim 72, wherein the first gNB and the second gNB are neighboring new radio cells, the second gNB is configured to instruct the user equipment to report the first NCI without requesting the first indicator of the first gNB identity length of the first gNB when the second gNB knows the first gNB identity length.
  86. The method of claim 84, wherein the second gNB knows the first gNB identity length by pre-configuration that all neighboring new radio cells have a same gNB identity length with the second gNB.
  87. The method of claim 84, wherein the first gNB is a target cell and the second gNB is a serving cell.
  88. The method of claim 87, wherein the second gNB is configured to compare the first NCI with existing entries in an automatic neighbor relation (ANR) table when the user equipment reports the first NCI to the second gNB.
  89. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 44 and 67 to 88.
  90. A terminal device, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 1 to 44.
  91. A next generation node B (gNB) , comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 67 to 88.
PCT/CN2018/097812 2017-11-27 2018-07-31 User equipment, next generation radio access network node, and method of wireless communication of same WO2019100742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880048212.3A CN111034348B (en) 2017-11-27 2018-07-31 User equipment, next generation wireless access network node and wireless communication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762590868P 2017-11-27 2017-11-27
US62/590,868 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019100742A1 true WO2019100742A1 (en) 2019-05-31

Family

ID=66631211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097812 WO2019100742A1 (en) 2017-11-27 2018-07-31 User equipment, next generation radio access network node, and method of wireless communication of same

Country Status (3)

Country Link
CN (1) CN111034348B (en)
TW (1) TW201926917A (en)
WO (1) WO2019100742A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853005A (en) * 2021-09-18 2021-12-28 江苏亨鑫众联通信技术有限公司 Signaling connection self-establishing method between base stations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104469554A (en) * 2013-09-13 2015-03-25 中兴通讯股份有限公司 Service transmitting and receiving methods and devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841874B (en) * 2009-03-19 2016-01-27 三星电子株式会社 The method switched is supported in mobile communication system
JP5123274B2 (en) * 2009-11-02 2013-01-23 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method and radio base station
KR102163380B1 (en) * 2013-03-20 2020-10-08 삼성전자주식회사 Method and apparatus for acquiring cell identifier in radio communication system
CN105007605B (en) * 2014-04-18 2019-02-05 中国移动通信集团公司 A kind of method, network side equipment and the system of cell switching
US10015680B2 (en) * 2014-09-26 2018-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Detecting neighbor cell system information by low complexity user equipment
EP3313113B1 (en) * 2015-11-28 2019-11-06 Huawei Technologies Co., Ltd. Converting a macro base station identity into a small cell identity
CN107295582B (en) * 2016-04-01 2019-11-08 中国电信股份有限公司 The recognition methods and system, the configuration method of Base Station Identification and system of adjacent base station
CN107277934B (en) * 2016-04-08 2020-02-21 中国电信股份有限公司 Method and system for establishing connection between base stations, and configuration method and system
CN106211278B (en) * 2016-06-29 2019-09-10 中国联合网络通信集团有限公司 Cut-in method, usim card and the terminal device of Home eNodeB

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104469554A (en) * 2013-09-13 2015-03-25 中兴通讯股份有限公司 Service transmitting and receiving methods and devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Variable length gNB IDs encoding", 3GPP TSG RAN WG3 #97BIS R3-174075, 13 October 2017 (2017-10-13), XP051356498 *
SAMSUNG, KT: "Discussions on NCI and gNB ID", 3GPP TSG-RAN WG3 MEETING #97BIS R3-173843, 13 October 2017 (2017-10-13), XP051356701 *

Also Published As

Publication number Publication date
TW201926917A (en) 2019-07-01
CN111034348A (en) 2020-04-17
CN111034348B (en) 2023-07-18

Similar Documents

Publication Publication Date Title
KR101978200B1 (en) A method, apparatus and system for dual connectivity handover
US8433321B2 (en) Method and apparatus for intelligently reporting neighbor information to facilitate automatic neighbor relations
CN111542088B (en) Method and apparatus for transmitting timing offset
WO2019241939A1 (en) Automatic neighbor relation enhancements for dual connectivity
US20210289427A1 (en) Entity and user equipment for a mobile telecommunications system
US11375575B2 (en) Apparatus and method of performing a group communication
KR20210010498A (en) Method and apparatus for determining the RRM measurement configuration
WO2019100742A1 (en) User equipment, next generation radio access network node, and method of wireless communication of same
EP4080911A1 (en) Method and apparatus for tracking area topology
US20230247605A1 (en) Uplink processing method and apparatus
CN108464056A (en) Configuration method, device, base station and the equipment of the core network of user equipment information
US20200359399A1 (en) Method and Apparatus for Identifying Interference in a Wireless Communication System
WO2016070932A1 (en) Identifying which access points are in the coverage area of a ran node
CN110557847A (en) communication method, communication apparatus, and storage medium
US20210345096A1 (en) Apparatus and method for managing user equipment capability information
WO2023206017A1 (en) Inter-cell l1-rsrp measurements
WO2023206172A1 (en) Extend system info broadcast resource block number for reduced capabilties enhancement coverage
WO2021136309A1 (en) Communication method and related device
WO2022151331A1 (en) Edrx selection and configuration handling
US11212725B2 (en) User equipment and method of wireless communication of same
EP4340461A1 (en) Network function selection for user equipment via a gateway network node
US20210250755A1 (en) Apparatus and method for deletion of user equipment capability identity
WO2020227897A1 (en) Apparatus and method for system interworking
US9843971B2 (en) Method for operating a mobile device
CN116420423A (en) Communication method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881878

Country of ref document: EP

Kind code of ref document: A1