WO2019100683A1 - 基于煤气热值和烟气成分的转炉煤气成分软测量方法 - Google Patents

基于煤气热值和烟气成分的转炉煤气成分软测量方法 Download PDF

Info

Publication number
WO2019100683A1
WO2019100683A1 PCT/CN2018/088726 CN2018088726W WO2019100683A1 WO 2019100683 A1 WO2019100683 A1 WO 2019100683A1 CN 2018088726 W CN2018088726 W CN 2018088726W WO 2019100683 A1 WO2019100683 A1 WO 2019100683A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
dry
volume
combustion
dry gas
Prior art date
Application number
PCT/CN2018/088726
Other languages
English (en)
French (fr)
Inventor
王宏明
叶亚兰
安翔
马琳
王宜翠
王玉洁
Original Assignee
江苏海事职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏海事职业技术学院 filed Critical 江苏海事职业技术学院
Priority to MYPI2020002022A priority Critical patent/MY192529A/en
Publication of WO2019100683A1 publication Critical patent/WO2019100683A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas

Definitions

  • the invention belongs to the technical field of energy-saving furnaces, and particularly relates to a soft measuring method of converter gas components based on gas calorific value and smoke component.
  • steel mills mainly digest converter gas through industrial combustion furnaces (such as steel rolling furnaces, gas boilers, etc.).
  • the fuel composition is an important input condition, which is an important basis for the operation and combustion adjustment of the combustion furnace.
  • the changes and fluctuations of the fuel composition will affect the safety and economic operation of the combustion furnace.
  • some steel companies are currently equipped with gas calorific value online analyzers, but most steel companies do not have gas analyzer online analyzers for furnaces. Steel mills are still based on artificial settings. Gas composition.
  • the composition of the converter gas is difficult to maintain stable, often in a fluctuating state, and the artificial set value is likely to deviate greatly from the current true value, which will largely interfere with the combustion.
  • the operation judgment of the furnace operator affects the optimal operation of the furnace.
  • the present invention provides a soft measuring method for a converter gas component based on a gas calorific value and a flue gas component, and the converter gas component is identified by the gas calorific value and the flue gas component, and the result can be a combustion furnace. It provides a basis for safe and economic operation, and solves the inconvenience and difficulty brought by the on-line analyzer of most of the steel furnaces in the furnace of the steel furnace to the operation of the furnace, and has good engineering practical value.
  • the present invention adopts the following technical solutions:
  • a soft measuring method for a converter gas component based on a gas calorific value and a flue gas component characterized in that it comprises the following steps:
  • the volume fraction of N2 in the dry gas is calculated.
  • the burner flue gas composition includes a volume content percentage of O 2 , CO, and CO 2 in the dry flue gas.
  • the first calculation formula is:
  • the fuel characteristic factor ⁇ is calculated by a third calculation formula, and the third calculation formula is:
  • is the fuel property factor;
  • the excess air coefficient is calculated by a fourth calculation formula, which is:
  • is the excess air coefficient
  • ⁇ ′(O 2 ) and ⁇ ′(CO) are the volume content percentages of O 2 and CO in the dry flue gas, respectively.
  • the actual dry flue gas volume produced by the combustion of the unit volume dry gas is calculated by the fifth calculation formula, and the fifth calculation formula is:
  • V gy is the actual dry flue gas volume produced by the combustion of dry gas per unit volume, m 3 /m 3 (dry gas); The theoretical dry flue gas volume produced for the combustion of dry gas per unit volume, m 3 /m 3 (dry gas); The theoretical dry air amount required to burn a unit of dry gas, m 3 /m 3 (dry gas); ⁇ is the excess air ratio.
  • the sixth calculation formula is:
  • ⁇ (CO) is the volume content percentage of CO in dry gas, %
  • V gy is the actual dry flue gas volume produced by unit gas dry gas combustion, m 3 /m 3 (dry gas);
  • ⁇ ′(O 2 ) The percentage of volume content of O 2 in dry flue gas, %.
  • the seventh calculation formula is:
  • ⁇ (H 2 ) is the volume content percentage of H 2 in dry gas, %
  • Q d net is the low calorific value of converter gas dry basis, kJ/m 3
  • ⁇ (CO) is the volume content of CO in dry gas percentage,%.
  • the eighth calculation formula is:
  • ⁇ (O 2 ) is the volume content percentage of O 2 in dry gas, %;
  • ⁇ (CO) is the volume content percentage of CO in dry gas, %;
  • ⁇ (H 2 ) is the volume content of H 2 in dry gas percentage,%;
  • the ninth calculation formula is:
  • ⁇ (CO 2 ) and ⁇ (CO) are the volume content percentages of CO 2 and CO in dry gas, respectively;
  • V gy is the actual dry flue gas volume produced by unit gas dry gas combustion;
  • ⁇ ′(CO 2 ) ⁇ '(CO) is the volume content percentage of CO 2 and CO in dry flue gas, respectively.
  • the volume content percentage of N 2 in the dry gas is calculated by the tenth calculation formula, and the tenth calculation formula is:
  • ⁇ (N 2 ), ⁇ (CO), ⁇ (CO 2 ), ⁇ (H 2 ), ⁇ (O 2 ) are the volumes of N 2 , CO, CO 2 , H 2 , O 2 in the dry gas, respectively. Percentage of content, %.
  • the invention is used for soft measurement of the gas component of the converter gas burning furnace, and the result can provide a basis for the safe and economic operation of the furnace, and solves the problem that most steel plants are not equipped with the converter gas component online analyzer.
  • the inconvenience and difficulty caused by the operation of the furnace has good engineering practical value;
  • the invention can also be used for the thermal efficiency performance test of the combustion furnace. As long as the gas calorific value is measured by the gas calorimeter and the smoke component is measured by the flue gas analyzer, the gas component can be identified and used for the performance calculation of the furnace. And analysis, avoiding the gas sampling and testing work required by the traditional method, especially for the rapid measurement of the thermal efficiency of the combustion furnace;
  • the gas component measurement result of the invention has high accuracy and reliability, low cost and good implementability.
  • Fig. 1 is a flow chart for calculating the composition of a converter gas component of the present invention.
  • a soft measuring method for a converter gas component based on gas calorific value and flue gas composition as shown in FIG. 1 specifically includes the following steps:
  • step 1 solving the gas composition of the converter gas combustion furnace, specifically including the following steps:
  • the second calculation formula is:
  • is the fuel property factor;
  • the fourth calculation formula is:
  • is the excess air coefficient
  • ⁇ ′(O 2 ) and ⁇ ′(CO) are the volume content percentages of O 2 and CO in the dry flue gas, respectively.
  • the fifth calculation formula is:
  • V gy is the actual dry flue gas volume produced by the combustion of dry gas per unit volume, m 3 /m 3 (dry gas); The theoretical dry flue gas volume produced for the combustion of dry gas per unit volume, m 3 /m 3 (dry gas); The theoretical dry air amount required to burn a unit of dry gas, m 3 /m 3 (dry gas); ⁇ is the excess air ratio.
  • ⁇ (CO) is the volume content percentage of CO in dry gas, %
  • V gy is the actual dry flue gas volume produced by unit gas dry gas combustion, m 3 /m 3 (dry gas);
  • ⁇ ′(O 2 ) The percentage of volume content of O 2 in dry flue gas, %.
  • the seventh calculation formula is:
  • ⁇ (H 2 ) is the volume content percentage of H 2 in dry gas, %
  • Q d net is the low calorific value of converter gas dry basis, kJ/m 3
  • ⁇ (CO) is the volume content of CO in dry gas percentage,%.
  • ⁇ (O 2 ) is the volume content percentage of O 2 in dry gas, %;
  • ⁇ (CO) is the volume content percentage of CO in dry gas, %;
  • ⁇ (H 2 ) is the volume content percentage of H2 in dry gas ,%;
  • the ninth calculation formula is:
  • ⁇ (CO 2 ) and ⁇ (CO) are the volume content percentages of CO 2 and CO in dry gas, respectively;
  • V gy is the actual dry flue gas volume produced by unit gas dry gas combustion;
  • ⁇ ′(CO 2 ) ⁇ '(CO) is the volume content percentage of CO 2 and CO in dry flue gas, respectively.
  • ⁇ (N 2 ), ⁇ (CO), ⁇ (CO 2 ), ⁇ (H 2 ), ⁇ (O 2 ) are the volumes of N 2 , CO, CO 2 , H 2 , O 2 in the dry gas, respectively. Percentage of content, %.
  • the gas component measurement result of the invention has high accuracy and reliability, low cost and good implementability.
  • the method is applied to the soft measurement of the gas composition of the converter gas burning furnace, and the result can provide a basis for the safe and economic operation of the furnace, and solves the problem that most steel plants are not equipped with the converter gas component online analyzer to the furnace.
  • the inconvenience and difficulty brought by the operation have good engineering practical value.
  • it can also be used in the thermal efficiency performance test of the combustion furnace. As long as the gas calorific value is measured by the gas calorimeter and the smoke component is measured by the flue gas analyzer, the gas component can be identified and used for calculation and analysis of the performance of the furnace. It avoids the gas sampling and testing work required by the traditional method, and is especially suitable for the rapid measurement of the thermal efficiency of the combustion furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,包括以下步骤:通过测量获取有效数据,有效数据包括转炉煤气干基低位热值和燃烧炉烟气成分,燃烧炉烟气成分包括干烟气中O2、CO和CO2的容积含量百分率;根据获得的有效数据,求解转炉煤气燃烧炉入炉煤气成分。本发明解决了目前大多数钢铁厂均未配置入炉转炉煤气成分在线分析仪给燃烧炉运行带来的不便和困难,具有很好的工程实用价值。还可用于燃烧炉热效率性能试验,只要通过煤气热值仪测得煤气热值、通过烟气分析仪测得烟气成分,即可辨识出煤气成分,进而用于燃烧炉性能计算和分析,避免了传统方法需要的煤气取样和化验工作,尤其适用于燃烧炉热效率的快速测算。

Description

基于煤气热值和烟气成分的转炉煤气成分软测量方法 技术领域
本发明属于燃烧炉节能技术领域,具体涉及基于煤气热值和烟气成分的转炉煤气成分软测量方法。
背景技术
钢铁企业在炼钢工序中产生了大量的转炉煤气,作为冶炼过程的副产资源,转炉煤气的高效回收利用是钢铁企业节能降耗工作的重点之一。
目前,钢厂主要通过工业燃烧炉(如轧钢加热炉、煤气锅炉等)来消化转炉煤气。对于燃烧炉,燃料成分是重要的输入条件,是燃烧炉运行操作和燃烧调整的重要依据,燃料成分的变化与波动会影响到燃烧炉的安全和经济运行。然而,由于条件所限,目前部分钢铁企业配置了煤气热值在线分析仪,但大多数钢铁企业都未给燃烧炉配置煤气成分在线分析仪,钢厂基本上仍然是以人为设定值作为当前的煤气成分。而实际上,受上游冶炼工序等因素的影响,转炉煤气的成分很难保持稳定,经常处于波动状态,人为设定值很可能会大大偏离当前真实值,这就会在很大程度上干扰燃烧炉运行人员的操作判断,影响燃烧炉的优化运行。
发明内容
本发明的针对现有技术中的不足,提供一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,通过煤气热值和烟气成分辨识出转炉煤气成分,结果可为燃烧炉的安全和经济运行提供依据,以解决目前大多数钢铁厂燃烧炉均未配置入炉煤气成分在线分析仪给燃烧炉运行带来的不便和困难,具有很好的工程实用价值。
为实现上述目的,本发明采用以下技术方案:
一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于,包括以下步骤:
通过测量获取转炉煤气干基低位热值和燃烧炉烟气成分;
根据转炉煤气干基低位热值,计算单位体积干煤气燃烧所需的理论干空气量和单位体积干煤气燃烧产生的理论干烟气量;
根据单位体积干煤气燃烧所需的理论干空气量和单位体积干煤气燃烧产生的理论干烟气量计算燃料特性因子;
根据燃料特性因子和燃烧炉烟气成分,计算过量空气系数;
根据单位体积干煤气燃烧所需的理论干空气量、单位体积干煤气燃烧产生的理论干烟气量和过量空气系数,计算单位体积干煤气燃烧产生的实际干烟气量;
根据单位体积干煤气燃烧产生的实际干烟气量和燃烧炉烟气成分,计算干煤气中CO的容积含量百分率;
根据转炉煤气干基低位热值和干煤气中CO的容积含量百分率,计算干煤气中H2的容积含量百分率;
根据干煤气中CO的容积含量百分率、干煤气中H2的容积含量百分率和单位体积干煤气燃烧所需的理论干空气量,计算干煤气中O 2的容积含量百分率;
根据单位体积干煤气燃烧产生的实际干烟气量、燃烧炉烟气成分和干煤气中CO的容积含量百分率,计算干煤气中CO 2的容积含量百分率;
根据干煤气中CO、CO 2、H 2、O 2的容积含量百分率,计算干煤气中N2的容积含量百分率。
为优化上述技术方案,采取的具体措施还包括:
所述燃烧炉烟气成分包括干烟气中O 2、CO和CO 2的容积含量百分率。
通过第一计算公式计算单位体积干煤气燃烧所需的理论干空气量,所述第一计算公式为:
Figure PCTCN2018088726-appb-000001
其中,
Figure PCTCN2018088726-appb-000002
为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气);Q d,net为转炉煤气干基低位热值,kJ/m 3
通过第二计算公式计算单位体积干煤气燃烧产生的理论干烟气量,所述第二计算公式为:
Figure PCTCN2018088726-appb-000003
其中,
Figure PCTCN2018088726-appb-000004
为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤气);Q d,net为转炉煤气干基低位热值,kJ/m 3
通过第三计算公式计算燃料特性因子χ,所述第三计算公式为:
Figure PCTCN2018088726-appb-000005
其中,χ为燃料特性因子;
Figure PCTCN2018088726-appb-000006
为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤气);
Figure PCTCN2018088726-appb-000007
为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气)。
通过第四计算公式计算过量空气系数,所述第四计算公式为:
Figure PCTCN2018088726-appb-000008
其中,α为过量空气系数;φ′(O 2)、φ′(CO)分别为干烟气中O 2、CO的容积含量百分率,%。
通过第五计算公式计算单位体积干煤气燃烧产生的实际干烟气量,所述第五计算公式为:
Figure PCTCN2018088726-appb-000009
其中,V gy为单位体积干煤气燃烧产生的实际干烟气量,m 3/m 3(干煤气);
Figure PCTCN2018088726-appb-000010
为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤气);
Figure PCTCN2018088726-appb-000011
为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气);α为过量空气系数。
通过第六计算公式计算干煤气中CO的容积含量百分率,所述第六计算公式为:
φ(CO)=2.532V gy(21-φ′(O 2))-52.367
其中,φ(CO)为干煤气中CO的容积含量百分率,%;V gy为单位体积干煤气燃烧产生的实际干烟气量,m 3/m 3(干煤气);φ′(O 2)为干烟气中O 2的容积含量百分率,%。
通过第七计算公式计算干煤气中H 2的容积含量百分率,所述第七计算公式为:
Figure PCTCN2018088726-appb-000012
其中,φ(H 2)为干煤气中H 2的容积含量百分率,%;Q d,net为转炉煤气干基低位热值,kJ/m 3;φ(CO)为干煤气中CO的容积含量百分率,%。
通过第八计算公式计算干煤气中O 2的容积含量百分率,所述第八计算公式为:
Figure PCTCN2018088726-appb-000013
其中,φ(O 2)为干煤气中O 2的容积含量百分率,%;φ(CO)为干煤气中CO的容积含量百分率,%;φ(H 2)为干煤气中H 2的容积含量百分率,%;
Figure PCTCN2018088726-appb-000014
为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气)。
通过第九计算公式计算干煤气中CO 2的容积含量百分率,所述第九计算公式为:
φ(CO 2)=V gy[φ′(CO 2)+φ′(CO)]-φ(CO)
其中,φ(CO 2)、φ(CO)分别为干煤气中CO 2、CO的容积含量百分率,%;V gy为单位体积干煤气燃烧产生的实际干烟气量;φ′(CO 2)、φ′(CO)分别为干烟气中CO 2、CO的容积含量百分率,%。
通过第十计算公式计算干煤气中N 2的容积含量百分率,所述第十计算公式为:
φ(N 2)=100-φ(CO)-φ(CO 2)-φ(H 2)-φ(O 2)
其中,φ(N 2)、φ(CO)、φ(CO 2)、φ(H 2)、φ(O 2)分别为干煤气中N 2、CO、CO 2、H 2、O 2的容积含量百分率,%。
本发明的有益效果是:
1)本发明用于转炉煤气燃烧炉入炉煤气成分的软测量,结果可为燃烧炉的安全和经济运行提供依据,解决了目前大多数钢铁厂均未配置入炉转炉煤气成分在线分析仪给燃烧炉运行带来的不便和困难,具有很好的工程实用价值;
2)本发明还可用于燃烧炉热效率性能试验,只要通过煤气热值仪测得煤气热值、通过烟气分析仪测得烟气成分,即可辨识出煤气成分,进而用于燃烧炉性能计算和分析,避免了传统方法需要的煤气取样和化验工作,尤其适用于燃烧炉热效率的快速测算;
3)本发明煤气成分测算结果具有较高的准确度和可靠性,且成本低,具有良好的可实施性。
附图说明
图1是本发明的转炉煤气成分计算求解流程图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
如图1所示的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,具体包 括以下步骤:
1、通过测量获取转炉煤气干基低位热值Q d,net和燃烧炉烟气成分(包括干烟气中O 2、CO和CO 2的容积含量百分率)。
2、根据步骤1获得的有效数据,求解转炉煤气燃烧炉入炉煤气成分,具体包括以下步骤:
2.1通过转炉煤气干基低位热值Q d,net计算单位体积干煤气燃烧所需的理论干空气量
Figure PCTCN2018088726-appb-000015
和单位体积干煤气燃烧产生的理论干烟气量
Figure PCTCN2018088726-appb-000016
具体如下:
1)通过第一计算公式计算单位体积干煤气燃烧所需的理论干空气量
Figure PCTCN2018088726-appb-000017
第一计算公式为:
Figure PCTCN2018088726-appb-000018
其中,
Figure PCTCN2018088726-appb-000019
为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气);Q d,net为转炉煤气干基低位热值,kJ/m 3
2)通过第二计算公式计算单位体积干煤气燃烧产生的理论干烟气量,第二计算公式为:
Figure PCTCN2018088726-appb-000020
其中,
Figure PCTCN2018088726-appb-000021
为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤气);Q d,net为转炉煤气干基低位热值,kJ/m 3
2.2通过第三计算公式计算燃料特性因子χ,第三计算公式为:
Figure PCTCN2018088726-appb-000022
其中,χ为燃料特性因子;
Figure PCTCN2018088726-appb-000023
为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤气);
Figure PCTCN2018088726-appb-000024
为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气)。
2.3通过第四计算公式计算过量空气系数,第四计算公式为:
Figure PCTCN2018088726-appb-000025
其中,α为过量空气系数;φ′(O 2)、φ′(CO)分别为干烟气中O 2、CO的容积含量百分率,%。
2.4通过第五计算公式计算单位体积干煤气燃烧产生的实际干烟气量,第五计算公式为:
Figure PCTCN2018088726-appb-000026
其中,V gy为单位体积干煤气燃烧产生的实际干烟气量,m 3/m 3(干煤气);
Figure PCTCN2018088726-appb-000027
为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤气);
Figure PCTCN2018088726-appb-000028
为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气);α为过量空气系数。
2.5通过第六计算公式计算干煤气中CO的容积含量百分率φ(CO),第六计算公式为:
φ(CO)=2.532V gy(21-φ′(O 2))-52.367
其中,φ(CO)为干煤气中CO的容积含量百分率,%;V gy为单位体积干煤气燃烧产生的实际干烟气量,m 3/m 3(干煤气);φ′(O 2)为干烟气中O 2的容积含量百分率,%。
2.6通过第七计算公式计算干煤气中H 2的容积含量百分率,第七计算公式为:
Figure PCTCN2018088726-appb-000029
其中,φ(H 2)为干煤气中H 2的容积含量百分率,%;Q d,net为转炉煤气干基低位热值,kJ/m 3;φ(CO)为干煤气中CO的容积含量百分率,%。
2.7通过第八计算公式计算干煤气中O 2的容积含量百分率,第八计算公式为:
Figure PCTCN2018088726-appb-000030
其中,φ(O 2)为干煤气中O 2的容积含量百分率,%;φ(CO)为干煤气中CO的容积含量百分率,%;φ(H 2)为干煤气中H2的容积含量百分率,%;
Figure PCTCN2018088726-appb-000031
为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气)。
2.8通过第九计算公式计算干煤气中CO 2的容积含量百分率,第九计算公式为:
φ(CO 2)=V gy[φ′(CO 2)+φ′(CO)]-φ(CO)
其中,φ(CO 2)、φ(CO)分别为干煤气中CO 2、CO的容积含量百分率,%;V gy为单位体积干煤气燃烧产生的实际干烟气量;φ′(CO 2)、φ′(CO)分别为干烟气中CO 2、CO的容积含量百分率,%。
2.9通过第十计算公式计算干煤气中N 2的容积含量百分率,第十计算公式为:
φ(N 2)=100-φ(CO)-φ(CO 2)-φ(H 2)-φ(O 2)
其中,φ(N 2)、φ(CO)、φ(CO 2)、φ(H 2)、φ(O 2)分别为干煤气中N 2、CO、CO 2、H 2、O 2的容积含量百分率,%。
本发明的煤气成分测算结果具有较高的准确度和可靠性,且成本低,具有良好的可实施性。该方法用于转炉煤气燃烧炉入炉煤气成分的软测量,结果可为燃烧炉的安全和经济运行提供依据,解决了目前大多数钢铁厂均未配置入炉转炉煤气成分在线分析仪给燃烧炉运行带来的不便和困难,具有很好的工程实用价值。此外,还可用于燃烧炉热效率性能试验,只要通过煤气热值仪测得煤气热值、通过烟气分析仪测得烟气成分,即可辨识出煤气成分,进而用于燃烧炉性能计算和分析,避免了传统方法需要的煤气取样和化验工作,尤其适用于燃烧炉热效率的快速测算。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (10)

  1. 一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于,包括以下步骤:
    通过测量获取转炉煤气干基低位热值和燃烧炉烟气成分;
    根据转炉煤气干基低位热值,计算单位体积干煤气燃烧所需的理论干空气量和单位体积干煤气燃烧产生的理论干烟气量;
    根据单位体积干煤气燃烧所需的理论干空气量和单位体积干煤气燃烧产生的理论干烟气量计算燃料特性因子;
    根据燃料特性因子和燃烧炉烟气成分,计算过量空气系数;
    根据单位体积干煤气燃烧所需的理论干空气量、单位体积干煤气燃烧产生的理论干烟气量和过量空气系数,计算单位体积干煤气燃烧产生的实际干烟气量;
    根据单位体积干煤气燃烧产生的实际干烟气量和燃烧炉烟气成分,计算干煤气中CO的容积含量百分率;
    根据转炉煤气干基低位热值和干煤气中CO的容积含量百分率,计算干煤气中H2的容积含量百分率;
    根据干煤气中CO的容积含量百分率、干煤气中H2的容积含量百分率和单位体积干煤气燃烧所需的理论干空气量,计算干煤气中O 2的容积含量百分率;
    根据单位体积干煤气燃烧产生的实际干烟气量、燃烧炉烟气成分和干煤气中CO的容积含量百分率,计算干煤气中CO 2的容积含量百分率;
    根据干煤气中CO、CO 2、H 2、O 2的容积含量百分率,计算干煤气中N2的容积含量百分率。
  2. 如权利要求1所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:所述燃烧炉烟气成分包括干烟气中O 2、CO和CO 2的容积含量百分率。
  3. 如权利要求2所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:
    通过第一计算公式计算单位体积干煤气燃烧所需的理论干空气量,所述第一计算公式为:
    Figure PCTCN2018088726-appb-100001
    其中,
    Figure PCTCN2018088726-appb-100002
    为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气);Q d,net为转炉煤气干基低位热值,kJ/m 3
    通过第二计算公式计算单位体积干煤气燃烧产生的理论干烟气量,所述第二计算公式为:
    Figure PCTCN2018088726-appb-100003
    其中,
    Figure PCTCN2018088726-appb-100004
    为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤气);Q d,net为转炉煤气干基低位热值,kJ/m 3
    通过第三计算公式计算燃料特性因子χ,所述第三计算公式为:
    Figure PCTCN2018088726-appb-100005
    其中,χ为燃料特性因子;
    Figure PCTCN2018088726-appb-100006
    为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤 气);
    Figure PCTCN2018088726-appb-100007
    为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气)。
  4. 如权利要求3所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:通过第四计算公式计算过量空气系数,所述第四计算公式为:
    Figure PCTCN2018088726-appb-100008
    其中,α为过量空气系数;φ′(O 2)、φ′(CO)分别为干烟气中O 2、CO的容积含量百分率,%。
  5. 如权利要求4所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:通过第五计算公式计算单位体积干煤气燃烧产生的实际干烟气量,所述第五计算公式为:
    Figure PCTCN2018088726-appb-100009
    其中,V gy为单位体积干煤气燃烧产生的实际干烟气量,m 3/m 3(干煤气);
    Figure PCTCN2018088726-appb-100010
    为单位体积干煤气燃烧产生的理论干烟气量,m 3/m 3(干煤气);
    Figure PCTCN2018088726-appb-100011
    为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气);α为过量空气系数。
  6. 如权利要求5所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:通过第六计算公式计算干煤气中CO的容积含量百分率,所述第六计算公式为:
    φ(CO)=2.532V gy(21-φ′(O 2))-52.367
    其中,φ(CO)为干煤气中CO的容积含量百分率,%;V gy为单位体积干煤气燃烧产生的实际干烟气量,m 3/m 3(干煤气);φ′(O 2)为干烟气中O 2的容积含量百分率,%。
  7. 如权利要求6所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:通过第七计算公式计算干煤气中H2的容积含量百分率,所述第七计算公式为:
    Figure PCTCN2018088726-appb-100012
    其中,φ(H 2)为干煤气中H 2的容积含量百分率,%;Q d,net为转炉煤气干基低位热值,kJ/m 3;φ(CO)为干煤气中CO的容积含量百分率,%。
  8. 如权利要求7所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:通过第八计算公式计算干煤气中O 2的容积含量百分率,所述第八计算公式为:
    Figure PCTCN2018088726-appb-100013
    其中,φ(O 2)为干煤气中O 2的容积含量百分率,%;φ(CO)为干煤气中CO的容积含量百分率,%;φ(H 2)为干煤气中H 2的容积含量百分率,%;
    Figure PCTCN2018088726-appb-100014
    为单位体积干煤气燃烧所需的理论干空气量,m 3/m 3(干煤气)。
  9. 如权利要求8所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:通过第九计算公式计算干煤气中CO 2的容积含量百分率,所述第九计算公式为:
    φ(CO 2)=V gy[φ′(CO 2)+φ′(CO)]-φ(CO)
    其中,φ(CO 2)、φ(CO)分别为干煤气中CO 2、CO的容积含量百分率,%;V gy为单位体积干煤气燃烧产生的实际干烟气量;φ′(CO 2)、φ′(CO)分别为干烟气中CO 2、CO的容积含量百分 率,%。
  10. 如权利要求9所述的一种基于煤气热值和烟气成分的转炉煤气成分软测量方法,其特征在于:通过第十计算公式计算干煤气中N 2的容积含量百分率,所述第十计算公式为:
    φ(N 2)=100-φ(CO)-φ(CO 2)-φ(H 2)-φ(O 2)
    其中,φ(N 2)、φ(CO)、φ(CO 2)、φ(H 2)、φ(O 2)分别为干煤气中N 2、CO、CO 2、H 2、O 2的容积含量百分率,%。
PCT/CN2018/088726 2017-11-21 2018-05-28 基于煤气热值和烟气成分的转炉煤气成分软测量方法 WO2019100683A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2020002022A MY192529A (en) 2017-11-21 2018-05-28 Converter gas component soft measuring method based on gas heat value and flue gas components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711171057.8A CN107844682B (zh) 2017-11-21 2017-11-21 基于煤气热值和烟气成分的转炉煤气成分软测量方法
CN201711171057.8 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019100683A1 true WO2019100683A1 (zh) 2019-05-31

Family

ID=61680044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088726 WO2019100683A1 (zh) 2017-11-21 2018-05-28 基于煤气热值和烟气成分的转炉煤气成分软测量方法

Country Status (3)

Country Link
CN (1) CN107844682B (zh)
MY (1) MY192529A (zh)
WO (1) WO2019100683A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111666530A (zh) * 2020-04-23 2020-09-15 中冶华天工程技术有限公司 基于成分修正的燃气燃烧计算方法
CN111666531A (zh) * 2020-04-23 2020-09-15 中冶华天工程技术有限公司 烟气中残余co含量较高条件下的燃料燃烧计算方法
CN112949054A (zh) * 2021-02-23 2021-06-11 南方电网电力科技股份有限公司 一种燃煤锅炉的入炉煤热值软测量方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107844682B (zh) * 2017-11-21 2022-02-01 江苏海事职业技术学院 基于煤气热值和烟气成分的转炉煤气成分软测量方法
CN108627538B (zh) * 2018-03-28 2020-01-31 武汉理工大学 全尺寸通风受限空间燃烧热释放速率测量方法
CN108520157A (zh) * 2018-04-20 2018-09-11 江苏永钢集团有限公司 一种高炉煤气发生量的测算方法
CN108949194B (zh) * 2018-07-31 2020-12-29 中冶焦耐(大连)工程技术有限公司 焦炉炉外废气循环量的测量方法
CN109655488B (zh) * 2018-12-17 2021-03-30 江苏海事职业技术学院 基于混合煤气预热燃烧的煤气热值软测量方法
CN109580711B (zh) * 2018-12-17 2021-06-01 江苏海事职业技术学院 高炉煤气与转炉煤气混烧条件下的煤气热值软测量方法
CN113470763B (zh) * 2021-07-14 2023-03-14 中国航发贵阳发动机设计研究所 一种碳氢燃料燃烧热离解燃气成分测算系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008297A (zh) * 2014-06-05 2014-08-27 中冶华天工程技术有限公司 煤粉与高炉煤气混烧锅炉的热效率计算方法
CN104615899A (zh) * 2015-02-12 2015-05-13 中冶华天工程技术有限公司 冶金煤气锅炉空气预热器漏风率测算方法
CN105181926A (zh) * 2015-08-25 2015-12-23 南京南瑞继保电气有限公司 基于热平衡的煤粉掺烧煤气锅炉燃煤热值软测量方法
CN107844682A (zh) * 2017-11-21 2018-03-27 江苏海事职业技术学院 基于煤气热值和烟气成分的转炉煤气成分软测量方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528846B (zh) * 2013-10-25 2016-01-06 中冶华天工程技术有限公司 煤气锅炉热效率与煤气特性的实时监测方法
CN104021290B (zh) * 2014-06-05 2017-06-20 中冶华天工程技术有限公司 煤粉与高炉煤气混烧条件下的燃料燃烧计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008297A (zh) * 2014-06-05 2014-08-27 中冶华天工程技术有限公司 煤粉与高炉煤气混烧锅炉的热效率计算方法
CN104615899A (zh) * 2015-02-12 2015-05-13 中冶华天工程技术有限公司 冶金煤气锅炉空气预热器漏风率测算方法
CN105181926A (zh) * 2015-08-25 2015-12-23 南京南瑞继保电气有限公司 基于热平衡的煤粉掺烧煤气锅炉燃煤热值软测量方法
CN107844682A (zh) * 2017-11-21 2018-03-27 江苏海事职业技术学院 基于煤气热值和烟气成分的转炉煤气成分软测量方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111666530A (zh) * 2020-04-23 2020-09-15 中冶华天工程技术有限公司 基于成分修正的燃气燃烧计算方法
CN111666531A (zh) * 2020-04-23 2020-09-15 中冶华天工程技术有限公司 烟气中残余co含量较高条件下的燃料燃烧计算方法
CN111666531B (zh) * 2020-04-23 2023-08-25 中冶华天工程技术有限公司 烟气中残余co含量较高条件下的燃料燃烧计算方法
CN111666530B (zh) * 2020-04-23 2023-09-01 中冶华天工程技术有限公司 基于成分修正的燃气燃烧计算方法
CN112949054A (zh) * 2021-02-23 2021-06-11 南方电网电力科技股份有限公司 一种燃煤锅炉的入炉煤热值软测量方法及系统
CN112949054B (zh) * 2021-02-23 2022-06-14 南方电网电力科技股份有限公司 一种燃煤锅炉的入炉煤热值软测量方法及系统

Also Published As

Publication number Publication date
CN107844682A (zh) 2018-03-27
CN107844682B (zh) 2022-02-01
MY192529A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2019100683A1 (zh) 基于煤气热值和烟气成分的转炉煤气成分软测量方法
CN104008297B (zh) 煤粉与高炉煤气混烧锅炉的热效率计算方法
CN109655488B (zh) 基于混合煤气预热燃烧的煤气热值软测量方法
US20190113417A1 (en) Method for acquiring thermal efficiency of a boiler
CN103148473B (zh) 一种基于co的电站锅炉优化运行方法及系统
CN103697946A (zh) 一种火电厂燃煤锅炉烟气流量的计算方法及污染物排放量的控制方法
CN102734782B (zh) 一种燃煤锅炉能效监测方法
CN107796851A (zh) 高炉煤气锅炉入炉煤气热值与锅炉热效率在线监测方法
CN104316559B (zh) 一种能准确反映轧钢加热炉动态热平衡的测试方法
CN103528846A (zh) 煤气锅炉热效率与煤气特性的实时监测方法
CN109099001B (zh) 测量电站锅炉引风机效率的方法
CN110003923B (zh) 一种用于测量干熄炉内焦炭烧损的装置及测量方法
CN104615895B (zh) 煤粉与高炉煤气混烧锅炉空气预热器漏风率的测算方法
CN103995987A (zh) 掺烧高炉煤气的煤粉锅炉的热效率测算方法
CN104615899B (zh) 冶金煤气锅炉空气预热器漏风率测算方法
Libao et al. Prediction of CO2 emissions based on multiple linear regression analysis
CN104008307B (zh) 煤粉与高炉煤气混烧锅炉的入炉燃煤量的测算方法
CN110044852A (zh) 基于激光诱导击穿光谱法的燃煤电厂碳排放在线监测方法
CN104458149A (zh) 一种空气预热器漏风计算方法
CN107808072A (zh) 基于煤气热值的冶金煤气燃烧计算方法
CN210012810U (zh) 一种用于测量干熄炉内焦炭烧损的装置
CN109613059B (zh) 基于燃烧系统运行参数的冶金煤气热值在线测算方法
CN107944212A (zh) 煤粉与煤气混烧锅炉入炉煤量软测量方法
CN111751370A (zh) 一种用于对锅炉热效率进行测试的系统和方法
CN103292842B (zh) 基于检测氧含量的插入式烟气流量测量方法及测量装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880752

Country of ref document: EP

Kind code of ref document: A1