WO2019100199A1 - 一种内燃机液压配气装置、其驱动方法及液压配气内燃机 - Google Patents

一种内燃机液压配气装置、其驱动方法及液压配气内燃机 Download PDF

Info

Publication number
WO2019100199A1
WO2019100199A1 PCT/CN2017/112081 CN2017112081W WO2019100199A1 WO 2019100199 A1 WO2019100199 A1 WO 2019100199A1 CN 2017112081 W CN2017112081 W CN 2017112081W WO 2019100199 A1 WO2019100199 A1 WO 2019100199A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
load
discharge pipe
hydraulic pump
fluid discharge
Prior art date
Application number
PCT/CN2017/112081
Other languages
English (en)
French (fr)
Inventor
白保忠
Original Assignee
白保忠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白保忠 filed Critical 白保忠
Priority to PCT/CN2017/112081 priority Critical patent/WO2019100199A1/zh
Publication of WO2019100199A1 publication Critical patent/WO2019100199A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic

Definitions

  • the invention relates to a gas distribution device and a driving method thereof, in particular to a hydraulic gas distribution device for an internal combustion engine, a driving method thereof and a hydraulic gas distribution internal combustion engine.
  • the existing gas distribution system of the internal combustion engine is a reciprocating motion of the cam mechanism to convert the rotary motion into the valve stem, and has the following disadvantages: large self-consumption energy in the transmission process; large number of components, complicated structure, high manufacturing cost; camshaft installation position Restricted, the overall structure of the internal combustion engine is increased; the valve opening is limited by the cam shape, the fullness factor of the opening time section is difficult to increase, the charging and exhausting efficiency is low, and there is a valve overlap angle, the intake and exhaust actions cannot be completely separated, and the air is ventilated. Unclean, burning efficiency and quality are difficult to improve.
  • One of the objectives of the present invention is to provide a hydraulic gas distribution device for an internal combustion engine to solve the problem that the existing gas distribution device has a valve overlap angle, and the complete isolation of the intake and exhaust operations cannot be achieved, resulting in an unclean air.
  • the second object of the present invention is to provide a driving method for a hydraulic gas distribution device of an internal combustion engine to eliminate the valve overlap angle and achieve complete isolation of the intake and exhaust operations.
  • a third object of the present invention is to provide a hydraulic gas distribution internal combustion engine to improve combustion efficiency and quality of an internal combustion engine.
  • a hydraulic gas distribution device for an internal combustion engine comprising:
  • the reciprocating hydraulic pump is a single-piston hydraulic cylinder, and has an end port and a side wall port on the cylinder;
  • the first load is a reciprocating hydraulic load, and a first fluid discharge pipe is connected between the end port of the reciprocating hydraulic pump, and a first reset device is disposed on the first load;
  • a second load having a second fluid discharge pipe connected to the end port of the reciprocating hydraulic pump, and a check valve disposed to the second load on the second fluid discharge pipe
  • the second reset device is disposed on the one-way valve; the opening pressure of the first reset device is greater than the opening pressure of the second reset device, and the second load may be a pseudo load, that is, the fluid directly flows back to the fluid after overflowing through the check valve Reserve box;
  • the fluid reserve tank communicates with the side wall port of the reciprocating hydraulic pump through the third fluid discharge pipe.
  • the hydraulic gas distribution device of the present invention is provided with a rehydration tube, one end of the rehydration tube is connected to the fluid storage tank, and the other end of the rehydration tube is connected to the first fluid discharge tube, and the rehydration tube is provided with A one-way refill valve that circulates to the first fluid discharge pipe.
  • a communication pipe may be disposed between the first fluid discharge pipe and the second fluid discharge pipe, the communication pipe and the second fluid discharge pipe
  • the connection is located on the oil inlet side of the one-way valve.
  • the second reset device on the check valve can be set without affecting the one-way flow and reverse cut-off function of the one-way valve. On the second load.
  • the one-way valve is an adjustable flow check valve. Adjusting the check valve flow rate may cause the reset timing of the first reset device to be advanced or delayed relative to the time at which the reciprocating hydraulic pump piston reaches the top dead center.
  • each of the pipes of the hydraulic gas distribution device of the present invention and the cylinder chamber of the reciprocating hydraulic pump are filled with an incompressible fluid, such as hydraulic oil.
  • the second object of the present invention is achieved by the method for driving a hydraulic gas distribution device for an internal combustion engine, comprising the following steps:
  • the hydraulic gas distribution device of the internal combustion engine is arranged as described above, and the device is filled with an incompressible fluid.
  • the piston in the reciprocating hydraulic pump is at its bottom dead center;
  • the piston in the reciprocating hydraulic pump is controlled to accelerate upward, and the fluid enters the fluid reserve tank from the third fluid discharge pipe through the side wall port;
  • the piston in the reciprocating hydraulic pump reaches the maximum speed, the instantaneous flow rate of the fluid is greater than the instantaneous throughput of the one-way valve, and the excess fluid enters the first load through the first fluid discharge pipe and pushes The piston in the first load acts upward;
  • the internal combustion engine hydraulic valve distribution device further includes a refilling pipe, one end of the rehydration pipe is connected to the fluid reserve tank, and the other end of the refilling pipe is connected to the first fluid discharge pipe.
  • a hydraulic gas distribution internal combustion engine comprising a hydraulic gas distribution device, the hydraulic gas distribution device comprising:
  • the reciprocating hydraulic pump is a single-piston hydraulic cylinder, and has an end port and a side wall port on the cylinder;
  • the first load is a reciprocating hydraulic load, and a first fluid discharge pipe is connected between the end port of the reciprocating hydraulic pump, and a first reset device is connected to the first load;
  • a second load having a second fluid discharge pipe connected to the end port of the reciprocating hydraulic pump, and a check valve disposed to the second load on the second fluid discharge pipe
  • the second reset device is disposed on the one-way valve; the opening pressure of the first reset device is greater than the opening pressure of the second reset device, and the second load may be a pseudo load, that is, the fluid directly flows back to the fluid after overflowing through the check valve Reserve box;
  • the fluid reserve tank communicates with the side wall port of the reciprocating hydraulic pump through the third fluid discharge pipe.
  • a communication pipe may be disposed between the first fluid discharge pipe and the second fluid discharge pipe, the communication pipe and the second fluid discharge pipe
  • the connection is located on the oil inlet side of the one-way valve.
  • the one-way valve is an adjustable flow check valve. Adjusting the check valve flow rate may cause the reset timing of the first reset device to be advanced or delayed relative to the time at which the reciprocating hydraulic pump piston reaches the top dead center.
  • the reciprocating hydraulic pump of the invention cooperates with a set of different-name valves of the internal combustion engine to quickly open the valve, automatically relieves pressure and resets when the top dead center is reached, and closes the valve, thus realizing two actions of opening and closing the valve in one stroke, The valve overlap angle is eliminated, and the intake and exhaust actions are completely isolated, the air is cleaned, and the combustion efficiency is improved.
  • the second load is a fuel pump piston cylinder
  • the valve train and the fuel boosting mechanism can be combined into one.
  • Figure 1 is a schematic view showing the structure of the second load as a fuel pump plunger.
  • FIG. 2 is a schematic structural view of the second load being a dummy load.
  • Example 1 Hydraulic gas distribution device.
  • the hydraulic gas distribution device of the present invention comprises a linear reciprocating hydraulic pump 1, a first load 2, a second load 3, and a fluid reserve tank 12.
  • the reciprocating hydraulic pump 1 includes a cylinder and a piston disposed inside the cylinder, the piston preferably being a plunger, and the piston and the cylinder wall are All coupling sections form a seal.
  • the top end of the cylinder body is provided with an end port, and a side wall opening is formed on the side wall of the cylinder body.
  • the piston in the reciprocating hydraulic pump 1 is coupled to the piston of the internal combustion engine to provide power thereto.
  • the movement of the piston in the reciprocating hydraulic pump 1 is a shifting movement. When the piston ascends from its bottom dead center, its speed gradually increases. After passing through the side wall of the cylinder body, its speed reaches its maximum, and then starts to decelerate when the piston When going up to its top dead center, the speed drops to zero.
  • the first load 2 is a reciprocating hydraulic cylinder, and the first reset device 7 is disposed on the piston of the first load 2, and the first fluid discharge pipe 4 is connected between the first load 2 and the end port of the reciprocating hydraulic pump 1.
  • the second load 3 may be a dummy load or a fuel pump plunger, and a second fluid discharge pipe 5 is connected between the second load 3 and the end port of the reciprocating hydraulic pump 1, thereby causing the first fluid discharge pipe 4
  • the end of the reciprocating hydraulic pump 1 is disposed in parallel with the second fluid discharge pipe 5.
  • the second fluid discharge pipe 5 is provided with an adjustable flow rate check valve 9 flowing to the second load 3, and the check valve 9 is provided with a second reset device 8, the opening pressure of the first reset device 7 being greater than the second The opening pressure of the reset device 8 is reset.
  • the valve train and the fuel boosting mechanism are combined into one.
  • the second load 3 is a dummy load (as in FIG. 2), the fluid overflows directly through the check valve 9 and returns directly to the fluid reserve tank 12.
  • the fluid reserve tank 12 is for storing fluid, and the fluid reserve tank 12 is disposed at a position higher than the top end of the reciprocating hydraulic pump 1, or at another position capable of filling the cylinder chamber of the reciprocating hydraulic pump 1 with fluid, or The cylinder chamber of the reciprocating hydraulic pump 1 is filled with fluid by increasing the pressure or the like.
  • a third fluid discharge pipe 6 is connected between the side wall opening of the reciprocating hydraulic pump 1 and the fluid reserve tank 12. When the reciprocating hydraulic pump 1 is emptied, the fluid in the cylinder is discharged from the third fluid through the side wall port. The tube 6 enters the fluid reserve tank 12.
  • a fluid replacement pipe 10 is connected between the first fluid discharge pipe 4 and the fluid reserve tank 12, and a unidirectional fluid replacement valve 11 that flows through the first fluid discharge pipe 4 is provided in the fluid replacement pipe 10.
  • the check valve 9 When the internal combustion engine is in the starting, no-load or light-load conditions, the engine speed is low, the piston speed of the reciprocating hydraulic pump 1 is low, and the flow rate of the check valve 9 can be adjusted according to the actual situation to ensure the valve. Priority is turned on. Adjusting the check valve flow rate may cause the reset timing of the first reset device to be advanced or delayed relative to the time at which the reciprocating hydraulic pump piston reaches the top dead center.
  • the crankshaft speed of the internal combustion engine is set to be twice that of the gas distribution crankshaft, and the reciprocating hydraulic pump piston is hinged on the gas distribution crankshaft, and the reciprocating hydraulic pump piston is controlled by the movement law of the gas distribution crankshaft to perform the shifting motion.
  • the four-stroke internal combustion engine has four strokes of suction, compression, work and exhaust.
  • the four-stroke internal combustion engine crankshaft rotates 720°, the piston reciprocates twice, and the internal combustion engine crankshaft speed is twice that of the gas distribution crankshaft.
  • the piston of the pressure pump reciprocates once, the piston moves above the side wall port corresponding to the exhaust and suction stroke of the internal combustion engine, and the movement below the side wall port corresponds to the compression and work stroke of the internal combustion engine, and the movement of the piston below the side wall port Empty empty row.
  • Embodiment 2 Driving method of a hydraulic gas distribution device.
  • the driving method of the hydraulic gas distribution device of the present invention comprises the following steps:
  • the hydraulic gas distribution device is provided.
  • the second load 3 is a pseudo load, that is, the fluid is directly returned to the fluid reserve tank 12 after overflowing through the check valve 9 (as shown in FIG. 2).
  • the inside of the cylinder of the hydraulic pump 1 is filled with incompressible fluid in each pipe. When the machine is stopped, the piston of the reciprocating hydraulic pump 1 is at its bottom dead center.
  • the piston in the reciprocating hydraulic pump 1 is controlled to accelerate upward, and the fluid is discharged through the side wall opening, that is, discharged into the fluid reserve tank 12 through the third fluid discharge pipe 6 (because of the first load 2, the adjustable flow rate Both the check valve 9 and the one-way refill valve 11 have resistance).
  • the piston in the reciprocating hydraulic pump 1 continues to accelerate upward.
  • the side wall opening is sealed by the piston, ending the empty discharge, generating pressure, and the fluid overflows through the check valve 9.
  • the opening pressure of the first resetting device 7 is greater than the opening pressure of the second resetting device 8 due to the failure of the one-way liquid filling valve 11).
  • the piston in the reciprocating hydraulic pump 1 reaches the maximum speed, and the instantaneous flow rate of the fluid in the cylinder is large.
  • the instantaneous flow rate of the fluid is greater than the instantaneous throughput of the check valve 9, a greater than the first is caused.
  • the reset device 7 has a high pressure of the maximum energy storage pressure, and the excess portion of the fluid enters the first load 2 through the first fluid discharge pipe 4 and pushes the piston in the first load 2 upward.
  • the piston in the reciprocating hydraulic pump 1 continues to ascend and starts to decelerate, and the pressure of the fluid gradually decreases.
  • the fluid in the first load 2 passes through the first fluid discharge pipe 4,
  • the one-way valve 9, the second fluid discharge pipe 5 enters the second load 3 (i.e., the fluid reserve tank 12), and when the piston reaches its top dead center or later, the first reset device 7 is reset.
  • the piston in the reciprocating hydraulic pump 1 is subsequently descended, and the one-way refill valve 11 is opened to replenish the cylinder of the reciprocating hydraulic pump 1, and the second reset device 8 is reset; the piston descends to the side wall.
  • the fluid enters the cylinder through the third fluid discharge pipe 6 until the piston descends to its bottom dead center, and the fluid returns to an equilibrium state to complete a working cycle.
  • adjusting the check valve flow rate may cause the reset timing of the first reset device to be advanced or delayed relative to the timing at which the reciprocating hydraulic pump piston reaches the top dead center.
  • Embodiment 3 Method of using a hydraulic gas distribution device on an internal combustion engine.
  • the method of using the hydraulic gas distribution device on the internal combustion engine comprises the following steps:
  • the hydraulic gas distribution device described in Embodiment 1 is mounted on an internal combustion engine (the second load 3 of the hydraulic gas distribution device is a dummy load, and the inside of the cylinder of the reciprocating hydraulic pump 1 is filled with an incompressible fluid. ), the live in the reciprocating hydraulic pump 1
  • the plug is interlocked with the piston of the cylinder of the internal combustion engine, so that the working frequency of the piston of the internal combustion engine is twice the working frequency of the piston of the reciprocating hydraulic pump, and the first hydraulic load 7 is synchronously linked with a set of different names of the internal combustion engine (a set of different names of the internal combustion engine is Refers to valves of different names on two cylinders in an internal combustion engine.
  • the intake valve on the first cylinder and the exhaust valve on the second cylinder are a group of different names of the internal combustion engine.
  • the piston of the reciprocating hydraulic pump 1 is located at its bottom dead center.
  • the piston in the reciprocating hydraulic pump 1 starts to accelerate upward, and the fluid is discharged through the side wall opening, that is, discharged into the fluid reserve tank 12 through the third fluid discharge pipe 6 (because of the first load 2, the adjustable flow rate is unidirectional Both the valve 9 and the one-way refill valve 11 have resistance).
  • the piston in the reciprocating hydraulic pump 1 continues to accelerate upward.
  • the empty discharge ends, and pressure is generated, and the fluid overflows through the check valve 9 (because the one-way refill valve 11 is unreachable,
  • the opening pressure of the first reset device 7 is greater than the opening pressure of the second reset device 8.
  • the piston in the reciprocating hydraulic pump 1 continues to ascend and starts to decelerate, and the pressure of the fluid gradually decreases.
  • the fluid in the first load 2 passes through the first fluid discharge pipe 4,
  • the one-way valve 9, the second fluid discharge pipe 5 enters the second load 3 (i.e., the fluid reserve tank 12) until the piston reaches its top dead center, and the first reset device 7 is reset to interlock a group of different-name valves to close.
  • the piston in the reciprocating hydraulic pump 1 is subsequently descended, and the one-way refill valve 11 is opened to replenish the cylinder of the reciprocating hydraulic pump 1, and the second reset device 8 is reset; the piston descends to the side wall.
  • the fluid enters the cylinder through the third fluid discharge pipe 6 until the piston descends to its bottom dead center, and the fluid returns to an equilibrium state to complete a working cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种内燃机液压配气装置、其驱动方法及内燃机,所述液压配气装置的结构包括有:往复式液压泵(1);第一负载(2),其与往复式液压泵(1)的端部通口之间接有第一流体排放管(4),在第一负载(2)上设置第一复位装置(7);第二负载(3),其与往复式液压泵(1)的端部通口之间接有第二流体排放管(5),在第二流体排放管(5)上设置有向第二负载(3)流通的单向阀(9),在单向阀(9)上设置第二复位装置(8);第一复位装置(7)的开启压力大于第二复位装置(8)的开启压力;以及流体储备箱(12),与往复式液压泵(1)的侧壁通口联通。该液压配气装置实现了在一个行程内完成气门启闭两个动作,消灭了气门重叠角,实现了进排气动作完全隔离,换气干净,提高内燃机的燃烧效率。

Description

一种内燃机液压配气装置、其驱动方法及液压配气内燃机 技术领域
本发明涉及一种配气装置及其驱动方法,具体地说是一种内燃机液压配气装置、其驱动方法及液压配气内燃机。
背景技术
现有内燃机配气系统是由凸轮机构将旋转运动转化为气门杆的往复运动,存在以下缺点:传递过程中自耗能较大;零部件数量多、结构复杂、制造成本高;凸轮轴安装位置受限,内燃机整体架构增大;气门开度受凸轮外形限制,开启时间断面的丰满系数很难提高,充排气效率较低,且存在气门重叠角,进排气动作无法完全分离,换气不干净,燃烧效率与质量难以提高。
发明内容
本发明的目的之一就是提供一种内燃机液压配气装置,以解决现有配气装置存在气门重叠角,无法实现进气和排气动作的完全隔离,导致换气不干净的问题。
本发明的目的之二就是提供一种内燃机液压配气装置的驱动方法,以消灭气门重叠角,实现进排气动作的完全隔离。
本发明的目的之三就是提供一种液压配气内燃机,以提高内燃机的燃烧效率与质量。
本发明的目的之一是这样实现的:一种内燃机液压配气装置,包括有:
往复式液压泵,为单活塞液压缸,在其缸体上设有端部通口和侧壁通口;
第一负载,为往复式液压负载,其与所述往复式液压泵的端部通口之间接有第一流体排放管,在所述第一负载上设置第一复位装置;
第二负载,其与所述往复式液压泵的端部通口之间接有第二流体排放管,在所述第二流体排放管上设置有向第二负载流通的单向阀,在所述单向阀上设置第二复位装置;所述第一复位装置的开启压力大于第二复位装置的开启压力,第二负载可以是假性负载,即流体经单向阀溢流后直接回流到流体储备箱;以及
流体储备箱,通过第三流体排放管与所述往复式液压泵的侧壁通口联通。
本发明液压配气装置设置有补液管,所述补液管的一端与所述流体储备箱相连,所述补液管的另一端与所述第一流体排放管相连,在所述补液管上设置有向第一流体排放管流通的单向补液阀。
为保证第一负载向第二负载回流的可靠性,在所述第一流体排放管和所述第二流体排放管之间可以设置连通管,所述连通管与所述第二流体排放管的连接处位于所述单向阀的进油口一侧。
当所述第二负载为带复位装置的往复性负载时,在不影响所述单向阀的单向流通、反向截止功能的前提下,所述单向阀上的第二复位装置可以设置在第二负载上。
所述单向阀为可调节流量单向阀。调节单向阀流量可以使第一复位装置的复位时刻相对于往复式液压泵活塞到达上止点的时刻提前或延后。
使用时,在本发明液压配气装置的各管道内和往复式液压泵的缸体腔内均充满有不可压缩的流体,例如液压油。
本发明的目的之二是这样实现的:一种内燃机液压配气装置的驱动方法,包括以下步骤:
a、设置如上所述的内燃机液压配气装置,在装置内充满不可压缩的流体,初始状态时,往复式液压泵内的活塞位于其下止点;
b、往复式液压泵内的活塞受控加速上行,流体经侧壁通口从第三流体排放管进入流体储备箱中;
c、往复式液压泵内的活塞继续加速上行,在封闭侧壁通口后,流体经单向阀溢出排向第二负载;
d、与此同时或随后,往复式液压泵内的活塞达到最大速度,流体的瞬时流量大于单向阀的瞬时可通过量,超出的部分流体经第一流体排放管进入第一负载,并推动第一负载内的活塞向上动作;
e、之后,往复式液压泵内的活塞继续上行,并开始减速,流体的压力开始降低,在第一复位装置的压力作用下第一负载内的流体从第一流体排放管经由单向阀、第二流体排放管进入第二负载中,随后,第一复位装置复位;
f、往复式液压泵内的活塞到达上止点时或之前或稍后,第二复位装置随之复位;
g、往复式液压泵内的活塞下行通过侧壁通口后,流体储备箱中的流体经由第三流体排放管补充到往复式液压泵缸体内,往复式液压泵内的活塞下行至下止点,完成一个工作循环。
本发明方法中,所述的内燃机液压配气装置还包括有补液管,所述补液管的一端与所述流体储备箱相连,所述补液管的另一端与所述第一流体排放管相连,在所述补液管上设置有向第一流体排放管流通的单向补液阀;步骤f中,往复式液压泵内的活塞开始下行,且未通过侧壁通口时,流体储备箱中的流体依次经过补液管、第一流体排放管进入往复式液压泵的缸体内。
本发明的目的之三是这样实现的:一种液压配气内燃机,包括液压配气装置,所述液压配气装置包括有:
往复式液压泵,为单活塞液压缸,在其缸体上设有端部通口和侧壁通口;
第一负载,为往复式液压负载,其与所述往复式液压泵的端部通口之间接有第一流体排放管,在所述第一负载上接有第一复位装置;
第二负载,其与所述往复式液压泵的端部通口之间接有第二流体排放管,在所述第二流体排放管上设置有向第二负载流通的单向阀,在所述单向阀上设置第二复位装置;所述第一复位装置的开启压力大于第二复位装置的开启压力,第二负载可以是假性负载,即流体经单向阀溢流后直接回流到流体储备箱;以及
流体储备箱,通过第三流体排放管与所述往复式液压泵的侧壁通口联通。
为保证第一负载向第二负载回流的可靠性,在所述第一流体排放管和所述第二流体排放管之间可以设置连通管,所述连通管与所述第二流体排放管的连接处位于所述单向阀的进油口一侧。
所述单向阀为可调节流量单向阀。调节单向阀流量可以使第一复位装置的复位时刻相对于往复式液压泵活塞到达上止点的时刻提前或延后。
本发明的一个往复式液压泵联动内燃机一组异名气门,使气门迅速开启,在到达上止点时自动泄压复位,关闭气门,这样实现了在一个行程内完成气门启闭两个动作,消灭了气门重叠角,实现了进排气动作完全隔离,换气干净,提高燃烧效率。当第二负载为燃油泵活塞缸时,可以将配气机构与燃油增压机构合二为一。
附图说明
图1是第二负载为燃油泵柱塞的结构示意图。
图2是第二负载为假性负载的结构示意图。
图中:1、往复式液压泵,2、第一负载,3、第二负载,4、第一流体排放管,5、第二流体排放管,6、第三流体排放管,7、第一复位装置,8、第二复位装置,9、单向阀,10、补液管,11、单向补液阀,12、流体储备箱。
具体实施方式
实施例1:液压配气装置。
如图1所示,本发明的液压配气装置包括直线往复式液压泵1、第一负载2、第二负载3和流体储备箱12。
往复式液压泵1包括缸体和设置在缸体内部的活塞,该活塞优选为柱塞,活塞与缸壁在 所有耦合段都形成密封。缸体的顶端开有端部通口,在缸体的侧壁上开设有侧壁通口。使用时,往复式液压泵1内的活塞与内燃机的活塞联动,以为其提供动力。往复式液压泵1内的活塞的运动为变速运动,当活塞从其下止点上行时,其速度逐渐增大,通过缸体侧壁通口后,其速度达到最大,之后开始减速,当活塞上行至其上止点时,速度降至零。
第一负载2为往复式液压缸,第一负载2的活塞上设置第一复位装置7,在第一负载2与往复式液压泵1的端部通口之间接有第一流体排放管4。
第二负载3可以是假性负载或燃油泵柱塞,在第二负载3与往复式液压泵1的端部通口之间接有第二流体排放管5,由此使得第一流体排放管4和第二流体排放管5并联设置在往复式液压泵1的端部。在第二流体排放管5上设置有向第二负载3流通的可调节流量的单向阀9,在单向阀9上设置第二复位装置8,第一复位装置7的开启压力大于第二复位装置8的开启压力。
当第二负载3为燃油泵柱塞时(如图1),配气机构与燃油增压机构合二为一。当第二负载3为假性负载时(如图2),流体经单向阀9溢流后直接回到流体储备箱12。
流体储备箱12用以储备流体,流体储备箱12设置在高于往复式液压泵1顶端的位置,抑或设置在其他能够使得往复式液压泵1的缸体腔内充满流体的位置,又或者是采用增加压力等方式保证往复式液压泵1的缸体腔内充满流体。在往复式液压泵1的侧壁通口与流体储备箱12之间连接有第三流体排放管6,往复式液压泵1空排时,缸内的流体经侧壁通口从第三流体排放管6进入流体储备箱12中。在第一流体排放管4与流体储备箱12之间连接有补液管10,在补液管10上设置有向第一流体排放管4流通的单向补液阀11。当往复式液压泵1内的活塞下行,还未通过侧壁通口时,往复式液压泵1的缸内形成负压,此时,流体储备箱12内的流体经补液管10和第一流体排放管4进入往复式液压泵1的缸体内,以降低负压对装置的损害。
当内燃机处于启动、空载或轻载等工况时,发动机转速较低,往复式液压泵1的活塞速度较低,适时地根据实际情况调节单向阀9的可通过流量,以保证气门的优先开启。调节单向阀流量可以使第一复位装置的复位时刻相对于往复式液压泵活塞到达上止点的时刻提前或延后。
本发明的液压配气内燃机,设置内燃机曲轴转速是配气曲轴的2倍,往复式液压泵活塞铰接在配气曲轴上,往复式液压泵活塞受配气曲轴运动规律控制,做变速运动。四冲程内燃机有吸气、压缩、做功、排气四个行程,完成四个行程内燃机曲轴旋转720°,活塞往复两次,内燃机曲轴转速是配气曲轴的2倍,配气曲轴对应内燃机曲轴只旋转360°,往复式液 压泵的活塞往复一次,该活塞在侧壁通口以上部分运动对应内燃机排气、吸气行程,在侧壁通口以下部分运动对应内燃机压缩、做功行程,该活塞在侧壁口以下的运动为空吸空排。
实施例2:液压配气装置的驱动方法。
本发明液压配气装置的驱动方法包括以下步骤:
1、设置如实施例1所述的液压配气装置,第二负载3为假性负载,即流体经单向阀9溢流后直接回流到流体储备箱12(如图2所示),往复式液压泵1的缸体内部、各管道内均充满不可压缩的流体,停机时,往复式液压泵1的活塞位于其下止点。
2、往复式液压泵1内的活塞受控加速上行,流体经侧壁通口空排,即通过第三流体排放管6排入流体储备箱12中(因第一负载2、可调节流量的单向阀9和单向补液阀11处都有阻力)。
3、往复式液压泵1内的活塞继续加速上行,当其上表面运动至侧壁通口上方后,侧壁通口被该活塞密封,结束空排,产生压力,流体经单向阀9溢出(因单向补液阀11不通,第一复位装置7的开启压力大于第二复位装置8的开启压力)。
4、与此同时,往复式液压泵1内的活塞达到最大速度,缸体内流体的瞬时流量很大,当流体的瞬时流量大于单向阀9的瞬时可通过量时,造成一个大于第一复位装置7最大蓄能压力的高压,超出的部分流体经第一流体排放管4进入第一负载2,并推动第一负载2内的活塞向上动作。
5、之后,往复式液压泵1内的活塞继续上行,并开始减速,流体的压力逐渐降低,在第一复位装置7的压力作用下第一负载2内的流体经由第一流体排放管4、单向阀9、第二流体排放管5,进入第二负载3(即流体储备箱12)中,活塞到达其上止点或稍后时,第一复位装置7复位。
6、往复式液压泵1内的活塞随后下行,单向补液阀11开启,为往复式液压泵1的缸体内补充流体,第二复位装置8随之复位;活塞下行至越过侧壁口后,流体通过第三流体排放管6进入缸体内,直至活塞下行至其下止点,流体恢复平衡状态,完成一个工作循环。
在上述过程中,调节单向阀流量可以使第一复位装置的复位时刻相对于往复式液压泵活塞到达上止点的时刻提前或延后。
实施例3:液压配气装置在内燃机上的使用方法。
液压配气装置在内燃机上的使用方法,包括以下步骤:
1、将实施例1所述的液压配气装置安装在内燃机上(液压配气装置的第二负载3为假性负载,往复式液压泵1的缸体内部、各管道内充满不可压缩的流体),往复式液压泵1内的活 塞与内燃机气缸的活塞联动,使内燃机活塞的工作频率是往复式液压泵活塞工作频率的2倍,第一液压负载7与内燃机的一组异名气门同步联动(内燃机的一组异名气门是指内燃机中两个缸体上的不同名称的气门,例如,第一个缸体上的进气门和第二个缸体上的排气门为内燃机的一组异名气门),停机时,往复式液压泵1的活塞位于其下止点。
2、往复式液压泵1内的活塞开始加速上行,流体经侧壁通口空排,即通过第三流体排放管6排入流体储备箱12中(因第一负载2、可调节流量单向阀9和单向补液阀11处都有阻力)。
3、往复式液压泵1内的活塞继续加速上行,当其上表面运动至侧壁通口上方后,结束空排,产生压力,流体经单向阀9溢出(因单向补液阀11不通,第一复位装置7的开启压力大于第二复位装置8的开启压力)。
4、与此同时,往复式液压泵1内的活塞达到最大速度,缸体内流体的瞬时流量大于单向阀9的瞬时可通过量,超出的部分流体经第一流体排放管4进入第一负载2,并推动第一负载2内的活塞向上动作,联动一组异名气门打开。
5、之后,往复式液压泵1内的活塞继续上行,并开始减速,流体的压力逐渐降低,在第一复位装置7的压力作用下第一负载2内的流体经由第一流体排放管4、单向阀9、第二流体排放管5,进入第二负载3(即流体储备箱12)中,直至活塞到达其上止点,第一复位装置7复位,联动一组异名气门关闭。
6、往复式液压泵1内的活塞随后下行,单向补液阀11开启,为往复式液压泵1的缸体内补充流体,第二复位装置8随之复位;活塞下行至越过侧壁口后,流体通过第三流体排放管6进入缸体内,直至活塞下行至其下止点,流体恢复平衡状态,完成一个工作循环。

Claims (7)

  1. 一种内燃机液压配气装置,其特征是,包括有:
    往复式液压泵,为单活塞液压缸,在其缸体上设有端部通口和侧壁通口;
    第一负载,为往复式液压负载,其与所述往复式液压泵的端部通口之间接有第一流体排放管,在所述第一负载上设置第一复位装置;
    第二负载,其与所述往复式液压泵的端部通口之间接有第二流体排放管,在所述第二流体排放管上设置有向第二负载流通的单向阀,在所述单向阀上设置第二复位装置;所述第一复位装置的开启压力大于第二复位装置的开启压力;以及
    流体储备箱,通过第三流体排放管与所述往复式液压泵的侧壁通口联通。
  2. 根据权利要求1所述的内燃机液压配气装置,其特征是,所述单向阀为可调节流量单向阀。
  3. 根据权利要求1所述的内燃机液压配气装置,其特征是,在所述第一流体排放管和所述第二流体排放管之间设置有连通管,所述连通管与所述第二流体排放管的连接处位于所述单向阀的进油口一侧;
  4. 一种内燃机液压配气装置的驱动方法,其特征是,包括以下步骤:
    a、设置如权利要求1所述的内燃机液压配气装置,在装置内充满不可压缩的流体;
    b、往复式液压泵内的活塞受控加速上行,流体经侧壁通口从第三流体排放管进入流体储备箱中;
    c、往复式液压泵内的活塞继续加速上行,在封闭侧壁通口后,流体经单向阀溢出;
    d、与此同时或随后,往复式液压泵内的活塞达到最大速度,流体的瞬时流量大于单向阀的瞬时可通过量,超出的部分流体经第一流体排放管进入第一负载,并推动第一负载内的活塞向上动作;
    e、之后,往复式液压泵内的活塞继续上行,并开始减速,流体的压力开始降低,在第一复位装置的压力作用下第一负载内的流体从第一流体排放管经由单向阀、第二流体排放管进入第二负载中,随后,第一复位装置复位;
    f、往复式液压泵内的活塞到达上止点前后,第二复位装置随之复位;
    g、往复式液压泵内的活塞下行通过侧壁通口后,流体储备箱中的流体经由第三流体排放管补充到往复式液压泵缸体内,往复式液压泵内的活塞下行至下止点,完成一个工作循环。
  5. 一种液压配气内燃机,其特征是,包括液压配气装置,所述液压配气装置包括有:
    往复式液压泵,为单活塞液压缸,在其缸体上设有端部通口和侧壁通口;
    第一负载,为往复式液压负载,其与所述往复式液压泵的端部通口之间接有第一流体排放管,在所述第一负载上设置第一复位装置;
    第二负载,其与所述往复式液压泵的端部通口之间设置第二流体排放管,在所述第二流体排放管上设置有向第二负载流通的单向阀,在所述单向阀上设置第二复位装置;所述第一复位装置的开启压力大于第二复位装置的开启压力,以及
    流体储备箱,通过第三流体排放管与所述往复式液压泵的侧壁通口联通。
  6. 根据权利要求5所述的所述的一种液压配气内燃机,其特征是,所述单向阀为可调节流量单向阀。
  7. 根据权利要求5所述的所述的一种液压配气内燃机,其特征是,在所述第一流体排放管和所述第二流体排放管之间设置有连通管,所述连通管与所述第二流体排放管的连接处位于所述单向阀的进油口一侧。
PCT/CN2017/112081 2017-11-21 2017-11-21 一种内燃机液压配气装置、其驱动方法及液压配气内燃机 WO2019100199A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112081 WO2019100199A1 (zh) 2017-11-21 2017-11-21 一种内燃机液压配气装置、其驱动方法及液压配气内燃机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112081 WO2019100199A1 (zh) 2017-11-21 2017-11-21 一种内燃机液压配气装置、其驱动方法及液压配气内燃机

Publications (1)

Publication Number Publication Date
WO2019100199A1 true WO2019100199A1 (zh) 2019-05-31

Family

ID=66631268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112081 WO2019100199A1 (zh) 2017-11-21 2017-11-21 一种内燃机液压配气装置、其驱动方法及液压配气内燃机

Country Status (1)

Country Link
WO (1) WO2019100199A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125828A (en) * 1995-08-08 2000-10-03 Diesel Engine Retarders, Inc. Internal combustion engine with combined cam and electro-hydraulic engine valve control
JP2008106670A (ja) * 2006-10-25 2008-05-08 Honda Motor Co Ltd 液圧駆動式動弁装置
CN201786409U (zh) * 2010-09-20 2011-04-06 武央 摩托车发动机液压传动配气系统
CN102787878A (zh) * 2012-07-27 2012-11-21 长城汽车股份有限公司 一种液压驱动的发动机配气机构
CN202926416U (zh) * 2012-11-07 2013-05-08 广西玉柴机器股份有限公司 发动机电控液压配气系统
CN104481625A (zh) * 2014-11-13 2015-04-01 浙江师范大学 一种可变配气相位系统
CN104612773A (zh) * 2015-01-26 2015-05-13 吉林大学 基于电液控制式的进气配气系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125828A (en) * 1995-08-08 2000-10-03 Diesel Engine Retarders, Inc. Internal combustion engine with combined cam and electro-hydraulic engine valve control
JP2008106670A (ja) * 2006-10-25 2008-05-08 Honda Motor Co Ltd 液圧駆動式動弁装置
CN201786409U (zh) * 2010-09-20 2011-04-06 武央 摩托车发动机液压传动配气系统
CN102787878A (zh) * 2012-07-27 2012-11-21 长城汽车股份有限公司 一种液压驱动的发动机配气机构
CN202926416U (zh) * 2012-11-07 2013-05-08 广西玉柴机器股份有限公司 发动机电控液压配气系统
CN104481625A (zh) * 2014-11-13 2015-04-01 浙江师范大学 一种可变配气相位系统
CN104612773A (zh) * 2015-01-26 2015-05-13 吉林大学 基于电液控制式的进气配气系统

Similar Documents

Publication Publication Date Title
KR101128476B1 (ko) 스플릿-사이클 엔진을 위한 유체역학적 밸브 구동 시스템
US20110220081A1 (en) Split-cycle air-hybrid engine with minimized crossover port volume
US8813695B2 (en) Split-cycle engine with crossover passage combustion
US20120192841A1 (en) Split-cycle air hybrid engine with dwell cam
US9046008B2 (en) Lost-motion variable valve actuation system with valve deactivation
US20120073553A1 (en) Exhaust valve timing for split-cycle engine
CN102425494B (zh) 液控对置活塞式发动机
CN108240244A (zh) 柴油机进气门可变系统及柴油机
WO2019100199A1 (zh) 一种内燃机液压配气装置、其驱动方法及液压配气内燃机
CN208294593U (zh) 柴油机进气门可变系统及柴油机
CN102678324B (zh) 汽缸外燃烧室高压燃气常规压燃气二步作功柴油机
CN202914179U (zh) 汽缸外燃烧室高压燃气常规压燃气二步作功柴油机
CN108513600A (zh) 一种复进式顺序阀及其顺序驱动方法
RU2615299C1 (ru) Способ дополнительного наполнения цилиндра двигателя внутреннего сгорания воздухом или топливной смесью перекрытием фаз газораспределения системой привода трёхклапанного газораспределителя с зарядкой гидроаккумулятора системы привода жидкостью из компенсационного гидроаккумулятора
RU2576694C1 (ru) Способ управления рециркуляцией выхлопных газов в двигателе внутреннего сгорания системой пневматического привода трёхклапанного газораспределителя с зарядкой пневмоаккумулятора системы газом из компенсационного пневмоаккумулятора
RU2576770C1 (ru) Способ управления рециркуляцией выхлопных газов в двигателе внутреннего сгорания системой гидравлического привода двухклапанного газораспределителя с зарядкой гидроаккумулятора системы жидкостью из компенсационного гидроаккумулятора
RU2576772C1 (ru) Способ управления рециркуляцией выхлопных газов в двигателе внутреннего сгорания системой пневматического привода двухклапанного газораспределителя с зарядкой пневмоаккумулятора системы газом из компенсационного пневмоаккумулятора
RU24857U1 (ru) Двигатель с внешним подводом теплоты и внутренним парообразованием для утилизации теплоты отработавших газов двс
RU65973U1 (ru) Головка цилиндра двигателя внутреннего сгорания (варианты)
RU113540U1 (ru) Двигатель внутреннего сгорания
WO2018029701A1 (en) Hydraulic internal reciprocal engine (h.i.r.e)
CN105569973A (zh) 组合内燃液压泵
JP2002202050A (ja) 蒸気を利用した揚水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932955

Country of ref document: EP

Kind code of ref document: A1