WO2019098769A1 - 참조 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents

참조 신호를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019098769A1
WO2019098769A1 PCT/KR2018/014133 KR2018014133W WO2019098769A1 WO 2019098769 A1 WO2019098769 A1 WO 2019098769A1 KR 2018014133 W KR2018014133 W KR 2018014133W WO 2019098769 A1 WO2019098769 A1 WO 2019098769A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
pbch
information
block
sequence
Prior art date
Application number
PCT/KR2018/014133
Other languages
English (en)
French (fr)
Inventor
고현수
김기준
윤석현
김은선
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2020526904A priority Critical patent/JP7177832B2/ja
Priority to US16/762,907 priority patent/US11540191B2/en
Priority to EP18878660.2A priority patent/EP3713136A4/en
Priority to CN201880085632.9A priority patent/CN111557081B/zh
Publication of WO2019098769A1 publication Critical patent/WO2019098769A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/249Reselection being triggered by specific parameters according to timing information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a method for transmitting and receiving a reference signal and an apparatus therefor, and more particularly, to a method and apparatus for transmitting and receiving a reference signal in a case where a synchronization signal block and a reference signal are received from each of a serving cell and a neighboring cell, And more particularly, to a method and apparatus for acquiring time information of a mobile terminal.
  • NewRAT Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low latency communication
  • mMTC Massive Machine-Type Communications
  • the eMBB is a next generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, and High Peak Data Rate
  • URLLC is a next generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, (Eg, V2X, Emergency Service, Remote Control)
  • mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity. (e.g., IoT).
  • the present invention provides a method for transmitting and receiving a reference signal and an apparatus therefor.
  • a method of receiving a reference signal in a wireless communication system comprising: receiving first information related to a reference signal setting from a Serving Cell; Wherein the reference signal is received from a neighbor cell and acquires second information on the timing of the reference signal based on the sequence of the reference signal, wherein the reference signal is different from the SS / It can be kind.
  • the second information may be information on a half frame to which the reference signal is transmitted.
  • the second information may be information on at least one of a slot to which the reference signal is transmitted and an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the second information may be information related to an index of an SS / PBCH block received from the neighboring cell.
  • the second information may include the most significant 3 bits for an index of an SS / PBCH block received from the neighboring cell.
  • the reference signal may be mapped to resources located within a certain range from the SS / PBCH mapped resources received through the neighboring cell.
  • the reference signal may be a CSI-RS (Channel States Information-Reference Signal).
  • CSI-RS Channel States Information-Reference Signal
  • the reference signal may be a DMRS (demodulation reference signal), and the DMRS may be mapped to an area where the SS / PBCH block is not mapped.
  • DMRS demodulation reference signal
  • handover from the serving cell to the neighboring cell may be performed based on the second information.
  • a measurement for the neighboring cell may be performed based on the second information.
  • a communication device for receiving a reference signal, comprising: a memory; And a processor coupled to the memory, wherein the processor is configured to receive first information related to a reference signal setting from a Serving Cell and to receive the reference information from a neighbor cell based on the first information, And to obtain second information on the timing of the reference signal based on the sequence of the reference signal.
  • the reference signal may be of a different type from the SS / PBCH block.
  • a method of transmitting a reference signal by a neighbor cell generates a sequence of the reference signal based on first information on the timing of the reference signal , Maps a sequence of the reference signal to resource elements (REs) based on first information related to a reference signal setting transmitted from the serving cell to the UE, and transmits the reference signal to the UE
  • the reference signal may be of a different type than the SS / PBCH block.
  • an index of a sync signal block received from a neighboring cell can be obtained without decoding a sync signal block received from a neighboring cell, thereby reducing decoding complexity.
  • FIG. 1 is a diagram showing a control plane and a user plane structure of a radio interface protocol between a UE and an E-UTRAN based on a 3GPP radio access network standard;
  • FIG. 2 is a view for explaining a physical channel used in a 3GPP system and a general signal transmission method using the same.
  • FIG 3 illustrates a radio frame structure for transmission of a synchronization signal (SS) used in an LTE system.
  • SS synchronization signal
  • FIG. 4 is a diagram for explaining a structure of an SS / PBCH block used in an NR system.
  • 5 to 7 are views for explaining a structure of a radio frame and a slot used in the NR system.
  • FIG. 8 abstractly illustrates a hybrid beamforming structure in terms of a transceiver unit (TXRU) and a physical antenna.
  • TXRU transceiver unit
  • FIG. 9 shows a beam sweeping operation for a synchronization signal and system information in a downlink transmission process.
  • Figure 10 illustrates a cell of a new radio access technology (NR) system.
  • NR new radio access technology
  • 11 to 14 are diagrams for explaining a method of configuring a synchronous signal burst and a synchronous signal burst set.
  • 15 is a diagram for explaining a method of indexing a synchronous signal.
  • 16 is a diagram showing a method of indicating a synchronous signal index, SFN, and Half Frame.
  • 17 to 29 are diagrams showing the results of measuring the performance according to the embodiment of the present invention.
  • FIGS. 30 to 31 are diagrams for explaining embodiments in which PSS / SSS / PBCH are multiplexed in a synchronous signal.
  • 32 to 33 are graphs showing simulation results of PBCH decoding performance according to an embodiment of the present invention.
  • 34 to 36 are diagrams for explaining a method of acquiring timing information through a reference signal according to an embodiment of the present invention.
  • 37 to 40 are diagrams for explaining a method of setting a CORESET for RMSI and a method of setting a monitoring window for a corresponding PDCCH.
  • 41 is a block diagram illustrating components of a wireless device that performs the present invention.
  • the present invention can be used in a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay and the like.
  • RRH remote radio head
  • eNB transmission point
  • RP reception point
  • relay a relay
  • the 3GPP-based communication standard includes downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlink physical channels used by the physical layer but corresponding to resource elements not carrying information originated from an upper layer Physical signals are defined.
  • a Physical Downlink Shared Channel (PDSCH), a Physical Broadcast Channel (PBCH), a Physical Multicast Channel (PMCH), a Physical Control Format Indicator Channel a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, and a reference signal and a synchronization signal Are defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a particular predetermined waveform that is known to the gNB and the UE, for example, a cell specific RS, a UE- A specific RS (UE-specific RS, UE-RS), a positioning RS (PRS) and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • RS reference signal
  • the 3GPP LTE / LTE-A standard supports uplink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originated from an upper layer Uplink physical signals.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • a Physical Uplink Control CHannel (PUCCH), a Physical Uplink Control Channel (PUSCH), a Physical Uplink Control Channel (PUSCH), and a Physical Uplink Control Channel (PUSCH) (Uplink Shared CHannel) / PRACH (Physical Random Access CHannel) refers to a set of time-frequency resources or a set of resource elements each carrying Uplink Control Information (UCI) / uplink data / random access signals.
  • UCI Uplink Control Information
  • the expression that the user equipment transmits a PUCCH / PUSCH / PRACH is referred to as a PUCCH / PUCCH / PRACH or a PUCCH / PUCCH / PRACH through an uplink control information / uplink
  • the expression that the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used to indicate that the downlink data / control information is transmitted on the PDCCH / PCFICH / PHICH / Is used in the same sense.
  • an OFDM symbol / subcarrier / RE allocated / configured with a CRS / DMRS / CSI-RS / SRS / UE-RS is referred to as a CRS / DMRS / CSI- RS / SRS / UE- RS symbol / / Subcarrier / RE.
  • a CRS / DMRS / CSI- RS / SRS / UE- RS symbol referred to as a CRS / DMRS / CSI- RS / SRS / UE- RS symbol / / Subcarrier / RE.
  • TRS tracking RS
  • a sub-carrier allocated or configured with a TRS is called a TRS sub-carrier.
  • TRS RE a configured RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe, and a subframe in which a synchronization signal (for example, PSS and / or SSS) is transmitted is referred to as a synchronization signal subframe or a PSS / Quot;
  • An OFDM symbol / subcarrier / RE allocated or configured with PSS / SSS is referred to as PSS / SSS symbol / subcarrier / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are respectively configured as an antenna port configured to transmit CRSs, an antenna port configured to transmit UE- An antenna port configured to transmit CSI-RS, and an antenna port configured to transmit TRS.
  • the antenna ports configured to transmit CRSs may be separated by the location of the REs occupied by the CRS according to the CRS ports and the antenna ports configured to transmit the UE-RSs may be separated by UE RS ports, and the antenna ports configured to transmit CSI-RSs may be classified according to the CSI-RS ports occupied by the CSI-RS. The location of the REs.
  • CRS / UE-RS / CSI-RS / TRS port is also used as a term for a pattern of REs occupied by a CRS / UE-RS / CSI-RS / TRS within a certain resource area.
  • the control plane refers to a path through which control messages used by a UE and a network are transmitted.
  • the user plane means a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer using a physical channel.
  • the physical layer is connected to the upper Medium Access Control layer through a transmission channel (Trans Port Channel). Data moves between the MAC layer and the physical layer over the transmission channel. Data is transferred between the transmitting side and the receiving side physical layer through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in an OFDMA (Orthogonal Frequency Division Multiple Access) scheme in a downlink, and is modulated in an SC-FDMA (Single Carrier Frequency Division Multiple Access) scheme in an uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the Medium Access Control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block in the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 and IPv6 in a wireless interface with a narrow bandwidth.
  • PDCP Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for the control of the logical channels, the transmission channels and the physical channels in connection with the configuration, re-configuration and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the UE and the network.
  • the terminal and the RRC layer of the network exchange RRC messages with each other. If there is an RRC connection (RRC Connected) between the UE and the RRC layer of the network, the UE is in the RRC Connected Mode, otherwise it is in the RRC Idle Mode.
  • the Non-Access Stratum (NAS) layer at the top of the RRC layer performs functions such as session management and mobility management.
  • NAS Non-Access Stratum
  • a downlink transmission channel for transmitting data from a network to a terminal includes a BCH (Broadcast Channel) for transmitting system information, a PCH (Paging Channel) for transmitting a paging message, a downlink SCH (Shared Channel) for transmitting user traffic and control messages, have.
  • a traffic or control message of a downlink multicast or broadcast service it may be transmitted through a downlink SCH, or may be transmitted via a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the UE to the network includes RACH (Random Access Channel) for transmitting an initial control message and an uplink SCH (Shared Channel) for transmitting user traffic or control messages.
  • a logical channel mapped to a transmission channel is a Broadcast Control Channel (BCCH), a Paging Control Channel (PCCH), a Common Control Channel (CCCH), a Multicast Control Channel (MCCH) Traffic Channel).
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH
  • FIG. 2 is a view for explaining a physical channel used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is turned on or newly enters a cell, the UE performs an initial cell search operation such as synchronizing with the BS (S201). To this end, the terminal receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from a base station and synchronizes with the base station and acquires information such as a cell ID have. Then, the terminal can receive the physical broadcast channel from the base station and acquire the in-cell broadcast information. Meanwhile, the UE can receive the downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE receives more detailed system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to the information on the PDCCH (S202).
  • a Physical Downlink Control Channel (PDCCH)
  • a Physical Downlink Control Channel (PDSCH)
  • the mobile station can perform a random access procedure (RACH) on the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE transmits a specific sequence through a Physical Random Access Channel (PRACH) (S203 and S205), and receives a response message for the preamble on the PDCCH and the corresponding PDSCH ( S204 and S206).
  • PRACH Physical Random Access Channel
  • a contention resolution procedure can be additionally performed.
  • the UE having performed the above procedure performs PDCCH / PDSCH reception (S207) and physical uplink shared channel (PUSCH) / physical uplink control channel Control Channel (PUCCH) transmission (S208).
  • the UE receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the UE, and formats are different according to the purpose of use.
  • the control information transmitted by the UE to the Node B via the uplink or received from the Node B by the UE includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI) ) And the like.
  • the UE can transmit control information such as CQI / PMI / RI as described above through PUSCH and / or PUCCH.
  • the serving cell may request RRM measurement information, which is a measurement value for performing RRM operation, to the UE.
  • RRM measurement information which is a measurement value for performing RRM operation
  • the UE can measure and report information such as cell search information, reference signal received power (RSRP), and reference signal received quality (RSRQ) for each cell.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the UE receives 'measConfig' as an upper layer signal for RRM measurement from the serving cell. Then, the UE measures RSRP or RSRQ according to the 'measConfig' information.
  • the definition of RSRP, RSRQ and RSSI according to TS 36.214 document of LTE system is as follows.
  • RSRP the cell specific reference signal transmitted in the measurement bandwidth is defined as the linear average of the power contribution ([W]) of;; (RE Resource Element) resource elements of (Cell specific reference signal CRS) .
  • CRS R0 according to TS 36.211 is used for RSRP decision. In some cases, in order to increase reliability, CRS R1 may be additionally used.
  • the reference point for RSRP should be the antenna connector of the UE and, if receive diversity is used, the reported RSRP value should not be lower than any one of the individual diversities.
  • RSRQ is defined as N * RSRP / (RSSI of E-UTRA carrier).
  • N is the number of RBs of the E-UTRA carrier RSSI measurement bandwidth.
  • measurement of 'N * RSRP' and measurement of 'RSSI of E-UTRA carrier' are performed through the same set of resource blocks (RB set).
  • E-UTRA Carrier RSSI is a set of reference symbols for antenna port 0 on N resource blocks obtained from all sources including the same channel of a serving cell and a non-serving cell, adjacent channel interference, thermal noise, And is obtained as a linear average value of the total received power measured only in the OFDM symbol that it contains.
  • the RSSI is measured on all indicated OFDM symbols.
  • the reference point for RSRQ should be the antenna connector of the UE, and if receive diversity is used, the reported RSRQ value should not be lower than any one of the individual diversities.
  • RSSI means a received wide band power including noise and thermal noise generated within a bandwidth defined by a Receiver Pulse Shaping Filter. Again, the reference point for RSSI must be the antenna connector of the UE and, if receive diversity is used, the reported RSSI value should not be lower than any one of the individual diversities.
  • the UE operating in the LTE system can transmit information in 6, 15, 25, and 50 through an information element related to the allowed measurement bandwidth transmitted in SIB3 (SIB3) , 75, and 100 resource blocks (RBs).
  • SIB3 SIB3
  • RBs resource blocks
  • the RSRP is allowed to be measured in a bandwidth corresponding to one of 6, 15, 25, 50, 75, and 100 resource blocks (RBs) through the allowed measurement bandwidth transmitted in the SIB 5. If there is no IE, the RSRP can be measured in the frequency band of the entire downlink system by default.
  • the UE considers the corresponding value as the maximum measurement bandwidth, and can freely measure the RSRP value within the corresponding value.
  • the UE must calculate the RSRP value for the entire allowed measurement bandwidth.
  • the RSSI is measured in the frequency band of the receiver of the UE according to the definition of the RSSI bandwidth.
  • NR communication systems are required to support significantly better performance than existing fourth generation (4G) systems in terms of data rate, capacity, latency, energy consumption and cost.
  • 4G fourth generation
  • NR systems need to make considerable progress in the areas of bandwidth, spectral, energy, signaling efficiency, and cost per bit.
  • a reference signal already known by the transmitting side and the receiving side together with data is transmitted from the transmitting side to the receiving side for channel measurement.
  • the reference signal not only informs the channel measurement but also the modulation technique, thereby performing the demodulation process.
  • a reference signal is a dedicated RS (DRS) for a Node B and a UE, that is, a common RS or a cell specific RS (CRS), which is a UE-specific reference signal and a cell- Respectively.
  • DRS dedicated RS
  • CRS cell specific RS
  • the cell specific reference signal includes a reference signal for measuring CQI / PMI / RI at the UE and reporting the CQI / PMI / RI to the Node B, which is referred to as CSI-RS (Channel State Information-RS).
  • CSI-RS Channel State Information-RS
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal (SS) in a LTE / LTE-A based wireless communication system.
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal and a PBCH in a frequency division duplex (FDD).
  • FIG. 3 (a) illustrates a structure in which a normal cyclic prefix (CP)
  • FIG. 3B shows transmission positions of the SS and the PBCH in the radio frame set by the extended CP.
  • FIG. 3B shows transmission positions of the SS and the PBCH in the radio frame.
  • CP normal cyclic prefix
  • SS is divided into PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the PSS is used to obtain time domain synchronization and / or frequency domain synchronization such as OFDM symbol synchronization, slot synchronization, and the like, and the SSS can be used for frame synchronization, cell group ID and / or cell CP configuration (i.e., CP usage information).
  • the PSS and the SSS are transmitted in two OFDM symbols of each radio frame, respectively.
  • GSM Global System for Mobile communication
  • the UE can detect that the corresponding subframe is one of the subframe 0 and the subframe 5 by detecting the PSS, but it is not known what the subframe is specifically of the subframe 0 and the subframe 5 . Therefore, the UE can not recognize the boundary of the radio frame only by the PSS. That is, frame synchronization can not be obtained with only PSS.
  • the UE detects an SSS transmitted twice in one radio frame but transmitted as a different sequence and detects the boundary of the radio frame.
  • the UE which has determined the time and frequency parameters necessary for demodulating the DL signal and performing UL signal transmission at the correct time by performing a cell search process using the PSS / SSS, It is necessary to acquire system information necessary for the system configuration of the eNB.
  • the system information is configured by a master information block (MIB) and a system information block (SIB).
  • Each system information block includes a set of functionally related parameters and may include a master information block (MIB) and a system information block type 1 (SIB1), a system information block type 2 (System Information Block Type 2, SIB2), and SIB3 to SIB17.
  • the MIB contains the parameters that are most frequently transmitted, which is essential for the UE to initially access the network of the eNB.
  • the UE may receive the MIB over a broadcast channel (e.g., PBCH).
  • PBCH broadcast channel
  • the MIB includes a downlink system bandwidth (dl-Bandwidth, DL BW), a PHICH configuration, and a system frame number (SFN). Therefore, the UE can know explicitly the DL BW, SFN, and PHICH setting information by receiving the PBCH. Meanwhile, the information that the UE implicitly knows through the PBCH reception includes the number of transmission antenna ports of the eNB.
  • Information on the number of transmission antennas of the eNB is implicitly signaled by masking (for example, XOR) a sequence corresponding to the number of transmission antennas in a 16-bit CRC (Cyclic Redundancy Check) used for error detection of the PBCH.
  • masking for example, XOR
  • CRC Cyclic Redundancy Check
  • SIB1 includes not only information on time domain scheduling of other SIBs but also parameters necessary for determining whether a particular cell is suitable for cell selection. SIB1 is received by the UE via broadcast signaling or dedicated signaling.
  • the DL carrier frequency and the corresponding system bandwidth can be obtained by the MIB carrying the PBCH.
  • the UL carrier frequency and the corresponding system bandwidth can be obtained through system information, which is a DL signal.
  • the UE receiving the MIB applies the value of the DL BW in the MIB to the UL-bandwidth (UL BW) until the system information block type 2 (SystemInformationBlockType2, SIB2) is received, if there is no valid system information stored for the cell .
  • the UE may obtain system information block type 2 (SystemInformationBlockType2, SIB2) to determine the entire UL system band that it can use for UL transmission through the UL-carrier frequency and UL-bandwidth information in the SIB2 .
  • the PSS / SSS and the PBCH are transmitted only in a total of six RBs, that is, a total of 72 subcarriers, in three OFDM symbols within the corresponding OFDM symbol, regardless of the actual system bandwidth. Therefore, the UE is configured to detect or decode the SS and the PBCH regardless of the downlink transmission bandwidth configured to the UE.
  • the UE may perform a random access procedure to complete the connection to the eNB.
  • the UE may transmit a preamble through a physical random access channel (PRACH), and may receive a response message for a preamble on the PDCCH and the PDSCH.
  • PRACH physical random access channel
  • additional PRACH can be transmitted, and a contention resolution procedure such as a PDCCH and a PDSCH corresponding to the PDCCH can be performed.
  • the UE having performed the above-described procedure can perform PDCCH / PDSCH reception and PUSCH / PUCCH transmission as a general uplink / downlink signal transmission procedure.
  • the random access procedure is also referred to as a random access channel (RACH) procedure.
  • the random access procedure is used variously for initial connection, random access procedure for initial access, uplink synchronization adjustment, resource allocation, handover, and the like.
  • the random access procedure is classified into a contention-based process and a dedicated (i.e., non-competitive-based) process.
  • the contention-based random access procedure is generally used including an initial connection, and a dedicated random access procedure is used for a handover or the like.
  • the UE randomly selects the RACH preamble sequence.
  • the UE uses the RACH preamble sequence uniquely assigned to the UE by the eNB. Therefore, a random access procedure can be performed without collision with another UE.
  • the competition-based random access procedure includes the following four steps.
  • the messages transmitted in steps 1 to 4 may be referred to as messages 1 to 4 (Msg1 to Msg4), respectively.
  • Step 1 RACH preamble (via PRACH) (UE to eNB)
  • Step 2 random access response (RAR) (via PDCCH and PDSCH) (eNB to UE)
  • Step 3 Layer 2 / Layer 3 message (via PUSCH) (UE to eNB)
  • Step 4 contention resolution message (eNB to UE)
  • the dedicated random access procedure includes the following three steps.
  • the messages transmitted in steps 0 to 2 may be referred to as messages 0 to 2 (Msg0 to Msg2), respectively.
  • Uplink transmission corresponding to the RAR i.e., step 3 may also be performed as part of the random access procedure.
  • the dedicated random access procedure can be triggered using a PDCCH (hereinafter referred to as a PDCCH order) for use by the base station to command RACH preamble transmission.
  • a PDCCH hereinafter referred to as a PDCCH order
  • Step 0 RACH preamble allocation through dedicated signaling (eNB to UE)
  • Step 1 RACH preamble (via PRACH) (UE to eNB)
  • Step 2 Random Access Response (RAR) (via PDCCH and PDSCH) (eNB to UE)
  • RAR Random Access Response
  • the UE After transmitting the RACH preamble, the UE attempts to receive a random access response (RAR) within a pre-set time window. Specifically, the UE attempts to detect a PDCCH (hereinafter referred to as RA-RNTI PDCCH) having a random access RNTI (RA-RNTI) within the time window (e.g., CRC in the PDCCH is masked with RA-RNTI). Upon detection of the RA-RNTI PDCCH, the UE checks whether there is a RAR for itself in the PDSCH corresponding to the RA-RNTI PDCCH.
  • RA-RNTI PDCCH a PDCCH having a random access RNTI (RA-RNTI) within the time window (e.g., CRC in the PDCCH is masked with RA-RNTI).
  • RA-RNTI PDCCH a PDCCH having a random access RNTI (RA-RNTI) within the time window (e.g., CRC in
  • RAR includes timing advance (TA) information, UL resource allocation information (UL grant information), temporary terminal identifier (e.g., temporary cell-RNTI, TC-RNTI) indicating timing offset information for UL synchronization .
  • the UE may perform UL transmission (e.g., Msg3) according to the resource allocation information and the TA value in the RAR.
  • HARQ is applied to the UL transmission corresponding to the RAR.
  • the UE may receive Msg3 and then receive acknowledgment information (e.g., PHICH) corresponding to Msg3.
  • the random access preamble that is, RACH preamble is configured in the physical layer length of the sequence portion of the cyclic prefix (cyclic prefix) and a length T of SEQ T CP.
  • the T SEQ of the T CP depends on the frame structure and the random access configuration.
  • the preamble format is controlled by the upper layer.
  • the PACH preamble is transmitted in the UL subframe.
  • the transmission of the random access preamble is restricted to specific time and frequency resources. These resources are referred to as PRACH resources, and the PRACH resources are numbered in ascending order of sub-frame numbers in the radio frame and PRBs in the frequency domain, such that index 0 corresponds to a PRB and a subframe of a lower number in a radio frame Loses.
  • Random access resources are defined according to the PRACH setting index (see 3GPP TS 36.211 standard document).
  • the PRACH setting index is given by the upper layer signal (transmitted by the eNB).
  • the random access preamble that is, the subcarrier spacing for the RACH preamble is 1.25 kHz for the preamble formats 0 to 3 and 7.5 kHz for the preamble format 4 (see 3GPP TS 36.211 Reference).
  • Figure 4 illustrates the SSB structure.
  • the terminal can perform cell search, system information acquisition, beam alignment for initial connection, DL measurement, etc. based on the SSB.
  • SSB is mixed with SS / PBCH (Synchronization Signal / Physical Broadcast channel) block.
  • SS / PBCH Synchronization Signal / Physical Broadcast channel
  • SSB is composed of PSS, SSS and PBCH.
  • SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS / PBCH and PBCH are transmitted for each OFDM symbol.
  • PSS and SSS are composed of one OFDM symbol and 127 subcarriers, respectively, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and Quadrature Phase Shift Keying (QPSK) are applied to the PBCH.
  • the PBCH is composed of data RE and demodulation reference signal (DMRS) RE for each OFDM symbol. There are three DMRS REs per RB, and there are three data REs between the DMRS REs.
  • DMRS demodulation reference signal
  • the NR system uses an OFDM transmission system or a similar transmission system.
  • the new RAT system may follow OFDM parameters different from the OFDM parameters of LTE.
  • the new RAT system can follow the existing LTE / LTE-A neuronology, but with a larger system bandwidth (eg, 100 MHz).
  • one cell may support a plurality of memorylogies. That is, UEs operating in different lifetimes can coexist within one cell.
  • 5 illustrates a structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HF).
  • the half-frame is defined as five 1-ms subframes (SFs).
  • a subframe is divided into one or more slots, and the number of slots in a subframe depends on SCS (Subcarrier Spacing).
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). If a CP is usually used, each slot contains 14 symbols. If an extended CP is used, each slot contains 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
  • Table 1 illustrates that the number of symbols per slot, the number of slots per frame, and the number of slots per subframe are different according to the SCS when CP is usually used.
  • Table 2 illustrates that the number of symbols per slot, the number of slots per frame, and the number of slots per subframe are different according to the SCS when the extended CP is used.
  • OFDM (A) numerology e.g., SCS, CP length, etc.
  • a numerology e.g., SCS, CP length, etc.
  • the (absolute time) interval of a time resource e.g., SF, slot or TTI
  • TU Time Unit
  • 6 illustrates a slot structure of an NR frame.
  • the slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes seven symbols, but in the case of an extended CP, one slot includes six symbols.
  • the carrier wave includes a plurality of subcarriers in the frequency domain.
  • An RB (Resource Block) is defined as a plurality (e.g., 12) of consecutive subcarriers in the frequency domain.
  • the BWP (Bandwidth Part) is defined as a plurality of consecutive (P) RBs in the frequency domain and can correspond to one numerology (e.g., SCS, CP length, etc.).
  • the carrier may include up to N (e.g., 5) BWPs. Data communication is performed through activated BWP, and only one BWP can be activated for one terminal.
  • each element is referred to as a Resource Element (RE), and one complex symbol can be mapped.
  • RE Resource Element
  • Figure 7 illustrates the structure of a self-contained slot.
  • a frame is characterized by a self-contained structure in which a DL control channel, DL or UL data, a UL control channel, etc., can all be contained in one slot.
  • the first N symbols in a slot are used to transmit a DL control channel (hereinafter referred to as a DL control area), and the last M symbols in a slot can be used to transmit UL control channels (hereinafter referred to as a UL control area).
  • N and M are each an integer of 0 or more.
  • a resource area (hereinafter referred to as a data area) between the DL control area and the UL control area can be used for DL data transmission or can be used for UL data transmission.
  • a data area hereinafter referred to as a data area
  • the following configuration may be considered. Each section was listed in chronological order.
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL area (i) UL data area, (ii) UL data area + UL control area
  • the PDCCH can be transmitted in the DL control region, and the PDSCH can be transmitted in the DL data region.
  • the PUCCH In the UL control region, the PUCCH can be transmitted, and in the UL data region, the PUSCH can be transmitted.
  • DCI downlink control information
  • the PUCCH Uplink Control Information (UCI), ACK / NACK information, DL CSI information, and Scheduling Request (SR), for example, can be transmitted.
  • UCI Uplink Control Information
  • ACK / NACK information ACK / NACK information
  • DL CSI information DL CSI information
  • Scheduling Request for example.
  • the GP provides a time gap in the process of switching from the transmission mode to the reception mode or from the reception mode to the transmission mode. A part of symbols at the time of switching from DL to UL within a subframe can be set to GP.
  • the NR system considers using a high-frequency band, that is, a millimeter frequency band of 6 GHz or more, in order to transmit data while maintaining a high data rate for a large number of users using a wide frequency band.
  • a high-frequency band that is, a millimeter frequency band of 6 GHz or more
  • this is referred to as NR.
  • the millimeter frequency band has a frequency characteristic in which the signal attenuation due to the distance is very sharp due to the use of the frequency band which is too high. Therefore, in order to compensate for the sudden attenuation characteristics, an NR system using at least a band of 6 GHz or more transmits a signal beam in a specific direction rather than in all directions to transmit a narrow beam narrow beam transmission technique.
  • the base station collects a plurality of narrow beams and provides services in a wide band.
  • the wavelength is shortened so that a plurality of antenna elements can be installed in the same area.
  • a total of 100 antenna elements can be installed in a 5-by-5 cm panel in a 30 GHz band with a wavelength of about 1 cm in a two-dimensional array at 0.5 lambda (wavelength) spacing Do. Therefore, in mmW, it is considered to increase the coverage or the throughput by increasing the beamforming gain by using a plurality of antenna elements.
  • a beam forming method in which energy is raised only in a specific direction is mainly considered by transmitting the same signal using a proper phase difference to a large number of antennas in a base station or a UE.
  • Such beamforming schemes include digital beamforming to create a phase difference in a digital baseband signal, analog beamforming to create a phase difference using time delay (i.e., cyclic shift) to a modulated analog signal, digital beamforming, And hybrid beam forming using both of the beam forming and the like.
  • TXRU transceiver unit
  • the TXRU is not effective in terms of cost in installing all of the antenna elements of 100 or more. That is, a millimeter frequency band requires a large number of antennas to compensate for the sudden attenuation characteristics, and digital beamforming requires an RF component (eg, a digital-to-analog converter (DAC), a mixer, A power amplifier, a linear amplifier, and the like), so that the digital beamforming in the millimeter frequency band has a problem that the price of the communication device increases. Therefore, when a large number of antennas are required, such as the millimeter frequency band, the use of analog beamforming or hybrid beamforming is considered.
  • DAC digital-to-analog converter
  • Hybrid BF is an intermediate form of digital BF and analog BF and has B TXRUs that are fewer than Q antenna elements.
  • the direction of the beam that can be transmitted at the same time is limited to B or less although there is a difference depending on the connection method of B TXRU and Q antenna elements.
  • a base station communicates with a plurality of users at the same time using a broadband transmission or a multi-antenna characteristic.
  • a base station uses analog or hybrid beamforming and forms an analog beam in one beam direction, It can only communicate with users included in the same analog beam direction.
  • the RACH resource allocation and the resource utilization scheme of the base station according to the present invention to be described later are proposed in consideration of the constraint inconsistency caused by the analog beamforming or the hybrid beamforming characteristic.
  • FIG. 8 abstractly illustrates a hybrid beamforming structure in terms of a transceiver unit (TXRU) and a physical antenna.
  • TXRU transceiver unit
  • analog beamforming means an operation in which a transceiver (or an RF unit) performs precoding (or combining).
  • the baseband unit and the transceiver (or RF unit) perform precoding (or combining), respectively, which causes the number of RF chains and the D / A (or A / It is possible to achieve a performance close to digital beamforming while reducing the number of digital beamforming.
  • the hybrid beamforming structure can be represented by N TXRU and M physical antennas.
  • the digital beamforming for the L data layers to be transmitted at the transmitting end can be represented by an N-by-L matrix, and then the N converted digital signals are converted into an analog signal via a TXRU and then converted into an M-by-N matrix
  • the expressed analog beamforming is applied.
  • the number of digital beams is L and the number of analog beams is N.
  • FIG. Further, in the NR system, a direction in which a base station is designed so as to change analog beamforming on a symbol basis, and a more efficient beamforming is supported for a UE located in a specific area is considered.
  • N TXRU and M RF antennas are defined as one antenna panel, it is considered to introduce a plurality of antenna panels which can apply independent hybrid beamforming in the NR system.
  • an analog beam advantageous for signal reception may be different for each UE. Therefore, at least a synchronization signal, system information, paging, and the like may be applied to a specific slot or a subframe A beam sweeping operation is considered in which all the UEs have a reception opportunity by changing a plurality of analog beams to be transmitted on a symbol-by-symbol basis.
  • FIG. 9 is a diagram illustrating a beam sweeping operation for a synchronization signal and system information in a downlink transmission process.
  • a physical resource or a physical channel through which system information of the New RAT system is broadcast is called an xPBCH (physical broadcast channel).
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels can be simultaneously transmitted within one symbol.
  • a method of introducing Beam RS (BRS), which is a reference signal (RS) transmitted for a corresponding single analog beam is being discussed.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • the synchronization signal or the xPBCH can be transmitted for all the analog beams included in the analog beam group so that any UE can receive it well.
  • Figure 10 illustrates a cell of a new radio access technology (NR) system.
  • NR new radio access technology
  • a plurality of TRPs constitute one cell, unlike the case where one base station forms one cell in a wireless communication system such as existing LTE.
  • Cell is configured, it is advantageous that mobility management of the UE is easy since continuous communication can be performed even if the TRP for serving the UE is changed.
  • the PSS / SSS is transmitted in the omni-direction, whereas the gNB applying the mmWave transmits the PSS / SSS / PBCH signal
  • a beamforming method is considered.
  • the transmission / reception of signals while rotating the beam direction is referred to as beam sweeping or beam scanning.
  • the gNB can have a maximum of N beam directions, it is assumed that for each of the N beam directions, the PSS / SSS / PBCH, etc.
  • the gNB transmits synchronization signals such as PSS / SSS / PBCH for each direction while sweeping directions that the gNB can have or supports, or when the gNB transmits N synchronous signals SSS / PBCH may be transmitted / received for each beam group.
  • one beam group may be formed of one or more beams
  • a signal such as a PSS / SSS / PBCH transmitted in the same direction may be defined as one SS block, and a plurality of SS blocks may exist in one cell.
  • a PSS / SSS / PBCH in the same direction can constitute one SS block , It can be understood that there are ten SS blocks in the system.
  • the beam index can be interpreted as an SS block index.
  • the 'upper bit' and the 'most significant bit' represented in the present invention represented by the present invention mean a left bit in an array of information bits, can do. That is, an LSB (Least Significant Bit), which is a unit value for determining whether the value indicated by the information bits is an even number or an odd number, Can be interpreted in the same sense as.
  • LSB east Significant Bit
  • 'lower bit' and 'least significant bit' may mean the right bit in an array of information bits that places the highest number of digits to the right. In other words, it can be interpreted as the MSB (Most Significant Bit) in the arrangement of information bits which places the highest digit number to the leftmost.
  • the upper N-bit information of the SFN among the contents of the invention to be described later is obtained (e.g., S0, S1, S2), SFN information corresponding to the remaining (10- To S9), thereby constructing a total of 10 bits of SFN information.
  • the upper N-bit is the left N-bit (eg, S0 S1 S2), and the remaining (10-N) bits mean the right (10-N) bits (e.g., S3 to S9).
  • LSB and MSB are expressed by LSB N-bit in the information bitstream represented by (S9 S8 S7 S S1 S0)
  • the bitstream is expressed in the order of (S2 S1 S0)
  • the remaining '10-N' bits (eg, S3 to S9) are represented by MSB (10-N) bits
  • the bit string may be expressed in the order of (S9 S8 S7 ⁇ S3) .
  • the PSS is placed in the front of the SS block, a problem may arise in the AGC (Automatic Gain Control) operation of the UE when 120 kHz and 240 kHz subcarrier spacing is used. That is, in the case of 120 kHz and 240 kHz subcarrier spacing, the detection of the NR-PSS may not be performed properly due to the AGC operation. Accordingly, it may be considered to change the SS block configuration as in the following two embodiments .
  • AGC Automatic Gain Control
  • the AGC operation of the terminal can be performed more smoothly.
  • SS burst set configurations at subcarrier intervals of 120 kHz and 240 kHz for arranging SS blocks are shown.
  • the SS burst is configured by leaving a predetermined interval in units of four SS bursts. That is, the symbol interval for the uplink transmission of 0.125 ms is set to 0.5 ms, and the SS block is allocated.
  • subcarrier spacing of 60 kHz can be used for data transmission.
  • a 60 kHz sub-carrier interval for data transmission and a 120 kHz or 240 kHz sub-carrier interval for SS block transmission can be multiplexed.
  • the first embodiment is to change the positions of SS burst format 1 and SS burst format 2, as shown in FIG. That is, by exchanging the SS burst format 1 and the format 2 in the square box of FIG. 12, it is possible to prevent a collision between the SS block and the DL / UL control area.
  • the SS burst format 1 is located in the front part of the slot of 60 kHz subcarrier interval
  • the SS burst format 2 is located in the rear part of the slot of the 60 kHz subcarrier interval.
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 4, 8, 16, 20, 32, 36, 44, 48 ⁇ + 70 * n.
  • n 0, 2, 4, 6.
  • the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 4, 8, 16, 20, 32, 36, 44, 48 ⁇ + 70 * n.
  • n 4, 6
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 2, 6, 18, 22, 30, 34, 46, 50 ⁇ + 70 * n.
  • n 1, 3, 5, 7.
  • the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 2, 6, 18, 22, 30, 34, 46, 50 ⁇ + 70 * n.
  • n 5, 7.
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, 100 ⁇ + 140 * n.
  • n 0, 2.
  • the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, n.
  • For carrier frequencies greater than 6 GHz, n 0, 2
  • the second embodiment is a method of changing the SS burst set configuration, as shown in Fig. That is, the SS burst set can be configured to align, i.e., match, the starting boundary of the 60 kHz subcarrier interval slot with the start boundary of the SS burst set.
  • the SS burst is constituted by an SS block locally disposed for 1 ms.
  • the SS burst of 120 kHz subcarrier spacing has 16 SS blocks
  • the 240 kHz subcarrier spacing SS burst has 32 SS blocks.
  • one slot is allocated as a gap based on a subcarrier interval of 60 kHz between SS bursts.
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 4, 8, 16, 20 ⁇ + 28 * n.
  • N 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18 when the carrier frequency is greater than 6 GHz.
  • the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 4, 8, 16, 20 ⁇ + 28 * n.
  • n 0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ + 56 * n.
  • n 0, 1, 2, 3, 5, 6, 7, (the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 8,12,16,20,32,36,40,44 ⁇ + 56 * n.
  • n 2, 3, 5, 6, 7, 8.
  • the number of candidates for SS block transmission may be limited depending on the network environment.
  • the number of candidates may be different depending on the subcarrier interval in which the SS block is arranged.
  • the Actually transmitted SS / PBCH block indication indicating the location of the actually transmitted SS block may be used for a purpose of resource utilization, for example, rate matching, for a serving cell, It can be used for measurement purposes.
  • the UE can correctly recognize for an unsent SS block, the UE can receive other information, such as paging or data, via the candidate resource of the unsent SS block .
  • the SS block actually transmitted in the serving cell needs to be accurately indicated.
  • bit size included in the bit map can be determined according to the number of SS blocks that can be transmitted at the maximum in each frequency range. For example, in order to indicate the SS block actually transmitted in the 5 ms interval, 8 bits are required in the frequency range of 3 GHz to 6 GHz, and 64 bits are required in the frequency range of 6 GHz or more.
  • the bits for the SS block actually transmitted in the serving cell may be defined in RMSI or OSI, and the RMSI / OSI includes configuration information for data or paging. Since the actively transmitted SS / PBCH block indication is associated with the configuration for the downlink resource, it may result in the RMSI / OSI containing the SS block information to be actually transmitted.
  • the Actually transmitted SS / PBCH block indication of the neighbor cell may be required. That is, it is necessary to acquire the time synchronization information of the neighboring cell in order to measure the adjacent cell. In the case of designing to allow asynchronous transmission between the TRPs of the NR system, even if the time synchronization information of the neighboring cell is informed, It depends on the situation. Therefore, when notifying the time information of the neighboring cell, it is necessary to determine the unit of the time information as information valid for the UE while assuming asynchronous transmission between TRPs.
  • the full bitmap type indicator may excessively increase the signal overhead.
  • various compressed types of indicators may be considered.
  • the indicator for the SS block transmitted by the serving cell may also take into account the compressed type indicator for not only the purpose of neighbor cell measurement but also the signaling overhead.
  • the SS block indicator described below can be used for the actual transmitted SS block indication of the neighboring cell and the serving cell.
  • the SS burst may mean a bundle of SS blocks included in one slot according to each subcarrier.
  • the SS burst may be a constant number Of the SS block group.
  • a total of 8 SS bursts may exist in a band of 6 GHz or more where 64 SS blocks can be located .
  • the grouping of the SS blocks into the SS bursts is intended to compress the entire 64-bit bitmap.
  • 8-bit information indicating the SS burst containing the actually transmitted SS block may be used. If 8 bit bitmap information indicates SS burst # 0, SS burst # 0 may contain one or more SS blocks actually transmitted.
  • additional information for further indicating the number of SS blocks transmitted per SS burst to the UE may be considered.
  • An SS block may be present locally in each SS burst by the number of SS blocks indicated by the additional information.
  • the UE estimates the actually transmitted SS block .
  • additional information can also be transmitted in a bitmap format, so that the position of the SS block can be flexibly transferred.
  • a total of 64 SS blocks are divided into 8 SS bursts (that is, an SS block group), and 8 bit bitmap transmission informs the SS which burst is used.
  • the SS burst is defined as shown in FIG. 15, there is an advantage that the boundary between the SS burst and the slot having a subcarrier of 60 kHz is aligned when multiplexing is performed with a slot having a subcarrier interval of 60 kHz. Therefore, if the use of the SS burst is indicated as a bitmap, the UE can recognize whether or not the SS block is transmitted in the slot unit for all the subcarrier intervals in the frequency band of 6 GHz or more.
  • bitmap information since bitmap information must be transmitted to eight SS blocks included in each SS burst, 8 bits are required, and the additional information is commonly applied to all SS bursts. For example, if bit map information for an SS burst indicates that SS burst # 0 and SS burst # 1 are to be used and that the first and fifth SS blocks within the SS burst through additional bitmap information for the SS block If it is indicated to be transmitted, the first and fifth SS blocks are transmitted in both SS burst # 0 and SS burst # 1, so that the total number of SS blocks actually transmitted is four.
  • some neighboring cells may not be included in the cell list, and neighboring cells not included in the cell list use a default format for the SS block actually transmitted.
  • the UE can perform measurements on neighbor cells not included in the list.
  • the basic format described above may be predefined or set by the network.
  • the SS gives priority to SS block information transmitted from the serving cell, Information on the transmitted SS block can be obtained.
  • the lower N-bits of the SFN information are transferred to the PBCH payload, and the upper M-bits are transferred to the PBCH scrambling sequence. Meanwhile, the most significant 1-bit among the upper M-bits of the SFN information can be transmitted by the change of the time / frequency position of the PBCH DMRS, the NR-SSS, or the SS block.
  • the information on the Half radio frame (5 ms) boundary can be conveyed by changing the time / frequency location of the PBCH DMRS or NR-SSS or SS block.
  • the 'upper bit' and the 'most significant bit' mean the left bit in the case of placing the highest number of digits in the information bit string at the rightmost position. This is interpreted as an LSB (Least Significant Bit, least significant bit) which is a unit value that determines whether the integer number is an even number or an odd number, have.
  • LSB east Significant Bit, least significant bit
  • 'lower bit' and 'least significant bit' mean the right bit in the case of placing the highest number of digits in the information bit string at the rightmost position. This can be interpreted in the same way as MSB (Most Significant Bit) in an arrangement in which the number of the highest digits in the information bit string is located at the leftmost position.
  • the UE After detecting the cell ID and the symbol timing information, the UE determines a part of timing information such as an SFN, an SS block index, a half frame timing, a common control channel related information such as a time / frequency position, SS burst set information, such as SS burst set information and SS burst set period and actually transmitted SS block index.
  • timing information such as an SFN, an SS block index, a half frame timing, a common control channel related information such as a time / frequency position, SS burst set information, such as SS burst set information and SS burst set period and actually transmitted SS block index.
  • the PBCH shall contain the required information. Also, if possible, an auxiliary signal such as a PBCH DMRS may be used to further include mandatory information or additional information.
  • a PBCH DMRS may be used to further include mandatory information or additional information.
  • system frame number can be defined to distinguish 10ms intervals. Also, similar to LTE systems, indexes between 0 and 1023 can be introduced for SFNs, which can be explicitly indicated using bits or represented implicitly.
  • the PBCH TTI is 80ms and the minimum SS burst period is 5ms.
  • up to 16 times the PBCH can be transmitted in 80 ms units, and different scrambling sequences for each transmission can be applied to the PBCH encoded bits.
  • the UE may detect a 10ms interval similar to the LTE PBCH decoding operation.
  • the 8 states of the SFN are implicitly indicated by the PBCH scrambling sequence, and 7 bits for the SFN indication can be defined in the PBCH contents.
  • the SS block index may be explicitly indicated by bits included in the PBCH DMRS sequence and / or PBCH content, depending on the carrier frequency range. For example, for the frequency band below 6 GHz, the 3 bits of the SS block index are transmitted only to the PBCH DMRS sequence. Also, for the frequency band of 6 GHz or more, the least significant 3 bits of the SS block index are represented by the PBCH DMRS sequence, and the most significant 3 bits of the SS block index are transmitted by the PBCH contents. That is, for the frequency range of 6 GHz to 52.6 GHz, up to three bits for the SS block index can be defined in the PBCH contents.
  • the boundary of the Half frame can be carried by the PBCH DMRS sequence.
  • the Half frame indicator is included in the PBCH DMRS in the frequency band of 3GHz or less, the effect can be enhanced more than the Half frame indicator is included in the PBCH contents. That is, since the FDD scheme is mainly used in the frequency band of 3Ghz or less, the degree of deviation of time synchronization between subframes or slots may be large. Therefore, it is advantageous to transmit the half frame indicator through the PBCH DMRS having better decoding performance than the PBCH contents in order to achieve more accurate time synchronization.
  • the TDD scheme is often used in the case of exceeding the 3Ghz band, the degree of deviation of time synchronization between subframes or slots is not so large, so even if a Half frame indicator is transmitted through the PBCH contents, the disadvantage may be somewhat small.
  • the half frame indicator may be transmitted through both PBCH DMRS and PBCH contents.
  • the SS block can be used not only for providing information for network access, but also for measuring operation.
  • multiple SS blocks can be transmitted for measurement.
  • the RMSI may be unnecessary for the RMSI to be transmitted over all frequency locations where the SS block is transmitted. That is, for the efficiency of resource utilization, the RMSI can be delivered over a specific frequency location. In this case, the UEs performing the initial access procedure can not recognize whether the RMSI is provided at the detected frequency location. To solve this problem, it is necessary to define a bit field for identifying that there is no RMSI corresponding to the PBCH of the detected frequency domain. On the other hand, a method of identifying that there is no RMSI corresponding to the PBCH without the bit field is also considered.
  • the SS block in which the RMSI does not exist is transmitted at a frequency position which is not defined by a frequency raster.
  • the UEs performing the initial access procedure can not detect the SS block, the above-described problem can be solved.
  • information about the SS burst set periodicity and the actually transmitted SS block may be indicated. Therefore, this information is preferably included in the system information for cell measurement and inter / intra cell measurement. That is, it is not necessary to define the above-mentioned information in the PBCH contents.
  • NR-PBCH scrambling sequence The type of NR-PBCH scrambling sequence and sequence initialization will be discussed. Although we can consider using PN sequences in NR, if we do not encounter serious problems using the 31-long Gold sequence defined in the LTE system as the NR-PBCH sequence, we can reuse the Gold sequence with the NR-PBCH scrambling sequence May be preferred.
  • the scrambling sequence may be initialized at least by the Cell-ID, and three bits of the SS block index indicated by PBCH-DMRS may be used to initialize the scrambling sequence. Also, if a Half frame indication is indicated by a PBCH-DMRS or other signal, the Half frame indication may also be used as a seed value for initialization of the scrambling sequence.
  • the NR-PBCH DMRS should be scrambled by 1008 cell IDs and a 3-bit SS block index. This is because, when the detection performance is compared according to the number of hypotheses of the DMRS sequence, the detection performance of 3 bits is most suitable for the number of hypotheses of the DMRS sequence. However, since the detection performance of 4 to 5 bits seems to have almost no performance loss, it is considered that the number of hypotheses of 4 to 5 bits can be used.
  • the SS block time index and the 5 ms boundary can be expressed through the DMRS sequence, it should be designed to have a total of 16 hypotheses.
  • the DMRS sequence must be able to represent at least the cell ID, the SS block index in the SS burst set and the Half frame indication, and the cell ID, the SS block index in the SS burst set, and the Half frame indication ).
  • the concrete initialization equation is as shown in the following equation (1).
  • HF is a half frame indication index having a value of ⁇ 0, 1 ⁇ .
  • the NR-PBCH DMRS sequence can be generated using a Gold sequence of 31 length, similar to the LTE DMRS sequence, or based on a gold sequence of 7 or 8 lengths.
  • a Gold sequence of 31 length is used in the present invention like LTE DMRS.
  • a gold sequence longer than 31 may be considered.
  • DMRS sequence modulated using QPSK Can be defined by the following equation (2).
  • BPSK and QPSK can be considered as a modulation type for DMRS sequence generation. Since the correlation performance of BPSK and QPSK is similar but the correlation performance of QPSK is better than BPSK, QPSK is more suitable as a modulation type of DMRS sequence generation Do.
  • the PBCH DMRS sequence is a Gold sequence, and two m-sequences are composed of polynomials of the same length. When a sequence is short, one m-sequence can be replaced by a short polynomial.
  • the time information includes a system frame number (SFN), a half frame interval, and an SS block time index.
  • SFN system frame number
  • Each time information can be represented by 10 bits for SFN, 1 bit for Half frame, and 6 bits for SS block time index.
  • 10 bits for SFN can be included in PBCH contents.
  • the NR-PBCH DMRS may include the lower 3 bits of 6 bits for the SS block index. The remaining upper 3 bits of the SS block index may be included in the PBCH content.
  • a method of obtaining the SS block time index of the adjacent cell can be considered. Since the decoding through the DMRS sequence performs better than decoding through the PBCH contents, by changing the DMRS sequence within each 5 ms period, Three bits of the block index can be transmitted.
  • the SS block time index can be transmitted using only the NR-PBCH DMRS of the adjacent cell.
  • 64 SS block indices are divided through PBCH-DMRS and PBCH contents As indicated, the UE needs to decode the PBCH of the neighboring cell.
  • decoding PBCH-DMRS and PBCH content together may result in additional complexity of NR-PBCH decoding and may reduce decoding performance of the PBCH rather than using only PBCH-DMRS. Therefore, it may be difficult to decode the PBCH to receive the SS block of the neighboring cell.
  • the serving cell instead of decoding the PBCH of the neighboring cell, it may be considered that the serving cell provides the UE with a setting related to the SS block index of the neighboring cell. For example, the serving cell provides the UE with a setting for the three most significant bits of the SS block index of the target neighbor cell, and the UE detects the least significant 3 bits through the PBCH-DMRS of the target neighbor cell.
  • the SS block index of the target adjacent cell can be obtained by combining the above-mentioned 3-bit and 3-bit least significant bits.
  • the most significant 3 bits of the SS block index of the SSB transmitted by the serving cell are obtained through the PBCH contents of the SSB received from the serving cell, and the SSB of the SSB transmitted by the serving cell through the PBCH- The least significant 3 bits of the SS block index of the SS block are detected.
  • the UE After receiving another SSB from the neighboring cell, the UE detects the least significant 3 bits of the SS block index of another SSB through the PBCH-DMRS included in the other SSB, and detects the PBCH content of the SSB transmitted by the serving cell
  • the SS block index of the adjacent cell can be obtained by applying the most significant 3 bits of the SS block index obtained from the SS block index to the adjacent cell.
  • the SS burst set (i.e., 10, 20, 40, 80 ms) may have a plurality of periods, and the encoded bits are transmitted within 80 ms.
  • 17 shows the measurement result according to the SS block index.
  • 144 REs are used for the DMRS within 24 RBs and 2 OFDM symbols, and 432 REs are used for the information.
  • the DMRS sequence assumes that a long sequence (for example, a Gold sequence of length 31) and QPSK are used.
  • FIGS. 18 to 19 show the performance measurement results obtained by comparing BPSK and QPSK.
  • the DMRS hypothesis is 3 bits
  • the DMRS sequence is based on a long sequence
  • the power level of the interference TRP is the same as the power level of the serving TRP.
  • BPSK is distributed more in the region where the correlation amplitude is 0.1 or more than QPSK. Therefore, when considering a multi-cell environment, it is preferable to use QPSK as the modulation type of the DMRS. That is, in terms of correlation characteristics, QPSK is a more appropriate modulation type for the DMRS sequence.
  • the DMRS sequence may be generated based on a long sequence of polynomial order 30 or a short sequence of polynomial order 8 or less. It is also assumed that the hypothesis for the DMRS is 3 bits and the power level of the interference TRP is the same as the serving TRP.
  • a polynomial having a length of 7 is introduced into the first M-sequence to improve the correlation of the sequence, there is no difference from the method using a polynomial having a length of 31, which is the first M-sequence.
  • the sequence is generated using the initial value of the first M-sequence as the SSBID, there is no difference from the method in which the initial value of the existing first M-sequence is fixed and the SSBID-CellID is used in the second M-sequence.
  • Length-31 Gold sequence initialize the initial value of the first M-sequence, and use the SSBID-CellID for the second M-sequence.
  • the performance measurement results according to the equal interval RE mapping method and the non-equal interval RE mapping method shows the performance measurement results according to the equal interval RE mapping method and the non-equal interval RE mapping method.
  • the hypothesis for DMRS is 3 bits
  • the DMRS sequence is based on a long sequence
  • the interference TRP power level is the same as the serving TRP. Also, there is only one interference source.
  • variable RE mapping can obtain the effect that the interference is randomly distributed. Therefore, the detection performance of the variable RE mapping is superior to the fixed RE mapping performance.
  • Fig. 25 shows measurement results when RS power boost is used.
  • Use of variable RE mapping and DMRS power boosting reduces interference in other cells.
  • the performance of applying RS power boosting has a gain of 2 to 3 dB over that without RS power boost.
  • FIGS. 28 to 29 show the results of measuring PBCH performance with and without RS power boosting.
  • the period of the SS burst set is assumed to be 40 ms, and the encoded bits are transmitted within 80 ms.
  • the transmission power of the RE to the PBCH data decreases, a performance loss may occur.
  • the channel estimation performance is improved due to the increase of the RS power, the demodulation performance can be improved. Therefore, as can be seen from Figs. 26 to 27, the performance of the two cases is almost the same. Therefore, the influence of the transmission power loss of the RE on the PBCH data can be compensated by the gain of the channel estimation performance.
  • Vshift which changes the position of the frequency axis of the DMRS RE according to the cell ID
  • Vshift which changes the position of the frequency axis of the DMRS RE according to the cell ID
  • Table 5 below shows the assumed values of the parameters used for the performance measurement described above.
  • Carrier Frequency 4 GHz Channel Model CDL_C (delay scaling values: 100 ns)
  • time index indicating method other than the time index indicating method as described above may be considered.
  • various embodiments for efficiently indicating a half frame index will now be described.
  • the SS blocks included in the 5 ms duration may be transmitted with a period of 5 ms, 10 ms, 20 m, 40 m, 80 ms, 160 ms, or the like.
  • the UE in the initial access stage performs signal detection, assuming that SS blocks are transmitted in a period longer than 5 ms (e.g., 10 ms, 20 ms, etc.).
  • the UE in the initial access stage performs signal detection, assuming that the SS blocks are transmitted at a cycle of 20 ms.
  • the base station transmits the SS block at a 5 ms cycle and the UE detects the SS block at a 20 ms cycle, the UE may transmit the SS block in the first half radio frame, radio frame). That is, the UE can not make an accurate assumption as to whether the SS block is received in the first half half frame or the second half half frame. Therefore, the base station can consider the following methods for accurately conveying to the UE whether the SS block is transmitted in the first half half frame or in the second half half frame.
  • the UE may decode the received SS block to obtain half frame time information.
  • the above-described methods can be used in combination with each other, and various modifications of the above-described methods are possible.
  • time information such as a state of the UE, such as whether the UE is in an initial connection state, an IDLE mode, or a handover to an inter-cell / another RAT
  • Various methods for conveying Half frame time information can be considered.
  • One way to do this is to attempt to detect a signal in the SS block, assuming that the UE in the initial access stage transmits an SS block to a fixed location in either the first half half frame or the second half frame in the 10 ms time range. That is, the UE acquires time information such as an SFN and an SS block index by performing a sequence detection or data decoding process included in a signal and a channel included in the SS block, and the Half frame information is acquired by the SS block A slot defined to be transmitted, and a position of an OFDM symbol.
  • the UE performing the initial access only detects the SS block transmitted in the specific half frame And the SS block transmitted in another Half frame can not be detected, and the terminal operation.
  • the SS blocks of the two different types are referred to as a first type SS block and a second type SS block.
  • the network constitutes an SS block of a first type and includes a phase, a symbol position, a sequence type, a symbol mapping rule, and a transmission mode of a PSS / SSS / PBCH constituting the SS block of the first type, Power and the like of the second type.
  • the base station transmits the first type SS blocks in the first half frame and transmits the second type SS blocks in the second half frame.
  • the UE performing the initial connection assumes that the SS block of the first type is transmitted from the base station, and attempts synchronization signal detection and PBCH decoding. If the synchronization signal detection and the PBCH decoding are successful, the UE assumes that the corresponding point is a slot and an OFDM symbol belonging to the first half frame.
  • the network uses the Remaining Minimum System Information (RMSI) to obtain information about the actually transmitted SS / PBCH block using a total of 16 bits, which is Group-Bitmap (8 bits) + Bitmap in Group To the terminal.
  • RMSI Remaining Minimum System Information
  • This is a design that takes into account the balance of signaling overhead and flexibility.
  • the network should be as flexible as possible to allocate resources for transmitting SS / PBCH block information actually transmitted according to the state and deployment scenarios of the UE, It is most appropriate to transmit information on the actually transmitted SS / PBCH block because flexibility can be provided by using a lower bit size.
  • the RMSI is system information that the UE decodes the MIB included in the PBCH and acquires based on the information, and may be referred to as SIB1 (System Information Block 1).
  • the SS / PBCH block can be designed with a bandwidth of 20 RB to have the advantage of fewer SS entries.
  • a mapping rule for mapping data and DMRS in the same frequency-time order can be applied.
  • 30 shows the design of the SS / PBCH block.
  • the EPRE offset between SSS RE and PBCH DM-RS RE is determined as 0 dB. Therefore, it can not be guaranteed to detect the Cell-ID at one time. If cell-ID detection performance is guaranteed, a 0 dB EPRE offset can be applied between SSS RE and PBCH DM-RS RE.
  • the number of REs for PBCH transmission is 576, which is the same as the design of the SS / PBCH block with 24 PRB bandwidths.
  • the decoding performance of the PBCH according to FIG. 9 is expected to be the same as the SS / PBCH block design with a PRB bandwidth of 24, assuming that the DMRS density and DMRS mapping of the PBCH is the same as the original SS / PBCH design.
  • the SS / PBCH block design according to FIG. 30 can not expect the same decoding performance as the SS / PBCH block with 24 PRB bandwidths. Therefore, to improve the performance of PBCH decoding, the following PBCH DMRS mapping method can be considered.
  • the above-described alternative can provide better channel estimation performance and PBCH decoding performance than the SS / PBCH block according to FIG.
  • PBCH decoding performance of the above-mentioned alternatives will be compared.
  • the default periodicity i.e., 20 ms
  • the encoded bits are transmitted within 80 ms.
  • Table 6 The detailed assumptions for the simulation are shown in Table 6 below.
  • Antenna Configuration TRP: (1,1,2) with Omni-directional antenna element: (1,1,2) with Omni-directional antenna element Frequency Offset 0% of subcarrier spacing Default period 20 ms
  • SS / PBCH block which is two OFDM symbols with 20 RBs, one OFDM symbol with the second and fourth OFDM symbols and eight RBs of the SS / (A total of 48 RBs) through an OFDM symbol
  • alternative 2 provides worse performance than alternative 1 or alternative 3.
  • This loss of decoding performance is due to the lower channel estimation performance of the DMRS of the third symbol.
  • alternative 3 shows the best DMRS decoding performance. This performance improvement is due to the fact that the DMRS arrangement of Alternative 3 can obtain more accurate channel information than the alternative arrangements 1 and 2 of the DMRS arrangement.
  • the 1-bit half-frame indicator is included in the PBCH payload, and if the period of the CSI-RS for measurement is 20 ms or more, the UE assumes that the network is " synchronous " for the CSI-RS to measure. Also, in the band below 3 GHz, since the maximum number of beams is four, the half frame indicator is implicitly signaled through the PBCH DMRS.
  • the serving cell sets the synchronization indicator to " synchronous ", and the UE can assume that the network is synchronous.
  • the serving cell When the network configures a CSI-RS with a periodicity of 10 ms, the serving cell provides the UE with information of " CSI-RS-Config-Mobility ", and the UE selects one candidate CSI- RS scrambling sequence RS can be obtained by correlating the CIS-RS after acquiring the SS / PBCH block index through the PBCH DMRS sequence, whether the start position is the odd-numbered 5 ms or the even-numbered 5 ms.
  • the serving cell provides information of " CSI-RS-Config-Mobility " to the UE, and the UE transmits two candidate CSI-RS scrambling sequences RS can be obtained by correlating the CIS-RS after acquiring the SS / PBCH block index through the PBCH DMRS sequence, whether the start position is the odd-numbered 5 ms or the even-numbered 5 ms.
  • the scrambling sequence period of the CSI-RS is defined as 5 ms.
  • the UE can not distinguish between the even-numbered 5ms and the odd-numbered 5ms, even if the UE obtains the SSB index through the PBCH DMRS sequence.
  • the network must always configure "CSI-RS with a period of 10 ms" or "5 ms CSI-RS period with a 10 ms scrambling sequence period" do. If the network is asynchronous, the serving cell shall provide the UE with the information " CSI-RS-Config-Mobility ".
  • the serving cell must set the synchronization indicator to " synchronous ".
  • the CSI-RS period is 5 ms or less
  • the CSI-RS scrambling sequence period is 5 ms or less
  • the CSI-RS period is 20 ms, 40 ms, 80 ms, 160 ms.
  • the network must operate synchronously, and the serving cell sets the synchronization indicator to " synchronous ".
  • timing information (i.e., SFN, half frame, SS / PBCH block index) is defined in the PBCH content.
  • the UE can obtain timing information through PBCH decoding. Since the frame structure and the signals, i.e., the slot number, the scrambling sequence, the DMRS sequence, the CSI-RS sequence, the PRACH configuration, and the like are defined within 10 ms, the UE must acquire frame boundary information.
  • the UE needs to attempt PBCH decoding to obtain half frame information and / or SS / PBCH block index for the neighboring cell.
  • the half frame indicator PBCH DMRS in the frequency band with a maximum of four beams. That is, in the frequency band of 3 GHz or less, the PBCH DMRS sequence of the adjacent cell is detected to obtain the half frame information. In case of 6 GHz or less, the index of the SS / PBCH block is implicitly signaled by the PBCH DMRS.
  • the UE can obtain the index of the SS / PBCH block by detecting the PBCH DMRS sequence.
  • the PBCH still needs to be decoded to obtain the time information of the neighboring cells. For example, in the frequency range above 3 GHz, the UE must decode the PBCH to obtain a half frame indicator in the PBCH payload. Also, in FR2, the UE must perform PBCH decoding to obtain the SS / PBCH index of the most significant 3 bits.
  • the tolerance of frame boundaries between cells in the case of paired spectrum is +/- 5 ms.
  • the useServingCellTimingForSync parameter is set to 'true' in TDD (unpaired spectrum) and the same frequency layer, the frame boundary alignment tolerance is assumed to be at least 2 SSB symbols and 1 data symbol.
  • the tolerance from FDD to TDD and from TDD to FDD is +/- 5 ms for FDD which can be an asynchronous network.
  • the tolerance from TDD to TDD can be assumed to be +/- 2.5 ms.
  • Table 7 summarizes a method for acquiring time information of a neighbor cell according to a handover / RRM scenario.
  • the sequence of RSs can be used to detect symbol positions and slot positions, since the sequence of reference signals (RS) is designed to identify OFDM symbols and slot positions.
  • RS reference signals
  • the CSI-RS resource may be allocated to a region within a certain range from the area where the ATSS is mapped. Since the sequence for the CSI-RS is initialized by the cell ID, the OFDM symbol number and the slot number in the frame, the time position (i.e., the OFDM symbol and the slot number) can be obtained by detecting the CSI-RS sequence.
  • the UE may use a correlation characteristic of a CSI-RS sequence configured at a candidate location in a frame to determine a frame boundary Can be detected.
  • the UE may assume two hypotheses that the detected SS / PBCH block may be located in a frame.
  • the gNB provides the UE with the reference signal information of the neighbor cell.
  • the sequence used for generating the reference signal may be a PN sequence such as a gold sequence, an M-sequence, or the like, and the PN sequence may be generated based on an OFDM symbol, a slot number, and a cell ID.
  • the generated sequence is QPSK-modulated, and the modulated sequence is mapped to a subcarrier position corresponding to the frequency / time allocated for the reference signal and transmitted.
  • the neighbor cell gNB generates and transmits a signal based on the reference signal information provided to the UE, that is, information transmitted through the sequence of reference signals.
  • the UE derives candidate reference signal information that the neighboring gNB can transmit from the reference signal information of the neighbor cell provided from the serving cell.
  • the UE receives the signal of the neighboring cell and detects the reference signal at a candidate position where the reference signal can be transmitted. Thereafter, the detected signal is compared with candidate reference signal information derived from the UE, and a candidate reference signal most similar to the signal detected at the position is selected. Then, timing information on the time when the detection signal is received from the information included in the selected reference signal can be obtained. That is, the information included in the reference signal may include an OFDM symbol position and a slot position at which the reference signal is transmitted.
  • the information included in the reference signal may include some bit information of the SS / PBCH block index, which may be an SS / PBCH block index conveyed to the PBCH payload.
  • the information included in the reference signal may include information on the half frame.
  • a CSI-RS sequence can be detected to obtain timing information.
  • the UE since the CSI-RS for beam management and tracking is a mandatory function for the UE, the UE always sets the CSI-RS by the CSI-MeasConfig IE (Information Element) in the handover command message ).
  • the UE may perform a sequence detection operation to obtain timing information using the CSI-RS sequence.
  • CSI-RS sequence detection can acquire timing information faster than PBCH decoding.
  • the UE may receive the UE-specific configuration through the upper layer, the NZP-CSI-RS-ResourceSet constituting the upper layer parameter CSI-MeasConfig.
  • the CSI-RS for beam management or tracking can be allocated to or around OFDM symbols including SS / PBCH blocks.
  • the UE may assume that the QCL conditions for both the SS / PBCH block and the CSI-RS are the same.
  • the UE can assume that the period of the CSI-RS is equal to the period of the SS / PBCH block.
  • the UE may set CSI-RS for beam management or tracking through the upper layer parameter CSI-MeasConfig.
  • the CSI-RS and the SS / PBCH block are in a quasi co-located relationship with respect to Doppler shift, Doppler spread, average delay, and delay spread when a spatial reception parameter is applicable.
  • the UE may obtain the OFDM symbol number and the slot number based on the reception of the CSI-RS for beam management or tracking.
  • the UE can receive the CSI-RS-ResourceConfigMobility setting through the upper layer.
  • the CSI-RS-ResourceConfigMobility may be a UE specific parameter.
  • the UE may assume a number of hypotheses for CSI-RS sequence detection. For example, when the UE wants to obtain only half frame information, the UE may assume that the detected SS / PBCH block is located in the first half frame or the second half frame. Further, when the UE wants to acquire both SS / PBCH index and half frame information, the UE may assume 16 hypotheses.
  • the new sequence can be designed in a sequence similar to the CSI-RS sequence.
  • the sequence may be set by an upper layer UE specific configuration. For example, for the most significant 3 bits and half frame information for the SS / PBCH block index, a total of sixteen different sequences may be introduced. The first eight sequences of a total of 16 sequences may be used for the most significant 3 bits of the SS / PBCH block index for the first half half frame and the remaining 8 sequences may be used for the most significant 3 bits of the SS / PBCH block index for the second half half frame . ≪ / RTI >
  • FIG. 34 operations in terms of the UE and the base station will be described with reference to FIGS. 34 to 36.
  • Figure 34 is intended to illustrate UE operation.
  • the UE may receive a reference signal for timing information of the SS / PBCH block and neighbor cells, and may include a transceiver for transmitting and receiving signals to / from a plurality of cells, and a transceiver connected to the transceiver, PBCH block, and controlling the transceiver to receive the second SS / PBCH block and the reference signal from a neighboring cell.
  • the processor acquires timing information of the first SS / PBCH block based on the PBCH included in the first SS / PBCH block, and acquires timing information of the neighboring cell based on the second SS / PBCH block and the reference signal.
  • the timing information of the first SS / PBCH block may include index information of the first SS / PBCH block.
  • a sequence of a demodulation reference signal (DMRS), i.e., a sequence of PBCH-DMRS, transmitted through the mapped symbols of the PBCH is generated based on the identifier of the serving cell and the index of the first SS / PBCH block .
  • the timing information of the second SS / PBCH block of the neighboring cell may include index information of the second SS / PBCH block.
  • the sequence of the PBCH-DMRS can be generated based on the identifier of the neighbor cell and the index of the second SSB.
  • the timing information of the reference signal for a neighbor cell may include an OFDM symbol position related to an index of a second SS / PBCH block and slot position information of the symbol.
  • the timing information of the reference signal for the neighbor cell may include an OFDM symbol position related to an index included in the PBCH payload among the indexes of the second SS / PBCH, and slot position information of the symbol.
  • the timing information of the reference signal for the neighbor cell may include index information related to the index included in the PBCH payload among the indexes of the second SS / PBCH block.
  • the timing information of the reference signal for the adjacent cell may include half frame information related to the index of the second SS / PBCH block.
  • the time information of the reference signal for the neighboring cell may include half frame information.
  • a reference signal for a neighbor cell may be generated using a sequence of CSI-RS, a sequence for DMRS, and / or a PN sequence.
  • the UE receives information related to reference signal setting for acquiring timing information of a neighboring cell from a serving cell (S3401) / PBCH block, and receives the SS / PBCH block and the reference signal from the adjacent cell (S3403).
  • the UE obtains timing information of a neighboring cell based on the sequence of the reference signals. At this time, timing information obtainable from the sequence of the reference signals is included in an index of an SS / PBCH block received from the neighboring cell Related information, information on a slot, a symbol, and a half frame at the time when the reference signal is received.
  • the base station may be replaced by one or more cells, and in the following description, the base station may be a serving cell or a neighboring cell.
  • the base station that is the main operation unit of FIG. 35 may be one base station, but may be a different base station corresponding to each of the serving cell and the adjacent cell.
  • the base station corresponding to the serving cell transmits the setting related to the reference signal for acquiring the timing information of the neighboring cell to the UE (S3501). Then, the base station corresponding to the neighbor cell generates a sequence of reference signals based on the reference signal and / or SS / PBCH block transmission timing.
  • the seed value of the reference signal sequence may be information on a slot, a symbol, and a half frame to which the reference signal is transmitted, or information on an index of an SS / PBCH block transmitted around the reference signal (S3503 ).
  • the specific method by which the base station generates the sequence of the reference signal based on the timing information of the neighbor cell and the types of the reference signal and the reference signal sequence are in accordance with the above-described embodiments.
  • the base station corresponding to the neighboring cell transmits the generated reference signal and the SS / PBCH block of the neighbor cell to the UE (S3505).
  • the base station corresponding to the serving cell transmits a setting related to the reference signal for acquiring the timing information of the neighboring cell to the UE (S3601). Then, the base station corresponding to the neighbor cell generates a sequence of reference signals based on the reference signal and / or SS / PBCH block transmission timing. Meanwhile, a concrete method of generating a sequence of reference signals based on timing information of a neighboring cell and a type of the reference signal and a reference signal sequence are performed according to the above-described embodiments (S3603).
  • the base station corresponding to the neighbor cell transmits the generated reference signal and the SS / PBCH block of the neighbor cell to the UE (S3605).
  • the UE receiving the reference signal and the SS / PBCH block from the neighbor cell acquires the timing information of the neighboring cell based on the sequence of the reference signal. As described above, the UE obtains the timing information from the sequence of the reference signal
  • the timing information may include information related to an index of an SS / PBCH block received from the neighboring cell, information on a slot, a symbol, and a half frame at the time when the reference signal is received.
  • the DMRS sequence provides better performance than PBCH content decoding
  • the DMRS sequence is changed within each 5ms period to deliver a 3-bit SS / PBCH block index. That is, in the frequency band of 6 GHz or less, the SS / PBCH time index for the neighbor cell can be obtained from the NR-PBCH DMRS.
  • 64 SS / PBCH block indices are displayed separately from the PBCH-DMRS and the PBCH contents.
  • the UE decodes the PBCH of the neighboring cell to obtain the SS / PBCH block index of the neighboring cell.
  • the above-described method leads to additional complexity due to decoding of the neighbor cell NR-PBCH.
  • the decoding performance of the PBCH is worse than the decoding performance using the PBCH-DMRS, there is no reason for the UE to directly decode the PBCH of the adjacent cell to obtain the SS / PBCH block index.
  • the serving cell instead of decoding the PBCH of the neighboring cell, a method may be considered in which the serving cell provides a setting for the SS / PBCH block index for the neighbor cell.
  • the serving cell may provide a setting of the most significant bits (MSb) (3 bits) of the SS / PBCH block index for the target neighbor cell.
  • MSb most significant bits
  • the UE can detect 3 LSB (Least Significant Bits) of the SS / PBCH block index of the adjacent cell through the PBCH-DMRS of the neighboring cell.
  • the 3 MSBs obtained through the PBCH decoding of the serving cell and the 3 LSBs obtained through the PBCH-DMRS of the neighboring cell are combined to obtain the SS / SS / PBCH block index can be obtained.
  • the payload size of the PBCH is the same 54 bits for both 6 GHz and 6 GHz and above, and the PBCH contents are shown in Table 8 below.
  • Bit size For B6GHz For A6GHz System Frame Number 10 10 Hal frame indication One One SS / PBCH block time index (MSB) 0 3 PDSCH DMRS position One One Reference numerology One One RE level frequency position of RMSI CORESET (includes frequency offset and RB level indication) 9 7 Frequency resource of RMSI CORESET 2 One Time resource of RMSI CORESET 2 2 PDCCH monitoring window duration One One PDCCH monitoring window offset One One cellBarred One One intraFreqReselection One One Reserved Bit 2 2 CRC 24 24 Total 56 56
  • the SS block not only provides information for network access but also is used for operating measurements.
  • multiple SS / PBCH blocks may be transmitted for measurement.
  • the RMSI may be delivered over all frequency locations where the SS / PBCH block is transmitted, this may increase the signaling overhead.
  • the RMSI may be considered to be transmitted over a specific frequency location.
  • the UEs in the initial access procedure may not be able to recognize whether or not the system information is provided at the frequency position detected by the UE at present, which may cause ambiguity in system information acquisition.
  • One solution is to transmit the SS / PBCH block for measurement purposes at a frequency location that is not defined by the frequency raster. In this case, since the UEs in the initial access procedure can not detect the SS / PBCH block, the ambiguity about the RMSI existence is resolved.
  • the UE attempts to detect a signal within the bandwidth of the SS / PBCH block during an initial synchronization procedure that includes cell ID detection and PBCH decoding. The UE will then continue to perform the RACH process and the process for obtaining system information, which is the next initial access procedure, within the initial active DL / UL bandwidth.
  • the initial active DL BWP is defined based on the frequency location of the RMSI CORESET and the NMS of the RMSI CORESET bandwidth and RMSI.
  • the configuration of the RMSI CORESET configuration and RMSI can be configured in the PBCH payload.
  • the offset between the SS / PBCH block and the initially active DL BWP is indicated via the PBCH. As can be seen in FIG. 37, since the offset is indicated as an arbitrary offset between the SS / PBCH block and the channel RB in the frequency range below 6 GHz and above 6 GHz, the offset value can be set for both frequencies below 6 GHz and above 6 GHz It should be defined.
  • the UE may perform a process for obtaining system information (i.e., RMSI) based on the information of the initial active BWP and CORESET.
  • NR supports FDM transmission of QCLed SS / PBCH block and RMSI.
  • the UE assumes that the SS block is not transmitted in the allocated resource in the resource allocated for the PDSCH carrying the RMSI to the PDCCH CORESET corresponding to the RMSI. That is, when three OFDM symbols are used for the RMSI CORESET, as shown in FIG. 38, the SS / PBCH block and the RMSI CORESET / PDSCH must be FDM.
  • the SS / PBCH and RMSI CORESET can be TDM and the SS / PBCH RMSI PDSCH can be FDM in the initial active DL BWP.
  • the UE During the initial access procedure, the UE must periodically receive SS / PBCH blocks for measurement, time / frequency tracking, RACH power control, and so on. However, if the SS / PBCH block is located outside the UE minimum BW, some UEs with no broadband capability must periodically perform frequency retuning to receive the SS / PBCH block. This frequency reset can increase the latency of the initial access procedure due to RF recombination, in terms of UE operation. Therefore, even if the SS / PBCH block and the RMSI CORESET are FDM in the NR, the SS / PBCH block and the RMSI CORESET may be limited to FDM in the UE minimum RX bandwidth.
  • the RMSI configuration of the NR-PBCH payload may include bandwidth (represented in PRB units) for RMSI CORESET, OFDM symbols, frequency location, and monitoring window.
  • the PBCH payload uses a total of 56 bits, including a 24-bit CRC.
  • 8 bits out of 32 bits excluding 24 bits of CRC can be used for configuration of RMSI CORESET.
  • 4 bits for the frequency offset indication is the portion indicating the frequency position
  • a total of 12 bits are allocated for the RMSI CORESET setting.
  • 3 bits are additionally used for the configuration of the RMSI CORESET.
  • the Aggregation level supported by the NR should be considered. For example, if NR supports three aggregation levels of 4, 6, and 8, then at least three PRB sizes are required, such as 24, 32, and 48 RBs.
  • the number of PRBs in the channel BW is defined according to the subcarrier interval. For example, when the channel BW is 10 MHz, the number of PRBs in a 15 kHz subcarrier interval is 52, and the number of PRBs in a 30 kHz subcarrier interval is 24. In this case, one or two OFDM symbols may be needed to provide the required aggregation level. Therefore, we propose two tables (i.e., Tables 6 and 7) that represent the number of PRBs and the number of OFDM symbols.
  • Table 9 shows the number of PRBs for one RMSI CORESET
  • Table 10 shows the number of OFDM symbols for one RMSI CORESET.
  • the number of PRBs is defined according to the subcarrier interval indicated by the PBCH payload.
  • different bit sizes for bandwidth setting can be considered. For example, two bits may be used in a frequency band of 6 GHz or less, and one bit may be used in a frequency band of 6 GHz or more.
  • the UE minimum BW for the bandwidth of the RMSI CORESET can be determined. For example, the UE minimum BW in the frequency band below 6 GHz may be 20/40 MHz, and the UE minimum BW in the frequency band above 6 GHz may be considered up to 100 MHz.
  • some of the settings in Table 6 can be excluded in the frequency band above 6GHz. For example, a 100 MHz bandwidth may be excluded.
  • Table 10 defines the number of OFDM symbols. For RMSI CORESET, up to three OFDM symbols may be used for the PDCCH in a slot. In particular, up to two RMSI CORESETs may be configured in a slot, and if one OFDM symbol for RMSI CORESET is allocated, up to two OFDM symbols may be used for a PDCCH in a slot. Otherwise, one RMSI CORESET may be used in the slot.
  • the frequency position of the RMSI CORESET can be expressed as the relative RE offset between the frequency position of the RMSI CORESET and the frequency position of the SS / PBCH block. This RE offset is defined by the subcarrier spacing of the SS / PBCH block.
  • FIG. 39 shows an embodiment showing the frequency position of the RMSI CORESET.
  • the network selects one candidate SS / PBCH block position can be selected.
  • a cell defining the SSB that is, an SS / BPCH block having the RMSI is transmitted, and the RMSI CORESET is indicated based on the lowest PRB index of the SS / PBCH block.
  • the RMSI CORESET is indicated based on the SS / PBCH block at the higher frequency position among the candidate positions of two consecutive SS / PBCH blocks for SS / PBCH block transmission
  • the RMSI CORESET and the SS / The maximum range of the frequency position offset between them is defined by the synchronous raster.
  • the SS / PBCH block at a higher frequency position is indicated as a reference, so that the SS nearest to the center of the RMSI CORESET / PBCH block.
  • the PRB of the upper part in FIG. 19 becomes the PRB having the lower index. That is, the lowest PRB in the RMSI CORESET is the PRB of the RMSI CORESET located at the uppermost position in FIG.
  • the SS / PBCH block located below the lowest PRB of the RMSI CORESET corresponds to the SS / PBCH blocks
  • the candidate SS / PBCH block that can be the base of the offset value is the uppermost SS / PBCH block and the intermediate SS / PBCH block.
  • the difference between the relative RB value of the lowest PRB of the highest PRB and the lowest PRB of the RMSI CORESET is expressed as an offset.
  • an SS / PBCH block existing at a high frequency position closest to the center of the RMSI CORESET among the uppermost SS / PBCH block and the intermediate SS / PBCH block is referred to as an offset value
  • the determination of the reference SS / PBCH block means that it can be the SS / PBCH block closest to the center of the RMSI CORESET.
  • the synchronous raster is defined by the minimum channel bandwidth, the SS / PBCH block bandwidth, and the channel raster. For example, if the minimum channel bandwidth is wide, the sync raster will be widened. Therefore, a wider sync raster has the advantage of reducing the number of SS entries. However, if the sync raster is wide, the bit size needed to indicate the frequency location between the RMSI CORESET and the SS / PBCH block increases. Therefore, it is necessary to determine the appropriate range of synchronization raster considering the above-mentioned matters.
  • the synchronous raster can be 5775 kHz, which is represented by 385 REs at 15 kHz subcarrier spacing. In this case, a maximum of 9 bits is required for RE level frequency offset indication.
  • the minimum channel bandwidth is 40 MHz
  • 106 PRB is assumed for a 30 kHz subcarrier interval
  • the synchronous raster can be 30975 kHz, which is expressed as 1033 REs in a 30 kHz subcarrier interval.
  • a maximum of 11 bits is required for RE level frequency offset indication.
  • the sync raster for the 120 kHz subcarrier interval can be 17340 kHz, which is displayed as 145REs. Therefore, a maximum of 8 bits is required for RE level frequency offset indication.
  • the NR can reduce the size of the synchronous raster or limit the frequency offset indication range. For example, in the case of a 30 kHz subcarrier interval, a maximum of 11 bits is required for the frequency offset indication, so it may be considered to reduce the size of the synchronous raster.
  • the synchronous raster can be 11175 kHz and is represented by 373 REs at 30 kHz subcarrier spacing.
  • the RE level frequency offset display requires a maximum of 9 bits.
  • the number of SS entries increases from 4 to 9, but this is not so important.
  • the range of the frequency offset indication can be limited. If the maximum frequency range of the frequency position indication between the RMSI CORESET and the SS / PBCH block is limited to 128 RE, a maximum of 7 bits is required for the RE level frequency offset indication.
  • FIG. 40 shows an embodiment of the offset, duration and period of this RMSI PDCCH monitoring window.
  • the RMSI PDCCH monitoring period can be defined to be equal to or longer than a default period for detecting the SS / PBCH block.
  • the UE detects the SS / PBCH block every 20ms. That is, the basic detection period of the SS / PBCH is 20 ms.
  • the UE can monitor the RMSI CORESET with the same period as the detection period of the SS / PBCH block, i.e., 20 ms.
  • the UE may receive the PDSCH including the same RMSI several times within the RMSI TTI. For example, if the RMSI TTI is determined to be 160 ms, since the detection period of the basic SS / PBCH block is 20 ms, the same RMSI can be repeatedly received eight times.
  • the network may reserverd a DL dedicated transmission duration for broadcasting system information transmission, which may limit the flexibility of resource utilization in the TDD system.
  • the number of SS / PBCH blocks is 8
  • the RMSI subcarrier interval is 15 kHz
  • O is 5
  • UL configuration may not be possible in 10ms.
  • the time resources for UL setting may be reduced in the frequency range above 6 GHz.
  • the number of SS / PBCH blocks can be limited, but this can lead to too many constraints on the NR system.
  • M 2
  • the value of M 2
  • the value of M can be set to 1/2 or 1.
  • the set of O values is ⁇ 0, 2, 5, 7 ⁇ below the 6 GHz frequency range and ⁇ 0,2.5,5,7.5 ⁇ over the 6 GHz frequency range but with an offset value greater than 5 ms configured
  • the time resource for the UL configuration (10ms) may not be sufficient. Therefore, the setting of the O value is changed to ⁇ 0, 2, 10, 12 ⁇ in the frequency range of 6 GHz or less and to ⁇ 0, 2.5, 10, 12.5 ⁇ in the frequency range of 6 GHz or more.
  • a shorter period such as 20 ms may be required.
  • the UE when the gNB transmits the RMSI CORESET for the even index beam and the odd index beam alternately every 20 ms, the UE responds to a specific SS / PBCH block index with a period of 40 ms for the specific SS RMSI CORESET can be monitored.
  • the duration of RMSI PDCCH monitoring may be determined according to the number of SS / PBCH blocks actually transmitted. For example, when transmitting a plurality of SS / PBCH blocks, a longer monitoring duration may be required for multiple RMSI transmissions with different directions. In this case, the UE may assume that the RMSI monitoring interval is longer. However, even if the number of actually transmitted SS / PBCH blocks is small, the UE is not efficient in terms of battery consumption if it assumes a fixed longer duration of RMSI monitoring.
  • the gNB needs to set the RMSI PDCCH monitoring duration.
  • the RSMI PDCCH monitoring interval may be set to a 2-slot or 4-slot interval.
  • the RMSI PDCCH monitoring window may overlap between the SS / PBCH blocks.
  • the UE may detect a PDCCH that can be QCLed between different SS / PBCH blocks.
  • the scrambling sequence of the PDCCH for the RMSI or the DMRS sequences may be initialized by the SS / PBCH block index.
  • Configurable offsets for RMSI PDCCH monitoring can provide flexibility in resource utilization for the network. For example, if there is a broad spectrum in the network, the gNB may transmit the SS / PBCH block and the RMSI within the same duration. In addition, if the network has the flexibility to individually transmit SS / PBCH blocks and RMSI, the gNB may send an RMSI based on a time interval that is different from the time interval at which the SS / PBCH block is transmitted. On the other hand, when the semi-static DL / UL allocation period is considered, the offset values are 0ms and 10ms.
  • 41 is a block diagram illustrating an example of communication between the wireless device 10 and the network node 20.
  • the network node 20 may be replaced with the radio device or UE of Fig.
  • the wireless device 10 or network node 20 herein includes a transceiver 11, 21 for communicating with one or more other wireless devices, network nodes, and / or other elements of the network.
  • the transceivers 11, 21 may include one or more transmitters, one or more receivers, and / or one or more communication interfaces.
  • the transceiver 11, 21 may include one or more antennas.
  • the antenna may be configured to transmit signals processed by the transceivers 11 and 21 to the outside under control of the processing chips 12 and 22 or to receive radio signals from the outside and transmit the processed signals to the processing chip 12 , 22).
  • Antennas are sometimes referred to as antenna ports.
  • Each antenna may be configured by a combination of physical antenna elements corresponding to one physical antenna or more than one physical antenna element. The signal transmitted from each antenna can not be further resolved by the wireless device 10 or the network node 20.
  • a reference signal RS transmitted in response to the antenna defines the antenna viewed from the perspective of the wireless device 10 or the network node 20 and indicates whether the channel is a single wireless channel from one physical antenna, Enables the wireless device 10 or the network node 20 to channel estimate for the antenna regardless of whether it is a composite channel from a plurality of physical antenna elements including the antenna . That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is transmitted. In case of a transceiver supporting multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, it can be connected to two or more antennas.
  • MIMO multi-input multi-output
  • the transceivers 11 and 21 may support receive beamforming and transmit beamforming.
  • the transceivers 11 and 21 may be configured to perform the functions illustrated in Figures 8-10.
  • the wireless device 10 or network node 20 also includes processing chips 12,22.
  • the processing chips 12 and 22 may include at least one processor, such as processors 13 and 23, and at least one memory device, such as memories 14 and 24.
  • the processing chips 12, 22 may control at least one of the methods and / or processes described herein. In other words, the processing chip 12, 22 may be configured to perform at least one or more embodiments described herein.
  • Processors 13 and 23 include at least one processor for performing the functions of wireless device 10 or network node 20 described herein.
  • one or more processors may control one or more of the transceivers 11, 21 of FIG. 41 to transmit and receive information.
  • Processors 13 and 23 included in the processing chips 12 and 22 may also perform predetermined coding and modulation on signals and / or data to be transmitted to the outside of the wireless device 10 or the network node 20, and then transmits them to the transceivers 11 and 21.
  • the processors 13 and 23 convert the data stream to be transmitted into K layers through demultiplexing, channel coding, scrambling, and modulation processing.
  • the encoded data stream is also referred to as a code word and is equivalent to a transport block that is a data block provided by the MAC layer.
  • a transport block (TB) is encoded into one codeword, and each codeword is transmitted to the receiving device in the form of one or more layers.
  • the transceivers 11, 21 may comprise an oscillator.
  • a transceiver (11, 21) N t Dog (N t Lt; / RTI > may be a positive integer of one or more) transmit antennas.
  • processing chips 12, 22 include memory 14, 24 configured to store data, programmable software code, and / or other information for performing the embodiments described herein.
  • the memory 14, 24 when the memory 14, 24 is executed by at least one processor, such as processor 13, 23, the processor 13, (15, 25) comprising instructions for performing some or all of the processes controlled by the processors (13, 23) or for carrying out the embodiments described herein on the basis of Figures 1-40, / RTI >
  • the processing chip 12 of the wireless device 10 controls the transceiver to receive information related to reference signal settings for obtaining timing information of a neighboring cell from a serving cell, Receives the SS / PBCH block from the cell, and controls the transceiver to receive the SS / PBCH block and the reference signal from the neighboring cell.
  • the processing chip 12 acquires the timing information of the neighboring cell based on the sequence of the reference signal, and timing information obtainable from the sequence of the reference signal is obtained from the SS / PBCH Information regarding an index of a block, information on a slot, a symbol, and a half frame at the time when the reference signal is received.
  • the specific method by which the processing chip 12 obtains the timing information of the adjacent cell based on the sequence of the received reference signal and the types of the reference signal and the reference signal sequence are in accordance with the above-described embodiments of the present invention.
  • the processing chip 22 of the network node 20 may refer to the processing chip 22 that controls one or more cells. That is, the cell controlled by the processing chip 22 may be a serving cell or a neighboring cell.
  • one processing chip 22 may control a serving cell or a neighboring cell, but one processing chip 22 may control both a serving cell and an adjacent cell.
  • the processing chip 22 corresponding to the serving cell controls the transceiver to send the UE a setting related to the reference signal for obtaining timing information of the neighboring cell. Then, the processing chip 22 corresponding to the adjacent cell generates a sequence of reference signals based on the reference signal and / or the SS / PBCH block transmission timing. At this time, the seed value of the reference signal sequence may be information on a slot, a symbol and a half frame to which the reference signal is transmitted, or information on an index of an SS / PBCH block transmitted around the reference signal.
  • the specific method by which the processing chip 22 generates the sequence of the reference signal based on the timing information of the neighboring cell and the types of the reference signal and the reference signal sequence are in accordance with the above-described embodiments.
  • the processing chip 22 corresponding to the neighboring cell corresponding to the neighboring cell transmits the generated reference signal and the SS / PBCH block of the neighboring cell to the UE (S3505).
  • the specific operation described herein as being performed by the base station may be performed by its upper node, in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station can be performed by a network node other than the base station or the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above.
  • the software code can be stored in a memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은, 무선 통신 시스템에서, 단말이 참조 신호를 수신하는 방법을 개시한다. 특히, 상기 방법은, 서빙 셀(Serving Cell)로부터 참조 신호 설정에 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 인접 셀(Neighbour Cell)로부터 상기 참조 신호를 수신하고, 상기 참조 신호의 시퀀스를 기반으로 상기 참조 신호의 타이밍에 관한 제 2 정보를 획득하되, 상기 참조 신호는 SS/PBCH 블록과 상이한 종류인 것을 특징으로 한다.

Description

참조 신호를 송수신하는 방법 및 이를 위한 장치
본 발명은 참조 신호를 송수신 하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 서빙 셀과 인접 셀 각각으로부터 동기 신호 블록과 참조 신호를 수신한 경우, 상기 참조 신호의 시퀀스를 기반으로 인접 셀의 시간 정보를 획득하기 위한 방법 및 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은 참조 신호를 송수신 하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른, 무선 통신 시스템에서, 단말이 참조 신호를 수신하는 방법에 있어서, 서빙 셀(Serving Cell)로부터 참조 신호 설정에 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 인접 셀(Neighbour Cell)로부터 상기 참조 신호를 수신하고, 상기 참조 신호의 시퀀스를 기반으로 상기 참조 신호의 타이밍에 관한 제 2 정보를 획득하는 것을 특징으로 하고, 상기 참조 신호는 SS/PBCH 블록과 상이한 종류일 수 있다.
이 때, 상기 제 2 정보는, 상기 참조 신호가 전송된 하프 프레임에 관한 정보일 수 있다.
또한, 상기 제 2 정보는, 상기 참조 신호가 전송된 슬롯 및 OFDM(Orthogonal Frequency Division Multiplexing) 심볼 중 적어도 하나에 관한 정보일 수 있다.
또한, 상기 제 2 정보는, 상기 인접 셀로부터 수신되는 SS/PBCH 블록의 인덱스에 관련된 정보일 수 있다.
또한, 상기 제 2 정보는, 상기 인접 셀로부터 수신되는 SS/PBCH 블록의 인덱스를 위한 최상위 3비트를 포함할 수 있다.
또한. 상기 참조 신호는, 상기 인접 셀을 통해 수신되는 SS/PBCH가 맵핑된 자원들로부터 일정 범위 내에 위치한 자원들에 맵핑될 수 있다.
또한, 상기 참조 신호는, CSI-RS(Channel States Information-Reference Signal)일 수 있다.
또한, 상기 참조 신호는, DMRS(Demodulation Reference Signal)이며, 상기 DMRS는 상기 SS/PBCH블록이 맵핑되지 않는 영역에 맵핑될 수 있다.
또한, 상기 제 2 정보를 기반으로 상기 서빙 셀로부터 상기 인접 셀로의 핸드 오버가 수행될 수 있다.
또한, 상기 제 2 정보를 기반으로 상기 인접 셀을 위한 측정(Measurment)가 수행될 수 있다.
본 발명에 따른, 무선 통신 시스템에서, 참조 신호를 수신하기 위한 통신 장치에 있어서, 메모리; 및 상기 메모리와 연결된 프로세서;를 포함하고, 상기 프로세서는, 서빙 셀(Serving Cell)로부터 참조 신호 설정에 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 인접 셀(Neighbour Cell)로부터 상기 참조 신호를 수신하고, 상기 참조 신호의 시퀀스를 기반으로 상기 참조 신호의 타이밍에 관한 제 2 정보를 획득하도록 제어하는 것을 특징으로 하고, 상기 참조 신호는 SS/PBCH 블록과 상이한 종류일 수 있다.
본 발명의 실시 예에 따른, 무선 통신 시스템에서, 인접 셀(Neighbor Cell)이 참조 신호를 전송하는 방법에 있어서, 상기 참조 신호의 타이밍에 관한 제 1 정보를 기반으로 상기 참조 신호의 시퀀스를 생성하고, 서빙 셀이 단말에게 전송한 참조 신호 설정에 관련된 제 1 정보를 기반으로 상기 참조 신호의 시퀀스를 자원 요소들(Resource Elements; REs)에 맵핑하고, 상기 참조 신호를 상기 단말에 전송하는 것을 특징으로 하고, 상기 참조 신호는 SS/PBCH 블록과 상이한 종류일 수 있다.
본 발명에 따르면, 인접 셀로부터 수신된 동기 신호 블록을 디코딩하지 않더라도, 인접 셀로부터 수신된 동기 신호 블록의 인덱스를 획득할 수 있어, 디코딩의 복잡성을 감소시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 3은 LTE 시스템에서 사용되는 동기 신호(synchronization signal, SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다.
도 4는 NR 시스템에서 사용되는 SS/PBCH 블록의 구조를 설명하기 위한 도면이다.
도 5 내지 도 7은 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.
도 8는 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.
도 9는 하향링크 전송 과정에서 동기 신호와 시스템 정보에 대한 빔 스위핑(Beam Sweeping) 동작을 나타낸다.
도 10은 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.
도 11 내지 도 14는 동기 신호 버스트 및 동기 신호 버스트 집합의 구성 방법을 설명하기 위한 도면이다.
도 15는 동기 신호를 인덱싱 하는 방법을 설명하기 위한 도면이다.
도 16은 동기 신호 인덱스 및 SFN, Half Frame을 지시하는 방법에 관한 도면이다.
도 17 내지 도 29는 본 발명의 실시 예에 따른, 성능을 측정한 결과에 대한 도면이다.
도 30 내지 도 31은 동기 신호 내에 PSS/SSS/PBCH가 멀티플렉싱되는 실시 예들을 설명하기 위한 도면이다.
도 32 내지 도 33은 본 발명의 실시 예에 따른 PBCH 디코딩 성능을 시뮬레이션 한 결과를 나타내는 그래프이다.
도 34 내지 도 36은 본 발명의 실시 예에 따른 참조신호를 통해 타이밍 정보를 획득하는 방법을 설명하기 위한 도면이다.
도 37 내지 도 40은 RMSI를 위한 CORESET의 설정 방법 및 이에 대응하는 PDCCH를 위한 모니터링 윈도우를 설정하는 방법을 설명하기 위한 도면이다.
도 41은 본 발명을 수행하는 무선 장치의 구성요소를 나타내는 블록도이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
< LTE에서의 RRM (Radio Resource Management) 측정 (Measurement)>
LTE 시스템에서는 전력 제어(Power control), 스케줄링(Scheduling), 셀 탐색(Cell search), 셀 재선택(Cell reselection), 핸드오버(Handover), 무선 링크 또는 연결 모니터링(Radio link or Connection monitoring), 연결 획득/재획득 (Connection establish/re-establish)등을 포함하는 RRM 동작을 지원한다. 이 때, 서빙 셀(Serving Cell)은 UE에게 RRM 동작을 수행하기 위한 측정 값인 RRM 측정(measurement) 정보를 요청할 수 있다. 특히, LTE 시스템에서는 UE가 각 셀(Cell)에 대한 셀 탐색(Cell search) 정보, RSRP (reference signal received power), RSRQ (reference signal received quality) 등의 정보를 측정하여 보고할 수 있다. 구체적으로, LTE 시스템에서는 UE가 서빙 셀로부터 RRM 측정을 위한 상위 계층 신호로 'measConfig'를 수신한다. 그러면, UE는 상기 'measConfig'의 정보에 따라 RSRP 또는 RSRQ를 측정한다. 여기서 LTE 시스템의 TS 36.214 문서에 따른 RSRP, RSRQ 및 RSSI의 정의는 아래와 같다.
- RSRP: RSRP는 측정 주파수 대역폭 내에서 전송되는, 셀 특정 참조 신호들(Cell specific reference signal; CRS)의 자원 요소 (Resource Element; RE)의 전력 기여도([W])에 대한 선형 평균으로 정의된다. 또한, RSRP 결정을 위해 TS 36.211에 따른 CRS R0가 사용된다. 경우에 따라, 신뢰성을 높이기 위하여, CRS R1이 추가로 이용될 수도 있다. RSRP를 위한 기준 점은 UE의 안테나 커넥터가 되어야 하며, 수신 다이버시티가 사용되는 경우, 보고되는 RSRP값은 개별 다이버시티들 중 어느 하나의 RSRP보다 낮아서는 안된다.
- RSRQ: RSRQ는 N*RSRP/(E-UTRA 반송파의 RSSI)로 정의된다. 이 때, N은 E-UTRA 반송파 RSSI 측정 대역폭의 RB 수이다. 이 때, 'N*RSRP'의 측정과, 'E-UTRA 반송파의 RSSI'의 측정은 동일한 자원 블록 집합(RB set)을 통해 수행된다.
E-UTRA 반송파 RSSI는 서빙 셀과 넌 서빙 셀(non-serving cell)의 동일 채널, 인접 채널 간섭, 열 잡음 등을 포함하는 모든 소스로부터 얻어지는 N개의 자원 블록 상에서, 안테나 포트 0을 위한 참조 심볼들을 포함하는 OFDM 심볼에서만 측정된 총 수신 전력의 선형 평균값으로 획득되어진다.
만약, 상위 계층 시그널링이 RSRP 측정 수행을 위한 특정 서브 프레임을 지시한다면, RSSI는 지시된 모든 OFDM 심볼들 상에서 측정된다. 이 때에도, RSRQ를 위한 기준 점은 UE의 안테나 커넥터가 되어야 하며, 수신 다이버시티가 사용되는 경우, 보고되는 RSRQ값은 개별 다이버시티들 중 어느 하나의 RSRQ보다 낮아서는 안 된다.
- RSSI: 수신기 펄스 정형 필터(Receiver Pulse Shaping Filter)에 의해 정의되는 대역폭 내에서 생성되는 잡음 및 열잡음을 포함하는 광대역 수신 전력(received wide band power)을 의미한다. 이 때에도, RSSI를 위한 기준 점은 UE의 안테나 커넥터가 되어야 하며, 수신 다이버시티가 사용되는 경우, 보고되는 RSSI값은 개별 다이버시티들 중 어느 하나의 RSSI보다 낮아서는 안 된다.
상술한 정의에 따라, 상기 LTE 시스템에서 동작하는 UE는 Intra-frequency measurement인 경우에는 SIB3 (system information block type 3)에서 전송되는 Allowed measurement bandwidth 관련 IE (information element)를 통해 6, 15, 25, 50, 75, 100RB (resource block) 중 하나에 대응되는 대역폭에서 RSRP를 측정하도록 허용 받는다. 또한, Inter-frequency measurement인 경우에는 SIB5에서 전송되는 Allowed measurement bandwidth을 통해 6, 15, 25, 50, 75, 100RB (resource block) 중 하나에 대응되는 대역폭에서 RSRP를 측정하도록 허용 받는다. 만약, IE가 없을 경우, 기본적(Default)으로 전체 하향링크 시스템의 주파수 대역에서 RSRP를 측정할 수 있다. 이때, UE가 Allowed measurement bandwidth를 수신하는 경우, UE는 해당 값을 최대 측정 대역폭(maximum measurement bandwidth)으로 생각하고 해당 값 이내에서 자유롭게 RSRP의 값을 측정할 수 있다.
다만, 서빙 셀(Serving Cell)이 WB-RSRQ로 정의되는 IE을 전송하고, Allowed measurement bandwidth을 50RB 이상으로 설정하면, UE는 전체 Allowed measurement bandwidth에 대한 RSRP 값을 계산하여야 한다. 한편, RSSI의 경우에는, RSSI 대역폭의 정의에 따라 UE의 수신기가 갖는 주파수 대역에서 RSSI를 측정한다.
NR 통신 시스템은, 데이터 레이트, 용량(capacity), 지연(latency), 에너지 소비 및 비용 면에서, 기존 4세대(4G) 시스템보다 상당히 나은 성능을 지원할 것이 요구된다. 따라서, NR 시스템은 대역폭, 스펙트럴, 에너지, 시그널링 효율, 및 비트당 비용(cost)의 영역에서 상당한 진보를 이룰 필요가 있다.
<참조 신호 (Reference Signal)>
일반적으로 채널 측정을 위하여 데이터와 함께 송신측과 수신측 모두가 이미 알고 있는 참조 신호가 송신측에서 수신측으로 전송된다. 이러한 참조 신호는 채널 측정뿐만 아니라 변조 기법을 알려주어 복조 과정이 수행되도록 하는 역할을 수행한다. 참조 신호는 기지국과 특정 단말을 위한 전용 참조 신호(dedicated RS; DRS), 즉 단말 특정 참조 신호와 셀 내 모든 단말을 위한 셀 특정 참조 신호인 공통 참조 신호(common RS 또는 Cell specific RS; CRS)로 구분된다. 또한, 셀 특정 참조 신호는 단말에서 CQI/PMI/RI 를 측정하여 기지국으로 보고하기 위한 참조 신호를 포함하며, 이를 CSI-RS(Channel State Information-RS)라고 지칭한다.
도 3은 LTE/LTE-A 기반 무선 통신 시스템에서 동기 신호(synchronization signal, SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다. 특히, 도 3은 주파수 분할 듀플렉스(frequency division duplex, FDD)에서 동기 신호 및 PBCH의 전송을 위한 무선 프레임 구조를 예시한 것으로서, 도 3(a)는 정규 CP(normal cyclic prefix)로써 설정된(configured) 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이고 도 3(b)는 확장 CP(extended CP)로써 설정된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이다.
도 3을 참조하여, SS를 조금 더 구체적으로 설명하면 다음과 같다. SS는 PSS (Primary Synchronization Signal)와 SSS(Secondary Synchronization Signal)로 구분된다. PSS는 OFDM 심볼 동기, 슬롯 동기 등의 시간 도메인 동기 및/또는 주파수 도메인 동기를 얻기 위해 사용되며, SSS는 프레임 동기, 셀 그룹 ID 및/또는 셀의 CP 설정(configuration)(즉, 일반 CP 또는 확장 CP 의 사용 정보)를 얻기 위해 사용된다. 도 3을 참조하면, PSS와 SSS는 매 무선 프레임의 2개의 OFDM 심볼에서 각각 전송된다. 구체적으로 SS는 인터-RAT(inter radio access technology) 측정의 용이함을 위해 GSM(Global System for Mobile communication) 프레임 길이인 4.6 ms를 고려하여 서브프레임 0의 첫 번째 슬롯과 서브프레임 5의 첫 번째 슬롯에서 각각 전송된다. 특히 PSS는 서브프레임 0의 첫 번째 슬롯의 마지막 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막 OFDM 심볼에서 각각 전송되고, SSS는 서브프레임 0의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼에서 각각 전송된다. 해당 무선 프레임의 경계는 SSS를 통해 검출될 수 있다. PSS는 해당 슬롯의 맨 마지막 OFDM 심볼에서 전송되고 SSS는 PSS 바로 앞 OFDM 심볼에서 전송된다. SS의 전송 다이버시티(diversity) 방식은 단일 안테나 포트(single antenna port)만을 사용하며 표준에서는 따로 정의하고 있지 않다.
PSS는 5ms마다 전송되므로 UE는 PSS를 검출함으로써 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 하나임을 알 수 있으나, 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 구체적으로 무엇인지는 알 수 없다. 따라서, UE는 PSS만으로는 무선 프레임의 경계를 인지하지 못한다. 즉, PSS만으로는 프레임 동기가 획득될 수 없다. UE는 일 무선 프레임 내에서 두 번 전송되되 서로 다른 시퀀스로서 전송되는 SSS를 검출하여 무선 프레임의 경계를 검출한다.
PSS/SSS를 이용한 셀(cell) 탐색 과정을 수행하여 DL 신호의 복조(demodulation) 및 UL 신호의 전송을 정확한 시점에 수행하는 데 필요한 시간 및 주파수 파라미터를 결정한 UE는, 또한, 상기 eNB로부터 상기 UE의 시스템 설정(system configuration)에 필요한 시스템 정보를 획득해야 상기 eNB와 통신할 수 있다.
시스템 정보는 마스터정보블록(Master Information Block, MIB) 및 시스템정보블록(System Information Block, SIB)들에 의해 설정된다(configured). 각 시스템정보블록은 기능적으로 연관된 파라미터들의 모음을 포함하며, 포함하는 파라미터에 따라 마스터정보블록(Master Information Block, MIB) 및 시스템정보블록타입 1(System Information Block Type 1, SIB1), 시스템정보블록타입 2(System Information Block Type 2, SIB2), SIB3∼SIB17로 구분될 수 있다.
MIB는 UE가 eNB의 네트워크(network)에 초기 접속(initial access)하는 데 필수적인, 가장 자주 전송되는 파라미터들을 포함한다. UE는 MIB를 브로드캐스트 채널(예, PBCH)를 통해 수신할 수 있다. MIB에는 하향링크 시스템 대역폭(dl-Bandwidth, DL BW), PHICH 설정(configuration), 시스템 프레임 넘버(SFN)가 포함된다. 따라서, UE는 PBCH를 수신함으로써 명시적(explicit)으로 DL BW, SFN, PHICH 설정에 대한 정보를 알 수 있다. 한편, PBCH를 수신을 통해 UE가 암묵적(implicit)으로 알 수 있는 정보로는 eNB의 전송 안테나 포트의 개수가 있다. eNB의 전송 안테나 개수에 대한 정보는 PBCH의 에러 검출에 사용되는 16-비트 CRC(Cyclic Redundancy Check)에 전송 안테나 개수에 대응되는 시퀀스를 마스킹(예, XOR 연산)하여 암묵적으로 시그널링된다.
SIB1은 다른 SIB들의 시간 도메인 스케줄링에 대한 정보뿐만 아니라, 특정 셀이 셀 선택에 적합한 셀인지를 판단하는 데 필요한 파라미터들을 포함한다. SIB1은 브로드캐스트 시그널링 혹은 전용(dedicated) 시그널링을 통해 UE에게 수신된다.
DL 반송파 주파수와 해당 시스템 대역폭은 PBCH가 나르는 MIB에 의해 획득될 수 있다. UL 반송파 주파수 및 해당 시스템 대역폭은 DL 신호인 시스템 정보를 통해 얻어질 수 있다. MIB를 수신한 UE는 해당 셀에 대해 저장된 유효한 시스템 정보가 없으면, 시스템 정보 블록 타입 2(SystemInformationBlockType2, SIB2)가 수신될 때까지, MIB 내 DL BW의 값을 UL-대역폭(UL BW)에 적용한다. 예를 들어, UE는 시스템 정보 블록 타입 2(SystemInformationBlockType2, SIB2)를 획득하여, 상기 SIB2 내 UL-반송파 주파수 및 UL-대역폭 정보를 통해 자신이 UL 전송에 사용할 수 있는 전체 UL 시스템 대역을 파악할 수 있다.
주파수 도메인에서, PSS/SSS 및 PBCH는 실제 시스템 대역폭과 관계없이 해당 OFDM 심볼 내에서 DC 부반송파를 중심으로 좌우 3개씩 총 6개의 RB, 즉 총 72개의 부반송파들 내에서만 전송된다. 따라서, UE는 상기 UE에게 설정된(configured) 하향링크 전송 대역폭과 관계없이 SS 및 PBCH를 검출(detect) 혹은 복호(decode)할 수 있도록 설정된다(configured).
초기 셀 탐색을 마친 UE는 eNB로의 접속을 완료하기 위해 임의 접속 과정(random access procedure)을 수행할 수 있다. 이를 위해 UE는 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 프리앰블(preamble)을 전송하고, PDCCH 및 PDSCH을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다. 경쟁 기반 임의 접속(contention based random access)의 경우 추가적인 PRACH의 전송, 그리고 PDCCH 및 상기 PDCCH에 대응하는 PDSCH와 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 UE는 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신 및 PUSCH/PUCCH 전송을 수행할 수 있다.
상기 임의 접속 과정은 임의 접속 채널(random access channel, RACH) 과정으로도 지칭된다. 임의 접속 과정은 초기 접속, 임의 접속 과정은 초기 접속, 상향링크 동기 조정, 자원 할당, 핸드오버 등의 용도로 다양하게 사용된다. 임의 접속 과정은 경쟁-기반(contention-based) 과정과, 전용(dedicated)(즉, 비-경쟁-기반) 과정으로 분류된다. 경쟁-기반 임의 접속 과정은 초기 접속을 포함하여 일반적으로 사용되며, 전용 임의 접속 과정을 핸드오버 등에 제한적으로 사용된다. 경쟁-기반 임의 접속 과정에서 UE는 RACH 프리앰블 시퀀스를 임의로(randomly) 선택한다. 따라서, 복수의 UE들이 동시에 동일한 RACH 프리앰블 시퀀스를 전송하는 것이 가능하며, 이로 인해 이후 경쟁 해소 과정이 필요하다. 반면, 전용 임의 접속 과정에서 UE는 eNB가 해당 UE에게 유일하게 할당한 RACH 프리앰블 시퀀스를 사용한다. 따라서, 다른 UE와의 충돌없이 임의 접속 과정을 수행할 수 있다.
경쟁-기반 임의 접속 과정은 다음의 4 단계를 포함한다. 이하, 단계 1~4에서 전송되는 메시지는 각각 메시지 1~4(Msg1 ~ Msg4)로 지칭될 수 있다.
- 단계 1: RACH 프리앰블(via PRACH)(UE to eNB)
- 단계 2: 임의 접속 응답(random access response, RAR)(via PDCCH 및 PDSCH)(eNB to UE)
- 단계 3: 레이어 2 / 레이어 3 메시지(via PUSCH)(UE to eNB)
- 단계 4: 경쟁 해소(contention resolution) 메시지(eNB to UE)
전용 임의 접속 과정은 다음의 3 단계를 포함한다. 이하, 단계 0~2에서 전송되는 메시지는 각각 메시지 0~2(Msg0 ~ Msg2)로 지칭될 수 있다. 임의 접속 과정의 일부로 RAR에 대응하는 상향링크 전송(즉, 단계 3)도 수행될 수 있다. 전용 임의 접속 과정은 기지국이 RACH 프리앰블 전송을 명령하는 용도의 PDCCH(이하, PDCCH 오더(order))를 이용하여 트리거링될 수 있다.
- 단계 0: 전용 시그널링을 통한 RACH 프리앰블 할당(eNB to UE)
- 단계 1: RACH 프리앰블(via PRACH)(UE to eNB)
- 단계 2: 임의 접속 응답(RAR)(via PDCCH 및 PDSCH)(eNB to UE)
RACH 프리앰블을 전송한 뒤, UE는 미리-설정된 시간 윈도우 내에서 임의 접속 응답(RAR) 수신을 시도한다. 구체적으로, UE는 시간 윈도우 내에서 RA-RNTI(Random Access RNTI)를 갖는 PDCCH(이하, RA-RNTI PDCCH)(예, PDCCH에서 CRC가 RA-RNTI로 마스킹됨)의 검출을 시도한다. RA-RNTI PDCCH 검출 시, UE는 RA-RNTI PDCCH에 대응하는 PDSCH 내에 자신을 위한 RAR이 존재하는지 확인한다. RAR은 UL 동기화를 위한 타이밍 오프셋 정보를 나타내는 타이밍 어드밴스(timing advance, TA) 정보, UL 자원 할당 정보(UL 그랜트 정보), 임시 단말 식별자(예, temporary cell-RNTI, TC-RNTI) 등을 포함한다. UE는 RAR 내의 자원 할당 정보 및 TA 값에 따라 UL 전송(예, Msg3)을 수행할 수 있다. RAR에 대응하는 UL 전송에는 HARQ가 적용된다. 따라서, UE는 Msg3 전송한 후, Msg3에 대응하는 수신 응답 정보(예, PHICH)를 수신할 수 있다.
임의 접속 프리앰블, 즉, RACH 프리앰블은 물리 계층에서 길이 T CP의 순환 전치(cyclic prefix) 및 길이 T SEQ의 시퀀스 부분으로 구성된다. T CPT SEQ는 프레임 구조와 임의 접속 설정(configuration)에 의존한다. 프리앰블 포맷은 상위 계층에 의해 제어된다. PACH 프리앰블은 UL 서브프레임에서 전송된다. 임의 접속 프리앰블의 전송은 특정 시간 및 주파수 자원들에 제한(restrict)된다. 이러한 자원들을 PRACH 자원들이라고 하며, PRACH 자원들은, 인덱스 0가 무선 프레임에서 낮은 번호의 PRB 및 서브프레임에 대응하도록, 상기 무선 프레임 내 서브프레임 번호와, 주파수 도메인에서 PRB들의 증가 순으로 번호가 매겨진다. 임의 접속 자원들이 PRACH 설정 인덱스에 따라 정의된다(3GPP TS 36.211 표준 문서 참조). PRACH 설정 인덱스는 (eNB에 의해 전송되는) 상위 계층 신호에 의해 주어진다.
LTE/LTE-A 시스템에서 임의 접속 프리앰블, 즉, RACH 프리앰블을 위한 부반송파 간격(Subcarrier Spacing)은 프리앰블 포맷 0~3의 경우 1.25kHz이고, 프리앰블 포맷 4의 경우 7.5kHz인 것으로 규정된다(3GPP TS 36.211 참조).
도 4는 SSB 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
도 4를 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
한편, NR 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤리지로 동작하는 하는 UE들이 하나의 셀 안에서 공존할 수 있다.
도 5는 NR에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
[표 1]은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 도 6은 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 7은 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다. 하지만 밀리미터 주파수 대역은 너무 높은 주파수 대역을 이용하는 것으로 인해 거리에 따른 신호 감쇄가 매우 급격하게 나타나는 주파수 특성을 갖는다. 따라서, 적어도 6GHz 이상의 대역을 사용하는 NR 시스템은 급격한 전파 감쇄 특성을 보상하기 위해 신호 전송을 전방향이 아닌 특정 방향으로 에너지를 모아서 전송함으로써 급격한 전파 감쇄로 인한 커버리지의 감소 문제를 해결하는 좁은 빔(narrow beam) 전송 기법을 사용한다. 그러나 하나의 좁은 빔만을 이용하여 서비스하는 경우, 하나의 기지국이 서비스를 할 범위가 좁아지므로 기지국은 다수의 좁은 빔을 모아서 광대역으로 서비스를 하게 된다.
밀리미터 주파수 대역, 즉, 밀리미터 파장(millimeter wave, mmW) 대역에서는 파장이 짧아져서 동일 면적에 다수 개의 안테나 요소(element)의 설치가 가능해진다. 예를 들어, 1cm의 정도의 파장을 갖는 30GHz 대역에서 5 by 5cm의 패널(panel)에 0.5 람다(lamda) (파장) 간격으로 2-차원(dimension) 배열 형태로 총 100개의 안테나 요소 설치가 가능하다. 그러므로 mmW에서는 다수 개의 안테나 요소를 사용하여 빔포밍 이득을 높여 커버리지를 증가시키거나, 처리량(throughput)을 높이는 것이 고려된다.
밀리미터 주파수 대역에서 좁은 빔을 형성하기 위한 방법으로, 기지국이나 UE에서 많은 수의 안테나에 적절한 위상차를 이용하여 동일한 신호를 전송함으로써 특정한 방향에서만 에너지가 높아지게 하는 빔포밍 방식이 주로 고려하고 있다. 이와 같은 빔포밍 방식에는 디지털 기저대역(baseband) 신호에 위상차를 만드는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등이 있다. 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(transceiver unit, TXRU)을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 TXRU를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 즉, 밀리미터 주파수 대역은 급격한 전파 감쇄 특성을 보상하기 위해 많은 수의 안테나가 사용해야 하고, 디지털 빔포밍은 안테나 수에 해당하는 만큼 RF 컴포넌트(예, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 하므로, 밀리미터 주파수 대역에서 디지털 빔포밍을 구현하려면 통신 기기의 가격이 증가하는 문제점이 있다. 그러므로 밀리미터 주파수 대역과 같이 안테나의 수가 많이 필요한 경우에는 아날로그 빔포밍 혹은 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은 하나의 TXRU에 다수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다. 하이브리드 BF는 디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 방식이다. 하이브리드 BF의 경우, B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
앞서 언급한 바와 같이 디지털 빔포밍은 전송할 혹은 수신된 디지털 기저대역 신호에 대해 신호 처리를 하므로 다중의 빔을 이용하여 동시에 여러 방향으로 신호를 전송 혹은 수신할 수 있는 반면에, 아날로그 빔포밍은 전송할 혹은 수신된 아날로그 신호를 변조된 상태에서 빔포밍을 수행하므로 하나의 빔이 커버하는 범위를 넘어가는 다수의 방향으로 신호를 동시에 전송 혹은 수신할 수 없다. 통상 기지국은 광대역 전송 혹은 다중 안테나 특성을 이용하여 동시에 다수의 사용자와 통신을 수행하게 되는데, 기지국이 아날로그 혹은 하이브리드 빔포밍을 사용하고 하나의 빔 방향으로 아날로그 빔을 형성하는 경우에는 아날로그 빔포밍의 특성상 동일한 아날로그 빔 방향 안에 포함되는 사용자들과만 통신할 수 밖에 없다. 후술될 본 발명에 따른 RACH 자원 할당 및 기지국의 자원 활용 방안은 아날로그 빔포밍 혹은 하이브리드 빔포밍 특성으로 인해서 생기는 제약 사향을 반영하여 제안된다.
도 8은 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.
다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법이 대두되고 있다. 이때, 아날로그 빔포밍 (또는 RF 빔포밍)은 트랜시버 (혹은 RF 유닛)이 프리코딩 (또는 컴바이닝)을 수행하는 동작을 의미한다. 하드브리드 빔포밍에서 기저대역(baseband) 유닛과 트랜시버 (혹은 RF 유닛)은 각각 프리코딩 (또는 컴바이닝)을 수행하며, 이로 인해 RF 체인(chain) 수와 D/A (또는 A/D) 컨버터의 개수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다. 편의상 하이브리드 빔포밍 구조는 N개 TXRU와 M개의 물리적 안테나로 표현될 수 있다. 전송 단에서 전송할 L개 데이터 레이어에 대한 디지털 빔포밍은 N-by-L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환된 다음 M-by-N 행렬로 표현되는 아날로그 빔포밍이 적용된다. 도 6에서 디지털 빔의 개수는 L이며, 아날로그 빔의 개수는 N이다. 더 나아가 NR 시스템에서는 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 기지국을 설계하여, 특정한 지역에 위치한 UE에게 보다 효율적인 빔포밍을 지원하는 방향이 고려되고 있다. 더 나아가서 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로서 정의될 때, NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다. 이와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, UE별로 신호 수신에 유리한 아날로그 빔이 다를 수 있으므로, 적어도 동기 신호, 시스템 정보, 페이징 등에 대해서는 특정 슬롯 혹은 서브프레임(subframe, SF)에서 기지국이 적용할 복수 아날로그 빔들을 심볼별로 바꾸어 모든 UE들이 수신 기회를 가질 수 있도록 하는 빔 스위핑 동작이 고려되고 있다.
도 9는 하향링크 전송 과정에서 동기 신호와 시스템 정보에 대한 빔 스위핑(Beam sweeping) 동작을 도식화 한 것이다. 도 9에서 New RAT 시스템의 시스템 정보가 방송(Broadcasting)되는 물리적 자원 또는 물리 채널을 xPBCH (physical broadcast channel)로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔(Analog beam)들이 동시에 전송될 수 있으며, 아날로그 빔(Analog beam) 별 채널을 측정하기 위해, 도 9에 나타나 있는 바와 같이, 특정 안테나 패널에 대응되는 단일 아날로그 빔(Analog beam)을 위해 전송되는 참조 신호(Reference signal; RS)인 Beam RS (BRS)를 도입하는 방안이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔(Analog beam)에 대응될 수 있다. 이때, BRS와는 달리, 동기 신호(Synchronization signal) 또는 xPBCH는 임의의 UE가 잘 수신할 수 있도록 아날로그 빔 그룹(Analog beam group)에 포함된 모든 아날로그 빔(Analog beam)을 위해 전송될 수 있다.
도 10은 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.
도 10을 참조하면, NR 시스템에서는 기존 LTE 등의 무선 통신 시스템에 하나의 기지국이 하나의 셀을 형성하던 것과는 달리 복수의 TRP가 하나의 셀을 구성하는 방안이 논의되고 있다 복수의 TRP가 하나의 셀을 구성하면, UE를 서비스하는 TRP가 변경되더라고 끊김 없는 통신이 가능하여 UE의 이동성 관리가 용이하다는 장점이 있다.
LTE/LTE-A 시스템에서 PSS/SSS는 전-방위적(omni-direction)으로 전송되는 것에 반해서, mmWave를 적용하는 gNB가 빔 방향을 전-방위적으로 돌려가면서 PSS/SSS/PBCH 등의 신호를 빔포밍하여 전송하는 방법이 고려되고 있다. 이와 같이 빔 방향을 돌려가면서 신호를 전송/수신하는 것을 빔 스위핑(beam sweeping) 혹은 빔 스캐닝이라 한다. 본 발명에서 "빔 스위핑'은 전송기 측 행동이고, "빔 스캐닝"은 수신기 측 행동을 나타낸다. 예를 들어 gNB가 최대 N개의 빔 방향을 가질 수 있다고 가정하면, N개의 빔 방향에 대해서 각각 PSS/SSS/PBCH 등의 신호를 전송한다. 즉 gNB는 자신이 가질 수 있는 혹은 지원하고자 하는 방향들을 스위핑하면서 각각의 방향에 대해서 PSS/SSS/PBCH 등의 동기 신호들을 전송한다. 혹은 gNB가 N개의 빔을 형성할 수 있는 경우, 몇 개씩의 빔들이 묶여 하나의 빔 그룹으로 구성할 수 있으며, 빔 그룹별로 PSS/SSS/PBCH를 전송/수신될 수 있다. 이 때, 하나의 빔 그룹은 하나 이상의 빔을 포함한다. 동일 방향으로 전송되는 PSS/SSS/PBCH 등의 신호가 하나의 SS 블록으로 정의될 수 있으며, 한 셀 내에 복수의 SS 블록들이 존재할 수 있다. 복수의 SS 블록들이 존재하는 경우, 각 SS 블록의 구분을 위해서 SS 블록 인덱스가 사용될 수 있다. 예를 들여, 한 시스템에서 10개의 빔 방향으로 PSS/SSS/PBCH가 전송되는 경우, 동일 방향으로의 PSS/SSS/PBCH이 하나의 SS 블록을 구성할 수 있으며, 해당 시스템에서는 10개의 SS 블록들이 존재하는 것으로 이해될 수 있다. 본 발명에서 빔 인덱스는 SS 블록 인덱스로 해석될 수 있다.
한편, 본 발명의 본격적인 설명에 앞서, 본 발명에서 표현하는 본 발명에서 표현하는 '상위 비트'와 '최상위 비트'는 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 정보 비트들의 배열에서 왼쪽 비트를 의미할 수 있다. 즉, 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 정보 비트들의 배열에서, 상기 정보 비트들이 가리키는 값이 정수의 짝수인지 홀수인지를 결정하는 단위 값이 되는 비트인 LSB (Least Significant Bit, 최하위 비트)와 같은 의미로 해석될 수 있다.
이와 유사하게, '하위 비트'와 '최하위 비트'는 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 정보 비트들의 배열에서 오른쪽 비트를 의미할 수 있다. 다시 말해, 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 정보 비트들의 배열에서 MSB (Most Significant Bit, 최상위 비트)와 같은 의미로 해석될 수 있다.
예를 들어, 후술할 발명의 내용 중 'SFN의 상위 N-bit 정보를 획득하고 (예, S0, S1, S2), PBCH 컨텐츠로부터 나머지 (10-N) bit에 해당하는 SFN 정보 (예, S3 ~S9)를 획득하여, 총 10bit의 SFN 정보를 구성할 수 있다.'라는 표현이 있다.
이는 정보 비트 열의 순서를 가장 높은 자리 수를 가장 오른쪽에 위치시키는 배열 즉, (S0 S1 S2 S3 쪋 S9)과 같이 구성된 정보 비트 열에서, '상위 N-bit'는 왼쪽 N-bit (예, S0 S1 S2)를 의미하며, '나머지 (10-N) bit'은 오른쪽 (10-N) bit (예, S3 ~S9)를 의미한다. 이를 LSB와 MSB로 표현하는 경우에는, (S9 S8 S7 쪋 S1 S0)의 순서로 표현되는 정보 비트 열에서 LSB N-bit로 표현하는 경우 비트 열은 (예, S2 S1 S0)의 순서로 표현될 수 있고, 또한 나머지 '(10-N) bit (예, S3 ~S9)'를 MSB (10-N) bit로 표현하는 경우, 비트 열은 (S9 S8 S7 쪋 S3)의 순서로 표현될 수 있다.
1. SS 블록 구성
만약, PSS를 SS 블록 앞 부분에 위치시키는 경우, 120kHz와 240kHz 부반송파 간격을 사용할 때, 단말의 AGC(Automatic Gain Control) 동작에서 문제가 발생할 수 있다. 즉, 120kHz 및 240kHz 부반송파 간격의 경우, AGC 동작으로 인해, NR-PSS의 검출이 제대로 수행되지 않을 수 있으며, 이에 따라, 아래의 2가지 실시 예와 같이, SS 블록 구성을 변경하는 것을 고려할 수 있다.
(방안 1) PBCH-PSS-PBCH-SSS
(방안 2) PBCH-PSS-PBCH-SSS-PBCH
즉, PBCH 심볼을 SS 블록의 시작 부분에 위치시키고, PBCH 심볼을 AGC 동작을 위한 더미(Dummy) 심볼로 사용함으로써, 단말의 AGC 동작이 더 원활하게 수행될 수 있도록 할 수 있다.
2. SS 버스트 집합 구성
도 11을 참조하면, SS 블록을 배치하는 부반송파 간격이 120kHz일 때와 240kHz때의 SS 버스트 세트 구성을 나타내고 있다. 도 11을 보면, 120kHz와 240kHz의 부반송파를 가질 때, 4개의 SS 버스트 단위로 일정 간격을 비워두고 SS 버스트를 구성한다. 즉, 0.5ms 단위로 0.125ms의 상향링크 전송을 위한 심볼 구간을 비워두고, SS블록을 배치한다.
그런데, 6GHz 이상의 주파수 범위에서, 60kHz의 부반송파 간격이 데이터 전송을 위해 사용될 수 있다. 즉, 도 12에서 볼 수 있듯이, NR에서는 데이터 전송을 위한 60kHz의 부반송파 간격과, SS 블록 전송을 위한 120kHz 또는 240kHz의 부반송파 간격이 멀티플렉싱 될 수 있다.
한편, 도 12의 네모로 표시된 부분을 포면, 120kHz 부반송파 간격의 SS 블록과 60kHz 부반송파 간격의 데이터가 멀티플렉싱되면서, 120kHz 부반송파 간격의 SS 블록과 60kHz 부반송파 간격의 GP와 하향링크 제어 영역 간의 충돌 또는 중첩이 발생하는 것을 볼 수 있다. SS 블록과 DL/UL 제어 영역의 충돌은 가급적 피해야 하는 것이 바람직하므로, SS 버스트 및 SS 버스트 세트 구성의 수정이 요구된다.
본 발명에서는, 이를 해결하기 위한 SS 버스트 구성의 수정 방향으로는 2가지 실시 예를 제안하고자 한다.
첫 번째 실시 예는, 도 13에서 보는 바와 같이, SS 버스트 포맷 1과 SS 버스트 포맷 2의 위치를 변경하는 것이다. 즉, 도 12의 네모 상자 안에 있는 SS 버스트 포맷 1과 포맷 2를 교환함으로써, SS 블록과 DL/UL 제어 영역 사이의 충돌이 발생하지 않도록 할 수 있다. 다시 말해, SS 버스트 포맷 1 이 60kHz 부반송파 간격의 슬롯에 앞 부분에 위치하고, SS 버스트 포맷 2가 60kHz 부반송파 간격의 슬롯에 뒷 부분에 위치한다.
상술한 실시 예를 정리하면, 다음과 같이 표현될 수 있다.
1) 120 KHz 부반송파 간격(subcarrier spacing)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {4, 8, 16, 20, 32, 36, 44, 48} + 70*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=0, 2, 4, 6이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {4, 8, 16, 20, 32, 36, 44, 48} + 70*n. For carrier frequencies larger than 6 GHz, n=0, 2, 4, 6)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {2, 6, 18, 22, 30, 34, 46, 50} + 70*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=1, 3, 5, 7이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {2, 6, 18, 22, 30, 34, 46, 50} + 70*n. For carrier frequencies larger than 6 GHz, n=1, 3, 5, 7.)
2) 240 KHz 부반송파 간격(subcarrier spacing)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, 100} + 140*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=0, 2이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, 100} + 140*n. For carrier frequencies larger than 6 GHz, n=0, 2)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {4, 8, 12, 16, 36, 40, 44, 48, 60, 64, 68, 72, 92, 96, 100, 104} + 140*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=1, 3이다.(the first OFDM symbols of the candidate SS/PBCH blocks have indexes {4, 8, 12, 16, 36, 40, 44, 48, 60, 64, 68, 72, 92, 96, 100, 104} + 140*n. For carrier frequencies larger than 6 GHz, n=1, 3)
두 번째 실시 예는 도 14에서 보는 것과 같이, SS 버스트 세트 구성을 변경하는 방법이 있다. 즉, SS 버스트 세트는 SS 버스트 세트의 시작 경계와 60kHz 부반송파 간격 슬롯의 시작 경계가 정렬되도록, 즉, 일치하도록 구성될 수 있다.
구체적으로, SS 버스트는 1ms 동안 국부적으로 배치되는 SS 블록에 의해 구성된다. 따라서, 1ms 동안, 120kHz 부반송파 간격의 SS 버스트는 16개의 SS 블록을 가지고, 240kHz 부반송파 간격의 SS 버스트는 32개의 SS 블록을 가지게 된다. 이렇게 SS 버스트를 구성하면, SS 버스트 사이에 60kHz의 부반송파 간격 기준, 하나의 슬롯이 갭(gap)으로 할당된다.
상술한 두 번째 실시 예를 정리하면 다음과 같다.
1) 120 KHz 부반송파 간격(subcarrier spacing)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {4, 8, 16, 20} + 28*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {4, 8, 16, 20} + 28*n. For carrier frequencies larger than 6 GHz, n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18)
2) 240 KHz 부반송파 간격(subcarrier spacing)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=0, 1, 2, 3, 5, 6, 7, 8이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {8, 12, 16, 20, 32, 36, 40, 44} + 56*n. For carrier frequencies larger than 6 GHz, n=0, 1, 2, 3, 5, 6, 7, 8.)
3. 5ms 구간 내에서 실제 전송되는 SS/ PBCH 블록을 지시하는 방법 (The indication of actually transmitted SS/ PBCH block within 5ms duration)
한편, 네트워크 환경에 따라 SS 블록 전송을 위한 후보들의 수는 제한적일 수 있다. 예를 들어, SS 블록이 배치되는 부반송파 간격에 따라 후보들의 개수가 상이할 수 있다. 이러한 경우, 실제로 전송되는 SS 블록의 위치를 CONNECTED / IDLE 모드 UE에게 알려줄 수 있다. 이 때, 실제로 전송되는 SS 블록의 위치를 알려주는 Actual transmitted SS/PBCH block indication은 서빙 셀을 위해서는 자원 활용 목적, 예를 들어, 레이트 매칭의 용도로 사용될 수 있고, 인접 셀을 위해서는 해당 자원과 관련된 측정의 목적으로 사용될 수 있다.
서빙 셀과 관련하여, UE가 전송되지 않은 SS 블록에 대해서 정확히 인지할 수 있다면, UE는 전송되지 않은 SS 블록의 후보 자원을 통해 페이징 또는 데이터와 같은 다른 정보를 수신할 수 있음을 인지할 수 있다. 이러한 자원의 유연성을 위하여, 서빙 셀에서 실제로 전송되는 SS 블록은 정확하게 지시될 필요가 있다.
즉, SS 블록이 전송되는 자원에서는 페이징 또는 데이터와 같은 다른 정보를 수신할 수 없으므로, 실제로 SS 블록이 전송되지 않는 SS 블록을 통해 다른 데이터 또는 다른 신호를 수신하여 자원 활용의 효율성을 높이기 위하여, UE는 SS 블록이 실제로 전송되지 않는 SS 블록 후보에 대해서 인지할 필요가 있는 것이다.
그러므로, 서빙 셀에서 실제로 전송되는 SS 블록을 정확하게 지시하기 위하여, 4, 8, 또는 64비트의 풀 비트맵 정보가 요구된다. 이 때, 비트맵에 포함되는 비트 크기는 각 주파수 범위에서 최대로 전송될 수 있는 SS 블록의 개수에 따라 결정될 수 있다. 예를 들어, 5ms 구간에서 실제로 전송되는 SS 블록을 지시하기 위하여, 3GHz에서 6GHz의 주파수 범위에서는 8비트가 요구되고, 6GHz 이상의 주파수 범위에서는 64비트가 요구된다.
서빙 셀에서 실제로 전송되는 SS 블록을 위한 비트들은 RMSI 또는 OSI에서 정의될 수 있고, 상기 RMSI/OSI는 데이터 또는 페이징을 위한 설정 정보를 포함한다. Actual transmitted SS/PBCH block indication은 하향링크 자원을 위한 설정과 연관되므로, RMSI/OSI가 실제로 전송되는 SS 블록 정보를 포함하는 것으로 귀결될 수 있다.
한편, 인접 셀 측정의 목적으로 인접 셀의 Actual transmitted SS/PBCH block indication이 요구될 수 있다. 즉, 인접 셀의 측정을 위해서 인접 셀의 시간 동기 정보를 획득할 필요가 있는데, NR 시스템의 TRP간 비동기 전송을 허용하도록 설계하는 경우, 인접 셀의 시간 동기 정보를 알려 준다고 하더라도 그 정보의 정확성은 상황에 따라 달라질 수 있다. 따라서, 인접 셀의 시간 정보를 알려줄 때는, TRP간 비동기 전송을 가정하면서도 UE에게 유효한 정보로서, 그 시간 정보의 단위가 결정될 필요가 있다.
다만, 리스팅 된 셀(listed cell)이 많을 경우, 풀 비트맵 타입의 지시자는 시그널 오버헤드를 과도하게 증가시킬 우려가 있다. 따라서, 시그널링 오버헤드를 감소시키기 위하여, 다양하게 압축된 형태의 지시자를 고려할 수 있다. 한편, 인접 셀 측정의 목적으로뿐만 아니라, 시그널링 오버헤드를 감소시키기 위하여 서빙 셀이 전송하는 SS 블록을 위한 지시자도 압축된 형태의 지시자를 고려할 수 있다. 다시 말해, 아래에 설명되는 SS 블록 지시자는 인접 셀 및 서빙 셀의 실제 전송되는 SS 블록 지시를 위해 사용될 수 있다. 또한, 상술한 바에 의하면, SS 버스트는 각 부반송파에 따른 하나의 슬롯에 포함된 SS 블록들의 묶음을 의미할 수 있지만, 이하, 후술하는 실시 예에 국한하여, SS 버스트는 슬롯에 관계 없이, 일정 수의 SS 블록들을 그룹핑한 SS 블록 그룹을 의미할 수 있다.
도 15를 참조하여, 그 중 하나의 실시 예를 살펴보면, SS 버스트가 8개의 SS 블록으로 구성된다고 가정하면, 64개의 SS 블록이 위치할 수 있는 6GHz 이상의 대역에서 총 8개의 SS 버스트가 존재할 수 있다.
여기서, SS 블록을 SS 버스트로 그룹핑하는 것은 64비트의 전체 비트맵을 압축하기 위함이다. 64비트의 비트맵 정보 대신에, 실제로 전송되는 SS 블록을 포함하는 SS 버스트를 지시하는 8비트 정보를 사용할 수 있다. 만약, 8비트 비트맵 정보가 SS 버스트 #0을 지시한다면, SS 버스트 #0 은 실제로 전송되는 SS 블록을 하나 이상 포함할 수 있다.
여기에, UE에게 SS 버스트 당 전송되는 SS 블록의 수를 추가적으로 지시하기 위한 추가 정보를 고려할 수 있다. 상기 추가 정보에 의해 지시되는 SS 블록의 수만큼 각 SS 버스트에 국부적으로 SS 블록이 존재할 수 있다.
따라서, 추가 정보에 의해 지시되는 SS 버스트 당 실제로 전송되는 SS 블록의 수 및 상기 실제로 전송되는 SS 블록을 포함하는 SS 버스트를 지시하기 위한 비트맵을 조합하여, UE는 실제로 전송되는 SS 블록을 추정할 수 있다.
예를 들어, 아래의 표 1와 같이 지시되는 것을 가정해 볼 수 있다.
8 bit bitmap (SS/ PBCH burst unit) The number of actually transmitted SS/ PBCH block per SS/ PBCH burst unit Full bitmap
1 1 0 0 0 0 0 1 4 (11110000) (11110000) (00000000) (00000000) (00000000) (00000000) (00000000) (11110000)
즉, [표 3]에 따르면, 8비트 비트맵을 통해 SS 버스트 #0, #1, #7에 SS 블록이 포함되어 있음을 알 수 있고, 추가 정보를 통해 각 SS 버스트에 4개의 SS 블록이 포함됨을 알 수 있으므로, 결국, SS 버스트 #0, #1, #7 앞에 4개의 후보 위치를 통해 SS 블록이 전송됨을 추정할 수 있다.
한편, 상술한 예와 달리, 추가 정보 또한 비트맵 형식으로 전달함으로써, SS 블록이 전송되는 위치의 유연성을 가지도록 할 수 있다.
예를 들어, SS 버스트 전송과 관련된 정보는 비트맵으로 지시하고, SS 버스트 내에 전송되는 SS 블록을 그 외의 비트로 지시하는 방법이 있을 수 있다.
즉, 전체 64개의 SS 블록을 각각 8개의 SS 버스트 (즉, SS 블록 그룹)으로 구분하고, 8비트 비트맵 전송으로 어느 SS 버스트가 사용되는지를 단말에게 알려 준다. 도 15와 같이 SS 버스트를 정의하면, 부반송파 간격이 60kHz인 슬롯과 멀티플렉싱을 하는 경우에 SS 버스트와 60kHz의 부반송파를 가지는 슬롯의 경계가 정렬되는 장점이 있다. 따라서, 비트맵으로 SS 버스트의 사용 여부를 지시해주면, 6Ghz 이상 주파수 대역에서는 모든 부반송파 간격에 대해서 슬롯 단위로 SS 블록의 전송 여부를 단말이 인지할 수 있다.
여기서, 상술한 예시와 다른 점은 추가 정보를 비트맵 방식으로 알려주는 것이다. 이 경우, 각각의 SS 버스트에 포함된 8개의 SS 블록에 대해 비트맵 정보를 전송해야 하기 때문에, 8비트가 필요하고, 해당 추가 정보는 모든 SS 버스트에 공통적으로 적용된다. 예를 들어, SS 버스트에 대한 비트맵 정보를 통해 SS 버스트 #0과 SS 버스트 #1이 사용됨을 지시되었고, SS 블록에 대한 추가 비트맵 정보를 통해 SS 버스트 내에서 첫 번째와 다섯 번째 SS 블록이 전송되는 것으로 지시된다면, SS 버스트 #0과 SS 버스트 #1 모두 첫 번째와 다섯 번째 SS 블록이 전송되어, 실제로 전송되는 SS 블록의 총 개수는 4개가 되는 것이다.
한편, 몇몇의 인접 셀은 셀 리스트에 포함되어 있지 않을 수도 있는데, 셀 리스트에 포함되지 않은 인접 셀은 실제로 전송되는 SS 블록을 위한 기본 포맷 (default format)을 사용한다. 이러한 기본 포맷을 사용함으로써, UE는 리스트에 포함되지 않은 인접 셀에 대한 측정을 수행할 수 있다. 이 때, 상술한 기본 포맷은 기 정의되거나, 네트워크에 의해 설정될 수 있다.
한편, 서빙 셀에서 전송되는 실제로 전송되는 SS 블록에 대한 정보와, 인접 셀에서 전송되는 실제로 전송되는 SS 블록에 대한 정보가 상충되는 경우, 단말은 서빙 셀에서 전송되는 SS 블록 정보를 우선하여, 실제로 전송되는 SS 블록에 대한 정보를 획득할 수 있다.
즉, 실제로 전송되는 SS 블록들에 대한 정보가 풀 비트맵 형태와, 그룹핑 형태로 수신된 경우, 풀 비트맵 형태의 정보의 정확성이 높을 가능성이 크므로, 풀 비트맵 형태의 정보를 우선하여, SS 블록 수신에 이용할 수 있다.
4. System Frame Number, Half frame boundary
SFN 정보 하위 N-bits은 PBCH 페이로드로 전달되고, 상위 M-bit은 PBCH 스크램블링 시퀀스로 전달된다. 한편, SFN 정보의 상위 M-bits 중 최상위 1-bit은 PBCH DMRS, NR-SSS 혹은 SS block의 시간/주파수 위치의 변화로 전달될 수 있다. 이에 더하여, Half radio frame (5ms) 경계에 대한 정보는 PBCH DMRS 혹은 NR-SSS 혹은 SS block의 시간/주파수 위치의 변화로 전달될 수 있다.
여기서, '상위 bit'과 '최상위 bit'는 정보 비트열에서 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 경우에서의, 왼쪽 비트를 의미한다. 이는 정보 비트열에서 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 배열에서, 정수의 짝수인지 홀수인지를 결정하는 단위 값이 되는 비트인 LSB (Least Significant Bit, 최하위 비트)와 같은 의미로 해석될 수 있다.
또한, '하위 bit'과 '최하위 bit'은 정보 비트열에서 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 경우에서의, 오른쪽 비트를 의미한다. 이는 정보 비트열에서 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 배열에서, MSB (Most Significant Bit, 최상위 비트)와 같은 의미로 해석될 수 있다.
5. NR - PBCH 컨텐츠
UE는 셀 ID 및 심볼 타이밍 정보를 검출 한 후, SFN, SS 블록 인덱스, Half frame 타이밍과 같은 타이밍 정보의 일부, 시간/주파수 위치와 같은 공통 제어 채널 관련 정보, 대역폭, SS 블록 위치와 같은 대역폭 부분(Bandwidth part) 정보 및 SS 버스트 세트 주기 및 실제로 전송된 SS 블록 인덱스와 같은, SS 버스트 세트 정보 등을 포함하는 PBCH로부터 네트워크 액세스를 위한 정보를 획득할 수 있다.
576 RE라는 제한된 시간/주파수 자원만이 PBCH를 위해 점유되기 때문에, PBCH에는 필수 정보가 포함되어야 한다. 또한, 가능하다면, 필수 정보 또는 추가 정보를 더 포함시키기 위하여, PBCH DMRS와 같은 보조 신호를 사용할 수 있다.
(1) SFN (System Frame Number)
NR에서는 시스템 프레임 넘버 (SFN)를 정의하여 10ms 간격을 구별 할 수 있다. 또한, LTE 시스템과 유사하게 SFN을 위해 0과 1023 사이의 인덱스를 도입 할 수 있으며 상기 인덱스는 명시적으로 비트를 이용하여 지시하거나, 암시적 방식으로 나타낼 수 있다.
NR에서는 PBCH TTI가 80ms이고 최소 SS 버스트 주기가 5ms이다. 따라서, 최대 16 배의 PBCH가 80ms 단위로 전송 될 수 있고, 각 전송에 대한 상이한 스크램블링 시퀀스가 PBCH 인코딩된 비트에 적용될 수 있다. UE는 LTE PBCH 디코딩 동작과 유사하게 10ms 간격을 검출 할 수 있다. 이 경우 SFN의 8 가지 상태가 PBCH 스크램블링 시퀀스에 의해 암시적으로 표시되고, SFN 표시를 위한 7 비트가 PBCH 내용에 정의 될 수 있습니다.
(2) 라디오 프레임 내의 타이밍 정보
SS 블록 인덱스는 반송파 주파수 범위에 따라, PBCH DMRS 시퀀스 및/또는 PBCH 컨텐츠에 포함된 비트에 의해 명시적으로 지시될 수 있다. 예를 들어, 6GHz 이하의 주파수 대역에 대해서는 SS 블록 인덱스의 3비트가 PBCH DMRS 시퀀스로만 전달된다. 또한 6GHz 이상의 주파수 대역에 대해서 SS 블록 인덱스의 최하위 3비트는 PBCH DMRS 시퀀스로 표시되고, SS 블록 인덱스의 최상위 3비트는 PBCH 컨텐츠에 의해 전달된다. 즉, 6GHz ~ 52.6GHz의 주파수 범위에 한하여, SS 블록 인덱스를 위한 최대 3비트가 PBCH 컨텐츠에 정의될 수 있다.
또한, Half frame 의 경계는 PBCH DMRS 시퀀스에 의해 전달될 수 있다. 특히, 3GHz 이하의 주파수 대역에서 Half frame 지시자가 PBCH DMRS에 포함되는 경우, PBCH 컨텐츠에 Half frame 지시자가 포함되는 것보다 효과를 높일 수 있다. 즉, 3Ghz 이하의 주파수 대역에서는 주로 FDD 방식이 사용되기 때문에, 서브프레임 또는 슬롯 간의 시간 동기가 어긋나는 정도가 클 수 있다. 따라서, 보다 정확한 시간 동기를 맞추기 위해서는, PBCH 컨텐츠 보다 디코딩 성능이 좋은 PBCH DMRS를 통해 half frame 지시자를 전달하는 것이 유리하다.
다만, 3Ghz 대역을 초과하는 경우에는 TDD 방식이 많이 사용되지 때문에, 서브프레임 또는 슬롯 간의 시간 동기가 어긋나는 정도가 크지 않으므로, PBCH 컨텐츠를 통해 Half frame 지시자를 전달하더라도 불이익이 다소 적을 수 있다.
한편, half frame 지시자는 PBCH DMRS와 PBCH 컨텐츠 모두를 통해 전달될 수도 있다.
(4) PBCH에 대응하는 RMSI가 없음을 식별하기 위한 정보
NR에서는 SS 블록은 네트워크 액세스를 위한 정보 제공뿐만 아니라, 동작 측정을 위해도 사용될 수 있다. 특히, 광대역 CC 동작을 위해서는 측정을 위해 다중 SS 블록을 전송할 수 있다.
그러나, RMSI가 SS 블록이 전송되는 모든 주파수 위치를 통해 전달되는 것은 불필요할 수 있다. 즉, 자원 활용의 효율성을 위하여, RMSI가 특정 주파수 위치를 통해 전달될 수 있다. 이 경우, 초기 접속 절차를 수행하는 UE들은 검출된 주파수 위치에서 RMSI가 제공되는지 여부를 인식 할 수 없다. 이러한 문제를 해결하기 위하여, 검출된 주파수 영역의 PBCH에 대응하는 RMSI가 없다는 것을 식별하기 위한 비트 필드를 정의할 필요가 있다. 한편으로, 상기 비트 필드 없이 PBCH에 대응하는 RMSI가 없음을 식별할 수 있는 방법 또한 생각해야 한다.
이를 위하여, RMSI가 존재하지 않는 SS 블록은 주파수 래스터(Frequency Raster)로 정의되지 않은 주파수 위치에서 전송되도록 한다. 이러한 경우, 초기 접속 절차를 수행하는 UE들은 SS 블록을 검출 할 수 없기 때문에, 상술한 문제점을 해결할 수 있다.
(5) SS 버스트 세트 주기성과 실제로 전송되는 SS 블록
측정 목적을 위해 SS 버스트 세트 주기성 및 실제로 전송된 SS 블록에 대한 정보가 지시될 수 있다. 따라서, 이러한 정보는 셀 측정 및 inter/intra 셀 측정을 위해서 시스템 정보에 포함되는 것이 바람직하다. 즉, PBCH 컨텐츠 내에서 상술한 정보를 정의할 필요는 없다.
(8) 페이로드 크기
PBCH의 디코딩 성능을 고려하여, [표 4]와 같이, 최대 56비트의 페이로드 크기를 가정할 수 있다.
Details Bit size
6GHz 이하 6GHz 이상
System Frame Number 10 10
Half frame indication 1 1
SS/PBCH block time index (MSB) 0 3
SSB-subcarrier offset k SSB 5 4
Reference numerology 1 1
PDCCH configuration for SIB1 8 8
DMRS Type A position 1 1
Cell barred 1 1
Intra Frequency Reselection 1 1
Reserved Bit 4 2
CRS 24 24
Total 56 56
6. NR - PBCH 스크램블링
NR-PBCH 스크램블링 시퀀스의 타입과 시퀀스 초기화에 대해 살펴보도록 한다. NR에서 PN 시퀀스를 사용하는 것에 대해서 고려해볼 수 있으나, LTE 시스템에서 정의된 31 길이의 골드 시퀀스를 NR-PBCH 시퀀스로 사용하여 심각한 문제가 발생하지 않는다면, NR-PBCH 스크램블링 시퀀스로 골드 시퀀스를 재사용하는 것이 바람직할 수 있다.
또한, 스크램블링 시퀀스는 적어도 Cell-ID에 의해 초기회될 수 있고, PBCH-DMRS에 의해 지시된 SS 블록 인덱스의 3비트가 스크램블링 시퀀스의 초기화에 사용될 수 있다. 또한, Half frame indication이 PBCH-DMRS 또는 다른 신호에 의해 표시된다면, 상기 Half frame indication 또한, 스크램블링 시퀀스의 초기화를 위한 시드 값으로 사용될 수 있다.
7. NR - PBCH DM- RS 설계
NR-PBCH DMRS는 1008개의 셀 ID 및 3비트의 SS 블록 인덱스에 의해 스크램블링 되어야 한다. 왜냐하면, DMRS 시퀀스의 가설 수에 따라 검출 성능을 비교했을 때, 3비트의 검출 성능이 DMRS 시퀀스의 가설 수에 가장 적합한 것으로 나타났기 때문이다. 하지만, 4~5비트의 검출 성능도 성능 손실이 거의 없는 것으로 보이므로, 4~5비트의 가설 수를 사용하여도 무방할 것으로 보여진다.
한편, DMRS 시퀀스를 통해 SS 블록 시간 인덱스와 5ms 경계를 표현할 수 있어야 하므로, 총 16개의 가설들을 가질 수 있도록 설계 되어야 한다.
다시 말해, DMRS 시퀀스는 적어도 셀 ID, SS 버스트 세트 내의 SS 블록 인덱스 및 Half frame 경계(Half frame indication)를 표현할 수 있어야 하며, 셀 ID, SS 버스트 세트 내의 SS 블록 인덱스 및 Half frame 경계(Half frame indication)에 의해 초기화 될 수 있다. 구체적인 초기화 식은 다음의 [수학식 1]과 같다.
[수학식 1]
Figure PCTKR2018014133-appb-img-000001
여기서,
Figure PCTKR2018014133-appb-img-000002
는 SS 블록 그룹 내의 SS 블록 인덱스이고,
Figure PCTKR2018014133-appb-img-000003
셀 ID이면, HF는 {0, 1}의 값을 가지는 half frame indication 인덱스이다.
NR-PBCH DMRS 시퀀스는 LTE DMRS 시퀀스와 유사하게 31길이의 골드 시퀀스를 사용하거나, 7 또는 8 길이의 골드 시퀀스를 기반으로 생성될 수 있다.
한편, 31 길이의 골드 시퀀스와 7 또는 8 길이의 골드 시퀀스를 사용하는 경우의 검출 성능이 유사하므로, 본 발명에서는 LTE DMRS와 같이, 31 길이의 골드 시퀀스를 사용하는 것을 제안하며, 만약, 6GHz 이상의 주파수 범위에서는 31보다 긴 골드 시퀀스를 고려할 수 있다.
QPSK를 이용하여 변조된 DMRS 시퀀스
Figure PCTKR2018014133-appb-img-000004
은, 다음의 [수학식 2]에 의해 정의될 수 있다.
[수학식 2]
Figure PCTKR2018014133-appb-img-000005
또한, DMRS 시퀀스 생성을 위한 변조 타입으로 BPSK와 QPSK를 고려할 수 있는데, BPSK와 QPSK의 검출 성능은 유사하나, QPSK의 코릴레이션 성능이 BPSK보다 우수하므로, QPSK가 DMRS 시퀀스 생성의 변조 타입으로 더 적절하다.
이제, 좀 더 구체적으로, PBCH DMRS 시퀀스를 구성하는 방법에 대해 살펴보도록 한다. PBCH DMRS 시퀀스는 Gold sequence가 사용되며, 2개의 m-sequence는 동일한 길이를 구성하는 다항식으로 구성되는데, 시퀀스의 길이가 짧은 경우 하나의 m-sequence는 짧은 길이의 다항식으로 대체할 수 있다.
8. 시간 인덱스 지시 방법
도 16을 참조하면, 시간 정보는 SFN(System Frame Number), Half frame 간격, SS 블록 시간 인덱스를 포함한다. 각 시간 정보는 SFN을 위한 10비트, Half frame을 위한 1비트, SS 블록 시간 인덱스를 위한 6비트로 표현 될 수 있다. 이 때, SFN를 위한 10비트는 PBCH 컨텐츠에 포함될 수 있다. 또한, Half frame으 위한 1bit는 PBCH 컨텐츠에 포함될 수 있고, L=4인 주파수 대역에서는 NR-PBCH DMRS에 포함될 수 있다. 그리고, NR-PBCH DMRS는 SS 블록 인덱스를 위한 6비트 중, 하위 3비트를 포함할 수 있다. SS 블록 인덱스의 남은 상위 3비트는 PBCH 컨텐츠에 포함될 수 있다.
인접 셀의 SS 블록 시간 인덱스를 획득하는 방법에 대해 생각해 볼 수 있는데, DMRS 시퀀스를 통한 디코딩이 PBCH 컨텐츠를 통한 디코딩 보다 더 좋은 성능을 발휘하기 때문에, 각 5ms 기간 내에서 DMRS 시퀀스를 변경함으로써, SS 블록 인덱스의 3비트를 전송할 수 있다.
한편, 6GHz 이하의 주파수 범위에서는 SS 블록 시간 인덱스는 오직 인접 셀의 NR-PBCH DMRS만을 이용하여 전송할 수 있으나, 6GHz 이상의 주파수 범위에서는, 64개의 SS 블록 인덱스들을 PBCH-DMRS 및 PBCH 컨텐츠를 통해 구분하여 지시되기 때문에, UE는 인접 셀의 PBCH를 디코딩 할 필요가 있다.
그러나, PBCH-DMRS 및 PBCH 컨텐츠를 함께 디코딩 하는 것은, NR-PBCH 디코딩의 추가적인 복잡성을 가져올 수 있고, PBCH-DMRS만을 사용하는 것 보다 PBCH의 디코딩 성능을 감소시킬 수 있다. 따라서, 인접 셀의 SS 블록을 수신하기 위하여 PBCH를 디코딩하는 것이 어려울 수 있다.
그러므로, 인접 셀의 PBCH를 디코딩하는 것 대신에, 인접 셀의 SS 블록 인덱스와 관련한 설정을 서빙 셀이 UE에게 제공하는 것을 고려할 수 있다. 예를 들어, 서빙 셀은 타겟 인접 셀의 SS 블록 인덱스의 최상위 3비트에 관한 설정을 UE에게 제공하고, UE는 타겟 인접 셀의 PBCH-DMRS를 통해 최하위 3비트를 검출한다. 그리고, 상술한 최상위 3비트와 최하위 3비트를 조합하여 타겟 인접 셀의 SS 블록 인덱스를 획득할 수 있다.
상술한 내용을 보충하여 설명하면, 서빙 셀로부터 수신한 SSB의 PBCH 컨텐츠를 통해 상기 서빙 셀이 전송한 SSB의 SS 블록 인덱스의 최상위 3비트를 획득하고, PBCH-DMRS를 통해 서빙 셀이 전송한 SSB의 SS 블록 인덱스의 최하위 3비트를 검출한다. 그리고, UE는 인접 셀로부터 또 다른 SSB를 수신한 후, 상기 다른 SSB에 포함된 PBCH-DMRS를 통해 다른 SSB의 SS 블록 인덱스의 최하위 3비트를 검출 하고, 상기 서빙 셀이 전송한 SSB의 PBCH 컨텐츠로부터 획득된 SS 블록 인덱스의 최상위 3비트를 인접 셀에도 공통적으로 적용하여, 인접 셀의 SS 블록 인덱스를 획득할 수 있는 것이다.
9. 측정 결과 평가
이제, 페이로드 사이즈, 전송 방식 및 DMRS에 따른, 성능 측정 결과에 대해 살펴보도록 한다. 이 때, NR-PBCH 전송을 위해 24 개의 RB를 갖는 2 개의 OFDM 심볼이 사용된다고 가정한다. 또한, SS 버스트 집합(즉, 10, 20, 40, 80ms)은 복수의 주기를 가질 수 있으며, 인코딩된 비트가 80ms 내에 전송된다고 가정한다.
(1) DMRS 시퀀스 가설의 수
도 17은, SS 블록 인덱스에 따른 측정 결과를 나타낸다. 여기서, 24RB 및 2개의 OFDM 심볼 내에서 DMRS를 위해 144RE들이 사용되고, 정보를 위해 432RE들이 사용되었다. 그리고, DMRS 시퀀스는 긴 시퀀스 (예를 들면, 길이 31의 골드 시퀀스) 및 QPSK가 사용되었음을 가정한다.
도 17를 보면, 3~5비트들의 검출 성능을 2번 축적하여 측정할 때, -6dB에서 1%의 에러율을 보여준다. 그러므로, 3~5비트의 정보는 검출 성능 관점에서 DMRS 시퀀스에 대한 가설 수로 사용할 수 있다.
(2) 변조 타입
도 18 내지 도 19는 BPSK와 QPSK를 비교한 성능 측정 결과이다. 본 실험에서, DMRS 가설은 3비트이고, DMRS 시퀀스는 긴 시퀀스를 기반으로 하였으며, 간섭 TRP의 전력 레벨은 서빙 TRP의 전력 레벨과 동일하다.
도 18 내지 도 19를 보면, BPSK와 QPSK의 성능이 유사한 것으로 볼 수 있다. 따라서, 어떤 변조 타입을 DMRS 시퀀스를 위한 변조타입으로 사용하더라도, 성능 측정 관점에서는 별 차이가 없다. 그러나, 도 25 및 도 26을 참조하면, BPSK와 QPSK를 사용한 경우의 각 코릴레이션 특성이 다름을 알 수 있다.
도 20 및 도 21을 보면, BPSK는 QPSK보다 코릴레이션 진폭이 0.1 이상인 영역에 더 많이 분포한다. 따라서, 다중 셀 환경을 고려할 때, DMRS의 변조 타입으로 QPSK를 사용하는 것이 바람직하다. 즉, 코릴레이션 특성 측면에서, QPSK가 DMRS 시퀀스에 더 적절한 변조 타입인 것이다.
(3) PBCH DMRS의 시퀀스 생성
도 22 내지 도 23은 DMRS 시퀀스 생성에 따른 측정 결과를 나타낸다. DMRS 시퀀스는 다항식 차수 30 이상의 긴 시퀀스 또는 다항식 차수 8 이하의 짧은 시퀀스를 기반으로 생성할 수 있다. 또한, DMRS에 대한 가설은 3비트이고, 간섭 TRP의 전력 레벨은 서빙 TRP와 동일하다고 가정한다.
도 22 내지 도 23을 보면, 짧은 시퀀스 기반 생성의 검출 성능과 긴 시퀀스 기반 생성의 검출 성능이 유사한 것을 알 수 있다.
구체적으로, 첫번째 M-sequence에 길이가 7인 다항식을 도입해서 시퀀스의 코릴레이션 성능을 높이고자 했으나, 기존 첫번째 M-sequence인 길이 31의 다항식을 사용하는 방식과 차이가 없다. 또한, 첫번째 M-sequence의 초기값을 SSBID로 해서 시퀀스를 생성하였으나, 기존 첫번째 M-sequence의 초기값을 고정하고 두번째 M-sequence에 SSBID-CellID를 사용하는 방식과 차이가 없다.
따라서, LTE와 같이 Length-31 Gold sequence를 사용하고, 초기화는 기존과 같이 첫번째 M-sequence의 초기값을 고정하고, 두번째 M-sequence에 SSBID-CellID를 사용한다.
(4) DMRS RE 맵핑
도 24는 등 간격 RE 맵핑 방법 및 등 간격이 아닌 RE 맵핑 방법에 따른 성능 측정 결과를 나타낸다. 여기서, DMRS에 대한 가설은 3비트이고, DMRS 시퀀스는 긴 시퀀스에 기초하며, 간섭 TRP 전력 레벨은 서빙 TRP와 동일하다. 또한, 오직 하나의 간섭원만이 존재한다.
도 24에서 볼 수 있듯이, 가변 RE 맵핑을 사용하면, 간섭이 무작위로 분산되는 효과를 얻을 수 있다. 따라서, 가변 RE 맵핑의 검출 성능이 고정 RE 맵핑 성능보다 우수하다.
도 25는 RS 전력 부스트를 사용한 경우의 측정 결과를 나타낸다. 여기서, DMRS에 대한 RE 송신 전력은 PBCH 데이터에 대한 RE 송신 전력보다 약 1.76dB (= 10 * log (1.334 / 0.889)) 높은 것으로 가정한다. 가변 RE 맵핑과 DMRS 전력 부스팅을 함께 사용하면 다른 셀의 간섭이 감소한다. 도 25에서 볼 수 있듯이, RS 전력 부스팅을 적용한 성능은 RS 파워 부스트가 없는 것보다 2~3dB의 이득을 갖는다.
반면, RS 전력 부스팅은 PBCH 데이터에 대한 RE 송신 전력을 감소시킨다. 따라서, RS 전력 부스팅은 PBCH 성능에 영향을 줄 수 있다. 도 28 내지 도 29는, RS 전력 부스팅이 있는 경우와 없는 경우의 PBCH 성능을 측정한 결과이다. 여기서, SS 버스트 세트의 주기는 40ms로 가정되고, 인코딩된 비트는 80ms 이내에 전송되는 것을 가정한다.
PBCH 데이터에 대한 RE의 전송 전력이 감소하면 성능 손실이 발생할 수 있다. 그러나, RS 전력 증가로 인해 채널 추정 성능이 향상되므로 복조 성능을 향상시킬 수 있다. 따라서, 도 26 내지 도 27에서 볼 수 있듯이, 두 경우의 성능은 거의 동일하다. 그러므로, PBCH 데이터에 대한 RE의 전송 전력 손실의 영향은 채널 추정 성능의 이득에 의해 보완될 수 있다.
한편, 상기 RS 전력 부스팅에 Vshift를 적용한 실험 관찰 결과를 도 28 내지 도 29를 참조하여 살펴본다. DMRS RE의 주파수축 위치를 셀 ID에 따라 변경하는 Vshift를 도입하면, 다중셀 환경에서 전송되는 PBCH DMRS를 2번의 주기 동안 수신하고 두 개의 PBCH 결합하면, ICI 랜덤화로 인하여 검출 성능을 개선하는 효과가 생기며, Vshift를 적용한 경우, 검출 성능 향상이 크다.
아래의 [표 5]은 상술한 성능측정을 위해 사용된 파라미터의 가정값이다.
Parameter Value
Carrier Frequency 4GHz
Channel Model CDL_C (delay scaling values: 100ns)
Subcarrier Spacing 15 kHz
Antenna Configuration TRP: (1,1,2) with Omni-directional antenna elementUE: (1,1,2) with Omni-directional antenna element
Frequency Offset 0% and 10% of subcarrier spacing
Default period 20 ms
Subframe duration 1 ms
OFDM symbols in SF 14
Number of interfering TRPs 1
Operating SNR -6 dB
10. Half frame 인덱스 지시 및 신호 설계
한편, 상술한 바와 같은 시간 인덱스 지시 방법 이외에 다른 시간 인덱스 지시 방법 등도 생각해볼 수 있는데, 특히, 이제부터 Half frame 인덱스를 효과적으로 지시하기 위한 다양한 실시 예들에 대해 살펴보도록 한다.
5ms 구간(duration)에 포함된 SS 블록들은 5ms, 10ms, 20m, 40m, 80ms, 160ms 등의 주기를 가지고 전송될 수 있다. 또한, 초기 접속 단계의 UE는 5ms 보다 긴 주기 (예, 10ms, 20ms 등)으로 SS 블록들이 전송된다고 가정하고, 신호 검출을 수행한다. 특히, NR 시스템에서 초기 접속 단계의 UE는 SS 블록들이 20ms 주기로 전송된다고 가정하고 신호 검출을 수행한다.
그런데, 만약, 기지국이 5ms 주기로 SS 블록을 전송하고, UE가 20ms 주기로 SS 블록을 검출한다면, UE는 SS 블록이 전반부 하프 프레임 (First half radio frame)에서 전송될 수도 있고, 후반부 하프 프레임 (Second half radio frame) 에서 전송될 수 있음을 고려해야 한다. 즉, UE는 SS 블록이 전반부 하프 프레임에서 수신될지, 후반부 하프 프레임에서 수신될지에 대해서 정확한 가정을 할 수 없다. 따라서, 기지국은 SS 블록이 전반부 하프 프레임에서 전송되는지, 아니면 후반부 하프 프레임에서 전송되는지를 UE에게 정확히 전달하기 위한 방법들을 다음과 같이 고려할 수 있다.
(1) 명시적 지시(Explicit indication):
- 5ms 주기로 PBCH 컨텐츠를 변경. 이러한 경우, UE는 수신된 SS 블록을 디코딩 하여 하프 프레임 시간 정보를 획득할 수 있다.
(2) 암묵적 지시(Implicit indication):
- 5ms 주기로 PBCH DMRS의 시퀀스를 변경
여기서, 상술한 방법들은 서로 조합하여 사용할 수 있으며, 상술한 방법의 다양한 변형도 가능하다. 이는 UE가 초기 접속 상태인지, IDLE 모드 인지 등의 UE의 상태 또는 인접 셀 (Inter-cell)/다른 RAT (Inter-RAT)로의 핸드오버(Handover) 수행 등 현재 UE가 시간 정보를 수신해야 하는 상황에 따라, Half 프레임 시간 정보를 전달하기 위한 다양한 방법들이 고려될 수 있다.
이를 위한 한가지 방법은, 초기 접속 단계의 UE가, 10ms 시간 범위에서 전반부 Half frame 또는 후반부 Half frame 중 하나의 고정된 위치에 SS 블록이 전송된다고 가정하고 SS 블록의 신호 검출을 시도한다. 즉, UE는 SFN, SS 블록 인덱스 등의 시간 정보는 SS 블록에 포함된 신호 및 채널 등에 포함된 시퀀스 검출 혹은 데이터 디코딩 등의 과정을 수행하여 획득하고, Half frame 정보는 무선 프레임 내에서 SS 블록이 전송되기로 정의된 슬롯, OFDM 심볼의 위치를 통해 획득한다.
상술한 방법의 구체적인 예시로써, 이하에서는, 상술한 시간 정보 획득 방안으로서, 5ms 주기로 SS 블록이 전송될 때, 초기 접속(Initial access)을 수행하는 UE가 특정 half frame에서 전송되는 SS 블록만을 검출할 수 있고, 다른 Half frame에서 전송되는 SS 블록은 검출할 수 없도록 하는 방법 및 단말 동작을 설명한다.
이를 위하여, 2가지 다른 형태의 SS 블록을 구성한다. 본 발명에서는 설명의 편의상, 상기 2가지 다른 형태의 SS 블록을 제 1형태의 SS 블록 및 제 2형태의 SS 블록이라고 한다. 네트워크는 제 1 형태의 SS 블록을 구성하고, 제 1 형태의 SS 블록을 구성하는 PSS/SSS/PBCH 등의 위상, 심볼 위치, 시퀀스 유형(sequence type), 심볼 맵핑 규칙(symbol mapping rule) 및 전송 전력 등을 변형한 형태의 제 2 형태의 SS 블록들 구성한다.
그 후, 기지국은 전반부(first) half frame에서는 제 1 형태의 SS 블록들을 전송하고, 후반부(second) half frame에서는 제 2 형태의 SS 블록들을 전송한다.
이 때, 초기 접속을 수행하는 UE는 제 1 형태의 SS 블록이 기지국으로부터 전송되었다고 가정하고, 동기 신호 검출 및 PBCH 디코딩을 시도한다. 그리고 동기 신호 검출 및 PBCH 디코딩에 성공하였다면, UE는 해당 지점을 전반부(First) half frame에 속한 슬롯 및 OFDM 심볼이라고 가정한다.
이하, 본 발명의 실시 예에 따른, 참조 신호를 통해 인접 셀의 타이밍 정보를 획득하는 방법에 대해 설명하도록 한다.
10. SS/PBCH 블록
(1) 6GHz 이상 대역에서 실제로 전송되는 SS/ PBCH 블록에 대한 정보를 압축된 형태로 지시
6GHz 이상 대역에서, 네트워크는 RMSI(Remaining Minimum System Information)를 통해 Group-Bitmap (8 비트) + Bitmap in Group (8 비트)인, 총 16비트를 이용하여 실제로 전송되는 SS/PBCH 블록에 대한 정보를 단말에 전달한다. 이는, 시그널링 오버 헤드 및 유연성(flexibility)의 균형을 고려한 설계이다. 총 16비트보다 더 적은 비트수를 이용하여 실제로 전송되는 SS/PBCH 블록을 전송하는 다른 대안들이 있지만, 다른 대안들은 실제로 전송되는 SS/PBCH 블록에 대한 정보를 표시하는데 있어서, 유연성을 부족하다. 즉, 네트워크는 UE의 상태 및 배치(deployment) 시나리오에 따라 실제로 전송되는 SS/PBCH 블록 정보를 전송하기 위한 자원을 가능한 유연하게 할당해야 하는데, 그룹 내의 비트 맵을 갖는 그룹 비트 맵 방식은 다른 대안들 보다 낮은 비트 크기를 이용하여 유연성을 제공 할 수 있기 때문에 실제로 전송되는 SS/PBCH 블록에 대한 정보를 전송하는 방법으로 가장 적절하다.
한편, 여기서, RMSI는 UE가 PBCH에 포함된 MIB를 디코딩하여, 이를 토대로 획득하는 시스템 정보로서, SIB1(System Information Block 1)으로 명칭되기도 한다.
(2) SS/PBCH 블록 설계
SS 엔트리의 수가 적게 되는 이점을 가지도록 20 RB의 대역폭으로 SS/PBCH 블록을 설계할 수 있다. 또한, 데이터와 DMRS에 대하여 동일하게 주파수-시간 순으로 맵핑하는 맵핑 규칙을 적용할 수 있다. 도 30은 SS/PBCH 블록의 설계를 보여준다.
도 30을 참조하면, 세번째 OFDM 심볼에서 SSS가 맵핑되지 않은 나머지 PRB는 PBCH 전송에 사용되기 때문에, SSS 전송을 위한 전력 부스팅이 적용되지 않는다. 따라서, SSS RE와 PBCH DM-RS RE 사이의 EPRE 오프셋은 0 dB로 결정된다. 그러므로, Cell-ID를 한번에 검출하는 것을 보장할 수 없을 수 있다. 만약, Cell-ID의 검출 성능이 보장된다면, SSS RE와 PBCH DM-RS RE 사이에 0dB EPRE 오프셋을 적용할 수 있다.
한편, 도 30에 따른 PBCH에서, PBCH 전송을 위한 RE의 수는 PRB 대역폭이 24 개인 SS/PBCH 블록 설계와 동일한 576개 이다. PBCH의 DMRS 밀도 및 DMRS 맵핑이 원래 SS/PBCH 설계와 동일하다는 가정하에 도 9에 따른 PBCH의 디코딩 성능은 PRB 대역폭이 24개인 SS/PBCH 블록 설계와 동일할 것으로 예상되었으나, 세번째 OFDM 심볼에서 PBCH DMRS를 사용하면 채널 추정 성능을 유지할 수 없기 때문에, 도 30에 따른 SS/PBCH 블록 설계는 24개의 PRB 대역폭인 SS/PBCH 블록과 동일한 디코딩 성능을 기대하기는 어렵다. 따라서, PBCH 디코딩의 성능 향상을 위해 다음과 같은 PBCH DMRS 매핑 방법을 고려해 볼 수 있습니다.
- DMRS 밀도: 심볼 별로 RB 당 4RE
- DMRS 매핑
- SS/PBCH 블록의 두 번째 및 네 번째 심볼에 대한 등 밀도(Equal density) 매핑
- SS/PBCH 블록의 세 번째 심볼에 대한 DMRS 매핑 없음
상술한 대안은 도 30에 따른 SS/PBCH 블록보다 양호한 채널 추정 성능 및 PBCH 디코딩 성능을 제공할 수 있다.
(3) 평가 결과
도 31 내지 도 33을 참고하여, 상술한 대안들의 PBCH 디코딩 성능을 비교해보도록 한다. 상술한 PBCH 디코딩 성능의 평가에서, SS 버스트 세트의 디폴트 주기성(즉, 20ms) 이 사용되고, 인코딩된 비트가 80 ms 내에서 전송된다고 가정한다. 또한, 시뮬레이션에 대한 상세한 가정은 아래의 [표 6]과 같다.
Parameter Value
Carrier Frequency 4GHz
Channel Model CDL_C (delay scaling values: 100ns)
Subcarrier Spacing 15 kHz
Antenna Configuration TRP: (1,1,2) with Omni-directional antenna elementUE: (1,1,2) with Omni-directional antenna element
Frequency Offset 0% of subcarrier spacing
Default period 20 ms
Subframe duration 1 ms
OFDM symbols in SF 14
Number of interfering TRPs 1
Operating SNR -6 dB
SS/PBCH 블록 설계의 세부 사항은 다음과 같다.
1) 대안 1 (도 31(a)): NR-PBCH 전송을 위해 24RB를 사용하는 두 개의 OFDM 심볼이 사용된다. 즉, 24RB를 사용하는 SS/PBCH 블록의 두 번째 및 네 번째 OFDM 심볼에서 NR-PBCH 전송 (총 48RB)
- DMRS 밀도: 심볼 별 RB 당 3RE
- DMRS 매핑: SS/PBCH 블록의 두 번째 및 네 번째 OFDM 심볼에 대한 등 밀도 매핑
- DMRS의 RE 수: 144
2) 대안 2(도 31(b)): 20 개 RB를 가지는 2개의 심볼인, SS/PBCH 블록의 두 번째 및 네 번째 OFDM 심볼과 8 개 RB를 가지는 하나의 OFDM 심볼인, SS/PBCH 블록의 세 번째 OFDM 심볼)을 통해 NR -PBCH 전송 (총 48 RB)
- DMRS 밀도: 심볼 별 RB 당 3RE
- DMRS 매핑: SS/PBCH 블록의 2, 3, 4 OFDM 심볼에 대한 등 밀도(equal density) 매핑
- DMRS의 RE 수: 144
3) 대안 3(도 31(c)): 20 개 RB를 가지는 2개의 심볼인, SS/PBCH 블록의 두 번째 및 네 번째 OFDM 심볼과 8 개 RB를 가지는 하나의 OFDM 심볼인, SS/PBCH 블록의 세 번째 OFDM 심볼)을 통해 NR -PBCH 전송 (총 48 RB)
- DMRS 밀도: 심볼 별 RB 당 4RE
- DMRS 매핑: SS/PBCH 블록의 두 번째 및 네 번째 OFDM 심볼에 대한 등 밀도(equal density) 매핑 (SS/PBCH 블록의 세 번째 심볼에 대한 DMRS 매핑 없음)
- DMRS에 대한 RE의 수: 160
도 32 내지 도 33를 참조하면, 대안 2는 대안 1 또는 대안 3보다 나쁜 성능을 제공함을 알 수 있다. 이러한 디코딩 성능의 손실은 세번째 심볼의 DMRS의 채널 추정 성능이 떨어지기 때문이다. 한편, 제안된 세 가지 방법 중에서 대안 3이 가장 좋은 DMRS 디코딩 성능을 보여준다. 이러한 성능 향상은 대안 3의 DMRS 배치가 대안 1 및 대안 2의 DMRS 배치 보다 더 정확한 채널 정보를 얻을 수 있기 때문이다.
11. 타이밍 정보 지시 (Timing Information Indication)
(1) 하프 프레임 (Half Frame) 지시
1 비트의 하프 프레임 지시자는 PBCH 페이로드에 포함되며, 측정을 위한 CSI-RS의 주기가 20ms 이상인 경우, UE는 네트워크가 CSI-RS가 측정을 위한 "동기식(synchronous)"라고 가정한다. 또한, 3GHz 이하의 대역에서는, 최대 빔 수가 4개이므로, 하프 프레임 지시자가 PBCH DMRS를 통해 암시적(implicitly)으로 시그널링된다.
추가적으로, PBCH의 디코딩 없이 3-6GHz 대역에서의 프레임의 경계를 확인할 방법이 필요하다. 3-6GHz 대역에서의 인트라 주파수 측정을 위해 인접 셀(neighbor cell)의 프레임 경계 지시를 위해 다음과 같은 상황을 고려할 수 있다.
1) 네트워크가 20ms 이상의 주기를 가지는 CSI-RS를 설정(configuration)하는 경우, 서빙 셀은 동기 지시자를 "동기식"으로 설정하고, UE는 네트워크가 동기식이라고 가정할 수 있다.
2) 네트워크가 10ms의 주기성을 갖는 CSI-RS를 설정(configuration)하는 경우, 서빙 셀은 UE에게 "CSI-RS-Config-Mobility"의 정보를 제공하고, UE는 하나의 후보 CSI-RS 스크램블링 시퀀스 시작 위치가 홀수번째 5ms 인지 짝수번째 5ms인지를 PBCH DMRS 시퀀스를 통한 SS/PBCH 블록 인덱스를 획득한 후에, 상기 CIS-RS에 대한 코릴레이션을 수행함으로써 획득할 수 있다.
3) 네트워크가 5ms의 주기성을 갖는 CSI-RS를 설정(configuration)하는 경우, 서빙 셀은 UE에게 "CSI-RS-Config-Mobility"의 정보를 제공하고, UE는 2개의 후보 CSI-RS 스크램블링 시퀀스 시작 위치가 홀수번째 5ms 인지 짝수번째 5ms인지를 PBCH DMRS 시퀀스를 통한 SS/PBCH 블록 인덱스를 획득한 후에, 상기 CIS-RS에 대한 코릴레이션을 수행함으로써 획득할 수 있다.
4) CSI-RS의 스크램블링 시퀀스 주기는 5ms로 정의된다.
5) 네트워크가 CSI-RS를 설정하지 않으면, UE는 PBCH DMRS 시퀀스를 통해 SSB 인덱스를 획득하더라도, 짝수번째 5ms 와 홀수번째 5ms를 구분할 수 없다.
4)와 5)에서 발생할 수 있는 문제점들을 해결하기 위해, 네트워크는 항상 "10ms의 주기를 갖는 CSI-RS" 또는 "10ms의 스크램블링 시퀀스 주기를 갖는 5ms의 CSI-RS 주기"을 설정(configuration)해야한다. 서빙 셀은 네트워크가 비동기식인 경우, "CSI-RS-Config-Mobility"의 정보를 UE에게 제공해야 한다.
만약, 네트워크가 동기식이면, 서빙 셀은 동기 지시자를 "동기식"으로 설정해야한다. 다시 말해, CSI-RS가 설정되지 않거나, CSI-RS 주기가 5ms 이하로서, CSI-RS의 스크램블링 시퀀스 주기가 5ms 이하이거나, 또는 CSI-RS주기가 20ms, 40ms, 80ms, 160ms, 320ms 인 경우, 네트워크가 동기식으로 동작해야하고, 서빙 셀은 동기 지시자를 "동기식"로 설정한다.
상술한 실시 예에 대한 좀 더 구체적인 실시 예를 살펴보면 다음과 같다.
NR 시스템에서, 타이밍 정보 (즉, SFN, 하프 프레임, SS/PBCH 블록 인덱스)는 PBCH 콘텐츠에 정의된다. 따라서, UE는 PBCH 디코딩을 통해 타이밍 정보를 얻을 수 있다. 프레임 구조 및 신호, 즉, 슬롯 번호, 스크램블링 시퀀스, DMRS 시퀀스, CSI-RS 시퀀스, PRACH 설정(Configuration) 등은 10ms 이내에 정의되기 때문에, UE는 프레임 경계 정보를 획득해야 한다.
따라서, RRM/핸드 오버의 경우, UE는 인접 셀에 대한 하프 프레임 정보 및/또는 SS/PBCH 블록 인덱스를 획득하기 위해 PBCH 디코딩을 시도 할 필요가 있다. 그러나, RRM/핸드 오버의 경우에 UE가 인접 셀에 대한 PBCH 디코딩을 동작하는 것은 바람직하지 못하다.
이에 따라, 빔의 수가 최대 4개인 주파수 대역에서는 하프 프레임 지시자 PBCH DMRS의 일부로서 암시적(implicitly)으로 시그널링된다. 즉, 3GHz 이하의 주파수 대역에서는 인접 셀의 PBCH DMRS 시퀀스를 검출하여 하프 프레임 정보를 얻을 수 있다. 또한, 6GHz 이하의 경우에는 SS/PBCH 블록의 인덱스가 PBCH DMRS에 의해 암시적(implicitly)으로 시그널링된다.
FR1 대역에서, UE는 PBCH DMRS 시퀀스 검출에 의해 SS/PBCH 블록의 인덱스를 획득할 수 있다. 그러나, 보다 높은 주파수 범위, 즉, FR2 대역에서는 여전히 인접 셀의 시간 정보 획득하기 위해 PBCH를 디코딩해야 한다. 예를 들어, 3GHz 이상의 주파수 범위에서, UE는 PBCH 페이로드에서 하프 프레임 지시자를 획득하기 위해 PBCH를 디코딩 해야 한다. 또한, FR2에서, UE는 최상위 3 비트의 SS/PBCH 인덱스를 획득하기 위해 PBCH 디코딩을 수행해야 한다.
따라서, 상술한 FR2에서의 문제를 해결하기 위해 서빙 셀과 타겟 셀 사이의 시간 동기화 정확도에 대한 가정을 설정해야 할 필요가 있다.
예를 들어, PRACH 설정(configuration)을 위해, FDD (paired spectrum)의 경우 셀 사이의 프레임 경계의 허용 오차가 +/-5ms라고 가정한다. 또한 RRM 측정의 경우, TDD (unpaired spectrum) 및 동일한 주파수 레이어에서 useServingCellTimingForSync 파라미터가 'true'로 설정된 경우 프레임 경계 정렬 허용 오차를 최소 2 SSB 심볼, 1 데이터 심볼로 가정한다.
다만, FDD에서 TDD, TDD에서 FDD 및 TDD에서 TDD (Inter-Frequecny의 경우)로 셀 변경이 수행될 때, 셀들 간의 프레임 경계의 허용 오차에 대한 가정을 더 고려할 필요가 있다.
이에 대해 살펴보면, 비동기 네트워크 일수 있는 FDD에 대해서는, FDD에서 TDD로, TDD에서 FDD로의 허용 오차가 +/-5ms라고 가정하는 것이 타당하다. 또한, LTE의 경우와 마찬가지로 TDD에서 TDD 로의 허용 오차는 +/-2.5ms라고 가정 할 수 있다.
[표 7]은 핸드 오버/RRM 시나리오에 따라 인접 셀(neighbour cell)의 시간 정보를 획득하기 위한 방법을 요약한 것이다.
Serving cell Target cell Neighbour cell Time Information Acquisition The tolerance of frame boundary between cells
SS/PBCH Block index Half Frame
FDD FDD (~3.0GHz) PBCH DMRS (LSB 2bits) PBCH DMRS & Payload +/- 5ms
TDD (~ 2.4GHz) PBCH DMRS (LSB 2bits) PBCH DMRS & Payload [+/- 5ms](Need further discussion)
TDD ( 2.4GHz~ 6.0GHz) PBCH DMRS (LSB 3bits) PBCH Payload only
TDD (6.0GHz ~ 52.6GHz) PBCH DMRS (LSB 3bits)PBCH Payload (MSB 3bits) PBCH Payload only
TDD FDD (~3.0GHz) PBCH DMRS (LSB 2bits) PBCH DMRS & Payload [+/- 5ms](Need further discussion)
TDD (~ 2.4GHz) PBCH DMRS (LSB 2bits) Same with serving cell [+/- 2.5ms](Need to discuss)
TDD ( 2.4GHz ~ 6.0GHz) PBCH DMRS (LSB 3bits) Same with serving cell
TDD ( 6.0GHz ~ 52.6GHz) PBCH DMRS (LSB 3bits)PBCH Payload (MSB 3bits) Same with serving cell
TDD ( Same frequency layer) Same with serving cell Same with serving cell MIN(2 SSB symbols, 1 data symbol)when ' useServingCellTimingForSync' is true
상술한 가정들을 바탕으로, 아래에서는, 인접 셀의 타이밍 정보를 획득하는 방법에 대해서 살펴보도록 한다.
NR에서는, 참조 신호(Reference Signal; RS)의 시퀀스는 OFDM 심볼 및 슬롯 위치를 식별하도록 설계되기 때문에, RS의 시퀀스는 심볼 위치 및 슬롯 위치를 검출하는데 사용될 수 있다.
따라서, 상술한 문제점을 해결하기 위해, 실제로 전송된 SS/PBCH 블록 (Actual Transmitted SSB; ATSS) 주위에 CSI-RS 자원을 할당하는 것을 고려할 수 있다. 즉, 상기 CSI-RS 자원은 ATSS 가 맵핑된 영역으로부터 일정 범위 이내의 영역에 할당될 수 있다. CSI-RS를 위한 시퀀스는 프레임 내에서 셀 ID, OFDM 심볼 번호 및 슬롯 번호에 의해 초기화되므로, CSI-RS 시퀀스를 검출함으로써 시간 위치 (즉, OFDM 심볼 및 슬롯 번호)를 획득 할 수 있다.
예를 들어, gNB가 SS/PBCH 블록 주위에 위치하는 CSI-RS 자원을 설정(Configuration)하면, UE는 프레임 내의 후보 위치에서 설정(Configuration)된 CSI-RS 시퀀스의 코릴레이션 특성을 이용하여 프레임 경계를 검출할 수 있다.
즉, FR1에서, UE는 검출된 SS/PBCH 블록이 프레임 내에서 위치할 수 있는 2가지 가설을 가정할 수 있다.
그리고, 6GHz 이상의 경우, 즉, FR2에서는 SS/PBCH 블록이 프레임 내에 위치 될 수 있는 OFDM 심볼 및 슬롯 위치를 고려하여 최대 16 개의 가설을 가정 할 수 있다.
다시 말해, gNB는 UE에게 인접 셀의 참조 신호 정보를 제공한다. 여기서, 참조 신호 생성에 사용되는 시퀀스는 골드 시퀀스, M-시퀀스 등과 같은 PN 시퀀스가 사용될 수 있고, PN 시퀀스는 OFDM 심볼, 슬롯 넘버 및 셀 ID를 기반으로 생성될 수 있다. 상기 생성된 시퀀스는 QPSK 모듈레이션되고, 모듈레이션된 시퀀스는 참조 신호를 위해 할당된 주파수/시간에 해당하는 부반송파 위치에 맵핑되어 전송된다. 그리고, 인접 셀 gNB는 UE에게 제공된 참조 신호 정보, 즉, 참조 신호의 시퀀스를 통해 전달되는 정보를 기반으로 신호를 생성하고 전송한다.
UE는 서빙 셀로부터 제공 받은 인접 셀의 참조 신호 정보로부터 인접 gNB가 전송할 수 있는 후보 참조 신호 정보를 유추한다. UE는 인접 셀의 신호를 수신하고, 참조 신호가 전송될 수 있는 후보 위치에서 참조 신호를 검출한다. 그 후, 검출한 신호와 UE가 유추한 후보 참조 신호 정보를 비교하여, 해당 위치에서 검출한 신호와 가장 유사한 후보 참조 신호를 선택한다. 그리고 선택한 참조 신호에 포함된 정보로부터 검출 신호를 수신한 시점에 대한 타이밍 정보를 획득할 수 있다. 즉, 참조 신호에 포함된 정보에는 상기 참조 신호가 전송되는 OFDM 심볼 위치 및 슬롯의 위치가 포함될 수 있다.
또한, 참조 신호에 포함된 정보에는 SS/PBCH 블록 인덱스 중 일부 비트 정보가 포함될 수 있는데, 상기 비트는 PBCH 페이로드로 전달되는 SS/PBCH 블록 인덱스 일 수 있다. 또한, 참조 신호에 포함된 정보에는 하프 프레임에 대한 정보가 포함될 수도 있다.
1) 핸드 오버 명령(Command) 수신 후, 인접 셀의 타이밍 정보를 획득하는 방법
핸드 오버의 경우, 타이밍 정보를 획득하기 위해 CSI-RS 시퀀스를 검출할 수 있다. 특히, 빔 관리(Management) 및 추적(Tracking)을 위한 CSI-RS는 UE를 위한 필수 기능이므로, UE는 핸드 오버 명령 메시지에서 CSI-MeasConfig IE(Information Element)에 의해 항상 CSI-RS를 설정(Configuration)될 것을 기대한다.
즉, UE가 핸드 오버 명령을 수신 한 후, CSI-RS 시퀀스를 사용하여 타이밍 정보를 획득하기 위해, 시퀀스 검출 동작을 수행할 수 있다. CSI-RS 시퀀스 검출은 PBCH 디코딩에 비해 빠르게 타이밍 정보를 획득할 수 있다.
따라서, 핸드 오버를 위해, UE는 상위 계층 파라미터인 CSI-MeasConfig를 구성하는 NZP-CSI-RS-ResourceSet를 UE-특정 설정(Configuaration)을 상위 계층을 통해 수신 할 수 있다.
상술한 것과 같이 CSI-RS 시퀀스를 통해 타이밍 정보를 획득하기 위해서는 아래와 같은 가정들을 고려해야 한다.
- 빔 관리(Management) 또는 추적(Tracking)을 위한 CSI-RS는 SS / PBCH 블록을 포함하는 OFDM 심벌 또는 그 주변에 할당될 수 있다.
- UE는 SS/PBCH 블록과 CSI-RS 모두에 대한 QCL 조건이 동일하다고 가정 할 수 있다.
- UE는 CSI-RS의 주기가 SS/PBCH 블록의 주기와 동일하다고 가정할 수 있다.
즉, 핸드 오버를 수행하기 위해, UE는 상위 계층 파라미터 CSI-MeasConfig를 통해 빔 관리(Management) 또는 트래킹(Tracking)을 위한 CSI-RS를 설정 할 수 있다.
또한, UE는 공간(Spatial) 수신 파라미터의 적용이 가능한 경우, CSI-RS 및 SS/PBCH 블록이 도플러 시프트, 도플러 확산(Spread), 평균 지연, 지연 확산은 Quasi Co-located 관계에 있다고 가정한다.
다시 말해, 핸드 오버를 수행하기 위하여, 빔의 수 L> 4 인 타겟 셀에 대해서, UE는 빔 관리 또는 트랙킹을 위한 CSI-RS의 수신에 기초하여 OFDM 심볼 번호 및 슬롯 번호를 획득할 수 있다.
2) 핸드 오버 명령 전, 또는 인접 셀(neighbor cell)측정을 위한 인접 셀의 타이밍 정보를 획득하는 방법
RRM에서 gNB는 측정(Measurement)을 위해 CSI-RS 자원을 설정(Configuration) 할 수 있다. 따라서, Inter/Intra 주파수 측정을 위해, UE는 상위 계층을 통해 CSI-RS-ResourceConfigMobility 설정을 수신할 수 있다. 이 때, CSI-RS-ResourceConfigMobility는 UE 특정 파라미터일 수 있다.
타이밍 정보를 획득하기 위하여, UE는 CSI-RS 시퀀스 검출을 위한 다수의 가설을 가정할 수 있다. 예를 들어, UE가 하프 프레임 정보만을 획득하기를 원할 때, UE는 검출된 SS/PBCH 블록이 제 1 하프 프레임 또는 제 2 하프 프레임에 위치하는 것으로 가정할 수 있다. 또한, UE가 SS/PBCH 인덱스 및 하프 프레임 정보를 모두 획득하기 원할 때에는, UE는 16 개의 가설(hypotheses)을 가정 할 수 있다.
3) 참조 신호를 기반으로 SS/PBCH 블록 인덱스 및 하프 프레임 정보를 획득하는 방법
상술한 1) 및 2)와는 다른 방법으로, SS/PBCH 블록 인덱스를 위한 최상위 3비트 및/또는 하프 프레임 정보를 전달하기 위한 새로운 시퀀스를 사용하는 것을 생각할 수 있다. 이 때, 새로운 시퀀스는 CSI-RS 시퀀스와 유사하게 시퀀스를 설계될 수 있다.
또한, 시퀀스는 상위 계층 UE 특정 설정(Configuration)에 의해 설정될 수 있다. 예를 들어, SS/PBCH 블록 인덱스를 위한 최상위 3비트 및 하프 프레임 정보를 위하여, 총 16 개의 상이한 시퀀스가 도입될 수 있다. 총 16개의 시퀀스들 중 첫 8 개 시퀀스들은 전반부 하프 프레임을 위한 SS/PBCH 블록 인덱스의 최상위 3비트를 위해 사용될 수 있고, 나머지 8 개 시퀀스는 후반부 하프 프레임을 위한 SS/PBCH 블록 인덱스의 최상위 3 비트를 위해 사용될 수 있다.
이제 상술한 실시 예들에 대하여, 도 34 내지 도 36을 통해 UE 및 기지국 관점에서의 동작들을 살펴보도록 한다.
도 34는 UE 동작을 설명하기 위한 것이다. 한편, UE는 SS/PBCH 블록 및 인접 셀의 타이밍 정보를 위한 참조 신호를 수신할 수 있으며, 복수의 셀들과 신호를 송수신하는 트랜시버(Transceiver) 및 상기 트랜시버와 연결되어, 서빙 셀로부터 제 1 SS/PBCH 블록을 수신하도록 상기 트랜시버를 제어하고, 인접 셀로부터 제 2 SS/PBCH 블록 및 상기 참조 신호를 수신하도록 상기 트랜시버를 제어하는 프로세서를 포함할 수 있다.
이 때, 상기 프로세서는 제 1 SS/PBCH 블록에 포함된 PBCH를 기반으로 제 1 SS/PBCH 블록의 타이밍 정보를 획득하고, 상기 제 2 SS/PBCH 블록 및 참조 신호를 기반으로 인접 셀을 위한 제 2 SS/PBCH 블록 인덱스 및 상기 참조 신호의 타이밍 정보를 획득할 수 있다.
이 때, 상기 제 1 SS/PBCH 블록의 타이밍 정보에는 상기 제 1 SS/PBCH 블록의 인덱스 정보를 포함할 수 있다. 또한, 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 시퀀스, 즉, PBCH-DMRS의 시퀀스는, 상기 서빙 셀의 식별자 및 상기 제 1 SS/PBCH 블록의 인덱스를 기반으로 생성될 수 있다. 또한, 인접 셀의 제 2 SS/PBCH 블록의 타이밍 정보는, 상기 제 2 SS/PBCH 블록의 인덱스 정보를 포함할 수 있다. 또한, 상기 PBCH-DMRS의 시퀀스는, 상기 인접 셀의 식별자 및 상기 제 2 SSB의 인덱스를 기반으로 생성될 수 있다.
또한, 인접 셀을 위한 상기 참조 신호의 타이밍 정보는, 제 2 SS/PBCH 블록의 인덱스와 관련된 OFDM 심볼 위치 및 상기 심볼의 슬롯 위치 정보를 포함할 수 있다. 또한, 인접 셀을 위한 상기 참조 신호의 타이밍 정보는, 제 2 SS/PBCH의 인덱스 중 PBCH 페이로드에 포함된 인덱스와 관련된 OFDM 심볼 위치 및 상기 심볼의 슬롯 위치 정보를 포함할 수 있다.
또한, 인접 셀을 위한 상기 참조 신호의 타이밍 정보는, 제 2 SS/PBCH 블록의 인덱스 중, PBCH 페이로드에 포함된 인덱스와 관련된 인덱스 정보를 포함할 수 있다. 또한, 인접 셀을 위한 상기 참조 신호의 타이밍 정보는, 제 2 SS/PBCH 블록의 인덱스와 관련된 하프 프레임 정보가 포함될 수 있다. 또한, 인접 셀을 위한 상기 참조 신호의 시간 정보는 하프 프레임 정보를 포함할 수 있다.
또한, 인접 셀을 위한 참조 신호는 CSI-RS의 시퀀스, DMRS를 위한 시퀀스 및/또는 PN 시퀀스를 사용하여 생성할 수 있다.
도 34를 참조하여, 본 발명의 실시 예에 따른 UE의 동작을 살펴보면, UE는 서빙 셀로부터 인접 셀의 타이밍 정보를 획득하기 위한 참조 신호 설정에 관련된 정보를 수신하고(S3401), 서빙 셀로부터 SS/PBCH 블록을 수신하고, 인접 셀로부터 SS/PBCH 블록 및 참조 신호를 수신한다(S3403).
그리고, UE는 상기 참조 신호의 시퀀스를 기반으로 인접 셀의 타이밍 정보를 획득하는데, 이 때, 상기 참조 신호의 시퀀스로부터 획득할 수 있는 타이밍 정보는 상기 인접 셀로부터 수신한 SS/PBCH 블록의 인덱스에 관련된 정보, 상기 참조 신호가 수신된 시점의 슬롯, 심볼 및 하프 프레임에 관한 정보를 포함할 수 있다.
한편, UE가 수신된 참조 신호의 시퀀스를 기반으로 인접 셀의 타이밍 정보를 획득하는 구체적인 방법 및 상기 참조 신호 및 참조 신호 시퀀스의 타입은 상술한 실시 예들에 따른다(S3405).
이제, 도 35를 참조하여, 본 발명의 실시 예에 따른 기지국의 동작을 살펴보도록 한다. 여기서, 기지국은 하나 이상의 셀(Cell)로 대체될 수 있으며, 하기 설명에서 기지국은 서빙 셀 또는 인접 셀이 될 수 있다.
즉, 다시 말해, 도 35의 동작 주체가 되는 기지국은 하나의 기지국일 수도 있으나, 서빙 셀 및 인접 셀 각각에 대응하는 서로 다른 기지국일 수도 있다.
서빙 셀에 대응하는 기지국은 UE에게 인접 셀의 타이밍 정보를 획득하기 위한 참조 신호에 관련된 설정을 전송한다(S3501). 이후, 인접 셀에 대응하는 기지국은 상기 참조 신호 및/또는 SS/PBCH 블록 전송 타이밍을 기반으로 참조 신호의 시퀀스를 생성한다. 이 때, 참조 신호 시퀀스의 시드(seed) 값은 상기 참조 신호가 전송되는 슬롯, 심볼 및 하프 프레임에 관한 정보 또는 상기 참조 신호 주위에서 전송되는 SS/PBCH 블록의 인덱스에 관한 정보일 수 있다(S3503).
한편, 기지국이 인접 셀의 타이밍 정보를 기반으로 참조 신호의 시퀀스를 생성하는 구체적인 방법 및 상기 참조 신호 및 참조 신호 시퀀스의 타입은 상술한 실시 예들에 따른다.
그 후, 상기 생성된 참조 신호 및 인접 셀의 SS/PBCH 블록을 상기 인접 셀에 대응하는 기지국이 UE에게 전송한다(S3505).
상술한 UE 및 기지국의 동작을 다시 도 36을 통해 전체적으로 살펴보도록 한다.
우선, 서빙 셀에 대응하는 기지국은 UE에게 인접 셀의 타이밍 정보를 획득하기 위한 참조 신호에 관련된 설정을 전송한다(S3601). 이후, 인접 셀에 대응하는 기지국은 상기 참조 신호 및/또는 SS/PBCH 블록 전송 타이밍을 기반으로 참조 신호의 시퀀스를 생성한다. 한편, 기지국이 인접 셀의 타이밍 정보를 기반으로 참조 신호의 시퀀스를 생성하는 구체적인 방법 및 상기 참조 신호 및 참조 신호 시퀀스의 타입은 상술한 실시 예들에 따른다(S3603).
그 후, 상기 생성된 참조 신호 및 인접 셀의 SS/PBCH 블록을 상기 인접 셀에 대응하는 기지국이 UE에게 전송한다(S3605).
그리고, 인접 셀로부터 참조 신호 및 SS/PBCH 블록을 수신한 UE는, 상기 참조 신호의 시퀀스를 기반으로 인접 셀의 타이밍 정보를 획득하는데, 상술한 바와 같이, 상기 참조 신호의 시퀀스로부터 획득할 수 있는 타이밍 정보는 상기 인접 셀로부터 수신한 SS/PBCH 블록의 인덱스에 관련된 정보, 상기 참조 신호가 수신된 시점의 슬롯, 심볼 및 하프 프레임에 관한 정보를 포함할 수 있다.
한편, UE가 수신된 참조 신호의 시퀀스를 기반으로 인접 셀의 타이밍 정보를 획득하는 구체적인 방법 및 상기 참조 신호 및 참조 신호 시퀀스의 타입은 상술한 실시 예들에 따른다(S3607).
(2) 동기 정보 (Synchronization information)
인접 셀(neighbour cell)에 대한 SS/PBCH 시간 인덱스를 획득하는 방법에 대해서 살펴보도록 한다. DMRS 시퀀스가 PBCH 컨텐츠의 디코딩보다 우수한 성능을 제공하기 때문에 각 5ms 주기 내에서 DMRS 시퀀스를 변경하여 3 비트의 SS/PBCH 블록 인덱스를 전달한다. 즉, 6GHz 이하의 주파수 대역에서는, 인접 셀에 대한 SS/PBCH 시간 인덱스를 NR-PBCH DMRS로부터 얻을 수 있다. 반면, 6GHz 이상의 주파수 대역에서는 64개의 SS/PBCH 블록 인덱스가 PBCH-DMRS와 PBCH 컨텐츠로 분리되어 표시되므로 인접 셀의 SS/PBCH 블록 인덱스를 획득하기 위하여, UE는 인접 셀의 PBCH를 디코딩한다. 그러나, 상술한 방법은 인접 셀 NR-PBCH의 디코딩으로 인한 추가적인 복잡성을 가져온다. 또한, PBCH의 디코딩 성능이 PBCH-DMRS를 이용한 디코딩 성능보다 나쁘기 때문에, UE가 SS/PBCH 블록 인덱스를 얻기 위해 인접 셀의 PBCH를 직접 디코딩해야 할 이유가 없다.
따라서, 인접 셀의 PBCH를 디코딩하는 대신, 서빙 셀이 인접 셀(neighbour cell)에 대한 SS/PBCH 블록 인덱스에 관한 설정을 제공하는 방법을 고려할 수 있다. 예를 들어, 서빙 셀은 타겟 인접 셀에 대한 SS/PBCH 블록 인덱스의 MSB (Most Significant Bits) (3bits)의 설정을 제공 할 수 있다. 그런 다음, UE는 인접 셀의 PBCH-DMRS를 통하여 인접 셀의 SS/PBCH 블록 인덱스의 LSB (Least Significant Bits) 3 비트를 검출 할 수 있다. 이후, 인접 셀의 SS/PBCH 블록 인덱스를 획득하기 위하여, 서빙 셀의 PBCH 디코딩을 통해 획득한 MSB 3비트와 인접 셀의 PBCH-DMRS를 통해 획득한 LSB 3비트를 조합하여, 타겟 인접셀에 대한 SS/PBCH 블록 인덱스를 획득할 수 있다.
12. NR-PBCH 컨텐츠
(1) 페이로드 크기 및 컨텐츠
PBCH의 페이로드 크기는 6GHz 이하 및 6GHz 이상 모두 동일한 54 비트이며, PBCH 컨텐츠는 아래의 [표 8]와 같다.
Details Bit size
For B6GHz For A6GHz
System Frame Number 10 10
Hal frame indication 1 1
SS/PBCH block time index (MSB) 0 3
PDSCH DMRS position 1 1
Reference numerology 1 1
RE level frequency position of RMSI CORESET (includes frequency offset and RB level indication) 9 7
Frequency resource of RMSI CORESET 2 1
Time resource of RMSI CORESET 2 2
PDCCH monitoring window duration 1 1
PDCCH monitoring window offset 1 1
cellBarred 1 1
intraFreqReselection 1 1
Reserved Bit 2 2
CRC 24 24
Total 56 56
(2) PBCH를 통해 RMSI가 존재하지 않는 다는 것을 빠르게 식별하기 위한 정보
NR 시스템에서는 SS 블록이 네트워크 접속을 위한 정보를 제공할 뿐만 아니라 작동 측정(operating measurement)을 위해 사용된다. 특히, 광대역 CC 동작을 위해서는 측정을 위해 복수의 SS/PBCH 블록을 전송할 수 있다. 그러나 RMSI가 SS/PBCH 블록이 전송되는 모든 주파수 위치를 통해 전달되면, 이는 시그널링 오버헤드를 증가시킬 수 있다. 따라서, 자원 활용의 효율성을 위해서는 RMSI가 특정 주파수 위치를 통해 전달되는 것으로 간주 될 수 있다. 이 경우, 초기 접속 절차에 있는 UE들은 현재 UE가 검출한 주파수 위치에서 시스템 정보가 제공되는지 여부를 인식 할 수 없기 때문에 시스템 정보 획득에 모호성을 가져올 수 있다. 이러한 모호성을 해결하기 위하여, 해결책으로 PBCH에 해당하는 RMSI가 없다는 것을 빠르게 식별하기 위해, 이를 위한 비트 필드를 정의하는 방법을 생각할 필요가 있다. 또한, 비트 필드를 도입할 필요가 없는 다른 해결책도 고려해볼 필요가 있다. 이 중 하나의 해결책은 측정 목적을 위한 SS/PBCH 블록은 주파수 래스터로 정의되지 않은 주파수 위치에서 전송하는 방법이 있다. 이러한 경우, 초기 접속 절차에 있는 UE들은 SS/PBCH 블록을 검출 할 수 없기 때문에, RMSI 존재 여부에 대한 모호성이 해결된다.
13. 초기 활성 하향링크 BWP (Initial Active DL BWP)
UE는 셀 ID 검출 및 PBCH 디코딩을 포함하는 초기 동기화 절차 동안, SS/PBCH 블록의 대역폭 내에서 신호의 검출을 시도한다. 그리고, UE는 초기 활성 DL/UL 대역폭 내에서 다음 초기 접속 절차인 시스템 정보를 획득하기 위한 과정과 RACH 프로세스를 계속해서 수행 할 것이다.
초기 활성 DL BWP는 RMSI CORESET의 주파수 위치 및 RMSI CORESET의 대역폭과 RMSI의 뉴머롤로지를 기반으로 정의된다. RMSI CORESET 설정(Configuration) 및 RMSI의 뉴머롤로지는 PBCH 페이로드에서 설정(Configuration)할 수 있다. 또한, SS/PBCH 블록과 초기 활성 DL BWP 간의 오프셋이 PBCH를 통해 지시된다. 도 37에서 볼 수 있는 것과 같이, 상기 오프셋은 6GHz 이하 및 6GHz 이상의 주파수 범위에서 SS/PBCH 블록과 채널 RB 간의 임의의 오프셋으로 지시되기 때문에, 상기 오프셋 값은 6GHz 이하 및 6GHz 이상의 주파수 범위 모두에 대해 정의해야 한다. UE는 초기 활성 DL BWP 및 CORESET의 정보를 얻은 후에, 상기 초기 활성 BWP 및 CORESET의 정보를 기반으로 시스템 정보 (즉, RMSI)를 획득하기 위한 과정을 수행할 수 있다.
NR은 QCLed SS/PBCH 블록과 RMSI의 FDM 전송을 지원한다. 또한, SS/PBCH 블록 및 초기 활성 DL BWP를 멀티플렉싱하는 대역폭을 명확히 할 필요가 있다. UE는 RMSI에 대응하는 PDCCH CORESET을 RMSI를 운반하는 PDSCH를 위해 할당되는 자원에서는 할당된 자원에서 SS 블록이 전송되지 않는다고 가정한다. 즉, 도 38에서 보는 것과 같이, 3 개의 OFDM 심벌이 RMSI CORESET을 위해 사용될 때, SS/PBCH 블록과 RMSI CORESET/PDSCH가 FDM되어야한다. 반면에, RMSI CORESET에 대해 최대 2 개의 OFDM 심볼이 할당되는 경우, SS/PBCH 및 RMSI CORESET은 TDM되고 SS/PBCH RMSI PDSCH는 초기 활성 DL BWP 내에서 FDM 될 수 있다.
초기 접속 절차 동안, UE는 측정(measurement), 시간/주파수 추적(tracking), RACH 전력 제어 등을 위해 SS/PBCH 블록들을 주기적으로 수신해야 한다. 그러나, SS/PBCH 블록이 UE 최소 BW 외부에 위치하면, 광대역 동작 능력이 없는 일부 UE는 주기적으로 SS/PBCH 블록을 수신하기 위해 주파수 재설정(retuning)을 수행해야 한다. 이러한 주파수 재설정은, UE 동작 관점에서, RF 재조합으로 인한 초기 접속 절차의 대기 시간을 증가시킬 수 있다. 따라서, NR에서는 SS/PBCH 블록과 RMSI CORESET이 FDM 되더라도, SS/PBCH 블록과 RMSI CORESET이 UE 최소 RX 대역폭 내에 제한되어 FDM 될 수도 있다.
14. RMSI CORESET 설정
(1) RMSI CORESET 설정을 위한 비트 크기
NR-PBCH 페이로드의 RMSI 설정(Configuration)에는 RMSI CORESET에 대한 대역폭 (PRB 단위로 표시), OFDM 심볼들, 주파수 위치 및 모니터링 윈도우가 포함될 수 있다. 이를 위해, PBCH 페이로드는 24 비트의 CRC를 포함하여 총 56 비트가 사용된다. 이 때, CRC의 24비트를 제외한 32 비트 중, 8 비트는 RMSI CORESET의 설정(Configuration)을 위해 사용될 수 있습니다. 또한 주파수 오프셋 지시를 위한 4 비트가 주파수 위치를 나타내는 부분이라고 생각하면, 총 12 비트가 RMSI CORESET 설정을 위해 할당된다. 한편, 6GHz 이하의 주파수 대역에 대해서는 RMSI CORESET의 설정(Configuration)을 위해 3 비트가 추가로 사용된다.
(2) 요구 대역폭(Required Bandwidth)과 OFDM 심볼
RMSI CORESET에 얼마나 많은 주파수/시간 자원, 즉, 얼마나 많은 PRB의 수 및 OFDM 심볼의 수가 필요한지를 결정하기 위해, NR에서 지원되는 집성 레벨(Aggregation level)을 고려해야 한다. 예를 들어, NR이 4, 6, 및 8의 3 개의 집성 레벨을 지원하면, 24, 32 및 48 RB 와 같이 적어도 3 개의 PRB 크기가 요구된다. 또한, 채널 BW 내의 PRB의 수는 부반송파 간격에 따라 정의된다. 예를 들어, 채널 BW가 10MHz 일 때, 15kHz 부반송파 간격에서의 PRB의 수는 52이고, 30kHz 부반송파 간격에서의 PRB의 수는 24이다. 이 경우, 요구되는 집성 레벨을 제공하기 위해, 하나 또는 두 개의 OFDM 심볼이 필요할 수 있다. 따라서, PRB의 수와 OFDM 심볼의 수를 나타내는 두 개의 표 (즉, 표 6 및 표 7)를 제안한다.
여기서, [표 9]는 하나의 RMSI CORESET을 위한 PRB들의 수를 나타내고, [표 10]은 하나의 RMSI CORESET을 위한 OFDM 심볼의 수를 나타낸다.
Code word Configured subcarrier spacing for RMSI
15kHz 30kHz 60kHz 120kHz
00 25 (5MHz) 24 (10MHz) 66 (50MHz) 32 (50MHz)
01 52 (10MHz) 38 (15MHz) 132 (100MHz) 66 (100MHz)
10 79 (15MHz) 51 (20MHz) - -
11 106 (20MHz) 106 (40MHz) - -
Code word Below 6GHz
00 1 (when one OFDM symbol is used for PDCCH within a slot)
01 1 (when two OFDM symbols are used for PDCCH within a slot)
10 2
11 3
[표 9]에서, PRB의 수는 PBCH 페이로드에 의해 지시된 부반송파 간격에 따라 정의된다. 또한, RMSI CORESET 대역폭의 수는 주파수 범위에 따라 다르므로, 대역폭 설정을 위한 서로 다른 비트 크기를 고려할 수 있다. 예를 들어, 6 GHz 이하의 주파수 대역에서는 2 비트를 사용하고, 6 GHz 이상의 주파수 대역에서는 1 비트를 사용할 수 있다. 그리고, 이를 기반으로 RMSI CORESET의 대역폭을 위한 UE 최소 BW를 결정할 수 있다. 예를 들어, 6GHz 이하의 주파수 대역에서의 UE 최소 BW는 20/40MHz 수 있고, 6GHz 이상의 주파수 대역에서의 UE 최소 BW는 100MHz까지 고려할 수 있다. 다만, 표 6에서의 일부 설정들은 6GHz 이상의 주파수 대역에서 제외 될 수 있다. 예를 들어, 100MHz 대역폭은 제외될 수 있다.
[표 10]에서는 OFDM 심볼의 수를 정의한다. RMSI CORESET의 경우, 슬롯 내에서 PDCCH에 대해 최대 3 개의 OFDM 심볼이 사용될 수 있다. 특히, 슬롯 내에서 최대 2 개의 RMSI CORESET을 구성할 수 있으며, RMSI CORESET을 위한 OFDM 심볼이 한 개 할당되면, 슬롯 내에서 PDCCH를 위해 최대 2개의 OFDM 심볼이 사용될 수 있다. 상술한 경우가 아닌 다른 경우에는 하나의 RMSI CORESET이 슬롯 내에서 사용될 수 있다.
(3) 주파수 위치 지시 (Frequency Position Indication)
RMSI CORESET의 주파수 위치는 RMSI CORESET의 주파수 위치와 SS/PBCH 블록의 주파수 위치 사이의 상대적인 RE 오프셋으로 나타낼 수 있다. 이러한 RE 오프셋은 SS/PBCH 블록의 부반송파 간격에 의해 정의된다. 도 39는 RMSI CORESET의 주파수 위치를 나타내는 실시 예를 보여준다.
도 39를 참조하면, RSMI CORESET의 가장 낮은 PRB가 SS/PBCH 블록 전송을 위한 2 개의 연속된 SS/PBCH 블록의 후보 위치들 사이에 존재할 때, 네트워크는 보다 높은 주파수 위치를 갖는 하나의 후보 SS/PBCH 블록 위치를 선택할 수 있다. 상기 높은 주파수 위치를 갖는 후보 SS/PBCH 블록 위치에서 SSB를 정의하는 셀, 즉, RMSI를 갖는 SS/BPCH 블록이 전송되고, RMSI CORESET은 SS/PBCH 블록의 가장 낮은 PRB 인덱스를 기준으로 지시된다. 또한, RMSI CORESET이 SS/PBCH 블록 전송을 위한 2 개의 연속된 SS/PBCH 블록의 후보 위치들 중에서 더 높은 주파수 위치에 있는 SS/PBCH 블록을 기준으로 지시된다고 가정하면, RMSI CORESET과 SS/PBCH 블록 사이의 주파수 위치 오프셋의 최대 범위는 동기 래스터에 의해 정의된다.
또한, 상술한 예시에서는 2개의 연속된 SS/PBCH 블록의 후보 위치들을 기준으로 할 때, 더 높은 주파수 위치에 있는 SS/PBCH 블록을 기준으로 지시된다는 의미는, 상기 RMSI CORESET의 중심에서 가장 가까운 SS/PBCH 블록을 의미한다. 구체적으로 도 39를 보면, 오프셋 값은 RMSI CORESET의 가장 낮은 PRB와 SS/PBCH 블록의 가장 낮은 PRB 간의 오프셋 값으로 정의되므로, 도 19에서 상단 부분의 PRB 가 낮은 인덱스를 가지는 PRB가 된다. 즉, RMSI CORESET에서 가장 낮은 PRB 는 도 39에서 가장 윗부분에 위치하는 RMSI CORESET의 PRB이며, 따라서, RMSI CORESET의 가장 낮은 PRB의 아래 위로 위치하는 SS/PBCH 블록은 도 19에 나타나는 SS/PBCH 블록들 중, 가장 위쪽 SS/PBCH 블록과 중간 SS/PBCH 블록이 된다.
즉, 도 39에서 상단 부분의 주파수 값이 낮으며, 하단 부분의 주파수 값이 높은 것이다. 따라서, 오프셋 값의 기준이 될 수 있는 후보 SS/PBCH 블록은 가장 위쪽 SS/PBCH 블록과 중간 SS/PBCH 블록이며, 이 중, 높은 주파수 위치에 있는 중간 SS/PBCH 블록의 가장 낮은(도 39 상으로는 가장 위쪽) PRB와 RMSI CORESET의 가장 낮은 PRB의 상대적인 RB 값의 차이가 오프셋으로 표현된다.
따라서, 도 39에 따르면, 가장 위쪽 SS/PBCH 블록과 중간 SS/PBCH 블록 중, 중간 SS/PBCH 블록이 RMSI CORESET의 중심과 가장 가까운 바, 높은 주파수 위치에 존재하는 SS/PBCH 블록을 오프셋 값의 기준 SS/PBCH 블록으로 결정한다는 의미는, RMSI CORESET의 중심에서 가장 가까운 SS/PBCH 블록이 될 수 있음을 의미한다.
또한, 동기 래스터는 최소 채널 대역폭, SS/PBCH 블록 대역폭 및 채널 래스터에 의해 정의된다. 예를 들어, 최소 채널 대역폭이 넓은 경우, 동기 래스터는 넓어집니다. 그러므로 더 넓은 동기 래스터는 SS 엔트리의 수를 줄이는 장점이 있다. 다만, 동기 래스터가 넓은 경우, RMSI CORESET과 SS/PBCH 블록 사이의 주파수 위치를 지시하기 위해 필요한 비트 크기는 증가한다. 따라서, 상술한 사항들을 고려하여 동기화 래스터의 적절한 범위를 결정할 필요가 있다.
아래의 [표 11] 내지 [표 16]에서는 최소 채널 대역폭 및 부반송파 간격에 따라 주파수 오프셋 표시에 필요한 비트 크기의 예시를 보여준다.
- SCS of SS/PBCH block: 15kHz, Channel raster: 10kHz
# of RB within min CH BW (RB) Sync raster(kHz) # of SS entrywithin 40MHz BW # of REs between sync raster (REs) Indication bit
25 900 45 74 7
52 5700 8 394 9
- SCS of SS/PBCH block: 15kHz, Channel raster: 15kHz
# of RB within min CH BW (RB) Sync raster(kHz) # of SS entry- 100MHz BW # of REs between sync raster (REs) Indication bit
25 915 110 61 6
52 5775 18 385 9
- SCS of SS/PBCH block: 30kHz, Channel raster: 100kHz
# of RB within min CH BW (RB) Sync raster(kHz) # of SS entrywithin 40MHz BW # of REs between sync raster (REs) Indication bit
24 1500 27 50 6
- SCS of SS/PBCH block: 30kHz, Channel raster: 15kHz
# of RB within min CH BW (RB) Sync raster(kHz) # of SS entry- 100MHz BW # of REs between sync raster (REs) Indication bit
24 1455 69 49 6
38 6495 16 217 8
51 11175 9 373 9
106 30975 4 1033 11
- SCS of SS/PBCH block: 120kHz, Channel raster: 60kHz
# of RB within min CH BW (RB) Sync raster(kHz) # of SS entry- 500MHz BW # of REs between sync raster (REs) Indication bit
32 17340 29 145 8
66 66300 8 553 10
- SCS of SS/PBCH block: 240kHz, Channel raster: 60kHz
# of RB within min CH BW (RB) Sync raster(kHz) # of SS entry- 500MHz BW # of REs between sync raster (REs) Indication bit
33 37500 14 157 8
이 중, [표 12]에 따르면, 최소 채널 대역폭이 10MHz 일 때, 15kHz 부반송파 간격에 대해 52 개의 PRB를 가정한다. 따라서 동기 래스터는 5775kHz 일 수 있으며, 이는 15kHz 부반송파 간격에서 385REs로 표시됩니다. 이 경우, RE 레벨 주파수 오프셋 지시를 위해 최대 9 비트가 필요하다.
또한, [표 14]에 따르면, 최소 채널 대역폭이 40MHz 일 때, 30kHz 부반송파 간격에 대해 106PRB를 가정하고, 동기 래스터는 30975kHz가 될 수 있으며, 이는 30kHz 부반송파 간격에서 1033REs로 표시된다. 이 경우, RE 레벨 주파수 오프셋 지시를 위해 최대 11 비트가 필요하다. 또한, [표 15]에서 보는 것과 같이, 최소 채널 대역폭이 50MHz 인 경우, 120kHz 부반송파 간격에 대해 동기 래스터는 17340kHz가 될 수 있으며 이는 145REs로 표시됩니다. 따라서, RE 레벨 주파수 오프셋 지시를 위해 최대 8 비트가 필요하다.
그러나 필요한 비트 크기가 PBCH MIB에서 허용하기에 너무 크면, NR은 동기 래스터 크기를 줄이거나 주파수 오프셋 지시 범위를 제한 할 수 있습니다. 예를 들어, 30kHz 부반송파 간격의 경우, 주파수 오프셋 지시를 위해서 최대 11비트가 필요하므로, 동기 래스터의 크기를 줄이는 것을 고려할 수 있다.
다시 [표 14]를 보면, 30kHz 부반송파 간격에 대해 51 개의 PRB를 가정하면 동기 래스터는 11175kHz가 될 수 있으며 30kHz 부반송파 간격에서 373REs로 표시된다. 이렇게 되면, RE 레벨 주파수 오프셋 표시에는 최대 9 비트가 필요하다. 한편, 상술한 방법에 따르면, SS 엔트리의 수는 4에서 9로 증가하지만 이는 그렇게 중요한 사항이 아니다. 또한, 120kHz 부반송파 간격의 경우, 주파수 오프셋 지시의 범위를 제한 할 수 있다. 만약, RMSI CORESET과 SS/PBCH 블록 사이의 주파수 위치 지시의 최대 주파수 범위가 128RE로 제한되는 경우, RE 레벨 주파수 오프셋 지시에 최대 7 비트가 필요하다.
(4) RMSI PDCCH 모니터링 윈도우 설정(Configuration)
SS/PBCH 블록과 관련된 RMSI PDCCH 모니터링 윈도우는 주기적으로 반복된다. 도 40은 이러한 RMSI PDCCH 모니터링 윈도우의 오프셋, 구간(duration) 및 주기(period)에 대한 실시 예를 나타낸다.
RMSI PDCCH 모니터링 주기는 SS/PBCH 블록을 검출하기 위한 기본 주기(default period)와 같거나 길게 정의할 수 있다. 초기 접속 과정에서, UE는 20ms마다 SS/PBCH 블록을 검출한다. 즉, SS/PBCH의 기본 검출 주기는 20ms 이다.
따라서, RMSI CORESET이 상기 RMSI CORESET에 대응하는 SS/PBCH 블록을 전송한다고 가정하면, UE는 SS/PBCH 블록의 검출 주기와 동일한 주기, 즉, 20ms로 RMSI CORESET을 모니터링 할 수 있다.
만약, RMSI TTI가 160ms로 결정되면, UE는 RMSI TTI 내에서 동일한 RMSI를 포함하는 PDSCH를 여러번 수신 할 수 있다. 예를 들어, RMSI TTI가 160ms 로 결정되면, 기본 SS/PBCH 블록의 검출 주기가 20ms이므로, 동일한 RMSI가 8번 반복 수신될 수 있다.
한편, RMSI 전송에 대한 주기가 더 짧아지면 RMSI의 커버리지가 확대될 수 있다. 그러나, 이러한 경우, 네트워크는 방송 시스템 정보 전달을 위한 DL 전용 전송 지속 구간(duration)을 예약할(reserverd) 것이고, 이는 TDD 시스템에서의 자원 활용의 유연성(flexibility)을 제한 할 수 있다. 예를 들어, TS 38.213 v 1.3.0 에 따를 때, SS/PBCH 블록의 수가 8이고, RMSI 부반송파 간격이 15 kHz이고, O가 5이고, 슬롯 당 검색 공간 세트의 수가 1이고, M=2 인 경우, 10ms에서 UL 설정(configuration)이 불가능할 수 있다. 더욱이, 6GHz 이상의 주파수 범위에서 UL 설정을 위한 시간 자원은 줄어들 수도 있다.
이러한 문제점을 해결하기 위하여 SS/PBCH 블록의 수를 제한할 수 있지만, 이는, NR 시스템 상에서 너무 많은 제약을 가져올 수 있다. 한편으로, TS 38.213의 표 13-9 내지 13-13에서의 매개 변수를 수정하는 방법을 생각할 수 있다. 다시 말해, M=2의 경우에 많은 문제가 발생하기 때문에, M의 값은 1/2 또는 1 로 설정할 수 있다. 그리고 O 값의 집합은 6 GHz 주파수 범위 미만에서는 {0, 2, 5, 7}이고 6 GHz 이상의 주파수 범위에서는 {0,2.5,5,7.5}이지만 5ms보다 큰 오프셋 값이 설정된(Configured) 경우, UL 설정(Configuration)에 대한 시간 자원이 10ms로 충분하지 않을 수 있다. 따라서, O 값의 설정은 6GHz 이하의 주파수 범위에서는 {0, 2, 10, 12}로, 6GHz 이상의 주파수 범위에서는 {0,2.5,10,12.5}로 변경된다.
다른 한편으로, UE가 보다 짧은 주기를 기반으로 PDCCH를 모니터링하면, UE 배터리 소모가 증가 될 수 있다. 따라서, 40ms와 같은 더 긴 주기를 고려해야 한다.
그러나, 다수의 빔 방향을 갖는 다중 RSMI 전송을 위해 복수의 전송 기회(occasion)가 제공되기 위해서, 20ms와 같은 더 짧은 주기가 요구 될 수도 있다. 이 경우, 도 40에서 나타난 바와 같이, gNB가 짝수 인덱스 빔과 홀수 인덱스 빔에 대한 RMSI CORESET을 20ms마다 번갈아 가며 전송하면, UE는 특정 SS에 대해 40ms의 주기를 가지고 특정 SS/PBCH 블록 인덱스에 대응하는 RMSI CORESET을 모니터링 할 수 있다.
RMSI PDCCH 모니터링의 지속 구간(duration)은 실제로 전송된 SS/PBCH 블록의 수에 따라 결정될 수 있다. 예를 들어, 복수의 SS/PBCH 블록들을 전송하는 경우, 상이한 방향을 갖는 복수의 RMSI 전송을 위한 보다 긴 모니터링 지속 구간(duration)이 필요할 수 있다. 이 경우, UE는 RMSI 모니터링 구간이 더 길다고 가정할 수 있다. 그러나, 실제로 전송된 SS/PBCH 블록의 수가 적을 경우에도 UE가 RMSI 모니터링의 고정적으로 더 긴 지속 구간을 가정한다면, UE 배터리 소모 측면에서 효율적이지 못하다.
따라서, gNB가 RMSI PDCCH 모니터링 구간(duration)을 설정할 필요가 있다. 예를 들어, RSMI PDCCH 모니터링 구간은 2 슬롯 또는 4 슬롯 구간으로 설정될 수 있다. 이 때, RMSI PDCCH 모니터링 윈도우는 SS/PBCH 블록들 간에 중복 될 수 있다. 이 경우, UE는 서로 다른 SS/PBCH 블록들 간에 QCL 될 수 있는 PDCCH를 검출 할 수 있다. 또한, SS/PBCH 블록 인덱스와 RMSI 간의 대응의 모호성을 피하기 위하여, RMSI에 대한 PDCCH의 스크램블링 시퀀스 또는 DMRS 시퀀스들이 SS/PBCH 블록 인덱스에 의해 초기화될 수 있다.
RMSI PDCCH 모니터링을 위해 설정 가능한 오프셋은 네트워크를 위한 자원 활용의 유연성을 제공 할 수 있다. 예를 들어, 네트워크에 넓은 스펙트럼이 있는 경우, gNB는 SS/PBCH 블록과 RMSI를 동일한 구간(duration) 내에서 전송할 수 있다. 또한, 네트워크가 SS/PBCH 블록들 및 RMSI를 개별적으로 전송할 수 있는 유연성을 갖는 경우, gNB는 SS/PBCH 블록이 전송되는 시간 간격과 상이한 시간 간격을 기반으로 RMSI를 전송할 수 있다. 한편, 준 정적(semi-static) DL/UL 할당 주기를 고려할 때 오프셋 값은 0ms와 10ms가 적당하다.
도 41은 무선 장치 (10)와 네트워크 노드 (20) 사이의 통신의 예를 도시하는 블록도이다. 여기서, 네트워크 노드 (20)는 도 41의 무선 장치 또는 UE로 대체 될 수 있다.
본 명세서에서 무선 장치 (10) 또는 네트워크 노드(20)는 하나 이상의 다른 무선 장치, 네트워크 노드 및/또는 네트워크의 다른 요소와 통신하기 위한 트랜시버(Transceiver)(11, 21)를 포함한다. 트랜시버(11, 21)는 하나 이상의 송신기, 하나 이상의 수신기 및/또는 하나 이상의 통신 인터페이스를 포함 할 수 있다.
또한, 상기 트랜시버(11, 21)는 하나 이상의 안테나를 구비할 수 있다. 안테나는, 프로세싱 칩(12, 22)의 제어 하에 본 발명의 일 실시예에 따라, 트랜시버(11, 21)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 프로세싱 칩(12, 22)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될(configured) 수 있다. 각 안테나로부터 전송된 신호는 무선 장치(10) 또는 네트워크 노드 (20) 에 의해 더는 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 무선 장치(10) 또는 네트워크 노드 (20) 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 무선 장치(10) 또는 네트워크 노드 (20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 트랜시버의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명에서 트랜시버(11, 21)은 수신 빔포밍과 전송 빔포밍을 지원할 수 있다. 예를 들어, 본 발명에서 트랜시버(11,21)은 도 8 내지 도 10에 예시된 기능을 수행하도록 구성될 수 있다.
또한, 무선 장치 (10) 또는 네트워크 노드(20)는 프로세싱 칩(12, 22)을 포함한다. 프로세싱 칩(12, 22)은 프로세서 (13, 23)와 같은 적어도 하나의 프로세서 및 메모리 (14, 24)와 같은 적어도 하나의 메모리 장치를 포함 할 수 있다.
프로세싱 칩(12, 22)은 본 명세서에서 설명된 방법들 및/또는 프로세스들 중 적어도 하나 이상을 제어할 수 있다. 다시 말해, 상기 프로세싱 칩(12, 22)은 본 명세서에 기재된 적어도 하나 이상의 실시 예들이 수행되도록 구성 될 수 있다.
프로세서(13, 23)는 본 명세서에서 설명된 무선 장치(10) 또는 네트워크 노드(20)의 기능을 수행하기 위한 적어도 하나의 프로세서를 포함한다.
예를 들어, 하나 이상의 프로세서는 도 41의 하나 이상의 트랜시버(11, 21)를 제어하여, 정보를 송수신할 수 있다.
또한, 프로세싱 칩(12, 22)에 포함된 프로세서(13, 23)는 상기 무선 장치(10) 또는 네트워크 노드(20) 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 트랜시버(11, 21)에 전송한다. 예를 들어, 프로세서(13, 23)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K 개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 수송 블록과 등가이다. 일 수송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 트랜시버(11, 21)는 오실레이터(oscillator)를 포함할 수 있다. 트랜시버(11, 21)는 N t 개(N t 는 1 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
또한, 프로세싱 칩(12, 22)은 데이터, 프로그래밍 가능한 소프트웨어 코드 및/또는 본 명세서에 설명된 실시 예들을 수행하기 위한 다른 정보를 저장하도록 구성된 메모리 (14, 24)를 포함한다.
다시 말해 본 명세서에 따른 실시 예에서, 메모리 (14, 24)는 프로세서 (13, 23)와 같은 적어도 하나의 프로세서에 의해 실행(executed)될 때, 프로세서 (13, 23)로 하여금 도 41의 프로세서 (13, 23)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하게 하거나, 도 1 내지 도 40을 기반으로 본 명세서에 설명된 실시 예들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드(15, 25)를 저장한다.
구체적으로, 본 발명의 실시 예에 따른 무선장치 (10)의 프로세싱 칩(12)은, 서빙 셀로부터 인접 셀의 타이밍 정보를 획득하기 위한 참조 신호 설정에 관련된 정보를 수신하도록 트랜시버를 제어하고, 서빙 셀로부터 SS/PBCH 블록을 수신하고, 인접 셀로부터 SS/PBCH 블록 및 참조 신호를 수신하도록 트랜시버를 제어한다.
그리고, 프로세싱 칩(12)은 상기 참조 신호의 시퀀스를 기반으로 인접 셀의 타이밍 정보를 획득하는데, 이 때, 상기 참조 신호의 시퀀스로부터 획득할 수 있는 타이밍 정보는 상기 인접 셀로부터 수신한 SS/PBCH 블록의 인덱스에 관련된 정보, 상기 참조 신호가 수신된 시점의 슬롯, 심볼 및 하프 프레임에 관한 정보를 포함할 수 있다.
한편, 프로세싱 칩(12)이 수신된 참조 신호의 시퀀스를 기반으로 인접 셀의 타이밍 정보를 획득하는 구체적인 방법 및 상기 참조 신호 및 참조 신호 시퀀스의 타입은 본 명세서의 상술한 실시 예들에 따른다.
또한, 본 발명의 실시 예에 따른 네트워크 노드(20)의 프로세싱 칩(22)은, 하나 이상의 셀(Cell)을 제어하는 프로세싱 칩(22)을 의미할 수 있다. 즉, 프로세싱 칩(22)이 제어하는 셀은 서빙 셀 또는 인접 셀이 될 수 있다.
다시 말해, 하나의 프로세싱 칩(22)은 서빙 셀 또는 인접 셀을 제어할 수 있으나, 하나의 프로세싱 칩(22)이 서빙 셀과 인접 셀 모두를 제어할 수도 있다.
서빙 셀에 대응하는 프로세싱 칩(22)은 UE에게 인접 셀의 타이밍 정보를 획득하기 위한 참조 신호에 관련된 설정을 전송하도록 트랜시버를 제어한다. 이후, 인접 셀에 대응하는 프로세싱 칩(22)은 상기 참조 신호 및/또는 SS/PBCH 블록 전송 타이밍을 기반으로 참조 신호의 시퀀스를 생성한다. 이 때, 참조 신호 시퀀스의 시드(seed) 값은 상기 참조 신호가 전송되는 슬롯, 심볼 및 하프 프레임에 관한 정보 또는 상기 참조 신호 주위에서 전송되는 SS/PBCH 블록의 인덱스에 관한 정보일 수 있다.
한편, 프로세싱 칩(22)이 인접 셀의 타이밍 정보를 기반으로 참조 신호의 시퀀스를 생성하는 구체적인 방법 및 상기 참조 신호 및 참조 신호 시퀀스의 타입은 상술한 실시 예들에 따른다.
그 후, 상기 생성된 참조 신호 및 인접 셀의 SS/PBCH 블록을 상기 인접 셀에 대응하는 인접 셀에 대응하는 프로세싱 칩(22)이 UE에게 전송한다(S3505).
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 참조 신호를 송수신 하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 무선 통신 시스템에서, 단말이 참조 신호를 수신하는 방법에 있어서,
    서빙 셀(Serving Cell)로부터 참조 신호 설정에 관련된 제 1 정보를 수신하고,
    상기 제 1 정보를 기반으로 인접 셀(Neighbour Cell)로부터 상기 참조 신호를 수신하고,
    상기 참조 신호의 시퀀스를 기반으로 상기 참조 신호의 타이밍에 관한 제 2 정보를 획득하는 것을 특징으로 하고,
    상기 참조 신호는 SS/PBCH 블록과 상이한 종류인,
    참조 신호 수신 방법.
  2. 제 1 항에 있어서,
    상기 제 2 정보는,
    상기 참조 신호가 전송된 하프 프레임에 관한 정보인,
    참조 신호 수신 방법.
  3. 제 1 항에 있어서,
    상기 제 2 정보는,
    상기 참조 신호가 전송된 슬롯 및 OFDM(Orthogonal Frequency Division Multiplexing) 심볼 중 적어도 하나에 관한 정보인,
    참조 신호 수신 방법.
  4. 제 1 항에 있어서,
    상기 제 2 정보는,
    상기 인접 셀로부터 수신되는 SS/PBCH 블록의 인덱스에 관련된 정보인,
    참조 신호 수신 방법.
  5. 제 4 항에 있어서,
    상기 제 2 정보는,
    상기 인접 셀로부터 수신되는 SS/PBCH 블록의 인덱스를 위한 최상위 3비트를 포함하는,
    참조 신호 수신 방법.
  6. 제 1 항에 있어서,
    상기 참조 신호는,
    상기 인접 셀을 통해 수신되는 SS/PBCH가 맵핑된 자원들로부터 일정 범위 내에 위치한 자원들에 맵핑되는,
    참조 신호 수신 방법.
  7. 제 1 항에 있어서,
    상기 참조 신호는, CSI-RS(Channel States Information-Reference Signal)인,
    참조 신호 수신 방법.
  8. 제 1 항에 있어서,
    상기 참조 신호는, DMRS(Demodulation Reference Signal)이며,
    상기 DMRS는 상기 SS/PBCH블록이 맵핑되지 않는 영역에 맵핑되는,
    참조 신호 수신 방법.
  9. 제 1 항에 있어서,
    상기 제 2 정보를 기반으로 상기 서빙 셀로부터 상기 인접 셀로의 핸드 오버가 수행되는,
    참조 신호 수신 방법.
  10. 제 1 항에 있어서,
    상기 제 2 정보를 기반으로 상기 인접 셀을 위한 측정(Measurment)가 수행되는,
    참조 신호 수신 방법.
  11. 무선 통신 시스템에서, 참조 신호를 수신하기 위한 통신 장치에 있어서,
    메모리; 및
    상기 메모리와 연결된 프로세서;를 포함하고,
    상기 프로세서는,
    서빙 셀(Serving Cell)로부터 참조 신호 설정에 관련된 제 1 정보를 수신하고,
    상기 제 1 정보를 기반으로 인접 셀(Neighbour Cell)로부터 상기 참조 신호를 수신하고,
    상기 참조 신호의 시퀀스를 기반으로 상기 참조 신호의 타이밍에 관한 제 2 정보를 획득하도록 제어하는 것을 특징으로 하고,
    상기 참조 신호는 SS/PBCH 블록과 상이한 종류인,
    통신 장치.
  12. 무선 통신 시스템에서, 인접 셀(Neighbor Cell)이 참조 신호를 전송하는 방법에 있어서,
    상기 참조 신호의 타이밍에 관한 제 1 정보를 기반으로 상기 참조 신호의 시퀀스를 생성하고,
    서빙 셀이 단말에게 전송한 참조 신호 설정에 관련된 제 1 정보를 기반으로 상기 참조 신호의 시퀀스를 자원 요소들(Resource Elements; REs)에 맵핑하고,
    상기 참조 신호를 상기 단말에 전송하는 것을 특징으로 하고,
    상기 참조 신호는 SS/PBCH 블록과 상이한 종류인,
    참조 신호 전송 방법.
PCT/KR2018/014133 2017-11-17 2018-11-16 참조 신호를 송수신하는 방법 및 이를 위한 장치 WO2019098769A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020526904A JP7177832B2 (ja) 2017-11-17 2018-11-16 参照信号を送受信する方法およびそのための装置
US16/762,907 US11540191B2 (en) 2017-11-17 2018-11-16 Method for transmitting and receiving reference signal and device therefor
EP18878660.2A EP3713136A4 (en) 2017-11-17 2018-11-16 METHOD OF SENDING AND RECEIVING A REFERENCE SIGNAL AND DEVICE FOR IT
CN201880085632.9A CN111557081B (zh) 2017-11-17 2018-11-16 发送和接收参考信号的方法及其设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762587495P 2017-11-17 2017-11-17
US62/587,495 2017-11-17
US201862739007P 2018-09-28 2018-09-28
US62/739,007 2018-09-28

Publications (1)

Publication Number Publication Date
WO2019098769A1 true WO2019098769A1 (ko) 2019-05-23

Family

ID=66538716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014133 WO2019098769A1 (ko) 2017-11-17 2018-11-16 참조 신호를 송수신하는 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (1) US11540191B2 (ko)
EP (1) EP3713136A4 (ko)
JP (1) JP7177832B2 (ko)
CN (1) CN111557081B (ko)
WO (1) WO2019098769A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236977A (zh) * 2020-09-11 2021-01-15 北京小米移动软件有限公司 参数配置方法、装置、通信设备和存储介质
WO2021083021A1 (zh) * 2019-10-31 2021-05-06 北京紫光展锐通信技术有限公司 公共参考信号的序列映射方法及装置、存储介质、终端
CN112788730A (zh) * 2019-11-08 2021-05-11 大唐移动通信设备有限公司 一种信号的发送、接收方法、装置及终端
WO2022011685A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Nr-u for 6ghz band-rmsi pdcch repetition for lpi mode
WO2024096631A1 (ko) * 2022-11-04 2024-05-10 엘지전자 주식회사 무선 통신 시스템에서 ssb에 기초한 측정을 위한 방법 및 그 장치

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3122173B2 (en) 2014-03-26 2024-05-29 SCR Engineers Ltd Livestock location system
US11778657B2 (en) 2017-10-27 2023-10-03 Apple Inc. Control resource set information in physical broadcast channel
CN111801919B (zh) * 2018-01-11 2024-03-01 株式会社Ntt都科摩 终端、无线通信方法、基站以及系统
CA3098122A1 (en) 2018-04-22 2019-10-31 Vence, Corp. Livestock management system and method
KR102547937B1 (ko) * 2018-08-08 2023-06-26 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
US20210351887A1 (en) * 2018-09-28 2021-11-11 Samsung Electronics Co., Ltd. Positioning reference signal
CN110971353B (zh) * 2018-09-28 2021-12-28 华为技术有限公司 通信方法及装置
WO2020075174A1 (en) 2018-10-10 2020-04-16 Scr Engineers Ltd Livestock dry off method and device
BR112021016911A2 (pt) * 2019-03-01 2021-11-03 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de comunicação sem fio, dispositivo terminal e dispositivo de rede
US11777764B2 (en) * 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications
KR20210007354A (ko) * 2019-07-11 2021-01-20 삼성전자주식회사 통신 장치의 동작 방법 및 통신 장치에 포함된 신호 처리 장치
WO2021019695A1 (ja) * 2019-07-30 2021-02-04 株式会社Nttドコモ 端末
US20220369389A1 (en) * 2019-10-25 2022-11-17 Ntt Docomo, Inc. Terminal
US11743004B2 (en) * 2019-11-15 2023-08-29 Qualcomm Incorporated Extended demodulation reference signal scrambling identifier for demodulation reference signal communication
US11601253B2 (en) * 2019-11-26 2023-03-07 Qualcomm Incorporated Synchronization signal block design
US11743006B2 (en) * 2019-11-27 2023-08-29 Intel Corporation Physical uplink control channel design for discrete fourier transform-spread-orthogonal frequency-division multiplexing (DFT-s-OFDM) waveforms
US11937197B2 (en) * 2020-04-17 2024-03-19 Qualcomm Incorporated Techniques for using a synchronization signal block for measurements
IL275518B (en) 2020-06-18 2021-10-31 Scr Eng Ltd Animal tag
USD990063S1 (en) 2020-06-18 2023-06-20 S.C.R. (Engineers) Limited Animal ear tag
USD990062S1 (en) 2020-06-18 2023-06-20 S.C.R. (Engineers) Limited Animal ear tag
US12047962B2 (en) * 2020-09-09 2024-07-23 Qualcomm Incorporated Remaining minimum system information transmission, synchronization signal block forwarding, and demodulation reference signal management by wireless forwarding node
CN116097787A (zh) * 2020-09-30 2023-05-09 华为技术有限公司 信息发送和接收方法、装置及系统
US20240031096A1 (en) * 2021-07-28 2024-01-25 Apple Inc. Solutions for enhancement of inter-cell operation for multi-trp
WO2023022142A1 (ja) * 2021-08-16 2023-02-23 株式会社Nttドコモ 端末、無線通信方法及び基地局
US11689398B2 (en) * 2021-09-24 2023-06-27 Qualcomm Incorporated Scrambling initialization indication for higher bands
CN117835341A (zh) * 2022-09-28 2024-04-05 北京三星通信技术研究有限公司 用于接收和发送信息的方法和设备
CN117014259B (zh) * 2023-09-27 2024-01-02 北京交通大学 基于5g下行周期参考信号的信道录制方法、装置及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289831A1 (en) * 2014-08-28 2017-10-05 Lg Electronics Inc. Method for performing positioning in wireless communication system and device therefor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247495B (zh) 2012-02-10 2018-12-28 Lg 电子株式会社 在无线通信系统中对邻近小区进行测量的方法和装置
WO2013141544A1 (en) 2012-03-18 2013-09-26 Lg Electronics Inc. Method and apparatus for performing measurement in wireless communication system
US9654989B2 (en) * 2012-03-25 2017-05-16 Lg Electronics Inc. Method and apparatus for measuring neighbor cell in wireless communication system
US20150351063A1 (en) * 2012-10-12 2015-12-03 Broadcom Corporation Sch-linked rs configurations for new carrier type
WO2014204102A1 (ko) * 2013-06-17 2014-12-24 엘지전자 주식회사 참조 신호 전송 방법
WO2015061952A1 (zh) * 2013-10-28 2015-05-07 华为技术有限公司 一种无线资源管理的测量方法、设备及系统
KR101857897B1 (ko) 2014-04-24 2018-06-19 엘지전자 주식회사 측정 수행 방법 및 단말
US9867072B2 (en) * 2014-09-19 2018-01-09 Qualcomm Incorporated Determination of subframe type for subframes containing discovery signals
EP3583735B1 (en) * 2017-03-23 2022-04-27 Samsung Electronics Co., Ltd. Methods and apparatuses for measurement configuration of different reference signals and cell measurement report mechanism
CN108809595B (zh) * 2017-05-05 2024-02-09 华为技术有限公司 一种参考信号通知方法及其装置
US10805863B2 (en) * 2017-06-15 2020-10-13 Sharp Kabushiki Kaisha Method and apparatus for generating and using reference signal for broadcast channel for radio system
US10750466B2 (en) * 2017-06-16 2020-08-18 Qualcomm Incorporated Reference signal (RS) configuration and transmission from serving and neighbor cell for mobility
CN109391577B (zh) * 2017-08-11 2021-08-13 华为技术有限公司 一种信号处理方法及装置
JP7569312B2 (ja) 2019-05-17 2024-10-17 株式会社Nttドコモ 端末、無線通信方法及びシステム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170289831A1 (en) * 2014-08-28 2017-10-05 Lg Electronics Inc. Method for performing positioning in wireless communication system and device therefor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Mobility Management based on SS block and CSI-RS measurements", R1-1717804, 3GPP TSG RAN WG1 MEETING #90BIS, vol. RAN WG1, 3 October 2017 (2017-10-03), Prague, Czech, XP051352759 *
FUJITSU: "On remaining details of synchronization signal", R1-1717713, 3GPP TSG RAN WG1 MEETING #90BIS, vol. RAN WG1, 2 October 2017 (2017-10-02), Prague, Czech, XP051352488 *
LG ELECTRONICS: "Remaining Details on PBCH design and contents", R1-1717926, 3GPP TSG RAN WG1 MEETING #90BIS, vol. RAN WG1, 3 October 2017 (2017-10-03), Prague, Czech, XP051352807 *
SAMSUNG: "Remaining Issues on the NR Mobility", R1-1717583, 3GPP TSG RAN WG1 MEETING #90BIS, vol. RAN WG1, 2 October 2017 (2017-10-02), Prague, Czech, XP051352230 *
See also references of EP3713136A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021083021A1 (zh) * 2019-10-31 2021-05-06 北京紫光展锐通信技术有限公司 公共参考信号的序列映射方法及装置、存储介质、终端
CN112788730A (zh) * 2019-11-08 2021-05-11 大唐移动通信设备有限公司 一种信号的发送、接收方法、装置及终端
WO2021088841A1 (zh) * 2019-11-08 2021-05-14 大唐移动通信设备有限公司 信号的发送、接收方法、装置及终端
TWI764360B (zh) * 2019-11-08 2022-05-11 大陸商大唐移動通信設備有限公司 信號的發送、接收方法、裝置及終端
WO2022011685A1 (en) * 2020-07-17 2022-01-20 Qualcomm Incorporated Nr-u for 6ghz band-rmsi pdcch repetition for lpi mode
CN112236977A (zh) * 2020-09-11 2021-01-15 北京小米移动软件有限公司 参数配置方法、装置、通信设备和存储介质
CN112236977B (zh) * 2020-09-11 2023-08-18 北京小米移动软件有限公司 参数配置方法、装置、通信设备和存储介质
WO2024096631A1 (ko) * 2022-11-04 2024-05-10 엘지전자 주식회사 무선 통신 시스템에서 ssb에 기초한 측정을 위한 방법 및 그 장치

Also Published As

Publication number Publication date
EP3713136A1 (en) 2020-09-23
CN111557081B (zh) 2023-05-23
EP3713136A4 (en) 2021-09-29
JP7177832B2 (ja) 2022-11-24
CN111557081A (zh) 2020-08-18
JP2021503795A (ja) 2021-02-12
US20210176687A1 (en) 2021-06-10
US11540191B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2019098769A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2019098768A1 (ko) 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2018203616A1 (ko) 동기 신호를 수신하는 방법 및 이를 위한 장치
WO2018203617A1 (ko) 동기 신호를 수신하는 방법 및 이를 위한 장치
WO2018231016A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2018231010A1 (ko) 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2019022575A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2019139299A1 (ko) 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2019022574A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2018203673A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018203708A1 (en) Method and apparatus for synchronization signal block index and timing indication in wireless systems
WO2019022577A1 (ko) 방송 채널을 송수신하는 방법 및 이를 위한 장치
WO2018164515A1 (en) Method and apparatus for processing reference signals in wireless communication system
WO2018062845A1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 이를 지원하는 장치
WO2019098770A1 (ko) 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018084661A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018128399A1 (ko) 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치
WO2018128493A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2018203674A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018143776A1 (ko) 무선 통신 시스템에서 단말의 무선 링크 모니터링 수행 방법 및 이를 지원하는 장치
WO2018016921A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 하향링크 제어 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2018052275A1 (en) Method and apparatus for transmitting initial access signals in wireless communication systems
WO2019194490A1 (ko) 측정을 수행하는 방법, 사용자 장치 및 기지국
WO2017146342A1 (ko) 협대역 iot를 지원하는 무선 통신 시스템에서 시스템 정보를 수신하는 방법 및 이를 위한 장치
WO2016021993A2 (ko) 무선 통신 시스템에서 측정 수행 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018878660

Country of ref document: EP

Effective date: 20200617