WO2015061952A1 - 一种无线资源管理的测量方法、设备及系统 - Google Patents

一种无线资源管理的测量方法、设备及系统 Download PDF

Info

Publication number
WO2015061952A1
WO2015061952A1 PCT/CN2013/086089 CN2013086089W WO2015061952A1 WO 2015061952 A1 WO2015061952 A1 WO 2015061952A1 CN 2013086089 W CN2013086089 W CN 2013086089W WO 2015061952 A1 WO2015061952 A1 WO 2015061952A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
reference signal
target cell
rsrq
sinr
Prior art date
Application number
PCT/CN2013/086089
Other languages
English (en)
French (fr)
Inventor
官磊
薛丽霞
大卫•马瑞泽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/086089 priority Critical patent/WO2015061952A1/zh
Priority to CN201380002013.6A priority patent/CN104782159A/zh
Priority to PCT/CN2013/087638 priority patent/WO2015062132A1/zh
Priority to CN201480000747.5A priority patent/CN104995860B/zh
Priority to PCT/CN2014/071572 priority patent/WO2015062178A1/zh
Priority to EP14859107.6A priority patent/EP3054617B1/en
Publication of WO2015061952A1 publication Critical patent/WO2015061952A1/zh
Priority to US15/140,299 priority patent/US10045986B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41661,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/72Two oxygen atoms, e.g. hydantoin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/72Two oxygen atoms, e.g. hydantoin
    • C07D233/76Two oxygen atoms, e.g. hydantoin with substituted hydrocarbon radicals attached to the third ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/20Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D239/22Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/47One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • C07D213/6432-Phenoxypyridines; Derivatives thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device, and system for measuring radio resource management. Background technique
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • the UE needs to perform synchronization, channel state measurement, and RRM (Radio Resource Management) measurement according to the reference signal sent by the base station.
  • the RRM measurement includes RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), and RS SI (Received Signal Strength Indicator) measurement, where RSRP Indicates the average received power of the CRS transmitted by the target measured cell included in the CRS (Cell-specific Reference Signal) resource unit of the target measured cell; RS SI represents the OFDM symbol of the CRS of the target measured cell The average received power of all signals; RSRQ is obtained based on the ratio of RSRP to RS SI.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RS SI Receiveived Signal Strength Indicator
  • each small cell still Reference information with a short external transmission period (such as PS S (Primary Synchronization Signal), S SS (Secondary Synchronization Signal) and CRS (Cell-specific Reference Signal), RCRS (Reduced CRS, Reduced Cell-Specific Reference Signal), where PS S/SS S/ RCRS transmission period For 5 subframes, the CRS transmission period is 1 subframe), and these reference information may cause serious inter-cell interference.
  • PS S Primary Synchronization Signal
  • S SS Secondary Synchronization Signal
  • CRS Cell-specific Reference Signal
  • RCRS Reduced CRS, Reduced Cell-Specific Reference Signal
  • Embodiments of the present invention provide a method, device, and system for measuring radio resource management, which can improve the efficiency and accuracy of radio resource management measurement.
  • the first aspect provides a method for measuring radio resource management, including: detecting, by a user equipment UE, a first reference signal, and determining, according to the detected first reference signal, a target cell corresponding to the detected first reference signal And the first resource in which the detected first reference signal is located;
  • the second resource is configured to carry the second reference information when the target cell is in an active state, or The second resource is configured to not carry the second reference information when the target cell is in a dormant state, and to carry the second reference information when the target cell transitions from a dormant state to an active state;
  • the UE determines a reference signal received quality RSRQ and/or a signal to interference plus noise ratio SINR of the target cell according to the RSRP and the RS SI.
  • configuration information of the first reference signal where the configuration information includes a candidate sequence of the first reference signal and/or a candidate time-frequency resource of the first reference signal
  • the user equipment UE detects the first reference signal, and determines, according to the detected first reference signal, the target cell corresponding to the detected first reference signal and the first location where the detected first reference signal is located.
  • Resources include:
  • the UE detects the first reference signal according to the configuration information of the first reference signal
  • the U E determines, according to the configuration information of the detected first reference signal, the target cell corresponding to the detected first reference signal and the first resource where the detected first reference signal is located.
  • the determining, by the UE, the second resource includes:
  • the UE Determining, by the UE, the second resource according to the first resource and resource offset; wherein the resource offset includes a time domain offset and/or a frequency offset; the resource offset is pre-configured Or notified by the base station.
  • the first resource and the second resource specifically include: the first resource and the second resource belong to different orthogonal frequency division multiplexing OFDM symbols or different time slots or different subframes. Or a different collection of subframes.
  • the UE determines, according to the RSRP and the RSSI, the target cell
  • the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR includes: If the transmit power of the target cell on the second resource is not 0, the UE determines an RSRQ of the target cell according to the RSRP and the RS SI; and/or, if the target cell is in the second The transmit power on the resource is 0, and the UE determines the SINR of the target cell according to the RSRP and the RS SI.
  • any one of the first aspect or the first to fourth possible implementations is combined:
  • the first reference signal includes: a discovery reference signal DRS;
  • the second reference information includes: at least one of CSI-RS, CRS, RCRS, PSS, SSS, PRS, and a broadcast channel.
  • any one of the first aspect or the first to fifth possible implementations is combined:
  • the method further includes: reporting, by the UE, the RSRQ to a base station, Determining, according to the RSRQ reported by the UE, whether to switch the target cell from a dormant state to an active state, and/or determining, according to the RSRQ reported by the UE, whether to configure the target cell to the UE.
  • any one of the first aspect or the first to fifth possible implementations is combined:
  • the method further includes: reporting, by the UE, the SINR to a base station, Determining, according to the SINR reported by the UE, whether to switch the target cell from a dormant state to an active state, and/or determining, according to the SINR reported by the UE, whether to configure the target cell to the UE.
  • any one of the first aspect or the first to fifth possible implementations is combined:
  • the UE After determining, by the RSRP and the RS SI, the reference signal receiving quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, the UE further includes: The UE reports the RSRQ and the SINR to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the RSRQ and the SINR reported by the UE, and/or Determining whether to configure the target cell to the UE according to the RSRQ and the SINR reported by the UE.
  • a user equipment including:
  • a determining unit configured to detect a first reference signal, and determine, according to the detected first reference signal, a target cell corresponding to the detected first reference signal and a first location where the detected first reference signal is located Resource
  • a first power determining unit configured to determine, by the UE, a reference signal received power RSRP of the target cell according to the received power of the detected first reference signal carried on the first resource;
  • the determining unit is further configured to determine a second resource, where the second resource and the first resource occupy different times; the second resource is configured to carry the second reference information when the target cell is in an active state, where Or the second resource is used to not carry the second reference information when the target cell is in a dormant state, and to carry the second reference information when the target cell transitions from a dormant state to an active state;
  • a second power determining unit configured to determine, according to a total received power on the second resource, a received signal strength indicator RS SI of the target cell, where the first resource and the second resource are at different times;
  • a third power determining unit configured to determine, according to the RSRP and the RS SI, a reference signal received quality RSRQ or a signal to interference plus noise ratio SINR of the target cell.
  • the UE further includes: an information acquiring unit, configured to acquire configuration information of the first reference signal; where the configuration information includes the first reference signal Candidate sequence and/or candidate time-frequency resources of the first reference signal;
  • the determining unit is configured to: detect the first reference signal according to the configuration information of the first reference signal; determine a target cell corresponding to the first reference signal according to the configuration information of the first reference signal, and The first resource where the first reference signal is located.
  • the determining unit is specifically configured to: determine the second resource according to the first resource and resource offset; wherein the resource offset includes a time domain offset and/or a frequency offset; The amount is pre-configured or notified by the base station.
  • the first resource and the second resource specifically include: the first resource and the second resource belong to different orthogonal frequency division multiplexing OFDM symbols or different time slots or different subframes. Or a different collection of subframes.
  • any one of the second aspect or the first to third possible implementations is combined:
  • the third power determining unit is specifically configured to: if the transmit power of the target cell on the second resource is not 0, determine an RSRQ of the target cell according to the RSRP and the RSSI; and/or, if And determining, by the target cell, that the transmit power of the target cell is 0, determining an SINR of the target cell according to the RSRP and the RS SI.
  • any one of the second aspect or the first to fourth possible implementations is combined:
  • the first reference signal includes: a discovery reference signal DRS;
  • the second reference information includes: at least one of CSI-RS, CRS, RCRS, PSS, SSS, PRS, and a broadcast channel.
  • any one of the second aspect or the first to fifth possible implementations is combined:
  • An information reporting unit configured to report the RSRQ to a base station, so that the base station determines whether to switch the target cell from a dormant state to an active state according to the RSRQ reported by the UE, and/or according to the UE The reported RSRQ determines whether to configure the target cell to the UE.
  • An information reporting unit configured to report the SINR to a base station, so that the base station determines whether to switch the target cell from a dormant state to an active state according to the SINR reported by the UE, and/or according to the UE The reported SINR determines whether the target cell is configured to the UE.
  • An information reporting unit configured to report the RSRQ and the SINR to a base station, so that the base station determines whether to switch the target cell from a dormant state to an active state according to the RSRQ and the SINR reported by the UE, And/or determining whether to configure the target cell to the UE according to the RSRQ and the SINR reported by the UE.
  • the method, device and system for measuring radio resource management provided by the embodiment of the present invention, the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the second resource
  • the received signal strength indication RSSI of the target cell determined by the total received power is used to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, and the target cell is measured only according to the CRS in the prior art.
  • the RSRQ or SINR may cause a rapid change or jitter of the interference environment between adjacent cells in an area.
  • the measurement method of the radio resource management provided by the present invention is more efficient and has a higher correct rate.
  • FIG. 1 is a method for measuring radio resource management according to an embodiment of the present invention. Schematic diagram of the process
  • FIG. 2 is a schematic flowchart of another method for measuring radio resource management according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a transmission frame of a target cell and an adjacent cell of the target cell and a subframe resource block in the transmission frame according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a transmission frame of a target cell and a neighboring cell of the target cell and a subframe resource block in the transmission frame according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a transmission frame of a target cell and a neighboring cell of the target cell and a subframe resource block in the transmission frame according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a user equipment according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of another user equipment according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of another embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a measurement system for radio resource management according to an embodiment of the present invention.
  • the embodiments provided by the present invention are applied to an LTE (Long Term Evolution) system, which is based on OFDM (Orthogonal Frequency Division Multiplexing) technology, that is, the OFDM technology is used to divide time-frequency resources.
  • the minimum resource granularity formed by the OFDM symbol on the time domain dimension and the OFDM subcarrier in the frequency domain dimension is called RE ( Resource Element , Resource unit), the resource unit represents an OFDM symbol in the time domain and a time-frequency grid point of one OFDM subcarrier on the frequency domain.
  • the transmission of the service in the LTE system is based on the scheduling of the base station.
  • the base station sends a control channel, and the control channel can carry scheduling information of the uplink or downlink data data channel, where the scheduling information includes control information such as resource allocation information or modulation and coding mode.
  • the UE User Equipment
  • the base station scheduling UE is performed by using a resource block (RB, Resource Block) as a granularity, and one resource block occupies the length of one subframe in the time domain, and the width of 12 OFDM subcarriers in the frequency domain, one subframe is generally Includes 14 OFDM symbols.
  • RB Resource Block
  • the UE needs to perform synchronization, channel state measurement, and RRM (Radio Resource Management) measurement according to the reference signal sent by the base station.
  • the synchronization is further divided into initial coarse synchronization and time-frequency tracking fine synchronization.
  • the initial coarse synchronization is performed according to the PS S (Primary Synchronization Signal) and the SSS (Secondary Synchronization Signal) sent by the base station.
  • the time-frequency tracking fine synchronization is performed by a CRS (Cell-specific Reference Signal) sent by the base station.
  • Channel state measurements include channel measurements and interference measurements, typically measured by CRS or RCRS (Reduced CRS, reduced cell-specific reference signals).
  • the RCRS is a CRS that modifies the period of the CRS that is currently sent by each subframe to N ms.
  • the N may be 5 or other integers, that is, the CRS in the subsequent LTE system may not be sent every subframe, but N ms (N> 1 ) is sent for the period, and the CRS at this time is called RCRS.
  • the RRM measurement includes RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), and RS SI (Received Signal Strength Indicator) measurement, where RSRP indicates that the target is measured.
  • RS SI represents all the signals on the OFDM symbol where the CRS of the target measured cell is located Average connection
  • the received power includes the signal received power of the local cell, the received power of the same-frequency neighboring cell, the average power of all signals such as the signal received power and thermal noise leaked to the frequency band in different frequency bands; and the RSRQ is obtained according to the ratio of RSRP to RSSI.
  • a mainstream heterogeneous network includes: a macro base station and A large number of small cells in the macro base station, wherein the macro base station mainly provides coverage and real-time data services, the small cell mainly provides high-speed data services, and the macro cell and the small cell can deploy with the same or different frequency points, but The deployment scenarios of different frequency points are dominant.
  • each small cell still Sending shorter reference information (such as PS S , SS S , CRS and RCRS , where the transmission period of PSS/SS S/ RCRS is 5 subframes and the transmission period of CRS is 1 subframe)), and these references Information can cause serious inter-cell interference.
  • shorter reference information such as PS S , SS S , CRS and RCRS , where the transmission period of PSS/SS S/ RCRS is 5 subframes and the transmission period of CRS is 1 subframe
  • the inventor has found that when the small cell is turned off or turned on, the interference environment between neighboring cells in a region changes or jitters rapidly, which increases the difficulty of RRM measurement and proposes RRM measurement.
  • the higher requirements make the UE unable to efficiently perform cell selection, reselection or handover of the cell and the neighboring cell. Therefore, how to perform RRM measurement more efficiently is the primary problem to be solved today.
  • a preferred solution is that the small cells that do not serve the UE send a DRS (Discovery Reference Signal) in a long period, so that the UE around the closed small cell can be based on The DRS performs timely discovery and RRM measurement on the closed small cell.
  • DRS Discovery Reference Signal
  • the above-mentioned state of being turned off but transmitting DRS is referred to as a sleep state, and a reference signal having a short period is not transmitted at this time, and the reference signal includes PSS, SSS, CRS/RCRS, At least one of CSI-RSs used for CSI measurement, or other signals except DRS are not sent at this time; the state of the normal serving UE after being turned on is called an active state, and it is necessary to transmit PS S , SS S , CRS/RCRS, used as at least one of CSI-RS for CSI measurement.
  • the small cell in the dormant state is in addition to the DRS time transmitted in the longer period.
  • the transmission power is not 0, and the transmission power in other periods is 0.
  • the transmission power of the small cell at the time of transmitting the DRS is estimated to be in the RS SI due to the synchronous DRS transmission mechanism, thereby overestimating the RS SI.
  • the value in turn, underestimates the RSRQ or SINR value obtained using the RSSI.
  • the inventors have found that whether the target measured cell is in an active state or a dormant state when performing RRM measurement according to DRS, the measured RSRQ or SINR of the target measured cell according to the DRS is underestimated, resulting in a better The small cell serving the UE is not able to serve the UE.
  • the embodiment of the present invention provides a measurement method for the radio resource management, which is applied to the user equipment side.
  • the radio resource management measurement method is specific. Including the following steps:
  • the UE detects the first reference signal, and determines, according to the detected first reference signal, the target cell corresponding to the detected first reference signal and the first resource where the detected first reference signal is located.
  • the first reference signal is DRS
  • the general transmission period is long, such as much longer than 5 ms or 10 ms, such as tens or hundreds of ms or even thousands of ms, used to measure RSRP, and is located on the first resource.
  • the DRS may be specifically designed based on an existing reference signal, such as at least one of PRS, CSI-RS, CRS, RCRS, PSS, and S SS, or may be optimized based on the existing reference signal, such as a sequence. Unchanged but pass The time-frequency resource of the existing reference signal is flexibly configured as the above DRS.
  • the first resource where the detected first reference signal is located may be a resource unit that carries the detected first reference signal, and therefore, after detecting the first reference signal, the UE may detect the detected The resource unit of the first reference signal is determined to be the first resource.
  • the U E determines a reference signal received power RSRP of the target cell according to the received power of the detected first reference signal carried on the first resource.
  • the UE determines the second resource.
  • the target cell When the target cell is in an active state, the target cell carries at least second reference information on the second resource; and/or, when the target cell is in a dormant state, the target cell is carried on the first resource. And detecting the first reference signal, and the second reference information is not carried on the second resource, but the target cell is transferred from the dormant state to the active state, and the second reference information is carried on the second resource.
  • the second resource is not required to carry the first reference signal, that is, the second resource is any resource that does not carry the first reference signal, and may or may not carry the second reference information.
  • the power on the second resource is determined by the dynamically scheduled data channel, that is, there is power in the data scheduling, otherwise there may be no power, and the real data channel may be reflected at this time. The impact of interference.
  • the second resource carries the second reference information, the second reference information does not depend on the dynamic data scheduling, but the second reference information is sent, and the measured interference is detected, as long as the target cell is in an active state.
  • the network side may not be able to truly reflect the interference of the data channel, but the measured interference is relatively stable, and the jitter is not large. It is convenient for the network side to obtain the result measured by the UE, such as adding or deleting a cell to the UE, and switching. Wait.
  • the foregoing second resource refers to all or part of resource units on the entire OFDM symbol where the second reference information of the target cell is located, and may also be a time slot in which the second reference information is located, in a subframe or a subframe set. a plurality of OFDM symbols; the second reference information includes: at least one of CSI-RS, CRS, RCRS, PSS, SSS, PRS, and a broadcast channel.
  • the target cell when the target cell is in an active state, the target cell carries at least second reference information on the second resource; and when the target cell is in a dormant state, The second reference information is not sent in the target cell, that is, only the first reference signal exists in the transmission frame of the target cell. Therefore, the target cell carries the first reference signal on the first resource, and is not carried on the second resource.
  • the second reference information, or the second resource is a resource where the second reference information that is sent when the target cell is in an active state.
  • the method in which the UE performs RRM measurement according to the broadcast channel is the same as the method of performing RRM measurement according to other reference signals.
  • the UE determines, according to the total received power on the second resource, a received signal strength indicator RSSI of the target cell.
  • the first resource and the second resource are at different times. Specifically, the first resource and the second resource belong to different OFDM symbols or different time slots or different subframes or different subframe sets.
  • the UE determines, according to the RSRP and the RSSI, a reference signal received quality RSRQ and/or a signal to interference plus noise ratio SINR of the target cell.
  • the target cell if the target cell is in an active state, at least one of DRS, PSS, SS S, CRS, RCRS, CSI-RS, PRS, and broadcast channel is sent on the target cell, so that the UE can be connected at any time. Entering or camping on the target cell; if the target cell is in a dormant state, then only the first reference signal, that is, DRS, is sent on the dormant cell, and the DRS transmission period is required to be sent second than the active state.
  • the period of the reference signal is much longer, typically a period of several hundred subframes or even thousands of subframes. In this way, there is a problem that multiple cells synchronously transmit DRS, so that the measured RSRQ or SINR is underestimated, and the problem can be solved by measuring RSRP and RS SI on the first resource and the second resource, respectively.
  • the target cell if the target cell is in an active state, at least one of PSS, SS S, CRS, RCRS, CSI-RS, PRS, and broadcast channel is sent on the target cell, and DRS is not sent; PSS and S SS perform cell identification and perform RRM measurement according to CRS or RCRS.
  • the target cell may send an RCRS or a CRS in addition to the DRS, the RCRS or The transmission period of the CRS may be longer than the transmission period in the active state, for example, the period is the same as the DRS, and is used for the UE to perform RRM measurement, or to assist the DRS to perform RRM measurement.
  • the first resource and the second resource in the embodiment of the present invention belong to a time resource and/or a frequency resource.
  • the method for measuring radio resource management provided by the embodiment of the present invention, the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the total received power of the second resource Determining the received signal strength indication RS SI of the target cell to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, compared to the prior art that only the target cell is measured according to the CRS or DRS.
  • the RSRQ or SINR may cause a rapid change or jitter of the interference environment between adjacent cells in an area, and the measurement method of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the cell in the dormant state (The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above-mentioned RSRQ and/or SINR being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • the method for measuring radio resource management includes the following steps:
  • the UE acquires configuration information of the first reference signal.
  • the foregoing configuration information includes a candidate sequence of the first reference signal and/or a candidate time-frequency resource of the first reference signal.
  • the candidate time-frequency resources may be timing, bandwidth, time-frequency unit patterns, and the like.
  • the configuration information may be pre-configured by the UE, or may be notified by the base station corresponding to the serving cell of the UE.
  • the serving cell of the UE when the serving cell of the UE is a macro cell with a frequency of fl and the target cell is a small cell with a frequency of f2, the serving cell configures the UE to measure the small cell at the f2 frequency.
  • the serving cell in order to reduce the complexity and power consumption of the UE measurement, the serving cell will inform the UE of some configuration information of the small cell, for example, through the RRC proprietary message.
  • the sequence of the Chu is transmitted by the RRC (Radio Resource Control Protocol) signaling to notify the UE of the transmission timing when the first cell transmits the first reference signal, so that the UE can be based on the transmission timing of the first reference signal.
  • RRC Radio Resource Control Protocol
  • the serving cell notifies the UE that the transmission timing of the first reference signal is sent by the small cell, mainly because the transmission period of the first reference signal (such as DRS) is generally long (such as several hundred subframes), so if the UE is each subframe
  • the detection of the first reference signal causes the detection time of the UE to detect the first reference signal to be long, and increases the power consumption of the UE.
  • the serving cell notifies the UE that the transmission timing of the first reference signal sent by the small cell may be a specific transmission time, or may be a radio frame number of the serving cell, specifically, a radio frame number of the serving cell in the serving cell (
  • the first reference signal is sent at a position of 0 or 20 or 40, and the radio frame number of the serving cell is sent to the UE, so that the UE estimates the first reference of the small cell according to the synchronization relationship with the serving cell.
  • the timing at which the signal is sent is sent.
  • the foregoing transmission timing may be a rough timing, but even if the transmission timing of the first reference signal is transmitted, the UE may detect the first The detection time and power consumption of the reference signal.
  • the UE detects the first reference signal, and determines, according to the detected first reference signal, the target cell corresponding to the detected first reference signal and the first resource where the detected first reference signal is located.
  • the foregoing first reference signal includes a DRS
  • the DRS may be based on an existing reference signal design, such as at least one of PRS, CSI-RS, CRS, RCRS, PSS, and SS S, or may be based on the above existing reference.
  • the signal is optimized, such as the sequence unchanged but by flexibly configuring the time-frequency resources of the existing reference signal as the above DRS.
  • step 202 specifically includes the following steps: 202a.
  • the UE detects the first reference signal according to the configuration information of the first reference signal.
  • 202b The UE determines, according to the configuration information of the detected first reference signal, the target cell corresponding to the detected first reference signal and the first resource where the detected first reference signal is located.
  • the UE may detect the first reference signal according to the configuration information. For example, the UE detects a candidate sequence of multiple first reference signals within a certain transmission timing of the notified first reference signal and a certain bandwidth of the notified small cell frequency point, for example, by using 10 candidate sequences. After the sequence of the first reference signal is finally detected, that is, one of the candidate sequences is successfully matched, the sequence of the first reference signal and the cell identifier in the configuration information of the first reference signal acquired in advance may be obtained.
  • the corresponding relationship between the pair and the actual sequence of the matching success determines the cell identifier corresponding to the actual sequence of the first reference signal detected by the UE, that is, the target cell is identified.
  • the UE may also determine the cell identity by using the sequence of the first reference signal and the resource unit pattern, thereby identifying the target cell.
  • the UE determines the subframe to which the first reference signal belongs in the transmission frame of the target cell, and then determines the location of the first reference signal from the resource blocks of the subframe of the first reference signal.
  • the first resource that is, the resource unit carrying the detected first reference signal.
  • the U E determines a reference signal received power RSRP of the target cell according to the received power of the detected first reference signal carried on the first resource.
  • the power of the first reference signal on the first resource is averaged, for example, 10 resource units carrying the first reference signal, and the average received power of the first reference signal on the 10 resource units is RSRP. .
  • the UE determines a second resource.
  • the UE further needs to determine the second resource.
  • the foregoing second resource refers to all or part of resource units on the entire OFDM symbol where the second reference information of the target cell is located, or may also include a time slot, a subframe, a subframe set, or a wireless location where the OFDM symbol is located. frame.
  • the second reference information includes: CSI-RS, CRS, RCRS, PSS, SS S, At least one of a PRS and a broadcast channel.
  • the target cell when the target cell is in an active state, the target cell carries at least second reference information on the second resource; and when the target cell is in a dormant state, the target cell does not send the second reference information, that is, The first reference signal exists in the transmission frame of the target cell. Therefore, the target cell carries the detected first reference signal on the first resource, and does not carry the second reference information on the second resource. However, if the target cell transits from the dormant state to the active state, the second reference information is carried on the second resource.
  • the second resource is not required to carry the first reference signal, that is, the second resource is any resource that does not carry the first reference signal, and may or may not carry the second reference information.
  • the power on the second resource is determined by the dynamically scheduled data channel, that is, there is power in the data scheduling, otherwise there may be no power, and the real data channel may be reflected at this time. The impact of interference.
  • the second resource carries the second reference information, the second reference information does not depend on the dynamic data scheduling, but the second reference information is sent, and the measured interference is detected, as long as the target cell is in an active state.
  • the network side may not be able to truly reflect the interference of the data channel, but the measured interference is relatively stable, and the jitter is not large. It is convenient for the network side to obtain the result measured by the UE, such as adding or deleting a cell to the UE, and switching. Wait.
  • the UE since only the cell in the active state sends the broadcast channel, and the transmission of the broadcast channel is periodic, the UE performs the RRM measurement method according to the broadcast channel, and according to the method.
  • the other reference signals are the same for RRM measurements.
  • step 204 specifically includes:
  • the UE determines the second resource according to the first resource and the resource offset.
  • the foregoing resource offset includes a time domain offset and/or a frequency offset, where the resource offset may be pre-configured by the UE, or may be notified by the base station corresponding to the serving cell of the UE by using the auxiliary RRC signaling.
  • the UE when determining the foregoing second resource, the UE may be configured according to a resource offset between the second resource and the first resource (for example, there is an N OFDM symbol interval between the second resource and the OFDM symbol where the first resource is located) , or The N-subframe spacing between the second resource and the subframe where the first resource is located is determined. In this way, after determining the first resource, the UE may determine the time domain location of the second resource according to the resource offset.
  • the configuration may be performed in advance, or may be the same as the frequency of the first resource, or may be offset from the frequency of the first resource, and is not specifically limited herein.
  • the UE determines, according to the total received power on the second resource, a received signal strength indicator RSSI of the target cell.
  • the UE measures the total received power on the OFDM symbol where the second reference information is located, where the total received power includes received power of all signals on the OFDM drum number, and the all signals include the received power of the target cell, and the neighbor of the target cell.
  • the power, noise, etc. of the zone on the OFDM symbol that is, the UE does not distinguish the different signals on the OFDM symbol, but only measures the received power on the OFDM symbol, and averages the received power on multiple OFDM symbols as the RSSI of the target cell. Of course, the UE may not do this. On average, the specific calculation method is not limited here.
  • the received power on the OFDM symbol can be averaged over the 14 OFDM symbols of the entire subframe or more subframes,
  • the RS SI of the target cell is calculated on average.
  • the first resource and the second resource are at different times.
  • the first resource and the second resource belong to different OFDM symbols or different time slots or different subframes or different subframe sets, as long as the first resource and the second resource are different in time domain. Yes, others are not limited.
  • the UE determines, according to the RSRP and the RSSI, a reference signal received quality RSRQ and/or a signal to interference plus noise ratio SINR of the target cell.
  • the UE can further determine the RSRQ or the SINR according to the ratio of the RSRP and the RSSI, that is, the RSRP divided by the RSSI.
  • the UE may directly use the above ratio as the RSRQ or the SINR, or may multiply the above ratio by a coefficient as the RSRQ or the SINR.
  • the coefficient can be determined according to the current measurement bandwidth, or can be determined according to the averaging parameter.
  • the averaging parameter may be an average value of the received power on the symbol of the RSRP or RS SI measured over the 14 OFDM symbols of the entire subframe, or may be a symbol for measuring the RSRP or RSSI.
  • the received power is averaged over N* 14 OFDM symbols of N subframes. It should be noted that, since the RSSI is on the denominator of the RSRQ or SINR calculation, and the power of the dormant cell is not included in the RSSI of the target cell, the DRS power of the dormant cell is calculated into the RS SI. The final determined RSRQ or SINR of the present invention will not be underestimated.
  • the foregoing second resource may be not only the OFDM symbol in which the second reference information is located, but also the time slot in which the second reference information is located, or the subframe or subframe set in which the second reference information is located.
  • a resource unit on a part of the frequency For example, if the OFDM symbol in which the second resource is the RCRS is taken as an example, different cells occupy different frequency domain positions of the OFDM in the same measurement frequency band (for example, different subcarriers of the OFDM symbol where the RCRS is located), The interference of the target cell or the interference plus noise only needs to measure the received power of the subcarrier corresponding to the target cell in the above OFDM symbol.
  • the UE measures the interference generated by the other cell to the target cell at this location.
  • the target cell does not carry the second reference information of the target cell when the target cell is in the dormant state, the interference or interference plus noise measured by the UE does not include the power of the dormant cell, so the UE The resulting SINR will not be underestimated.
  • the step 206 specifically includes: if the transmit power of the target cell on the second resource is not 0, the UE determines the RSRQ of the target cell according to the RSRP and the RSSI; and/or, if the target cell sends on the second resource The power is 0, and the UE determines the SINR of the target cell according to the RSRP and the RSSI.
  • the UE determines the RSRQ of the first cell according to the RSRP and the RS SI, because the power on the second resource of the target cell is not 0, that is, the first The power of the second reference information carried on the two resources is not zero. If the transmit power of the target cell on the second resource is 0, the UE determines the SINR of the target cell according to the RSRP and the RS SI, because the second resource of the target cell at this time The power on the second is 0, that is, the second reference information is not carried on the second resource.
  • the switching or state transition of the small cell is transparent to the UE, that is, the UE does not perceive that the small cell is in an active state or a dormant state when performing RRM measurement of the small cell
  • the target cell is in an active state
  • the measured result is RSRQ
  • the measured result is SINR.
  • the UE averages the measurement results of multiple DRSs, the RSRQ and SINR results are averaged, and this processing occurs during the state transition of the target cell, which may result in inaccurate measurement results, that is, neither accurate It is reflected that the RSRQ cannot accurately reflect the SINR, but the average of the two, which may affect the subsequent reporting by the base station using the UE.
  • the method for solving the above further problem may be: the UE determines a plurality of time windows, the start and length of the time window may be predefined or notified by the base station, and then the UE only allows the averaging processing of the RRM measurement results in each time window.
  • the target cell will only perform state transitions at the boundary of multiple windows. This ensures that the UE will measure the average in each window and the result will be either RSRQ or SINR. All are accurate.
  • the method further includes:
  • the UE reports the RSRQ to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the RSRQ reported by the UE, and/or determines whether to configure the target cell to the UE according to the RSRQ reported by the UE.
  • the UE uplinks the SINR to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the SINR on the UE, and/or determines whether to configure the target cell to the UE according to the SINR reported by the UE.
  • the UE uplinks the RSRQ and the SINR to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the RSRQ and the SINR reported by the UE, and/or determines whether the target is to be determined according to the RSRQ and the SINR reported by the UE.
  • the cell is configured to the UE. Specifically, after the UE finally obtains the foregoing RSRQ and/or SINR in different application scenarios (that is, only the RSRQ is measured, or only the SINR is measured, or the RSRQ and the SINR are simultaneously measured), the UE may use the target cell.
  • the measurement result is reported to the base station corresponding to the serving cell (such as the macro cell) of the UE, and after receiving the RSRQ and/or the SINR, the base station determines whether the target corresponding to the measurement result is determined according to the measurement result reported by the UE.
  • the cell is configured to the UE. If the target cell is in the dormant state, the base station may further determine whether to switch the target cell from the dormant state to the active state, and configure the UE.
  • the target cell if the target cell is in an active state, at least one of DRS, PSS, SSS, CRS, RCRS, CSI-RS, PRS, and broadcast channel is sent on the target cell, so that the UE can access the UE at any time. Or camping on the target cell; if the target cell is in the dormant state, then only the first reference signal, such as DRS, is sent on the dormant cell, and the DRS transmission period is longer than the second reference that needs to be sent in the active state. The period of the signal is much longer, typically a period of several hundred sub-frames or even thousands of sub-frames. In this way, a problem occurs in which multiple cells synchronously transmit DRS, so that the measured RSRQ or SINR is underestimated, and the problem can be solved by measuring RSRP and RS SI on the first resource and the second resource, respectively.
  • DRS first reference signal
  • the target cell if the target cell is in an active state, at least one of a PSS, an SSS, a CRS, an RCRS, a CSI-RS, a PRS, and a broadcast channel is sent on the target cell, and the DRS is not sent; Perform cell identification with SSS and perform RRM measurement according to CRS or RCRS. If the target cell is in the dormant state, the target cell may send an RCRS or a CRS in addition to the DRS. The RCRS or CRS may send a longer period than the active state. For example, the period is the same as the DRS. For the UE to do RRM measurement, or to assist DRS - to do RRM measurement.
  • the method for measuring radio resource management provided by the embodiment of the present invention, the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the total received power of the second resource Determining the received signal strength indication RSSI of the target cell to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, compared to the prior art only
  • the CRS or DRS measures the RSRQ or SINR of the target cell, and causes a rapid change or jitter of the interference environment between adjacent cells in an area.
  • the measurement method of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the cell in the dormant state ( The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above-mentioned RSRQ and/or SINR being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • the measurement method of the radio resource management in the three application scenarios is provided, and, as shown in FIG. 3, FIG. 4, the first reference signal takes the DRS as an example, and the second reference information takes the RCRS as an example, the target cell. Taking the cell 0 as an example, the neighboring cell takes the cell 1 and the cell 2 as an example.
  • the target cell is in an active state, and the DRS and RCRS of the target cell are in different subframes:
  • the UE determines the first resource where the DRS of the cell 0 is located, that is, a total of 16 REs on the four OFDM symbols shown in FIG. 3, and then measures the The average received power of the DRS on the 16 REs, and the average received power is taken as the RSRP of the cell 0.
  • the 16 REs where the DRS of the cell 0 is located may also include interference information and noise sent by other cells on the same resource, but only the cell 0 included in the 16 REs needs to be measured here.
  • the average received power of the DRS does not calculate the above interference power and noise power within the RSRP.
  • the second resource is all resources on the OFDM symbol where the RCRS is located. That is, the location of the first resource and the second resource shown in FIG. 3, it can be seen that the second resource is separated from the first resource by 4 subframes, and the second resource is the RE on the 4 columns of OFDM symbols where the RCRS is located.
  • the UE measures the OFDM where the RCRS is located.
  • the total received power of the symbol includes the received power of all the signals on the 0 FDM symbol, and the average received power is averaged over the plurality of OFDM symbols as the RSSI of the cell 0, of course, Do not average, there is no limit here.
  • the measured cell 0 is an active state
  • the active state means that the cell 0 carries at least a second reference signal
  • the second reference signals are DRS, CRS, RCRS, PS S, SS S, and CSI- At least one of the RSs
  • the cell 2 is in a dormant state, that is, the cell 2 carries the DRS or only the DRS, and the transmit power on the second resource is 0, because the second resource is different from the first resource to which the DRS is transmitted. Therefore, the power of the cell 2 is not included in the RSSI obtained by the above measurement, that is, the power of the dormant cell is not calculated in the RS SI of the measured cell.
  • the UE can further determine the RSRQ or SINR according to the ratio of RSRP and RSSI, that is, RSRP divided by RSSI.
  • the transmit power of the cell 0 on the second resource is not 0, that is, the power of the RCRS transmitted on the second resource is not 0.
  • the UE calculates according to the RSRP and the RS SI. Out of RSRQ.
  • the method for measuring radio resource management provided by the embodiment of the present invention, the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the total received power of the second resource Determining the received signal strength indicator RS SI of the target cell to determine the reference signal received quality RSRQ of the target cell, compared to the prior art, only measuring the RSRQ or SINR of the target cell according to the CRS or DRS, and causing an area
  • the measurement environment of the radio resource management provided by the present invention is more efficient when the interference environment between adjacent cells changes rapidly or jitters.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the dormant cell (The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above-mentioned RSRQ being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • the target cell is in an active state, and the target cell The DRS is in the same subframe as the RCRS):
  • the UE determines the first resource where the DRS of the cell 0 is located, that is, a total of 16 REs on the 4 OFDM symbols shown in FIG. 3, and then measures the The average received power of the DRS on the 16 REs, and the average received power is taken as the RSRP of the cell 0.
  • the UE can measure more DRS subframes, so that RSRP is measured according to more REs of the DRS. The more REs are measured, the more accurate the measured RSRP is, and there is no limitation here.
  • the 16 REs where the DRS of the cell 0 is located may also include interference information and noise sent by other cells on the same resource, but only the 16 REs are included in the measurement.
  • the average received power of the DRS of the cell 0 does not calculate the above interference power and noise power within the RSRP.
  • the second resource is all resources on the OFDM symbol where the RCRS is located.
  • the second resource and the first resource are in the same subframe, that is, the DRS is transmitted in the RCRS subframe, and there is a fixed positional relationship between the OFDM symbols between the DRS and the RCRS, then the UE determines The symbol of the DRS is located, and then the OFDM symbol of the second resource, that is, the symbol of the RCRS, can be determined.
  • the UE After determining the location of the second resource, the UE measures the total received power on the OFDM symbol of the RCRS, where the total received power includes the received power of all signals on the OFDM symbol, and the received power is more
  • the average value of the OFDM symbols is taken as the RS SI of the cell 0.
  • the average value may not be used, and no limitation is imposed here.
  • the measured cell 0 is an active state
  • the active state means that the cell 0 carries at least a second reference signal
  • the second reference signals are DRS, CRS, RCRS, PS S, SS S, and CSI- At least one of the RSs
  • the cell 2 is in a dormant state, that is, the cell 2 carries the DRS or only the DRS, and the transmit power on the second resource is 0, because the second resource is different from the first resource to which the DRS is transmitted. Therefore, the power of the cell 2 is not included in the RSSI obtained by the above measurement, that is, the power of the dormant cell is not calculated in the RS SI of the measured cell.
  • the UE can further determine the RSRQ or SINR according to the ratio of RSRP and RSSI, that is, RSRP divided by RSSI.
  • the transmit power of the cell 0 on the second resource is not 0, that is, the power of the RCRS transmitted on the second resource is not 0.
  • the UE calculates according to the RSRP and the RS SI. Out of RSRQ.
  • the method for measuring radio resource management provided by the embodiment of the present invention, the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the total received power of the second resource Determining the received signal strength indicator RS SI of the target cell to determine the reference signal received quality RSRQ of the target cell, compared to the prior art, only measuring the RSRQ or SINR of the target cell according to the CRS or DRS, and causing an area
  • the interference environment between adjacent cells is changed or jittered rapidly, and the measurement method H'j of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the dormant cell (The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above-mentioned RSRQ being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • the target cell is in a dormant state, and the DRS and RCRS of the target cell are in different subframes:
  • the UE determines the first resource where the DRS of the cell 0 is located, that is, a total of 16 REs on the 4 OFDM symbols shown in FIG. 5, and then measures the The average received power of the DRS on the 16 REs, and the average received power is taken as the RSRP of the cell 0.
  • the UE can measure more DRS subframes, so that RSRP is measured according to more REs of the DRS. The more REs are measured, the more accurate the measured RSRP is, and there is no limitation here.
  • the 16 REs where the DRS of the cell 0 is located may also include interference information and noise sent by other cells on the same resource, but only the cells included in the 16 REs need to be measured here. 0 DRS average received power, do not talk about the above interference Power and noise power are calculated within the RSRP.
  • the second resource is determined according to a preset resource offset between the first resource and the second resource, and a location of the first resource in the subframe resource block.
  • the UE may still be based on the first The location of the resource and the resource offset between the preset first resource and the second resource to obtain the location of the second resource.
  • the RS SI of the cell 0 includes only the received power of the neighbor cell 1 .
  • the UE can further determine the RSRQ or SINR according to the ratio of RSRP and RSSI, that is, RSRP divided by RSSI.
  • the transmit power of the cell 0 on the second resource is 0, that is, the RCRS is not sent on the second resource, and of course, the other second reference information is not sent.
  • the UE calculates the SINR based on the RSRP and the RS SI.
  • the method for measuring radio resource management provided by the embodiment of the present invention, the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the total received power of the second resource Determining the received signal strength indicator RS SI of the target cell to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, compared to the prior art that only the target cell is measured according to the CRS or DRS.
  • the SINR can cause a rapid change or jitter of the interference environment between adjacent cells in a region.
  • the measurement method of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the cell in the dormant state ( The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above SINR being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • An embodiment of the present invention provides a user equipment, where the user equipment is used to implement As shown in FIG. 6, the user equipment 3 includes: a determining unit 31, a first power determining unit 32, a second power determining unit 33, and a third power determining unit 34, where:
  • the determining unit 3 1 is configured to detect the first reference signal, and determine, according to the detected first reference signal, the target cell corresponding to the detected first reference signal and the first resource where the detected first reference signal is located.
  • the first power determining unit 32 is configured to determine a reference signal received power RSRP of the target cell according to the received power of the detected first reference signal carried on the first resource.
  • the determining unit 3 1 is also used to determine the second resource.
  • the first resource and the second resource are at different times.
  • the second resource is used to carry the second reference information when the target cell is in an active state, or the second resource is used to not carry the second reference information and in the target cell when the target cell is in a dormant state.
  • the second reference information is carried when the sleep state is transferred to the active state.
  • the second power determining unit 33 is configured to determine, according to the total received power on the second resource, a received signal strength indicator RSSI of the target cell.
  • the third power determining unit 34 is configured to determine a reference signal received quality RSRQ or a signal to interference plus noise ratio SINR of the target cell according to the RSRP and the RSSI.
  • the user equipment provided by the embodiment of the present invention the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the target cell determined by the total received power on the second resource
  • the received signal strength indicates RS SI to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, and the RSRQ or SINR of the target cell is measured only according to the CRS or DRS in the prior art, Moreover, the interference environment between adjacent cells in a region may be changed or jittered rapidly, and the measurement method of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the dormant cell (The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above RSRQ and/or SINR being Underestimation, which in turn improves the accuracy of wireless resource management measurements.
  • the user equipment 3 further includes: an information acquiring unit 35, and the towel:
  • the information acquiring unit 35 is configured to acquire configuration information of the first reference signal.
  • the foregoing configuration information includes a candidate sequence of the first reference signal and/or a candidate time-frequency resource of the first reference signal.
  • the determining unit 31 is specifically configured to: detect the first reference signal according to the configuration information of the first reference signal; determine, according to the configured configuration information of the first reference signal, the target cell corresponding to the detected first reference signal, and the detected The first resource where the first reference signal is located.
  • the determining unit 31 is specifically configured to: determine the second resource according to the first resource and the resource offset.
  • the resource offset includes a time domain offset and/or a frequency offset; the resource offset is pre-configured or notified by the base station.
  • the foregoing first resource and the second resource are specifically included at different times: the first resource and the second resource belong to different orthogonal frequency division multiplexing OFDM symbols or different time slots or different subframes or different Subframe collection.
  • the third power determining unit 34 is specifically configured to: if the transmit power of the target cell on the second resource is not 0, determine the RSRQ of the target cell according to the RSRP and the RSSI; and/or, if the target cell is in the first The transmit power on the two resources is 0, and the SINR of the target cell is determined according to the RSRP and the RSSI.
  • the foregoing first reference signal includes: a discovery reference signal DRS.
  • the foregoing second reference information includes: a channel state information reference signal CSI-RS, a cell-specific reference signal CRS, a reduced cell-specific reference signal RCRS, a primary synchronization signal PSS, a secondary synchronization signal SSS, a positioning reference signal PRS, and a broadcast channel At least one.
  • CSI-RS channel state information reference signal
  • CRS cell-specific reference signal
  • RCRS reduced cell-specific reference signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PRS positioning reference signal
  • the user equipment 3 further includes: information on the unit 36, the towel:
  • the information reporting unit 36 is configured to report the RSRQ to the base station, so that the base station is configured according to The RSRQ reported by the UE determines whether to switch the target cell from the dormant state to the active state, and/or determines whether to configure the target cell to the UE according to the RSRQ reported by the UE.
  • the information reporting unit 36 is configured to report the SINR to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the SINR reported by the UE, and/or determine whether the target is determined according to the SINR reported by the UE.
  • the cell is configured to the UE.
  • the information upper unit 36 is configured to: uplink the RSRQ and the SINR to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the RSRQ and the SINR reported by the UE, and/or, according to The RSRQ and SINR reported by the UE determine whether to configure the target cell to the UE.
  • the user equipment provided by the embodiment of the present invention the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the target cell determined by the total received power on the second resource
  • the received signal strength indicates RS SI to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, and the RSRQ or SINR of the target cell is measured only according to the CRS or DRS in the prior art, Moreover, the interference environment between adjacent cells in a region may be changed or jittered rapidly, and the measurement method of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the dormant cell ( The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above-mentioned RSRQ and/or SINR being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • An embodiment of the present invention provides a user equipment, where the user equipment is used to implement the foregoing method for measuring radio resource management.
  • the user equipment 4 includes: a processor 41, where:
  • the processor 41 is configured to detect a first reference signal, and determine, according to the detected first reference signal, a target cell corresponding to the detected first reference signal, and the detected The first resource where a reference signal is located.
  • the processor 41 is further configured to determine, by the UE, the reference signal received power RSRP of the target cell according to the received power of the detected first reference signal carried on the first resource.
  • the processor 41 is further configured to determine the second resource.
  • the first resource and the second resource are at different times.
  • the second resource is used to carry the second reference information when the target cell is in an active state, or the second resource is used to not carry the second reference information and in the target cell when the target cell is in a dormant state.
  • the second reference information is carried when the sleep state is transferred to the active state.
  • the processor 41 is further configured to determine, according to the total received power on the second resource, a received signal strength indicator RSSI of the target cell.
  • the processor 41 is further configured to determine, according to the RSRP and the RS SI, a reference signal received quality RSRQ or a signal to interference plus noise ratio SINR of the target cell.
  • the user equipment provided by the embodiment of the present invention the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the target cell determined by the total received power on the second resource
  • the received signal strength indicates RS SI to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, and the RSRQ or SINR of the target cell is measured only according to the CRS or DRS in the prior art, Moreover, the interference environment between adjacent cells in a region may be changed or jittered rapidly, and the measurement method of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the dormant cell ( The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above-mentioned RSRQ and/or SINR being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • the processor 41 is further configured to acquire configuration information of the first reference signal, where the configuration information includes a candidate sequence of the first reference signal and/or a candidate time-frequency resource of the first reference signal; Detecting the first reference signal according to the configuration information of the first reference signal; determining the detected according to the configured configuration information of the first reference signal The target cell corresponding to the first reference signal and the first resource where the detected first reference signal is located.
  • the processor 41 is further configured to determine the second resource according to the first resource and the resource offset.
  • the resource offset includes a time domain offset and/or a frequency offset; the resource offset is pre-configured or notified by the base station.
  • the first resource and the second resource include: the first resource and the second resource belong to different orthogonal frequency division multiplexing OFDM symbols or different time slots or different subframes. Or a different collection of subframes.
  • the processor is further configured to: if the transmit power of the target cell on the second resource is not 0, determine the RSRQ of the target cell according to the RSRP and the RS SI; and/or, if the target cell is on the second resource The transmission power is 0, and the SINR of the target cell is determined according to RSRP and RS SI.
  • the first reference signal includes: a discovery reference signal DRS.
  • the second reference information includes: a channel state information reference signal CSI-RS, a cell-specific reference signal CRS, a reduced cell-specific reference signal RCRS, a primary synchronization signal PS S , a secondary synchronization signal SSS , a positioning reference signal PRS, and a broadcast channel At least one.
  • CSI-RS channel state information reference signal
  • CRS cell-specific reference signal
  • RCRS reduced cell-specific reference signal
  • PS S primary synchronization signal
  • SSS secondary synchronization signal
  • PRS positioning reference signal
  • the user equipment 4 further includes: a communication unit 42, where:
  • the communication unit 42 is configured to report the RSRQ to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the RSRQ reported by the UE, and/or determine whether to configure the target cell to the UE according to the RSRQ reported by the UE.
  • the communication unit 42 is configured to report the SINR to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the SINR reported by the UE, and/or determine whether the target cell is to be determined according to the SINR reported by the UE. Configured for the UE.
  • the communication unit 42 is configured to report the RSRQ and the SINR to the base station, so that the base station determines whether to switch the target cell from the dormant state to the active state according to the RSRQ and the SINR reported by the UE, and/or according to the RSRQ and the reported by the UE.
  • the SINR determines whether the target cell is configured to the UE.
  • the user equipment provided by the embodiment of the present invention the reference signal received power RSRP of the target cell determined by the received power of the first reference signal carried on the first resource, and the target cell determined by the total received power on the second resource
  • the received signal strength indicates RS SI to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, and the RSRQ or SINR of the target cell is measured only according to the CRS or DRS in the prior art, Moreover, the interference environment between adjacent cells in a region may be changed or jittered rapidly, and the measurement method of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the dormant cell ( The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above-mentioned RSRQ and/or SINR being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • a radio resource management side measurement system is provided in the embodiment of the present invention.
  • the radio resource management side measurement system 5 includes: a user equipment UE51 and a base station 52, where:
  • the UE 51 is configured to detect the first reference signal, and determine, according to the detected first reference signal, the target cell corresponding to the detected first reference signal and the first resource where the detected first reference signal is located; Determining a reference signal received power RSRP of the target cell according to the received power of the detected first reference signal carried on the first resource; also for determining the second resource; and further for determining the target according to the total received power on the second resource
  • the received signal strength of the cell indicates the RSSI; wherein the first resource and the second resource are at different times; wherein the second resource is used to carry the second reference information when the target cell is in an active state, or
  • the second resource is configured to not carry the second reference information when the target cell is in a dormant state, and carry the second reference information when the target cell transitions from the dormant state to the active state.
  • a reference signal received quality RSRQ or a signal to interference plus noise ratio SINR of the target cell according to RSRP and RS SI Also used to uplink RSRQ and
  • the base station 52 is configured to determine whether to switch the target cell from the sleep state to the active state according to the RSRQ reported by the UE, and/or determine whether to configure the target cell to the UE according to the RSRQ reported by the UE;
  • determining whether to switch the target cell from the dormant state to the active state according to the RSRQ and the SINR reported by the UE and/or determining whether to configure the target cell to the UE according to the RSRQ and the SINR reported by the UE.
  • the radio resource management side measurement system receives the reference signal received power RSRP of the target cell and the total received power of the second resource determined by the received power of the first reference signal carried on the first resource. Determining the received signal strength indication RS SI of the target cell to determine the reference signal received quality RSRQ and/or the signal to interference plus noise ratio SINR of the target cell, compared to the prior art that only the target cell is measured according to the CRS or DRS.
  • the RSRQ or SINR may cause a rapid change or jitter of the interference environment between adjacent cells in an area, and the measurement method of the radio resource management provided by the present invention is more efficient.
  • the first resource and the second resource provided by the present invention have a time difference, so that the RS SI of the target cell does not include the cell in the dormant state (The power of the target cell, and/or the neighboring cell of the target cell, thereby avoiding the above-mentioned RSRQ and/or SINR being underestimated, thereby improving the accuracy of the radio resource management measurement.
  • the internal structure of the device is divided into different functional modules to perform all or part of the functions described above.
  • the specific working process of the system, device and unit described above reference may be made to the foregoing. Corresponding processes in the method embodiments are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiment of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program code. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供一种无线资源管理的测量方法、设备及系统,涉及通信领域,能够提高无线资源管理测量的效率及正确率。该方法包括:UE根据检测到的第一参考信号确定该检测到的第一参考信号对应的目标小区及所在的第一资源;UE根据述第一资源上承载的该检测到的第一参考信号的接收功率确定目标小区的参考信号接收功率RSRP;UE确定第二资源;UE根据第二资源上的总接收功率确定目标小区的接收信号强度指示RSSI;其中第一资源和第二资源在不同的时刻;UE根据RSRP和RSSI确定目标小区的参考信号接收质量RSRQ和/或信号与干扰加噪声比SINR。该方法应用于无线资源管理的测量。

Description

一种无线资源管理的测量方法、 设备及系统 技术领域
本发明涉及通信领域, 尤其涉及一种无线资源管理的测量方 法、 设备及系统。 背景技术
LTE ( Long Term Evolution , 长期演进 ) 系统基于 OFDM ( Orthogonal Frequency Division Multiplexing,正交频分复用 )技术, 即利用该 OFDM技术将时频资源划分为时间域维度上的 OFDM符号 和频域维度上的 OFDM子载波。 为了维持 LTE系统中的业务传输, UE 需要根据基站发送的参考信号进行同步, 信道状态测量和 RRM ( Radio Resource Management , 无线资源管理) 测量。 具体的, 该 RRM测量包括 RSRP (Reference Signal Received Power , 参考信号接 收功率)、 RSRQ (Reference Signal Received Quality , 参考信号接收 质量)和 RS SI(Received Signal Strength Indicator ,接收信号强度指示) 测量, 其中 RSRP 表示 目 标被测量小 区的 CRS ( Cell-specific Reference Signal , 小区特定参考信号) 资源单元上所包含的目标被 测小区发送的 CRS 的平均接收功率; RS SI 表示目标被测量小区的 CRS所在的 OFDM符号上所有信号的平均接收功率; RSRQ则是根 据 RSRP与 RS SI的比值获得的。 此外, 现有的 LTE系统对基站的功 率效率要求较高, 且在将来的网络拓朴演进中, 运营商会大量部署 异构网络, 因此现今一个主流的异构网络包括: 一个宏基站以及在 该宏基站范围内的大量小小区。
在上述密集小小区的异构网络中, 由于网络设备的密集使得大 量小小区范围内并没有需要服务的 UE , 同时当所有小小区都处于开 启状态时, 即便没有业务传输但各小小区仍然向外发送周期较短的 参考信息 (如 PS S ( Primary Synchronization Signal , 主同步信号 ) , S SS ( Secondary Synchronization Signal , 辅同步信号 ) 和 CRS ( Cell-specific Reference Signal , 小 区特定参考信号 )、 RCRS ( Reduced CRS , 减少的小区特定参考信号), 其中 PS S/SS S/ RCRS 的发送周期为 5个子帧, CRS的发送周期为 1个子帧 ), 而这些参考 信息会造成小区间干扰严重。 这样, 一个潜在的方案是将这些没有 服务 UE 的小小区关闭, 使其不能发送上述周期较短的参考信息, 从而达到节能和降低小区间干扰的作用。
但是, 发明人发现, 在对上述小小区进行关闭或开启时, 会导 致一个区域内相邻小区间的干扰环境发生较快的变化或抖动, 从而 增加了 RRM的测量的难度, 给 RRM测量提出了更高的要求, 使得 UE不能高效的进行本小区和邻小区的小区选择, 重选或切换。 发明内容
本发明的实施例提供一种无线资源管理的测量方法、 设备及系 统, 能够提高无线资源管理测量的效率及正确率。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 提供一种无线资源管理的测量方法, 包括: 用户设备 UE检测第一参考信号, 并根据检测到的所述第一参 考信号确定所述检测到的第一参考信号对应的目标小区及所述检测 到的第一参考信号所在的第 ―资源;
所述 U E根据所述第一资源上承载的所述检测到的第一参考信 号的接收功率确定所述目标小区的参考信号接收功率 RSRP ;
所述 UE确定第二资源, 所述第二资源和所述第一资源占用不 同时刻; 所述第二资源用于在所述目标小区处于激活态时承载第二 参考信息, 或, 所述第二资源用于在所述目标小区处于休眠态时不 承载所述第二参考信息并在所述目标小区由休眠态转入激活态时承 载所述第二参考信息;
所述 UE根据所述第二资源上的总接收功率确定所述目标小区 的接收信号强度指示 RSSI; 其中所述第一资源和所述第二资源在不 同的时刻;
所述 UE根据所述 RSRP和所述 RS SI确定所述目标小区的参考 信号接收质量 RSRQ和 /或信号与干扰加噪声比 SINR。
在第一种可能的实现方式中, 根据第一方面:
所述 UE获取所述第一参考信号的配置信息; 其中所述配置信 息包括所述第一参考信号的候选序列和 /或所述第一参考信号的候 选时频资源;
所述用户设备 UE检测第一参考信号, 并根据检测到的所述第 一参考信号确定所述检测到的第一参考信号对应的目标小区及所述 检测到的第一参考信号所在的第一资源包括:
所述 UE根据所述第一参考信号的配置信息检测所述第一参考 信号;
所述 U E根据所述检测到的第一参考信号的配置信, 确定所述 检测到的第一参考信号对应的目标小区及所述检测到的第一参考信 号所在的第一资源。
在第二种可能的实现方式中, 结合第一方面或第一种可能的实 现方式, 所述 UE确定第二资源包括:
所述 U E根据所述第一资源与资源偏移量确定所述第二资源; 其中所述资源偏移量包括时域偏移和 /或频率偏移; 所述资源偏移量 是预配置的或所述基站通知的。
在第三种可能的实现方式中, 结合第一方面或第一种可能的实 现方式或第二种可能的实现方式:
所述第一资源和所述第二资源在不同的时刻具体包括: 所述第 一资源和所述第二资源属于不同的正交频分复用 OFDM符号或不同 的时隙或不同的子帧或不同的子帧集合。
在第四种可能的实现方式中, 结合第一方面或第一种至第三种 可能的实现方式中的任一实现方式,所述 UE根据所述 RSRP和所述 RSSI 确定所述目标小区的参考信号接收质量 RSRQ 和 /或信号与干 扰加噪声比 SINR包括: 若所述目标小区在第二资源上的发送功率不为 0 , 则所述 UE 根据所述 RSRP和所述 RS SI确定所述目标小区的 RSRQ ; 和 /或, 若所述目标小区在第二资源上的发送功率为 0 , 则所述 UE根 据所述 RSRP和所述 RS SI确定所述目标小区的 SINR。
在第五种可能的实现方式中, 结合第一方面或第一种至第四种 可能的实现方式中的任一实现方式:
所述第一参考信号包括: 发现参考信号 DRS ;
所述第二参考信息包括: CSI-RS , CRS , RCRS , PSS , SS S , PRS和广播信道中的至少一种。
在第六种可能的实现方式中, 结合第一方面或第一种至第五种 可能的实现方式中的任一实现方式:
所述 UE根据所述 RSRP和所述 RSSI确定所述目标小区的参考 信号接收质量 RSRQ和 /或信号与干扰加噪声比 SINR之后,还包括: 所述 UE将所述 RSRQ上报至基站,以便所述基站根据所述 UE 上报的所述 RSRQ 确定是否将所述目标小区从休眠态切换至激活 态, 和 /或, 根据所述 UE上报的所述 RSRQ确定是否将所述目标小 区配置给所述 UE。
在第七种可能的实现方式中, 结合第一方面或第一种至第五种 可能的实现方式中的任一实现方式:
所述 UE根据所述 RSRP和所述 RSSI确定所述目标小区的参考 信号接收质量 RSRQ和 /或信号与干扰加噪声比 SINR之后,还包括: 所述 UE将所述 SINR上报至基站, 以便所述基站根据所述 UE 上报的所述 SINR确定是否将所述目标小区从休眠态切换至激活态, 和 /或, 根据所述 UE上报的所述 SINR确定是否将所述目标小区配 置给所述 UE。
在第八种可能的实现方式中, 结合第一方面或第一种至第五种 可能的实现方式中的任一实现方式:
所述 UE根据所述 RSRP和所述 RS SI确定所述目标小区的参考 信号接收质量 RSRQ和 /或信号与干扰加噪声比 SINR之后,还包括: 所述 UE将所述 RSRQ和所述 SINR上报至基站, 以便所述基 站根据所述 UE上报的所述 RSRQ和所述 SINR确定是否将所述目标 小区从休眠态切换至激活态, 和 /或,根据所述 UE上报的所述 RSRQ 和所述 SINR确定是否将所述目标小区配置给所述 UE。
第二方面, 提供一种用户设备, 包括:
确定单元, 用于检测第一参考信号, 并根据检测到的所述第一 参考信号确定所述检测到的第一参考信号对应的目标小区及所述检 测到的第一参考信号所在的第一资源;
第一功率确定单元, 用于所述 UE根据所述第一资源上承载的 所述检测到的第一参考信号的接收功率确定所述目标小区的参考信 号接收功率 RSRP ;
所述确定单元, 还用于确定第二资源, 所述第二资源和所述第 一资源占用不同时刻; 所述第二资源用于在所述目标小区处于激活 态时承载第二参考信息, 或, 所述第二资源用于在所述目标小区处 于休眠态时不承载所述第二参考信息并在所述目标小区由休眠态转 入激活态时承载所述第二参考信息;
第二功率确定单元, 用于根据所述第二资源上的总接收功率确 定所述目标小区的接收信号强度指示 RS SI ; 其中所述第一资源和所 述第二资源在不同的时刻;
第三功率确定单元, 用于根据所述 RSRP和所述 RS SI确定所 述目 标小区的参考信号接收质量 RSRQ 或信号与干扰加噪声比 SINR。
在第一种可能的实现方式中, 根据第二方面, 所述 UE还包括: 信息获取单元, 用于获取所述第一参考信号的配置信息; 其中 所述配置信息包括所述第一参考信号的候选序列和 /或所述第一参 考信号的候选时频资源;
所述确定单元具体用于: 根据所述第一参考信号的配置信息检 测所述第一参考信号; 根据所述第一参考信号的配置信息确定所述 第一参考信号对应的 目标小区及所述第一参考信号所在的第一资 在第二种可能的实现方式中, 结合第二方面或第一种可能的实 现方式:
所述确定单元具体用于: 根据所述第一资源与资源偏移量确定 所述第二资源; 其中所述资源偏移量包括时域偏移和 /或频率偏移; 所述资源偏移量是预配置的或所述基站通知的。
在第三种可能的实现方式中, 结合第二方面或第一种可能的实 现方式或第二种可能的实现方式:
所述第一资源和所述第二资源在不同的时刻具体包括: 所述第 一资源和所述第二资源属于不同的正交频分复用 OFDM符号或不同 的时隙或不同的子帧或不同的子帧集合。
在第四种可能的实现方式中, 结合第二方面或第一种至第三种 可能的实现方式中的任一实现方式:
所述第三功率确定单元具体用于: 若所述目标小区在第二资源 上的发送功率不为 0 , 则根据所述 RSRP和所述 RSSI确定所述目标 小区的 RSRQ ; 和 /或, 若所述目标小区在第二资源上的发送功率为 0 , 则根据所述 RSRP和所述 RS SI确定所述目标小区的 SINR。
在第五种可能的实现方式中, 结合第二方面或第一种至第四种 可能的实现方式中的任一实现方式:
所述第一参考信号包括: 发现参考信号 DRS ;
所述第二参考信息包括: CSI-RS , CRS , RCRS , PSS , SS S , PRS和广播信道中的至少一种。
在第六种可能的实现方式中, 结合第二方面或第一种至第五种 可能的实现方式中的任一实现方式:
信息上报单元, 用于将所述 RSRQ上报至基站, 以便所述基站 根据所述 UE 上报的所述 RSRQ 确定是否将所述目标小区从休眠态 切换至激活态, 和 /或, 根据所述 UE上报的所述 RSRQ确定是否将 所述目标小区配置给所述 UE。
在第七种可能的实现方式中, 结合第二方面或第一种至第五种 可能的实现方式中的任一实现方式:
信息上报单元, 用于将所述 SINR上报至基站, 以便所述基站 根据所述 UE上报的所述 SINR确定是否将所述目标小区从休眠态切 换至激活态, 和 /或, 根据所述 UE 上报的所述 SINR确定是否将所 述目标小区配置给所述 UE。
在第八种可能的实现方式中, 结合第二方面或第一种至第五种 可能的实现方式中的任一实现方式:
信息上报单元, 用于将所述 RSRQ和所述 SINR上报至基站, 以便所述基站根据所述 UE上报的所述 RSRQ和所述 SINR确定是否 将所述目标小区从休眠态切换至激活态, 和 /或, 根据所述 UE上报 的所述 RSRQ和所述 SINR确定是否将所述目标小区配置给所述 UE。 本发明的实施例提供的无线资源管理的测量方法、 设备及系 统, 通过第一资源上承载的第一参考信号的接收功率所确定的目标 小区的参考信号接收功率 RSRP , 以及第二资源上的总接收功率所确 定的目标小区的接收信号强度指示 RSSI , 来确定目标小区的参考信 号接收质量 RSRQ 和 /或信号与干扰加噪声比 SINR , 相比于现有技 术中只根据 CRS 来测量目标小区的 RSRQ或 SINR , 并会导致一个 区域内相邻小区间的干扰环境发生较快的变化或抖动, 本发明所提 供的无线资源管理的测量方法则效率更高, 且正确率更高。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1为本发明的实施例提供的一种无线资源管理的测量方法的 流程示意图;
图 2为本发明的实施例提供的另一种无线资源管理的测量方法 的流程示意图;
图 3为本发明的实施例提供的一种目标小区及该目标小区的邻 小区的传输帧及传输帧中子帧资源块示意图;
图 4为本发明的实施例提供的另一种目标小区及该目标小区的 邻小区的传输帧及传输帧中子帧资源块示意图;
图 5为本发明的实施例提供的又一种目标小区及该目标小区的 邻小区的传输帧及传输帧中子帧资源块示意图;
图 6为本发明的实施例提供的一种用户设备的结构示意图; 图 7为本发明的实施例提供的另一种用户设备的结构示意图; 图 8 为本发明的另一实施例提供的一种用户设备的结构示意 图;
图 9为本发明的实施例提供的一种无线资源管理的测量系统的 结构示意图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明所提供的实施例应用于 LTE ( Long Term Evolution , 长 期演进) 系统, 该 LTE 系统基于 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频分复用 ) 技术, 即利用该 OFDM技术 将时频资源划分为时间域维度上的 OFDM 符号和频域维度上的 OFDM子载波, 所形成的最小资源粒度叫做 RE ( Resource Element , 资源单元), 该资源单元表示时间域上的一个 OFDM 符号和频率域 上的一个 OFDM子载波的时频格点。 同时 LTE系统中业务的传输是 基于基站调度的, 一般是基站发送控制信道, 该控制信道可以承载 上行或下行数据数据信道的调度信息, 该调度信息包括资源分配信 息或调制编码方式等控制信息, 而 UE ( User Equipment , 用户设备) 在接收到上述的控制信道所承载的调度信息后, 会根据该调度信, ¾ 进行下行数据信道的接收或上行数据信道的发送。 其中基站调度 UE 是以资源块 ( RB , Resource Block ) 为粒度来进行的, 一个资源块 在时间域上占用一个子帧的长度, 频率域上占 12 个 OFDM 子载波 的宽度, 一个子帧一般包括 14个 OFDM符号。
进一步的, 为了维持 LTE系统中的业务传输, UE需要根据基 站发送的参考信号进行同步、信道状态测量和 RRM ( Radio Resource Management , 无线资源管理) 测量。 其中, 同步又分为初始粗同步 和时频跟踪精同步, 初始粗同步是根据基站发送的 PS S ( Primary Synchronization Signal , 主 同 步 信 号 ) 和 S S S ( Secondary Synchronization Signal , 辅同步信号) 来完成的, 而时频跟踪精同步 是通过基站发送的 CRS ( Cell-specific Reference Signal , 小区特定参 考信号) 来完成的。 信道状态测量包括信道测量和干扰测量, 一般 是通过 CRS或 RCRS ( Reduced CRS , 减少的小区特定参考信号)来 测量。 其中, RCRS是将当前每个子帧都会发送的 CRS 的周期修改 为 N ms的 CRS , N可以为 5或其他整数, 即后续 LTE系统中的 CRS 可能不会每个子帧都被发送, 而是以 N ms (N> 1 )为周期来发送, 此 时的 CRS叫 RCRS。 RRM测量包括 RSRP (Reference Signal Received Power , 参考信号接收功率)、 RSRQ (Reference Signal Received Quality , 参考信号接收质量)和 RS SI(Received Signal Strength Indicator , 接收信号强度指示)测量, 其中 RSRP 表示目标被测量小 区的 CRS ( Cell-specific Reference Signal , 小区特定参考信号) 资源 单元上所包含的目标被测小区发送的 CRS 的平均接收功率; RS SI 表示目标被测量小区的 CRS所在的 OFDM符号上所有信号的平均接 收功率, 包括本小区信号接收功率, 同频邻小区信号接收功率, 异 频段泄露到本频段的信号接收功率和热噪声等所有信号的平均功 率; RSRQ则是根据 RSRP与 RSSI的比值获得的。
此外, 现有的 LTE系统对基站的功率效率要求较高, 且在将来 的网络拓朴演进中, 运营商会大量部署异构网络, 因此现今一个主 流的异构网络包括: 一个宏基站以及在该宏基站范围内的大量小小 区, 其中, 宏基站主要提供覆盖和实时数据业务, 小小区主要提供 高速率的数据业务, 且宏小区和小小区可以釆用相同或不同的频点 部署, 但以不同频点的部署场景为主。 同时在上述密集小小区的异 构网络中, 由于网络设备的密集使得大量小小区范围内并没有需要 服务的 UE , 同时当所有小小区都处于开启状态时, 即便没有业务传 输但各小小区仍然向外发送周期较短的参考信息(如 PS S , SS S , CRS 和 RCRS , 其中 PSS/SS S/ RCRS的发送周期为 5个子帧, CRS的发 送周期为 1 个子帧)), 而这些参考信息会造成小区间干扰严重。 这 样, 一个潜在的方案是将这些没有服务 UE 的小小区关闭, 使其不 能发送上述周期较短的参考信息, 从而达到节能和降低小区间干扰 的作用。 但是, 发明人发现, 在对上述小小区进行关闭或开启时, 会导致一个区域内相邻小区间的干扰环境发生较快的变化或抖动, 从而增加了 RRM的测量的难度, 给 RRM测量提出了更高的要求, 使得 UE不能高效的进行本小区和邻小区的小区选择, 重选或切换。 因此, 如何更高效的进行 RRM测量是现今所要解决的首要问题。
但是, 反观上述技术方案, 如果小小区将这些没有服务 UE的 小区彻底关闭, UE是无法及时的发现被关闭的小小区, 也无法对其 进行 RRM测量, 这样小小区就无法确定其何时再开启。 因此, 基于 上述方案, 一个优选的方案是让这些没有服务 UE 的小小区以较长 的周期来发送一个 DRS ( Discovery Reference Signal , 发现参考信 号 ) ,从而使得该关闭的小小区周围的 UE可以根据该 DRS对该关闭 的小小区进行及时发现和 RRM 测量。 而且为了降低 UE 利用 DRS 做 RRM测量的功耗, 通常是让多个小小区同步发送 DRS , 这样 UE 就只需要在这个时间窗内利用 DRS做 RRM测量, 就可以同时获取 多个小小区的 RRM测量结果。 为了方便理解, 本文在以下的描述过 程中, 将上述处于关闭但发送 DRS的状态称为休眠态, 此时不发送 周期较短的参考信号, 该参考信号包括 PSS , S SS , CRS/RCRS , 用 作 CSI测量的 CSI-RS 中的至少一种, 或者此时除了 DRS之外其他 信号都不发送; 将开启后正常服务 UE 的状态称为的激活态, 此时 需要发送 PS S , SS S , CRS/RCRS , 用作 CSI 测量的 CSI-RS 中的至 少一种。
另外, 基于上述描述, 当 目标被测小区相邻的小小区中存在较 多的休眠态的小小区, 且这些小区同步发送 DRS时, 处于休眠态的 小小区除了较长周期发送的 DRS时刻的发送功率不为 0之外, 其他 时段的发送功率均为 0 , 但上述小小区在发送 DRS这一时刻的发送 功率, 由于同步 DRS发送机制被算在了 RS SI中, 从而高估了 RS SI 值, 进而低估了利用该 RSSI所得到的 RSRQ或 SINR值。 因此, 发 明人发现, 无论目标被测小区在根据 DRS进行 RRM测量时处于激 活态还是休眠态, 目标被测小区根据 DRS 所测得的 RSRQ或 SINR 均会被低估, 从而导致较好的本该服务该 UE 的小小区不能够服务 该 UE。
因此, 针对上述 RSRQ或 SINR值被低估的应用场景, 本发明 的实施例提供了一种无线资源管理的测量方法, 应用于用户设备侧, 如图 1所示, 该无线资源管理的测量方法具体包括如下步骤:
101、 UE检测第一参考信号, 并根据检测到的第一参考信号确 定该检测到的第一参考信号对应的目标小区及该检测到的第一参考 信号所在的第一资源。
其中, 上述的第一参考信号为 DRS , —般发送周期较长, 比如 远大于 5 ms或 10 ms , 比如几十或几百 ms甚至几千 ms , 用于测量 RSRP , 并位于第一资源上, 该 DRS 具体可以基于现有的参考信号 来设计, 如 PRS , CSI-RS , CRS , RCRS , PSS和 S SS 中的至少一种, 也可以是基于上述现有参考信号进行一些优化, 比如序列不变但通 过灵活配置现有参考信号的时频资源来作为上述 DRS。 此外, 该检 测到的第一参考信号所在的第一资源可以为承载该检测到的第一参 考信号的资源单元, 因此, UE在检测完该第一参考信号后, 便可将 该检测到的第一参考信号的资源单元确定为第一资源。
102、 U E根据第一资源上承载的该检测到的第一参考信号的接 收功率确定目标小区的参考信号接收功率 RSRP。
103、 UE确定第二资源。
其中, 当上述的目标小区处于激活态时, 该目标小区在第二资 源上至少承载第二参考信息; 和 /或者, 当上述的目标小区处于休眠 态时, 该目标小区在第一资源上承载该检测到的第一参考信号, 且 在第二资源上未承载第二参考信息, 但该目标小区从休眠态转入激 活态, 那么在第二资源上会承载上述第二参考信息。
可选的, 该第二资源上只要不承载上述第一参考信号就可以, 即第二资源为不承载第一参考信号的任意资源, 可以承载或不承载 上述第二参考信息。 如果不承载第二参考信息, 那么第二资源上的 功率由动态的调度的数据信道来确定, 即有数据调度就会有功率, 否则可能就没有功率, 此时更可以反映出真实的数据信道带来的干 扰影响。 当然, 如果第二资源承载第二参考信息, 该第二参考信息 不依赖于动态数据调度, 而是只要该目标小区处于激活态, 那么就 会发送上述第二参考信息, 此时测量到的干扰未必能真实的反映出 数据信道的干扰, 但测量到的干扰比较稳定, 不会抖动很大, 便于 网络侧拿到 UE测量到的结果后的使用, 比如对该 UE进行添加或删 除小区, 切换等。
而上述的第二资源指的是目标小区的第二参考信息所在的整 个 OFDM符号上的全部或部分资源单元, 也可以是该第二参考信息 所在的时隙, 子帧或子帧集合中的多个 OFDM符号; 该第二参考信 息包括: CSI-RS , CRS , RCRS , PSS , S SS , PRS和广播信道中的至 少一种。 具体的, 当该目标小区处于激活态时, 该目标小区在第二 资源上至少承载第二参考信息; 而当该目标小区处于休眠态时, 由 于该目标小区不会发送第二参考信息, 即该目标小区的传输帧中只 存在第一参考信号, 因此, 该目标小区在第一资源上承载第一参考 信号, 在第二资源上未承载第二参考信息, 或者, 第二资源为该目 标小区处于激活态时发送的第二参考信息所在的资源。
需要说明的是, 对于上述的广播信道, 由于只有处于激活态的 小区才会发送广播信道, 且该广播信道的发送是周期性的, 因此,
UE根据该广播信道进行 RRM测量的方法, 与根据其他参考信号进 行 RRM测量的方法相同。
104、 UE根据该第二资源上的总接收功率确定目标小区的接收 信号强度指示 RSSI。
其中, 上述的第一资源和上述的第二资源在不同的时刻。 具体 的, 该第一资源和该第二资源属于不同的 OFDM符号或不同的时隙 或不同的子帧或不同的子帧集合。
105、 UE根据 RSRP和 RSSI确定目标小区的参考信号接收质 量 RSRQ和 /或信号与干扰加噪声比 SINR。
需要说明的是, 如果目标小区处于激活态, 那么该目标小区上 会发送 DRS , PSS , SS S , CRS , RCRS , CSI-RS , PRS , 广播信道中 的至少一种, 这样可以供 UE 随时接入或驻留到该目标小区上; 如 果该目标小区处于休眠态, 那么该休眠小区上只会发送第一参考信 号, 即 DRS , 且该 DRS 的发送周期会比上述激活态需要发送的第 二参考信号的周期要长得多, 一般会是几百子帧甚至几千子帧的周 期。这样就会出现多个小区同步发送 DRS ,从而使得测量出的 RSRQ 或 SINR 被低估的问题, 该问题可以釆用上述分别在第一资源和第 二资源上测量 RSRP和 RS SI来解决。
或者, 若目标小区处于激活态, 那么该目标小区上会发送 PSS , SS S , CRS , RCRS , CSI-RS , PRS , 广播信道中的至少一种, 而不 发送 DRS; 则此时 UE可以根据 PSS和 S SS进行小区识别, 并根据 CRS或 RCRS做 RRM测量。 若目标小区处于休眠态, 那么该目标小 区上除了发送 DRS 之外, 还可以发送 RCRS 或 CRS , 该 RCRS 或 CRS的发送周期可能比激活态时的发送周期长, 比如周期跟 DRS相 同, 而用来供 UE做 RRM测量, 或者辅助 DRS—起做 RRM测量。
本发明实施例中的第一资源和第二资源属于时间资源和 /或频 率资源。
本发明的实施例提供的无线资源管理的测量方法, 通过第一资 源上承载的第一参考信号的接收功率所确定的目标小区的参考信号 接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的 接收信号强度指示 RS SI , 来确定目 标小区的参考信号接收质量 RSRQ 和 /或信号与干扰加噪声比 SINR , 相比于现有技术中只根据 CRS或 DRS来测量目标小区的 RSRQ或 SINR , 并会导致一个区域 内相邻小区间的干扰环境发生较快的变化或抖动, 本发明所提供的 无线资源管理的测量方法则效率更高。 此外, 针对现有技术中 UE 测量出的 RSRQ 或 SINR会被低估的问题, 本发明提供的第一资源 与第二资源存在时刻差,使得目标小区的 RS SI中并没有包含处于休 眠态小区 ( 目标小区, 和 /或该目标小区的邻区 ) 的功率, 从而避免 上述 RSRQ和 /或 SINR被低估, 进而提高了无线资源管理测量的正 确率。 本发明的实施例提供的无线资源管理的测量方法,如图 2所示, 该无线资源管理的测量方法具体包括如下步骤:
201、 UE获取第一参考信号的配置信息。
其中, 上述的配置信息包括第一参考信号的候选序列和 /或第 一参考信号的候选时频资源。 该候选时频资源可以是定时, 带宽, 时频单元图案等等。 同时, 该配置信息可以是 UE 预先配置的, 也 可以是 UE的服务小区对应的基站通知的。
具体的, 当 UE的服务小区为频点为 fl 的宏小区, 而该目标小 区为频点为 f2的小小区时, 该服务小区会配置 UE在 f2频点上对小 小区进行测量。 同时为了降低 UE 测量的复杂度和功耗, 服务小区 会辅助性的通知 UE该小小区的一些配置信息, 如通过 RRC专有信 令通知 UE该小小区的第一参考信号的候选序列, 以便 UE可以根据 该第一参考信号的候选序列检测到该第一参考信号, 其中该候选序 列包括但不限于: Gold序列和 Zad-off Chu序列; 和 /或, 通过 RRC ( Radio Resource Control , 无线资源控制协议)专有信令通知 UE该 小小区发送第一参考信号时的发送定时, 以便 UE 可以根据该第一 参考信号的发送定时确定检测时间; 和 /或, 通过 RRC 专有信令通 知 UE该小小区的第一参考信号的发送带宽; 和 /或, 通过 RRC专有 信令通知 UE该小小区的第一参考信号在资源块中的时频资源图案。 其中, 服务小区通知 UE 该小小区发送第一参考信号的发送定时, 主要是由于该第一参考信号 (如 DRS ) 的发送周期一般较长 (如几 百个子帧 ), 因此若是 UE每个子帧都去检测该第一参考信号, 会造 成 UE对第一参考信号进行检测的检测时间变长, 同时增加了 UE的 功耗。 此外, 服务小区通知 UE 该小小区发送第一参考信号的发送 定时除了可以是具体的发送时间, 也可从是服务小区的无线帧号, 具体的, 服务小区在该服务小区的无线帧号 (如, 0或 20或 40等) 的位置处发送第一参考信号, 并将该服务小区的无线帧号发送至 UE , 以便该 UE根据与该服务小区的同步关系推测出小小区的第一 参考信号的发送定时。 另外, 由于服务小区和小小区可能不会完全 同步, 因此, 上述的发送定时可能是粗略的定时, 但即便如此, 该 第一参考信号的发送定时的发送也可以大大减小 UE 检测该第一参 考信号的检测时间和功耗。
202、 UE检测第一参考信号, 并根据检测到的第一参考信号确 定该检测到的第一参考信号对应的目标小区及该检测到的第一参考 信号所在的第一资源。
其中, 上述的第一参考信号包括 DRS , 该 DRS 可以基于现有 参考信号设计, 如 PRS , CSI-RS , CRS , RCRS , PSS和 SS S 中的至 少一种, 也可以是基于上述现有参考信号进行一些优化, 比如序列 不变但通过灵活配置现有参考信号的时频资源来作为上述 DRS。
可选的, 步骤 202具体包括如下步骤: 202a, UE根据第一参考信号的配置信息检测该第一参考信号。 202b , UE 根据检测到的第一参考信号的配置信息确定该检测 到的第一参考信号对应的目标小区及该检测到的第一参考信号所在 的第一资源。
具体的, 首先 UE根据预先配置或 UE的服务小区对应的基站 通知获取到该第一参考信号的配置信息后, 便可根据该配置信息检 测该第一参考信号。 例如, UE在被通知的第一参考信号的某个发送 定时及被通知的小小区频点的某个带宽内, 检测多个第一参考信号 的候选序列, 比如用 10个候选序列去——匹配, 最终检测到某个第 一参考信号的序列后, 即其中一个候选序列匹配成功, 便可根据预 先获取的该第一参考信号的配置信息中的该第一参考信号的序列与 小区标识之间的对应关系 , 和该匹配成功的实际序列确定 UE 所检 测到的第一参考信号的实际序列所对应的小区标识, 即识别到 目标 小区。 当然 UE 也可以通过该第一参考信号的序列及资源单元图案 来确定小区标识 , 进而识别到目标小区。 其次, UE在识别到目标小 区后, 便在目标小区的传输帧中确定该第一参考信号所属子帧, 然 后从该第一参考信号所述子帧的资源块中确定该第一参考信号所在 的第一资源, 即承载该检测到的第一参考信号的资源单元。
203、 U E根据第一资源上承载的该检测到的第一参考信号的接 收功率确定目标小区的参考信号接收功率 RSRP。
具体的, 将第一资源上的第一参考信号的功率取平均值, 比如 承载第一参考信号的 10个资源单元, 则取这 10个资源单元上的第 一参考信号的平均接收功率为 RSRP。
204、 UE确定第二资源。
具体的, UE 在确定了上述的目标小区的第一参考信号的第一 资源后, 还需要确定第二资源。 其中, 上述的第二资源指的是目标 小区的第二参考信息所在的整个 OFDM符号上的全部或部分资源单 元, 或也可以包括上述 OFDM符号所在的时隙、 子帧、 子帧集合或 无线帧。 而该第二参考信息包括: CSI-RS , CRS , RCRS , PSS , SS S , PRS 和广播信道中的至少一种。 具体的, 当该目标小区处于激活态 时, 该目标小区在第二资源上至少承载第二参考信息; 而当该目标 小区处于休眠态时, 由于该目标小区不会发送第二参考信息, 即该 目标小区的传输帧中只存在第一参考信号, 因此, 该目标小区在第 ―资源上承载该检测到的第一参考信号, 在第二资源上未承载第二 参考信息。 但该目标小区从休眠态转入激活态, 那么在第二资源上 会承载上述第二参考信息。
可选的, 该第二资源上只要不承载上述第一参考信号就可以, 即第二资源为不承载第一参考信号的任意资源, 可以承载或不承载 上述第二参考信息。 如果不承载第二参考信息, 那么第二资源上的 功率由动态的调度的数据信道来确定, 即有数据调度就会有功率, 否则可能就没有功率, 此时更可以反映出真实的数据信道带来的干 扰影响。 当然, 如果第二资源承载第二参考信息, 该第二参考信息 不依赖于动态数据调度, 而是只要该目标小区处于激活态, 那么就 会发送上述第二参考信息, 此时测量到的干扰未必能真实的反映出 数据信道的干扰, 但测量到的干扰比较稳定, 不会抖动很大, 便于 网络侧拿到 UE测量到的结果后的使用, 比如对该 UE进行添加或删 除小区, 切换等。
需要说明的是, 对于上述的广播信道, 由于只有处于激活态的 小区才会发送广播信道, 且该广播信道的发送是周期性的, 因此, UE根据该广播信道进行 RRM测量的方法, 与根据其他参考信号进 行 RRM测量的方法相同。
可选的, 步骤 204具体包括:
204a, UE根据第一资源与资源偏移量确定第二资源。
其中, 上述的资源偏移量包括时域偏移和 /或频率偏移, 该资 源偏移量可以是 UE预先配置的,也可以是 UE的服务小区对应的基 站通过辅助 RRC信令通知的。 具体的, UE在确定上述的第二资源 时, 可以根据第二资源与第一资源之间的资源偏移量 (例如, 第二 资源与第一资源所在 OFDM符号之间存在 N个 OFDM符号间隔,或 者, 第二资源与第一资源所在子帧之间存在 N个子帧间距)来确定。 这样, UE在确定了第一资源之后, 就可以根据上述资源偏移量确定 第二资源的时域位置。 而在确定第二资源的频率位置时, 可以预先 进行配置, 也可以与第一资源占用相同的频率位置, 也可以与第一 资源存在频率上的偏移量等, 这里不做具体限定。
205、 UE根据该第二资源上的总接收功率确定目标小区的接收 信号强度指示 RSSI。
具体的, UE测量第二参考信息所在 OFDM符号上的接收总功 率, 该接收总功率包括该 OFDM鼓号上所有信号的接收功率, 该所 有信号包括目标小区的接收功率, 及该目标小区的邻区在该 OFDM 符号上的功率和噪声等。 即 UE不区分该 OFDM符号上的不同信号, 只是测量该 OFDM符号上的接收功率, 并把上述的接收功率在多个 OFDM 符号上取平均值作为该目标小区的 RSSI , 当然这里也可以不 做平均, 具体计算方式这里不做限制。 只要 UE根据该 OFDM符号 上的总接收功率来确定目标小区的 RS SI 即可, 甚至可以将上述 OFDM符号上的接收功率平均到整个子帧的 14 个 OFDM符号上或 更多的子帧上, 来平均计算该目标小区的 RS SI。
其中, 上述的第一资源和上述的第二资源在不同的时刻。 具体 的, 该第一资源和该第二资源属于不同的 OFDM符号或不同的时隙 或不同的子帧或不同的子帧集合, 只要该第一资源和该第二资源在 时域上不同即可, 其他不做限定。
206、 UE根据 RSRP和 RSSI确定目标小区的参考信号接收质 量 RSRQ和 /或信号与干扰加噪声比 SINR。
具体的, UE 在确定了 RSRP 及 RSSI后, 便可根据 RSRP 和 RSSI的比值, 即 RSRP除以 RSSI , 来进一步确定 RSRQ或 SINR。 其中, UE可以直接将上述比值作为 RSRQ或 SINR , 也可以在上述 比值上再乘以一个系数作为 RSRQ或 SINR。 而该系数可以根据当前 的测量带宽来确定, 也可以根据平均化参数来确定。 当根据当前的 测量带宽来确定系数时, 该测量带宽越宽, 则该系数越大; 或者, 当根据平均化参数来确定系数时, 该平均化参数可以为测量 RSRP 或 RS SI的符号上的接收功率在整个子帧的 14个 OFDM符号上的平 均值,也可以为测量 RSRP或 RSSI的符号上的接收功率在 N个子帧 的 N* 14个 OFDM符号上平均值。需要说明的是,由于 RSSI在 RSRQ 或 SINR计算的分母上, 且目标小区的 RSSI中没有包括休眠态小区 的功率, 因此, 相比于休眠态小区的 DRS 功率被计算到 RS SI 中而 言, 本发明最终所确定的 RSRQ或 SINR则不会被低估。
进一步的, 对于 SINR测量, 上述第二资源不仅可以是第二参 考信息所在的 OFDM符号, 还可以是第二参考信息所在的时隙, 还 可以是第二参考信息所在的子帧或子帧集合中的部分频率上的资源 单元。 例如, 若以第二资源为 RCRS所在的 OFDM符号为例, 不同 小区在相同的测量频带内分别占用上述 OFDM的不同频域位置 (比 如, 在 RCRS所在 OFDM符号的不同的子载波), 这样对于目标小区 的干扰或干扰加噪声, 只需要在上述 OFDM符号中 目标小区所对应 的子载波测量接收功率即可。 但是由于该子载波位置处该目标小区 不发送信号, 因此 UE 在此位置处测量到的是其他小区对目标小区 所产生的干扰。 此外, 由于目标小区在处于休眠态时, 第二资源上 并未承载该目标小区的第二参考信息, 所以上述 UE 所测量到的干 扰或干扰加噪声也不包括休眠态小区的功率, 因此 UE 最终得到的 SINR也不会被低估。
可选的, 步骤 206具体包括: 若目标小区在第二资源上的发送 功率不为 0 , 则 UE根据 RSRP和 RSSI确定目标小区的 RSRQ ; 和 / 或, 若目标小区在第二资源上的发送功率为 0 , 则 UE根据 RSRP和 RSSI确定目标小区的 SINR。
具体的, 如果目标小区在第二资源上的发送功率不为 0 , 则 UE 根据 RSRP和 RS SI确定第一小区的 RSRQ , 因为此时目标小区的第 二资源上的功率不为 0 , 即第二资源上承载的第二参考信息的功率 不为 0。 如果目标小区在第二资源上的发送功率为 0 , 则 UE 根据 RSRP和 RS SI确定目标小区的 SINR ,因为此时目标小区的第二资源 上的功率为 0 , 即第二资源上上不承载第二参考信息。
进一步的, 如果小小区的开关或状态转换对于 UE来说是透明 的, 即 UE在做小小区的 RRM测量时不会感知到小小区的处于激活 态或休眠态,那么如果目标小区为激活态,则测量到的结果为 RSRQ ; 如果为休眠态, 则测到的结果为 SINR。 这样, 如果 UE将多次 DRS 的测量结果进行平均, 即将 RSRQ和 SINR的结果进行了平均处理, 这种处理会发生在目标小区的状态转换期间, 这样会导致测量结果 不够准确,即既不能准确的反应出 RSRQ也不能准确的反应出 SINR , 而是两者的平均值, 可能对后续基站使用 UE 上报的该结果造成影 响。
解决上述进一步问题的方法可以为: UE 确定多个时间窗, 该 时间窗的起点和长度可以预定义或基站通知, 那么 UE 只允许在每 个时间窗内进行 RRM测量结果的平均处理。 相应的, 目标小区也只 会在多个窗的边界处进行状态转换, 这样可以保证 UE 在每个窗内 测量平均后得到的结果要么都是 RSRQ , 要么都是 SINR, 这样对于 两者的测量都是准确的。
可选的, 在步骤 206之后, 还包括:
207a、UE将 RSRQ上报至基站,以便基站根据 UE上报的 RSRQ 确定是否将目标小区从休眠态切换至激活态, 和 /或, 根据 UE上报 的 RSRQ确定是否将目标小区配置给 UE。
或者,
207b、 UE将 SINR上 4艮至基站, 以便基站根据 UE上^艮 SINR 确定是否将目标小区从休眠态切换至激活态, 和 /或, 根据 UE上报 的 SINR确定是否将目标小区配置给 UE。
或者,
207c、 UE将 RSRQ和 SINR上 4艮至基站, 以便基站根据 UE上 报的 RSRQ 和 SINR确定是否将目标小区从休眠态切换至激活态, 和 /或, 根据 UE上报的 RSRQ和 SINR确定是否将目标小区配置给 UE。 具体的,由于 UE在不同的应用场景下最终测量得到上述 RSRQ 和 /或 SINR ( 即只测量到 RSRQ , 或者, 只测量得到 SINR , 或者, 同时测量到 RSRQ和 SINR) 后, UE可以将目标小区的测量结果上 报给该 UE 的服务小区 ( 比如宏小区 ) 对应的基站, 而基站在接收 到该 RSRQ和 /或 SINR之后, 会根据 UE上报的测量结果, 来确定 是否将该测量结果对应的目标小区配置给该 UE, 如果该目标小区处 于休眠态, 则基站还可以确定是否将该目标小区由休眠态切换到激 活态, 并配置给该 UE。
需要说明的是, 如果目标小区处于激活态, 那么该目标小区上 会发送 DRS, PSS, SSS, CRS, RCRS, CSI-RS, PRS, 广播信道中 的至少一种, 这样可以供 UE 随时接入或驻留到该目标小区上; 如 果该目标小区处于休眠态, 那么该休眠小区上只会发送第一参考信 号, 比如 DRS, 且该 DRS的发送周期会比上述激活态需要发送的第 二参考信号的周期要长得多, 一般会是几百子帧甚至几千子帧的周 期。这样就会出现多个小区同步发送 DRS,从而使得测量出的 RSRQ 或 SINR 被低估的问题, 该问题可以釆用上述分别在第一资源和第 二资源上测量 RSRP和 RS SI来解决。
或者, 若目标小区处于激活态, 那么该目标小区上会发送 PSS, SSS, CRS, RCRS, CSI-RS, PRS, 广播信道中的至少一种, 而不 发送 DRS; 则此时 UE可以根据 PSS和 SSS进行小区识别, 并根据 CRS或 RCRS做 RRM测量。 若目标小区处于休眠态, 那么该目标小 区上除了发送 DRS 之外, 还可以发送 RCRS 或 CRS, 该 RCRS 或 CRS的发送周期可能比激活态时的发送周期长, 比如周期跟 DRS相 同, 而用来供 UE做 RRM测量, 或者辅助 DRS—起做 RRM测量。
本发明的实施例提供的无线资源管理的测量方法, 通过第一资 源上承载的第一参考信号的接收功率所确定的目标小区的参考信号 接收功率 RSRP,以及第二资源上的总接收功率所确定的目标小区的 接收信号强度指示 RSSI, 来确定目 标小区的参考信号接收质量 RSRQ 和 /或信号与干扰加噪声比 SINR, 相比于现有技术中只根据 CRS或 DRS来测量目标小区的 RSRQ或 SINR , 并会导致一个区域 内相邻小区间的干扰环境发生较快的变化或抖动, 本发明所提供的 无线资源管理的测量方法则效率更高。 此外, 针对现有技术中 UE 测量出的 RSRQ 或 SINR会被低估的问题, 本发明提供的第一资源 与第二资源存在时刻差,使得目标小区的 RS SI中并没有包含处于休 眠态小区 ( 目标小区, 和 /或该目标小区的邻区 ) 的功率, 从而避免 上述 RSRQ和 /或 SINR被低估, 进而提高了无线资源管理测量的正 确率。 具体的, 这里提供了三种应用场景下的无线资源管理的测量方 法, 且参照图 3、 4、 5可知, 其中第一参考信号以 DRS为例, 第二 参考信息以 RCRS 为例, 目标小区以小区 0 为例, 邻小区以小区 1 和小区 2为例。
在第一种应用场景下 (即目标小区为激活态, 同时该目标小区 的 DRS与 RCRS处于不同子帧 ):
首先, UE根据预先获取的 DRS的配置信息检测到小区 0后, UE确定该小区 0的 DRS所在的第一资源,即图 3所示的 4个 OFDM 符号上的总共 16个 RE ,再测量该 16个 RE上的 DRS的平均接收功 率,并将该平均接收功率作为该小区 0的 RSRP。这里需要注意的是, 小区 0的 DRS所在的 16个 RE上可能还会包括其他小区在相同资源 上发来的干扰信息和噪声, 但这里只需要测量 16个 RE上所包含的 该小区 0的 DRS的平均接收功率, 不将上述干扰功率和噪声功率计 算在 RSRP之内。
然后, 根据预设的第一资源与第二资源之间的资源偏移量, 及 第一资源在子帧资源块中的位置来确定第二资源, 由于小区 0 处于 激活态, 则该第二资源为 RCRS所在 OFDM符号上的所有资源。 即 图 3 中所示的第一资源与第二资源的位置, 可以看出第二资源与第 一资源相隔 4个子帧, 该第二资源为 RCRS所在 4列 OFDM符号上 的 RE。 UE 在确定了第二资源的位置后,便测量该 RCRS所在 OFDM 符号上的总接收功率, 该总接收功率包括该 0 F D M符号上的所有信 号的接收功率, 并把该上述的接收功率在多个 OFDM符号上取平均 值作为该小区 0的 RSSI , 当然也可以不做平均, 这里不做限制。
如图 3所示, 被测小区小区 0是激活态, 激活态意味着该小区 0上至少承载第二参考信号, 该第二参考信号为 DRS , CRS , RCRS , PS S , SS S和 CSI-RS 中的至少一种, 而小区 2是休眠态, 即小区 2 上承载 DRS或只承载 DRS , 那么在第二资源上的发送功率为 0 , 因 为第二资源不同于 DRS被发送的第一资源, 因此, 上述测量得到的 RSSI中就不包括小区 2的功率, 即休眠态小区的功率不会被计算在 被测小区的 RS SI中。
最后, UE 在测量出 RSRP 和 RSSI 之后, 便可根据 RSRP 和 RSSI的比值, 即 RSRP除以 RSSI , 来进一步确定 RSRQ或 SINR。 此时, 由于小区 0处于激活态, 因此, 小区 0在第二资源上的发送 功率不为 0 , 即第二资源上发送的 RCRS 的功率不为 0 , 此时, UE 根据 RSRP和 RS SI计算出 RSRQ。
本发明的实施例提供的无线资源管理的测量方法, 通过第一资 源上承载的第一参考信号的接收功率所确定的目标小区的参考信号 接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的 接收信号强度指示 RS SI , 来确定目 标小区的参考信号接收质量 RSRQ , 相比于现有技术中只根据 CRS 或 DRS 来测量目标小区的 RSRQ或 SINR , 并会导致一个区域内相邻小区间的干扰环境发生较 快的变化或抖动, 本发明所提供的无线资源管理的测量方法则效率 更高。 此外, 针对现有技术中 UE测量出的 RSRQ或 SINR会被低估 的问题, 本发明提供的第一资源与第二资源存在时刻差, 使得目标 小区的 RS SI 中并没有包含处于休眠态小区 ( 目标小区, 和 /或该目 标小区的邻区 ) 的功率, 从而避免上述 RSRQ被低估, 进而提高了 无线资源管理测量的正确率。 在第二种应用场景下 (即目标小区为激活态, 同时该目标小区 的 DRS与 RCRS处于相同子帧 ):
首先, UE根据预先获取的 DRS的配置信息检测到小区 0后, UE确定该小区 0的 DRS所在的第一资源,即图 3所示的 4个 OFDM 符号上的总共 16个 RE ,然后测量该 16个 RE上的 DRS的平均接收 功率, 并将该平均接收功率作为该小区 0的 RSRP。 当然, UE可以 测量更多的 DRS子帧, 从而根据更多的 DRS的 RE来测量 RSRP , 测量用 RE越多, 测量得到的 RSRP越准确, 这里并不做限制。 此外, 还需要注意的是,小区 0的 DRS所在的 16个 RE上可能还会包括其 他小区在相同资源上发来的干扰信息和噪声, 但这里只需要测量该 16个 RE上所包含的该小区 0的 DRS的平均接收功率, 不将上述干 扰功率和噪声功率计算在 RSRP之内。
然后, 根据预设的第一资源与第二资源之间的资源偏移量, 及 第一资源在子帧资源块中的位置来确定第二资源, 由于小区 0 处于 激活态, 则该第二资源为 RCRS所在 OFDM符号上的所有资源。 如 图 4所示, 可以看到第二资源和第一资源在相同的子帧内, 即 DRS 发送在 RCRS子帧,且 DRS和 RCRS之间存在固定的 OFDM符号间 的位置关系, 那么 UE确定了 DRS所在符号, 进而便可确定第二资 源的 OFDM符号, 即 RCRS所在符号。 而 UE 在确定了第二资源的 位置后, 便测量该 RCRS所在 OFDM符号上的总接收功率, 该总接 收功率包括该 OFDM符号上的所有信号的接收功率, 并把该上述的 接收功率在多个 OFDM符号上取平均值作为该小区 0的 RS SI , 当然 也可以不做平均, 这里不做限制。
如图 4所示, 被测小区小区 0是激活态, 激活态意味着该小区 0上至少承载第二参考信号, 该第二参考信号为 DRS , CRS , RCRS , PS S , SS S和 CSI-RS 中的至少一种, 而小区 2是休眠态, 即小区 2 上承载 DRS或只承载 DRS , 那么在第二资源上的发送功率为 0 , 因 为第二资源不同于 DRS被发送的第一资源, 因此, 上述测量得到的 RSSI中就不包括小区 2的功率, 即休眠态小区的功率不会被计算在 被测小区的 RS SI中。 最后, UE 在测量出 RSRP 和 RSSI 之后, 便可根据 RSRP 和 RSSI的比值, 即 RSRP除以 RSSI , 来进一步确定 RSRQ或 SINR。 此时, 由于小区 0处于激活态, 因此, 小区 0在第二资源上的发送 功率不为 0 , 即第二资源上发送的 RCRS 的功率不为 0 , 此时, UE 根据 RSRP和 RS SI计算出 RSRQ。
本发明的实施例提供的无线资源管理的测量方法, 通过第一资 源上承载的第一参考信号的接收功率所确定的目标小区的参考信号 接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的 接收信号强度指示 RS SI , 来确定目 标小区的参考信号接收质量 RSRQ , 相比于现有技术中只根据 CRS 或 DRS 来测量目标小区的 RSRQ或 SINR , 并会导致一个区域内相邻小区间的干扰环境发生较 快的变化或抖动, 本发明所提供的无线资源管理的测量方法 H 'j效率 更高。 此外, 针对现有技术中 UE测量出的 RSRQ或 SINR会被低估 的问题, 本发明提供的第一资源与第二资源存在时刻差, 使得目标 小区的 RS SI 中并没有包含处于休眠态小区 ( 目标小区, 和 /或该目 标小区的邻区 ) 的功率, 从而避免上述 RSRQ被低估, 进而提高了 无线资源管理测量的正确率。 在第三种应用场景下 (即目标小区为休眠态, 同时该目标小区 的 DRS与 RCRS处于不同子帧 ):
首先, UE根据预先获取的 DRS的配置信息检测到小区 0后, UE确定该小区 0的 DRS所在的第一资源,即图 5所示的 4个 OFDM 符号上的总共 16个 RE ,然后测量该 16个 RE上的 DRS的平均接收 功率, 并将该平均接收功率作为该小区 0的 RSRP。 当然, UE可以 测量更多的 DRS子帧, 从而根据更多的 DRS的 RE来测量 RSRP , 测量用 RE越多, 测量得到的 RSRP越准确, 这里并不做限制。 此外, 还需要注意的是,小区 0的 DRS所在的 16个 RE上可能还会包括其 他小区在相同资源上发来的干扰信息和噪声, 但这里只需要测量 16 个 RE上所包含的该小区 0的 DRS的平均接收功率, 不讲上述干扰 功率和噪声功率计算在 RSRP之内。
然后, 根据预设的第一资源与第二资源之间的资源偏移量, 及 第一资源在子帧资源块中的位置来确定第二资源。 需要说明的是, 虽然该小区 0 由于处于休眠态而并未发送 RCRS , 但是用于承载该 RCRS的第二资源还是实际存在的, 只是其中并未承载该 RCRS , 因 此, UE还是可以根据第一资源的位置及预设的第一资源与第二资源 之间的资源偏移量来获取该第二资源的位置。 UE在确定了第二资源 后, 此时, 由于被测小区小区 0及邻小区小区 2均处于休眠态, 因 此, 小区 0及小区 2的接收功率均未被计算在小区 0的 RSSI中, 则 该小区 0的 RS SI中只包含了邻小区小区 1 的接收功率。
最后, UE 在测量出 RSRP 和 RSSI 之后, 便可根据 RSRP 和 RSSI的比值, 即 RSRP除以 RSSI , 来进一步确定 RSRQ或 SINR。 此时, 由于小区 0处于休眠态, 因此, 小区 0在第二资源上的发送 功率为 0 , 即第二资源上并未发送 RCRS , 当然也不发送其他上述的 第二参考信息, 此时, UE根据 RSRP和 RS SI计算出 SINR。
本发明的实施例提供的无线资源管理的测量方法, 通过第一资 源上承载的第一参考信号的接收功率所确定的目标小区的参考信号 接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的 接收信号强度指示 RS SI , 来确定目 标小区的参考信号接收质量 RSRQ 和 /或信号与干扰加噪声比 SINR , 相比于现有技术中只根据 CRS或 DRS 来测量目标小区的 SINR , 并会导致一个区域内相邻小 区间的干扰环境发生较快的变化或抖动, 本发明所提供的无线资源 管理的测量方法则效率更高。 此外, 针对现有技术中 UE 测量出的 RSRQ或 SINR会被低估的问题, 本发明提供的第一资源与第二资源 存在时刻差, 使得目标小区的 RS SI 中并没有包含处于休眠态小区 ( 目标小区, 和 /或该目标小区的邻区 )的功率, 从而避免上述 SINR 被低估, 进而提高了无线资源管理测量的正确率。 本发明的实施例提供的一种用户设备, 该用户设备用于实现上 述无线资源管理的测量方法, 如图 6所示, 该用户设备 3 包括: 确 定单元 3 1、 第一功率确定单元 32、 第二功率确定单元 33 和第三功 率确定单元 34 , 其中:
确定单元 3 1 , 用于检测第一参考信号, 并根据检测到的第一参 考信号确定该检测到的第一参考信号对应的目标小区及该检测到的 第一参考信号所在的第一资源。
第一功率确定单元 32 ,用于根据第一资源上承载的该检测到的 第一参考信号的接收功率确定目标小区的参考信号接收功率 RSRP。
确定单元 3 1 , 还用于确定第二资源。
其中, 上述的第一资源和上述的第二资源在不同的时刻。
其中, 该第二资源用于在该目标小区处于激活态时承载第二参 考信息, 或, 该第二资源用于在该目标小区处于休眠态时不承载该 第二参考信息并在该目标小区由休眠态转入激活态时承载该第二参 考信息。
第二功率确定单元 33 ,用于根据第二资源上的总接收功率确定 目标小区的接收信号强度指示 RSSI。
第三功率确定单元 34 , 用于根据 RSRP和 RSSI确定目标小区 的参考信号接收质量 RSRQ或信号与干扰加噪声比 SINR。
本发明的实施例提供的用户设备, 通过第一资源上承载的第一 参考信号的接收功率所确定的目标小区的参考信号接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的接收信号强度指 示 RS SI ,来确定目标小区的参考信号接收质量 RSRQ和 /或信号与干 扰加噪声比 SINR , 相比于现有技术中只根据 CRS或 DRS来测量目 标小区的 RSRQ或 SINR , 并会导致一个区域内相邻小区间的干扰环 境发生较快的变化或抖动, 本发明所提供的无线资源管理的测量方 法则效率更高。 此外, 针对现有技术中 UE测量出的 RSRQ或 SINR 会被低估的问题, 本发明提供的第一资源与第二资源存在时刻差, 使得目标小区的 RS SI中并没有包含处于休眠态小区 ( 目标小区, 和 /或该目标小区的邻区 ) 的功率, 从而避免上述 RSRQ和 /或 SINR被 低估, 进而提高了无线资源管理测量的正确率。
如图 7所示,可选的,该用户设备 3还包括: 信息获取单元 35, 其巾:
信息获取单元 35, 用于获取第一参考信号的配置信息。
其中, 上述配置信息包括第一参考信号的候选序列和 /或第一 参考信号的候选时频资源。
确定单元 31 具体用于: 根据第一参考信号的配置信息检测第 一参考信号; 根据该检测到的第一参考信号的配置信息确定该检测 到的第一参考信号对应的目标小区及该检测到的第一参考信号所在 的第一资源。
可选的, 确定单元 31 具体用于: 根据第一资源与资源偏移量 确定第二资源。
其中, 上述的资源偏移量包括时域偏移和 /或频率偏移; 该资 源偏移量是预配置的或所述基站通知的。
可选的, 上述的第一资源和第二资源在不同的时刻具体包括: 第一资源和第二资源属于不同的正交频分复用 OFDM符号或不同的 时隙或不同的子帧或不同的子帧集合。
可选的, 该第三功率确定单元 34 具体用于: 若目标小区在第 二资源上的发送功率不为 0, 则根据 RSRP和 RSSI确定目标小区的 RSRQ; 和 /或, 若目标小区在第二资源上的发送功率为 0, 则根据 RSRP和 RSSI确定所述目标小区的 SINR。
可选的, 上述的第一参考信号包括: 发现参考信号 DRS。
上述的第二参考信息包括: 信道状态信息参考信号 CSI-RS, 小区特定参考信号 CRS, 减少的小区特定参考信号 RCRS, 主同步 信号 PSS, 辅同步信号 SSS, 定位参考信号 PRS和广播信道中的至 少一种。
可选的,如图 7所示,该用户设备 3还包括: 信息上 4艮单元 36, 其巾:
信息上报单元 36, 用于将 RSRQ 上报至基站, 以便基站根据 UE 上报的 RSRQ 确定是否将目标小区从休眠态切换至激活态, 和 / 或, 根据 UE上报的 RSRQ确定是否将目标小区配置给 UE。
可选的, 信息上报单元 36 , 用于将 SINR上报至基站, 以便基 站根据 UE 上报的 SINR 确定是否将目标小区从休眠态切换至激活 态, 和 /或, 根据 UE上报的 SINR确定是否将目标小区配置给 UE。
可选的,信息上 4艮单元 36 ,用于将 RSRQ和 SINR上^艮至基站 , 以便基站根据 UE上报的 RSRQ和 SINR确定是否将目标小区从休眠 态切换至激活态, 和 /或, 根据 UE上报的 RSRQ和 SINR确定是否 将目标小区配置给 UE。
本发明的实施例提供的用户设备, 通过第一资源上承载的第一 参考信号的接收功率所确定的目标小区的参考信号接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的接收信号强度指 示 RS SI ,来确定目标小区的参考信号接收质量 RSRQ和 /或信号与干 扰加噪声比 SINR , 相比于现有技术中只根据 CRS或 DRS来测量目 标小区的 RSRQ或 SINR , 并会导致一个区域内相邻小区间的干扰环 境发生较快的变化或抖动, 本发明所提供的无线资源管理的测量方 法则效率更高。 此外, 针对现有技术中 UE测量出的 RSRQ或 SINR 会被低估的问题, 本发明提供的第一资源与第二资源存在时刻差, 使得目标小区的 RS SI中并没有包含处于休眠态小区 ( 目标小区, 和 /或该目标小区的邻区 ) 的功率, 从而避免上述 RSRQ和 /或 SINR被 低估, 进而提高了无线资源管理测量的正确率。
需要说明的是, 本发明以上各个实施例中的用户设备中的各单 元的实现方式和交互过程可以参考相应方法实施例中的相关描述。 本发明的实施例提供一种用户设备, 该用户设备用于实现上述 无线资源管理的测量方法, 如图 8 所示, 该用户设备 4 包括: 处理 器 41 , 其中:
处理器 41 , 用于检测第一参考信号, 并根据检测到的第一参考 信号确定该检测到的第一参考信号对应的目标小区及该检测到的第 一参考信号所在的第一资源。
处理器 41 , 还用于 UE根据第一资源上承载的该检测到的第一 参考信号的接收功率确定目标小区的参考信号接收功率 RSRP。
处理器 41 , 还用于确定第二资源。
其中, 上述的第一资源和上述的第二资源在不同的时刻。
其中, 该第二资源用于在该目标小区处于激活态时承载第二参 考信息, 或, 该第二资源用于在该目标小区处于休眠态时不承载该 第二参考信息并在该目标小区由休眠态转入激活态时承载该第二参 考信息。
处理器 41 ,还用于根据第二资源上的总接收功率确定目标小区 的接收信号强度指示 RSSI。
处理器 41 , 还用于根据 RSRP和 RS SI确定目标小区的参考信 号接收质量 RSRQ或信号与干扰加噪声比 SINR。
本发明的实施例提供的用户设备, 通过第一资源上承载的第一 参考信号的接收功率所确定的目标小区的参考信号接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的接收信号强度指 示 RS SI ,来确定目标小区的参考信号接收质量 RSRQ和 /或信号与干 扰加噪声比 SINR , 相比于现有技术中只根据 CRS或 DRS来测量目 标小区的 RSRQ或 SINR , 并会导致一个区域内相邻小区间的干扰环 境发生较快的变化或抖动, 本发明所提供的无线资源管理的测量方 法则效率更高。 此外, 针对现有技术中 UE测量出的 RSRQ或 SINR 会被低估的问题, 本发明提供的第一资源与第二资源存在时刻差, 使得目标小区的 RS SI中并没有包含处于休眠态小区 ( 目标小区, 和 /或该目标小区的邻区 ) 的功率, 从而避免上述 RSRQ和 /或 SINR被 低估, 进而提高了无线资源管理测量的正确率。
可选的, 该处理器 41 , 还用于获取第一参考信号的配置信息; 其中, 该配置信息包括第一参考信号的候选序列和 /或第一参考信号 的候选时频资源; 及用于根据第一参考信号的配置信息检测第一参 考信号; 根据该检测到的第一参考信号的配置信息确定该检测到的 第一参考信号对应的目标小区及该检测到的第一参考信号所在的第 一资源。
可选的, 该处理器 41 , 还用于根据第一资源与资源偏移量确定 第二资源。
其中, 上述的资源偏移量包括时域偏移和 /或频率偏移; 该资 源偏移量是预配置的或基站通知的。
可选的, 该第一资源和该第二资源在不同的时刻具体包括: 该 第一资源和该第二资源属于不同的正交频分复用 OFDM符号或不同 的时隙或不同的子帧或不同的子帧集合。
可选的, 该处理器, 还用于若目标小区在第二资源上的发送功 率不为 0 , 则根据 RSRP和 RS SI确定目标小区的 RSRQ ; 和 /或, 若 目标小区在第二资源上的发送功率为 0 , 则根据 RSRP和 RS SI确定 目标小区的 SINR。
可选的, 该第一参考信号包括: 发现参考信号 DRS。
该第二参考信息包括: 信道状态信息参考信号 CSI-RS , 小区 特定参考信号 CRS , 减少的小区特定参考信号 RCRS , 主同步信号 PS S , 辅同步信号 SSS , 定位参考信号 PRS 和广播信道中的至少一 种。
可选的, 该用户设备 4还包括: 通信单元 42 , 其中:
通信单元 42 , 用于将 RSRQ上报至基站, 以便基站根据 UE上 报的 RSRQ确定是否将目标小区从休眠态切换至激活态, 和 /或, 根 据 UE上报的 RSRQ确定是否将目标小区配置给 UE。
可选的, 通信单元 42 , 用于将 SINR上报至基站, 以便基站根 据 UE上报的 SINR确定是否将目标小区从休眠态切换至激活态, 和 /或, 根据 UE上报的 SINR确定是否将目标小区配置给 UE。
可选的, 通信单元 42 , 用于将 RSRQ和 SINR上报至基站, 以 便基站根据 UE上报的 RSRQ和 SINR确定是否将目标小区从休眠态 切换至激活态, 和 /或, 根据 UE上报的 RSRQ和 SINR确定是否将 目标小区配置给 UE。 本发明的实施例提供的用户设备, 通过第一资源上承载的第一 参考信号的接收功率所确定的目标小区的参考信号接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的接收信号强度指 示 RS SI ,来确定目标小区的参考信号接收质量 RSRQ和 /或信号与干 扰加噪声比 SINR , 相比于现有技术中只根据 CRS或 DRS来测量目 标小区的 RSRQ或 SINR , 并会导致一个区域内相邻小区间的干扰环 境发生较快的变化或抖动, 本发明所提供的无线资源管理的测量方 法则效率更高。 此外, 针对现有技术中 UE测量出的 RSRQ或 SINR 会被低估的问题, 本发明提供的第一资源与第二资源存在时刻差, 使得目标小区的 RS SI中并没有包含处于休眠态小区 ( 目标小区, 和 /或该目标小区的邻区 ) 的功率, 从而避免上述 RSRQ和 /或 SINR被 低估, 进而提高了无线资源管理测量的正确率。
需要说明的是, 本发明以上各个实施例中的用户设备中的各单 元的实现方式和交互过程可以参考相应方法实施例中的相关描述。 本发明的实施例提供的一种无线资源管理侧测量系统, 如图 9 所示, 该无线资源管理侧测量系统 5 包括: 用户设备 UE51 及基站 52 , 其中:
UE51 , 用于检测第一参考信号, 并根据检测到的第一参考信 号确定该检测到的第一参考信号对应的目标小区及该检测到的第一 参考信号所在的第一资源; 还用于根据第一资源上承载的该检测到 的第一参考信号的接收功率确定目 标小区的参考信号接收功率 RSRP ; 还用于确定第二资源; 还用于根据第二资源上的总接收功率 确定目标小区的接收信号强度指示 RSSI; 其中, 上述的第一资源和 上述的第二资源在不同的时刻; 其中, 该第二资源用于在该目标小 区处于激活态时承载第二参考信息, 或, 该第二资源用于在该目标 小区处于休眠态时不承载该第二参考信息并在该目标小区由休眠态 转入激活态时承载该第二参考信息。 还用于根据 RSRP和 RS SI确定 目标小区的参考信号接收质量 RSRQ或信号与干扰加噪声比 SINR; 还用于将 RSRQ和 /或 SINR上^艮至基站 52。
基站 52 , 用于根据 UE上报的 RSRQ确定是否将目标小区从休 眠态切换至激活态, 和 /或, 根据 UE上报的 RSRQ确定是否将目标 小区配置给 UE;
或者, 用于根据 UE上报的 SINR确定是否将目标小区从休眠 态切换至激活态, 和 /或, 根据 UE 上报的 SINR确定是否将目标小 区配置给 UE ;
或者, 根据 UE上报的 RSRQ和 SINR确定是否将目标小区从 休眠态切换至激活态, 和 /或, 根据 UE上报的 RSRQ和 SINR确定 是否将目标小区配置给 UE。
本发明的实施例提供的无线资源管理侧测量系统, 通过第一资 源上承载的第一参考信号的接收功率所确定的目标小区的参考信号 接收功率 RSRP , 以及第二资源上的总接收功率所确定的目标小区的 接收信号强度指示 RS SI , 来确定目 标小区的参考信号接收质量 RSRQ 和 /或信号与干扰加噪声比 SINR , 相比于现有技术中只根据 CRS或 DRS来测量目标小区的 RSRQ或 SINR , 并会导致一个区域 内相邻小区间的干扰环境发生较快的变化或抖动, 本发明所提供的 无线资源管理的测量方法则效率更高。 此外, 针对现有技术中 UE 测量出的 RSRQ 或 SINR会被低估的问题, 本发明提供的第一资源 与第二资源存在时刻差,使得目标小区的 RS SI中并没有包含处于休 眠态小区 ( 目标小区, 和 /或该目标小区的邻区 ) 的功率, 从而避免 上述 RSRQ和 /或 SINR被低估, 进而提高了无线资源管理测量的正 确率。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简 洁, 仅以上述各功能模块的划分进行举例说明, 实际应用中, 可以 根据需要而将上述功能分配由不同的功能模块完成, 即将装置的内 部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功 能。 上述描述的系统, 装置和单元的具体工作过程, 可以参考前述 方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置 实施例仅仅是示意性的, 例如, 所述模块或单元的划分, 仅仅为一 种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单 元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽 略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦 合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信 连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上 分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即 可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据 实际的需要选择其中的部分或者全部单元来实现本实施例方案的目 的。
另外, 在本申请各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以 上单元集成在一个单元中。 上述集成的单元既可以釆用硬件的形式 实现, 也可以釆用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立 的产品销售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本申请的技术方案本质上或者说对现有技术做出 贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体 现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令 用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络 设备等) 或处理器 ( processor ) 执行本申请各个实施例所述方法的 全部或部分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读 存储器( ROM , Read-Only Memory )、随机存取存储器( RAM , Random Access Memory ) , 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以说明本申请的技术方案, 而非对 其限制; 尽管参照前述实施例对本申请进行了详细的说明, 本领域 的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技 术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些 修改或者替换, 并不使相应技术方案的本质脱离本申请各实施例技 术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种无线资源管理的测量方法, 其特征在于, 包括: 用户设备 UE 检测第一参考信号, 并根据检测到的第一参考信 号确定所述检测到的第一参考信号对应的目标小区及所述检测到的 第一参考信号所在的第一资源;
所述 UE 根据所述第一资源上承载的所述检测到的第一参考信 号的接收功率确定所述目标小区的参考信号接收功率 RSRP ;
所述 UE 确定第二资源, 所述第二资源和所述第一资源在不同 时刻; 所述第二资源用于在所述目标小区处于激活态时承载第二参考 信息, 或, 所述第二资源用于在所述目标小区处于休眠态时不承载所 述第二参考信息并在所述目标小区由休眠态转入激活态时承载所述 第二参考信息;
所述 UE 根据所述第二资源上的总接收功率确定所述目标小区 的接收信号强度指示 RSSI;
所述 UE根据所述 RSRP和所述 RSSI确定所述目标小区的参考 信号接收质量 RSRQ和 /或信号与干扰加噪声比 SINR。
2、 根据权利要求 1所述的方法, 其特征在于:
所述 UE 获取第一参考信号的配置信息; 其中所述配置信息包 括所述第一参考信号的候选序列和 /或所述第一参考信号的候选时频 资源;
所述用户设备 UE 检测第一参考信号, 并根据检测到的第一参 考信号确定所述检测到的第一参考信号对应的目标小区及所述检测 到的第一参考信号所在的第一资源包括:
所述 UE 根据所述第一参考信号的配置信息检测所述第一参考 信号;
所述 UE 根据所述检测到的第一参考信号的配置信息确定所述 检测到的第一参考信号对应的目标小区及所述检测到的第一参考信 号所在的第一资源。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述 UE确 定第二资源包括:
所述 UE 根据所述第一资源与资源偏移量确定所述第二资源; 其中所述资源偏移量包括时域偏移和 /或频率偏移; 所述资源偏移量 是预配置的或所述基站通知的。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述 第一资源和所述第二资源在不同的时刻具体包括: 所述第一资源和所 述第二资源属于不同的正交频分复用 OFDM 符号或不同的时隙或不 同的子帧或不同的子帧集合。
5、 根据权利要求 1至 4任一项所述的方法, 其特征在于, 所述 UE根据所述 RSRP和所述 RSSI确定所述目标小区的参考信号接收质 量 RSRQ和 /或信号与干扰加噪声比 SINR包括:
若所述目标小区在第二资源上的发送功率不为 0 , 则所述 UE根 据所述 RSRP和所述 RSSI确定所述目标小区的 RSRQ; 和 /或,
若所述目标小区在第二资源上的发送功率为 0 , 则所述 UE根据 所述 RSRP和所述 RSSI确定所述目标小区的 SINR。
6、 根据权利要求 1至 5任一项所述的方法, 其特征在于: 所述第一参考信号包括: 发现参考信号 DRS ;
所述第二参考信息包括: 信道状态信息参考信号 CSI-RS , 小区 特定参考信号 CRS , 减少的小区特定参考信号 RCRS , 主同步信号 PSS , 辅同步信号 SSS , 定位参考信号 PRS和广播信道中的至少一种。
7、 根据权利要求 1至 6任一项所述的方法, 其特征在于, 所述 UE根据所述 RSRP和所述 RSSI确定所述目标小区的参考信号接收质 量 RSRQ和 /或信号与干扰加噪声比 SINR之后, 还包括:
所述 UE将所述 RSRQ上报至基站, 以便所述基站根据所述 UE 上报的所述 RSRQ确定是否将所述目标小区从休眠态切换至激活态, 和 /或,根据所述 UE上报的所述 RSRQ确定是否将所述目标小区配置 给所述 UE。
8、 根据权利要求 1至 6任一项所述的方法, 其特征在于, 所述 UE根据所述 RSRP和所述 RSSI确定所述目标小区的参考信号接收质 量 RSRQ和 /或信号与干扰加噪声比 SINR之后, 还包括: 所述 UE将所述 SINR上报至基站, 以便所述基站根据所述 UE 上报的所述 SINR确定是否将所述目标小区从休眠态切换至激活态, 和 /或, 根据所述 UE上报的所述 SINR确定是否将所述目标小区配置 给所述 UE。
9、 根据权利要求 1至 6任一项所述的方法, 其特征在于, 所述 UE根据所述 RSRP和所述 RSSI确定所述目标小区的参考信号接收质 量 RSRQ和 /或信号与干扰加噪声比 SINR之后, 还包括:
所述 UE将所述 RSRQ和所述 SINR上报至基站, 以便所述基站 根据所述 UE上报的所述 RSRQ和所述 SINR确定是否将所述目标小 区从休眠态切换至激活态, 和 /或, 根据所述 UE上报的所述 RSRQ和 所述 SINR确定是否将所述目标小区配置给所述 UE。
10、 一种用户设备, 其特征在于, 包括:
确定单元, 用于检测第一参考信号, 并根据检测到的所述第一 参考信号确定所述检测到的第一参考信号对应的目标小区及所述检 测到的第一参考信号所在的第一资源;
第一功率确定单元, 用于所述 UE 根据所述第一资源上承载的 所述检测到的第一参考信号的接收功率确定所述目标小区的参考信 号接收功率 RSRP ;
所述确定单元, 还用于确定第二资源, 所述第二资源和所述第 一资源在不同时刻; 所述第二资源用于在所述目标小区处于激活态时 承载第二参考信息, 或, 所述第二资源用于在所述目标小区处于休眠 态时不承载所述第二参考信息并在所述目标小区由休眠态转入激活 态时承载所述第二参考信息;
第二功率确定单元, 用于根据所述第二资源上的总接收功率确 定所述目标小区的接收信号强度指示 RSSI; 其中所述第一资源和所 述第二资源在不同的时刻;
第三功率确定单元, 用于根据所述 RSRP和所述 RSSI确定所述 目标小区的参考信号接收质量 RSRQ或信号与干扰加噪声比 SINR。
1 1、 根据权利要求 10所述的用户设备, 其特征在于, 所述 UE 还包括:
信息获取单元, 用于获取所述第一参考信号的配置信息; 其中 所述配置信息包括所述第一参考信号的候选序列和 /或所述第一参考 信号的候选时频资源;
所述确定单元具体用于: 根据所述第一参考信号的配置信息检 测所述第一参考信号; 根据所述检测到的第一参考信号的配置信息确 定所述检测到的第一参考信号对应的目标小区及所述检测到的第一 参考信号所在的第一资源。
12、 根据权利要求 10或 11所述的用户设备, 其特征在于: 所述确定单元具体用于: 根据所述第一资源与资源偏移量确定 所述第二资源; 其中所述资源偏移量包括时域偏移和 /或频率偏移; 所述资源偏移量是预配置的或所述基站通知的。
13、 根据权利要求 10至 12任一项所述的用户设备, 其特征在 于, 所述所述第一资源和所述第二资源在不同的时刻具体包括: 所述 第一资源和所述第二资源属于不同的正交频分复用 OFDM 符号或不 同的时隙或不同的子帧或不同的子帧集合。
14、 根据权利要求 10至 13任一项所述的用户设备, 其特征在 于:
所述第三功率确定单元具体用于: 若所述目标小区在第二资源 上的发送功率不为 0 ,则根据所述 RSRP和所述 RSSI确定所述目标小 区的 RSRQ; 和 /或, 若所述目标小区在第二资源上的发送功率为 0 , 则根据所述 RSRP和所述 RSSI确定所述目标小区的 SINR。
15、 根据权利要求 10至 14任一项所述的用户设备, 其特征在 于:
所述第一参考信号包括: 发现参考信号 DRS ;
所述第二参考信息包括: 信道状态信息参考信号 CSI-RS , 小区 特定参考信号 CRS , 减少的小区特定参考信号 RCRS , 主同步信号 PSS , 辅同步信号 SSS , 定位参考信号 PRS和广播信道中的至少一种。
16、 根据权利要求 10至 15任一项所述的用户设备, 其特征在 于, 所述 UE还包括:
信息上报单元, 用于将所述 RSRQ 上报至基站, 以便所述基站 根据所述 UE上报的所述 RSRQ确定是否将所述目标小区从休眠态切 换至激活态, 和 /或, 根据所述 UE上报的所述 RSRQ确定是否将所述 目标小区配置给所述 UE。
17、 根据权利要求 10至 15任一项所述的用户设备, 其特征在 于, 所述 UE还包括:
信息上报单元, 用于将所述 SINR上报至基站, 以便所述基站根 据所述 UE上报的所述 SINR确定是否将所述目标小区从休眠态切换 至激活态, 和 /或, 根据所述 UE上报的所述 SINR确定是否将所述目 标小区配置给所述 UE。
18、 根据权利要求 10至 15任一项所述的用户设备, 其特征在 于, 所述 UE还包括:
信息上报单元, 用于将所述 RSRQ 和所述 SINR上报至基站, 以便所述基站根据所述 UE上报的所述 RSRQ和所述 SINR确定是否 将所述目标小区从休眠态切换至激活态, 和 /或, 根据所述 UE上报的 所述 RSRQ和所述 SINR确定是否将所述目标小区配置给所述 UE。
PCT/CN2013/086089 2013-10-28 2013-10-28 一种无线资源管理的测量方法、设备及系统 WO2015061952A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2013/086089 WO2015061952A1 (zh) 2013-10-28 2013-10-28 一种无线资源管理的测量方法、设备及系统
CN201380002013.6A CN104782159A (zh) 2013-10-28 2013-11-21 一种无线资源管理的测量方法、设备及系统
PCT/CN2013/087638 WO2015062132A1 (zh) 2013-10-28 2013-11-21 一种无线资源管理的测量方法、设备及系统
CN201480000747.5A CN104995860B (zh) 2013-10-28 2014-01-27 一种无线资源管理的测量方法、设备及系统
PCT/CN2014/071572 WO2015062178A1 (zh) 2013-10-28 2014-01-27 一种无线资源管理的测量方法、设备及系统
EP14859107.6A EP3054617B1 (en) 2013-10-28 2014-01-27 Measurement method and user equipment for radio resource management
US15/140,299 US10045986B2 (en) 2013-10-28 2016-04-27 Method, device, and system for radio resource management measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086089 WO2015061952A1 (zh) 2013-10-28 2013-10-28 一种无线资源管理的测量方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2015061952A1 true WO2015061952A1 (zh) 2015-05-07

Family

ID=53003087

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2013/086089 WO2015061952A1 (zh) 2013-10-28 2013-10-28 一种无线资源管理的测量方法、设备及系统
PCT/CN2013/087638 WO2015062132A1 (zh) 2013-10-28 2013-11-21 一种无线资源管理的测量方法、设备及系统
PCT/CN2014/071572 WO2015062178A1 (zh) 2013-10-28 2014-01-27 一种无线资源管理的测量方法、设备及系统

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/087638 WO2015062132A1 (zh) 2013-10-28 2013-11-21 一种无线资源管理的测量方法、设备及系统
PCT/CN2014/071572 WO2015062178A1 (zh) 2013-10-28 2014-01-27 一种无线资源管理的测量方法、设备及系统

Country Status (3)

Country Link
US (1) US10045986B2 (zh)
EP (1) EP3054617B1 (zh)
WO (3) WO2015061952A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017054477A1 (zh) * 2015-09-28 2017-04-06 中兴通讯股份有限公司 无线资源管理rrm测量事件的评估方法及装置
KR20190025839A (ko) * 2016-07-05 2019-03-12 샤프 가부시키가이샤 기지국 장치, 단말 장치 및 통신 방법
CN110248411A (zh) * 2018-03-07 2019-09-17 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111436095A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种通信方法及通信装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9713075B2 (en) * 2014-01-10 2017-07-18 Kt Corporation Method and apparatus for measuring channel for small cell discovery
WO2015127942A1 (en) * 2014-02-25 2015-09-03 Telefonaktiebolaget L M Ericsson (Publ) Technique for measuring reference signal received power
JP6370921B2 (ja) * 2014-04-24 2018-08-08 エルジー エレクトロニクス インコーポレイティド 測定実行方法及び端末
WO2016072765A2 (ko) * 2014-11-06 2016-05-12 엘지전자 주식회사 소규모 셀 측정 방법 및 사용자 장치
US10091660B2 (en) * 2015-08-12 2018-10-02 W5 Technologies, Inc. LTE preemption
US9913181B1 (en) * 2015-08-26 2018-03-06 Sprint Spectrum L.P. Reference signal power variation to indicate load information
EP3412071B1 (en) * 2016-02-04 2020-01-29 Telefonaktiebolaget LM Ericsson (PUBL) Cell selection and cell reselection in a wireless communication network
US10326572B2 (en) * 2016-03-14 2019-06-18 Lg Electronics Enhanced channel estimation method and user equipment performing the same
WO2018029370A1 (en) * 2016-08-11 2018-02-15 Sony Corporation Mobile telecommunications system method
US9955295B1 (en) 2017-04-19 2018-04-24 Sprint Spectrum L.P. Use of positioning reference signal configuration as indication of operational state of a cell
US10404350B2 (en) * 2017-06-05 2019-09-03 Telefonaktiebolaget Lm Ericsson (Publ) Beam management systems and methods
JP7177832B2 (ja) * 2017-11-17 2022-11-24 エルジー エレクトロニクス インコーポレイティド 参照信号を送受信する方法およびそのための装置
CN109963301B (zh) * 2017-12-22 2022-06-07 中国移动通信集团北京有限公司 一种网络结构干扰的分析方法及装置
CN110798891B (zh) * 2018-08-03 2023-07-14 大唐移动通信设备有限公司 一种上行传输配置方法、装置及设备
US11956048B2 (en) 2018-09-28 2024-04-09 Apple Inc. Systems and methods for measurement period and accuracy for beam reporting based on L1-RSRP
KR20200043615A (ko) * 2018-10-18 2020-04-28 삼성전자주식회사 통신 상태에 기반한 상향링크 선택 장치 및 방법
US11582796B2 (en) * 2020-05-15 2023-02-14 Qualcomm Incorporated Listen-before-talk (LBT) failure detection in dormant cell and outside discontinuous reception (DRX) active time

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102461023A (zh) * 2009-06-08 2012-05-16 瑞典爱立信有限公司 基于同步信号的信号测量
WO2012115366A1 (en) * 2011-02-22 2012-08-30 Lg Electronics Inc. Method of performing measurement at ue in wireless communication system and apparatus thereof
CN102948087A (zh) * 2010-06-23 2013-02-27 瑞典爱立信有限公司 异构网络部署中的参考信号干扰管理

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932073A (zh) * 2009-06-22 2010-12-29 北京三星通信技术研究有限公司 发送和接收专用参考信号的方法、基站和用户终端
US20110310753A1 (en) * 2010-06-17 2011-12-22 Mediatek Inc. Measurement configuration in multi-carrier OFDMA wireless communication systems
EP3843313A1 (en) 2010-12-13 2021-06-30 Telefonaktiebolaget LM Ericsson (publ) Exchange of parameters relating to measurement periods
CN102624494B (zh) * 2011-01-27 2017-10-13 中兴通讯股份有限公司 一种信道状态指示测量方法及系统
CN103107873A (zh) * 2011-11-11 2013-05-15 华为技术有限公司 无线资源管理信息的测量和反馈方法、基站及用户设备
CN103220066B (zh) * 2012-01-18 2017-04-26 华为技术有限公司 测量方法,csi‑rs资源共享方法和装置
WO2013133605A1 (ko) * 2012-03-05 2013-09-12 엘지전자 주식회사 무선 통신 시스템에서 측정 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102461023A (zh) * 2009-06-08 2012-05-16 瑞典爱立信有限公司 基于同步信号的信号测量
CN102948087A (zh) * 2010-06-23 2013-02-27 瑞典爱立信有限公司 异构网络部署中的参考信号干扰管理
WO2012115366A1 (en) * 2011-02-22 2012-08-30 Lg Electronics Inc. Method of performing measurement at ue in wireless communication system and apparatus thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017054477A1 (zh) * 2015-09-28 2017-04-06 中兴通讯股份有限公司 无线资源管理rrm测量事件的评估方法及装置
KR20190025839A (ko) * 2016-07-05 2019-03-12 샤프 가부시키가이샤 기지국 장치, 단말 장치 및 통신 방법
KR102327480B1 (ko) * 2016-07-05 2021-11-16 에프쥐 이노베이션 컴퍼니 리미티드 기지국 장치, 단말 장치 및 통신 방법
CN110248411A (zh) * 2018-03-07 2019-09-17 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110248411B (zh) * 2018-03-07 2021-03-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11528704B2 (en) 2018-03-07 2022-12-13 Shanghai Langbo Communication Technology Company Limited Method and device used in UE and base station for wireless communication
CN111436095A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种通信方法及通信装置
CN111436095B (zh) * 2019-01-11 2024-04-16 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
EP3054617A4 (en) 2016-09-28
EP3054617A1 (en) 2016-08-10
WO2015062132A1 (zh) 2015-05-07
US20160242083A1 (en) 2016-08-18
US10045986B2 (en) 2018-08-14
WO2015062178A1 (zh) 2015-05-07
EP3054617B1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2015061952A1 (zh) 一种无线资源管理的测量方法、设备及系统
US9832691B2 (en) Cell ID expansion and hierarchical cell ID structures
US10091774B2 (en) Discovery signals and procedures
EP3429275B1 (en) Assisting measurements in small cells with an on/off scheme
EP3435723B1 (en) Ue, network node and methods of assisting measurements in mixed signal configuration
US20190387409A1 (en) Methods for Determining Reporting Configuration based on UE Power Class
CN111345058A (zh) 带宽部分切换时的无线电链路监测/无线电链路故障重新配置
CN111316752B (zh) 无线电网络节点、无线设备以及其中执行的方法
CN109314589A (zh) 用于无线电资源管理测量的下行链路参考信号
TWI693840B (zh) 接收訊號強度指示測量之方法及其使用者設備
US20230007603A1 (en) Methods for enabling a reduced bandwidth wireless device to access a cell
JP2016504800A (ja) 強力かつ/または大きく変動する干渉が存在する状態で測定を取得する方法
KR20170040329A (ko) 통신 시스템에서의 측정 향상을 위한 방법들 및 장치들
US11006286B2 (en) Operation in an environment with two different radio access technologies
US10645661B2 (en) Configuring discovery signals
KR101456700B1 (ko) 상향링크 채널 추정 방법 및 통신 시스템
JP2018538735A (ja) ワイヤレス通信ネットワークにおけるシグナリングを管理するためのワイヤレスデバイス、無線ネットワークノード、及びそれらにおいて実行される方法
WO2017000263A1 (zh) 一种参考信号发送方法及装置
CN109379751A (zh) 邻区上报方法及装置、可读存储介质、用户设备、基站
US9986494B2 (en) Small cell discovery method and system, base station, and user equipment, and communication apparatus
CN103945446B (zh) 对新载波类型进行无线通信管理的方法以及辅助方法
CN104995860B (zh) 一种无线资源管理的测量方法、设备及系统
JP7471430B2 (ja) 無線デバイスが動作シナリオ間で遷移するときの遷移段階中の動作のためのシステムおよび方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896423

Country of ref document: EP

Kind code of ref document: A1