WO2019098410A1 - Photographing time display device, and device and method for diagnosing sleep-disordered breathing by using time display device - Google Patents

Photographing time display device, and device and method for diagnosing sleep-disordered breathing by using time display device Download PDF

Info

Publication number
WO2019098410A1
WO2019098410A1 PCT/KR2017/012985 KR2017012985W WO2019098410A1 WO 2019098410 A1 WO2019098410 A1 WO 2019098410A1 KR 2017012985 W KR2017012985 W KR 2017012985W WO 2019098410 A1 WO2019098410 A1 WO 2019098410A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
state
oxygen saturation
electromyogram
breathing
Prior art date
Application number
PCT/KR2017/012985
Other languages
French (fr)
Korean (ko)
Inventor
한병삼
Original Assignee
주식회사 선테크
한병삼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 선테크, 한병삼 filed Critical 주식회사 선테크
Publication of WO2019098410A1 publication Critical patent/WO2019098410A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]

Definitions

  • the present invention relates to an apparatus and method for diagnosing a sleeping breath disorder using a time display apparatus and a time display apparatus, and more particularly, to an apparatus and method for detecting a sleeping state and a respiratory disorder, And more particularly, to a device and a method for diagnosing a sleeping breath disorder using a time display device.
  • sleep disorders are disorders in which a person can not take a healthy sleep, takes a sufficient amount of time to sleep, but does not maintain a state of alertness during daytime activity, or has a disordered sleep rhythm.
  • Sleep disturbances can be caused by a variety of causes, but sleep disordered breathing disorders are common. Examples of sleeping breathing disorders include snoring and sleep apnea.
  • the sleep apnea is a disease characterized by repetitive obstruction of the upper airway during sleep, which lowers nighttime sleep efficiency, hinders deep sleep, and lowers blood oxygen saturation.
  • the diagram image obtained by drawing the shape of the oral pharyngeal region corresponding to each moment from the multi-level sectional images obtained at each moment as a result of the oral pharyngeal examination by electron beam tomography is derived, And to analyze the change of the oral pharynx and the location of stenosis and occlusion more precisely.
  • a photographing apparatus for photographing a cross-sectional image uses radiation, so that a photographer other than a patient (or a photographer) or a photographer operates the tomography apparatus in a place isolated from the tomography apparatus.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a display device capable of accurately detecting a respiratory anomaly during a sleeping of a patient and displaying a tomographic imaging time point.
  • the present invention reproduces the three-dimensional structure of the airway using a two-dimensional sectional image and reproduces the movement of the three-dimensional structure with the passage of time, thereby realizing a more accurate detection of the degree,
  • a display device, a time display device, and a method for diagnosing a sleeping breathing disorder are included in the present invention.
  • the present invention also relates to a photographing time display device, a sleeping breathing trouble diagnosis device and a method using the time display device, which can improve the visibility of position and degree of occurrence of stenosis and closure by comparing three- .
  • the present invention also provides an apparatus and method for diagnosing sleep-disordered breathing using a point-of-view display apparatus and a point-and-click display apparatus capable of obtaining accurate information on the position and degree of obstruction and obstruction through various graph analysis .
  • Another object of the present invention is to provide an apparatus and method for diagnosing a sleeping breath disorder using a pointing device capable of enlarging a part of a displayed graph and displaying data in a specific section in detail.
  • an imaging time display apparatus includes an electromyogram detection unit for detecting an electromyogram of a subject, an oxygen saturation detection unit for detecting an oxygen saturation of the subject, a breathing state detection unit for detecting a respiration state of the examinee, A signal conversion unit for converting the detection results of the electromyogram detection unit, the oxygen saturation degree detection unit, and the breathing state detection unit into a digital signal; and an arithmetic processing unit for receiving the electromyogram, oxygen saturation, An arithmetic processing unit for calculating an exponent, and a display unit for displaying the apnea index calculated by the arithmetic processing unit and indicating that photographing is possible.
  • the arithmetic processing unit may weight the electromyogram, the oxygen saturation, and the respiration state, respectively, so that the apnea index can be determined by the breathing state element.
  • each of the EMG and the oxygen saturation may be used to check whether the respiratory state element is erroneous, without giving weight to the determination of the apnea index.
  • the arithmetic processing unit calculates apnea index using the following equation (1).
  • the display unit includes an exponential display unit for displaying the apnea index numerically, a graphical display unit 62 for displaying the degree of apnea index in a graph, ).
  • the apparatus for diagnosing a sleeping breath disorder using the viewpoint display apparatus includes a two-dimensional image processing unit 100 for processing a cross-sectional image of an oral pharyngeal region photographed through the image capturing means 110; A three-dimensional image processing unit 300 for forming a three-dimensional model of the oral pharynx using the image processed by the two-dimensional image processing unit 100; An animation processing unit 400 for shaping the movement of the oral pharynx using the three-dimensional image of the three-dimensional image processing unit 300; A graph processor 500 for providing a graph indicating the constriction and the closed interval of the oral pharynx using the minimum area, the maximum area, and the average area of the oral pharynx; A wearable device 600 that is usually worn by the examinee to provide normal sleep time and water level data; A control unit 700 for receiving the sleeping time and sleeping degree data of the wearable device 600 through the communication unit 710 and determining the reliability of the inspection; An electromyogram detecting unit, an oxygen saturation detecting unit,
  • the graph processor 500 obtains a percentage of a difference between a maximum area and a minimum area with respect to a maximum area of the oral pharynx, and displays the percentage of difference between the maximum area and the minimum area at each position of the three-
  • the exact location and extent of the stenosis is indicated by determining the area of the awakening state and the minimum area of the oral pharyngeal position in the sleeping state so that the occurrence of the snoring can be confirmed and the total airway area of the three-
  • the average airway area is divided by the scan time, and the stage of the sleeping person's sleep disorder can be confirmed.
  • the method for diagnosing a sleeping breathing disorder using the viewpoint display apparatus includes the steps of: a) extracting a two-dimensional cross-sectional image of the oral pharyngeal region photographed through the image capturing means 110, ; b) forming a three-dimensional model of the oral pharynx by laminating the oral pharyngeal two-dimensional images on a position-by-position basis and rendering an interval therebetween; c) arranging the three-dimensional models of the oral pharynx in chronological order, and interpolating and animating the three-dimensional models; d) The percentage of the difference between the maximum area and the minimum area for the maximum area of the three-dimensional model of the oral pharynx is obtained and displayed for each position of the three-dimensional model of the oral pharynx to determine whether or not the snoring has occurred Or displays the minimum area of each position of the three-dimensional model of the oral cavity in the awakening state and the sleeping state to indicate the exact position and degree of occurrence of
  • the normal sleeping time and sleeping degree data of the examinee can be received from the wearable device worn by the examinee, and the reliability of the diagnosis result can be evaluated.
  • the photographing time point display apparatus detects the electromyogram and the oxygen saturation in the sleep state of the patient to measure whether or not the breathing abnormality is in the sleep state and displays the measurement result so that the photographer at another isolated position can easily confirm it, So that the radiation exposure of the patient can be minimized.
  • an apparatus and method for diagnosing a sleeping breath disorder using the time display apparatus of the present invention can reproduce a three-dimensional structure of airway using a two-dimensional sectional image and reproduce the movement of a three- Accurate detection of the degree, position, and timing of the subject can be performed, thereby enabling accurate diagnosis.
  • the present invention can improve visibility by mapping color according to the position and degree of stenosis and obstruction by comparing the three-dimensional structure at the time of awakening and sleep, thereby providing a diagnostic result that can be easily understood even from the standpoint of a non-specialist There is an effect.
  • the present invention can obtain accurate information on the position and degree of stenosis and obstruction through various graph analysis, and it is possible to perform an objective diagnosis without subjective judgment intervention of an expert.
  • the present invention can enlarge and display a part of the graph by selecting a part of the graph, thereby enabling more accurate data analysis.
  • FIG. 1 is a configuration diagram of a photographing time display apparatus according to a preferred embodiment of the present invention.
  • FIG. 2 is a waveform diagram showing an example of an airflow waveform detected by the breathing state detecting unit 30.
  • FIG. 2 is a waveform diagram showing an example of an airflow waveform detected by the breathing state detecting unit 30.
  • FIG. 3 is a waveform diagram showing an example of the carbon dioxide concentration waveform detected by the breathing state detecting unit 30. As shown in FIG.
  • Fig. 4 is a configuration diagram of one embodiment of the display unit 60.
  • FIG. 5 is a block diagram of a sleeping breathing disorder diagnosis apparatus according to a preferred embodiment of the present invention.
  • FIG. 6 is an example of a screen of the display unit 800 in a state where a region of interest is detected in a two-dimensional sectional image.
  • FIG. 7 is an example of a screen of the display unit 800 that displays the completed three-dimensional model of the oral pharyngeal.
  • FIG. 8 is a result of mapping a color to a three-dimensional modeling result in the volume rendering module 310 using the color mapping module 320 of the 3D image processing unit 300.
  • 9 to 12 are examples of a test result graph processed in the graph processor 500, respectively.
  • EMG detector 20 Oxygen saturation detector
  • ROI extraction module 200 ROI extraction module 200:
  • 300 three-dimensional image processing unit 310: volume rendering module
  • control unit 710 communication unit
  • &quot comprises " and / or " comprising " when used herein should be interpreted as specifying the presence of stated shapes, numbers, steps, operations, elements, elements, and / And does not preclude the presence or addition of one or more other features, integers, operations, elements, elements, and / or groups.
  • " and / or &quot includes any and all combinations of one or more of the listed items.
  • first, second, etc. are used herein to describe various elements, regions and / or regions, it is to be understood that these elements, parts, regions, layers and / . These terms do not imply any particular order, top, bottom, or top row, and are used only to distinguish one member, region, or region from another member, region, or region. Thus, the first member, region or region described below may refer to a second member, region or region without departing from the teachings of the present invention.
  • FIG. 1 is a configuration diagram of a photographing time display apparatus according to a preferred embodiment of the present invention.
  • a photographing time display apparatus includes an electromyogram detecting unit 10 for detecting an electromyogram of a sleeping breathing obstacle examinee (patient), an oxygen saturation detecting unit 10 for detecting an oxygen saturation of a sleeping breathing obstacle examinee A respiration state detecting unit 30 for measuring the respiratory flow of the sleeping breathing obstacle examinee and a detection result of the electromyogram detecting unit 10, the oxygen saturation detecting unit 20 and the breathing state detecting unit 30, An arithmetic processing unit 50 for assigning weights to the elements of the output of the signal converting unit 40 and outputting the result of the arithmetic operation, And displays the result of the calculation in a different color according to the numerical value, thereby making it easy for the photographer at a distance to check the display.
  • the electromyogram detecting unit 10 detects the electrical activity state of the muscles used by the sleeping patient while breathing. Normally, when the muscle is contracted or stimulated, electrical activity occurs and current is generated. In the apnea state, no current is generated because the muscle is not contracted or stimulated.
  • the detection of EMG can be used as an element to confirm sleeping breathing disorder status.
  • Oxygen saturation refers to the ratio of the amount of hemoglobin bound to oxygen in the blood as a ratio. In the apnea state, the ratio of oxygen to bound hemoglobin is measured to determine whether the patient is in a normal breathing state or in an apnea state.
  • the oxygen saturation detecting unit 20 can detect the breathing state by detecting the ratio of the hemoglobin combined with the oxygen.
  • the breathing state detector 30 directly measures the breathing state of the sleeping breathing obstacle examinee. It is possible to measure the air flow generated by respiration by separating the inspiration from the expiration by establishing the air flow sensor around the nose and mouth of the examinee and to confirm the state without respiration.
  • FIG. 2 is a waveform diagram showing an example of an airflow waveform detected by the breathing state detecting unit 30.
  • FIG. 2 is a waveform diagram showing an example of an airflow waveform detected by the breathing state detecting unit 30.
  • the breathing state detector 30 outputs a signal of a specific waveform in a direction in which the voltage increases in the breath interval and a waveform in which the voltage decreases in the breath interval.
  • the section where the waveform is regularly repeated is a section in which normal breathing is performed.
  • the section where the voltage is maintained without changing the voltage after the breath section is the breath section after the breath section is not started, Is present.
  • the duration of the apnea interval A has continued for a predetermined time or more, it can be determined that the apnea is currently in the sleep state. Specifically, if the duration of the apnea interval A is 5 seconds or more, it can be determined that the apnea state is the apnea state.
  • the breathing state detection unit 30 further includes a sensor for detecting carbon dioxide in addition to the sensor for detecting the direction and intensity of the airflow.
  • FIG. 3 is a waveform diagram showing an example of the carbon dioxide concentration waveform detected by the breathing state detecting unit 30. As shown in FIG.
  • the concentration of carbon dioxide detected by the breathing state detecting unit 30 increases with exhalation, decreases with the concentration of carbon dioxide in the atmosphere upon inhalation, and decreases with the concentration of carbon dioxide in the atmospheric state even in the apneic interval.
  • the concentration of carbon dioxide is indicated by 50 and 25, not the measured concentration, but the set value, the maximum concentration of carbon dioxide is 50, and the average value is 25.
  • the maximum value of the concentration of carbon dioxide in the normal breathing state is set to 50, and the average value is set to 25.
  • the value is 3 ⁇ 4, which is much lower than 25.
  • the set value of the carbon dioxide detected by the breathing state detecting unit 30 can be understood as a value previously converted to calculate the apnea index.
  • the results detected by the electromyogram detector 10, the oxygen saturation detector 20, and the breathing state detector 30 are supplied to the signal converter 40 and converted into digital signals.
  • the signals converted by the signal converting unit 40 are input to the arithmetic processing unit 50, and the arithmetic processing unit 50 outputs the result indicating the shooting time according to the respiration state in consideration of each signal.
  • the arithmetic processing unit 50 may be a processor including a specific algorithm and may be configured to assign weights to detection results of the electromyogram detector 10, the oxygen saturation detector 20 and the respiration state detector 30, To calculate the apnea index.
  • the arithmetic processing unit 50 sets the weight of the detection result of the respiration state detection unit 30 to the highest and the weight of the detection result of the electromyogram detection unit 10 to the lowest.
  • the respiration state detecting unit 30 measures the change in the concentration (set value) of carbon dioxide by direct breathing, and thus the detection result with high accuracy and reliability can be obtained.
  • the detection result of the electromyogram detecting unit 10 The result can be included by the motion, and reliability can be lowered.
  • the algorithm used in the arithmetic processing unit 50 can be expressed by the following equation (1).
  • the measured carbon dioxide level (breathing level) and the normal carbon dioxide level are average values during the set time (5 seconds, etc.). In the normal case, the value is 25. As described above, If the value is low, it can be judged to be the inspiratory section or the apnea section.
  • a value significantly lower than 25 lasts more than 5 seconds, it can be specified as the apnea interval.
  • i, j and k are values that can be set by the operator, i is 0.5 to 0.8 (50 to 80% weighted), j is 0.1 to 0.3 (10 to 30% To 0.2 (10 to 20% weighted value).
  • the calculated carbon dioxide level is 4 indicating an apnea state and the normal carbon dioxide level is 25, and when i representing a weight value of the respiratory state is 0.8, the calculation result for the breathing state element is 12.8, This value, the calculated value for the oxygen saturation factor, and the calculated value of the EMF variance element are added, and then the apnea index, which is the value obtained by subtracting 100 from the calculated value, is at least 50 or more.
  • the carbon dioxide level is 25
  • the calculation result for the breathing state element is 80 and the apnea index is less than 20.
  • the apnea index has a larger value when it is in the apnea state, and the apnea state can be confirmed by comparing the calculated apnea index with a certain reference value.
  • the criterion that can be taken is based on the time when the apnea index is 50.
  • the oxygen saturation (SPO2) is 97% normal and less than 95% hypoxemia based on the arterial blood pressure (SaO2). Severity is less than 75%.
  • the severe 70% is measured in Equation 1, and when the weight j is 0.1, the calculated value of the oxygen saturation factor is 0.93, which is a very small value.
  • Such an oxygen saturation factor has a great influence on the judgment of the sleep apnea And can be used to check the reliability of the above respiratory condition elements or the malfunction of the device.
  • the EMG element is also a smaller value than the oxygen saturation element and can be used to check the reliability of the respiratory state element and the malfunction of the device, rather than to determine the apnea state.
  • the processing result of the arithmetic processing unit 50 is displayed on the display unit 60.
  • Fig. 4 is a configuration diagram of one embodiment of the display unit 60.
  • the display unit 60 includes an exponent display unit 61 for displaying the apnea index processed by the arithmetic processing unit 50 in numerical form and a display unit for displaying the degree of the apnea index in a graph, As shown in FIG.
  • the photographing time display apparatus detects the breathing state, the electromyogram and the oxygen saturation of the examinee who is examined for the sleeping breathing disorder, checks whether there is an abnormality in the current breathing, It is possible to solve the conventional problem that it is difficult to confirm the respiration state of the current examinee by being located at a long distance.
  • the data of the arithmetic processing unit 50 may be used as input data of the sleeping breathing fault diagnosis apparatus, which will be described in more detail later.
  • FIG. 5 is a block diagram of an apparatus for diagnosing a sleep-disordered breathing using a viewpoint display apparatus according to a preferred embodiment of the present invention.
  • the apparatus for diagnosing a sleeping breath disorder using the viewpoint display apparatus includes a two-dimensional image processing unit 100
  • a 3D image processor 300 for converting the image of the two-dimensional image processor 100 into a three-dimensional image
  • a control unit 300 for controlling the three- An animation processing unit 400 for shaping the movement of the oral pharynx using the three-dimensional image of the mouth 300, a graph processing unit 500 for displaying a test result in a graph according to an operator input through the interface unit 200,
  • a control unit 700 for receiving the information detected by the wearable device 600 worn by the wearer through the communication unit 710 to judge the quality of the sleeping surface and reflecting the result on the inspection result and controlling each part;
  • Image location A display unit 800 for displaying processing results of the display unit 100, the three-dimensional image processing unit 300, the animation processing unit 400, and the graph processing unit 500;
  • An oxygen saturation degree, and a respiration state to confirm the EMG, oxygen saturation, and respiration state at the time of photographing of the sectional image
  • the image photographing means 110 is a means capable of photographing a section of the oral pharyngeal, such as an electron beam tomograph, a magnetic resonance photographing apparatus, etc., and can be used regardless of the specific means.
  • the image capturing means 110 performs multi level shooting for changing the position a plurality of times and photographing a plurality of times at the same position so as to confirm the shape change of the oral ocular at each position with the passage of time Dimensional cross-sectional image can be obtained.
  • the two-dimensional sectional image photographed by the image photographing means 110 is stored in the two-dimensional image processing unit 100.
  • the operator can input a control command through the interface unit 200 and display the control command on the display unit 800 .
  • the image capturing means 110 photographs a single layer, the tomographic image of the human body region including the shape of the oral cavity to be treated in the present invention is photographed, and the mouth pharyngeal region occupying only a part of the pixel region in the two- .
  • the two-dimensional image processing unit 100 preferably includes a ROI extraction module 120 for extracting and extracting only the mouth pharyngeal region as a ROI.
  • the ROI module 120 is equipped with an algorithm for finding the mouth pharynx in a two-dimensional sectional image, and the algorithm can be applied in various ways.
  • the image displayed on the display unit 800 is checked to display some pixels of the oral pharynx
  • the point of interest extraction module 120 detects the pixels adjacent to the initial point and the brightness range within a predetermined initial point and brightness range to designate a region of interest and extract the region of interest.
  • FIG. 6 is an example of a screen of the display unit 800 in a state where a region of interest is detected in a two-dimensional sectional image.
  • the two-dimensional image processing unit 100 can extract only the sectional images of the oral pharyngeal used for the diagnosis of the sleep-disordered breathing using the ROI extraction module 120.
  • Another example of an algorithm that can be used in the ROI module 120 is to store data of various types of oral pharyngeal cross-sectional images and to set the ROI as a region of interest by searching for a shape similar to the oral pharyngeal cross-sectional image in the current cross-sectional image Can be used.
  • the three-dimensional image processing unit 300 After extracting only the section image of the oral pharyngeal region as an area of interest in the two-dimensional image processing unit 100, the three-dimensional image processing unit 300 models the oral pharyngeal image as a three-dimensional image using the extracted sectional images of the oral pharyngeal region.
  • the three-dimensional image processing unit 300 includes a volume rendering module 310 for forming a three-dimensional model by stacking two-dimensional sectional images of the extracted oral pharyngeus, a volume rendering module 310 for forming a three- And a color mapping module 320 for mapping the color to the 3D model to increase the visibility.
  • the volume rendering module 310 stacks the sectional images of the oral cavity extracted from the two-dimensional image processing unit 100 in a virtual three-dimensional space according to the positions thereof, and performs volume rendering Algorithm to form a three-dimensional model of the oral pharyngeal.
  • the three-dimensional model of the oral pharynx is different according to the change of time (change of respiration), and therefore, the three-dimensional models of the oral pharynx are arranged in chronological order, and the shape of the oral pharynx do.
  • FIG. 7 is an example of a screen of the display unit 800 that displays the completed three-dimensional model of the oral pharyngeal.
  • the three - dimensional model of the oral pharyngeal can be rotated to the left and right, which makes it easy to identify anterior or posterior stenosis or bilateral stenosis which can not be confirmed in a two - dimensional image.
  • the present invention can receive a signal of the photographing time display device that detects the EMG, oxygen saturation, and breathing state at the photographing time described above through the external interface unit 900, and can input the inputted EMG, oxygen saturation, And images can be compared to make a more accurate diagnosis.
  • the image taken using the image capturing means 110 is photographed when the subject is awake and in the sleep state, and the change in the shape of the oral pharynx in the awakening state and the sleep state can be easily compared through the three-dimensional model.
  • FIG. 8 is a result of mapping a color to a three-dimensional modeling result in the volume rendering module 310 using the color mapping module 320 of the 3D image processing unit 300.
  • the color mapping module 320 operates according to an algorithm for mapping and displaying different colors according to the degree of stenosis and closure so that predetermined colors are mapped according to the degree of stenosis and occlusion.
  • a portion indicated by a red color is a portion where a lesion is suspected due to intense stenosis or obstruction.
  • the oral pharynx is generated as a three-dimensional model, and the lesion suspicious part can be easily identified by displaying different colors according to the degree of stenosis and occlusion, and the degree can be easily confirmed.
  • the three-dimensional image processing unit 300 performs three-dimensional modeling and color mapping of the oral pharyngeal, and the result is processed as a moving image in the animation processing unit 400.
  • the three-dimensional image generated by the three-dimensional image processing unit 300 is an image of the shooting moment of the image shooting unit 110, and the animation processing unit 400 arranges the three-dimensional images in chronological order.
  • the three-dimensional image can be animated by determining the change process of the arranged three-dimensional images as the change over the same time as the photographing time interval of the image photographing means 110.
  • the present invention can more clearly confirm the difference in shape change of the oral pharyngeal during respiration in the sleeping or awake state.
  • the graph processing unit 500 controls the position, degree, degree of treatment, and whether or not the operation is performed according to the degree and degree of stenosis and closure by the control unit 700, which receives the control command of the operator through the interface unit 200 Graphs the test results for easy identification.
  • the graph of the test result is displayed for each of the awakening state and the sleeping state, and various examination results can be confirmed using the maximum area, the minimum area, and the average area of the oral pharyngeal in each of the awakening state and the sleeping state.
  • FIG. 9 is an example of a graph of a test result processed in the graph processor 500.
  • FIG. 9 there is a graph of a percentage of a difference between a maximum area and a minimum area with respect to a maximum area at a corresponding height.
  • the x-axis represents the ratio (%) value
  • the y-axis represents the measurement position.
  • FIG. 10 is another example of the inspection result graph processed in the graph processing unit 500.
  • FIG. 10 is another example of the inspection result graph processed in the graph processing unit 500.
  • the graph processor 500 may display a minimum area of each position of the oral pharynx.
  • the x axis is the area
  • the y axis is the position, and indicates the minimum area of the oralopharyngeal position in the awakening state and the sleeping state.
  • FIG. 11 is another example of the inspection result graph processed in the graph processing unit 500.
  • FIG. 11 is another example of the inspection result graph processed in the graph processing unit 500.
  • the total airway area at each position is divided by the scan time, which is the average airway area of the examinee.
  • the mean airway area is the stage of sleep disturbance of the examinee, and the smaller the average airway area, the more dangerous it is.
  • the graphs shown in Figs. 9, 10, and 11 can be displayed on the display unit 800, respectively, and can be simultaneously displayed as shown in Fig. 12 to display a comprehensive result.
  • VI indicates the degree of vibration, which is the resultant value in FIG. 9, and TAMA, the average airway area, which is the resultant value in FIG.
  • the display unit 800 is configured by a touch screen method. When a specific position is displayed in a state where a graph is displayed, a graph of the corresponding position can be enlarged and displayed.
  • the above-described examples of the present invention are based on a two-dimensional tomographic image of a mouth pharynx taken at a hospital by a examinee visiting the hospital and performing a tomography of the oral pharynx in a state of awakening and sleeping. Because you can get narrower, you need to use your usual sleep data.
  • the wearable device 600 includes at least a sensor capable of detecting the sleeping time and the degree of the sleeping, and a communication means capable of transmitting sleeping time and degree data to the outside.
  • the wearable device 600 may be a smart band, a smart watch, or the like.
  • the communication means may be an internet connection, a short-range wireless communication, or a cable, and may be connected to an external device to transmit data on sleeping time and degree.
  • the communication unit 710 of the control unit 700 receives the normal sleeping time and sleeping degree data of the examinee from the wearable device 600 through a possible method such as an Internet connection, a near field wireless communication, a cable connection, And the reliability of the test results described above can be determined in consideration of this.
  • the reliability of the test result is evaluated to be low so that the test can be resumed.
  • the present invention enables to accurately determine the breathing state of the examinee from a distance, to know the photographing time point, to obtain the three-dimensional model of the oral pharynx of the examinee, to display the movement with time, What can be done accurately is the possibility of industrial application.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention relates to a photographing time display device and a device and method for diagnosing sleep-disordered breathing by using a time display device, the photographing time display device comprising: an electromyogram detection unit for detecting an electromyogram of an examinee; an oxygen saturation detection unit for detecting an oxygen saturation of an examinee; a breathing state detection unit for detecting a breathing state of an examinee; a signal conversion unit for converting detection results of the electromyogram detection unit, the oxygen saturation detection unit, and the breathing state detection unit into digital signals; a calculation processing unit for receiving and performing calculation of an electromyogram, an oxygen saturation, and a breathing state signal which have been converted into digital signals by the signal conversion unit, so as to obtain an apnea index; and a display unit for displaying an apnea index obtained by the calculation processing unit while indicating, by color, that photographing is possible.

Description

촬영 시점표시장치, 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법APPARATUS AND METHOD FOR DIAGNOSING REMOTE RESPIRATORY DEPRESSION USING SIGHTING TIME DISPLAY DEVICE
본 발명은 촬영 시점표시장치, 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법에 관한 것으로, 더 상세하게는 수면상태 및 호흡장애가 발생하는 시점을 정확하게 검출하여 수면성 호흡장애의 원인과 위치를 정확하게 검출할 수 있는 촬영 시점표시장치, 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for diagnosing a sleeping breath disorder using a time display apparatus and a time display apparatus, and more particularly, to an apparatus and method for detecting a sleeping state and a respiratory disorder, And more particularly, to a device and a method for diagnosing a sleeping breath disorder using a time display device.
일반적으로, 수면장애란 건강한 수면을 취하지 못하거나, 충분한 시간 동안 수면을 취했으나 낮의 활동시간에 각성 상태를 유지하지 못하는 상태 또는 수면리듬이 흐트러진 상태를 포함하는 장애이다.In general, sleep disorders are disorders in which a person can not take a healthy sleep, takes a sufficient amount of time to sleep, but does not maintain a state of alertness during daytime activity, or has a disordered sleep rhythm.
수면장애의 원인은 여러 가지가 있을 수 있으나, 일반적으로 수면성 호흡장애를 들 수 있다. 수면성 호흡장애의 예로는 코골이, 수면무호흡증이 있다. 상기 수면무호흡증은 수면 중 상기도의 반복적인 폐쇄를 특징으로 하는 질환이며, 이는 야간 수면 효율을 저하시켜 깊은 수면을 방해하며, 혈중 산소 포화도를 낮추는 문제점이 있었다.Sleep disturbances can be caused by a variety of causes, but sleep disordered breathing disorders are common. Examples of sleeping breathing disorders include snoring and sleep apnea. The sleep apnea is a disease characterized by repetitive obstruction of the upper airway during sleep, which lowers nighttime sleep efficiency, hinders deep sleep, and lowers blood oxygen saturation.
특히 이러한 수면성 호흡장애가 비만, 고혈압, 당뇨, 치매, 심혈관계 질환, 심장마비, 성기능 감퇴, 뇌혈관질환, 중풍, 신진대사 증후군의 발생과 매우 밀접한 관계가 있다는 연구결과들이 보고되고 있으며, 수면성 호흡장애를 진단하고 치료하기 위한 다양한 기술들이 개발되고 있다.Studies have shown that these sleeping breathing disorders are closely related to the occurrence of obesity, hypertension, diabetes, dementia, cardiovascular disease, heart failure, sexual dysfunction, cerebrovascular disease, stroke and metabolic syndrome, Various techniques for diagnosing and treating respiratory disorders have been developed.
종래 수면성 호흡장애를 진단하기 위한 기술로는 등록특허 10-0458421호(2004년 11월 15일 등록, 수면성호흡장애 진단을 위한 영상처리장치 및 방법)이 있다.As a conventional technique for diagnosing sleeping breathing disorder, there is a registered patent No. 10-0458421 (registered on Nov. 15, 2004, an image processing apparatus and method for sleeping breathing disorder diagnosis).
위의 등록특허에는 전자선단층촬영에 의한 구강인두 검사결과로 매 순간별로 얻어진 다수준의 단면 영상들로부터, 각 순간에 해당되는 구강인두영역에 대한 형태를 도식화한 다이어그램영상을 도출하고, 그 다이어그램영상을 활용하여 구강인두의 변화와 협착 및 폐색 위치를 보다 정확하게 분석할 수 있도록 한 것이다.In the registered patent, the diagram image obtained by drawing the shape of the oral pharyngeal region corresponding to each moment from the multi-level sectional images obtained at each moment as a result of the oral pharyngeal examination by electron beam tomography is derived, And to analyze the change of the oral pharynx and the location of stenosis and occlusion more precisely.
그러나 위의 등록특허는 다수준의 단면 영상을 통해 다이어그램 영상을 얻을 수 있으나, 다이어그램 영상 자체도 2차원의 영상이기 때문에 정확한 협착 위치와 정도를 파악하기 어려운 문제점이 있었다. However, since the above-mentioned patent can obtain a diagram image through a multi-level sectional image, the diagram image itself is also a two-dimensional image, so that it is difficult to accurately grasp the position and degree of the stenosis.
이는 2차원 영상이 가지는 한계에 의한 것이며, 전방과 후방측으로 일어나는 폐색의 경우 전방에서 2차원 단면을 촬영하였을 때는 폐색이 발견되지 않을 수 있으며, 이와 동일하게 좌측과 우측방향에서 중앙을 향해 나타나는 폐색의 경우 측면에서 촬영된 2차원 영상에서는 폐색의 정도와 위치가 정확하게 나타나지 않을 수 있기 때문이다.This is due to the limitations of the 2D image. In the case of occlusion occurring in the anterior and posterior sides, occlusion may not be found when the two-dimensional section is taken from the front. Similarly, occlusion in the left and right direction This is because the degree and position of occlusion may not be accurately displayed in 2D images taken from the side.
또한 종래에는 2차원 단면 영상과 다이어그램 영상을 표시하여 전문가 수준에서 이해될 수 있는 진단결과를 얻을 수 있는 것으로 전문 지식이 없는 환자의 입장에서는 이해가 어렵고, 영상을 해석하기 위해 전문가의 주관적인 판단이 개입되기 때문에 동일한 영상을 두고도 전문가마다 판단에 차이가 있을 수 있어 신뢰성이 저하되는 문제점이 있었다.In addition, conventional 2D sectional images and diagram images can be displayed to obtain diagnosis results that can be understood at the expert level. It is difficult to understand from the viewpoint of the patient who does not have expert knowledge, and subjective judgment of experts is intervened Therefore, there is a problem that reliability may be deteriorated because there may be a difference in judgment among experts even if the same image is placed.
그리고 알려진 바와 같이 단면 영상을 촬영하는 촬영장치는 방사선을 사용하며, 따라서 환자(또는 수진자) 이외의 수진자 또는 촬영자는 단층촬영장치와 격리된 곳에서 단층촬영장치를 조작하게 된다.As is known, a photographing apparatus for photographing a cross-sectional image uses radiation, so that a photographer other than a patient (or a photographer) or a photographer operates the tomography apparatus in a place isolated from the tomography apparatus.
이때, 환자가 수면상태인지 또한 수면상태에서 호흡 이상 상태인지를 확인할 방법이 없어서, 촬영 시점을 포착하기가 매우 곤란하다. 현재는 수면을 시작한 후 일정한 시간이 경과한 후에 촬영을 시작하는 방법을 사용하고 있으나, 현재 호흡 이상 상태인지를 정확하게 판단할 수 없기 때문에 단층 촬영을 여러 번 반복적으로 시도하게 될 수 있고 그만큼 환자는 방사선에 더 많이 노출되는 문제점이 있었다.At this time, since there is no way to confirm whether the patient is in the sleep state or in the sleep state, it is very difficult to capture the shooting time. However, since it is not possible to accurately determine whether the patient is in the state of breathing abnormality, the patient may be repeatedly attempted tomography several times, Which is a problem in that it is exposed more.
상기와 같은 문제점을 해결하기 위한 본 발명의 과제는, 환자의 수면 중 호흡 이상 상태를 정확하게 검출하여, 단층 영상 촬영시점을 표시할 수 있는 표시장치를 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a display device capable of accurately detecting a respiratory anomaly during a sleeping of a patient and displaying a tomographic imaging time point.
또한, 본 발명은 2차원 단면 영상을 이용하여 기도의 3차원 구조를 재현하고, 시간의 흐름에 따른 3차원 구조의 움직임을 재현함으로써, 기도 폐색의 정도, 위치, 시기의 정확한 검출이 가능한 촬영 시점표시장치, 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법을 제공함에 있다.In addition, the present invention reproduces the three-dimensional structure of the airway using a two-dimensional sectional image and reproduces the movement of the three-dimensional structure with the passage of time, thereby realizing a more accurate detection of the degree, A display device, a time display device, and a method for diagnosing a sleeping breathing disorder.
또한 본 발명은 각성시와 수면시 3차원 구조를 비교하여 협착 및 폐쇄가 발생하는 위치 및 정도에 대한 가시성을 향상시킬 수 있는 촬영 시점표시장치, 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법을 제공함에 있다.The present invention also relates to a photographing time display device, a sleeping breathing trouble diagnosis device and a method using the time display device, which can improve the visibility of position and degree of occurrence of stenosis and closure by comparing three- .
또한 본 발명은 다양한 그래프 분석을 통해 협착과 폐색의 위치 및 정도에 대한 정확한 정보를 얻을 수 있어 객관적인 진단이 가능한 촬영 시점표시장치, 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법을 제공함에 있다.The present invention also provides an apparatus and method for diagnosing sleep-disordered breathing using a point-of-view display apparatus and a point-and-click display apparatus capable of obtaining accurate information on the position and degree of obstruction and obstruction through various graph analysis .
아울러 본 발명은 표시되는 그래프의 일부를 확대하여 특정 구간에서의 데이터를 상세히 표시할 수 있는 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법을 제공함에 있다.Another object of the present invention is to provide an apparatus and method for diagnosing a sleeping breath disorder using a pointing device capable of enlarging a part of a displayed graph and displaying data in a specific section in detail.
상기와 같은 과제를 해결하기 위한 본 발명 촬영 시점표시장치는, 수진자의 근전도를 검출하는 근전도 검출부와, 수진자의 산소포화도를 검출하는 산소포화도 검출부와, 수진자의 호흡상태를 검출하는 호흡상태 검출부와, 상기 근전도 검출부, 산소포화도 검출부 및 호흡상태 검출부의 검출결과를 디지털신호로 변환하는 신호변환부와, 상기 신호변환부에서 디지털신호로 변환된 근전도, 산소포화도 및 호흡상태신호를 입력받아 연산처리하여 무호흡지수를 산출하는 연산처리부와, 상기 연산처리부에서 산출된 무호흡지수를 표시함과 아울러 촬영이 가능함을 색상으로 표시하는 표시부를 포함한다.In order to solve the above problems, an imaging time display apparatus according to the present invention includes an electromyogram detection unit for detecting an electromyogram of a subject, an oxygen saturation detection unit for detecting an oxygen saturation of the subject, a breathing state detection unit for detecting a respiration state of the examinee, A signal conversion unit for converting the detection results of the electromyogram detection unit, the oxygen saturation degree detection unit, and the breathing state detection unit into a digital signal; and an arithmetic processing unit for receiving the electromyogram, oxygen saturation, An arithmetic processing unit for calculating an exponent, and a display unit for displaying the apnea index calculated by the arithmetic processing unit and indicating that photographing is possible.
본 발명의 일실시예에 따르면, 상기 연산처리부는, 상기 근전도, 산소포화도 및 호흡상태 각각에 대하여 가중치를 두어, 호흡상태요소에 의해 무호흡지수가 결정될 수 있다.According to an embodiment of the present invention, the arithmetic processing unit may weight the electromyogram, the oxygen saturation, and the respiration state, respectively, so that the apnea index can be determined by the breathing state element.
본 발명의 일실시예에 따르면, 상기 근전도와 산소포화도 각각은 가중치를 낮게 부여하여, 무호흡지수의 결정에 영향을 주지 않고, 상기 호흡상태요소의 오류 여부를 확인하기 위해 사용할 수 있다.According to an embodiment of the present invention, each of the EMG and the oxygen saturation may be used to check whether the respiratory state element is erroneous, without giving weight to the determination of the apnea index.
본 발명의 일실시예에 따르면, 상기 연산처리부는 아래의 수학식1을 통해 무호흡지수를 산출하는 것을 특징으로 하는 촬영 시점표시장치.According to an embodiment of the present invention, the arithmetic processing unit calculates apnea index using the following equation (1).
본 발명의 일실시예에 따르면, 상기 수학식1에서, 가중치 i, j, k는 설정 가능한 값이며, i는 0.5~0.8(50~80% 가중치), j는 0.1~0.3(10~30% 가중치), k = 0.1~0.2(10~20% 가중치)일 수 있다.According to an embodiment of the present invention, the weighting factors i, j and k are settable values, i is 0.5 to 0.8 (50 to 80% weighted), j is 0.1 to 0.3 (10 to 30% Weight), and k = 0.1 to 0.2 (10 to 20% weighted).
본 발명의 일실시예에 따르면, 상기 표시부는, 상기 무호흡지수를 숫자로 표시하는 지수표시부와, 무호흡 지수의 정도를 그래프로 표시하되 호흡상태와 무호흡상태를 색상으로 구분하여 표시하는 그래픽표시부(62)를 포함할 수 있다.According to an embodiment of the present invention, the display unit includes an exponential display unit for displaying the apnea index numerically, a graphical display unit 62 for displaying the degree of apnea index in a graph, ).
또한, 본 발명의 일측면에 따른 시점표시장치를 이용한 수면성 호흡장애 진단장치는, 영상촬영수단(110)을 통해 촬영된 구강인두 영역의 단면 영상을 처리하는 2차원 영상처리부(100)와; 상기 2차원 영상처리부(100)에서 처리된 영상을 이용하여 구강인두의 3차원 모델을 형성하는 3차원 영상처리부(300)와; 상기 3차원 영상처리부(300)의 3차원 영상을 이용하여 구강인두의 움직임을 형상화하는 에니메이션처리부(400)와; 상기 구강인두의 최소면적, 최대면적, 평균면적을 이용하여 구강인두의 협착 및 폐쇄 구간을 표시하는 그래프를 제공하는 그래프처리부(500)와; 수진자가 평소 착용하여 평상시 수면 시간과 수면 정도 데이터를 제공하는 웨어러블 장치(600)와; 상기 웨어러블 장치(600)의 수면 시간과 수면 정도 데이터를 통신부(710)를 통해 수신하여 검사의 신뢰성을 판단하는 제어부(700)와; 수진자의 근전도, 산소포화도, 호흡상태를 각각 검출하는 근전도 검출부, 산소포화도 검출부, 호흡상태 검출부와, 상기 근전도 검출부, 산소포화도 검출부 및 호흡상태 검출부의 검출결과를 디지털신호로 변환하는 신호변환부와, 상기 신호변환부에서 디지털신호로 변환된 근전도, 산소포화도 및 호흡상태신호를 입력받아 연산처리하여 무호흡지수를 산출하는 연산처리부와, 상기 연산처리부에서 산출된 무호흡지수를 표시함과 아울러 촬영이 가능함을 색상으로 표시하는 표시부를 구비하는 촬영 시점표시장치로부터 촬영시점에서의 근전도, 산소포화도 및 호흡상태를 수신하여 상기 제어부(700)에 제공하는 외부인터페이스부(900)를 포함할 수 있다.The apparatus for diagnosing a sleeping breath disorder using the viewpoint display apparatus according to one aspect of the present invention includes a two-dimensional image processing unit 100 for processing a cross-sectional image of an oral pharyngeal region photographed through the image capturing means 110; A three-dimensional image processing unit 300 for forming a three-dimensional model of the oral pharynx using the image processed by the two-dimensional image processing unit 100; An animation processing unit 400 for shaping the movement of the oral pharynx using the three-dimensional image of the three-dimensional image processing unit 300; A graph processor 500 for providing a graph indicating the constriction and the closed interval of the oral pharynx using the minimum area, the maximum area, and the average area of the oral pharynx; A wearable device 600 that is usually worn by the examinee to provide normal sleep time and water level data; A control unit 700 for receiving the sleeping time and sleeping degree data of the wearable device 600 through the communication unit 710 and determining the reliability of the inspection; An electromyogram detecting unit, an oxygen saturation detecting unit, a breathing state detecting unit, a signal converting unit for converting detection results of the electromyogram detecting unit, the oxygen saturation detecting unit, and the breathing state detecting unit into digital signals, An arithmetic processing unit which receives the electromyogram, the oxygen saturation and the respiration state signal converted into the digital signal by the signal converting unit and calculates the apnea index by calculating the apnea index and the apnea index calculated by the arithmetic processing unit, And an external interface unit 900 for receiving the EMG, oxygen saturation, and breathing state at the time of photographing from the photographing time display apparatus having a display unit for displaying in color, and providing the received EMG, oxygen saturation, and breathing state to the control unit 700.
본 발명의 일실시예에 따르면 상기 그래프처리부(500)는, 상기 구강인두의 최대면적에 대한 최대면적과 최소면적의 차의 백분률을 구하여, 상기 구강인두의 3차원 모델의 위치마다 표시함으로써, 코골이의 발생여부를 확인할 수 있도록 하며, 각성 상태와 수면 상태의 구강인두 위치별 최소면적을 구하여, 협착이 일어나는 정확한 위치와 정도를 표시하며, 상기 구강인두의 3차원 모델의 기도 면적의 총합을 스캔시간으로 나누어 평균 기도 면적을 구하여, 수진자의 수면장애의 단계를 확인할 수 있다.According to an embodiment of the present invention, the graph processor 500 obtains a percentage of a difference between a maximum area and a minimum area with respect to a maximum area of the oral pharynx, and displays the percentage of difference between the maximum area and the minimum area at each position of the three- The exact location and extent of the stenosis is indicated by determining the area of the awakening state and the minimum area of the oral pharyngeal position in the sleeping state so that the occurrence of the snoring can be confirmed and the total airway area of the three- The average airway area is divided by the scan time, and the stage of the sleeping person's sleep disorder can be confirmed.
아울러 본 발명의 다른 측면에 따른 시점표시장치를 이용한 수면성 호흡장애 진단방법은, a) 영상촬영수단(110)을 통해 촬영된 구강인두 영역의 2차원 단면 영상으로부터 관심영역인 구강인두 2차원 영상을 추출하는 단계와; b) 상기 구강인두 2차원 영상을 위치별로 적층하고, 그 사이 간격을 랜더링하여 구강인두의 3차원 모델을 형성하는 단계와; c) 상기 구강인두의 3차원 모델을 시간 순으로 배열하고, 그 사이를 보간하여 에니메이션화하는 단계와; d) 상기 구강인두의 3차원 모델의 위치별 최대면적에 대한 최대면적과 최소면적의 차의 백분률을 구하여, 상기 구강인두의 3차원 모델의 위치마다 표시함으로써, 코골이의 발생여부를 확인할 수 있도록 하거나, 각성 상태와 수면 상태에서의 상기 구강인두 3차원 모델의 위치별 최소면적을 표시하여, 협착 또는 폐쇄가 일어나는 정확한 위치와 정도를 표시하거나, 상기 구강인두의 3차원 모델의 기도 면적의 총합을 스캔시간으로 나누어 평균 기도 면적을 구하여, 수진자의 수면장애의 단계를 확인할 수 있도록 하는 단계와; e) 상기 영상촬영수단(110)을 이용하여 촬영시점을 결정하기 위한 수진자의 근전도, 산소포화도, 호흡상태를 입력받아 촬영된 영상의 촬영 시점에서의 근전도, 산소포화도, 호흡상태를 확인하는 단계를 포함한다.The method for diagnosing a sleeping breathing disorder using the viewpoint display apparatus according to another aspect of the present invention includes the steps of: a) extracting a two-dimensional cross-sectional image of the oral pharyngeal region photographed through the image capturing means 110, ; b) forming a three-dimensional model of the oral pharynx by laminating the oral pharyngeal two-dimensional images on a position-by-position basis and rendering an interval therebetween; c) arranging the three-dimensional models of the oral pharynx in chronological order, and interpolating and animating the three-dimensional models; d) The percentage of the difference between the maximum area and the minimum area for the maximum area of the three-dimensional model of the oral pharynx is obtained and displayed for each position of the three-dimensional model of the oral pharynx to determine whether or not the snoring has occurred Or displays the minimum area of each position of the three-dimensional model of the oral cavity in the awakening state and the sleeping state to indicate the exact position and degree of occurrence of stenosis or occlusion, Dividing the average airway area by the scan time to obtain the average airway area so that the step of the sleeping person's sleeping disorder can be confirmed; e) confirming the electromyogram, oxygen saturation and breathing state of the photographed image of the photographed image by inputting the electromyogram, oxygen saturation, and respiration state of the examinee for determining the photographing time using the image photographing means 110; .
본 발명의 일실시예에 따르면, 수진자의 평소 수면 시간과 수면 정도 데이터를 수진자가 착용한 웨어러블 장치로부터 수신하여, 진단 결과의 신뢰도를 평가할 수 있다.According to the embodiment of the present invention, the normal sleeping time and sleeping degree data of the examinee can be received from the wearable device worn by the examinee, and the reliability of the diagnosis result can be evaluated.
본 발명 촬영 시점표시장치는, 환자의 수면 중 근전도와 산소포화도를 검출하여 수면 중 호흡 이상 상태인지 측정하고, 측정 결과를 격리된 다른 위치에 있는 촬영자가 쉽게 확인할 수 있도록 표시함으로써, 정확한 촬영 시점을 확인하여 촬영할 수 있도록 하여, 환자의 방사선 노출을 최소화할 수 있는 효과가 있다.The photographing time point display apparatus according to the present invention detects the electromyogram and the oxygen saturation in the sleep state of the patient to measure whether or not the breathing abnormality is in the sleep state and displays the measurement result so that the photographer at another isolated position can easily confirm it, So that the radiation exposure of the patient can be minimized.
아울러 본 발명 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법은, 2차원 단면 영상을 이용하여 기도의 3차원 구조를 재현하고, 시간의 흐름에 따른 3차원 구조의 움직임을 재현함으로써, 기도 폐색의 정도, 위치, 시기의 정확한 검출이 가능하여 정확한 진단이 가능한 효과가 있다.In addition, an apparatus and method for diagnosing a sleeping breath disorder using the time display apparatus of the present invention can reproduce a three-dimensional structure of airway using a two-dimensional sectional image and reproduce the movement of a three- Accurate detection of the degree, position, and timing of the subject can be performed, thereby enabling accurate diagnosis.
또한 본 발명은 각성시와 수면시 3차원 구조를 비교하여 협착 및 폐쇄가 발생하는 위치 및 정도에 따라 색상을 매핑함으로써 가시성을 향상시켜, 비전문가 입장에서도 쉽게 이해가 될 수 있는 진단결과를 제공할 수 있는 효과가 있다.In addition, the present invention can improve visibility by mapping color according to the position and degree of stenosis and obstruction by comparing the three-dimensional structure at the time of awakening and sleep, thereby providing a diagnostic result that can be easily understood even from the standpoint of a non-specialist There is an effect.
아울러 본 발명은 다양한 그래프 분석을 통해 협착과 폐색의 위치 및 정도에 대한 정확한 정보를 얻을 수 있어, 전문가의 주관적인 판단 개입이 없이 객관적인 진단이 가능한 효과가 있다.In addition, the present invention can obtain accurate information on the position and degree of stenosis and obstruction through various graph analysis, and it is possible to perform an objective diagnosis without subjective judgment intervention of an expert.
그리고 본 발명은 그래프의 일부를 선택하여 확대 표시할 수 있어, 더 정확한 데이터의 분석이 가능한 효과가 있다.Further, the present invention can enlarge and display a part of the graph by selecting a part of the graph, thereby enabling more accurate data analysis.
도 1은 본 발명의 바람직한 실시예에 따른 촬영 시점표시장치의 구성도이다.1 is a configuration diagram of a photographing time display apparatus according to a preferred embodiment of the present invention.
도 2는 호흡상태 검출부(30)에서 검출되는 기류 파형의 일예를 보인 파형도이다.FIG. 2 is a waveform diagram showing an example of an airflow waveform detected by the breathing state detecting unit 30. FIG.
도 3은 호흡상태 검출부(30)에서 검출되는 이산화탄소 농도 파형의 일예를 보인 파형도이다.3 is a waveform diagram showing an example of the carbon dioxide concentration waveform detected by the breathing state detecting unit 30. As shown in FIG.
도 4는 표시부(60)의 일실시 구성도이다.Fig. 4 is a configuration diagram of one embodiment of the display unit 60. Fig.
도 5는 본 발명의 바람직한 실시예에 따른 수면성 호흡장애 진단장치의 구성도이다.5 is a block diagram of a sleeping breathing disorder diagnosis apparatus according to a preferred embodiment of the present invention.
도 6은 2차원 단면 영상에서 관심영역을 검출한 상태의 표시부(800) 화면의 예이다.6 is an example of a screen of the display unit 800 in a state where a region of interest is detected in a two-dimensional sectional image.
도 7은 완성된 구강인두의 3차원 모델을 표시하는 표시부(800) 화면의 일예이다.FIG. 7 is an example of a screen of the display unit 800 that displays the completed three-dimensional model of the oral pharyngeal.
도 8은 상기 3차원 영상처리부(300)의 색상매핑 모듈(320)을 이용하여 상기 볼륨랜더링 모듈(310)에서 3차원 모델링된 결과에 색상을 매핑한 결과이다.FIG. 8 is a result of mapping a color to a three-dimensional modeling result in the volume rendering module 310 using the color mapping module 320 of the 3D image processing unit 300.
도 9 내지 도 12는 각각 상기 그래프처리부(500)에서 처리된 검사결과 그래프의 일예이다.9 to 12 are examples of a test result graph processed in the graph processor 500, respectively.
- 부호의 설명 -- Explanation of symbols -
10:근전도 검출부 20:산소포화도 검출부10: EMG detector 20: Oxygen saturation detector
30:호흡상태 검출부 40:신호변환부30: breathing state detecting unit 40: signal converting unit
50:연산처리부 60:표시부50: operation processing unit 60:
100:2차원 영상처리부 110:영상촬영수단 100: two-dimensional image processing unit 110:
120:관심영역 추출모듈 200:인터페이스부120: ROI extraction module 200:
300:3차원 영상처리부 310:볼륨랜더링 모듈300: three-dimensional image processing unit 310: volume rendering module
320:색상매핑 모듈 400:에니메이션 처리부320: Color mapping module 400: Animation processing part
500:그래프처리부 600:웨어러블 장치500: Graph processor 600: Wearable device
700:제어부 710:통신부700: control unit 710: communication unit
800:표시부 900:외부인터페이스부800: Display unit 900: External interface unit
본 발명 촬영 시점표시장치, 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법에 대하여 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.The apparatus and method for diagnosing a sleeping breathing trouble using the time display apparatus and the time display apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시 예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이며, 아래에 설명되는 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래의 실시 예들로 한정되는 것은 아니다. 오히려, 이들 실시 예는 본 발명을 더욱 충실하고 완전하게 하며 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are provided to explain the present invention more fully to those skilled in the art, and the embodiments described below can be modified into various other forms, The scope of the present invention is not limited to the following embodiments. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.
본 명세서에서 사용된 용어는 특정 실시 예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는"포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an," and "the" include plural forms unless the context clearly dictates otherwise. Also, " comprise " and / or " comprising " when used herein should be interpreted as specifying the presence of stated shapes, numbers, steps, operations, elements, elements, and / And does not preclude the presence or addition of one or more other features, integers, operations, elements, elements, and / or groups. As used herein, the term " and / or " includes any and all combinations of one or more of the listed items.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 영역 및/또는 부위들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부위들은 이들 용어에 의해 한정되지 않음은 자명하다. 이들 용어는 특정 순서나 상하, 또는 우열을 의미하지 않으며, 하나의 부재, 영역 또는 부위를 다른 부재, 영역 또는 부위와 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1 부재, 영역 또는 부위는 본 발명의 가르침으로부터 벗어나지 않고서도 제2 부재, 영역 또는 부위를 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various elements, regions and / or regions, it is to be understood that these elements, parts, regions, layers and / . These terms do not imply any particular order, top, bottom, or top row, and are used only to distinguish one member, region, or region from another member, region, or region. Thus, the first member, region or region described below may refer to a second member, region or region without departing from the teachings of the present invention.
이하, 본 발명의 실시 예들은 본 발명의 실시 예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시 예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.Hereinafter, embodiments of the present invention will be described with reference to the drawings schematically showing embodiments of the present invention. In the figures, for example, variations in the shape shown may be expected, depending on manufacturing techniques and / or tolerances. Accordingly, embodiments of the present invention should not be construed as limited to any particular shape of the regions illustrated herein, including, for example, variations in shape resulting from manufacturing.
도 1은 본 발명의 바람직한 실시예에 따른 촬영 시점표시장치의 구성도이다.1 is a configuration diagram of a photographing time display apparatus according to a preferred embodiment of the present invention.
도 1을 참조하면 본 발명의 바람직한 실시예에 따른 촬영 시점표시장치는, 수면성 호흡장애 수진자(환자)의 근전도를 검출하는 근전도 검출부(10)와, 수면성 호흡장애 수진자의 산소포화도를 검출하는 산소포화도 검출부(20)와, 수면성 호흡장애 수진자의 호흡기류를 측정하는 호흡상태 검출부(30)와, 상기 근전도 검출부(10), 산소포화도 검출부(20) 및 호흡상태 검출부(30)의 검출 결과를 디지털 신호로 변환하는 신호변환부(40)와, 상기 신호변환부(40)의 출력에서 각 요소에 가중치를 부여하고 연산하여 연산결과를 출력하는 연산처리부(50)와, 상기 연산처리부(50)의 연산결과를 수치로 표시함과 아울러 그 수치에 따라 색상을 달리하여 표시함으로써 원거리의 촬영자가 용이하게 확인할 수 있도록 하는 표시부(60)를 포함한다.Referring to FIG. 1, a photographing time display apparatus according to a preferred embodiment of the present invention includes an electromyogram detecting unit 10 for detecting an electromyogram of a sleeping breathing obstacle examinee (patient), an oxygen saturation detecting unit 10 for detecting an oxygen saturation of a sleeping breathing obstacle examinee A respiration state detecting unit 30 for measuring the respiratory flow of the sleeping breathing obstacle examinee and a detection result of the electromyogram detecting unit 10, the oxygen saturation detecting unit 20 and the breathing state detecting unit 30, An arithmetic processing unit 50 for assigning weights to the elements of the output of the signal converting unit 40 and outputting the result of the arithmetic operation, And displays the result of the calculation in a different color according to the numerical value, thereby making it easy for the photographer at a distance to check the display.
이하, 상기와 같이 구성되는 본 발명의 바람직한 실시예에 따른 촬영 시점표시장치의 구성과 작용에 대하여 더 상세히 설명한다.Hereinafter, the configuration and operation of the imaging time point display apparatus according to the preferred embodiment of the present invention will be described in detail.
먼저, 근전도 검출부(10)는 수면 중인 환자가 호흡을 하면서 사용하는 근육들의 전기적 활성 상태를 검출한다. 통상 근육은 수축하거나 자극되면 전기적 활성이 나타나고 전류가 발생하며, 무호흡 상태에서는 근육이 수축하거나 자극되지 않기 때문에 전류가 발생하지 않는다.First, the electromyogram detecting unit 10 detects the electrical activity state of the muscles used by the sleeping patient while breathing. Normally, when the muscle is contracted or stimulated, electrical activity occurs and current is generated. In the apnea state, no current is generated because the muscle is not contracted or stimulated.
따라서 근전도의 검출은 수면성 호흡장애 상태를 확인할 수 있는 하나의 요소로 사용될 수 있다.Therefore, the detection of EMG can be used as an element to confirm sleeping breathing disorder status.
또한, 수면성 호흡장애의 발생을 확인할 수 있는 다른 요소로 체내 산소포화도를 이용한다. 산소포화도는 혈액 내 산소와 결합한 헤모글로빈의 양을 비율로 나타낸 것으로, 무호흡 상태에서는 산소와 결합한 헤모글로빈의 비율이 줄어드는 것을 측정하여 정상 호흡상태인지 아니면 무호흡 상태인지를 확인할 수 있다. 산소포화도 검출부(20)는 위의 산소와 결합한 헤모글로빈의 비율을 검출하여 호흡상태를 확인할 수 있다.Another factor that can confirm the occurrence of sleeping breathing disorders is the use of oxygen saturation in the body. Oxygen saturation refers to the ratio of the amount of hemoglobin bound to oxygen in the blood as a ratio. In the apnea state, the ratio of oxygen to bound hemoglobin is measured to determine whether the patient is in a normal breathing state or in an apnea state. The oxygen saturation detecting unit 20 can detect the breathing state by detecting the ratio of the hemoglobin combined with the oxygen.
그리고 호흡상태 검출부(30)에서는 수면성 호흡장애 수진자의 호흡상태를 직접 측정한다. 수진자의 코와 입의 주변에 기류 센서를 설치하여 호흡시 발생되는 기류를 직접 측정하여 들숨과 날숨을 구분하고, 호흡이 없는 상태도 확인함이 가능하다.The breathing state detector 30 directly measures the breathing state of the sleeping breathing obstacle examinee. It is possible to measure the air flow generated by respiration by separating the inspiration from the expiration by establishing the air flow sensor around the nose and mouth of the examinee and to confirm the state without respiration.
도 2는 호흡상태 검출부(30)에서 검출되는 기류 파형의 일예를 보인 파형도이다.FIG. 2 is a waveform diagram showing an example of an airflow waveform detected by the breathing state detecting unit 30. FIG.
도 2를 참조하면 호흡상태 검출부(30)는 설정에 따라 차이가 있을 수 있으나, 날숨 구간에서 전압이 증가하는 방향, 들숨 구간에서 전압이 감소하는 방향으로 특정한 파형의 신호를 출력한다.Referring to FIG. 2, the breathing state detector 30 outputs a signal of a specific waveform in a direction in which the voltage increases in the breath interval and a waveform in which the voltage decreases in the breath interval.
이러한 파형이 규칙적으로 반복되는 구간은 정상적인 호흡을 하고 있는 구간이며, 도면에서 무호흡구간(A)과 같이 날숨 구간 후 전압이 변화되지 않고 유지되는 구간은 날숨 구간 후 들숨 구간이 시작되지 않은 것으로, 호흡이 없는 상태를 나타낸다.The section where the waveform is regularly repeated is a section in which normal breathing is performed. In the figure, as in the apnea interval (A), the section where the voltage is maintained without changing the voltage after the breath section is the breath section after the breath section is not started, Is present.
무호흡구간(A)의 지속시간이 설정된 시간 이상 지속되면 현재 수면 중 무호흡 상태인 것으로 판정할 수 있다. 구체적으로 무호흡구간(A)의 지속시간이 5초 이상이면 무호흡 상태인 것으로 판정할 수 있다.If the duration of the apnea interval A has continued for a predetermined time or more, it can be determined that the apnea is currently in the sleep state. Specifically, if the duration of the apnea interval A is 5 seconds or more, it can be determined that the apnea state is the apnea state.
또한, 호흡상태 검출부(30)는 기류의 방향과 세기를 검출하는 센서 이외에 이산화탄소를 검출하는 센서를 더 포함한다. The breathing state detection unit 30 further includes a sensor for detecting carbon dioxide in addition to the sensor for detecting the direction and intensity of the airflow.
도 3은 호흡상태 검출부(30)에서 검출되는 이산화탄소 농도 파형의 일예를 보인 파형도이다.3 is a waveform diagram showing an example of the carbon dioxide concentration waveform detected by the breathing state detecting unit 30. As shown in FIG.
도 3을 참조하면 호흡상태 검출부(30)에서 검출되는 이산화탄소 농도는 날숨일때 증가하고, 들숨일 때 대기의 이산화탄소 농도로 감소하며, 무호흡구간(A)에서도 대기상태의 이산화탄소 농도로 감소한다.Referring to FIG. 3, the concentration of carbon dioxide detected by the breathing state detecting unit 30 increases with exhalation, decreases with the concentration of carbon dioxide in the atmosphere upon inhalation, and decreases with the concentration of carbon dioxide in the atmospheric state even in the apneic interval.
도면에서 이산화탄소의 농도를 50과 25로 표시한 것은 측정농도가 아니라 설정값이며, 이산화탄소의 농도 최대치를 50으로 하고, 평균값을 25로 설정한 것이다.In the figure, the concentration of carbon dioxide is indicated by 50 and 25, not the measured concentration, but the set value, the maximum concentration of carbon dioxide is 50, and the average value is 25.
즉, 정상 호흡상태에서 이산화탄소의 농도 최대치를 50으로 설정하고, 평균값을 25로 설정한 것이다.That is, the maximum value of the concentration of carbon dioxide in the normal breathing state is set to 50, and the average value is set to 25.
무호흡 구간에서는 25보다 매우 낮은 3~4의 값을 나타낸다.In the apnea interval, the value is 3 ~ 4, which is much lower than 25.
이와 같이 호흡상태 검출부(30)에서 검출한 이산화탄소의 설정값은 이후 무호흡지수를 산출하기 위하여 미리 변환된 값으로 이해될 수 있다.The set value of the carbon dioxide detected by the breathing state detecting unit 30 can be understood as a value previously converted to calculate the apnea index.
근전도 검출부(10), 산소포화도 검출부(20), 호흡상태 검출부(30)에서 검출된 결과는 신호변환부(40)로 공급되어 디지털신호로 변환된다. The results detected by the electromyogram detector 10, the oxygen saturation detector 20, and the breathing state detector 30 are supplied to the signal converter 40 and converted into digital signals.
그 다음, 상기 신호변환부(40)에서 변환된 각 신호들은 연산처리부(50)로 입력되고, 연산처리부(50)에서 각 신호를 고려하여 호흡상태에 따른 촬영 시점을 나타내는 결과를 출력한다.Then, the signals converted by the signal converting unit 40 are input to the arithmetic processing unit 50, and the arithmetic processing unit 50 outputs the result indicating the shooting time according to the respiration state in consideration of each signal.
상기 연산처리부(50)는 특정한 알고리즘을 포함하는 프로세서일 수 있으며, 근전도 검출부(10), 산소포화도 검출부(20), 호흡상태 검출부(30)의 검출결과에 가중치를 부여하고, 특정한 알고리즘의 수식에 대입하여 무호흡지수를 산출하게 된다.The arithmetic processing unit 50 may be a processor including a specific algorithm and may be configured to assign weights to detection results of the electromyogram detector 10, the oxygen saturation detector 20 and the respiration state detector 30, To calculate the apnea index.
바람직하게 연산처리부(50)는 호흡상태 검출부(30)의 검출결과에 대한 가중치를 가장 높게 정하고, 근전도 검출부(10)의 검출결과의 가중치를 가장 낮게 정할 수 있다. Preferably, the arithmetic processing unit 50 sets the weight of the detection result of the respiration state detection unit 30 to the highest and the weight of the detection result of the electromyogram detection unit 10 to the lowest.
이는 호흡상태 검출부(30)는 직접 호흡에 의한 이산화탄소의 농도(설정값)의 변화를 측정하기 때문에 정확도 및 신뢰도가 높은 검출결과를 얻을 수 있기 때문이며, 근전도 검출부(10)의 검출결과는 호흡 외의 근육 움직임에 의해 결과가 포함될 수 있어 신뢰도가 저하될 수 있기 때문이다.This is because the respiration state detecting unit 30 measures the change in the concentration (set value) of carbon dioxide by direct breathing, and thus the detection result with high accuracy and reliability can be obtained. The detection result of the electromyogram detecting unit 10, The result can be included by the motion, and reliability can be lowered.
상기 연산처리부(50)에서 사용하는 알고리즘을 수학식으로 표현하면 아래의 수학식1과 같다.The algorithm used in the arithmetic processing unit 50 can be expressed by the following equation (1).
Figure PCTKR2017012985-appb-M000001
Figure PCTKR2017012985-appb-M000001
측정 이산화탄소 레벨(호흡레벨)과 정상 이산화탄소 레벨은 설정된 시간(5초 등) 동안의 평균값이며, 정상의 경우에는 앞서 설명한 바와 같이 25의 값을 가지며, 25보다 큰 값이면 날숨 구간, 25보다 현저하게 낮은 값이면 들숨 구간 또는 무호흡 구간으로 판단될 수 있다.The measured carbon dioxide level (breathing level) and the normal carbon dioxide level are average values during the set time (5 seconds, etc.). In the normal case, the value is 25. As described above, If the value is low, it can be judged to be the inspiratory section or the apnea section.
25보다 현저하게 낮은 값이 5초 이상 지속되는 경우에는 무호흡 구간으로 특정할 수 있다.If a value significantly lower than 25 lasts more than 5 seconds, it can be specified as the apnea interval.
위의 수학식1에서 i, j, k 각각은 운영자가 설정할 수 있는 값이며, i는 0.5~0.8(50~80% 가중치), j는 0.1~0.3(10~30% 가중치), k = 0.1~0.2(10~20% 가중치)를 부여할 수 있다.In the above equation (1), i, j and k are values that can be set by the operator, i is 0.5 to 0.8 (50 to 80% weighted), j is 0.1 to 0.3 (10 to 30% To 0.2 (10 to 20% weighted value).
예를 들어 측정된 이산화탄소레벨이 무호흡상태를 나타내는 4이고, 정상 이산화탄소레벨이 25인 경우를 가정하고, 호흡상태의 가중치를 나타내는 i가 0.8일 때, 호흡상태요소에 대한 연산 결과는 12.8이 되며, 이 값과 산소포화도요소에 대한 연산값, 근전도분산요소의 연산값을 더한 후 100에서 감했을 때의 값인 무호흡지수는 적어도 50 이상이 된다.For example, assuming that the measured carbon dioxide level is 4 indicating an apnea state and the normal carbon dioxide level is 25, and when i representing a weight value of the respiratory state is 0.8, the calculation result for the breathing state element is 12.8, This value, the calculated value for the oxygen saturation factor, and the calculated value of the EMF variance element are added, and then the apnea index, which is the value obtained by subtracting 100 from the calculated value, is at least 50 or more.
이는 가중치가 낮은 산소포화도요소나 근전도분산요소의 값이 가중치가 높은 호흡상태요소에 비하여 큰 값이 될 수 없기 때문이다.This is because the value of the oxygen saturation factor or the electromyogram dispersion factor having a low weight can not be larger than that of the breathing state element having a high weight.
만약 위의 예에서 이산화탄소레벨이 25인 경우에, 호흡상태요소에 대한 연산 결과는 80이되며, 무호흡지수는 20 미만이 된다.If, in the above example, the carbon dioxide level is 25, the calculation result for the breathing state element is 80 and the apnea index is less than 20.
이처럼 무호흡지수는 무호흡상태일 때 더 큰 값을 가지며, 특정한 기준값을 두고 산출된 무호흡지수의 크기를 비교하여 무호흡상태 즉, 촬영 가능한 상태를 확인할 수 있다.Thus, the apnea index has a larger value when it is in the apnea state, and the apnea state can be confirmed by comparing the calculated apnea index with a certain reference value.
위의 예에서 촬영 가능한 상태의 기준은 무호흡지수가 50일 때를 기준으로 할 수 있다. In the above example, the criterion that can be taken is based on the time when the apnea index is 50.
산소포화도(SPO2)는 동혈맥(SaO2)을 기준으로 정상치가 97%이며, 저산소혈증은 95% 미만이다. 중증은 75%미만이다. The oxygen saturation (SPO2) is 97% normal and less than 95% hypoxemia based on the arterial blood pressure (SaO2). Severity is less than 75%.
이를 고려할 때 상기 수학식1에 중증인 70%가 측정되고, 가중치 j가 0.1인 경우 산소포화도요소의 산출값은 0.93으로 매우 작은 값이 되며, 이러한 산소포화도요소는 수면 무호흡 상태를 판단하는데 큰 영향을 주지는 않으며, 위의 호흡상태요소의 신뢰성이나 장치의 오작동 여부를 확인하는 용도로 사용할 수 있다.Considering this fact, the severe 70% is measured in Equation 1, and when the weight j is 0.1, the calculated value of the oxygen saturation factor is 0.93, which is a very small value. Such an oxygen saturation factor has a great influence on the judgment of the sleep apnea And can be used to check the reliability of the above respiratory condition elements or the malfunction of the device.
근전도요소 역시 산소포화도요소에 비해서도 더 작은 값이며, 역시 무호흡 상태를 판단하는 요소라기 보다는 호흡상태요소의 신뢰성과 장치의 오작동 여부를 확인하는 용도로 사용할 수 있다.The EMG element is also a smaller value than the oxygen saturation element and can be used to check the reliability of the respiratory state element and the malfunction of the device, rather than to determine the apnea state.
이와 같은 연산처리부(50)의 처리 결과는 표시부(60)에 표시된다.The processing result of the arithmetic processing unit 50 is displayed on the display unit 60.
도 4는 표시부(60)의 일실시 구성도이다.Fig. 4 is a configuration diagram of one embodiment of the display unit 60. Fig.
상기 표시부(60)는 연산처리부(50)에서 처리한 무호흡 지수를 숫자로 표시하는 지수표시부(61)와, 상기 무호흡 지수의 정도를 그래프로 표시하되 무호흡 상태로 판단되는 상태는 눈에 잘 띄는 적색으로 표시하는 그래픽표시부(62)를 포함할 수 있다.The display unit 60 includes an exponent display unit 61 for displaying the apnea index processed by the arithmetic processing unit 50 in numerical form and a display unit for displaying the degree of the apnea index in a graph, As shown in FIG.
이처럼 본 발명의 바람직한 실시예에 따른 촬영 시점표시장치는 수면성 호흡장애를 검사받는 수진자의 호흡상태, 근전도 및 산소포화도를 검출하여 그 결과에 따라 현재 호흡에 이상이 있는지 확인하여, 표시부(60)에 표시함으로써, 원거리에 위치하여 현재 수진자의 호흡상태를 확인하기 어려운 종래의 문제점을 해소할 수 있다.As described above, the photographing time display apparatus according to the preferred embodiment of the present invention detects the breathing state, the electromyogram and the oxygen saturation of the examinee who is examined for the sleeping breathing disorder, checks whether there is an abnormality in the current breathing, It is possible to solve the conventional problem that it is difficult to confirm the respiration state of the current examinee by being located at a long distance.
또한, 상기 연산처리부(50)의 데이터는 수면성 호흡장애 진단장치의 입력데이터로 사용될 수 있으며, 이는 이후에 좀 더 상세히 설명하기로 한다.Further, the data of the arithmetic processing unit 50 may be used as input data of the sleeping breathing fault diagnosis apparatus, which will be described in more detail later.
도 5는 본 발명의 바람직한 실시예에 따른 시점표시장치를 이용한 수면성 호흡장애 진단장치의 구성도이다.FIG. 5 is a block diagram of an apparatus for diagnosing a sleep-disordered breathing using a viewpoint display apparatus according to a preferred embodiment of the present invention.
도 5를 참조하면 본 발명의 바람직한 실시예에 따른 시점표시장치를 이용한 수면성 호흡장애 진단장치는, 영상촬영수단(110)을 구비하여 구강인두 영역의 단면 영상을 처리하는 2차원 영상처리부(100)와, 운용자의 제어명령을 입력할 수 있는 인터페이스부(200)와, 상기 2차원 영상처리부(100)의 영상을 3차원 영상으로 변환하는 3차원 영상처리부(300)와, 상기 3차원 영상처리부(300)의 3차원 영상을 이용하여 구강인두의 움직임을 형상화하는 에니메이션처리부(400)와, 상기 인터페이스부(200)를 통한 운용자 입력에 따라 검사결과를 그래프로 표시하는 그래프처리부(500)와, 수진자가 착용한 웨어러블 장치(600)에서 검출한 정보를 통신부(710)를 통해 수신하여 수면의 질을 판단하여 이 결과를 검사결과에 반영하며, 각부를 제어하는 제어부(700)와, 상기 2차원 영상처리부(100), 3차원 영상처리부(300), 에니메이션처리부(400) 및 그래프처리부(500)의 처리 결과를 표시하는 표시부(800)와, 상기 촬영 시점표시장치로부터 시간의 경과에 따른 수진자의 근전도, 산소포화도 및 호흡상태를 수신하여 단면 영상의 촬영시점에서의 근전도, 산소포화도 및 호흡상태를 확인할 수 있도록 하는 외부인터페이스부(900)를 포함하여 구성된다.Referring to FIG. 5, the apparatus for diagnosing a sleeping breath disorder using the viewpoint display apparatus according to the preferred embodiment of the present invention includes a two-dimensional image processing unit 100 A 3D image processor 300 for converting the image of the two-dimensional image processor 100 into a three-dimensional image, and a control unit 300 for controlling the three- An animation processing unit 400 for shaping the movement of the oral pharynx using the three-dimensional image of the mouth 300, a graph processing unit 500 for displaying a test result in a graph according to an operator input through the interface unit 200, A control unit 700 for receiving the information detected by the wearable device 600 worn by the wearer through the communication unit 710 to judge the quality of the sleeping surface and reflecting the result on the inspection result and controlling each part; Image location A display unit 800 for displaying processing results of the display unit 100, the three-dimensional image processing unit 300, the animation processing unit 400, and the graph processing unit 500; An oxygen saturation degree, and a respiration state to confirm the EMG, oxygen saturation, and respiration state at the time of photographing of the sectional image.
이하, 상기와 같이 구성되는 본 발명의 바람직한 실시예에 따른 수면성 호흡장애 진단장치의 구성과 작용에 대하여 보다 상세히 설명한다.Hereinafter, the configuration and operation of the apparatus for diagnosing a sleeping breathing disorder according to a preferred embodiment of the present invention will be described in detail.
먼저, 영상촬영수단(110)은 전자선단층촬영기, 자기공명촬영장치 등의 구강인두의 단면 촬영이 가능한 수단이며, 그 구체적인 수단에 관계없이 사용할 수 있다. 상기 영상촬영수단(110)은 위치를 복수회 변경하며 촬영하는 다 수준(level) 촬영을 하며, 동일 위치에서 복수회의 촬영을 하여 시간의 흐름에 따라 각 위치에서의 구강인두의 형상 변경을 확인할 수 있는 다수의 2차원 단면 영상을 얻을 수 있다.First, the image photographing means 110 is a means capable of photographing a section of the oral pharyngeal, such as an electron beam tomograph, a magnetic resonance photographing apparatus, etc., and can be used regardless of the specific means. The image capturing means 110 performs multi level shooting for changing the position a plurality of times and photographing a plurality of times at the same position so as to confirm the shape change of the oral ocular at each position with the passage of time Dimensional cross-sectional image can be obtained.
상기 영상촬영수단(110)에 의해 촬영된 2차원 단면 영상은 2차원 영상처리부(100)에 저장되며, 인터페이스부(200)를 통해 운용자가 제어명령을 입력하여 표시부(800)에 표시할 수 있다. The two-dimensional sectional image photographed by the image photographing means 110 is stored in the two-dimensional image processing unit 100. The operator can input a control command through the interface unit 200 and display the control command on the display unit 800 .
영상촬영수단(110)은 단층을 촬영하는 것이기 때문에 본 발명에서 다루고자하는 구강인두의 형상을 포함하는 인체 영역의 단층을 촬영하는 것으로, 2차원 단면 영상에서 일부 화소영역만을 차지하는 구강인두 부분을 찾아 표시하는 것이 바람직하다.Since the image capturing means 110 photographs a single layer, the tomographic image of the human body region including the shape of the oral cavity to be treated in the present invention is photographed, and the mouth pharyngeal region occupying only a part of the pixel region in the two- .
따라서 2차원 영상처리부(100)는 관심영역으로 구강인두 부분만을 찾아 추출하는 관심영역 추출모듈(120)을 포함하는 것이 바람직하다.Therefore, the two-dimensional image processing unit 100 preferably includes a ROI extraction module 120 for extracting and extracting only the mouth pharyngeal region as a ROI.
상기 관심영역 추출모듈(120)은 2차원 단면영상에서 구강인두를 찾아낼 수 있는 알고리즘을 탑재한 것으로, 그 알고리즘은 다양하게 적용될 수 있다.The ROI module 120 is equipped with an algorithm for finding the mouth pharynx in a two-dimensional sectional image, and the algorithm can be applied in various ways.
일 예로, 운용자가 인터페이스부(200)를 통해 표시부(800)에 촬영된 2차원 단층영상을 표시하도록 제어명령을 입력한 후, 표시부(800)에 표시된 영상을 확인하여 구강인두의 일부 화소를 초기 포인트로 지정하면, 상기 관심영역 추출모듈(120)은 지정된 초기 포인트와 밝기 범위가 설정된 값 안에 있으며, 상기 초기 포인트와 인접한 화소들을 검출하여 관심영역을 지정하고, 그 관심영역을 추출하게 된다.For example, after an operator inputs a control command to display a two-dimensional tomographic image photographed on the display unit 800 through the interface unit 200, the image displayed on the display unit 800 is checked to display some pixels of the oral pharynx The point of interest extraction module 120 detects the pixels adjacent to the initial point and the brightness range within a predetermined initial point and brightness range to designate a region of interest and extract the region of interest.
도 6은 2차원 단면 영상에서 관심영역을 검출한 상태의 표시부(800) 화면의 예이다.6 is an example of a screen of the display unit 800 in a state where a region of interest is detected in a two-dimensional sectional image.
이처럼 2차원 영상처리부(100)는 관심영역 추출모듈(120)을 이용하여 수면성 호흡장애 진단에 사용되는 구강인두의 단면 영상만을 추출할 수 있게 된다.As described above, the two-dimensional image processing unit 100 can extract only the sectional images of the oral pharyngeal used for the diagnosis of the sleep-disordered breathing using the ROI extraction module 120.
상기 관심영역 추출모듈(120)에서 사용할 수 있는 알고리즘의 다른 예로는 다양한 형태의 구강인두 단면 영상의 데이터를 저장하고, 현재 단면 영상에서 구강인두 단면 영상과 유사한 형태를 찾아 관심영역으로 설정하는 방법을 사용할 수 있다.Another example of an algorithm that can be used in the ROI module 120 is to store data of various types of oral pharyngeal cross-sectional images and to set the ROI as a region of interest by searching for a shape similar to the oral pharyngeal cross-sectional image in the current cross-sectional image Can be used.
이처럼 2차원 영상처리부(100)에서 관심영역으로 구강인두의 단면 영상만을 추출한 후, 3차원 영상처리부(300)에서는 상기 추출된 구강인두의 단면 영상들을 이용하여 구강인두를 3차원 영상으로 모델링한다.After extracting only the section image of the oral pharyngeal region as an area of interest in the two-dimensional image processing unit 100, the three-dimensional image processing unit 300 models the oral pharyngeal image as a three-dimensional image using the extracted sectional images of the oral pharyngeal region.
상기 3차원 영상처리부(300)는 상기 추출된 구강인두의 2차원 단면 영상들을 적층하여 3차원 모델을 형성하는 볼륨랜더링 모듈(310)과, 상기 볼륨랜더링 모듈(310)을 통해 형성된 구강인두의 3차원 모델에 색상을 매핑하여 가시성을 높이는 색상매핑모듈(320)을 포함하여 구성된다.The three-dimensional image processing unit 300 includes a volume rendering module 310 for forming a three-dimensional model by stacking two-dimensional sectional images of the extracted oral pharyngeus, a volume rendering module 310 for forming a three- And a color mapping module 320 for mapping the color to the 3D model to increase the visibility.
상기 볼륨랜더링 모듈(310)은 앞서 2차원 영상처리부(100)에서 추출된 구강인두의 단면 영상들을 그 위치에 따라 가상의 3차원 공간에 적층하며, 각 단면 영상의 외면을 상하로 연결하는 볼륨랜더링 알고리즘을 사용하여 구강인두의 3차원 모델을 형성한다.The volume rendering module 310 stacks the sectional images of the oral cavity extracted from the two-dimensional image processing unit 100 in a virtual three-dimensional space according to the positions thereof, and performs volume rendering Algorithm to form a three-dimensional model of the oral pharyngeal.
이러한 구강인두의 3차원 모델은 시간의 변화(호흡의 변화)에 따라 차이가 있게 되며, 따라서 구강인두의 3차원 모델을 시간순으로 배열하여 호흡에 따라 변화되는 구강인두의 형상을 입체적으로 확인할 수 있게 된다.The three-dimensional model of the oral pharynx is different according to the change of time (change of respiration), and therefore, the three-dimensional models of the oral pharynx are arranged in chronological order, and the shape of the oral pharynx do.
도 7은 완성된 구강인두의 3차원 모델을 표시하는 표시부(800) 화면의 일예이다.FIG. 7 is an example of a screen of the display unit 800 that displays the completed three-dimensional model of the oral pharyngeal.
구강인두의 3차원 모델은 좌우회전이 가능하여 2차원 영상에서는 확인할 수 없는 전후방 협착 또는 좌우측 협착을 쉽게 확인할 수 있어 정확한 진단이 가능하도록 할 수 있다.The three - dimensional model of the oral pharyngeal can be rotated to the left and right, which makes it easy to identify anterior or posterior stenosis or bilateral stenosis which can not be confirmed in a two - dimensional image.
또한, 본 발명은 앞서 설명한 촬영 시점에서의 근전도, 산소포화도, 호흡상태를 검출한 촬영 시점표시장치의 신호를 외부인터페이스부(900)를 통해 입력받을 수 있으며, 입력된 근전도, 산소포화도 및 호흡상태와 영상을 비교하여 더 정확한 진단이 가능하다.In addition, the present invention can receive a signal of the photographing time display device that detects the EMG, oxygen saturation, and breathing state at the photographing time described above through the external interface unit 900, and can input the inputted EMG, oxygen saturation, And images can be compared to make a more accurate diagnosis.
상기 영상촬영수단(110)을 이용하여 촬영되는 영상은 수진자가 각성한 상태와 수면 상태일 때 각각 촬영되며, 각성 상태와 수면 상태의 구강인두의 모양 변화를 3차원 모델을 통해 쉽게 비교할 수 있다.The image taken using the image capturing means 110 is photographed when the subject is awake and in the sleep state, and the change in the shape of the oral pharynx in the awakening state and the sleep state can be easily compared through the three-dimensional model.
도 8은 상기 3차원 영상처리부(300)의 색상매핑 모듈(320)을 이용하여 상기 볼륨랜더링 모듈(310)에서 3차원 모델링된 결과에 색상을 매핑한 결과이다.FIG. 8 is a result of mapping a color to a three-dimensional modeling result in the volume rendering module 310 using the color mapping module 320 of the 3D image processing unit 300.
상기 색상매핑 모듈(320)은, 협착 및 폐쇄의 정도에 따라 다른 색상을 매핑하여 표시될 수 있도록 하는 알고리즘에 따라 동작하는 것이며, 협착 및 폐쇄의 정도에 따라 정해진 색상이 매핑되도록 한다.The color mapping module 320 operates according to an algorithm for mapping and displaying different colors according to the degree of stenosis and closure so that predetermined colors are mapped according to the degree of stenosis and occlusion.
상기 도 8에서는 붉은 색(더 어둡게 표시된 부분)으로 표시된 부분이 협착 및 폐쇄가 심하여 병변이 의심되는 부분이다. In FIG. 8, a portion indicated by a red color (darker portion) is a portion where a lesion is suspected due to intense stenosis or obstruction.
이처럼 본 발명은 구강인두를 3차원 모델로 생성하고, 협착 및 폐쇄 정도에 따라 서로 다른 색상으로 표시하여 병변 의심부분을 쉽게 확인할 수 있으며, 그 정도 또한 용이하게 확인할 수 있게 된다.As described above, according to the present invention, the oral pharynx is generated as a three-dimensional model, and the lesion suspicious part can be easily identified by displaying different colors according to the degree of stenosis and occlusion, and the degree can be easily confirmed.
상기 3차원 영상처리부(300)는 구강인두의 3차원 모델링 및 색상매핑을 수행하는 것으로, 그 결과물은 에니메이션처리부(400)에서 동영상으로 처리된다. 상기 3차원 영상처리부(300)에서 생성된 3차원 영상은 영상촬영수단(110)의 촬영 순간의 영상이며, 에니메이션처리부(400)에서는 상기 3차원 영상들을 시간순으로 배열한다.The three-dimensional image processing unit 300 performs three-dimensional modeling and color mapping of the oral pharyngeal, and the result is processed as a moving image in the animation processing unit 400. The three-dimensional image generated by the three-dimensional image processing unit 300 is an image of the shooting moment of the image shooting unit 110, and the animation processing unit 400 arranges the three-dimensional images in chronological order.
이처럼 배열된 3차원 영상들의 변화과정을 상기 영상촬영수단(110)의 촬영 시간 간격과 동일한 시간 동안의 변화로 정하여, 3차원 영상을 에니메이션화 할 수 있다.The three-dimensional image can be animated by determining the change process of the arranged three-dimensional images as the change over the same time as the photographing time interval of the image photographing means 110.
따라서 본 발명은 수면 또는 각성 상태에서 호흡을 할 때 구강인두의 모양 변화 차이를 더 명확하게 확인할 수 있게 된다. Therefore, the present invention can more clearly confirm the difference in shape change of the oral pharyngeal during respiration in the sleeping or awake state.
그 다음, 그래프처리부(500)에서는 상기 인터페이스부(200)를 통해 운용자의 제어명령을 받은 제어부(700)의 제어에 의하여 협착과 폐쇄 부분의 위치와, 정도, 그 정도에 따른 치료 또는 수술 여부를 쉽게 확인할 수 있도록 검사결과를 그래프로 표시한다.Then, the graph processing unit 500 controls the position, degree, degree of treatment, and whether or not the operation is performed according to the degree and degree of stenosis and closure by the control unit 700, which receives the control command of the operator through the interface unit 200 Graphs the test results for easy identification.
상기 검사결과 그래프는 각성 상태와 수면 상태 각각에 대하여 표시하며, 각성 상태와 수면 상태 각각에서 구강인두의 최대면적, 최소면적, 평균면적을 이용하여 다양한 검사결과를 확인할 수 있도록 제공한다.The graph of the test result is displayed for each of the awakening state and the sleeping state, and various examination results can be confirmed using the maximum area, the minimum area, and the average area of the oral pharyngeal in each of the awakening state and the sleeping state.
도 9는 상기 그래프처리부(500)에서 처리된 검사결과 그래프의 일예이다. 9 is an example of a graph of a test result processed in the graph processor 500. FIG.
도 9를 참조하면 해당 높이에서 최대면적에 대한 최대면적과 최소면적의 차의 백분률 그래프이다. Referring to FIG. 9, there is a graph of a percentage of a difference between a maximum area and a minimum area with respect to a maximum area at a corresponding height.
x 축은 비(%) 값이며, y축은 측정위치를 나타내는 것으로, 측정 위치마다 최대면적과 최소면적의 차이 변화를 알 수 있다.The x-axis represents the ratio (%) value, and the y-axis represents the measurement position. Thus, a change in the difference between the maximum area and the minimum area can be known for each measurement position.
각성 상태와 비교하여 수면 상태에서 특정 위치의 최대면적과 최소면적의 차이가 큰 경우, 즉 변화비율이 큰 경우에는 수면중 해당 위치에 협착이 일어나서 기도가 좁아지고, 공기 흐름이 빨라져 근육이 떨리는 현상인 코골이가 발생되는 것을 확인할 수 있다.When the difference between the maximum area and the minimum area of the specific position is large, that is, when the change ratio is large, the stenosis occurs at the corresponding position in the sleeping state and the airflow narrows, It can be confirmed that the snoring occurs.
또한, 도 10은 상기 그래프처리부(500)에서 처리된 검사결과 그래프의 다른 예이다.10 is another example of the inspection result graph processed in the graph processing unit 500. FIG.
도 10을 참조하면 상기 그래프처리부(500)는 구강인두의 각 위치별 최소면적을 표시할 수 있다. 이때 x축은 면적이며, y축은 위치이며, 각성 상태와 수면 상태의 구강인두 위치별 최소면적을 표시한다.Referring to FIG. 10, the graph processor 500 may display a minimum area of each position of the oral pharynx. At this time, the x axis is the area, the y axis is the position, and indicates the minimum area of the oralopharyngeal position in the awakening state and the sleeping state.
이러한 그래프로는 협착이 일어나는 정확한 위치와 정도를 확인할 수 있으며, 폐쇄를 통한 무호흡증을 동반하는지 쉽게 확인할 수 있다. 이처럼 협착 위치와 정도를 확인하여 치료 또는 수술 여부를 결정할 수 있게 된다.These graphs can be used to identify the exact location and extent of stenosis, and it is easy to see if it accompanies obstructive apnea. The location and extent of the stenosis can be determined to decide whether to treat or not.
도 11은 상기 그래프처리부(500)에서 처리된 검사결과 그래프의 다른 예이다.11 is another example of the inspection result graph processed in the graph processing unit 500. FIG.
도 11의 그래프에서는 각 위치에서의 기도 면적의 총합을 스캔시간으로 나눈 값이며, 이는 수진자의 평균적인 기도 면적을 확인할 수 있다.In the graph of FIG. 11, the total airway area at each position is divided by the scan time, which is the average airway area of the examinee.
평균적인 기도 면적은 수진자의 수면장애의 단계를 알 수 있으며, 평균적인 기도면적이 작을수록 더 위험한 단계로 판단할 수 있다.The mean airway area is the stage of sleep disturbance of the examinee, and the smaller the average airway area, the more dangerous it is.
본 발명에서는 도 9, 도 10 및 도 11에 도시한 그래프를 각각 표시부(800)에 표시할 수 있고, 도 12와 같이 동시에 표시하여 종합적인 결과를 표시할 수도 있다.In the present invention, the graphs shown in Figs. 9, 10, and 11 can be displayed on the display unit 800, respectively, and can be simultaneously displayed as shown in Fig. 12 to display a comprehensive result.
도 12에서 VI는 도 9의 결과 값인 진동 정도이며, TAMA는 도 11의 결과 값인 평균 기도 면적이다.In FIG. 12, VI indicates the degree of vibration, which is the resultant value in FIG. 9, and TAMA, the average airway area, which is the resultant value in FIG.
또한, 상기 표시부(800)는 터치 스크린 방식으로 구성되며, 그래프가 표시된 상태에서 특정한 위치를 누르면 해당 위치의 그래프를 확대하여 표시할 수 있다.Also, the display unit 800 is configured by a touch screen method. When a specific position is displayed in a state where a graph is displayed, a graph of the corresponding position can be enlarged and displayed.
위에서 설명한 본 발명의 예들은 수진자가 병원을 방문하여 각성 상태와 수면 상태에서 구강인두의 단층 촬영을 한 2차원 단층영상을 이용한 것이며, 수진자가 단층촬영을 하는 날에 컨디션 난조, 감기 등에 의해 기도가 협소해질 수 있기 때문에 평소 수면데이터를 활용할 필요가 있다.The above-described examples of the present invention are based on a two-dimensional tomographic image of a mouth pharynx taken at a hospital by a examinee visiting the hospital and performing a tomography of the oral pharynx in a state of awakening and sleeping. Because you can get narrower, you need to use your usual sleep data.
이를 위하여 수진자는 검사 전 수일 동안 웨어러블 장치(600)를 착용한 상태로 수면을 취하게 된다. 상기 웨어러블 장치(600)는 적어도 수면 시간과 정도를 검출할 수 있는 센서와, 수면시간과 정도 데이터를 외부로 전송할 수 있는 통신수단을 포함하는 것으로 한다.To this end, the subject wears a sleeping state wearing the wearable device 600 for several days before the examination. The wearable device 600 includes at least a sensor capable of detecting the sleeping time and the degree of the sleeping, and a communication means capable of transmitting sleeping time and degree data to the outside.
상기 웨어러블 장치(600)의 예로는 스마트 밴드, 스마트 워치 등이 될 수 있다. 통신수단은 인터넷 연결이 가능한 것이거나, 근거리 무선 통신이 가능하거나, 케이블로 외부기기에 연결되어 수면시간과 정도에 대한 데이터를 전송할 수 있는 수단으로 한다.The wearable device 600 may be a smart band, a smart watch, or the like. The communication means may be an internet connection, a short-range wireless communication, or a cable, and may be connected to an external device to transmit data on sleeping time and degree.
제어부(700)의 통신부(710)는 인터넷 접속, 근거리 무선 통신, 케이블 연결 등 가능한 방법을 통해 상기 웨어러블 장치(600)로부터 수진자의 평소 수면 시간과 수면 정도 데이터를 수신하여 현재 수진자의 수면 정도가 정상적인 경우인지 비교 판단하고, 이를 고려하여 위에서 설명한 검사결과에 대한 신뢰도를 정할 수 있다.The communication unit 710 of the control unit 700 receives the normal sleeping time and sleeping degree data of the examinee from the wearable device 600 through a possible method such as an Internet connection, a near field wireless communication, a cable connection, And the reliability of the test results described above can be determined in consideration of this.
즉, 평소 수면 정도와 검사시 수면 정도의 차가 심한 경우에는 검사결과의 신뢰도를 낮게 평가하여, 재검사가 이루어질 수 있도록 한다. In other words, if the difference between the degree of sleep and the degree of sleep during examination is severe, the reliability of the test result is evaluated to be low so that the test can be resumed.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정, 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention will be.
본 발명은 수진자의 호흡상태를 원격에서 정확하게 판단하여 촬영 시점을 알 수 있으며, 수진자의 구강인두 3차원 모델을 구하고, 시간에 따른 움직임을 표시할 수 있어, 수면성 호흡장애의 진단을 더 용이하고 정확하게 할 수 있는 것으로, 산업상 이용 가능성이 있다.The present invention enables to accurately determine the breathing state of the examinee from a distance, to know the photographing time point, to obtain the three-dimensional model of the oral pharynx of the examinee, to display the movement with time, What can be done accurately is the possibility of industrial application.

Claims (10)

  1. 수진자의 근전도를 검출하는 근전도 검출부;An electromyogram detection unit for detecting an electromyogram of the examinee;
    수진자의 산소포화도를 검출하는 산소포화도 검출부;An oxygen saturation detector for detecting the oxygen saturation of the examinee;
    수진자의 호흡상태를 검출하는 호흡상태 검출부;A breathing state detecting unit for detecting a breathing state of the examinee;
    상기 근전도 검출부, 산소포화도 검출부 및 호흡상태 검출부의 검출결과를 디지털신호로 변환하는 신호변환부;A signal converter for converting the detection results of the electromyogram detector, the oxygen saturation detector, and the breathing state detector into a digital signal;
    상기 신호변환부에서 디지털신호로 변환된 근전도, 산소포화도 및 호흡상태신호를 입력받아 연산처리하여 무호흡지수를 산출하는 연산처리부; 및An arithmetic processing unit for receiving an EMG, an oxygen saturation, and a breathing state signal converted into a digital signal by the signal converting unit and calculating an apnea index; And
    상기 연산처리부에서 산출된 무호흡지수를 표시함과 아울러 촬영이 가능함을 색상으로 표시하는 표시부를 포함하여 된 것을 특징으로 하는 촬영 시점표시장치.And a display unit for displaying the apnea index computed by the computation processor and indicating that photographing is possible.
  2. 제1항에 있어서,The method according to claim 1,
    상기 연산처리부는,Wherein the arithmetic processing unit comprises:
    상기 근전도, 산소포화도 및 호흡상태 각각에 대하여 가중치를 두어, 호흡상태요소에 의해 무호흡지수가 결정되도록 하는 것을 특징으로 하는 촬영 시점표시장치.Wherein a weight is set for each of the electromyogram, the oxygen saturation and the respiration state so that the apnea index is determined by the breathing state element.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 근전도와 산소포화도 각각은 가중치를 낮게 부여하여, 무호흡지수의 결정에 영향을 주지 않고, 상기 호흡상태요소의 오류 여부를 확인하기 위해 사용되는 것을 특징으로 하는 촬영 시점표시장치.Wherein each of the electromyogram and the oxygen saturation is used to determine whether the respiration state element is erroneous without giving weight to the determination of the apnea index and to determine whether the respiration state element is erroneous.
  4. 제3항에 있어서,The method of claim 3,
    상기 연산처리부는 아래의 수학식1을 통해 무호흡지수를 산출하는 것을 특징으로 하는 촬영 시점표시장치.Wherein the arithmetic processing unit calculates an apnea index using the following equation (1).
    [수학식1][Equation 1]
    Figure PCTKR2017012985-appb-I000001
    Figure PCTKR2017012985-appb-I000001
    i, j, k는 가중치i, j, k are weights
  5. 제4항에 있어서,5. The method of claim 4,
    상기 수학식1에서, In the above equation (1)
    가중치 i, j, k는 설정 가능한 값이며, i는 0.5~0.8(50~80% 가중치), j는 0.1~0.3(10~30% 가중치), k = 0.1~0.2(10~20% 가중치)인 것을 특징으로 하는 촬영 시점표시장치.The weighting values i, j and k are settable values, i is 0.5 to 0.8 (50 to 80% weighted), j is 0.1 to 0.3 (10 to 30% weighted), k is 0.1 to 0.2 (10 to 20% Is displayed on the display unit (10).
  6. 제4항에 있어서,5. The method of claim 4,
    상기 표시부는, The display unit includes:
    상기 무호흡지수를 숫자로 표시하는 지수표시부와,An index display unit for displaying the apnea index as a number,
    무호흡 지수의 정도를 그래프로 표시하되 호흡상태와 무호흡상태를 색상으로 구분하여 표시하는 그래픽표시부(62)를 포함하는 촬영 시점표시장치.And a graphical display unit (62) displaying the degree of the apnea index as a graph, and displaying the breathing state and the apnea state as colors.
  7. 영상촬영수단(110)을 통해 촬영된 구강인두 영역의 단면 영상을 처리하는 2차원 영상처리부(100);A two-dimensional image processing unit (100) for processing a sectional image of the oral pharyngeal region photographed through the image capturing means (110);
    상기 2차원 영상처리부(100)에서 처리된 영상을 이용하여 구강인두의 3차원 모델을 형성하는 3차원 영상처리부(300); A three-dimensional image processing unit 300 for forming a three-dimensional model of the oral pharynx using the image processed by the two-dimensional image processing unit 100;
    상기 3차원 영상처리부(300)의 3차원 영상을 이용하여 구강인두의 움직임을 형상화하는 에니메이션처리부(400);An animation processing unit 400 for shaping the movement of the oral pharynx using the three-dimensional image of the three-dimensional image processing unit 300;
    상기 구강인두의 최소면적, 최대면적, 평균면적을 이용하여 구강인두의 협착 및 폐쇄 구간을 표시하는 그래프를 제공하는 그래프처리부(500);A graph processor 500 for providing a graph indicating the constriction and the closed interval of the oral pharynx using the minimum area, the maximum area, and the average area of the oral pharynx;
    수진자가 평소 착용하여 평상시 수면 시간과 수면 정도 데이터를 제공하는 웨어러블 장치(600);A wearable device 600 that normally wears the examinee to provide normal sleep time and water level data;
    상기 웨어러블 장치(600)의 수면 시간과 수면 정도 데이터를 통신부(710)를 통해 수신하여 검사의 신뢰성을 판단하는 제어부(700); 및A control unit 700 for receiving the sleeping time and sleeping degree data of the wearable device 600 through the communication unit 710 and determining the reliability of the inspection; And
    수진자의 근전도, 산소포화도, 호흡상태를 각각 검출하는 근전도 검출부, 산소포화도 검출부, 호흡상태 검출부와, 상기 근전도 검출부, 산소포화도 검출부 및 호흡상태 검출부의 검출결과를 디지털신호로 변환하는 신호변환부와, 상기 신호변환부에서 디지털신호로 변환된 근전도, 산소포화도 및 호흡상태신호를 입력받아 연산처리하여 무호흡지수를 산출하는 연산처리부와, 상기 연산처리부에서 산출된 무호흡지수를 표시함과 아울러 촬영이 가능함을 색상으로 표시하는 표시부를 구비하는 촬영 시점표시장치로부터 촬영시점에서의 근전도, 산소포화도 및 호흡상태를 수신하여 상기 제어부(700)에 제공하는 외부인터페이스부(900)를 포함하는 시점표시장치를 이용한 수면성 호흡장애 진단장치. An electromyogram detecting unit, an oxygen saturation detecting unit, a breathing state detecting unit, a signal converting unit for converting detection results of the electromyogram detecting unit, the oxygen saturation detecting unit, and the breathing state detecting unit into digital signals, An arithmetic processing unit which receives the electromyogram, the oxygen saturation and the respiration state signal converted into the digital signal by the signal converting unit and calculates the apnea index by calculating the apnea index and the apnea index calculated by the arithmetic processing unit, And an external interface unit 900 that receives the electromyogram, oxygen saturation, and breathing state at the time of photographing from the photographing time display apparatus having the display unit having the color display unit and provides the control unit 700 with the visual information Diagnostic device for sexual breathing disorders.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 그래프처리부(500)는,The graph processor 500,
    상기 구강인두의 최대면적에 대한 최대면적과 최소면적의 차의 백분률을 구하여, 상기 구강인두의 3차원 모델의 위치마다 표시함으로써, 코골이의 발생여부를 확인할 수 있도록 하며,The percentage of the difference between the maximum area and the minimum area with respect to the maximum area of the oral pharynx is obtained and displayed for each position of the three-dimensional model of the oral pharynx,
    각성 상태와 수면 상태의 구강인두 위치별 최소면적을 구하여, 협착이 일어나는 정확한 위치와 정도를 표시하며, The minimum area of the oropharyngeal position of the awakening state and the sleeping state is determined to indicate the exact position and degree of the stenosis,
    상기 구강인두의 3차원 모델의 기도 면적의 총합을 스캔시간으로 나누어 평균 기도 면적을 구하여, 수진자의 수면장애의 단계를 확인할 수 있도록 하는 시점표시장치를 이용한 수면성 호흡장애 진단장치.The apparatus for diagnosing a sleeping breathing disorder using a pointing device that can determine the stage of a sleeping person's sleeping disorder by dividing the total airway area of the three-dimensional model of the oral pharynx by the scan time to obtain an average airway area.
  9. a) 영상촬영수단(110)을 통해 촬영된 구강인두 영역의 2차원 단면 영상으로부터 관심영역인 구강인두 2차원 영상을 추출하는 단계;a) extracting an oral pharyngeal two-dimensional image, which is a region of interest, from a two-dimensional sectional image of the oral pharyngeal region photographed through the image capturing means 110;
    b) 상기 구강인두 2차원 영상을 위치별로 적층하고, 그 사이 간격을 랜더링하여 구강인두의 3차원 모델을 형성하는 단계;b) forming a three-dimensional model of the oral pharynx by laminating the oral pharyngeal two-dimensional images on a position-by-position basis and rendering an interval therebetween;
    c) 상기 구강인두의 3차원 모델을 시간 순으로 배열하고, 그 사이를 보간하여 에니메이션화하는 단계;c) arranging the three-dimensional models of the oral pharynx in chronological order, interpolating and animating the three-dimensional models of the oral pharynx;
    d) 상기 구강인두의 3차원 모델의 위치별 최대면적에 대한 최대면적과 최소면적의 차의 백분률을 구하여, 상기 구강인두의 3차원 모델의 위치마다 표시함으로써, 코골이의 발생여부를 확인할 수 있도록 하거나, d) The percentage of the difference between the maximum area and the minimum area for the maximum area of the three-dimensional model of the oral pharynx is obtained and displayed for each position of the three-dimensional model of the oral pharynx to determine whether or not the snoring has occurred However,
    각성 상태와 수면 상태에서의 상기 구강인두 3차원 모델의 위치별 최소면적을 표시하여, 협착 또는 폐쇄가 일어나는 정확한 위치와 정도를 표시하거나, The minimum area of each position of the oral pharyngeal three-dimensional model in the awakening state and the sleep state is displayed to indicate the exact position and degree of the stenosis or obstruction,
    상기 구강인두의 3차원 모델의 기도 면적의 총합을 스캔시간으로 나누어 평균 기도 면적을 구하여, 수진자의 수면장애의 단계를 확인할 수 있도록 하는 단계; 및Determining the average airway area by dividing the total airway area of the three-dimensional model of the oral pharynx by the scan time so as to identify the stage of the sleeping person's sleeping disorder; And
    e) 상기 영상촬영수단(110)을 이용하여 촬영시점을 결정하기 위한 수진자의 근전도, 산소포화도, 호흡상태를 입력받아 촬영된 영상의 촬영 시점에서의 근전도, 산소포화도, 호흡상태를 확인하는 단계를 더 포함하는 시점표시장치를 이용한 수면성 호흡장애 진단방법.e) confirming the electromyogram, oxygen saturation and breathing state of the photographed image of the photographed image by inputting the electromyogram, oxygen saturation, and respiration state of the examinee for determining the photographing time using the image photographing means 110; A method for diagnosing a sleep - disordered breathing using a time - pointing device.
  10. 제9항에 있어서,10. The method of claim 9,
    수진자의 평소 수면 시간과 수면 정도 데이터를 수진자가 착용한 웨어러블 장치로부터 수신하여, 진단 결과의 신뢰도를 평가하는 단계를 더 포함하는 시점표시장치를 이용한 수면성 호흡장애 진단방법.Further comprising the step of receiving normal sleeping time and sleeping degree data of the examinee from a wearable device worn by the examinee and evaluating the reliability of the diagnosis result.
PCT/KR2017/012985 2017-11-15 2017-11-16 Photographing time display device, and device and method for diagnosing sleep-disordered breathing by using time display device WO2019098410A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170152390A KR20190055548A (en) 2017-11-15 2017-11-15 Apparatus and method for diagnosing sleep disordered breathing
KR10-2017-0152390 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019098410A1 true WO2019098410A1 (en) 2019-05-23

Family

ID=66538644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012985 WO2019098410A1 (en) 2017-11-15 2017-11-16 Photographing time display device, and device and method for diagnosing sleep-disordered breathing by using time display device

Country Status (2)

Country Link
KR (1) KR20190055548A (en)
WO (1) WO2019098410A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458421B1 (en) * 2002-04-17 2004-11-26 주식회사 인피니트테크놀로지 Image processing apparatus and method for diagnosing sleep-induced respiratory distress syndrome
KR20110088138A (en) * 2010-01-28 2011-08-03 충북대학교 산학협력단 Device and method to detect sleep apnea and classify its type
US20140188006A1 (en) * 2011-05-17 2014-07-03 University Health Network Breathing disorder identification, characterization and diagnosis methods, devices and systems
US20150209001A1 (en) * 2014-01-29 2015-07-30 University Of Maryland, Baltimore Ultrasound Localization of Obstruction for Obstructive Sleep Apnea
KR20170043787A (en) * 2015-10-14 2017-04-24 주식회사 선테크 3D imaging systems of oropharyngeal airway for sleep apnea diagnosis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458421B1 (en) * 2002-04-17 2004-11-26 주식회사 인피니트테크놀로지 Image processing apparatus and method for diagnosing sleep-induced respiratory distress syndrome
KR20110088138A (en) * 2010-01-28 2011-08-03 충북대학교 산학협력단 Device and method to detect sleep apnea and classify its type
US20140188006A1 (en) * 2011-05-17 2014-07-03 University Health Network Breathing disorder identification, characterization and diagnosis methods, devices and systems
US20150209001A1 (en) * 2014-01-29 2015-07-30 University Of Maryland, Baltimore Ultrasound Localization of Obstruction for Obstructive Sleep Apnea
KR20170043787A (en) * 2015-10-14 2017-04-24 주식회사 선테크 3D imaging systems of oropharyngeal airway for sleep apnea diagnosis

Also Published As

Publication number Publication date
KR20190055548A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018093131A1 (en) Device for measuring sleep apnea and method therefor
CN104887258B (en) Diagnosis support system
EP1350466B1 (en) Monitor
WO2019168298A1 (en) Method and apparatus for correcting computed tomography image
WO2018093136A1 (en) Device for subject image monitoring, method therefor, and system for image monitoring
WO2015041451A1 (en) Image diagnosis device for photographing breast by using matching of tactile image and near-infrared image and method for acquiring breast tissue image
TWI595858B (en) A detection and noise elimination method for contactless detection of physiological and physical activity informations
US11013458B2 (en) Breath analysis system using gas image detection method
JPWO2006043506A1 (en) Respiration monitoring device, respiratory monitoring system, medical processing system, respiratory monitoring method, respiratory monitoring program
WO2019182273A1 (en) Sleep apnea severity testing device
JP2010194005A (en) Respiration measuring method and respiration measuring device
WO2017191878A1 (en) Teeth movement tracking device and method thereof
WO2016105102A1 (en) Device and method for assessing the possibility of onset of musculoskeletal disorder
WO2023013805A1 (en) Method for deriving head measurement parameters for tooth correction diagnosis based on machine learning from three-dimensional cbct image captured at natural head position
KR20140057867A (en) System for mearsuring stress using thermal image
WO2019098410A1 (en) Photographing time display device, and device and method for diagnosing sleep-disordered breathing by using time display device
WO2017047734A1 (en) Measurement device
WO2019225887A1 (en) Device and method for measuring sleep apnea severity
KR101792234B1 (en) Apparatus and method for diagnosing sleep disordered breathing
CN116486458A (en) Airway assessment method based on image recognition technology
WO2023153564A1 (en) Medical image processing method and apparatus
WO2012015093A1 (en) Method and electronic device for remote diagnosis
JPH1043141A (en) Instrument and method for measuring quantity of flabby skin
CN102438516B (en) System and method for processing signals for the real-time detection of a functional cyclic activity
WO2021182726A1 (en) Ultrasound diagnostic apparatus and method for operating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932355

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07.07.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17932355

Country of ref document: EP

Kind code of ref document: A1