WO2017047734A1 - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
WO2017047734A1
WO2017047734A1 PCT/JP2016/077391 JP2016077391W WO2017047734A1 WO 2017047734 A1 WO2017047734 A1 WO 2017047734A1 JP 2016077391 W JP2016077391 W JP 2016077391W WO 2017047734 A1 WO2017047734 A1 WO 2017047734A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
processing circuit
respiratory
image processing
respiration
Prior art date
Application number
PCT/JP2016/077391
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 堀
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017047734A1 publication Critical patent/WO2017047734A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the present invention relates to a technique for measuring a biological activity caused by respiration, such as a subject's respiration rate, from a subject's video.
  • respiration such as a subject's respiration rate
  • the subject is described as being a person, but may be an animal other than a person. Animals (including people) as observation targets may be collectively referred to as “subjects”.
  • a technique in which a subject is photographed with a camera, a change in luminance value due to a biological reaction such as body movement or blood flow is detected from the moving image, and a biological activity such as a respiratory rate and a heart rate of the subject is measured.
  • the image area in which the subject is shown is specified by an observer in advance or by using a contour extraction technique.
  • a measuring device for measuring a biological activity caused by respiration there are a respiratory monitoring device and a heart rate measuring device.
  • Patent Literatures 1 and 2 disclose such a device.
  • the respiration monitoring device of Patent Literature 1 divides an image obtained by photographing a subject into local regions and analyzes lightness information of each local region. Then, using the three types of threshold values, it is determined whether the subject is observing movement around the chest or observing non-respiratory body movement such as turning over.
  • the heart rate measuring device of Patent Document 2 captures a subject's face with a camera equipped with an infrared light source, extracts a specific region between eyebrows from a face image for each frame, and corrects the average luminance.
  • the heart rate measuring device obtains a waveform of a temporal change in corrected luminance from the corrected average luminance time series, and calculates the heart rate of the subject by filtering the waveform in a frequency band corresponding to the heart rate. .
  • an appropriate threshold necessary for determining non-respiratory body movement varies greatly depending on the imaging environment.
  • the threshold value to be set can vary greatly depending on changes in the brightness of the observation location, the position of the indoor light source, the presence or absence of incident light from the outside, and the movement of people or objects other than the subject. For this reason, it is difficult to obtain an appropriate threshold value.
  • the threshold value is inappropriate, it is not possible to calculate a region for obtaining biological information such as respiration.
  • the heart rate measuring device of Patent Document 2 needs to capture the subject's face within the imaging range. Similar to Patent Document 1, when the shooting environment changes such as a change in illuminance, movement of a person, incidence of external light, etc., the luminance value of the image area in which the subject is photographed changes greatly due to a cause other than biological activity. When such disturbance noise occurs, the body movement location due to the biological reaction cannot be specified, and the biological information may not be extracted accurately.
  • the subject's face is separated from the camera, the accuracy of acquiring the subject's biological information is reduced, so the subject's face must be imaged from a relatively short distance. As a result, a feeling of pressure is given to the subject, and there is a concern about the influence on the biological activity to be measured.
  • the conventional respiratory monitoring device and heart rate measuring device can never be said to be robust against changes in the shooting environment.
  • the life activity measuring apparatus is required to be further improved in robustness against changes in the photographing environment.
  • the present invention has been made to solve the above-described problems, and is a robust measurement system for life activity caused by respiration (hereinafter simply referred to as “measurement”). System ").
  • a measurement apparatus is a measurement apparatus that measures a biological activity of a subject using a moving image of the subject generated by an imaging device that has received light emitted from a light source.
  • An input interface that receives a moving image; and an image processing circuit that measures a subject's biological activity using the moving image, wherein the moving image has a reflection pattern at a generation position of body movement accompanying breathing of the subject.
  • the image processing circuit calculates a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and calculates a plurality of divided regions.
  • the image processing circuit measures a biological activity caused by respiration of the subject using an index for specifying a respiration start point on the respiration waveform of each divided region.
  • the image processing circuit detects an image change between two frame images of the plurality of frame images, and uses a respiratory waveform relating to the frame image from which the image change is detected as a breath of the subject. It may not be used for measurement of the resulting biological activity.
  • the image processing circuit has an average luminance of each divided region lower than an average luminance in the region of the reflection pattern and higher than an average luminance of a region outside the reflection marker in a predetermined period.
  • the plurality of divided regions may be set.
  • the image processing circuit changes the size of each divided area until at least the maximum value, the minimum value, and the average of the luminance values of the divided areas in a predetermined period satisfy a predetermined condition.
  • the plurality of divided areas may be set.
  • the image processing circuit may include a low-pass filter or a filter bank that removes noise of the respiratory waveform for each divided region.
  • the image processing circuit numerically differentiates the respiration waveform that has passed through the low-pass filter or filter bank, so that n time-series minimum points (n is an integer of 1 or more) in the respiration waveform are obtained. May be identified as a candidate for the breathing origin, which means the starting point of breathing in or breathing out.
  • the image processing circuit includes an i-th (i is an integer from 1 to n) first n out of the n candidates for the respiratory start point, and a previous one before the first candidate. Focusing on the second candidate, which is a local minimum point, tail-side amplitude indicating a difference in luminance value between the local maximum point between the first and second candidate local minimum points and the local minimum point of the first candidate , Using the index including a head side amplitude indicating a difference in luminance value between the maximum point and the minimum point of the second candidate, and a head tail ratio indicating a ratio between the tail side amplitude and the head side amplitude. Then, it may be determined whether or not the first candidate is the respiratory start point.
  • the image processing circuit has the tail side amplitude equal to or greater than a first threshold value, the head side amplitude equal to or greater than a second threshold value, and the head tail ratio is substantially equal to 1.
  • the first candidate may be determined as the respiratory start point.
  • the image processing circuit may determine whether or not the first candidate is the respiratory start point by the number corresponding to the respiratory start candidate of the respiratory waveform.
  • the image processing circuit uses the respiratory waveform that has passed through the low-pass filter or filter bank to set a minimum luminance value in the respiratory waveform as a lower limit value, and the lower limit value.
  • the threshold value of the respiratory start point may be calculated as the index by adding the amplitude addition value to the index, and the respiratory start point may be determined based on the threshold value of the respiratory start point.
  • the image processing circuit may update a threshold value of the respiratory start point every update period.
  • the image processing circuit is between two adjacent respiratory start points on the respiratory waveform in which the sign of the difference between the luminance value and the threshold value of the respiratory start point changes in the same direction.
  • a local minimum point is specified, and a local maximum point between the first local point and the second local minimum point is focused on the first local minimum point and the second local minimum point that is one time earlier than the first local minimum point.
  • a tail side amplitude indicating a difference in luminance value between a point and the first minimum point, a head side amplitude indicating a difference in luminance value between the maximum point and the second minimum point, and the tail side
  • the index including a head tail ratio indicating a ratio between an amplitude and the head-side amplitude may be calculated.
  • the image processing circuit selects a divided region from the plurality of divided regions based on the respiratory waveform and the index for each divided region, and the test processing is performed based on the respiratory start point of the selected divided region. You may measure the biological activity resulting from body respiration.
  • the head tail ratio is approximately 1 over a predetermined period, and the average value of the tail side amplitude and the head side amplitude in the predetermined period is large, or the variance is respectively
  • a small divided region may be selected from the plurality of divided regions, and the biological activity resulting from the breathing of the subject may be measured based on the respiratory start point of the selected divided region.
  • the image processing circuit selects a candidate for a divided region in which an average value of the head tail ratio is equal to or greater than a third threshold value over a predetermined period from the plurality of divided regions.
  • the biological activity resulting from the breathing of the subject may be measured based on the breathing start point of the divided region where the average value of the tail side amplitude and the head side amplitude is maximum in the predetermined period.
  • the image processing circuit calculates a weighted average value of the head tail ratio by weighting such that the weight becomes smaller as past data, and the weighted average is equal to or greater than the third threshold value. Candidates may be selected.
  • the measurement device further includes a display device that displays a measurement result of life activity resulting from the breathing of the subject, and the display device displays the respiratory rate of the subject and the trend of the respiratory rate. You may display the waveform to show and the said moving image.
  • a measurement system includes a light source that emits light, an imaging device that receives the light and generates a moving image, and an image processing circuit that measures a biological activity of a subject using the moving image.
  • a retroreflecting material having a reflection pattern is arranged at a position where body movement accompanying breathing of the subject is arranged, and the light is emitted from the light source toward the subject
  • the imaging device receives the light reflected by the retroreflecting material at a plurality of times, generates the moving image composed of a plurality of time-series frame images
  • the image processing circuit includes: The moving image is received from the imaging device, the coordinate position of the reflection pattern in at least one frame image among the plurality of frame images is calculated, and a plurality of divided regions are defined as the coordinate position Based on the respiratory waveform of each of the plurality of divided regions, the respiratory waveform is generated in each of the plurality of divided regions to generate a luminance waveform indicating a change in luminance value over the plurality of frame
  • a measurement method includes a light source that emits light, an imaging device that receives the light to generate a moving image, and an image processing circuit that measures the biological activity of a subject using the moving image.
  • a measurement system comprising: a retroreflective material having a reflection pattern at a position where a body motion accompanying breathing of the subject occurs A step of irradiating the subject with the light, and the imaging device receives reflected light reflected by the retroreflecting material at a plurality of times, and a plurality of time-series frames.
  • Generating the moving image composed of images, and the image processing circuit receives the moving image from the imaging device, and the at least one frame image among the plurality of frame images.
  • a computer program includes a light source that emits light, an imaging device that receives the light and generates a moving image, and an image processing circuit that measures a subject's biological activity using the moving image.
  • a computer program executed by the image processing circuit in a measurement system comprising: a retroreflective material having a reflection pattern is disposed at a position where body movement accompanying breathing of the subject occurs; A step of receiving a moving image generated by the imaging device when the light is emitted toward the subject, wherein the time series of the time series based on the light reflected by the retroreflecting material
  • FIG. 1 is a configuration diagram of a measurement system 100 according to a first embodiment. It is a hardware block diagram of the information processing apparatus 30 by 1st Embodiment. It is a flowchart which shows the procedure of the measurement process performed with the measurement system 100 by 1st Embodiment. It is a schematic diagram which shows the frame image 102 which image
  • FIG. 1 It is a schematic diagram which shows a mode that a respiratory waveform changes according to the influence of the body movement of persons other than the test subject 1, and the test subject 1. It is a schematic diagram which shows a mode that the respiration waveform acquired from each area
  • FIG. It is a graph which shows a respiration waveform when division area 51 is set up appropriately. It is a graph which shows the respiratory waveform when the division area 51 is not set appropriately. It is a flowchart which shows the procedure of the setting of the some division area 51.
  • FIG. It is a flowchart which shows the procedure which determines a respiratory origin by numerical differentiation.
  • FIG. 4 is a schematic view illustrating display contents displayed on a display 32.
  • FIG. It is a flowchart which shows the procedure which determines a respiratory starting point using the threshold value of a respiratory starting point.
  • FIG. It is a schematic diagram which shows the respiratory waveform of a certain division
  • FIG. It is a schematic diagram which shows a mode that the threshold value of a respiratory origin is updated for every predetermined period.
  • a measurement system includes a light source that emits light, an imaging device that receives light to generate a moving image, and an image processing circuit that measures a subject's biological activity using the moving image.
  • An infrared light source is preferably used as the light source.
  • the image processing circuit receives a moving image from the imaging device, calculates a coordinate position of the reflection pattern in at least one frame image among the plurality of frame images, and at least a part of the region of the reflection pattern in each frame image Are set based on the coordinate position of the reflection pattern.
  • the image processing circuit generates a respiratory waveform indicating a change in luminance value over a plurality of frame images in each divided region, and measures a biological activity resulting from the breathing of the subject based on the respiratory waveform in each divided region.
  • a divided region most suitable for measurement is selected from a plurality of divided regions using various techniques, and a living body caused by breathing of the subject is selected based on the respiratory waveform of the divided region. It becomes possible to measure activity.
  • the measurement system 100 identifies the respiratory start point on the respiratory waveform.
  • the respiratory start point is used to measure a biological activity resulting from the subject's breathing.
  • the breathing start point means the starting point of breathing in or breathing out.
  • the respiration rate is mainly measured based on the respiration start point.
  • the respiratory rate is an example of a biological activity resulting from the subject's breathing, and other biological activities resulting from the subject's breathing may be measured.
  • the measurement system measures the breathing motion of the subject, and derives a waveform (a waveform corresponding to the breathing waveform) resulting from breathing from body motion due to breathing.
  • biological activities that can be evaluated using the waveform, for example, biological activities such as breathing depth, turbulence, apnea periods, frequency of occurrence of apnea periods, This is the category of the biological activity to be measured.
  • the measurement system can display the respiration rate and the respiration rate trend on the display.
  • FIG. 1 schematically shows a configuration of a measurement system 100 according to the present embodiment.
  • the measurement system 100 includes a camera 10, a light source 20, an information processing device 30, and a retroreflecting material 40. Although the subject 1 is shown in FIG. 1, the subject 1 is not included in the measurement system 100.
  • the measurement system 100 is used for observing the biological activity of the subject 1.
  • the biological activity is the respiration of the subject 1, and the measurement system 100 measures the respiration rate within a predetermined period.
  • the camera 10 is a so-called imaging device having an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) sensor and an optical system, and shoots the subject 1 to generate a moving image.
  • the camera 10 sends moving image data to the information processing apparatus 30 by wire or wirelessly.
  • CMOS Complementary Metal Oxide Semiconductor
  • the light source 20 is a light source that emits light 20a.
  • the light may be visible light or invisible light (for example, infrared light).
  • infrared light will be described as an example.
  • the light 20a is described as “infrared light 20a”.
  • the information processing apparatus 30 receives a moving image from the camera 10, specifies a respiratory start point in the respiratory waveform using a method as described later, and measures the respiratory rate of the subject 1 based on the respiratory start point. Details of the operation of the information processing apparatus 30 will be described later.
  • the retroreflective material 40 is a reflective material having an optical characteristic of reflecting incident light toward the incident direction. That is, the incident angle of light incident on the retroreflecting material 40 is equal to the emission angle of light reflected by the retroreflecting material 40. However, this property is ideal and can actually be reflected in a direction different from some incident directions.
  • the optical axis of the light source 20 and the optical axis of the camera 10 are arranged close to each other. Thereby, the infrared light 20a emitted from the light source 20 is reflected by the retroreflecting material 40, and most of the light enters the camera 10 as infrared light 20b. Therefore, the camera 10 can photograph the subject 1 with a sufficient amount of light.
  • the retroreflecting material 40 a cloth coated with glass beads can be used as the retroreflecting material 40.
  • the disturbance light 21a incident on the retroreflecting material 40 is reflected in the incident direction as reflected light 21b. Since the reflected light 21b does not substantially enter the camera 10, the moving image captured by the camera 10 is not easily affected by disturbance light.
  • FIG. 2 shows an example of the hardware configuration of the information processing apparatus 30 of the measurement system 100.
  • the information processing apparatus 30 is electrically connected to the camera 10 and the display 32.
  • the information processing apparatus 30 receives captured moving image data from the camera 10.
  • the display 32 is a result of the processing, and displays a measurement result of the respiratory rate, which is a biological activity of the subject 1, a respiratory rate trend, and the like.
  • the information processing apparatus 30 may display a warning on the display 32 when determining based on the measurement result that the shooting direction of the camera 10 is not appropriate.
  • the information processing apparatus 30 includes a CPU 301, a ROM 302, a RAM 303, a hard disk drive (HDD) 304, an interface (I / F) 305, and an image processing circuit 306.
  • the CPU 301 controls the operation of the information processing apparatus 30.
  • the ROM 302 stores a computer program.
  • the computer program is a group of instructions for causing the CPU 301 or the image processing circuit 306 to perform processing shown by a flowchart described later, for example.
  • a RAM 303 is a work memory for developing a computer program when executed by the CPU 301.
  • the HDD 304 is a storage device that stores moving image data received from the camera 10 or measured respiratory rate data of the subject 1.
  • the I / F 305 is an interface for the information processing apparatus 30 to receive moving image data from the camera 10.
  • the I / F 305 may be an Ethernet (registered trademark) terminal, for example.
  • the I / F 305 may be a transmission / reception circuit that performs communication conforming to the Wi-Fi (registered trademark) standard, for example.
  • the I / F 305 may be a wired video input terminal.
  • the image processing circuit 306 is a so-called graphics processor that analyzes moving image data.
  • the image processing circuit 306 receives a moving image from the camera 10, calculates the coordinate position of the reflection pattern of the retroreflecting material 40 in at least one frame image among the plurality of frame images, and at least one of the areas of the reflection pattern.
  • a plurality of divided regions 51 (see FIG. 9A) surrounding the part are set at the same position in each frame image based on the coordinate position.
  • the image processing circuit 306 generates a respiratory waveform indicating a change in luminance value over a plurality of frame images for each divided region 51, and measures the respiratory rate of the subject 1 based on the respiratory waveform in the divided region 51. Details of the reflection pattern and the divided region 51 will be described later.
  • the image processing circuit 306 is provided separately from the CPU 301, but this is an example.
  • An integrated circuit in which the CPU 301 and the image processing circuit 306 are integrated may be used, or the CPU 301 may perform a part of the processing of the image processing circuit 306.
  • FIG. 3 shows a procedure of measurement processing performed in the measurement system 100. This process is mainly executed by the CPU 301 and / or the image processing circuit 306. In the following description, it is assumed that the execution subject is the image processing circuit 306.
  • Step S1 First, the observer or the subject 1 arranges the retroreflecting material 40 having a predetermined reflection pattern as a reflection marker at the position where the body movement accompanying breathing of the subject 1 occurs.
  • the camera 10 receives the infrared light reflected by the retroreflecting material 40 and captures a moving image of the subject 1.
  • FIG. 4 illustrates a frame image 102 obtained by photographing the subject 1 wearing the retroreflecting material 40.
  • a high luminance area (white area) 104 corresponding to the reflection pattern in the center of the image is an area where the reflected light from the retroreflecting material 40 is detected.
  • the information processing apparatus 30 recognizes the area as a reflection marker.
  • FIG. 5 illustrates a frame image 106 obtained by photographing a subject who does not wear the retroreflecting material 40. When the retroreflecting material 40 is not present, it can be said that the luminance change in the captured frame image is very small.
  • 4 and 5 show a plurality of vertical lines and horizontal lines, which are boundary lines virtually provided for image processing. Note that the area of the image partitioned by the boundary line is different from the divided area 51.
  • FIG. 6 shows an example of the reflection pattern of the retroreflecting material 40 that functions as a reflective marker.
  • the retroreflecting material 40 can include, for example, a triangular, rectangular, and diamond-shaped reflection pattern.
  • the reflectance of the high reflection region 200 corresponding to the reflection pattern is relatively higher than the reflectance of the surrounding region.
  • the high reflection region 200 corresponds to the high luminance region 104 shown in FIG.
  • FIG. 7 shows how the respiratory waveform changes due to the influence of a person other than the subject 1 and the body movement of the subject 1.
  • FIG. 7A shows the state of the subject 1 on the bed
  • FIG. 7B shows the state where a person other than the subject 1 crosses the front of the bed
  • FIG. 7C shows the subject on the bed. 1 shows a state of turning over.
  • FIG. 7D shows a change in luminance value in each state.
  • the waveform (i) indicates a normal respiration waveform
  • the waveform (ii) indicates a respiration waveform that has fluctuated due to the influence of disturbance or body movement of the subject 1.
  • a conventional measurement system that measures a respiration rate or the like generates a respiration waveform based on a temporal change in an average luminance value of a certain area (single block) shown in FIG. 4 or 5, for example. It is necessary to acquire a respiration waveform that faithfully reproduces the respiration movement, and to accurately specify the respiration start point from the respiration waveform. However, if a person other than the subject 1 crosses the front of the bed or the subject 1 turns over during the measurement, the respiratory waveform changes greatly as shown in FIG. Including other noise components. If a breathing waveform including noise is used, the breathing start point may be specified incorrectly, and an accurate breathing rate may not be measured.
  • FIG. 8 shows a state in which the respiratory waveforms acquired from each region differ between different regions A, B, and C depending on the positional relationship between the subject 1 and the camera 10.
  • the subject 1 has various breathing modes. For this reason, even if the angle of view is fixed, the state of minute vibration of the reflective marker that occurs with body movement differs for each set region. Therefore, whether or not an optimal respiration waveform can be acquired for the measurement of the respiration rate largely depends on how the region is set.
  • the image processing circuit 306 detects whether the frame image has changed due to, for example, a person other than the subject 1 or the body movement of the subject 1. More specifically, the image processing circuit 306 detects the change using, for example, an inter-frame difference or a background difference.
  • the image processing circuit 306 is configured not to use the respiration waveform acquired in the region or period in the frame image where the change is detected for the measurement of the respiration rate.
  • an example of detection using inter-frame differences will be described.
  • the inter-frame difference is the difference between the frame image acquired in the time series and the i-th acquired frame image and the i-th acquired frame image. This is a technique for specifying an area.
  • i and n are integers of 1 or more.
  • the image processing circuit 306 obtains a difference value by taking a difference between the frame images for each pixel of the frame image. A pixel whose difference value exceeds a predetermined threshold value is described as a “change pixel”, and a region where the change pixels are gathered is described as a “change block”. The image processing circuit 306 determines that the frame image has changed if the number of changed pixels or changed blocks is equal to or greater than a predetermined threshold value.
  • the image processing circuit 306 can detect a change between frame images not in units of pixels but in units of blocks.
  • the image processing circuit 306 uses, for example, an 8 ⁇ 8 pixel region as a block (corresponding to an image region partitioned by a boundary line shown in FIGS. 4 and 5) as a unit of luminance average of pixels in the block. You may calculate and take those differences between frame images.
  • the image processing circuit 306 estimates the area from the reflection marker to the head, hand, and foot of the subject 1 and applies the above detection process only to that area. I do not care.
  • the image processing circuit 306 may estimate the region of each part (for example, face, hand, and foot) of the subject and detect whether or not the part has moved.
  • the image processing circuit 306 detects a change in the image, the image processing circuit 306 does not use the respiration waveform acquired during the period in which the change is detected to measure the respiration rate. Thereby, the influence to the respiration measurement by the test subject's 1 body movement and disturbance can be suppressed.
  • the image processing circuit 306 can filter the generated respiratory waveform using a low-pass filter. Since the data for the order of the low-pass filter (for example, 16th order) includes components other than respiration, the image processing circuit 306 uses the data for that order (for example, 16 samples) for the measurement of the respiration rate when filtering. I try not to.
  • the data for the order of the low-pass filter for example, 16th order
  • the image processing circuit 306 uses the data for that order (for example, 16 samples) for the measurement of the respiration rate when filtering. I try not to.
  • the image processing circuit 306 receives a moving image from the camera 10 and specifies a coordinate position of a reflection pattern in at least one frame image among a plurality of frame images using, for example, a known pattern recognition method.
  • the coordinate position of the reflection pattern means, for example, the coordinates of each vertex, center, or center of gravity of the high reflection region 200 shown in FIG.
  • the image processing circuit 306 can also specify the coordinate position of the reflection pattern using the corner detection method and the edge detection method.
  • a specifying method is described in Japanese Patent Application No. 2015-102726, which is an unpublished patent application filed by the present applicant. All of these disclosures are incorporated herein by reference.
  • the image processing circuit 306 specifies the coordinate position of the reflection pattern in at least one of the plurality of frame images. For example, the image processing circuit 306 updates the coordinate position every 10 seconds.
  • the image processing circuit 306 specifies the coordinate position of the reflection pattern in the image every 300 frames. In other words, the information regarding the coordinate position is updated every 300 frames.
  • the update interval corresponds to the subject's 1 breathing rate of 6 times.
  • FIG. 9A illustrates a respiratory waveform when the divided region 51 is appropriately set.
  • FIG. 9B illustrates a breathing waveform when the divided region 51 is not set appropriately.
  • the monitoring area 50 is set so as to surround the reflection marker of the retroreflecting material 40.
  • the monitoring area 50 is composed of a plurality of divided areas 51.
  • the monitoring area 50 includes a plurality of divided areas 51 that divide the reflective marker area into, for example, 3 ⁇ 3 or more.
  • the size of the divided area 51 is determined depending on the resolution and angle of view of the camera 10 and can be set to 16 ⁇ 16 pixels, for example.
  • FIG. 9A shows a waveform acquired when the divided region P is set at a position where the respiratory waveform is faithfully reproduced. It can be seen that the respiratory waveform does not include distortion and is drawn by a smooth curve. Hereinafter, such a respiratory waveform is described as “normal respiratory waveform”.
  • normal respiratory waveform By setting the divided region 51 at an appropriate position, a normal respiratory waveform is acquired, and the respiratory rate of the subject 1 can be accurately measured.
  • FIG. 9B shows a waveform obtained when the divided region P is set at a position where the respiratory waveform is not faithfully reproduced.
  • the respiratory waveform includes a distorted waveform such as a rectangular wave in a part thereof, and cannot be said to be drawn by a smooth curve.
  • a normal respiratory waveform may not be acquired depending on the position and size of the partial region 51. If a partially distorted respiratory waveform is used, there is a possibility that the respiratory start point described later will be erroneously specified. As a result, the respiratory rate of the subject 1 cannot be accurately measured.
  • the image processing circuit 306 based on the coordinate information of the reflection marker acquired in step S3, includes a plurality of divided regions 51 so as to surround at least a part of the region of the reflection pattern. Is set to the same position in each frame image.
  • the movement (up and down movement) of the reflective marker is performed in each area during the period of inhalation and exhalation (that is, half the period of one respiration period). It is preferable to employ a divided region 51 that occurs within the range of.
  • the image processing circuit 306 has a luminance average of the divided area 51 lower than the luminance average in the area of the reflective pattern and the luminance average of the area outside the reflective marker during the period of inhaling and exhaling. It is preferable to set a plurality of divided regions 51 so as to be higher. The image processing circuit 306 repeats the setting of the plurality of divided areas 51 while changing the position and size of the divided areas 51 until this condition is satisfied.
  • FIG. 10 shows an example of a procedure for setting a plurality of divided areas 51.
  • the procedure corresponds to the subroutine of step S4.
  • Step S41 can be provided arbitrarily.
  • the image processing circuit 306 generates an integrated image from the moving image acquired from the camera 10.
  • the use of the integral image can speed up the subsequent calculation processing, so it is preferable to provide step 41.
  • step 41 below, the example which performs arithmetic processing using an integral image is demonstrated.
  • the image processing circuit 306 sets a plurality of divided regions 51 so as to surround at least a part of the region of the reflection pattern in each frame image based on the coordinate information of the reflection marker acquired in step S3.
  • the image processing circuit 306 first sets the size of each divided region 51 to, for example, 8 ⁇ 8 pixels.
  • the image processing circuit 306 calculates the luminance average of the pixels for each divided region 51 and generates a respiratory waveform based on time-series data indicating a change in luminance average over a predetermined period (for example, the past 20 seconds). Alternatively, the image processing circuit 306 may generate a respiration waveform based on time-series data indicating a change in the integrated value of the pixels in the divided region during a predetermined period.
  • a predetermined period for example, the past 20 seconds
  • the image processing circuit 306 may generate a respiration waveform based on time-series data indicating a change in the integrated value of the pixels in the divided region during a predetermined period.
  • “brightness of an area” refers to, for example, an average value, an integrated value, or a representative value of pixels in the area.
  • the image processing circuit 306 generates 12 respiratory waveforms for the 3 ⁇ 4 divided region 51.
  • the predetermined period of 20 seconds corresponds to a general breathing rate of 3 bpm of the subject.
  • the image processing circuit 306 generates a respiratory waveform based on time-series data for the past 20 seconds (corresponding to 600 frames when the frame rate is 30 fps) retroactively from the current time while accessing the RAM 303 and the HDD 304.
  • the image processing circuit 306 calculates, for each divided region 51, the minimum value, maximum value, and average value of the above-mentioned “region luminance” from a respiratory waveform generated based on, for example, time-series data for the past 20 seconds.
  • the image processing circuit 306 can individually determine whether or not all of the minimum value, maximum value, and average value of the luminance satisfy a predetermined condition for each divided region 51. More specifically, the image processing circuit 306 can determine whether or not the minimum value, maximum value, and average value of the luminance are within a predetermined range. More specifically, in the image processing circuit, the maximum value and the minimum value of the luminance of the region are the maximum value ⁇ “luminance average in the region of the reflection pattern” ⁇ “threshold value” and the minimum value> “reflection”. It can be determined whether or not the condition “luminance average of the area outside the marker” + “threshold value” is satisfied.
  • step S45 If the number of blocks of the divided areas 51 that satisfy the above-described conditions among the plurality of divided areas 51 is equal to or greater than a preset threshold value (Yes in S45), the process proceeds to the next step S5 for specifying the respiratory start point. To do. If the number of the divided areas 51 satisfying this condition is less than a preset threshold value (No in S45), the process returns to step S42 again.
  • the image processing circuit 306 changes the size and position of the divided areas 51 and sets a plurality of divided areas 51 again.
  • the image processing circuit 306 repeats the processing from step S42 to S45 until the condition of step S45 is satisfied.
  • the image processing circuit 306 determines the respiratory start point for each divided region 51 by numerically differentiating the respiratory waveform.
  • the respiration waveform generated in step S4 includes noise components other than respiration. If the respiratory waveform containing noise is differentiated as it is, the noise component will be emphasized, so that the respiratory start point cannot be specified accurately. Therefore, the image processing circuit 306 removes noise from the respiratory waveform using a filter 307 (see FIG. 2) before performing numerical differentiation.
  • FIG. 11 shows a procedure for determining the respiratory start point by numerical differentiation. The procedure corresponds to the subroutine of step S5.
  • the image processing circuit 306 includes a filter 307 (see FIG. 2) that removes noise in the respiratory waveform for each divided region 51.
  • the filter 307 is a low-pass filter or a filter bank. For example, assuming a respiration rate of 0 to 150 bpm, a low-pass filter having a cutoff frequency of 2.5 Hz can be used.
  • the image processing circuit 306 uses a filter that allows a signal from 0 to 2.5 Hz to pass, there is a possibility that the breathing start point may be erroneously detected when the subject 1 breathes slowly. Considering this point, it can be said that it is preferable to use a filter bank composed of a plurality of filters, for example.
  • the image processing circuit 306 may select an optimal respiration waveform, for example, a respiration waveform having the largest amplitude, from respiration waveforms that have passed through each filter of the filter bank.
  • the respiratory waveform is differentiated and a candidate for the respiratory start point is extracted: Step S52)
  • the image processing circuit 306 numerically differentiates (primary differentiation) the respiratory waveform for each divided region 51 that has passed through the filter 307.
  • the image processing circuit 306 extracts n time-sequential minimum points (n is an integer of 1 or more) in the respiratory waveform obtained by differentiation as candidates for the respiratory start point.
  • the minimum point corresponding to the candidate for the respiratory start point is a so-called upward zero-cross point where the differential value changes from minus to plus.
  • Step S53 Determining whether the breathing start point or not: Step S53. If the respiratory start candidate obtained in step S52, that is, the upward zero-cross point is determined as it is as the respiratory start point, erroneous detection increases in the measurement of the respiratory rate. The reason is that an upward zero-cross point may occur due to subtle vibrations other than breathing, disturbance light, ringing due to filtering, and the like. In order to prevent erroneous detection, the image processing circuit 306 determines whether or not the respiratory start candidate is the respiratory start point.
  • FIG. 12 shows a state where a specific respiration start point is determined from a plurality of respiration start candidates in the respiration waveform.
  • FIG. 13 shows a tail point, a head point, a max point, a tail side amplitude, and a head side amplitude in the respiratory waveform.
  • the image processing circuit 306 selects the i-th first candidate among the n candidates for the respiratory start point and the second candidate that is one time earlier in time series than the first candidate.
  • i is an integer from 1 to n.
  • the first candidate point is expressed as “tail point”
  • the second candidate point is expressed as “head point”
  • the first and second candidate minimum points that is, between the tail point and the head point
  • the maximum point is expressed as “Max Point”.
  • the luminance value difference between the max point and the tail point is expressed as “tail side amplitude (“ TA ”in FIG. 13)”
  • the luminance value difference between the max point and the head point is “ The head-side amplitude (“HA” in FIG. 13) is expressed.
  • the ratio between the tail side amplitude and the head side amplitude is referred to as a “head tail ratio”.
  • the image processing circuit 306 determines whether or not the first candidate, that is, the tail point (i), is the respiration start point, using three indexes for each divided region 51. Specifically, the image processing circuit 306 determines the tail point (i) as the respiratory start point when the tail side amplitude and the head side amplitude are each equal to or greater than a predetermined threshold and the head tail ratio is substantially equal to 1. Is determined.
  • the predetermined threshold is determined according to the size of the reflective marker on the image and the size of the divided area 51. For example, when the luminance value of a pixel is indicated by an 8-bit signal, the predetermined threshold value can be set to 3.
  • the head tail ratio may be tail side amplitude / head side amplitude, or head side amplitude / tail side amplitude.
  • the image processing circuit 306 selects, from the plurality of divided areas 51, a divided area 51 that is optimal for measuring the respiration rate based on the respiratory waveform and respiratory start information for each divided area 51.
  • the image processing circuit 306 specifies a respiration start point used for respiration rate measurement in the respiration waveform of the selected divided region 51.
  • FIG. 14 shows an example of a processing procedure for selecting the optimum divided area 51.
  • the procedure corresponds to the subroutine of step S6.
  • each average value of the head-side amplitude and the tail-side amplitude is calculated for each divided region 51: Step S61)
  • the image processing circuit 306 averages the head-side amplitude and tail-side amplitude for the past several beats (for example, 60 seconds) for each divided region 51. Note that the image processing circuit 306 may obtain variances of the head-side amplitude and the tail-side amplitude for the past several beats. In the divided area 51 that is optimal for measuring the respiration rate, each average value is large and the variance is small.
  • the image processing circuit 306 calculates an average value of head tail ratios for the past several beats for each divided region 51.
  • the image processing circuit 306 may calculate the weighted average for each divided region 51 by weighting the head tail ratio for the past several beats. At that time, weighting is performed so that the weight becomes smaller as the past data is obtained.
  • the divided region 51 that is most suitable for measuring the respiratory rate has a feature that the change in the head tail ratio for the past several beats is small and the head tail ratio is substantially equal to one. In other words, the dispersion is small.
  • the image processing circuit 306 can select the optimum divided region 51 on condition of any of the following (A) to (C).
  • the image processing circuit 306 specifies a respiration start point used for respiration rate measurement in the respiration waveform of the selected divided region 51.
  • A The head tail ratio for the past several beats is substantially constant, and the average values of the tail side amplitude and the head side amplitude for the past several beats are large.
  • B The head tail ratio for the past several beats is substantially constant, and the tail-side amplitude and head-side amplitude variance for the past several beats are small.
  • the head tail ratio for the past several beats is substantially constant at 1, and the tail-side amplitude and head-side amplitude variance for the past several beats are equal to or greater than a predetermined threshold, and the past In several beats, the average value of the tail side amplitude and the head side amplitude is the largest.
  • the predetermined threshold value can be set to 0.1.
  • the image processing circuit 306 selects a candidate for a divided region in which the average of the head tail ratios for the past several beats is equal to or greater than a predetermined threshold value.
  • the image processing circuit 306 may select, as the optimum divided region 51, the divided region 51 in which the average values of the tail side amplitude and the head side amplitude for the past several beats are the largest among the divided region candidates. .
  • the head tail ratio represented by the above formula (1) is used, and the predetermined threshold value can be halved, for example.
  • the image processing circuit 306 has a large tail side amplitude and a head side amplitude among the divided regions A, B, and C, and a small dispersion of the head tail ratio.
  • the divided area A can be determined as the optimum divided area 51.
  • FIG. 15 shows the respiratory start point specified in step S6 and the respiratory cycle (s) in the respiratory waveform, which are used for measuring the respiratory rate.
  • the time difference between two adjacent breathing origins is the breathing cycle (s) of the subject 1 breathing.
  • the respiration rate (bpm) is expressed as 60 / respiration cycle (s).
  • the image processing circuit 306 measures the respiration rate of the subject 1 based on the respiration waveform of the optimum divided region 51 selected in step S6 and the respiration start information. For example, in the plurality of respiration waveforms shown in FIG. 8, the image processing circuit 306 measures the respiration rate of the subject 1 based on the respiration waveform of the divided area A and the respiration start information. The image processing circuit 306 can count the respiration rate within a predetermined period.
  • FIG. 16 shows an example of display contents displayed on the display 32.
  • the display 32 displays the measurement result of the biological activity resulting from the respiration of the subject 1.
  • the information regarding the measurement result of the biological activity includes information indicating the respiratory rate of the subject 1 and the trend of the respiratory rate.
  • Information indicating the trend of the respiratory rate is displayed on the display 32 as a waveform indicating a temporal change in the respiratory rate.
  • the information on the respiration rate is updated at a predetermined interval.
  • the display 32 also displays a breathing waveform indicating a change in the luminance value of the optimum divided area 51. Further, system information indicating the state of the measurement system 100 is displayed.
  • the information means, for example, the state of a program that is running internally such as during search, during measurement, and during stop.
  • the moving image captured by the camera 10 is displayed on the display 32 in real time.
  • a rectangular frame that identifies the detection position of the reflective marker and the divided region 51 used for measuring the respiration rate can also be displayed superimposed on the moving image.
  • an operator for example, a doctor of the measurement system 100 can confirm on the display 32 that the reflective marker is accurately recognized. If the reflective marker is not accurately arranged, the detection position of the reflective marker and the respiration rate are not displayed on the display 32, so the operator can surely confirm this problem.
  • a measurement system having high robustness against changes in the surrounding environment is provided.
  • the image processing circuit 306 according to the second embodiment is configured to determine the respiratory start point using a threshold value for determining the respiratory start point (hereinafter referred to as “the threshold value of the respiratory start point”). This is different from the image processing circuit 306 according to the first embodiment.
  • the respiratory start point according to the present embodiment refers to a point on the respiratory waveform where the luminance value is equal to the threshold value of the respiratory start point.
  • description of common parts will be omitted, and description will be made focusing on differences.
  • FIG. 17 shows a procedure for determining the respiratory start point using the threshold value of the respiratory start point.
  • the procedure corresponds to a subroutine of step S6 different from the first embodiment.
  • the image processing circuit 306 determines the respiratory start point according to the procedure of FIG.
  • Step S51 Removal of respiratory waveform noise for each divided region 51: Step S51.
  • the image processing circuit 306 removes respiratory waveform noise for each divided region 51.
  • FIG. 18 shows a respiratory waveform of a certain divided area 51.
  • FIG. 19 shows a state in which the threshold value of the respiratory start point is updated every predetermined period.
  • the image processing circuit 306 sets a lower limit value for calculating a threshold value of the respiratory start point based on data for a predetermined period. For example, the image processing circuit 306 sets the minimum value of the luminance value in the past 20 seconds as the lower limit value.
  • the lower limit value is updated every predetermined period, for example, every 20 seconds.
  • the image processing circuit 306 adds the added value to the lower limit value to obtain the threshold value for the respiratory start point.
  • the added value can be “1”.
  • the threshold value of the respiratory start point is also updated every predetermined period.
  • FIG. 19 shows how the DC component of the respiratory waveform varies in three sections. It can be seen that the DC component of the respiratory waveform varies from section to section. In the present embodiment, the threshold value of the respiratory start point is updated for each section according to the fluctuation of the DC component. As a result, the respiratory start point can be accurately determined following the fluctuation of the DC component.
  • the image processing circuit 306 determines the respiratory start point based on the threshold value of the respiratory start point. More specifically, for example, the image processing circuit 306 determines a point on the respiration waveform where the sign of the difference between the luminance value and the threshold value of the respiration start point changes from negative to positive as the respiration start point. Alternatively, the image processing circuit 306 may determine a point on the respiration waveform where the sign of the sign changes to the respiration start point.
  • the image processing circuit 306 determines the optimal divided region, specifies the respiration start point (step S6), and determines the respiration rate of the subject, as in the first embodiment. Is measured (step S7). More specifically, for example, the image processing circuit 306 is located between two adjacent respiratory start points on a respiratory waveform in which the sign of the difference between the luminance value and the threshold value of the respiratory start point changes from negative to positive. A certain local minimum point is grasped, and the head side amplitude, the tail side amplitude, and the head tail ratio are calculated based on the local minimum points. The image processing circuit 306 can determine an optimum divided region based on the same conditions described in the first embodiment using those indices.
  • the measurement system 100 according to the first embodiment is less susceptible to fluctuations in the DC component of the respiratory waveform than the measurement system 100 according to the second embodiment. For this reason, it can be said that it is preferable to use the measurement system 100 according to the first embodiment in a measurement environment where the fluctuation of the DC component is remarkable.
  • a measurement system having high robustness against changes in the surrounding environment is provided.
  • a measurement system that is not easily affected by minute noise is provided.
  • the measurement system 100 according to the third embodiment is different from the measurement system 100 according to the first embodiment in that the camera 10 is equipped with an optical filter.
  • the camera 10 is equipped with an optical filter.
  • the camera 10 may be equipped with an optical filter (not shown) that blocks the wavelength in the visible light region.
  • the optical filter is also called an infrared filter, for example.
  • the optical filter transmits infrared light emitted from the light source 20 and reflected by the retroreflecting material 40, but blocks visible light.
  • the present embodiment by providing an optical filter, it is possible to prevent light other than infrared light, more specifically, visible light from entering the camera 10, thereby changing the luminance value of the captured moving image. Can be reduced. Since the fluctuation of the luminance value of each frame image due to visible light can be suppressed, it is possible to effectively reduce the generation of disturbance noise that is caused only by visible light and is not caused by a biological reaction. In other words, a change in luminance value due to only infrared light reflected by the retroreflecting material 40 can be reliably captured.
  • the measurement system 100 that assumes real-time processing of a moving image captured by the camera 10 has been described, but the present invention is not limited to this.
  • the moving image of the subject 1 captured by the camera 10 may be temporarily stored in an external memory or the like.
  • the image processing circuit 306 may read the moving image data from the external memory and measure the respiration rate of the subject 1 afterwards based on the data.
  • the information processing apparatus 30 including the image processing circuit 306 may be a component of the measurement system 100 or may be a single measurement apparatus that can be distributed to the market independently.
  • This specification discloses a measurement apparatus, a measurement system, a measurement method of a biological activity caused by respiration of a subject, and a computer program described in the following items.
  • a measuring device that measures a subject's biological activity using a moving image of a subject generated by an imaging device that has received light emitted from a light source, An input interface for receiving the moving image; An image processing circuit for measuring the biological activity of the subject using the moving image; With In the moving image, a retroreflecting material having a reflection pattern is arranged at a position where a body movement accompanying breathing of the subject is arranged, and when the light is emitted from the light source toward the subject, a plurality of the moving images are provided.
  • the image processing circuit includes: Calculating a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and setting a plurality of divided regions in each frame image based on the coordinate position; In each of the plurality of divided regions, a respiration waveform indicating a change in luminance value over the plurality of frame images is generated, and a living body resulting from respiration of the subject based on the respiration waveform of each of the plurality of divided regions A measuring device that measures activity.
  • a robust measurement device for life activity caused by breathing is provided in which measurement conditions for life activity are not easily influenced by the surrounding environment.
  • the respiratory start point can be accurately identified.
  • the image processing circuit detects an image change between two frame images of the plurality of frame images, and generates a respiratory waveform related to the frame image from which the image change has been detected, as a result of the biological activity caused by the breathing of the subject.
  • Item 3 The measuring device according to Item 2, which is not used for measurement.
  • the measurement device described in item 3 it is possible to suppress the influence on the respiratory measurement due to the body movement or disturbance of the subject.
  • the image processing circuit is configured so that, in a predetermined period, the average luminance of each divided region is lower than the average luminance in the region of the reflective pattern and higher than the average luminance in the region outside the reflective marker. 4.
  • a normal respiration waveform can be acquired and the respiration rate of the subject can be accurately measured.
  • the image processing circuit is configured to change the size of each divided region until the at least maximum value, minimum value, and average of luminance values of the divided regions in a predetermined period satisfy a predetermined condition. 4. The measuring device according to item 2 or 3, wherein
  • a normal respiration waveform can be acquired and the respiration rate of the subject can be accurately measured.
  • noise can be removed from the respiratory waveform.
  • the image processing circuit numerically differentiates the respiratory waveform that has passed through the low-pass filter or filter bank, thereby obtaining n time-series minimum points (n is an integer of 1 or more) in the respiratory waveform.
  • Item 7 The measuring device according to item 6, wherein the measuring device is specified as a candidate for the breathing start point, which means a start point of breathing in or breathing out.
  • a measurement device that is less susceptible to fluctuations in the DC component of the respiratory start point is provided.
  • the image processing circuit is an i-th (i is an integer from 1 to n) first candidate out of n candidates for the respiratory start point, and a first minimum point one prior to the first candidate. Focus on the two candidates, A tail-side amplitude indicating a difference in luminance value between a maximum point between the first and second candidate minimum points and the first candidate minimum point; A head-side amplitude indicating a difference in luminance value between the maximum point and the minimum point of the second candidate; The measuring device according to item 7, wherein the first candidate is determined to be the respiratory start point using the index including a head tail ratio indicating a ratio between the tail side amplitude and the head side amplitude.
  • the measurement device described in item 8 it is possible to more accurately determine whether or not the candidate for the respiratory start is the respiratory start using the three indicators.
  • the measurement device described in item 9 it is possible to more accurately determine whether or not the candidate for the respiratory start point is the respiratory start point using the three indicators.
  • the image processing circuit uses the respiratory waveform that has passed through the low-pass filter or the filter bank, sets a minimum luminance value in the respiratory waveform as a lower limit value, and sets an amplitude addition value to the lower limit value. Add and calculate the breathing origin threshold as the indicator, Item 7.
  • a measurement device that is not easily affected by minute noise is provided.
  • a measurement device that is not easily affected by minute noise is provided.
  • the image processing circuit identifies a minimum point between two adjacent respiratory start points on the respiratory waveform in which the sign of the difference between the luminance value and the threshold value of the respiratory start point changes in the same direction. , Paying attention to the first local minimum point and the second local minimum point in time series before the first local minimum point, A tail-side amplitude indicating a difference in luminance value between a maximum point between the first and second minimum points and the first minimum point; A head-side amplitude indicating a difference in luminance value between the maximum point and the second minimum point; The measuring device according to item 11 or 12, wherein the index including a head tail ratio indicating a ratio between the tail side amplitude and the head side amplitude is calculated.
  • the image processing circuit selects a divided region from the plurality of divided regions based on the respiratory waveform and the index for each divided region, and is caused by the subject's breathing based on the respiratory start point of the selected divided region. 14.
  • the measuring device according to any one of items 7 to 13, which measures a biological activity to be performed.
  • the head tail ratio is approximately 1 over a predetermined period, and an average value of the tail side amplitude and the head side amplitude in the predetermined period is respectively large, or the divided regions having small dispersion are 14.
  • the measuring device according to any one of items 7 to 10, and 13 selected from a plurality of divided regions and measuring a biological activity caused by the breathing of the subject based on the respiratory start point of the selected divided region.
  • the measurement device described in item 15 it is possible to accurately measure the biological activity resulting from the breathing of the subject based on the breathing start point of the selected divided region.
  • the image processing circuit selects, from the plurality of divided regions, a candidate for a divided region in which an average value of the head tail ratio is equal to or greater than a third threshold value over a predetermined period.
  • a candidate for a divided region in which an average value of the head tail ratio is equal to or greater than a third threshold value over a predetermined period.
  • the biological activity caused by the breathing of the subject is measured based on the respiratory start point of the divided area where the average value of the tail-side amplitude and the head-side amplitude is maximized in the predetermined period.
  • the measuring device according to any one of items 7 to 10, and 13.
  • the image processing circuit calculates a weighted average value of the head tail ratio by weighting that decreases in weight as past data is selected, and selects a candidate for the divided region in which the weighted average is greater than or equal to the third threshold value.
  • [Item 18] Further comprising a display device for displaying a measurement result of the biological activity resulting from the breathing of the subject, The measurement device according to any one of items 1 to 17, wherein the display device displays a respiratory rate of the subject, a waveform indicating a trend of the respiratory rate, and the moving image.
  • the operator or the subject can check the measurement result on the display device.
  • a light source that emits light
  • An imaging device that receives the light and generates a moving image
  • An image processing circuit for measuring a subject's biological activity using the moving image, and a measurement system comprising: When a retroreflecting material having a reflection pattern is arranged at a position where a body movement accompanying breathing of the subject is arranged, and when the light is emitted from the light source toward the subject, The imaging device receives the light reflected by the retroreflecting material at a plurality of times, and generates the moving image composed of a plurality of time-series frame images,
  • the image processing circuit includes: The moving image is received from the imaging device, the coordinate position of the reflection pattern in at least one frame image of the plurality of frame images is calculated, and a plurality of divided regions are included in each frame image based on the coordinate position.
  • a respiration waveform indicating a change in luminance value over the plurality of frame images is generated, and a living body resulting from respiration of the subject based on the respiration waveform of each of the plurality of divided regions
  • a robust measurement system for life activity caused by breathing is provided in which measurement conditions for life activity are not easily affected by the surrounding environment.
  • a light source that emits light
  • An imaging device that receives the light and generates a moving image
  • a measurement method comprising: a measurement system comprising an image processing circuit for measuring a subject's life activity using the moving image; and a measurement method for measuring a life activity resulting from respiration of the subject, Placing a retroreflective material having a reflection pattern at a position where body movement associated with breathing of the subject occurs; and The light source irradiating the subject with the light;
  • the imaging device receives reflected light reflected by the retroreflecting material at a plurality of times, and generates the moving image composed of a plurality of time-series frame images;
  • the image processing circuit receives the moving image from the imaging device, calculates a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and sets a plurality of divided regions as the coordinate positions.
  • the image processing circuit generates a respiratory waveform indicating a change in luminance value over the plurality of frame images in each of the plurality of divided regions, and the subject is based on the respiratory waveform of each of the plurality of divided regions.
  • a light source that emits light
  • An imaging device that receives the light and generates a moving image
  • a computer program executed by the image processing circuit in a measurement system comprising: an image processing circuit that measures a subject's biological activity using the moving image; When a retroreflecting material having a reflection pattern is arranged at a position where body movement occurs due to breathing of the subject, and when the light is emitted from the light source toward the subject, Receiving a moving image generated by the imaging device, the moving image including a plurality of time-series frame images based on the light at a plurality of times reflected by the retroreflecting material; When, Calculating a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and setting a plurality of divided regions in each frame image based on the coordinate positions; In each of the plurality of divided regions, a respiration waveform indicating a change in luminance value over the plurality of frame images is generated, and a living body resulting from respiration of the subject
  • the present invention can be used as a method for analyzing a moving image obtained by photographing a subject and measuring the life activity of the subject, particularly the number of breaths, in a non-contact manner.
  • the present invention can also be used as an apparatus, system, and computer program for analyzing such moving images and measuring life activity.

Abstract

[Problem] To provide a robust measurement system for measuring organic activity caused by respiration, in which conditions for measuring organic activity are not readily affected by the surrounding environment. [Solution] A measurement system (100) is provided with a light source (20), an imaging device (10), and an information processing device (30). A recursive reflective material (40) having a reflective pattern is disposed at a position where motion that accompanies the respiration of a subject (1) is generated. When light is emitted from a light source toward the subject, the information processing device receives a moving image from the imaging device, calculates the coordinate positions of a reflective pattern in at least one frame image among a plurality of frame images, and sets a plurality of division regions within the frame images on the basis of the coordinate positions. The organic activity caused by the respiration of the subject is measured on the basis of a respiration waveform generated in each of the division regions.

Description

計測装置Measuring device
 本発明は、被験者の映像から被験者の呼吸数等の、呼吸に起因する生体活動を計測するための技術に関する。なお、本明細書では、被験者は人であるとして説明するが、人以外の動物であってもよい。観測対象としての動物(人を含む。)を総称して「被験体」と呼ぶことがある。 The present invention relates to a technique for measuring a biological activity caused by respiration, such as a subject's respiration rate, from a subject's video. In the present specification, the subject is described as being a person, but may be an animal other than a person. Animals (including people) as observation targets may be collectively referred to as “subjects”.
 カメラで被験者を撮影し、その動画像から体動や血流などの生体反応による輝度値の変化を検出し、被験者の呼吸数、心拍数等の生体活動を計測する技術が知られている。被験者が写る画像領域は、観測者が予め指定したり、輪郭抽出技術を用いたりすることによって特定される。呼吸に起因する生体活動を計測する計測装置として、呼吸モニタリング装置や心拍数計測装置などがあり、例えば特許文献1および2がそのような装置を開示している。 A technique is known in which a subject is photographed with a camera, a change in luminance value due to a biological reaction such as body movement or blood flow is detected from the moving image, and a biological activity such as a respiratory rate and a heart rate of the subject is measured. The image area in which the subject is shown is specified by an observer in advance or by using a contour extraction technique. As a measuring device for measuring a biological activity caused by respiration, there are a respiratory monitoring device and a heart rate measuring device. For example, Patent Literatures 1 and 2 disclose such a device.
 特許文献1の呼吸モニタリング装置は、被験者を撮影した画像を局所領域に分割し、それぞれの局所領域の明度情報を解析する。そして、三種類のしきい値を用いて、被験者の胸部周辺の動きを観測しているのか、寝返りなどの非呼吸体動を観測しているかを判定する。 The respiration monitoring device of Patent Literature 1 divides an image obtained by photographing a subject into local regions and analyzes lightness information of each local region. Then, using the three types of threshold values, it is determined whether the subject is observing movement around the chest or observing non-respiratory body movement such as turning over.
 特許文献2の心拍数計測装置は、赤外線光源を搭載したカメラで被験者の顔面を撮影し、フレームごとの顔画像から、眉間の特定領域を抽出してその平均輝度を補正する。心拍数計測装置は、補正された平均輝度の時系列から補正輝度の時間的変化の波形を得て、この波形を心拍数に対応する周波数帯でフィルタリングすることで、被験者の心拍数を算出する。 The heart rate measuring device of Patent Document 2 captures a subject's face with a camera equipped with an infrared light source, extracts a specific region between eyebrows from a face image for each frame, and corrects the average luminance. The heart rate measuring device obtains a waveform of a temporal change in corrected luminance from the corrected average luminance time series, and calculates the heart rate of the subject by filtering the waveform in a frequency band corresponding to the heart rate. .
特開平11-276443号公報Japanese Patent Laid-Open No. 11-276443 特開2011-130996号公報JP 2011-130996 A
 特許文献1の呼吸モニタリング装置においては、非呼吸体動の判定に必要な適切なしきい値は、撮影環境に応じて大きく変動する。たとえば観測場所の明るさの変化、室内光源の位置、外部からの入射光の有無、被撮影者以外の人や物の移動により、設定すべきしきい値は大きく変動し得る。そのため、適切なしきい値を求めることが困難となり、しきい値が不適切な場合は、呼吸などの生体情報を求めるための領域を算出することができない。 In the respiratory monitoring device disclosed in Patent Document 1, an appropriate threshold necessary for determining non-respiratory body movement varies greatly depending on the imaging environment. For example, the threshold value to be set can vary greatly depending on changes in the brightness of the observation location, the position of the indoor light source, the presence or absence of incident light from the outside, and the movement of people or objects other than the subject. For this reason, it is difficult to obtain an appropriate threshold value. When the threshold value is inappropriate, it is not possible to calculate a region for obtaining biological information such as respiration.
 特許文献2の心拍数計測装置は、被験者の顔面を撮像範囲に捉えて撮影する必要がある。特許文献1と同様、照度の変化、人の動き、外部光の入射など撮影環境が変化すると、生体活動以外の原因で、被験者が写る画像領域の輝度値が大きく変化する。このような外乱ノイズが発生すると、生体反応に起因した体動個所を特定できず、生体情報が正確に抽出できないことがある。 The heart rate measuring device of Patent Document 2 needs to capture the subject's face within the imaging range. Similar to Patent Document 1, when the shooting environment changes such as a change in illuminance, movement of a person, incidence of external light, etc., the luminance value of the image area in which the subject is photographed changes greatly due to a cause other than biological activity. When such disturbance noise occurs, the body movement location due to the biological reaction cannot be specified, and the biological information may not be extracted accurately.
 また、カメラから被験者の顔面が離れると被験者の生体情報を取得する精度が落ちるので、比較的近距離から被験者の顔面を撮像し続けなければならない。その結果、被験者に圧迫感を与えてしまい、計測対象となる生体活動への影響が懸念される。 Also, if the subject's face is separated from the camera, the accuracy of acquiring the subject's biological information is reduced, so the subject's face must be imaged from a relatively short distance. As a result, a feeling of pressure is given to the subject, and there is a concern about the influence on the biological activity to be measured.
 このように、従来の呼吸モニタリング装置および心拍数計測装置は、撮影環境の変化に対しロバストであるとは決して言えない。生体活動の計測装置には、撮影環境の変化に対するロバスト性のさらなる向上が求められていた。 Thus, the conventional respiratory monitoring device and heart rate measuring device can never be said to be robust against changes in the shooting environment. The life activity measuring apparatus is required to be further improved in robustness against changes in the photographing environment.
 本発明は、上記課題を解決するためになされたものであって、生体活動の計測条件が周囲の環境の影響を受けにくい、呼吸に起因する生体活動のロバストな計測システム(以下、単に「計測システム」と称する。)を提供する。 The present invention has been made to solve the above-described problems, and is a robust measurement system for life activity caused by respiration (hereinafter simply referred to as “measurement”). System ").
 本発明の実施形態による計測装置は、光源から放射される光を受けた撮像装置によって生成された被験体の動画像を利用して前記被験体の生体活動を計測する計測装置であって、前記動画像を受け取る入力インタフェースと、前記動画像を利用して被験体の生体活動を計測する画像処理回路とを備え、前記動画像は、前記被験体の呼吸に伴う体動の発生位置に反射パターンを有する再帰性反射材が配置され、前記光源から前記被験体に向けて前記光が放射されたときに、複数の時刻において前記再帰性反射材で反射された前記光に基づく時系列の複数のフレーム画像から構成され、前記画像処理回路は、前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定し、前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測する。 A measurement apparatus according to an embodiment of the present invention is a measurement apparatus that measures a biological activity of a subject using a moving image of the subject generated by an imaging device that has received light emitted from a light source. An input interface that receives a moving image; and an image processing circuit that measures a subject's biological activity using the moving image, wherein the moving image has a reflection pattern at a generation position of body movement accompanying breathing of the subject. And when the light is emitted from the light source toward the subject, a plurality of time series based on the light reflected by the retroreflective material at a plurality of times The image processing circuit calculates a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and calculates a plurality of divided regions. Set in each frame image based on the coordinate position, and in each of the plurality of divided regions, generate a respiratory waveform indicating a change in luminance value across the plurality of frame images, and each of the plurality of divided regions Based on the respiration waveform, the biological activity resulting from the respiration of the subject is measured.
 ある実施形態において、前記画像処理回路は、各分割領域の前記呼吸波形上の呼吸起点を特定するための指標を用いて前記被験体の呼吸に起因する生体活動を計測する。 In one embodiment, the image processing circuit measures a biological activity caused by respiration of the subject using an index for specifying a respiration start point on the respiration waveform of each divided region.
 ある実施形態において、前記画像処理回路は、前記複数のフレーム画像のうち2つのフレーム画像の間の画像変化を検出し、前記画像変化を検出したフレーム画像に関する呼吸波形を、前記被験体の呼吸に起因する生体活動の計測には使用しなくてもよい。 In one embodiment, the image processing circuit detects an image change between two frame images of the plurality of frame images, and uses a respiratory waveform relating to the frame image from which the image change is detected as a breath of the subject. It may not be used for measurement of the resulting biological activity.
 ある実施形態において、前記画像処理回路は、所定期間において、各分割領域の平均輝度が前記反射パターンの領域内の平均輝度よりも低く、かつ、前記反射マーカの外側の領域の平均輝度よりも高くなるように、前記複数の分割領域を設定してもよい。 In one embodiment, the image processing circuit has an average luminance of each divided region lower than an average luminance in the region of the reflection pattern and higher than an average luminance of a region outside the reflection marker in a predetermined period. As described above, the plurality of divided regions may be set.
 ある実施形態において、前記画像処理回路は、前記各分割領域のサイズを変更しながら、所定期間における各分割領域の輝度値の、少なくとも最大値、最小値および平均が所定の条件を満足するまで、前記複数の分割領域を設定してもよい。 In one embodiment, the image processing circuit changes the size of each divided area until at least the maximum value, the minimum value, and the average of the luminance values of the divided areas in a predetermined period satisfy a predetermined condition. The plurality of divided areas may be set.
 ある実施形態において、前記画像処理回路は、分割領域毎の前記呼吸波形のノイズを除去するローパスフィルタまたはフィルタバンクを有していてもよい。 In one embodiment, the image processing circuit may include a low-pass filter or a filter bank that removes noise of the respiratory waveform for each divided region.
 ある実施形態において、前記画像処理回路は、前記ローパスフィルタまたはフィルタバンクを通過した前記呼吸波形を数値微分することで、前記呼吸波形における時系列のn個(nは1以上の整数)の極小点を、呼吸の吸い込みまたは吐き出しの開始点を意味する前記呼吸起点の候補として特定してもよい。 In one embodiment, the image processing circuit numerically differentiates the respiration waveform that has passed through the low-pass filter or filter bank, so that n time-series minimum points (n is an integer of 1 or more) in the respiration waveform are obtained. May be identified as a candidate for the breathing origin, which means the starting point of breathing in or breathing out.
 ある実施形態において、前記画像処理回路は、前記呼吸起点のn個の候補のうちのi番目(iは1からnまでの整数)の第1候補と、前記第1候補よりも1つ前の極小点である第2候補とに着目し、前記第1および第2候補の極小点の間の極大点と、前記第1候補の極小点と、の間の輝度値の差分を示すテイル側振幅、前記極大点と前記第2候補の極小点との間の輝度値の差分を示すヘッド側振幅、および前記テイル側振幅と前記ヘッド側振幅との比率を示すヘッドテイル比を含む前記指標を用いて、前記第1候補が前記呼吸起点であるかどうかを判定してもよい。 In one embodiment, the image processing circuit includes an i-th (i is an integer from 1 to n) first n out of the n candidates for the respiratory start point, and a previous one before the first candidate. Focusing on the second candidate, which is a local minimum point, tail-side amplitude indicating a difference in luminance value between the local maximum point between the first and second candidate local minimum points and the local minimum point of the first candidate , Using the index including a head side amplitude indicating a difference in luminance value between the maximum point and the minimum point of the second candidate, and a head tail ratio indicating a ratio between the tail side amplitude and the head side amplitude. Then, it may be determined whether or not the first candidate is the respiratory start point.
 ある実施形態において、前記画像処理回路は、前記テイル側振幅が第1しきい値以上であり、前記ヘッド側振幅が第2しきい値以上であり、かつ、前記ヘッドテイル比が略1に等しい場合、前記第1候補を前記呼吸起点と判定してもよい。 In one embodiment, the image processing circuit has the tail side amplitude equal to or greater than a first threshold value, the head side amplitude equal to or greater than a second threshold value, and the head tail ratio is substantially equal to 1. In this case, the first candidate may be determined as the respiratory start point.
 ある実施形態において、前記画像処理回路は、前記呼吸波形の前記呼吸起点の候補に応じた数だけ、前記第1候補が前記呼吸起点であるかどうかを判定してもよい。 In one embodiment, the image processing circuit may determine whether or not the first candidate is the respiratory start point by the number corresponding to the respiratory start candidate of the respiratory waveform.
 ある実施形態において、前記画像処理回路は、前記ローパスフィルタまたはフィルタバンクを通過した前記呼吸波形を用いて、前記呼吸波形の中で最小となる輝度値を下限値として設定し、かつ、前記下限値に振幅加算値を加算して呼吸起点のしきい値を前記指標として算出し、前記呼吸起点のしきい値を基準として、前記呼吸起点を判定してもよい。 In one embodiment, the image processing circuit uses the respiratory waveform that has passed through the low-pass filter or filter bank to set a minimum luminance value in the respiratory waveform as a lower limit value, and the lower limit value. The threshold value of the respiratory start point may be calculated as the index by adding the amplitude addition value to the index, and the respiratory start point may be determined based on the threshold value of the respiratory start point.
 ある実施形態において、前記画像処理回路は、前記呼吸起点のしきい値を更新期間毎に更新してもよい。 In one embodiment, the image processing circuit may update a threshold value of the respiratory start point every update period.
 ある実施形態において、前記画像処理回路は、輝度値と前記呼吸起点のしきい値との差分の正負の符号が同一の方向に変化する前記呼吸波形上の隣接した2つの呼吸起点の間にある極小点を特定し、第1極小点と、前記第1極小点よりも時系列的に1つ前の第2極小点とに着目して、前記第1極および第2極小点の間の極大点と、前記第1極小点と、の間の輝度値の差分を示すテイル側振幅、前記極大点と前記第2極小点との間の輝度値の差分を示すヘッド側振幅、および前記テイル側振幅と前記ヘッド側振幅との比率を示すヘッドテイル比を含む前記指標を演算してもよい。 In one embodiment, the image processing circuit is between two adjacent respiratory start points on the respiratory waveform in which the sign of the difference between the luminance value and the threshold value of the respiratory start point changes in the same direction. A local minimum point is specified, and a local maximum point between the first local point and the second local minimum point is focused on the first local minimum point and the second local minimum point that is one time earlier than the first local minimum point. A tail side amplitude indicating a difference in luminance value between a point and the first minimum point, a head side amplitude indicating a difference in luminance value between the maximum point and the second minimum point, and the tail side The index including a head tail ratio indicating a ratio between an amplitude and the head-side amplitude may be calculated.
 ある実施形態において、前記画像処理回路は、分割領域毎の前記呼吸波形および前記指標に基づいて前記複数の分割領域から分割領域を選択し、選択された分割領域の前記呼吸起点に基づいて前記被験体の呼吸に起因する生体活動を計測してもよい。 In one embodiment, the image processing circuit selects a divided region from the plurality of divided regions based on the respiratory waveform and the index for each divided region, and the test processing is performed based on the respiratory start point of the selected divided region. You may measure the biological activity resulting from body respiration.
 ある実施形態において、前記画像処理回路は、所定期間にわたって前記ヘッドテイル比が略1となり、かつ、前記所定期間における前記テイル側振幅および前記ヘッド側振幅の平均値がそれぞれ大きいか、または分散がそれぞれ小さい分割領域を前記複数の分割領域から選択し、選択された分割領域の前記呼吸起点に基づいて前記被験体の呼吸に起因する生体活動を計測してもよい。 In one embodiment, in the image processing circuit, the head tail ratio is approximately 1 over a predetermined period, and the average value of the tail side amplitude and the head side amplitude in the predetermined period is large, or the variance is respectively A small divided region may be selected from the plurality of divided regions, and the biological activity resulting from the breathing of the subject may be measured based on the respiratory start point of the selected divided region.
 ある実施形態において、前記画像処理回路は、所定期間にわたって前記ヘッドテイル比の平均値が第3しきい値以上になる分割領域の候補を前記複数の分割領域から選択し、前記分割領域の候補のうち、前記所定期間において前記テイル側振幅および前記ヘッド側振幅の平均値がそれぞれ最大となる分割領域の前記呼吸起点に基づいて前記被験体の呼吸に起因する生体活動を計測してもよい。 In one embodiment, the image processing circuit selects a candidate for a divided region in which an average value of the head tail ratio is equal to or greater than a third threshold value over a predetermined period from the plurality of divided regions. Among them, the biological activity resulting from the breathing of the subject may be measured based on the breathing start point of the divided region where the average value of the tail side amplitude and the head side amplitude is maximum in the predetermined period.
 ある実施形態において、前記画像処理回路は、過去のデータほど重みが小さくなる重み付けによって前記ヘッドテイル比の加重平均値を算出し、前記加重平均が前記第3しきい値以上になる前記分割領域の候補を選択してもよい。 In one embodiment, the image processing circuit calculates a weighted average value of the head tail ratio by weighting such that the weight becomes smaller as past data, and the weighted average is equal to or greater than the third threshold value. Candidates may be selected.
 ある実施形態において、前記計測装置は、前記被験体の呼吸に起因する生体活動の計測結果を表示する表示装置をさらに備え、前記表示装置は、前記被験体の呼吸数、前記呼吸数のトレンドを示す波形、および前記動画像を表示してもよい。 In one embodiment, the measurement device further includes a display device that displays a measurement result of life activity resulting from the breathing of the subject, and the display device displays the respiratory rate of the subject and the trend of the respiratory rate. You may display the waveform to show and the said moving image.
 本発明の実施形態による計測システムは、光を放射する光源と、前記光を受けて動画像を生成する撮像装置と、前記動画像を利用して被験体の生体活動を計測する画像処理回路とを備えた計測システムであって、前記被験体の呼吸に伴う体動の発生位置に反射パターンを有する再帰性反射材が配置され、前記光源から前記被験体に向けて前記光が放射されたときにおいて、前記撮像装置は、前記再帰性反射材で反射された前記光を複数の時刻において受けて、時系列の複数のフレーム画像から構成される前記動画像を生成し、前記画像処理回路は、前記撮像装置から前記動画像を受け取り、前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定し、前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測する。 A measurement system according to an embodiment of the present invention includes a light source that emits light, an imaging device that receives the light and generates a moving image, and an image processing circuit that measures a biological activity of a subject using the moving image. When a retroreflecting material having a reflection pattern is arranged at a position where body movement accompanying breathing of the subject is arranged, and the light is emitted from the light source toward the subject The imaging device receives the light reflected by the retroreflecting material at a plurality of times, generates the moving image composed of a plurality of time-series frame images, and the image processing circuit includes: The moving image is received from the imaging device, the coordinate position of the reflection pattern in at least one frame image among the plurality of frame images is calculated, and a plurality of divided regions are defined as the coordinate position Based on the respiratory waveform of each of the plurality of divided regions, the respiratory waveform is generated in each of the plurality of divided regions to generate a luminance waveform indicating a change in luminance value over the plurality of frame images. And measuring the biological activity caused by the breathing of the subject.
 本発明の実施形態による計測方法は、光を放射する光源と、前記光を受けて動画像を生成する撮像装置と、前記動画像を利用して被験体の生体活動を計測する画像処理回路とを備えた計測システムを用いて、前記被験体の呼吸に起因する生体活動を計測する方法であって、前記被験体の呼吸に伴う体動の発生位置に反射パターンを有する再帰性反射材を配置するステップと、前記光源が、前記光で前記被験体を照射するステップと、前記撮像装置が、前記再帰性反射材で反射された反射光を複数の時刻において受けて、時系列の複数のフレーム画像から構成される前記動画像を生成するステップと、前記画像処理回路が、前記撮像装置から前記動画像を受け取り、前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定するステップと、前記画像処理回路が、前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測するステップと、を包含する。 A measurement method according to an embodiment of the present invention includes a light source that emits light, an imaging device that receives the light to generate a moving image, and an image processing circuit that measures the biological activity of a subject using the moving image. Using a measurement system comprising: a retroreflective material having a reflection pattern at a position where a body motion accompanying breathing of the subject occurs A step of irradiating the subject with the light, and the imaging device receives reflected light reflected by the retroreflecting material at a plurality of times, and a plurality of time-series frames. Generating the moving image composed of images, and the image processing circuit receives the moving image from the imaging device, and the at least one frame image among the plurality of frame images. Calculating a coordinate position of the projection pattern and setting a plurality of divided regions in each frame image based on the coordinate position; and the image processing circuit in each of the plurality of divided regions, Generating a respiration waveform indicating a change in luminance value over a frame image, and measuring a biological activity caused by respiration of the subject based on the respiration waveform of each of the plurality of divided regions.
 本発明の実施形態によるコンピュータプログラムは、光を放射する光源と、前記光を受けて動画像を生成する撮像装置と、前記動画像を利用して被験体の生体活動を計測する画像処理回路とを備えた計測システムにおける前記画像処理回路によって実行されるコンピュータプログラムであって、前記被験体の呼吸に伴う体動の発生位置に、反射パターンを有する再帰性反射材が配置され、前記光源から前記被験体に向けて前記光が放射されたときにおいて、前記撮像装置によって生成された動画像を受け取るステップであって、前記再帰性反射材で反射された複数の時刻の前記光に基づく時系列の複数のフレーム画像から構成される前記動画像を受け取るステップと、前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定するステップと、前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測するステップと、を包含する。 A computer program according to an embodiment of the present invention includes a light source that emits light, an imaging device that receives the light and generates a moving image, and an image processing circuit that measures a subject's biological activity using the moving image. A computer program executed by the image processing circuit in a measurement system comprising: a retroreflective material having a reflection pattern is disposed at a position where body movement accompanying breathing of the subject occurs; A step of receiving a moving image generated by the imaging device when the light is emitted toward the subject, wherein the time series of the time series based on the light reflected by the retroreflecting material Receiving the moving image composed of a plurality of frame images; in at least one frame image of the plurality of frame images; Calculating a coordinate position of the reflection pattern, and setting a plurality of divided areas in each frame image based on the coordinate position; and a luminance value over the plurality of frame images in each of the plurality of divided areas Generating a respiration waveform indicating a change in the number of the plurality of divided regions, and measuring a biological activity resulting from the respiration of the subject based on the respiration waveform of each of the plurality of divided regions.
 本発明の一実施形態によれば、生体活動の計測条件が周囲の環境の影響を受けにくい、呼吸に起因する生体活動のロバストな計測システムが提供される。 According to an embodiment of the present invention, there is provided a robust measurement system for life activity caused by respiration, in which life activity measurement conditions are not easily affected by the surrounding environment.
第1の実施形態による計測システム100の構成図である。1 is a configuration diagram of a measurement system 100 according to a first embodiment. 第1の実施形態による情報処理装置30のハードウェア構成図である。It is a hardware block diagram of the information processing apparatus 30 by 1st Embodiment. 第1の実施形態による計測システム100で行われる計測処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the measurement process performed with the measurement system 100 by 1st Embodiment. 再帰性反射材40を装着した被験者1を撮影したフレーム画像102を示す模式図である。It is a schematic diagram which shows the frame image 102 which image | photographed the test subject 1 with which the retroreflection material 40 was mounted | worn. 再帰性反射材40を装着しない被験者を撮影したフレーム画像106を示す模式図である。It is a schematic diagram which shows the frame image 106 which image | photographed the test subject who does not wear the retroreflection material 40. FIG. 反射マーカとして機能する再帰性反射材40の反射パターンの一例示す模式図である。It is a schematic diagram which shows an example of the reflective pattern of the retroreflection material 40 which functions as a reflective marker. 被験者1以外の人物や被験者1の体動の影響を受けて呼吸波形に変化が生じる様子を示す模式図である。It is a schematic diagram which shows a mode that a respiratory waveform changes according to the influence of the body movement of persons other than the test subject 1, and the test subject 1. 被験者1とカメラ10との位置関係によって、異なる領域A、BおよびCの間で各領域から取得された呼吸波形が異なる様子を示す模式図である。It is a schematic diagram which shows a mode that the respiration waveform acquired from each area | region differs between different area | regions A, B, and C by the positional relationship of the test subject 1 and the camera 10. FIG. 分割領域51が適切に設定された場合の呼吸波形を示すグラフである。It is a graph which shows a respiration waveform when division area 51 is set up appropriately. 分割領域51が適切に設定されなかった場合の呼吸波形を示すグラフである。It is a graph which shows the respiratory waveform when the division area 51 is not set appropriately. 複数の分割領域51の設定の手順を示すフローチャートである。It is a flowchart which shows the procedure of the setting of the some division area 51. FIG. 数値微分によって呼吸起点を判定する手順を示すフローチャートである。It is a flowchart which shows the procedure which determines a respiratory origin by numerical differentiation. 呼吸波形において特定の呼吸起点が複数の呼吸起点の候補から決定される様子を示す模式図である。It is a schematic diagram which shows a mode that the specific respiration start is determined from the some candidate of a respiration start in a respiration waveform. 呼吸波形における、テイルポイント、ヘッドポイント、マックスポイント、テイル側振幅、およびヘッド側振幅をそれぞれ示す模式図である。It is a schematic diagram showing a tail point, a head point, a max point, a tail side amplitude, and a head side amplitude in a respiratory waveform. 最適な分割領域51を選択する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which selects the optimal division area 51. FIG. 呼吸数の計測に用いられる呼吸起点および呼吸周期(s)を呼吸波形上にそれぞれ示した模式図である。It is the schematic diagram which each showed the respiratory origin used for the measurement of the respiration rate, and the respiration cycle (s) on the respiration waveform. ディスプレイ32に表示された表示内容を例示する模式図である。4 is a schematic view illustrating display contents displayed on a display 32. FIG. 呼吸起点のしきい値を用いて呼吸起点を判定する手順を示すフローチャートである。It is a flowchart which shows the procedure which determines a respiratory starting point using the threshold value of a respiratory starting point. ある分割領域51の呼吸波形を示す模式図である。It is a schematic diagram which shows the respiratory waveform of a certain division | segmentation area | region 51. FIG. 所定期間毎に呼吸起点のしきい値が更新される様子を示す模式図である。It is a schematic diagram which shows a mode that the threshold value of a respiratory origin is updated for every predetermined period.
 本発明の実施形態による計測システムは、光を放射する光源と、光を受けて動画像を生成する撮像装置と、動画像を利用して被験者の生体活動を計測する画像処理回路とを備える。光源には赤外線光源が好適に用いられる。被験者の呼吸に伴う体動の発生位置(例えば胸部の位置)に反射パターンを有する再帰性反射材が配置され、光源から被験者に向けて光が放射されたときにおいて、撮像装置は、再帰性反射材で反射された光を複数の時刻において受けて、時系列の複数のフレーム画像から構成される動画像を生成する。画像処理回路は、撮像装置から動画像を受け取り、複数のフレーム画像のうち少なくとも1つのフレーム画像における反射パターンの座標位置を算出し、かつ、各フレーム画像内で、反射パターンの領域の少なくとも一部を囲む複数の分割領域を反射パターンの座標位置に基づいて設定する。画像処理回路は、各分割領域において、複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、各分割領域の呼吸波形に基づいて被験者の呼吸に起因する生体活動を計測する。 A measurement system according to an embodiment of the present invention includes a light source that emits light, an imaging device that receives light to generate a moving image, and an image processing circuit that measures a subject's biological activity using the moving image. An infrared light source is preferably used as the light source. When a retroreflective material having a reflection pattern is placed at the position where body movement occurs due to breathing of the subject (for example, the position of the chest) and light is emitted from the light source toward the subject, the imaging device The light reflected by the material is received at a plurality of times, and a moving image composed of a plurality of time-series frame images is generated. The image processing circuit receives a moving image from the imaging device, calculates a coordinate position of the reflection pattern in at least one frame image among the plurality of frame images, and at least a part of the region of the reflection pattern in each frame image Are set based on the coordinate position of the reflection pattern. The image processing circuit generates a respiratory waveform indicating a change in luminance value over a plurality of frame images in each divided region, and measures a biological activity resulting from the breathing of the subject based on the respiratory waveform in each divided region.
 本発明の実施形態による計測システムによると、種々の手法を用いて、計測に最も相応しい分割領域を複数の分割領域から選択し、その分割領域の呼吸波形に基づいて、被験者の呼吸に起因する生体活動を計測することが可能になる。 According to the measurement system according to the embodiment of the present invention, a divided region most suitable for measurement is selected from a plurality of divided regions using various techniques, and a living body caused by breathing of the subject is selected based on the respiratory waveform of the divided region. It becomes possible to measure activity.
 計測システム100は、呼吸起点を呼吸波形上で特定する。呼吸起点は、被験者の呼吸に起因する生体活動を計測するために用いられる。本実施形態においては、呼吸起点は、呼吸の吸い込みまたは吐き出しの開始点を意味する。本明細書においては、呼吸起点に基づいて主として呼吸数を計測する例を説明する。しかしながら、呼吸数は被験者の呼吸に起因する生体活動の一例であり、被験者の呼吸に起因する他の生体活動を計測してもよい。計測システムは、被験者の呼吸動作を計測し、呼吸による体動から呼吸に起因する波形(呼吸波形に相当する波形である。)を導出する。典型的には、その波形を利用して評価可能な他の生体活動、たとえば、呼吸の深さ、乱れ、無呼吸期間、無呼吸期間が発生する頻度などの生体活動は、本明細書において、計測対象である生体活動の範疇である。計測システムは、呼吸数および呼吸数のトレンドなどをディスプレイ上に表示することができる。 The measurement system 100 identifies the respiratory start point on the respiratory waveform. The respiratory start point is used to measure a biological activity resulting from the subject's breathing. In the present embodiment, the breathing start point means the starting point of breathing in or breathing out. In this specification, an example in which the respiration rate is mainly measured based on the respiration start point will be described. However, the respiratory rate is an example of a biological activity resulting from the subject's breathing, and other biological activities resulting from the subject's breathing may be measured. The measurement system measures the breathing motion of the subject, and derives a waveform (a waveform corresponding to the breathing waveform) resulting from breathing from body motion due to breathing. Typically, other biological activities that can be evaluated using the waveform, for example, biological activities such as breathing depth, turbulence, apnea periods, frequency of occurrence of apnea periods, This is the category of the biological activity to be measured. The measurement system can display the respiration rate and the respiration rate trend on the display.
 以下、添付の図面を参照しながら、本発明の実施形態による計測システムおよび計測方法を説明する。以下の説明において、同一または類似する構成要素については同一の参照符号を付している。なお、本発明の実施形態による計測システムおよび計測方法は、以下で例示するものに限られない。例えば、一の実施形態と、他の実施形態とを組み合わせることも可能である。 Hereinafter, a measurement system and a measurement method according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the following description, the same reference numerals are assigned to the same or similar components. Note that the measurement system and the measurement method according to the embodiment of the present invention are not limited to those exemplified below. For example, it is possible to combine one embodiment with another embodiment.
 (第1の実施形態)
 図1は、本実施形態による計測システム100の構成を模式的に示す。計測システム100は、カメラ10と、光源20と、情報処理装置30と、再帰性反射材40とを含む。図1には被験者1が示されているが、被験者1は計測システム100に含まれない。
(First embodiment)
FIG. 1 schematically shows a configuration of a measurement system 100 according to the present embodiment. The measurement system 100 includes a camera 10, a light source 20, an information processing device 30, and a retroreflecting material 40. Although the subject 1 is shown in FIG. 1, the subject 1 is not included in the measurement system 100.
 計測システム100は、被験者1の生体活動を観察するために利用される。本実施形態では、生体活動は被験者1の呼吸であるとし、計測システム100は所定期間内の呼吸数を計測する。 The measurement system 100 is used for observing the biological activity of the subject 1. In this embodiment, it is assumed that the biological activity is the respiration of the subject 1, and the measurement system 100 measures the respiration rate within a predetermined period.
 カメラ10は、CMOS(Complementary Metal Oxide Semiconductor)センサなどのイメージセンサおよび光学系を有する、いわゆる撮像装置であり、被験者1を撮影して動画像を生成する。カメラ10は、有線または無線で動画像のデータを情報処理装置30に送る。 The camera 10 is a so-called imaging device having an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) sensor and an optical system, and shoots the subject 1 to generate a moving image. The camera 10 sends moving image data to the information processing apparatus 30 by wire or wirelessly.
 光源20は光20aを放射する光源である。光は可視光であってもよく、不可視光(例えば赤外光)であってもよい。本実施形態では、赤外光を例に挙げて説明する。以下では、光20aを「赤外光20a」と記述する。 The light source 20 is a light source that emits light 20a. The light may be visible light or invisible light (for example, infrared light). In the present embodiment, infrared light will be described as an example. Hereinafter, the light 20a is described as “infrared light 20a”.
 情報処理装置30は、カメラ10から動画像を受け取り、後述するような手法を用いて呼吸波形における呼吸起点を特定し、呼吸起点に基づいて被験者1の呼吸数を計測する。情報処理装置30の動作の詳細は後述する。 The information processing apparatus 30 receives a moving image from the camera 10, specifies a respiratory start point in the respiratory waveform using a method as described later, and measures the respiratory rate of the subject 1 based on the respiratory start point. Details of the operation of the information processing apparatus 30 will be described later.
 再帰性反射材40は、入射してきた光を、その入射方向に向けて反射する光学特性を有する反射材である。つまり、再帰性反射材40に入射する光の入射角と、再帰性反射材40によって反射された光の出射角とは等しい。ただしこの性質は理想的であり、実際には一部の入射方向とは異なる方向に反射され得る。本実施形態では、光源20の光軸とカメラ10の光軸とを近接して配置させている。これにより、光源20から放射された赤外光20aは再帰性反射材40に反射され、その多くが赤外光20bとしてカメラ10に入射する。よって、カメラ10は十分な光量で被験者1を撮影することができる。例えば再帰性反射材40として、ガラスビーズを塗布した布を用いることができる。 The retroreflective material 40 is a reflective material having an optical characteristic of reflecting incident light toward the incident direction. That is, the incident angle of light incident on the retroreflecting material 40 is equal to the emission angle of light reflected by the retroreflecting material 40. However, this property is ideal and can actually be reflected in a direction different from some incident directions. In the present embodiment, the optical axis of the light source 20 and the optical axis of the camera 10 are arranged close to each other. Thereby, the infrared light 20a emitted from the light source 20 is reflected by the retroreflecting material 40, and most of the light enters the camera 10 as infrared light 20b. Therefore, the camera 10 can photograph the subject 1 with a sufficient amount of light. For example, as the retroreflecting material 40, a cloth coated with glass beads can be used.
 なお、再帰性反射材40を設けることにより、再帰性反射材40に入射した外乱光21aは、反射光21bとしてその入射方向に反射される。反射光21bは実質的にカメラ10に入射しないので、カメラ10によって撮影される動画像は外乱光の影響を受けにくくなる。 In addition, by providing the retroreflecting material 40, the disturbance light 21a incident on the retroreflecting material 40 is reflected in the incident direction as reflected light 21b. Since the reflected light 21b does not substantially enter the camera 10, the moving image captured by the camera 10 is not easily affected by disturbance light.
 図2は、計測システム100の、主として情報処理装置30のハードウェア構成の例を示す。本実施形態では、情報処理装置30は、カメラ10とディスプレイ32とに電気的に接続されている。情報処理装置30は、カメラ10から、撮影された動画像のデータを受け取る。またディスプレイ32は、処理の結果であり、被験者1の生体活動である呼吸数の計測結果および呼吸数のトレンドなどを表示する。情報処理装置30は、カメラ10の撮影方向が適切でないと測定結果に基づいて判断した場合には、ディスプレイ32に警告を表示してもよい。 FIG. 2 shows an example of the hardware configuration of the information processing apparatus 30 of the measurement system 100. In the present embodiment, the information processing apparatus 30 is electrically connected to the camera 10 and the display 32. The information processing apparatus 30 receives captured moving image data from the camera 10. The display 32 is a result of the processing, and displays a measurement result of the respiratory rate, which is a biological activity of the subject 1, a respiratory rate trend, and the like. The information processing apparatus 30 may display a warning on the display 32 when determining based on the measurement result that the shooting direction of the camera 10 is not appropriate.
 情報処理装置30は、CPU301と、ROM302と、RAM303と、ハードディスクドライブ(HDD)304と、インタフェース(I/F)305と、画像処理回路306とを有する。CPU301は情報処理装置30の動作を制御する。ROM302は、コンピュータプログラムを格納している。コンピュータプログラムは、たとえば後述するフローチャートによって示される処理をCPU301または画像処理回路306に行わせるための命令群である。RAM303は、CPU301による実行にあたって、コンピュータプログラムを展開するためのワークメモリである。HDD304は、カメラ10から受信した動画像のデータ、または計測された被験者1の呼吸数のデータを格納する記憶装置である。 The information processing apparatus 30 includes a CPU 301, a ROM 302, a RAM 303, a hard disk drive (HDD) 304, an interface (I / F) 305, and an image processing circuit 306. The CPU 301 controls the operation of the information processing apparatus 30. The ROM 302 stores a computer program. The computer program is a group of instructions for causing the CPU 301 or the image processing circuit 306 to perform processing shown by a flowchart described later, for example. A RAM 303 is a work memory for developing a computer program when executed by the CPU 301. The HDD 304 is a storage device that stores moving image data received from the camera 10 or measured respiratory rate data of the subject 1.
 I/F305は、情報処理装置30がカメラ10から動画像のデータを受け取るためのインタフェースである。情報処理装置30が有線のネットワーク経由で動画像のデータを受け取る場合には、I/F305はたとえばイーサネット(登録商標)端子であり得る。情報処理装置30が無線のネットワーク経由で動画像のデータを受け取る場合には、I/F305はたとえばWi-Fi(登録商標)規格に準拠した通信を行う送受信回路であり得る。またはI/F305は、有線の映像入力端子であってもよい。 The I / F 305 is an interface for the information processing apparatus 30 to receive moving image data from the camera 10. When the information processing apparatus 30 receives moving image data via a wired network, the I / F 305 may be an Ethernet (registered trademark) terminal, for example. When the information processing apparatus 30 receives moving image data via a wireless network, the I / F 305 may be a transmission / reception circuit that performs communication conforming to the Wi-Fi (registered trademark) standard, for example. Alternatively, the I / F 305 may be a wired video input terminal.
 画像処理回路306は、動画像のデータを解析する、いわゆるグラフィックスプロセッサである。画像処理回路306は、カメラ10から動画像を受け取り、複数のフレーム画像のうち少なくとも1つのフレーム画像における再帰性反射材40の反射パターンの座標位置を算出し、かつ、反射パターンの領域の少なくとも一部を囲む複数の分割領域51(図9Aを参照)をその座標位置に基づいて各フレーム画像の同じ位置に設定する。画像処理回路306は、分割領域51毎に複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、分割領域51の呼吸波形に基づいて被験者1の呼吸数を計測する。なお、反射パターンおよび分割領域51の詳細は後述する。 The image processing circuit 306 is a so-called graphics processor that analyzes moving image data. The image processing circuit 306 receives a moving image from the camera 10, calculates the coordinate position of the reflection pattern of the retroreflecting material 40 in at least one frame image among the plurality of frame images, and at least one of the areas of the reflection pattern. A plurality of divided regions 51 (see FIG. 9A) surrounding the part are set at the same position in each frame image based on the coordinate position. The image processing circuit 306 generates a respiratory waveform indicating a change in luminance value over a plurality of frame images for each divided region 51, and measures the respiratory rate of the subject 1 based on the respiratory waveform in the divided region 51. Details of the reflection pattern and the divided region 51 will be described later.
 本実施形態ではCPU301とは別に画像処理回路306を設けているが、これは一例である。CPU301と画像処理回路306とを統合した集積回路を用いてもよいし、画像処理回路306の処理の一部を、CPU301が行ってもよい。 In this embodiment, the image processing circuit 306 is provided separately from the CPU 301, but this is an example. An integrated circuit in which the CPU 301 and the image processing circuit 306 are integrated may be used, or the CPU 301 may perform a part of the processing of the image processing circuit 306.
 図3を参照して、計測システム100の全体の動作を説明する。 The overall operation of the measurement system 100 will be described with reference to FIG.
 図3は、計測システム100で行われる計測処理の手順を示している。この処理は主としてCPU301および/または画像処理回路306によって実行される。以下では、実行主体は画像処理回路306であるとして説明する。 FIG. 3 shows a procedure of measurement processing performed in the measurement system 100. This process is mainly executed by the CPU 301 and / or the image processing circuit 306. In the following description, it is assumed that the execution subject is the image processing circuit 306.
 〔再帰性反射材40の配置および動画像の取得:ステップS1〕
 まず、観測者または被験者1が、被験者1の呼吸に伴う体動の発生位置に、所定の反射パターンを有する再帰性反射材40を反射マーカとして配置する。光源20が赤外光で被験者1を照射すると、カメラ10は再帰性反射材40で反射された赤外光を受けて、被験者1の動画像を撮影する。
[Arrangement of Retroreflecting Material 40 and Acquisition of Moving Image: Step S1]
First, the observer or the subject 1 arranges the retroreflecting material 40 having a predetermined reflection pattern as a reflection marker at the position where the body movement accompanying breathing of the subject 1 occurs. When the light source 20 irradiates the subject 1 with infrared light, the camera 10 receives the infrared light reflected by the retroreflecting material 40 and captures a moving image of the subject 1.
 図4は、再帰性反射材40を装着した被験者1を撮影したフレーム画像102を例示している。画像中央部の、反射パターンに相当する高輝度領域(白い領域)104が、再帰性反射材40からの反射光が検出された領域である。情報処理装置30は、その領域を反射マーカとして認識する。参考として、図5は、再帰性反射材40を装着しない被験者を撮影したフレーム画像106を例示する。再帰性反射材40が存在しない場合には撮影されたフレーム画像内の輝度変化は非常に小さいと言える。なお、図4および図5には、複数の縦線および横線が示されているが、これは画像処理のために仮想的に設けられた境界線である。境界線によって区画される画像の領域は分割領域51とは異なるので留意されたい。 FIG. 4 illustrates a frame image 102 obtained by photographing the subject 1 wearing the retroreflecting material 40. A high luminance area (white area) 104 corresponding to the reflection pattern in the center of the image is an area where the reflected light from the retroreflecting material 40 is detected. The information processing apparatus 30 recognizes the area as a reflection marker. For reference, FIG. 5 illustrates a frame image 106 obtained by photographing a subject who does not wear the retroreflecting material 40. When the retroreflecting material 40 is not present, it can be said that the luminance change in the captured frame image is very small. 4 and 5 show a plurality of vertical lines and horizontal lines, which are boundary lines virtually provided for image processing. Note that the area of the image partitioned by the boundary line is different from the divided area 51.
 図6は、反射マーカとして機能する再帰性反射材40の反射パターンの一例を示している。再帰性反射材40は、例えば三角形状、矩形状およびひし形状の反射パターンを含むことができる。反射パターンに相当する高反射領域200の反射率はその周囲の領域の反射率に比べて相対的に高い。なお、高反射領域200は図4に示される高輝度領域104に対応している。 FIG. 6 shows an example of the reflection pattern of the retroreflecting material 40 that functions as a reflective marker. The retroreflecting material 40 can include, for example, a triangular, rectangular, and diamond-shaped reflection pattern. The reflectance of the high reflection region 200 corresponding to the reflection pattern is relatively higher than the reflectance of the surrounding region. The high reflection region 200 corresponds to the high luminance region 104 shown in FIG.
 〔画像変化の検出:ステップS2〕
 図7は、被験者1以外の人物や被験者1の体動の影響を受けて呼吸波形に変化が生じる様子を示している。図7(a)は、ベッド上の被験者1の様子を示し、図7(b)は、被験者1以外の人物がベッドの前を横切る様子を示し、図7(c)は、ベッド上の被験者1が寝返った様子を示している。図7(d)は、それぞれの状態における輝度値の変化を示している。図7(d)のグラフで(i)の波形は、通常の呼吸波形を示し、(ii)の波形は、外乱や被験者1の体動の影響を受けて変動した呼吸波形を示している。
[Detection of image change: Step S2]
FIG. 7 shows how the respiratory waveform changes due to the influence of a person other than the subject 1 and the body movement of the subject 1. FIG. 7A shows the state of the subject 1 on the bed, FIG. 7B shows the state where a person other than the subject 1 crosses the front of the bed, and FIG. 7C shows the subject on the bed. 1 shows a state of turning over. FIG. 7D shows a change in luminance value in each state. In the graph of FIG. 7D, the waveform (i) indicates a normal respiration waveform, and the waveform (ii) indicates a respiration waveform that has fluctuated due to the influence of disturbance or body movement of the subject 1.
 呼吸数などを計測する従来の計測システムは、例えば図4や図5に示される区画されたある領域(単体のブロック)の平均輝度値の時間変化に基づいて呼吸波形を生成する。呼吸の動きを忠実に再現した呼吸波形を取得し、その呼吸波形から呼吸起点を正確に特定することが必要である。しかしながら、計測中に被験者1以外の人物がベッドの前を横切ったり、被験者1が寝返ったりすると、図7(d)に示されるように呼吸波形は大きく変動し、被験者1の呼吸に伴う輝度変化以外のノイズ成分を含んでしまう。ノイズを含んだ呼吸波形を用いると、呼吸起点が誤って特定されて、正確な呼吸数を計測できない可能性がある。 A conventional measurement system that measures a respiration rate or the like generates a respiration waveform based on a temporal change in an average luminance value of a certain area (single block) shown in FIG. 4 or 5, for example. It is necessary to acquire a respiration waveform that faithfully reproduces the respiration movement, and to accurately specify the respiration start point from the respiration waveform. However, if a person other than the subject 1 crosses the front of the bed or the subject 1 turns over during the measurement, the respiratory waveform changes greatly as shown in FIG. Including other noise components. If a breathing waveform including noise is used, the breathing start point may be specified incorrectly, and an accurate breathing rate may not be measured.
 図8は、被験者1とカメラ10との位置関係によって、異なる領域A、BおよびCの間で各領域から取得された呼吸波形が異なる様子を示している。生体活動の測定環境は様々であり、カメラ10と被験者1との位置関係は必ずしも一定ではない。被験者1の呼吸の態様も様々である。そのため、画角が固定されていたとしても、体動に伴い発生する反射マーカの微細な振動の様子は設定される領域毎に異なる。従って、呼吸数の計測に最適な呼吸波形を取得できるかどうかは領域の設定の仕方に大きく依存する。このように、最適な呼吸波形を取得することは容易ではなく、複数の領域(例えば領域A、BおよびC)を設定したとしても、全ての領域から最適な呼吸波形を取得できるとは限らない。従来の計測システムは、環境変化に対する高いロバスト性を必ずしも備えていない。 FIG. 8 shows a state in which the respiratory waveforms acquired from each region differ between different regions A, B, and C depending on the positional relationship between the subject 1 and the camera 10. There are various measurement environments for life activity, and the positional relationship between the camera 10 and the subject 1 is not necessarily constant. The subject 1 has various breathing modes. For this reason, even if the angle of view is fixed, the state of minute vibration of the reflective marker that occurs with body movement differs for each set region. Therefore, whether or not an optimal respiration waveform can be acquired for the measurement of the respiration rate largely depends on how the region is set. As described above, it is not easy to acquire an optimal respiratory waveform, and even if a plurality of areas (for example, areas A, B, and C) are set, the optimal respiratory waveform cannot always be acquired from all areas. . Conventional measurement systems do not necessarily have high robustness against environmental changes.
 再び図3を参照する。画像処理回路306は、例えば被験者1以外の人物や被験者1の体動によってフレーム画像に変化があったかどうかを検出する。具体的に説明すると、画像処理回路306は、例えばフレーム間差分または背景差分を用いてその変化を検出する。画像処理回路306は、その変化を検出した、フレーム画像内の領域や期間に取得された呼吸波形を呼吸数の計測には使用しないようにしている。以下、フレーム間差分を用いて検出する例を説明する。 Refer to FIG. 3 again. The image processing circuit 306 detects whether the frame image has changed due to, for example, a person other than the subject 1 or the body movement of the subject 1. More specifically, the image processing circuit 306 detects the change using, for example, an inter-frame difference or a background difference. The image processing circuit 306 is configured not to use the respiration waveform acquired in the region or period in the frame image where the change is detected for the measurement of the respiration rate. Hereinafter, an example of detection using inter-frame differences will be described.
 フレーム間差分とは、時系列でi―n番目に取得されたフレーム画像とi番目に取得されたフレーム画像とをフレーム画像の間で差分を取ることにより、画素が大きく変化したフレーム画像内の領域を特定する手法である。ここで、iおよびnは1以上の整数であるとする。 The inter-frame difference is the difference between the frame image acquired in the time series and the i-th acquired frame image and the i-th acquired frame image. This is a technique for specifying an area. Here, it is assumed that i and n are integers of 1 or more.
 画像処理回路306はフレーム画像の画素毎にフレーム画像の間で差分を取り、差分値を求める。差分値が所定のしきい値を超えた画素を「変化画素」と記述し、変化画素が集合する領域を「変化ブロック」と記述する。画像処理回路306は、変化画素または変化ブロックの数が所定のしきい値以上であれば、フレーム画像に変化があったと判定する。 The image processing circuit 306 obtains a difference value by taking a difference between the frame images for each pixel of the frame image. A pixel whose difference value exceeds a predetermined threshold value is described as a “change pixel”, and a region where the change pixels are gathered is described as a “change block”. The image processing circuit 306 determines that the frame image has changed if the number of changed pixels or changed blocks is equal to or greater than a predetermined threshold value.
 画像処理回路306は、画素単位ではなくブロック単位で、フレーム画像間の変化を検出することもできる。画像処理回路306は、例えば8×8画素の領域をブロック(図4や図5に示される、境界線によって区画される画像の領域に対応する。)単位として、ブロック内の画素の輝度平均を算出し、フレーム画像の間でそれらの差分を取ってもよい。 The image processing circuit 306 can detect a change between frame images not in units of pixels but in units of blocks. The image processing circuit 306 uses, for example, an 8 × 8 pixel region as a block (corresponding to an image region partitioned by a boundary line shown in FIGS. 4 and 5) as a unit of luminance average of pixels in the block. You may calculate and take those differences between frame images.
 通常、フレーム画像の反射マーカ以外の領域においてフレーム画像の間で画像の変化が生じても、そのことが、被験者1の呼吸に伴う輝度変化に大きく影響することは少ないと考えられる。従って、演算処理の高速化などの観点から、上述した検出処理は、反射マーカ以外の領域に適用することが好ましい。さらに、例えば被験者1の手足が動くと、小さな体動が発生し得る。そのような体動による影響を除去するために、画像処理回路306は、反射マーカから被験者1の頭、手および足までの領域を推定し、上記の検出処理をその領域だけに適用しても構わない。また、画像処理回路306は被験者の各部位(例えば、顔、手および足)の領域を推定し、その部位が動いたかどうかを検出してもよい。 Usually, even if an image change occurs between frame images in a region other than the reflection marker of the frame image, it is considered that this hardly affects the luminance change accompanying the breathing of the subject 1. Therefore, it is preferable to apply the above-described detection processing to a region other than the reflective marker from the viewpoint of speeding up the arithmetic processing. Further, for example, when the limb of the subject 1 moves, a small body movement may occur. In order to remove the influence of such body movement, the image processing circuit 306 estimates the area from the reflection marker to the head, hand, and foot of the subject 1 and applies the above detection process only to that area. I do not care. In addition, the image processing circuit 306 may estimate the region of each part (for example, face, hand, and foot) of the subject and detect whether or not the part has moved.
 画像処理回路306は、画像の変化を検出した場合、その変化を検出した期間に取得された呼吸波形を呼吸数の計測には使用しない。これにより、被験者1の体動や外乱による呼吸計測への影響を抑制することができる。 When the image processing circuit 306 detects a change in the image, the image processing circuit 306 does not use the respiration waveform acquired during the period in which the change is detected to measure the respiration rate. Thereby, the influence to the respiration measurement by the test subject's 1 body movement and disturbance can be suppressed.
 後述するように、画像処理回路306は、生成した呼吸波形をローパスフィルタを用いてフィルタリングすることが可能である。ローパスフィルタの次数(例えば16次)分のデータは呼吸以外の成分を含むので、画像処理回路306は、フィルタリングする際にはその次数分のデータ(例えば16サンプル)を呼吸数の計測には使用しないようにしている。 As will be described later, the image processing circuit 306 can filter the generated respiratory waveform using a low-pass filter. Since the data for the order of the low-pass filter (for example, 16th order) includes components other than respiration, the image processing circuit 306 uses the data for that order (for example, 16 samples) for the measurement of the respiration rate when filtering. I try not to.
 〔反射パターンの座標位置を特定:ステップS3〕
 画像処理回路306は、カメラ10から動画像を受け取り、例えば公知のパターン認識手法を用いて、複数のフレーム画像のうち少なくとも1つのフレーム画像における反射パターンの座標位置を特定する。反射パターンの座標位置は、例えば図6に示される高反射領域200の各頂点、中心または重心の座標を意味する。
[Identify coordinate position of reflection pattern: Step S3]
The image processing circuit 306 receives a moving image from the camera 10 and specifies a coordinate position of a reflection pattern in at least one frame image among a plurality of frame images using, for example, a known pattern recognition method. The coordinate position of the reflection pattern means, for example, the coordinates of each vertex, center, or center of gravity of the high reflection region 200 shown in FIG.
 画像処理回路306は、コーナ検出法およびエッジ検出法を用いて反射パターンの座標位置を特定することもできる。このような特定方法は、本出願人による未公開の特許出願である特願2015-102726号に記載されている。これらの開示内容の全てを参考のために本明細書に援用する。コーナ検出法およびエッジ検出法を併用することにより、環境変化に対するロバスト性をさらに向上させることができる。 The image processing circuit 306 can also specify the coordinate position of the reflection pattern using the corner detection method and the edge detection method. Such a specifying method is described in Japanese Patent Application No. 2015-102726, which is an unpublished patent application filed by the present applicant. All of these disclosures are incorporated herein by reference. By using the corner detection method and the edge detection method together, robustness against environmental changes can be further improved.
 反射パターンの座標位置に関する情報を更新するタイミングを説明する。上述したとおり、画像処理回路306は、複数のフレーム画像のうち少なくとも1つにおける反射パターンの座標位置を特定する。例えば、画像処理回路306は、10秒毎にその座標位置を更新する。動画像が30fpsで撮影される場合、画像処理回路306は、300フレーム毎にその画像内の反射パターンの座標位置を特定する。換言すると、300フレーム毎にその座標位置に関する情報は更新される。例えばその更新間隔は、被験者1の呼吸数6回分に相当する。 The timing for updating the information on the coordinate position of the reflection pattern will be described. As described above, the image processing circuit 306 specifies the coordinate position of the reflection pattern in at least one of the plurality of frame images. For example, the image processing circuit 306 updates the coordinate position every 10 seconds. When a moving image is captured at 30 fps, the image processing circuit 306 specifies the coordinate position of the reflection pattern in the image every 300 frames. In other words, the information regarding the coordinate position is updated every 300 frames. For example, the update interval corresponds to the subject's 1 breathing rate of 6 times.
 〔複数の分割領域51の設定および呼吸波形の生成:ステップS4〕
 図9Aは、分割領域51が適切に設定された場合の呼吸波形を例示している。図9Bは、分割領域51が適切に設定されなかった場合の呼吸波形を例示している。
[Setting of Multiple Divided Areas 51 and Generation of Respiration Waveform: Step S4]
FIG. 9A illustrates a respiratory waveform when the divided region 51 is appropriately set. FIG. 9B illustrates a breathing waveform when the divided region 51 is not set appropriately.
 再帰性反射材40の反射マーカを囲むように、監視領域50が設定される。監視領域50は複数の分割領域51から構成されている。監視領域50は、反射マーカの領域を例えば3×3以上に分割する複数の分割領域51を含んでいる。分割領域51のサイズは、カメラ10の解像度や画角などに依存して決定され、例えば16×16画素とすることができる。 The monitoring area 50 is set so as to surround the reflection marker of the retroreflecting material 40. The monitoring area 50 is composed of a plurality of divided areas 51. The monitoring area 50 includes a plurality of divided areas 51 that divide the reflective marker area into, for example, 3 × 3 or more. The size of the divided area 51 is determined depending on the resolution and angle of view of the camera 10 and can be set to 16 × 16 pixels, for example.
 被験者1の呼吸の大きさやカメラ10の画角などの測定環境によって、呼吸に伴う反射マーカの微細な振動(上下方向)の動き量は異なる。従って、その動き量は、分割領域51の位置やサイズに大きく依存する。図9Aは、呼吸波形が忠実に再現される位置に分割領域Pが設定されたときに取得された波形を示している。呼吸波形は歪みを含まず、滑らかな曲線によって描かれていることが分かる。以降、このような呼吸波形を「正常な呼吸波形」と記述する。適切な位置に分割領域51を設定することで、正常な呼吸波形が取得され、被験者1の呼吸数を正確に計測することができる。 The amount of minute vibration (vertical direction) of the reflective marker that accompanies respiration varies depending on the measurement environment such as the magnitude of breathing of the subject 1 and the angle of view of the camera 10. Therefore, the amount of movement greatly depends on the position and size of the divided area 51. FIG. 9A shows a waveform acquired when the divided region P is set at a position where the respiratory waveform is faithfully reproduced. It can be seen that the respiratory waveform does not include distortion and is drawn by a smooth curve. Hereinafter, such a respiratory waveform is described as “normal respiratory waveform”. By setting the divided region 51 at an appropriate position, a normal respiratory waveform is acquired, and the respiratory rate of the subject 1 can be accurately measured.
 図9Bは、呼吸波形が忠実に再現されない位置に分割領域Pが設定されたときに取得された波形を示している。呼吸波形は、その一部に矩形波のような歪んだ波形を含んでおり、滑らかな曲線によって描かれているとは言えない。このように、部分領域51の位置やサイズによっては、正常な呼吸波形を取得できない可能性があることが分かる。一部が歪んだ呼吸波形を用いると、後述する呼吸起点を誤って特定してしまう可能性がある。その結果、被験者1の呼吸数を正確に計測することはできない。 FIG. 9B shows a waveform obtained when the divided region P is set at a position where the respiratory waveform is not faithfully reproduced. The respiratory waveform includes a distorted waveform such as a rectangular wave in a part thereof, and cannot be said to be drawn by a smooth curve. Thus, it can be seen that a normal respiratory waveform may not be acquired depending on the position and size of the partial region 51. If a partially distorted respiratory waveform is used, there is a possibility that the respiratory start point described later will be erroneously specified. As a result, the respiratory rate of the subject 1 cannot be accurately measured.
 上記の課題を解決するために、本実施形態による画像処理回路306は、ステップS3で取得した反射マーカの座標情報に基づいて、反射パターンの領域の少なくとも一部を囲むように複数の分割領域51を各フレーム画像の同じ位置に設定する。 In order to solve the above problem, the image processing circuit 306 according to the present embodiment, based on the coordinate information of the reflection marker acquired in step S3, includes a plurality of divided regions 51 so as to surround at least a part of the region of the reflection pattern. Is set to the same position in each frame image.
 呼吸数の計測に適した分割領域として、例えば図9Aに示されるように、吸って吐いての期間(つまり、1呼吸期間の半分の期間)で、反射マーカの移動(上下移動)が各領域の範囲内で発生する分割領域51を採用することが好ましい。それを実現するため、画像処理回路306は、吸って吐いての期間において、分割領域51の輝度平均が反射パターンの領域内の輝度平均よりも低く、かつ、反射マーカの外側の領域の輝度平均よりも高くなるように、複数の分割領域51を設定することが好ましい。画像処理回路306は、この条件を満足するまで、分割領域51の位置やサイズを変更しながら複数の分割領域51の設定を繰り返す。 For example, as shown in FIG. 9A, as the divided areas suitable for the measurement of the respiration rate, the movement (up and down movement) of the reflective marker is performed in each area during the period of inhalation and exhalation (that is, half the period of one respiration period). It is preferable to employ a divided region 51 that occurs within the range of. In order to realize this, the image processing circuit 306 has a luminance average of the divided area 51 lower than the luminance average in the area of the reflective pattern and the luminance average of the area outside the reflective marker during the period of inhaling and exhaling. It is preferable to set a plurality of divided regions 51 so as to be higher. The image processing circuit 306 repeats the setting of the plurality of divided areas 51 while changing the position and size of the divided areas 51 until this condition is satisfied.
 図10は、複数の分割領域51の設定の手順の一例を示している。その手順はステップS4のサブルーチンに相当する。 FIG. 10 shows an example of a procedure for setting a plurality of divided areas 51. The procedure corresponds to the subroutine of step S4.
 (積分画像の生成:ステップS41)
 ステップS41は任意に設けることができる。画像処理回路306は、カメラ10から取得した動画像から積分画像を生成する。積分画像を用いることで後段の演算処理の高速化が図れるので、ステップ41は設けておくことが好ましい。以下では、積分画像を用いて演算処理を行う例を説明する。
(Generation of integral image: Step S41)
Step S41 can be provided arbitrarily. The image processing circuit 306 generates an integrated image from the moving image acquired from the camera 10. The use of the integral image can speed up the subsequent calculation processing, so it is preferable to provide step 41. Below, the example which performs arithmetic processing using an integral image is demonstrated.
 (複数の分割領域51を設定:ステップS42)
 画像処理回路306は、ステップS3で取得した反射マーカの座標情報に基づいて、各フレーム画像において反射パターンの領域の少なくとも一部を囲むように複数の分割領域51を設定する。画像処理回路306は最初、個々の分割領域51のサイズを例えば8×8画素に設定する。
(Set a plurality of divided areas 51: step S42)
The image processing circuit 306 sets a plurality of divided regions 51 so as to surround at least a part of the region of the reflection pattern in each frame image based on the coordinate information of the reflection marker acquired in step S3. The image processing circuit 306 first sets the size of each divided region 51 to, for example, 8 × 8 pixels.
 (輝度平均を算出して呼吸波形を生成:ステップS43)
 画像処理回路306は、分割領域51毎に画素の輝度平均を算出して、所定期間(例えば過去の20秒間)の輝度平均の変化を示す時系列データに基づいて呼吸波形を生成する。または、画像処理回路306は、所定期間における分割領域の画素の積算値の変化を示す時系列データに基づいて呼吸波形を生成してもよい。本明細書では、「領域の輝度」とは、例えば領域内の画素の平均値、積算値または代表値を指す。
(Calculate luminance average to generate respiratory waveform: Step S43)
The image processing circuit 306 calculates the luminance average of the pixels for each divided region 51 and generates a respiratory waveform based on time-series data indicating a change in luminance average over a predetermined period (for example, the past 20 seconds). Alternatively, the image processing circuit 306 may generate a respiration waveform based on time-series data indicating a change in the integrated value of the pixels in the divided region during a predetermined period. In this specification, “brightness of an area” refers to, for example, an average value, an integrated value, or a representative value of pixels in the area.
 図9Aに示される例では、画像処理回路306は、3×4の分割領域51に対して12個の呼吸波形を生成する。例えば所定期間20秒は被験者の一般的な呼吸数3bpmに相当する。その場合、画像処理回路306はRAM303やHDD304にアクセスしながら、現時点から遡って過去の20秒間(フレームレートが30fpsの場合、600フレームに相当)の時系列データに基づいて呼吸波形を生成する。 In the example shown in FIG. 9A, the image processing circuit 306 generates 12 respiratory waveforms for the 3 × 4 divided region 51. For example, the predetermined period of 20 seconds corresponds to a general breathing rate of 3 bpm of the subject. In that case, the image processing circuit 306 generates a respiratory waveform based on time-series data for the past 20 seconds (corresponding to 600 frames when the frame rate is 30 fps) retroactively from the current time while accessing the RAM 303 and the HDD 304.
 (輝度値の最小値、最大値および平均値を算出:ステップS44)
 画像処理回路306は、例えば過去の20秒間の時系列データに基づいて生成した呼吸波形から、上述した「領域の輝度」の、最小値、最大値および平均値を分割領域51毎に算出する。
(Calculate the minimum, maximum and average luminance values: step S44)
The image processing circuit 306 calculates, for each divided region 51, the minimum value, maximum value, and average value of the above-mentioned “region luminance” from a respiratory waveform generated based on, for example, time-series data for the past 20 seconds.
 (所定の条件が満たされているか否かを判定:ステップS45)
 画像処理回路306は、分割領域51毎に輝度の最小値、最大値および平均値の全てが所定の条件を満たしているか否かを個別に判定することができる。具体的に説明すると、画像処理回路306は、輝度の最小値、最大値および平均値が所定の範囲内にあるかどうかをそれぞれ判定することができる。より具体的に説明すると、画像処理回路は、領域の輝度の最大値および最小値が、最大値<「反射パターンの領域内の輝度平均」―「しきい値」、かつ、最小値>「反射マーカの外側の領域の輝度平均」+「しきい値」となる条件を満足するか否かを判定することができる。
(Determining whether or not a predetermined condition is satisfied: Step S45)
The image processing circuit 306 can individually determine whether or not all of the minimum value, maximum value, and average value of the luminance satisfy a predetermined condition for each divided region 51. More specifically, the image processing circuit 306 can determine whether or not the minimum value, maximum value, and average value of the luminance are within a predetermined range. More specifically, in the image processing circuit, the maximum value and the minimum value of the luminance of the region are the maximum value <“luminance average in the region of the reflection pattern” − “threshold value” and the minimum value> “reflection”. It can be determined whether or not the condition “luminance average of the area outside the marker” + “threshold value” is satisfied.
 複数の分割領域51のうち、上述した条件を満たす分割領域51のブロック数が予め設定されたしきい値以上であれば(S45のYes)、処理は呼吸起点を特定する次のステップS5に移行する。この条件を満たす分割領域51の数が予め設定されたしきい値未満であれば(S45のNo)、処理は再びステップS42に戻る。画像処理回路306は、分割領域51のサイズや位置を変更して複数の分割領域51を再度設定する。 If the number of blocks of the divided areas 51 that satisfy the above-described conditions among the plurality of divided areas 51 is equal to or greater than a preset threshold value (Yes in S45), the process proceeds to the next step S5 for specifying the respiratory start point. To do. If the number of the divided areas 51 satisfying this condition is less than a preset threshold value (No in S45), the process returns to step S42 again. The image processing circuit 306 changes the size and position of the divided areas 51 and sets a plurality of divided areas 51 again.
 画像処理回路306は、ステップS45の条件が満たされるまでステップS42からS45までの処理を繰り返す。 The image processing circuit 306 repeats the processing from step S42 to S45 until the condition of step S45 is satisfied.
 〔呼吸起点の判定:ステップS5〕
 本実施形態による画像処理回路306は、呼吸波形を数値微分することで呼吸起点を分割領域51毎に判定する。ステップS4で生成された呼吸波形には呼吸以外のノイズ成分が含まれている。ノイズが含まれた呼吸波形をそのまま微分すると、ノイズ成分が強調されてしまうので、呼吸起点を正確に特定することができなくなる。そこで、画像処理回路306は、数値微分を行う前にフィルタ307(図2を参照)を用いて呼吸波形からノイズを除去する。
[Determination of respiratory start point: Step S5]
The image processing circuit 306 according to the present embodiment determines the respiratory start point for each divided region 51 by numerically differentiating the respiratory waveform. The respiration waveform generated in step S4 includes noise components other than respiration. If the respiratory waveform containing noise is differentiated as it is, the noise component will be emphasized, so that the respiratory start point cannot be specified accurately. Therefore, the image processing circuit 306 removes noise from the respiratory waveform using a filter 307 (see FIG. 2) before performing numerical differentiation.
 図11は、数値微分によって呼吸起点を判定する手順を示している。その手順はステップS5のサブルーチンに相当する。 FIG. 11 shows a procedure for determining the respiratory start point by numerical differentiation. The procedure corresponds to the subroutine of step S5.
 (呼吸波形のノイズを除去:ステップS51)
 画像処理回路306は、分割領域51毎の呼吸波形のノイズを除去するフィルタ307(図2を参照)を有している。フィルタ307はローパスフィルタまたはフィルタバンクである。例えば呼吸数として0から150bpmまでを想定すると、遮断周波数2.5Hzを有するローパスフィルタを用いることができる。
(Removal of respiratory waveform noise: Step S51)
The image processing circuit 306 includes a filter 307 (see FIG. 2) that removes noise in the respiratory waveform for each divided region 51. The filter 307 is a low-pass filter or a filter bank. For example, assuming a respiration rate of 0 to 150 bpm, a low-pass filter having a cutoff frequency of 2.5 Hz can be used.
 画像処理回路306は、0から2.5Hzまでの信号を通過させるフィルタを用いると、被験者1の呼吸が遅いときに呼吸起点を誤検出する可能性がある。その点を考慮すると、例えば複数のフィルタから構成されたフィルタバンクを用いることが好ましいと言える。画像処理回路306は、フィルタバンクの各フィルタを透過した呼吸波形の中から最適な呼吸波形、例えば振幅が最も大きい呼吸波形を選択するとよい。 If the image processing circuit 306 uses a filter that allows a signal from 0 to 2.5 Hz to pass, there is a possibility that the breathing start point may be erroneously detected when the subject 1 breathes slowly. Considering this point, it can be said that it is preferable to use a filter bank composed of a plurality of filters, for example. The image processing circuit 306 may select an optimal respiration waveform, for example, a respiration waveform having the largest amplitude, from respiration waveforms that have passed through each filter of the filter bank.
 (呼吸波形を微分して呼吸起点の候補を抽出:ステップS52)
 画像処理回路306は、フィルタ307を通過した分割領域51毎の呼吸波形を数値微分(1次微分)する。画像処理回路306は、微分して得られた、呼吸波形における時系列のn個(nは1以上の整数)の極小点を、呼吸起点の候補として抽出する。呼吸起点の候補に対応した極小点は、微分値がマイナスからプラスに変化する、いわゆる上向きゼロクロス点である。
(The respiratory waveform is differentiated and a candidate for the respiratory start point is extracted: Step S52)
The image processing circuit 306 numerically differentiates (primary differentiation) the respiratory waveform for each divided region 51 that has passed through the filter 307. The image processing circuit 306 extracts n time-sequential minimum points (n is an integer of 1 or more) in the respiratory waveform obtained by differentiation as candidates for the respiratory start point. The minimum point corresponding to the candidate for the respiratory start point is a so-called upward zero-cross point where the differential value changes from minus to plus.
 (呼吸起点かどうかを判定:ステップS53)
 ステップS52で得られた呼吸起点の候補、すなわち上向きゼロクロス点を呼吸起点とそのまま判定すると、呼吸数の計測において誤検出が多くなる。その理由は、呼吸以外による微妙な振動、外乱光、およびフィルタリングによるリンギングなどによっても、上向きゼロクロス点が生じてしまう可能性があるためである。画像処理回路306は、誤検出を防ぐために、呼吸起点の候補が呼吸起点であるかどうかを判定する。
(Determining whether the breathing start point or not: Step S53)
If the respiratory start candidate obtained in step S52, that is, the upward zero-cross point is determined as it is as the respiratory start point, erroneous detection increases in the measurement of the respiratory rate. The reason is that an upward zero-cross point may occur due to subtle vibrations other than breathing, disturbance light, ringing due to filtering, and the like. In order to prevent erroneous detection, the image processing circuit 306 determines whether or not the respiratory start candidate is the respiratory start point.
 図12は、呼吸波形において特定の呼吸起点が複数の呼吸起点の候補から決定される様子を示している。図13は、呼吸波形における、テイルポイント、ヘッドポイント、マックスポイント、テイル側振幅、およびヘッド側振幅をそれぞれ示している。 FIG. 12 shows a state where a specific respiration start point is determined from a plurality of respiration start candidates in the respiration waveform. FIG. 13 shows a tail point, a head point, a max point, a tail side amplitude, and a head side amplitude in the respiratory waveform.
 画像処理回路306は、呼吸起点のn個の候補のうちのi番目の第1候補と、第1候補よりも時系列で1つ前の第2候補とを選択する。iは、1からnまでの整数である。ここで、本明細書に用いられる用語を説明する。まず、第1候補の点を「テイルポイント」と表記し、第2候補の点を「ヘッドポイント」と表記し、第1および第2候補の極小点、つまりテイルポイントとヘッドポイントとの間の極大点を「マックスポイント」と表記する。次に、マックスポイントとテイルポイントとの間の輝度値の差分を「テイル側振幅(図13中の「TA」)」と表記し、マックスポイントとヘッドポイントとの間の輝度値の差分を「ヘッド側振幅(図13中の「HA」)」と表記する。最後に、テイル側振幅とヘッド側振幅との比率を「ヘッドテイル比」と表記する。 The image processing circuit 306 selects the i-th first candidate among the n candidates for the respiratory start point and the second candidate that is one time earlier in time series than the first candidate. i is an integer from 1 to n. Here, terms used in this specification will be described. First, the first candidate point is expressed as “tail point”, the second candidate point is expressed as “head point”, and the first and second candidate minimum points, that is, between the tail point and the head point, The maximum point is expressed as “Max Point”. Next, the luminance value difference between the max point and the tail point is expressed as “tail side amplitude (“ TA ”in FIG. 13)”, and the luminance value difference between the max point and the head point is “ The head-side amplitude (“HA” in FIG. 13) is expressed. Finally, the ratio between the tail side amplitude and the head side amplitude is referred to as a “head tail ratio”.
 図13において、i番目の第1候補、すなわちi番目のテイルポイント(i)に着目する。テイルポイント(i)、第2候補に相当するヘッドポイント(i)、およびそれらの間のマックスポイント(i)の一組を用いて、ヘッド側振幅(i)、テイル側振幅(i)およびヘッドテイル比(i)の3つの指標が定義される。  In FIG. 13, attention is paid to the i-th first candidate, that is, the i-th tail point (i). Using a set of tail point (i), head point (i) corresponding to the second candidate, and max point (i) between them, head side amplitude (i), tail side amplitude (i) and head Three indicators of tail ratio (i) are defined. *
 画像処理回路306は、第1候補、つまりテイルポイント(i)が呼吸起点であるかどうかを分割領域51毎に3つの指標を用いて判定する。具体的には、画像処理回路306は、テイル側振幅およびヘッド側振幅がそれぞれ所定のしきい値以上であり、かつ、ヘッドテイル比が略1に等しい場合に、テイルポイント(i)を呼吸起点と判定する。所定のしきい値は、画像上の反射マーカの大きさ、および分割領域51のサイズに従って決定される。例えば画素の輝度値を8bitの信号で示す場合、所定のしきい値を3とすることができる。 The image processing circuit 306 determines whether or not the first candidate, that is, the tail point (i), is the respiration start point, using three indexes for each divided region 51. Specifically, the image processing circuit 306 determines the tail point (i) as the respiratory start point when the tail side amplitude and the head side amplitude are each equal to or greater than a predetermined threshold and the head tail ratio is substantially equal to 1. Is determined. The predetermined threshold is determined according to the size of the reflective marker on the image and the size of the divided area 51. For example, when the luminance value of a pixel is indicated by an 8-bit signal, the predetermined threshold value can be set to 3.
 画像処理回路306は、呼吸起点の候補に応じた数だけ、すなわちi=1からnに対してテイルポイント(i)が呼吸起点であるかどうかをそれぞれ判定する。このようにして、画像処理回路306は、テイルポイント(i)に関するヘッド側振幅、テイル側振幅およびヘッドテイル比などの呼吸起点の情報を分割領域51毎に取得する。呼吸起点に関する一連の情報は例えばRAM303などに保持される。 The image processing circuit 306 determines whether or not the tail point (i) is the respiratory start point for the number corresponding to the respiratory start point candidates, i.e., for i = 1 to n. In this way, the image processing circuit 306 acquires information about the respiratory start point such as the head side amplitude, tail side amplitude, and head tail ratio regarding the tail point (i) for each divided region 51. A series of information related to the respiratory start point is held in the RAM 303, for example.
 ヘッドテイル比は、テイル側振幅/ヘッド側振幅であってもよいし、ヘッド側振幅/テイル側振幅であってもよい。また、本実施形態では、演算の効率化を考慮して、ヘッドテイル比を、下記の数式(1)に示されるように常用対数の絶対値を用いて設定している。
  ヘッドテイル比=|log10(ヘッド側振幅/テイル側振幅)|   数式(1)
The head tail ratio may be tail side amplitude / head side amplitude, or head side amplitude / tail side amplitude. In this embodiment, the head tail ratio is set using the absolute value of the common logarithm as shown in the following formula (1) in consideration of the efficiency of calculation.
Head tail ratio = | log 10 (head side amplitude / tail side amplitude) | Formula (1)
 〔最適な分割領域51を決定し、呼吸起点を特定:ステップS6〕
 再び図3を参照する。画像処理回路306は、分割領域51毎の呼吸波形および呼吸起点の情報に基づいて、呼吸数の計測に最適な分割領域51を複数の分割領域51から選択する。画像処理回路306は、選択した分割領域51の呼吸波形において、呼吸数の計測に用いられる呼吸起点を特定する。
[Determine the optimal divided area 51 and specify the respiratory start point: Step S6]
Refer to FIG. 3 again. The image processing circuit 306 selects, from the plurality of divided areas 51, a divided area 51 that is optimal for measuring the respiration rate based on the respiratory waveform and respiratory start information for each divided area 51. The image processing circuit 306 specifies a respiration start point used for respiration rate measurement in the respiration waveform of the selected divided region 51.
 図14は、最適な分割領域51を選択する処理の手順の一例を示している。その手順はステップS6のサブルーチンに相当する。 FIG. 14 shows an example of a processing procedure for selecting the optimum divided area 51. The procedure corresponds to the subroutine of step S6.
 (分割領域51毎にヘッド側振幅およびテイル側振幅の平均値をそれぞれ算出:ステップS61)
 画像処理回路306は、過去の数拍分(例えば60秒)のヘッド側振幅およびテイル側振幅を分割領域51毎にそれぞれ平均する。なお、画像処理回路306は、過去の数拍分のヘッド側振幅およびテイル側振幅の分散をそれぞれ求めてもよい。呼吸数の計測に最適な分割領域51では、それぞれの平均値は大きくなり、分散は小さくなるという特徴がある。
(Each average value of the head-side amplitude and the tail-side amplitude is calculated for each divided region 51: Step S61)
The image processing circuit 306 averages the head-side amplitude and tail-side amplitude for the past several beats (for example, 60 seconds) for each divided region 51. Note that the image processing circuit 306 may obtain variances of the head-side amplitude and the tail-side amplitude for the past several beats. In the divided area 51 that is optimal for measuring the respiration rate, each average value is large and the variance is small.
 (分割領域毎にヘッドテイル比の平均値を算出:ステップS62)
 画像処理回路306は、過去の数拍分のヘッドテイル比の平均値を分割領域51毎に算出する。画像処理回路306は、過去の数拍分のヘッドテイル比に重み付をして加重平均を分割領域51毎に算出してもよい。その際、過去のデータになるほど重みが小さくなるように重み付を行う。呼吸数の計測に最適な分割領域51には、過去の数拍分のヘッドテイル比の変化は小さくなり、ヘッドテイル比は略1に等しくなるという特徴がある。換言すると、分散は小さくなるという特徴がある。
(Average head tail ratio is calculated for each divided region: Step S62)
The image processing circuit 306 calculates an average value of head tail ratios for the past several beats for each divided region 51. The image processing circuit 306 may calculate the weighted average for each divided region 51 by weighting the head tail ratio for the past several beats. At that time, weighting is performed so that the weight becomes smaller as the past data is obtained. The divided region 51 that is most suitable for measuring the respiratory rate has a feature that the change in the head tail ratio for the past several beats is small and the head tail ratio is substantially equal to one. In other words, the dispersion is small.
 (最適な分割領域51の決定:ステップS63)
 画像処理回路306は、下記の(A)から(C)のいずれかを条件として最適な分割領域51を選択することができる。画像処理回路306は、選択した分割領域51の呼吸波形において、呼吸数の計測に用いられる呼吸起点を特定する。
(A)過去の数拍分のヘッドテイル比が略1と一定であり、かつ、過去の数拍分のテイル側振幅およびヘッド側振幅の平均値がそれぞれ大きい。
(B)過去の数拍分のヘッドテイル比が略1と一定であり、かつ、過去の数拍分のテイル側振幅およびヘッド側振幅の分散がそれぞれ小さい。
(C)過去の数拍分のヘッドテイル比が略1と一定であり、かつ、過去の数拍分のテイル側振幅およびヘッド側振幅の分散が所定のしきい値以上であり、かつ、過去の数拍において、テイル側振幅およびヘッド側振幅の平均値のそれぞれが最も大きい。例えば、所定のしきい値を0.1に設定することができる。
(Determination of optimal divided area 51: Step S63)
The image processing circuit 306 can select the optimum divided region 51 on condition of any of the following (A) to (C). The image processing circuit 306 specifies a respiration start point used for respiration rate measurement in the respiration waveform of the selected divided region 51.
(A) The head tail ratio for the past several beats is substantially constant, and the average values of the tail side amplitude and the head side amplitude for the past several beats are large.
(B) The head tail ratio for the past several beats is substantially constant, and the tail-side amplitude and head-side amplitude variance for the past several beats are small.
(C) The head tail ratio for the past several beats is substantially constant at 1, and the tail-side amplitude and head-side amplitude variance for the past several beats are equal to or greater than a predetermined threshold, and the past In several beats, the average value of the tail side amplitude and the head side amplitude is the largest. For example, the predetermined threshold value can be set to 0.1.
 画像処理回路306は、過去の数拍分のヘッドテイル比の平均が所定のしきい値以上になる分割領域の候補を選択する。画像処理回路306は、分割領域の候補のうち、過去の数拍分のテイル側振幅およびヘッド側振幅の平均値がそれぞれ最大となる分割領域51を、最適な分割領域51として選択してもよい。本実施形態では、上述したように、上記の数式(1)で表されるヘッドテイル比を用いていており、所定のしきい値を例えば1/2とすることができる。 The image processing circuit 306 selects a candidate for a divided region in which the average of the head tail ratios for the past several beats is equal to or greater than a predetermined threshold value. The image processing circuit 306 may select, as the optimum divided region 51, the divided region 51 in which the average values of the tail side amplitude and the head side amplitude for the past several beats are the largest among the divided region candidates. . In the present embodiment, as described above, the head tail ratio represented by the above formula (1) is used, and the predetermined threshold value can be halved, for example.
 例えば図8に示される複数の呼吸波形においては、画像処理回路306は、分割領域A、BおよびCのうち、テイル側振幅およびヘッド側振幅はいずれも大きく、かつ、ヘッドテイル比の分散は小さい分割領域Aを最適な分割領域51として決定することができる。 For example, in the plurality of respiratory waveforms shown in FIG. 8, the image processing circuit 306 has a large tail side amplitude and a head side amplitude among the divided regions A, B, and C, and a small dispersion of the head tail ratio. The divided area A can be determined as the optimum divided area 51.
 〔被験者1の呼吸数をカウント:ステップS7〕
 図15は、呼吸数の計測に用いられる、ステップS6で特定された呼吸起点、および呼吸波形における呼吸周期(s)を示している。隣接する2つの呼吸起点の間の時間差が被験者1の呼吸の呼吸周期(s)である。呼吸数(bpm)は60/呼吸周期(s)で表される。
[Count the respiratory rate of subject 1: Step S7]
FIG. 15 shows the respiratory start point specified in step S6 and the respiratory cycle (s) in the respiratory waveform, which are used for measuring the respiratory rate. The time difference between two adjacent breathing origins is the breathing cycle (s) of the subject 1 breathing. The respiration rate (bpm) is expressed as 60 / respiration cycle (s).
 画像処理回路306は、ステップS6で選択された最適な分割領域51の呼吸波形および呼吸起点の情報に基づいて被験者1の呼吸数を計測する。例えば図8に示される複数の呼吸波形では、画像処理回路306は、分割領域Aの呼吸波形および呼吸起点の情報に基づいて被験者1の呼吸数を計測する。画像処理回路306は所定期間内の呼吸数をカウントすることができる。 The image processing circuit 306 measures the respiration rate of the subject 1 based on the respiration waveform of the optimum divided region 51 selected in step S6 and the respiration start information. For example, in the plurality of respiration waveforms shown in FIG. 8, the image processing circuit 306 measures the respiration rate of the subject 1 based on the respiration waveform of the divided area A and the respiration start information. The image processing circuit 306 can count the respiration rate within a predetermined period.
 〔計測結果の表示:ステップS8〕
 図16は、ディスプレイ32に表示された表示内容の一例を示す。ディスプレイ32は、被験者1の呼吸に起因する生体活動の計測結果を表示する。その生体活動の計測結果に関する情報は、被験者1の呼吸数および呼吸数のトレンドを示す情報を含んでいる。呼吸数のトレンドを示す情報は、呼吸数の時間的な変化を示す波形としてディスプレイ32に表示される。また、呼吸数の情報は所定の間隔で更新される。
[Display of measurement result: Step S8]
FIG. 16 shows an example of display contents displayed on the display 32. The display 32 displays the measurement result of the biological activity resulting from the respiration of the subject 1. The information regarding the measurement result of the biological activity includes information indicating the respiratory rate of the subject 1 and the trend of the respiratory rate. Information indicating the trend of the respiratory rate is displayed on the display 32 as a waveform indicating a temporal change in the respiratory rate. Moreover, the information on the respiration rate is updated at a predetermined interval.
 ディスプレイ32には、最適な分割領域51の輝度値の変化を示す呼吸波形も表示されている。さらに、計測システム100の状態を表すシステム情報が表示される。その情報は、例えば、検索中、測定中および停止中などの内部で起動しているプログラムの状態を意味する。 The display 32 also displays a breathing waveform indicating a change in the luminance value of the optimum divided area 51. Further, system information indicating the state of the measurement system 100 is displayed. The information means, for example, the state of a program that is running internally such as during search, during measurement, and during stop.
 また、ディスプレイ32にはカメラ10により撮像された動画像がリアルタイムで表示されている。反射マーカの検出位置と呼吸数の計測に用いられている分割領域51とを特定する矩形状の枠を、その動画像に重畳的に表示することもできる。 Further, the moving image captured by the camera 10 is displayed on the display 32 in real time. A rectangular frame that identifies the detection position of the reflective marker and the divided region 51 used for measuring the respiration rate can also be displayed superimposed on the moving image.
 反射マーカ、つまり再帰性反射材40の検出位置を表示することにより、測定システム100のオペレータ(例えば医師など)は正確に反射マーカが認識されていることをディスプレイ32上で確認することができる。もし、反射マーカが正確に配置されていなければ、ディスプレイ32には反射マーカの検出位置や呼吸数は表示されないので、オペレータはこの不具合を確実に確認することができる。 By displaying the detection position of the reflective marker, that is, the retroreflecting material 40, an operator (for example, a doctor) of the measurement system 100 can confirm on the display 32 that the reflective marker is accurately recognized. If the reflective marker is not accurately arranged, the detection position of the reflective marker and the respiration rate are not displayed on the display 32, so the operator can surely confirm this problem.
 本実施形態によると、周囲の環境の変化に対して高いロバスト性を備えた計測システムが提供される。 According to the present embodiment, a measurement system having high robustness against changes in the surrounding environment is provided.
 (第2の実施形態)
 第2の実施形態による画像処理回路306は、呼吸起点を判別するためのしきい値(以下。「呼吸起点のしきい値」と表記する。)を用いて呼吸起点を判定する点で、第1の実施形態による画像処理回路306とは異なる。本実施形態による呼吸起点は、輝度値が呼吸起点のしきい値に等しくなる呼吸波形上の点を指す。以下、共通する部分の説明は省略し、差異点を中心に説明する。
(Second Embodiment)
The image processing circuit 306 according to the second embodiment is configured to determine the respiratory start point using a threshold value for determining the respiratory start point (hereinafter referred to as “the threshold value of the respiratory start point”). This is different from the image processing circuit 306 according to the first embodiment. The respiratory start point according to the present embodiment refers to a point on the respiratory waveform where the luminance value is equal to the threshold value of the respiratory start point. Hereinafter, description of common parts will be omitted, and description will be made focusing on differences.
 図17は、呼吸起点のしきい値を用いて呼吸起点を判定する手順を示している。その手順は第1の実施形態とは異なるステップS6のサブルーチンに相当する。 FIG. 17 shows a procedure for determining the respiratory start point using the threshold value of the respiratory start point. The procedure corresponds to a subroutine of step S6 different from the first embodiment.
 画像処理回路306は、図17の手順に従って呼吸起点を判定する。 The image processing circuit 306 determines the respiratory start point according to the procedure of FIG.
 (分割領域51毎に呼吸波形のノイズを除去:ステップS51)
 画像処理回路306は、第1の実施形態と同様に、分割領域51毎に呼吸波形のノイズを除去する。
(Removal of respiratory waveform noise for each divided region 51: Step S51)
Similar to the first embodiment, the image processing circuit 306 removes respiratory waveform noise for each divided region 51.
 (下限値を算出:ステップS54)
 図18は、ある分割領域51の呼吸波形を示している。図19は、所定期間毎に呼吸起点のしきい値が更新される様子を示している。
(Lower limit value is calculated: Step S54)
FIG. 18 shows a respiratory waveform of a certain divided area 51. FIG. 19 shows a state in which the threshold value of the respiratory start point is updated every predetermined period.
 画像処理回路306は、所定期間のデータを基にして呼吸起点のしきい値を算出するための下限値を設定する。画像処理回路306は、例えば過去20秒間における輝度値の最小値をその下限値として設定する。下限値は、所定期間、例えば20秒毎に更新されることになる。 The image processing circuit 306 sets a lower limit value for calculating a threshold value of the respiratory start point based on data for a predetermined period. For example, the image processing circuit 306 sets the minimum value of the luminance value in the past 20 seconds as the lower limit value. The lower limit value is updated every predetermined period, for example, every 20 seconds.
 (呼吸起点のしきい値を算出:ステップS55)
 画像処理回路306は、下限値に加算値を加えて呼吸起点のしきい値を求める。例えば、加算値を「1」とすることができる。上述したように、下限値は所定期間毎に更新されるので、呼吸起点のしきい値も所定期間毎に更新される。図19には、3区間における呼吸波形のDC成分の変動の様子を示している。呼吸波形のDC成分は区間毎に変動することが分かる。本実施形態では、呼吸起点のしきい値はDC成分の変動に応じて区間毎に更新される。これにより、DC成分の変動に追従して、呼吸起点を正確に判定することができる。
(Calculate the breathing start threshold: step S55)
The image processing circuit 306 adds the added value to the lower limit value to obtain the threshold value for the respiratory start point. For example, the added value can be “1”. As described above, since the lower limit value is updated every predetermined period, the threshold value of the respiratory start point is also updated every predetermined period. FIG. 19 shows how the DC component of the respiratory waveform varies in three sections. It can be seen that the DC component of the respiratory waveform varies from section to section. In the present embodiment, the threshold value of the respiratory start point is updated for each section according to the fluctuation of the DC component. As a result, the respiratory start point can be accurately determined following the fluctuation of the DC component.
 (呼吸起点を判定:ステップS56)
 画像処理回路306は、呼吸起点のしきい値を基準として呼吸起点を判定する。具体的に説明すると、例えば画像処理回路306は、輝度値と呼吸起点のしきい値との差分の正負の符号が負から正に変化する呼吸波形上の点を呼吸起点と判定する。または、画像処理回路306は、その逆に正負の符号が変化する呼吸波形上の点を呼吸起点と判定してもよい。
(Determine respiratory start point: Step S56)
The image processing circuit 306 determines the respiratory start point based on the threshold value of the respiratory start point. More specifically, for example, the image processing circuit 306 determines a point on the respiration waveform where the sign of the difference between the luminance value and the threshold value of the respiration start point changes from negative to positive as the respiration start point. Alternatively, the image processing circuit 306 may determine a point on the respiration waveform where the sign of the sign changes to the respiration start point.
 本実施形態による画像処理回路306は、呼吸起点を判定した後は、第1の実施形態と同様に、最適な分割領域を決定し、呼吸起点を特定して(ステップS6)、被験者の呼吸数を計測する(ステップS7)。具体的に説明すると、例えば、画像処理回路306は、輝度値と呼吸起点のしきい値との差分の正負の符号が負から正に変化する呼吸波形上の隣接した2つの呼吸起点の間にある極小点を把握し、それらの極小点に基づいてヘッド側振幅、テイル側振幅、およびヘッドテイル比を演算する。画像処理回路306は、それらの指標を用いて第1の実施形態で説明した同一の条件に基づいて最適な分割領域を決定することができる。 After determining the respiration start point, the image processing circuit 306 according to the present embodiment determines the optimal divided region, specifies the respiration start point (step S6), and determines the respiration rate of the subject, as in the first embodiment. Is measured (step S7). More specifically, for example, the image processing circuit 306 is located between two adjacent respiratory start points on a respiratory waveform in which the sign of the difference between the luminance value and the threshold value of the respiratory start point changes from negative to positive. A certain local minimum point is grasped, and the head side amplitude, the tail side amplitude, and the head tail ratio are calculated based on the local minimum points. The image processing circuit 306 can determine an optimum divided region based on the same conditions described in the first embodiment using those indices.
 なお、第1の実施形態による計測システム100は、第2の実施形態による計測システム100と比べて呼吸波形のDC成分の変動を受けにくい。そのため、DC成分の変動が顕著な測定環境などでは、第1の実施形態による計測システム100を用いることが好ましいと言える。 Note that the measurement system 100 according to the first embodiment is less susceptible to fluctuations in the DC component of the respiratory waveform than the measurement system 100 according to the second embodiment. For this reason, it can be said that it is preferable to use the measurement system 100 according to the first embodiment in a measurement environment where the fluctuation of the DC component is remarkable.
 本実施形態によると、周囲の環境の変化に対して高いロバスト性を備えた計測システムが提供される。特に、微小なノイズの影響を受けにくい計測システムが提供される。 According to the present embodiment, a measurement system having high robustness against changes in the surrounding environment is provided. In particular, a measurement system that is not easily affected by minute noise is provided.
 (第3の実施形態)
 第3の実施形態による計測システム100は、カメラ10が光学フィルタを装着している点で、第1の実施形態による計測システム100とは異なる。以下、共通する部分の説明は省略し、差異点を中心に説明する。
(Third embodiment)
The measurement system 100 according to the third embodiment is different from the measurement system 100 according to the first embodiment in that the camera 10 is equipped with an optical filter. Hereinafter, description of common parts will be omitted, and description will be made focusing on differences.
 カメラ10は、可視光領域の波長を遮る光学フィルタ(不図示)を装着していてもよい。その光学フィルタは、例えば赤外フィルタとも呼ばれる。光学フィルタは、光源20から放射され、再帰性反射材40において反射された赤外光は透過するが、可視光は遮断する。 The camera 10 may be equipped with an optical filter (not shown) that blocks the wavelength in the visible light region. The optical filter is also called an infrared filter, for example. The optical filter transmits infrared light emitted from the light source 20 and reflected by the retroreflecting material 40, but blocks visible light.
 本実施形態によると、光学フィルタを設けることにより、赤外光以外の光、より具体的には可視光がカメラ10に入射することを防ぎ、それにより、撮影された動画像の輝度値の変化への影響を低減できる。可視光に起因する各フレーム画像の輝度値の変動を抑制できるので、可視光のみに起因し、生体反応に起因しない外乱ノイズの発生を効果的に低減できる。換言すると、再帰性反射材40において反射された赤外光のみによる輝度値の変化を確実に捉えることができる。 According to the present embodiment, by providing an optical filter, it is possible to prevent light other than infrared light, more specifically, visible light from entering the camera 10, thereby changing the luminance value of the captured moving image. Can be reduced. Since the fluctuation of the luminance value of each frame image due to visible light can be suppressed, it is possible to effectively reduce the generation of disturbance noise that is caused only by visible light and is not caused by a biological reaction. In other words, a change in luminance value due to only infrared light reflected by the retroreflecting material 40 can be reliably captured.
 第1、第2および第3の実施形態では、カメラ10で撮像した動画像のリアルタイム処理を前提とした計測システム100を説明したが、本発明はこれに限定されない。例えば、カメラ10で撮像された被験者1の動画像は一旦、外部メモリなどに保存されてもよい。画像処理回路306は、外部メモリから動画像データを読み出して、そのデータに基づいて事後的に被験者1の呼吸数を計測しても構わない。画像処理回路306を含む情報処理装置30は、計測システム100の構成要素であってもよいし、それとは独立して市場に流通し得る単体の計測装置であってもよい。 In the first, second, and third embodiments, the measurement system 100 that assumes real-time processing of a moving image captured by the camera 10 has been described, but the present invention is not limited to this. For example, the moving image of the subject 1 captured by the camera 10 may be temporarily stored in an external memory or the like. The image processing circuit 306 may read the moving image data from the external memory and measure the respiration rate of the subject 1 afterwards based on the data. The information processing apparatus 30 including the image processing circuit 306 may be a component of the measurement system 100 or may be a single measurement apparatus that can be distributed to the market independently.
 本明細書は、以下の項目に記載の計測装置、計測システム、被験体の呼吸に起因する生体活動の計測方法およびコンピュータプログラムを開示している。 This specification discloses a measurement apparatus, a measurement system, a measurement method of a biological activity caused by respiration of a subject, and a computer program described in the following items.
 〔項目1〕
 光源から放射される光を受けた撮像装置によって生成された被験体の動画像を利用して前記被験体の生体活動を計測する計測装置であって、
 前記動画像を受け取る入力インタフェースと、
 前記動画像を利用して被験体の生体活動を計測する画像処理回路と、
 を備え、
 前記動画像は、前記被験体の呼吸に伴う体動の発生位置に反射パターンを有する再帰性反射材が配置され、前記光源から前記被験体に向けて前記光が放射されたときに、複数の時刻において前記再帰性反射材で反射された前記光に基づく時系列の複数のフレーム画像から構成され、
 前記画像処理回路は、
  前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定し、
  前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測する、計測装置。
[Item 1]
A measuring device that measures a subject's biological activity using a moving image of a subject generated by an imaging device that has received light emitted from a light source,
An input interface for receiving the moving image;
An image processing circuit for measuring the biological activity of the subject using the moving image;
With
In the moving image, a retroreflecting material having a reflection pattern is arranged at a position where a body movement accompanying breathing of the subject is arranged, and when the light is emitted from the light source toward the subject, a plurality of the moving images are provided. Consists of a plurality of time-series frame images based on the light reflected by the retroreflecting material at time,
The image processing circuit includes:
Calculating a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and setting a plurality of divided regions in each frame image based on the coordinate position;
In each of the plurality of divided regions, a respiration waveform indicating a change in luminance value over the plurality of frame images is generated, and a living body resulting from respiration of the subject based on the respiration waveform of each of the plurality of divided regions A measuring device that measures activity.
 項目1に記載の計測装置によると、生体活動の計測条件が周囲の環境の影響を受けにくい、呼吸に起因する生体活動のロバストな計測装置が提供される。 According to the measurement device described in item 1, a robust measurement device for life activity caused by breathing is provided in which measurement conditions for life activity are not easily influenced by the surrounding environment.
 〔項目2〕
 前記画像処理回路は、各分割領域の前記呼吸波形上の呼吸起点を特定するための指標を用いて前記被験体の呼吸に起因する生体活動を計測する、項目1に記載の計測装置。
[Item 2]
The measurement apparatus according to item 1, wherein the image processing circuit measures a biological activity caused by respiration of the subject using an index for specifying a respiration start point on the respiration waveform of each divided region.
 項目2に記載の計測装置によると、呼吸起点を正確に特定することができる。 * According to the measurement device described in Item 2, the respiratory start point can be accurately identified.
 〔項目3〕
 前記画像処理回路は、前記複数のフレーム画像のうち2つのフレーム画像の間の画像変化を検出し、前記画像変化を検出したフレーム画像に関する呼吸波形を、前記被験体の呼吸に起因する生体活動の計測には使用しない、項目2に記載の計測装置。
[Item 3]
The image processing circuit detects an image change between two frame images of the plurality of frame images, and generates a respiratory waveform related to the frame image from which the image change has been detected, as a result of the biological activity caused by the breathing of the subject. Item 3. The measuring device according to Item 2, which is not used for measurement.
 項目3に記載の計測装置によると、被験体の体動や外乱による呼吸計測への影響を抑制することができる。 According to the measurement device described in item 3, it is possible to suppress the influence on the respiratory measurement due to the body movement or disturbance of the subject.
 〔項目4〕
 前記画像処理回路は、所定期間において、各分割領域の平均輝度が前記反射パターンの領域内の平均輝度よりも低く、かつ、前記反射マーカの外側の領域の平均輝度よりも高くなるように、前記複数の分割領域を設定する、項目2または3に記載の計測装置。
[Item 4]
The image processing circuit is configured so that, in a predetermined period, the average luminance of each divided region is lower than the average luminance in the region of the reflective pattern and higher than the average luminance in the region outside the reflective marker. 4. The measuring device according to item 2 or 3, wherein a plurality of divided areas are set.
 項目4に記載の計測装置によると、適切な位置に複数の分割領域を設定することで、正常な呼吸波形が取得され、被験体の呼吸数を正確に計測することができる。 According to the measurement device described in item 4, by setting a plurality of divided regions at appropriate positions, a normal respiration waveform can be acquired and the respiration rate of the subject can be accurately measured.
 〔項目5〕
 前記画像処理回路は、前記各分割領域のサイズを変更しながら、所定期間における各分割領域の輝度値の、少なくとも最大値、最小値および平均が所定の条件を満足するまで、前記複数の分割領域を設定する、項目2または3に記載の計測装置。
[Item 5]
The image processing circuit is configured to change the size of each divided region until the at least maximum value, minimum value, and average of luminance values of the divided regions in a predetermined period satisfy a predetermined condition. 4. The measuring device according to item 2 or 3, wherein
 項目5に記載の計測装置によると、適切な位置に複数の分割領域を設定することで、正常な呼吸波形が取得され、被験体の呼吸数を正確に計測することができる。 According to the measurement apparatus described in item 5, by setting a plurality of divided regions at appropriate positions, a normal respiration waveform can be acquired and the respiration rate of the subject can be accurately measured.
 〔項目6〕
 前記画像処理回路は、分割領域毎の前記呼吸波形のノイズを除去するローパスフィルタまたはフィルタバンクを有している、項目2から5のいずれかに記載の計測装置。
[Item 6]
The measurement apparatus according to any one of items 2 to 5, wherein the image processing circuit includes a low-pass filter or a filter bank that removes noise of the respiratory waveform for each divided region.
 項目6に記載の計測装置によると、呼吸波形からノイズを除去することができる。 According to the measuring device described in item 6, noise can be removed from the respiratory waveform.
 〔項目7〕 前記画像処理回路は、前記ローパスフィルタまたはフィルタバンクを通過した前記呼吸波形を数値微分することで、前記呼吸波形における時系列のn個(nは1以上の整数)の極小点を、呼吸の吸い込みまたは吐き出しの開始点を意味する前記呼吸起点の候補として特定する、項目6に記載の計測装置。 [Item 7] The image processing circuit numerically differentiates the respiratory waveform that has passed through the low-pass filter or filter bank, thereby obtaining n time-series minimum points (n is an integer of 1 or more) in the respiratory waveform. Item 7. The measuring device according to item 6, wherein the measuring device is specified as a candidate for the breathing start point, which means a start point of breathing in or breathing out.
 項目7に記載の計測装置によると、呼吸起点のDC成分の変動を受けにくい計測装置が提供される。 According to the measurement device described in item 7, a measurement device that is less susceptible to fluctuations in the DC component of the respiratory start point is provided.
 〔項目8〕
 前記画像処理回路は、前記呼吸起点のn個の候補のうちのi番目(iは1からnまでの整数)の第1候補と、前記第1候補よりも1つ前の極小点である第2候補とに着目し、
  前記第1および第2候補の極小点の間の極大点と、前記第1候補の極小点と、の間の輝度値の差分を示すテイル側振幅、
  前記極大点と前記第2候補の極小点との間の輝度値の差分を示すヘッド側振幅、
  および前記テイル側振幅と前記ヘッド側振幅との比率を示すヘッドテイル比を含む前記指標を用いて、前記第1候補が前記呼吸起点であるかどうかを判定する、項目7に記載の計測装置。
[Item 8]
The image processing circuit is an i-th (i is an integer from 1 to n) first candidate out of n candidates for the respiratory start point, and a first minimum point one prior to the first candidate. Focus on the two candidates,
A tail-side amplitude indicating a difference in luminance value between a maximum point between the first and second candidate minimum points and the first candidate minimum point;
A head-side amplitude indicating a difference in luminance value between the maximum point and the minimum point of the second candidate;
The measuring device according to item 7, wherein the first candidate is determined to be the respiratory start point using the index including a head tail ratio indicating a ratio between the tail side amplitude and the head side amplitude.
 項目8に記載の計測装置によると、3つの指標を用いて、呼吸起点の候補が呼吸起点であるかどうかをより正確に判定することができる。 According to the measurement device described in item 8, it is possible to more accurately determine whether or not the candidate for the respiratory start is the respiratory start using the three indicators.
 〔項目9〕
 前記画像処理回路は、前記テイル側振幅が第1しきい値以上であり、前記ヘッド側振幅が第2しきい値以上であり、かつ、前記ヘッドテイル比が略1に等しい場合、前記第1候補を前記呼吸起点と判定する、項目8に記載の計測装置。
[Item 9]
In the image processing circuit, when the tail side amplitude is greater than or equal to a first threshold value, the head side amplitude is greater than or equal to a second threshold value, and the head tail ratio is substantially equal to 1, Item 9. The measurement device according to Item 8, wherein a candidate is determined as the respiratory start point.
 項目9に記載の計測装置によると、3つの指標を用いて、呼吸起点の候補が呼吸起点であるかどうかをより正確に判定することができる。 According to the measurement device described in item 9, it is possible to more accurately determine whether or not the candidate for the respiratory start point is the respiratory start point using the three indicators.
 〔項目10〕
 前記画像処理回路は、前記呼吸波形の前記呼吸起点の候補に応じた数だけ、前記第1候補が前記呼吸起点であるかどうかを判定する、項目9に記載の計測装置。
[Item 10]
10. The measuring apparatus according to item 9, wherein the image processing circuit determines whether or not the first candidate is the respiration start point by a number corresponding to the respiration start point candidates of the respiration waveform.
 〔項目11〕
 前記画像処理回路は、前記ローパスフィルタまたはフィルタバンクを通過した前記呼吸波形を用いて、前記呼吸波形の中で最小となる輝度値を下限値として設定し、かつ、前記下限値に振幅加算値を加算して呼吸起点のしきい値を前記指標として算出し、
 前記呼吸起点のしきい値を基準として、前記呼吸起点を判定する、項目6に記載の計測装置。
[Item 11]
The image processing circuit uses the respiratory waveform that has passed through the low-pass filter or the filter bank, sets a minimum luminance value in the respiratory waveform as a lower limit value, and sets an amplitude addition value to the lower limit value. Add and calculate the breathing origin threshold as the indicator,
Item 7. The measuring device according to Item 6, wherein the breathing start point is determined with reference to the threshold value of the breathing start point.
 項目11に記載の計測装置によると、微小なノイズの影響を受けにくい計測装置が提供される。 According to the measurement device described in item 11, a measurement device that is not easily affected by minute noise is provided.
 〔項目12〕
 前記画像処理回路は、前記呼吸起点のしきい値を更新期間毎に更新する、項目11に記載の計測装置。
[Item 12]
The measurement apparatus according to item 11, wherein the image processing circuit updates a threshold value of the respiratory start point for each update period.
 項目12に記載の計測装置によると、微小なノイズの影響を受けにくい計測装置が提供される。 According to the measurement device described in item 12, a measurement device that is not easily affected by minute noise is provided.
〔項目13〕
 前記画像処理回路は、輝度値と前記呼吸起点のしきい値との差分の正負の符号が同一の方向に変化する前記呼吸波形上の隣接した2つの呼吸起点の間にある極小点を特定し、
 第1極小点と、前記第1極小点よりも時系列的に1つ前の第2極小点とに着目して、
  前記第1極および第2極小点の間の極大点と、前記第1極小点と、の間の輝度値の差分を示すテイル側振幅、
  前記極大点と前記第2極小点との間の輝度値の差分を示すヘッド側振幅、
  および前記テイル側振幅と前記ヘッド側振幅との比率を示すヘッドテイル比を含む前記指標を演算する、項目11または12に記載の計測装置。
[Item 13]
The image processing circuit identifies a minimum point between two adjacent respiratory start points on the respiratory waveform in which the sign of the difference between the luminance value and the threshold value of the respiratory start point changes in the same direction. ,
Paying attention to the first local minimum point and the second local minimum point in time series before the first local minimum point,
A tail-side amplitude indicating a difference in luminance value between a maximum point between the first and second minimum points and the first minimum point;
A head-side amplitude indicating a difference in luminance value between the maximum point and the second minimum point;
The measuring device according to item 11 or 12, wherein the index including a head tail ratio indicating a ratio between the tail side amplitude and the head side amplitude is calculated.
 〔項目14〕
 前記画像処理回路は、分割領域毎の前記呼吸波形および前記指標に基づいて前記複数の分割領域から分割領域を選択し、選択された分割領域の前記呼吸起点に基づいて前記被験体の呼吸に起因する生体活動を計測する、項目7から13のいずれかに記載の計測装置。
[Item 14]
The image processing circuit selects a divided region from the plurality of divided regions based on the respiratory waveform and the index for each divided region, and is caused by the subject's breathing based on the respiratory start point of the selected divided region. 14. The measuring device according to any one of items 7 to 13, which measures a biological activity to be performed.
 項目14に記載の計測装置によると、生体活動の計測に最適な分割領域を選択することができる。 According to the measurement device described in item 14, it is possible to select a divided region that is optimal for measurement of life activity.
 〔項目15〕
 前記画像処理回路は、所定期間にわたって前記ヘッドテイル比が略1となり、かつ、前記所定期間における前記テイル側振幅および前記ヘッド側振幅の平均値がそれぞれ大きいか、または分散がそれぞれ小さい分割領域を前記複数の分割領域から選択し、選択された分割領域の前記呼吸起点に基づいて前記被験体の呼吸に起因する生体活動を計測する、項目7から10、および13のいずれかに記載の計測装置。
[Item 15]
In the image processing circuit, the head tail ratio is approximately 1 over a predetermined period, and an average value of the tail side amplitude and the head side amplitude in the predetermined period is respectively large, or the divided regions having small dispersion are 14. The measuring device according to any one of items 7 to 10, and 13 selected from a plurality of divided regions and measuring a biological activity caused by the breathing of the subject based on the respiratory start point of the selected divided region.
 項目15に記載の計測装置によると、選択された分割領域の呼吸起点に基づいて被験体の呼吸に起因する生体活動を正確に計測することができる。 According to the measurement device described in item 15, it is possible to accurately measure the biological activity resulting from the breathing of the subject based on the breathing start point of the selected divided region.
 〔項目16〕
 前記画像処理回路は、所定期間にわたって前記ヘッドテイル比の平均値が第3しきい値以上になる分割領域の候補を前記複数の分割領域から選択し、
 前記分割領域の候補のうち、前記所定期間において前記テイル側振幅および前記ヘッド側振幅の平均値がそれぞれ最大となる分割領域の前記呼吸起点に基づいて前記被験体の呼吸に起因する生体活動を計測する、項目7から10、および13のいずれかに記載の計測装置。
[Item 16]
The image processing circuit selects, from the plurality of divided regions, a candidate for a divided region in which an average value of the head tail ratio is equal to or greater than a third threshold value over a predetermined period.
Of the candidates for the divided area, the biological activity caused by the breathing of the subject is measured based on the respiratory start point of the divided area where the average value of the tail-side amplitude and the head-side amplitude is maximized in the predetermined period. The measuring device according to any one of items 7 to 10, and 13.
 〔項目17〕
 前記画像処理回路は、過去のデータほど重みが小さくなる重み付けによって前記ヘッドテイル比の加重平均値を算出し、前記加重平均が前記第3しきい値以上になる前記分割領域の候補を選択する、項目16に記載の計測装置。
[Item 17]
The image processing circuit calculates a weighted average value of the head tail ratio by weighting that decreases in weight as past data is selected, and selects a candidate for the divided region in which the weighted average is greater than or equal to the third threshold value. Item 17. The measuring device according to Item 16.
 項目17に記載の計測装置によると、過去に比べて現在のデータをより重視した分割領域の候補の選択が可能になる。 According to the measurement device described in item 17, it is possible to select a candidate for a divided region that places more importance on current data than in the past.
 〔項目18〕
 前記被験体の呼吸に起因する生体活動の計測結果を表示する表示装置をさらに備え、
 前記表示装置は、前記被験体の呼吸数、前記呼吸数のトレンドを示す波形、および前記動画像を表示する、項目1から17のいずれかに記載の計測装置。
[Item 18]
Further comprising a display device for displaying a measurement result of the biological activity resulting from the breathing of the subject,
The measurement device according to any one of items 1 to 17, wherein the display device displays a respiratory rate of the subject, a waveform indicating a trend of the respiratory rate, and the moving image.
 項目18に記載の計測装置によると、オペレータや被験者は計測結果を表示装置上で確認することができる。 According to the measurement device described in item 18, the operator or the subject can check the measurement result on the display device.
 〔項目19〕
 光を放射する光源と、
 前記光を受けて動画像を生成する撮像装置と、
 前記動画像を利用して被験体の生体活動を計測する画像処理回路と
 を備えた計測システムであって、
 前記被験体の呼吸に伴う体動の発生位置に反射パターンを有する再帰性反射材が配置され、前記光源から前記被験体に向けて前記光が放射されたときにおいて、
 前記撮像装置は、前記再帰性反射材で反射された前記光を複数の時刻において受けて、時系列の複数のフレーム画像から構成される前記動画像を生成し、
 前記画像処理回路は、
  前記撮像装置から前記動画像を受け取り、前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定し、
  前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測する、計測システム。
[Item 19]
A light source that emits light;
An imaging device that receives the light and generates a moving image;
An image processing circuit for measuring a subject's biological activity using the moving image, and a measurement system comprising:
When a retroreflecting material having a reflection pattern is arranged at a position where a body movement accompanying breathing of the subject is arranged, and when the light is emitted from the light source toward the subject,
The imaging device receives the light reflected by the retroreflecting material at a plurality of times, and generates the moving image composed of a plurality of time-series frame images,
The image processing circuit includes:
The moving image is received from the imaging device, the coordinate position of the reflection pattern in at least one frame image of the plurality of frame images is calculated, and a plurality of divided regions are included in each frame image based on the coordinate position. Set to
In each of the plurality of divided regions, a respiration waveform indicating a change in luminance value over the plurality of frame images is generated, and a living body resulting from respiration of the subject based on the respiration waveform of each of the plurality of divided regions A measurement system that measures activities.
 項目19に記載の計測システムによると、生体活動の計測条件が周囲の環境の影響を受けにくい、呼吸に起因する生体活動のロバストな計測システムが提供される。 According to the measurement system described in Item 19, a robust measurement system for life activity caused by breathing is provided in which measurement conditions for life activity are not easily affected by the surrounding environment.
 〔項目20〕
 光を放射する光源と、
 前記光を受けて動画像を生成する撮像装置と、
 前記動画像を利用して被験体の生体活動を計測する画像処理回路と
 を備えた計測システムを用いて、前記被験体の呼吸に起因する生体活動を計測する計測方法であって、
 前記被験体の呼吸に伴う体動の発生位置に反射パターンを有する再帰性反射材を配置するステップと、
 前記光源が、前記光で前記被験体を照射するステップと、
 前記撮像装置が、前記再帰性反射材で反射された反射光を複数の時刻において受けて、時系列の複数のフレーム画像から構成される前記動画像を生成するステップと、
 前記画像処理回路が、前記撮像装置から前記動画像を受け取り、前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定するステップと、
 前記画像処理回路が、前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測するステップと、
を包含する、計測方法。
[Item 20]
A light source that emits light;
An imaging device that receives the light and generates a moving image;
A measurement method comprising: a measurement system comprising an image processing circuit for measuring a subject's life activity using the moving image; and a measurement method for measuring a life activity resulting from respiration of the subject,
Placing a retroreflective material having a reflection pattern at a position where body movement associated with breathing of the subject occurs; and
The light source irradiating the subject with the light;
The imaging device receives reflected light reflected by the retroreflecting material at a plurality of times, and generates the moving image composed of a plurality of time-series frame images;
The image processing circuit receives the moving image from the imaging device, calculates a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and sets a plurality of divided regions as the coordinate positions. Setting in each frame image based on,
The image processing circuit generates a respiratory waveform indicating a change in luminance value over the plurality of frame images in each of the plurality of divided regions, and the subject is based on the respiratory waveform of each of the plurality of divided regions. Measuring biological activity due to breathing of
A measurement method including
 項目20に記載の計測方法によると、生体活動の計測条件が周囲の環境の影響を受けにくい、呼吸に起因する生体活動のロバストな計測が可能になる。 According to the measurement method described in Item 20, it is possible to perform robust measurement of life activity caused by respiration, in which measurement conditions of life activity are not easily affected by the surrounding environment.
 〔項目21〕
 光を放射する光源と、
 前記光を受けて動画像を生成する撮像装置と、
 前記動画像を利用して被験体の生体活動を計測する画像処理回路と
 を備えた計測システムにおける前記画像処理回路によって実行されるコンピュータプログラムであって、
 前記被験体の呼吸に伴う体動の発生位置に、反射パターンを有する再帰性反射材が配置され、前記光源から前記被験体に向けて前記光が放射されたときにおいて、
 前記撮像装置によって生成された動画像を受け取るステップであって、前記再帰性反射材で反射された複数の時刻の前記光に基づく時系列の複数のフレーム画像から構成される前記動画像を受け取るステップと、
 前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定するステップと、
 前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測するステップと、
を包含する、コンピュータプログラム。
[Item 21]
A light source that emits light;
An imaging device that receives the light and generates a moving image;
A computer program executed by the image processing circuit in a measurement system comprising: an image processing circuit that measures a subject's biological activity using the moving image;
When a retroreflecting material having a reflection pattern is arranged at a position where body movement occurs due to breathing of the subject, and when the light is emitted from the light source toward the subject,
Receiving a moving image generated by the imaging device, the moving image including a plurality of time-series frame images based on the light at a plurality of times reflected by the retroreflecting material; When,
Calculating a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and setting a plurality of divided regions in each frame image based on the coordinate positions;
In each of the plurality of divided regions, a respiration waveform indicating a change in luminance value over the plurality of frame images is generated, and a living body resulting from respiration of the subject based on the respiration waveform of each of the plurality of divided regions Measuring activity,
Including a computer program.
 項目21に記載のコンピュータプログラムによると、生体活動の計測条件が周囲の環境の影響を受けにくい、呼吸に起因する生体活動のロバストな計測を可能にするコンピュータプログラムが提供される。 According to the computer program described in Item 21, there is provided a computer program that enables robust measurement of life activity caused by respiration, in which measurement conditions of life activity are not easily influenced by the surrounding environment.
 本発明は、被験体を撮影した動画像を解析して、被験体の生体活動、特に呼吸の数を非接触で計測する方法として利用することができる。また本発明は、そのような動画像の解析および生体活動の計測のための装置、システム、コンピュータプログラムとして利用することができる。 The present invention can be used as a method for analyzing a moving image obtained by photographing a subject and measuring the life activity of the subject, particularly the number of breaths, in a non-contact manner. The present invention can also be used as an apparatus, system, and computer program for analyzing such moving images and measuring life activity.
 1 被験者
 10 カメラ
 20 光源
 30 情報処理装置
 32 ディスプレイ
 40 再帰性反射材
 50 監視領域
 51 分割領域
 100 計測システム
 200 高反射領域
 301 CPU
 302 ROM
 303 RAM
 304 HDD
 305 I/F
 306 画像処理回路
 307 フィルタ
DESCRIPTION OF SYMBOLS 1 Test subject 10 Camera 20 Light source 30 Information processing apparatus 32 Display 40 Retroreflective material 50 Monitoring area 51 Divided area 100 Measurement system 200 High reflection area 301 CPU
302 ROM
303 RAM
304 HDD
305 I / F
306 Image processing circuit 307 Filter

Claims (6)

  1.  光源から放射される光を受けた撮像装置によって生成された被験体の動画像を利用して前記被験体の生体活動を計測する計測装置であって、
     前記動画像を受け取る入力インタフェースと、
     前記動画像を利用して被験体の生体活動を計測する画像処理回路と、
     を備え、
     前記動画像は、前記被験体の呼吸に伴う体動の発生位置に反射パターンを有する再帰性反射材が配置され、前記光源から前記被験体に向けて前記光が放射されたときに、複数の時刻において前記再帰性反射材で反射された前記光に基づく時系列の複数のフレーム画像から構成され、
     前記画像処理回路は、
      前記複数のフレーム画像のうち少なくとも1つのフレーム画像における前記反射パターンの座標位置を算出し、かつ、複数の分割領域を前記座標位置に基づいて各フレーム画像内に設定し、
      前記複数の分割領域の各々において、前記複数のフレーム画像にわたる輝度値の変化を示す呼吸波形を生成し、前記複数の分割領域の各々の前記呼吸波形に基づいて前記被験体の呼吸に起因する生体活動を計測する、計測装置。
    A measuring device that measures a subject's biological activity using a moving image of a subject generated by an imaging device that has received light emitted from a light source,
    An input interface for receiving the moving image;
    An image processing circuit for measuring the biological activity of the subject using the moving image;
    With
    In the moving image, a retroreflecting material having a reflection pattern is arranged at a position where a body movement accompanying breathing of the subject is arranged, and when the light is emitted from the light source toward the subject, a plurality of the moving images are provided. Consists of a plurality of time-series frame images based on the light reflected by the retroreflecting material at time,
    The image processing circuit includes:
    Calculating a coordinate position of the reflection pattern in at least one frame image of the plurality of frame images, and setting a plurality of divided regions in each frame image based on the coordinate position;
    In each of the plurality of divided regions, a respiration waveform indicating a change in luminance value over the plurality of frame images is generated, and a living body resulting from respiration of the subject based on the respiration waveform of each of the plurality of divided regions A measuring device that measures activity.
  2.  前記画像処理回路は、各分割領域の前記呼吸波形上の呼吸起点を特定するための指標を用いて前記被験体の呼吸に起因する生体活動を計測する、請求項1に記載の計測装置。 The measurement apparatus according to claim 1, wherein the image processing circuit measures a biological activity caused by respiration of the subject using an index for specifying a respiration start point on the respiration waveform of each divided region.
  3.  前記画像処理回路は、前記複数のフレーム画像のうち2つのフレーム画像の間の画像変化を検出し、前記画像変化を検出したフレーム画像に関する呼吸波形を、前記被験体の呼吸に起因する生体活動の計測には使用しない、請求項2に記載の計測装置。 The image processing circuit detects an image change between two frame images of the plurality of frame images, and generates a respiratory waveform related to the frame image from which the image change has been detected, as a result of the biological activity caused by the breathing of the subject. The measuring device according to claim 2, which is not used for measurement.
  4.  前記画像処理回路は、分割領域毎の前記呼吸波形のノイズを除去するローパスフィルタまたはフィルタバンクを有し、
     前記画像処理回路は、前記ローパスフィルタまたはフィルタバンクを通過した前記呼吸波形を数値微分することで、前記呼吸波形における時系列のn個(nは1以上の整数)の極小点を、呼吸の吸い込みまたは吐き出しの開始点を意味する前記呼吸起点の候補として特定する、請求項2または3に記載の計測装置。
    The image processing circuit has a low-pass filter or a filter bank that removes noise of the respiratory waveform for each divided region,
    The image processing circuit performs numerical differentiation on the respiration waveform that has passed through the low-pass filter or filter bank, thereby absorbing n time points (n is an integer equal to or greater than 1) in the respiration waveform. The measurement device according to claim 2 or 3, wherein the measurement device is specified as a candidate for the respiratory start point that means a start point of exhalation.
  5.  前記画像処理回路は、前記呼吸起点のn個の候補のうちのi番目(iは1からnまでの整数)の第1候補と、前記第1候補よりも1つ前の極小点である第2候補とに着目し、
      前記第1および第2候補の極小点の間の極大点と、前記第1候補の極小点と、の間の輝度値の差分を示すテイル側振幅、
      前記極大点と前記第2候補の極小点との間の輝度値の差分を示すヘッド側振幅、
      および前記テイル側振幅と前記ヘッド側振幅との比率を示すヘッドテイル比を含む前記指標を用いて、前記第1候補が前記呼吸起点であるかどうかを判定する、請求項4に記載の計測装置。
    The image processing circuit is an i-th (i is an integer from 1 to n) first candidate out of n candidates for the respiratory start point, and a first minimum point one prior to the first candidate. Focus on the two candidates,
    A tail-side amplitude indicating a difference in luminance value between a maximum point between the first and second candidate minimum points and the first candidate minimum point;
    A head-side amplitude indicating a difference in luminance value between the maximum point and the minimum point of the second candidate;
    The measurement apparatus according to claim 4, wherein the first candidate is determined to be the respiratory start point by using the index including a head tail ratio indicating a ratio between the tail side amplitude and the head side amplitude. .
  6.  前記画像処理回路は、所定期間にわたって前記ヘッドテイル比が略1となり、かつ、前記所定期間における前記テイル側振幅および前記ヘッド側振幅の平均値がそれぞれ大きいか、または分散がそれぞれ小さい分割領域を前記複数の分割領域から選択し、選択された分割領域の前記呼吸起点に基づいて前記被験体の呼吸に起因する生体活動を計測する、請求項5に記載の計測装置。 In the image processing circuit, the head tail ratio is approximately 1 over a predetermined period, and an average value of the tail side amplitude and the head side amplitude in the predetermined period is respectively large, or the divided regions having small dispersion are The measuring apparatus according to claim 5, wherein the measuring apparatus selects from a plurality of divided areas, and measures a biological activity caused by the breathing of the subject based on the respiratory start point of the selected divided areas.
PCT/JP2016/077391 2015-09-16 2016-09-16 Measurement device WO2017047734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015182737A JP2017055949A (en) 2015-09-16 2015-09-16 Measurement apparatus, measurement system, measurement method, and computer program
JP2015-182737 2015-09-16

Publications (1)

Publication Number Publication Date
WO2017047734A1 true WO2017047734A1 (en) 2017-03-23

Family

ID=58289498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077391 WO2017047734A1 (en) 2015-09-16 2016-09-16 Measurement device

Country Status (2)

Country Link
JP (1) JP2017055949A (en)
WO (1) WO2017047734A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114831356A (en) * 2022-07-05 2022-08-02 深圳市恒尔创科技有限公司 Electronic cigarette control method based on mobile terminal and related equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094184B2 (en) * 2018-09-03 2022-07-01 リンナイ株式会社 Monitoring device
JP7405527B2 (en) * 2019-07-12 2023-12-26 グローリー株式会社 Change timing detection device, change timing detection method, and change timing detection program
WO2022168246A1 (en) * 2021-02-05 2022-08-11 三菱電機株式会社 Biological information detection device and biological information detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276443A (en) * 1998-03-27 1999-10-12 Toshiba Corp Cared person observing device and method therefor
JP2006507088A (en) * 2002-11-25 2006-03-02 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド Method and system for monitoring a subject's respiratory activity
JP2008522522A (en) * 2004-11-30 2008-06-26 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ セント アンドリューズ Video fingerprint system, method, and computer program product
US20140334697A1 (en) * 2013-05-08 2014-11-13 Koninklijke Philips N.V. Device for obtaining a vital sign of a subject
JP2015523132A (en) * 2012-06-12 2015-08-13 コーニンクレッカ フィリップス エヌ ヴェ Camera vital signs measurement system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703049B2 (en) * 2001-07-17 2011-06-15 住友大阪セメント株式会社 Monitoring device
WO2014136027A1 (en) * 2013-03-06 2014-09-12 Koninklijke Philips N.V. System and method for determining vital sign information
US20140276104A1 (en) * 2013-03-14 2014-09-18 Nongjian Tao System and method for non-contact monitoring of physiological parameters
US20150073281A1 (en) * 2013-09-11 2015-03-12 Xerox Corporation Generating a flow-volume loop for respiratory function assessment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276443A (en) * 1998-03-27 1999-10-12 Toshiba Corp Cared person observing device and method therefor
JP2006507088A (en) * 2002-11-25 2006-03-02 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド Method and system for monitoring a subject's respiratory activity
JP2008522522A (en) * 2004-11-30 2008-06-26 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ セント アンドリューズ Video fingerprint system, method, and computer program product
JP2015523132A (en) * 2012-06-12 2015-08-13 コーニンクレッカ フィリップス エヌ ヴェ Camera vital signs measurement system
US20140334697A1 (en) * 2013-05-08 2014-11-13 Koninklijke Philips N.V. Device for obtaining a vital sign of a subject

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114831356A (en) * 2022-07-05 2022-08-02 深圳市恒尔创科技有限公司 Electronic cigarette control method based on mobile terminal and related equipment

Also Published As

Publication number Publication date
JP2017055949A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US20200260996A1 (en) Method and apparatus for processing a cyclic physiological signal
EP3057487B1 (en) Device and method for obtaining a vital sign of a subject
EP3373804B1 (en) Device, system and method for sensor position guidance
EP2560549B1 (en) Respiratory motion detection apparatus, method and computer program
CN105190691B (en) Equipment for obtaining the vital sign of object
EP2898477B1 (en) Motion robust vital signal monitoring
JP6521845B2 (en) Device and method for measuring periodic fluctuation linked to heart beat
WO2016006027A1 (en) Pulse wave detection method, pulse wave detection program, and pulse wave detection device
WO2017047734A1 (en) Measurement device
US20210153756A1 (en) Reliable acquisition of photoplethysmographic data
US20160310046A1 (en) Sleep monitoring system and method
JP2016193021A (en) Pulse wave detection device and pulse wave detection program
JP2016521411A (en) Head and eye tracking
JPWO2020054122A1 (en) Information processing equipment, programs and information processing methods
Wiede et al. Signal fusion based on intensity and motion variations for remote heart rate determination
JP2016214937A (en) Measuring system and computer program
JP6280650B2 (en) Measuring method and measuring system of life activity caused by breathing of subject
JP6002811B1 (en) Measuring system, measuring method of biological activity resulting from breathing of subject, and computer program
US20240127469A1 (en) Touchless volume waveform sampling to determine respiration rate
Nijholt Contactless respiration monitoring using a 3D camera system
CN116115214A (en) Respiration rate detection method and device, electronic equipment and storage medium
WO2016076009A1 (en) System for measuring biological activity due to breathing of subject and image processing device
CN117137454A (en) Biological information estimation device and biological information estimation method
JP2017123918A (en) Respiration monitoring device, respiratory rate measuring device, respiratory rate measuring method and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846605

Country of ref document: EP

Kind code of ref document: A1