WO2019098408A1 - Water meter to which flow path guidance and three-axis hall sensor are applied - Google Patents

Water meter to which flow path guidance and three-axis hall sensor are applied Download PDF

Info

Publication number
WO2019098408A1
WO2019098408A1 PCT/KR2017/012982 KR2017012982W WO2019098408A1 WO 2019098408 A1 WO2019098408 A1 WO 2019098408A1 KR 2017012982 W KR2017012982 W KR 2017012982W WO 2019098408 A1 WO2019098408 A1 WO 2019098408A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
housing
hole
water
flow
Prior art date
Application number
PCT/KR2017/012982
Other languages
French (fr)
Korean (ko)
Inventor
서명철
김정훈
김혜성
최고봉
서만제
박정옥
Original Assignee
부경수도 주식회사
서명철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경수도 주식회사, 서명철 filed Critical 부경수도 주식회사
Publication of WO2019098408A1 publication Critical patent/WO2019098408A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
    • G01F1/075Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission with magnetic or electromagnetic coupling to the indicating device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material

Definitions

  • the present invention relates to a water meter to which a flow path guide and a three-axis hall sensor are applied.
  • the present invention is characterized in that the flow of the impeller which is varied according to the flow rate or flow velocity of the object to be metered is detected through the triaxial Hall sensor and the impeller is calibrated by the flow change to measure the flow rate, And a meter capable of improving the accuracy of flow measurement.
  • the meter since the meter has a principle of measuring the flow rate by friction between the wing car and the fluid, when the flow rate of the fluid is less than a certain threshold value, the wing car may not rotate and the flow rate may not be quantified.
  • the present applicant proposes a new structure of the casing and the housing in order to reduce the error range with respect to the total amount of water used in the water meter for the same amount of water irrespective of the flow rate and flow rate of the water.
  • the present invention relates to a water meter having an effect that accuracy of flow measurement can be improved.
  • the present invention provides a water meter including a flow path guide and a three-axis hole sensor, the water meter comprising: a casing of a water meter; A housing (10) inserted into the casing (30) together with an impeller; A meter reading means (20) inserted into the housing (10) and measuring tap water introduced into the casing (30); An impeller 60 rotatably coupled to the inside of the housing 10; And a permanent magnet (M) coupled to an upper end of the impeller (60), wherein:
  • the water meter detects the flow of the impeller (60) due to the deterioration of the flow rate, and when the impeller (60) is sensed to flow, the water meter measures and corrects the number of rotations of the impeller (60).
  • the flow of the impeller which is changed according to the flow rate or the velocity of the flow to be metered, is sensed through the triaxial Hall sensor, By correcting and weighing, more accurate metering can be achieved.
  • FIG. 1 is a photograph (prior art) showing a casing, a meter reading member, and a housing for a meter reading member;
  • Fig. 3 is a side sectional view of the water surface area variable member of the present invention
  • Fig. 4 is a view showing a state in which the water surface area variable member is mounted as shown in Fig. 3,
  • FIG. 5 is a perspective view of the inlet mounting member 100. Fig.
  • FIG. 6 is a perspective view of an inlet mounting member and a flow area varying member
  • FIG. 7 is a perspective view of the members of FIG. 6,
  • FIG. 8 is a view for explaining fastening means for engaging an inlet mounting member and a flow area varying member
  • Fig. 9 is a cross-sectional view of Fig.
  • Fig. 10 is a view showing the lower part of the inlet mounting member as being cut for convenience; Fig. 10
  • Fig. 11 is a state diagram before mounting the inlet mounting member as shown in Fig. 3
  • 15 is a cross-sectional view of a water meter for performing a flow meter correction according to another embodiment
  • 16 is a perspective view of an impeller used in a water meter according to another embodiment
  • 17 is a cross-sectional view of an impeller used in a water meter according to another embodiment.
  • the present invention relates to a water meter to which a flow path guide and a three-axis hall sensor are applied.
  • the casing (30) is a metallic outer wall of a general water meter, which is an inlet mounting member (100) formed in the shape of a pipe to be mounted in the hole (32) at the inlet (31) side of the casing (30); A flowable area variable member (200) mounted on the inside of the inlet mounting member (100) and having a cross section gradually increasing from one end to the other end; Wherein the shape of the bottom surface portion 250 of the water surface area changeable member 200 is formed as a part of a circle cut out in a fan shape so that the drawn water is deflected leftward or rightward with respect to the drawing direction.
  • the shape of the bottom surface portion 250 of the flowable area variable member is formed in a shape of a part of a circle cut out in a fan shape,
  • the protrusion-type fastening means 260 and 261 are respectively formed on the body of the water surface area changeable member 200 and corresponding to the receiving member 100 in the form of a groove for receiving the fastening means 260 and 261, (110, 142) are formed.
  • a plurality of holes are formed in the side portion 120 of the inlet mounting member, and a plurality of holes are formed in the lower portion 140 of the inlet mounting member so as to filter foreign substances in tap water.
  • FIG. 1 is a photograph showing a casing, a meter reading member and a housing for a meter reading member
  • Fig. 2 is a photograph of a typical entrance portion of the casing
  • Fig. 3 is a side sectional view with the water surface area variable member of the present invention mounted
  • FIG. 5 is a perspective view of the inlet mounting member 100
  • FIG. 6 is a perspective view of the inlet mounting member and the flow area varying member in a state in which they are viewed from the same direction as FIG.
  • Fig. 7 is a perspective view showing the members of Fig. 6,
  • Fig. 8 is a view for explaining fastening means for joining the inlet mounting member and the flow area varying member
  • Fig. 9 is a view from a different angle
  • FIG. 11 is a view showing a state before the inlet mounting member is mounted as shown in FIG. 3
  • FIG. 12 is a view showing a state before the inlet mounting member is mounted, Strabismus A.
  • Figures 1 and 2 illustrate a conventional water metering device.
  • FIG. 1 there is shown a conventional water meter.
  • the water meter is provided with a casing 30 including the water content meter 20 therein.
  • the meter probe 20 The housing 10 is received in the casing and various gear structures (mechanical type) are mounted on the far right side to check the flow rate of the tap water.
  • various gear structures mechanical type
  • a meter reading member 20 equipped with a structure (electronic type) for electronically measuring a flow rate is shown.
  • the impeller is connected to the gear structure of the meter reading member 20 to measure the flow rate of the tap water or the impeller (not shown)
  • the magnetic force is applied to the meter 20 to measure the flow rate of the tap water.
  • Such a second hole is slightly eccentric to one side as in the directions of F1 and F2, As shown in Fig.
  • the shape of the hole at the inlet is not formed so that tap water can rotate in one direction, but the shape of the hole at the inlet is not formed so that the tap water can rotate in one direction, And the left and right are symmetrically formed like a circular or elliptical shape.
  • the tap water passing through the inlet portion can not pass naturally through the second hole 15 of the housing when colliding with the housing 10 of Fig. 1, and this has the problem of hindering precise measurement of water usage I could not.
  • the water surface area variable member 200 is mounted so that water passing through the inside of the inlet portion 31 is naturally drawn into the second hole 15 of the housing.
  • variable area member 200 (FIG. 6) may be difficult to attach to the inlet portion 31, the variable area member 200 is fastened to the inlet fitting member 100 shown in FIG. 6, And then inserted into the inside of the inlet portion 31, as shown in FIG.
  • FIG. 3 shows a state in which the flow area varying member 200 and the inlet mounting member 100 are mounted on the inlet 31 in the above-described manner.
  • FIG. 5 is a view showing the water surface area variable member 200 and the inlet mounting member 100 in different directions in a combined state. 12 shows a perspective view of the water surface area changeable member 200.
  • the thickness of the water surface area variable member 200 is relatively thin as t, and its thickness gradually increases (the shape can be grasped in FIG. 6).
  • the portion of the thickness t corresponds to the hole portion shown in Fig. 7, that is, the corresponding portion mounted on one inlet portion of the inlet mounting member 100, and the opposite portion thereof is located near the lower portion 140 of the inlet mounting member 100 , Thus inducing the tap to pass through only the area of the sector.
  • FIG 4 is a schematic view of the inlet portion seen from the front of the inlet portion.
  • the direction of the water is induced to pass through the quarter eccentric 50 of 1/4 of the size of the water.
  • variable flow area member 200 will be described in more detail.
  • the thickness of one side is relatively thin and gradually increases toward the other side.
  • the inner surface 220 is a portion directly contacting the main stream of the incoming water, which is processed to a curved surface to minimize the pressure loss of the water.
  • the shape of the bottom surface portion 250 of the flow area varying member is formed as a part of a circle cut out in a fan shape.
  • protrusion-type fastening means 260 and 261 are formed on the body of the water surface area variable member 200, respectively, as shown in FIG. 8
  • accommodating portions 110 and 142 are formed in the body of the inlet mounting member 100 in the form of a groove for accommodating the fastening means 260 and 261 corresponding thereto.
  • the coupling means and the groove of the receiving portion can be coupled to each other to couple the connecting portion with the variable area member and the inlet fitting member.
  • FIG. 9 is a view taken in a direction different from FIG. 8.
  • FIG. 10 is a view showing a lower portion 140 of the inlet mounting member for convenience of illustration and showing a receiving portion for receiving the fastening means.
  • S in Fig. 11 shows a space in which the inlet mounting member and the flow area varying member are mounted.
  • the side of the inlet mounting member is shown as being formed with a hole, there may be no hole in this portion, and a fine hole is formed in the side portion 120 so that the inlet mounting member can act as a filter, Needless to say, fine holes (not shown) may also be formed in the lower portion 140 of the member. In order to act as such a filter, it is necessary to periodically replace the inlet mounting member periodically.
  • a flow area variable member for guiding the amount of water flow to be eccentric in one direction is provided at the inlet of the water meter, thereby inducing the flow channel of the meter to be effectively turned in one direction to improve the measurement accuracy of the flow rate, It is advantageous to contribute to prevention of frost wave in the winter meter by using a material having a low coefficient of thermal conductivity and a variable area member.
  • the inlet fitting member 100 and the flowable area varying member 200 are mounted on the inlet 31 of the casing 30 and at the same time, A predetermined error range is generated because the number of revolutions of the impeller varies due to the flow rate depending on the amount and intensity of water used.
  • the present invention proposes a modified housing 10 as follows.
  • the impeller slightly cuts off the lower portion of the blade portion of the impeller, &Quot; as shown in FIG.
  • FIG. 13 is a view showing a housing of a water meter to which a flow path guide and a three-axis hall sensor according to the present invention are applied
  • FIG. 14 is a view showing a housing of a water meter, .
  • the housing 10 mainly includes an upper housing 11 and a lower housing 13.
  • the upper housing 11 receives the above-described meter reading member 20, and the upper side is configured to cover the cover.
  • the upper housing 11 includes a first upper housing 11a and a second upper housing 11b having a smaller diameter than the first upper housing 11a and extending in the lower direction.
  • a step is formed along the inner diameter of the inner surface of the housing 11a so that the O-ring can be seated.
  • the lower housing 13 can be coupled to the lower side of the second upper housing 11b of the upper housing 11.
  • the lower housing 13 includes a first lower housing 13a directly connected to a lower side of the second upper housing 11b and a second lower housing 13b having a smaller diameter than the first lower housing 13a, And a housing 15a.
  • first holes 13aa are arranged at regular intervals, and the first holes 13aa are formed to have an angle so as to have predetermined directionality.
  • first lower housing 13a may be further extended to extend vertically from a lower side to a predetermined height and vertically extend from a vertically extended side to an inner side by a predetermined angle .
  • the diameter of the first lower housing 13a decreases toward the upper direction.
  • the first hole 13aa may be formed in an inclined region of the first lower housing 13a.
  • the first hole 13aa is not formed in the vertically extending first lower housing 13a, but is spaced apart from the second hole 15 formed in the second lower housing 15a, which will be described later, Thereby allowing water to flow into the lower housing 13 at a uniform speed when the water flows in and is discharged.
  • the following experimental examples will be referred to.
  • the second lower housing 15a is formed with a second hole 15 as described above and the second hole 15 is also formed to have a predetermined angle and is formed along the outer circumference of the second lower housing 15a A plurality is arranged at regular intervals.
  • the second hole 15 may have the same height as that of the second lower housing 15a, but may have a height smaller than the height of the second lower housing 15a.
  • the first holes 13aa and the second holes 15 are all formed to open in any direction other than the direction in which water is introduced.
  • the uppermost surface direction of the first lower housing 13a is formed to be open, and the second hole 15 is formed such that the lowermost direction of the second lower housing 15a is opened do.
  • the open area may be partially blocked by being coupled with the upper housing 11.
  • the second hole 15 when the housing contacts the inner surface of the casing 30, Some areas may be clogged,
  • first hole 13aa and the second hole 15 have mutually opposite directions, thereby facilitating the inflow and outflow of water.
  • the second holes 15 are angled so as to have the same direction as the direction of rotation of the impeller installed in the lower housing 13, and the first holes 13aa are formed in the lower housing 13, And can be formed in the opposite direction to the second hole 15 described above.
  • the second hole 15 is formed by a total of 12 holes due to the above-mentioned ratio and structure.
  • only six holes can be used by blocking six holes with epoxy. This is advantageous to reduce the rotational error range of the impeller as compared to the twelfth embodiment, as described in the experimental example below.
  • the rubber packing is formed in the form of an O-ring and can be fitted on the outer surface of each of the upper housing 10 and the lower housing 13 one by one.
  • the first upper housing 11 and the second upper housing 12 are separated from each other, and the first lower housing 13a and the second lower housing 15a are separated from each other,
  • the inflowing tap water can not flow into the second hole 15 and is stagnant and flows upward into the outside of the housing ≪ / RTI >
  • a flow bolt may be fastened to the second hole 15 formed in the lower housing 13. This flow bolt functions to open and close the second hole 15. The degree of engagement depends on the expertise of the operator installing the water meter on the site based on the flow rate and flow rate of the actual installation site.
  • the flow bolt may be fastened to the opposite lower side of the second lower housing 15a of the second hole 15, wherein the flow bolt may be composed of a headless bolt (such as a stud bolt) have.
  • a headless bolt such as a stud bolt
  • the space between the housing and the casing is not generated, it is possible to overcome the problem caused by the inflow of the tap water described above, and to overcome the above-mentioned problem, There is an advantage that the degree of blocking the hole 15 can be freely adjusted from the fully closed state to the fully opened state.
  • a starter is constituted.
  • Such a starting needle generally functions to detect leakage of water even when there is no influx of tap water
  • a conventional starter is formed in the shape of a star. Although all of the conventional starting needles are not of the above-mentioned type, a common plane area occupies a large portion.
  • the starting needle according to the present invention minimizes the surface area and forms a starting needle in the form of *. Thereby, it has a remarkable effect that it is possible to increase the accuracy of detecting the rotation of the starting needle through the optical sensor.
  • the Applicant has conducted the following experiment to derive the optimum structure of the housing.
  • the experiment is carried out by using a water meter having a housing structure for a water meter according to the present invention having the above-described structure, and an experiment method for measuring the number of revolutions of an impeller configured in a conventional water meter.
  • the experiment is performed for each sample (experimental group) by the flow rate according to Q1, Q2, and Q3, and the experiment is performed plural times for each flow rate.
  • Q1, Q2 and Q3 are in accordance with the International Organization for Legal Metrology (OIML)
  • the water meter according to the present invention should be able to meet the International Organization of Legal Metrology (OIML) standard as the water meter is defined to conform to the international statutory measuring instrument standard.
  • OIML International Organization of Legal Metrology
  • the maximum tolerance in the high flow range (Q2 ⁇ Q ⁇ Q4) is ⁇ 2% for temperatures between 0.1 and 30 °C, ⁇ 3% for temperatures above 30 °C,
  • the maximum allowable error in the flow rate range (Q1 ⁇ Q ⁇ Q2) is specified to be ⁇ 5% irrespective of the temperature.
  • the same flow rate was measured at the same flow rate, regardless of the high flow rate range and the low flow rate range The error range is reduced as much as possible.
  • Experimental Example 1 shows the structure according to the present invention described above in which the second hole 15 formed in the housing 10 is closed like the conventional product (2 samples) and opened (1 sample) Experiments were carried out by evaluating the number of revolutions of the impeller and evaluating the error range for each of Q1, Q2 and Q3.
  • Q1 5L
  • Q2 5L
  • Q3 the use of water and 100L of
  • Q1 is using the pressure of 0.016m 3 / h and
  • Q2 is and using the pressure of 0.0256m 3 / h
  • Q3 is 1.6m 3 / h. < / RTI >
  • the calculation of the error range is based on the above-mentioned pressure of 5L or 100L, the number of revolutions of the impeller should be Q1: 720, Q2: 740, Q3: Was calculated with respect to the reference rotation speed.
  • Sample 1-4-1 Sample 1-4-2 Fourth Q1 Q2 Q3 Q1 Q2 Q3 693 769 15352 3 30 14794 747 754 15798 0 27 15246 704 725 14594 15 29 15648 error range 4% 4% 4% - - 3%
  • Sample 1-4-2-1 Sample use Turn 1 time Episode 2 3rd time Seventh Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 699 715 15623 754 718 15490 698 762 15396 715 776 15582 745 749 15460 731 719 15722 765 742 15655 731 714 15496 726 717 14747 error range 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%
  • Samples 1-4-2-1 Samples 1-4-2 of the blade structure of the impeller
  • the applicant of the present invention adjusts the number of the second holes 15 to further reduce the error range.
  • This experiment was performed five times in total for a sample having 12 holes of the second hole 15 having the structure of the housing 10 according to the present invention, and the error range was calculated by repeating the experiment three times for each number of times .
  • Sample 1-4-2-1-1 Sample use Turn 1 time Episode 2 3rd time 4 times 5 times 8th car Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 701 719 14745 739 720 14735 699 762 14859 709 758 15622 738 742 15425 735 745 15655 715 725 14795 704 724 14923 715 736 15577 732 719 15441 712 760 15425 708 721 14856 719 758 15656 737 727 14958 729 758 15655 error range 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%
  • Samples 1-4-2-1-1 Samples 1-4-2-1 in which the number of the second holes is 12
  • Samples 1-4-2-1-2 Samples formed with 8 holes in the number of the second holes in the samples 1-4-2-1
  • the optimized structure of the housing 10 opens the lower direction of the second hole 15, and the number of the second holes 15 is 6, wherein the ratio of the second holes 15 is a The angle of 60 ° and the angle of b ° of 40 °, resulting in a ratio of a ': a of 5: 1.
  • Samples 1-4-2-1-3 Samples 1-4-2-1 in which the number of the second holes is six
  • the applicant of the present invention has been made up of the above-mentioned conditions according to the present invention, in which six of the 12 holes of the second hole 15 are closed to form six holes (1-4-2-1-3 sample)
  • the experiment as shown in Table 12 was performed. Respectively.
  • the second hole 15 formed on the lower side of the housing 10 is composed of 8 or 6 holes having a predetermined distance by blocking a certain number of holes in 12 holes, It is confirmed that the error range, which is composed of 8 or 6 intervals, does not affect the error range.
  • the flow rate measured by the meter reading unit 20 based on the number of revolutions of the impeller according to the error range exists The actual flow rate.
  • the water meter includes a casing 30 having an inlet 31 and an outlet 38 to which water pipes are connected, A housing 10 provided in the casing 30; an impeller 60 rotatably coupled to the inside of the housing 10; a permanent magnet M coupled to an upper end of the impeller 60; And a meter reading means 20 provided on the upper surface of the housing 10 and having a sensing sensor 20a for detecting the rotation of the permanent magnet M on a lower side thereof.
  • a sealing member 70 coupled to the casing 30 to seal the upper opening of the casing 30 according to design conditions.
  • the sealing member 70 is screwed to the upper circumferential portion of the casing 30 and the center of the sealing member 70 is fixed to the center through the inspecting means 20.
  • An inner wall for covering the inspecting means 20 is formed,
  • the sealing member (70) is constituted by a cover covering the inspection means (20).
  • the sealing member 70 is pressed so as to be in close contact with the upper surface of the housing 10 and seals the gap between the casing 30 and the meter reading means 20, To the outside.
  • the sealing member 70 may be screwed to the casing 30 to cover the meter reading means 20 as shown in the figure, but it may be formed in a simple plate shape as the casing 30 or the first housing 11 And may be configured to be coupled to and cover the inner diameter of the upper housing 11a.
  • the sensing means 20 includes a sensing sensor 20a for sensing the rotation of the permanent magnet M and a sensor for sensing the rotation speed of the impeller 60 by receiving a signal from the sensing sensor 20a, (See the dotted line in Fig. 15) connected to the control means and the detection sensor 20a is connected to the insertion groove 21c of the auxiliary inspection means 21 And is inserted into the casing 30 for insertion.
  • the detection sensor 20a is configured to perform the function of a three-axis Hall sensor. Accordingly, the x-axis and y-axis (90 ° phase difference, n / s pole magnetic field sensing of the impeller 60) and the z-axis (upward and downward flow) of the permanent magnet M can be sensed.
  • the detection sensor 20a senses a change in the flow of the permanent magnet M and specifically detects the height of the permanent magnet M so that the permanent magnet M can move upward and downward As shown in FIG.
  • control means 52 included in the meter reading means 20 or allow the meter reading means 20 to communicate with the external device, Time
  • the flow change of the permanent magnet M means that when the impeller 60 is raised due to the friction of the impeller 60 depending on the flow rate or the velocity, the permanent magnet M is also heard, Change. Therefore, a change in the flow of the permanent magnet M can be sensed by sensing the distance from the sensing sensor 20a to the permanent magnet M spaced apart.
  • the correction is based on the number of revolutions of the actual permanent magnet M sensed by the sensor 20a and the flow change sensed by the sensor 20a,
  • the actual impeller 60 is compared with the rotation value set to rotate with respect to a specific flow rate.
  • the measured impeller 60 is metered and displayed by the set rotation value.
  • a sensor for determining the flow rate or the flow velocity may be further included.
  • a rotation value of 100 revolutions must be obtained through the above-described correction.
  • the revolving revolutions are different within a specific error range such as 95 or 105 revolutions, And outputs it through the display means.
  • the set rotation value may be stored in advance through the control means, and the control means may further include a comparison module or a correction module so as to enable the function for comparison and correction of information.
  • the lower housing 13 is formed in a cylindrical shape with an open upper surface and a plurality of first holes 13aa and a second hole 15 formed on the circumferential surface of the lower housing 13, And an auxiliary inspection means 21 having a coupling groove 21a concaved upward on the lower side thereof.
  • the lower housing 13 is provided with a support shaft 15c protruding upward and the first hole 13aa and the second hole 15 are formed in the lower housing 13 in the circumferential direction .
  • An insertion groove 22c for inserting the detection sensor 20a is formed at the center of the upper surface of the auxiliary reading means 21 in a downward direction.
  • the impeller 60 includes a support cylinder 61 extending upward and downward and having an open upper surface, a plurality of blades 62 extending in the radial direction at the periphery of the support cylinder 61, And a rotating shaft 63 extending upward from the inner bottom surface of the supporting cylinder 61.
  • a coupling hole 61a into which the support shaft 15c is inserted is formed at the lower end of the support cylinder 61.
  • the outer diameter of the rotary shaft 63 is smaller than the inner diameter of the support cylinder 61 so that a gap G is formed between the outer circumferential surface of the rotary shaft 63 and the inner circumferential surface of the support cylinder 61.
  • an extension bar 63a extending upward is provided at an upper end of the rotary shaft 63.
  • the permanent magnet M is cylindrical and extends in the vertical direction and has a through hole 64 formed at the center thereof and is fitted to the outer side of the upper end of the rotary shaft 63, that is, the outer side of the extension bar 63a .
  • the length of the extension bar 63a in the up and down direction is longer than the length of the permanent magnet M in the vertical direction.
  • the extension bar 63a is inserted into and supported by the support tube body 21b formed in the concave upward direction from the upper surface of the coupling groove 21a.
  • the water meter to which the three-axis hall sensor thus configured is applied is characterized in that the impeller (60) includes a support cylinder (61) whose upper surface is open and which extends in the vertical direction, A plurality of blades 62 and a rotating shaft 63 extending upward from an inner bottom surface of the support cylinder 61.
  • the permanent magnet M extends vertically and has a through hole 64 at the center, And is engaged with the upper end of the upper end of the rotating shaft (63).
  • the blade 62 may also be formed by cutting a small portion of the lower portion of the blade 62 so that the lower end of the blade 62 of the impeller 60 is & ≪ / RTI >
  • the impeller 60 when the impeller 60 is rotated at a high speed, the permanent magnet M can be prevented from slipping, and the diameter of the rotation shaft 63 can be reduced, The flow of tap water passing through the inside of the rotating shaft 63 minimizes the flow of the rotating shaft 63 and the permanent magnet M so that an error is prevented from occurring when the rotation of the permanent magnet M is measured by the detection sensor 20a There is an advantage to be able to do.
  • the outer diameter of the rotating shaft 63 is smaller than the inner diameter of the supporting cylinder 61 so that a gap G is formed between the outer circumferential surface of the rotating shaft 63 and the inner circumferential surface of the supporting cylinder 61,
  • the vibration generated in the blade 62 is transmitted to the permanent magnet M through the rotary shaft 63.
  • the vibration of the permanent magnet M is transmitted to the permanent magnet M through the rotary shaft 63, And it is possible to more effectively prevent an error from occurring when the rotation of the permanent magnet M is measured by the detection sensor 20a.
  • the gap G formed between the outer circumferential surface of the rotary shaft 63 and the inner circumferential surface of the support cylinder 61 is opened in the present embodiment.
  • the rotary shaft 63 It is also possible to seal the inlet portion of the gap G by using the elastic ring body 65 fitted to the outside of the gap G.
  • the elastic ring body 65 is made of an elastic rubber material and is fitted to the outer side of the rotation shaft 63 so that the outer circumferential surface thereof is in close contact with the inner circumferential surface of the support cylinder 61, Thereby sealing the portion.
  • the elastic ring body 65 is made of an elastic rubber material and functions as a damper for absorbing vibration when the elastic ring body 65 is appropriately compressed and expanded when vibration is generated in the blade 62 It is possible to more effectively prevent the vibration of the blade 62 from being transmitted to the rotary shaft 63 through the elastic ring body 65.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The present invention relates to a water meter to which flow path guidance and a three-axis hall sensor are applied. Particularly, the present invention relates to a water meter comprising a housing (10), a reading member (20) and a casing (30), wherein an entrance-mounted member (100) is mounted into an opening (32) of an entrance part (31) of the casing (30) for the purpose of flow path guidance, and an eccentric quarter (31a) is formed at an end portion of the entrance part (31) that leads to the inside of the casing (30), such that the flow rate of water flowing into the casing (30) is always constant, and the measurement of a hole is designed such that the rotation speed of an impeller mounted in the housing (10) is constant even if the flow velocity of the water flowing in changes, such that the accuracy of flow rate measurement can be enhanced. Further, the present invention relates to a water meter which detects, through a three-axis hall sensor, the movement of the impeller that changes according to the level of flow velocity or flow rate to be metered, and performs metering by making a correction corresponding to the level of change in the movement of the impeller, thereby enabling more precise water metering, and providing enhanced accuracy of flow rate measurement.

Description

유로 유도 및 3축 홀 센서가 적용된 수도계량기Water meter with flow guide and 3-axis Hall sensor
본 발명은 유로 유도 및 3축 홀 센서가 적용된 수도계량기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a water meter to which a flow path guide and a three-axis hall sensor are applied.
주요한 특징점으로, 본 발명은 계량의 대상이 되는 유량 또는 유속의 세기에 따라 변화되는 임펠러의 유동을 3축 홀 센서를 통해 감지하여, 임펠러가 유동변화된 만큼 보정하여 계량함으로써, 보다 정밀한 수도계량이 가능한, 유량 계측의 정확도가 향상될 수 있는 효과를 갖는 수도계량기에 관한 것이다.The present invention is characterized in that the flow of the impeller which is varied according to the flow rate or flow velocity of the object to be metered is detected through the triaxial Hall sensor and the impeller is calibrated by the flow change to measure the flow rate, And a meter capable of improving the accuracy of flow measurement.
유체의 유동량을 측정하는 계량기(計量器)이다..It is a meter that measures the fluid flow.
그런데 상기한 계량기는 날개차와 유체의 마찰을 이용해 유량을 측정하는 원리를 가지는 것이므로, 유체의 통과 유량이 어느 임계값 이하일 경우 날개차가 회전하지 않아 유량을 계량할 수 없는 경우가 있다.However, since the meter has a principle of measuring the flow rate by friction between the wing car and the fluid, when the flow rate of the fluid is less than a certain threshold value, the wing car may not rotate and the flow rate may not be quantified.
상기한 이유로 검침되지 않고 버려지는 수량이, 우리나라의 경우 정상 검침 수량의 10% 정도에 이른다. 이와 같이 검침되지 않고 버려지는 물은 수자원의 낭비 요인임은 물론, 막대한 세수 손실로 이어진다. For the reasons mentioned above, the amount of water that is discarded without being inspected reaches about 10% of the normal inspection quantity in Korea. Water that is discarded as such is not a waste of water resources, but also leads to massive loss of tax revenue.
이에 따라, 본 출원인은 물의 유입되는 양과 유속에 관계없이 동일한 물의 양에 대해서는 수도계량기의 수도 사용량의 적산에 대해 오차범위가 감소될 수 있도록 하기 위하여 케이싱과 하우징의 구조를 새롭게 제안하고자 한다.Accordingly, the present applicant proposes a new structure of the casing and the housing in order to reduce the error range with respect to the total amount of water used in the water meter for the same amount of water irrespective of the flow rate and flow rate of the water.
본 발명의 목적은, 계량의 대상이 되는 유량 또는 유속의 세기에 따라 변화되는 임펠러의 유동을 3축 홀 센서를 통해 감지하여, 임펠러가 유동변화된 만큼 보정하여 계량함으로써, 보다 정밀한 수도계량이 가능한, 유량 계측의 정확도가 향상될 수 있는 효과를 갖는 수도계량기에 관한 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a three-axis hall sensor for detecting a flow of an impeller which varies depending on a flow rate or a velocity of an object to be metered through a triaxial Hall sensor, The present invention relates to a water meter having an effect that accuracy of flow measurement can be improved.
상술된 목적을 달성하기 위한 본 발명에 따른 유로 유도 및 3축 홀 센서가 적용된 수도계량기는, 수도계량기의 케이싱(30); 상기 케이싱(30)에 임펠러와 함께 삽입된 하우징(10); 상기 하우징(10)에 삽입되어 케이싱(30)으로 유입된 수돗물을 계량하는 검침수단(20); 상기 하우징(10)의 내부에 회전가능하게 결합된 임펠러(60); 및 상기 임펠러(60)의 상단에 결합된 영구자석(M);을 포함하는 수도계량기에 있어서,In order to accomplish the above object, the present invention provides a water meter including a flow path guide and a three-axis hole sensor, the water meter comprising: a casing of a water meter; A housing (10) inserted into the casing (30) together with an impeller; A meter reading means (20) inserted into the housing (10) and measuring tap water introduced into the casing (30); An impeller 60 rotatably coupled to the inside of the housing 10; And a permanent magnet (M) coupled to an upper end of the impeller (60), wherein:
상기 수도계량기는 상기 임펠러(60)가 유량의 세짐으로 인해 유동되는 것을 감지하고, 임펠러(60)가 유동된 것이 감지되면, 임펠러(60)의 회전수를 보정하여 계량하는 것을 주요 특징으로 한다.The water meter detects the flow of the impeller (60) due to the deterioration of the flow rate, and when the impeller (60) is sensed to flow, the water meter measures and corrects the number of rotations of the impeller (60).
본 발명에 따른 유로 유도 및 3축 홀 센서가 적용된 수도계량기에 의하면, 계량의 대상이 되는 유량 또는 유속의 세기에 따라 변화되는 임펠러의 유동을 3축 홀 센서를 통해 감지하여, 임펠러가 유동변화된 만큼 보정하여 계량함으로써, 보다 정밀한 수도계량이 가능한 효과를 보유한다.According to the water meter and the tap water meter to which the three-axis hall sensor according to the present invention is applied, the flow of the impeller, which is changed according to the flow rate or the velocity of the flow to be metered, is sensed through the triaxial Hall sensor, By correcting and weighing, more accurate metering can be achieved.
도 1은 케이싱, 검침부재 및 검침부재용 하우징을 표현한 사진(종래기술)1 is a photograph (prior art) showing a casing, a meter reading member, and a housing for a meter reading member;
도 2는 케이싱의 통상적인 입구부분을 촬영한 사진(종래기술)2 is a photograph (conventional technology) of a typical entrance portion of the casing taken;
도 3은 본 발명의 유수면적 가변부재를 장착한 측단면도Fig. 3 is a side sectional view of the water surface area variable member of the present invention
도 4는 도 3과 같이 유수면적가변부재를 장착한 상태에서 도 2와 같은 방향에서 바라본 상태도Fig. 4 is a view showing a state in which the water surface area variable member is mounted as shown in Fig. 3,
도 5는 입구장착부재(100)의 사시도5 is a perspective view of the inlet mounting member 100. Fig.
도 6은 입구장착부재 및 유수면적가변부재의 결합 직전의 사시도6 is a perspective view of an inlet mounting member and a flow area varying member,
도 7은 도 6의 부재들을 결합한 사시도FIG. 7 is a perspective view of the members of FIG. 6,
도 8은 입구장착부재 및 유수면적가변부재의 결합을 위한 체결수단을 설명하기 위한 도면8 is a view for explaining fastening means for engaging an inlet mounting member and a flow area varying member;
도 9는 도 8을 다른 각도에서 바라본 도면Fig. 9 is a cross-sectional view of Fig.
도 10은 입구장착부재의 하부를 편의상 절단하여 도시한 그림으로서 체결수단을 수용하는 수용부를 도시한 도면Fig. 10 is a view showing the lower part of the inlet mounting member as being cut for convenience; Fig. 10
도 11은 도 3과 같이 입구장착부재를 장착하기 전의 상태도Fig. 11 is a state diagram before mounting the inlet mounting member as shown in Fig. 3
도 12는 유수면적 가변부재의 사시도12 is a perspective view of a water surface area variable member
도 13은 하우징의 사시도13 is a perspective view of the housing,
도 14는 하부 하우징를 하부방향에서 바라본 단면도14 is a sectional view of the lower housing viewed from the lower direction
도 15는 다른 실시형태에 따라서 유량 계량의 보정을 수행하기 위한 수도계량기의 단면도15 is a cross-sectional view of a water meter for performing a flow meter correction according to another embodiment
도 16은 다른 실시형태에 따른 수도계량기에 사용되는 임펠러의 사시도16 is a perspective view of an impeller used in a water meter according to another embodiment;
도 17은 다른 실시형태에 따른 수도계량기에 사용되는 임펠러의 단면도이다.17 is a cross-sectional view of an impeller used in a water meter according to another embodiment.
본 발명은 유로 유도 및 3축 홀 센서가 적용된 수도계량기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a water meter to which a flow path guide and a three-axis hall sensor are applied.
구체적으로는 첨부된 도면을 통해 설명한다.More specifically, the present invention will be described with reference to the accompanying drawings.
케이싱(30)은 일반적인 수도계량기의 금속 외갑으로서, 상기 케이싱(30)의 입구부(31)측 구멍(32)에 장착되도록 파이프 형태로 형성된 입구장착부재(100); 상기 입구장착부재(100)의 내측에 장착되며, 그 단면이 일측단부로부터 타측단부에 이르기까지 점점 넓어지는 형태를 가지는 유수면적가변부재(200); 를 포함하되, 유수면적가변부재(200)의 밑면부(250)의 형태는 부채꼴 형태를 잘라낸 원의 일부 형태로 형성되어 인입된 물이 인입방향을 기준으로 하여 좌 또는 우측으로 편향되도록 형성된다.The casing (30) is a metallic outer wall of a general water meter, which is an inlet mounting member (100) formed in the shape of a pipe to be mounted in the hole (32) at the inlet (31) side of the casing (30); A flowable area variable member (200) mounted on the inside of the inlet mounting member (100) and having a cross section gradually increasing from one end to the other end; Wherein the shape of the bottom surface portion 250 of the water surface area changeable member 200 is formed as a part of a circle cut out in a fan shape so that the drawn water is deflected leftward or rightward with respect to the drawing direction.
외측면(210)의 입구장착부재(100)의 내측면의 크기와 형태에 대응하여 형성되며, 유수면적가변부재의 밑면부(250)의 형태는 부채꼴 형태를 잘라낸 원의 일부 형태로 형성되고, 돌기 형태의 체결수단(260,261)이 유수면적가변부재(200)의 몸체에 각각 형성되어 있고, 그에 대응하여 체결수단(260,261)을 수용하는 홈의 형태로 입구장착부재(100)의 몸체에 수용부(110,142)가 형성된다.The shape of the bottom surface portion 250 of the flowable area variable member is formed in a shape of a part of a circle cut out in a fan shape, The protrusion-type fastening means 260 and 261 are respectively formed on the body of the water surface area changeable member 200 and corresponding to the receiving member 100 in the form of a groove for receiving the fastening means 260 and 261, (110, 142) are formed.
그리고 상기 입구장착부재의 측부(120)에 다수의 구멍이 형성되고, 입구장착부재의 하부(140)에 다수의 구멍이 형성되어 상기 구멍에 수돗물의 이물질이 걸러지도록 하는 것을 특징으로 한다.A plurality of holes are formed in the side portion 120 of the inlet mounting member, and a plurality of holes are formed in the lower portion 140 of the inlet mounting member so as to filter foreign substances in tap water.
도 1은 케이싱, 검침부재 및 검침부재용 하우징을 표현한 사진, 도 2는 케이싱의 통상적인 입구부분을 촬영한 사진, 도 3은 본 발명의 유수면적 가변부재를 장착한 측단면도, 도 4는 도 3과 같이 유수면적가변부재를 장착한 상태에서 도 2와 같은 방향에서 바라본 상태도, 도 5는 입구장착부재(100)의 사시도, 도 6은 입구장착부재 및 유수면적가변부재의 결합 직전의 사시도, 도 7은 도 6의 부재들을 결합한 사시도, 도 8은 입구장착부재 및 유수면적가변부재의 결합을 위한 체결수단을 설명하기 위한 도면, 도 9는 도 8을 다른 각도에서 바라본 도면, 도 10은 입구장착부재의 하부(140)를 편의상 절단하여 도시한 그림으로서 체결수단을 수용하는 수용부를 도시한 도면, 도 11은 도 3과 같이 입구장착부재를 장착하기 전의 상태도, 도 12는 유수면적 가변부재의 사시도이다.Fig. 1 is a photograph showing a casing, a meter reading member and a housing for a meter reading member, Fig. 2 is a photograph of a typical entrance portion of the casing, Fig. 3 is a side sectional view with the water surface area variable member of the present invention mounted, FIG. 5 is a perspective view of the inlet mounting member 100, and FIG. 6 is a perspective view of the inlet mounting member and the flow area varying member in a state in which they are viewed from the same direction as FIG. Fig. 7 is a perspective view showing the members of Fig. 6, Fig. 8 is a view for explaining fastening means for joining the inlet mounting member and the flow area varying member, Fig. 9 is a view from a different angle, FIG. 11 is a view showing a state before the inlet mounting member is mounted as shown in FIG. 3, and FIG. 12 is a view showing a state before the inlet mounting member is mounted, Strabismus A.
도 1 및 도 2는 종래의 수도계량기 형태를 도시하고 있다.Figures 1 and 2 illustrate a conventional water metering device.
도 1을 참조하면 통상적인 수도계량기가 도시되어 있는데, 수돗물이 흘러가고 나오며, 유수량 검침부재(20)을 내부에 포함하는 케이싱(30)이 맨 좌측에 도시되어 있으며, 그 우측에는 검침부재(20)를 수용하며, 상기 케이싱에 인입되는 하우징(10)이 도시되어 있으며, 맨 우측에는 수돗물의 유량을 체크하기 위하여 여러 기어구조물(기계식)이 장착되거나, 임펠러에 자석이 부착된 경우 자력을 인가받아 전자적으로 유량을 계량하는 구조물(전자식)이 장착된 검침부재(20)가 도시되어 있다.Referring to FIG. 1, there is shown a conventional water meter. The water meter is provided with a casing 30 including the water content meter 20 therein. The meter probe 20 The housing 10 is received in the casing and various gear structures (mechanical type) are mounted on the far right side to check the flow rate of the tap water. When a magnet is attached to the impeller, a magnetic force is applied A meter reading member 20 equipped with a structure (electronic type) for electronically measuring a flow rate is shown.
수돗물이 입구부(31)의 구멍(32)을 통과하며 하우징 내부에 장착된 임펠러(미도시)를 돌리게 되고, 임펠러는 검침부재(20)의 기어구조물에 연결되어 수돗물의 유량을 검침하거나, 임펠러에 구성된 자석이 검침부재(20)에 자력을 인가하여 수돗물의 유량이 검침되는 것이다.The impeller is connected to the gear structure of the meter reading member 20 to measure the flow rate of the tap water or the impeller (not shown) The magnetic force is applied to the meter 20 to measure the flow rate of the tap water.
수돗물이 구멍(32)을 통과한 후에는 하우징의 제2 홀(15)을 통과하게 되는데, 이러한 제2 홀은 F1, F2 방향과 같이 한쪽으로 다소 편심되어 형성되어 자연스럽게 케이싱(35) 내부에서 수돗물이 회전하도록 유도된다.After the tap water has passed through the hole 32, it passes through the second hole 15 of the housing. Such a second hole is slightly eccentric to one side as in the directions of F1 and F2, As shown in Fig.
그런데, 수돗물이 흘러들어가는 정면방향(도 2)에서 입구부의 구멍(32)의 형상을 살펴보면, 도 2의 A 와 같이 입구부에서의 구멍형상은 수돗물이 한쪽방향으로 회전할 수 있도록 형성된 것이 아니라 단지 원형 또는 타원형태와 같이 좌우가 대칭적으로 구성되어 있다.2, the shape of the hole at the inlet is not formed so that tap water can rotate in one direction, but the shape of the hole at the inlet is not formed so that the tap water can rotate in one direction, And the left and right are symmetrically formed like a circular or elliptical shape.
이러한 형태 때문에 입구부를 통과하는 수돗물은 도 1의 하우징(10)과 충돌시 하우징의 제2 홀(15)에 자연스럽게 통과하지 못하는 문제점이 있었고 이는 수도 사용량의 정확한 계측을 방해하는 문제가 있었음에도 이를 해결하지 못하고 있었다.Due to this configuration, the tap water passing through the inlet portion can not pass naturally through the second hole 15 of the housing when colliding with the housing 10 of Fig. 1, and this has the problem of hindering precise measurement of water usage I could not.
즉, 수돗물을 자연스럽게 회전시키도록 유도하기 위해서는 도 2와 같은 입구부의 구멍(32) 형태로서는 수도사용량 계측에 오류가 크고, 이점에 착안하여 본 발명에서는 입구부의 구멍(32)에서 수돗물이 자연스럽게 도 1의 F1, F2 방향으로 하우징(10) 내부로 진입되어, 그 내부의 회전익차를 돌릴 수 있도록 구성하는 것을 특징으로 한다.That is, in order to induce the tap water to rotate naturally, there is a large error in measuring the amount of water used as the shape of the hole 32 in the inlet portion as shown in FIG. 2. In the present invention, in the hole 32 of the inlet portion, In the direction of F1 and F2 of the housing 10, so as to be able to rotate the inner rotor blades.
이러한 목적을 달성하기 위하여, 입구부(31)의 내부를 지나가는 물이 하우징의 제2 홀(15)에 자연스럽게 인입되도록 유수면적가변부재(200)를 장착하도록 한다.In order to achieve this object, the water surface area variable member 200 is mounted so that water passing through the inside of the inlet portion 31 is naturally drawn into the second hole 15 of the housing.
유수면적가변부재(200, 도 6)는 입구부(31)에 장착하기가 곤란할 수 있으므로, 유수면적가변부재(200)를 도 6과 같은 입구장착부재(100)에 체결하여, 도 7의 상태로 조립한 다음, 입구부(31) 내부에 이를 끼워 넣는 방식이 바람직하다.Since the variable area member 200 (FIG. 6) may be difficult to attach to the inlet portion 31, the variable area member 200 is fastened to the inlet fitting member 100 shown in FIG. 6, And then inserted into the inside of the inlet portion 31, as shown in FIG.
도 3에서는 상기 방식으로 유수면적가변부재(200) 및 입구장착부재(100)가 입구부(31)에 장착된 상태를 도시하고 있다.FIG. 3 shows a state in which the flow area varying member 200 and the inlet mounting member 100 are mounted on the inlet 31 in the above-described manner.
도 5는 유수면적가변부재(200) 및 입구장착부재(100)가 결합된 상태에서 각각 다른 방향에서 도시한 그림이다. 도 12에서는 유수면적가변부재(200)의 사시도를 도시하고 있는데, 일측의 두께는 t 로서 상대적으로 얇고, 점점 그 두께가 두꺼워지는 형상을 가진다(도 6에서도 형상 파악이 가능함).FIG. 5 is a view showing the water surface area variable member 200 and the inlet mounting member 100 in different directions in a combined state. 12 shows a perspective view of the water surface area changeable member 200. The thickness of the water surface area variable member 200 is relatively thin as t, and its thickness gradually increases (the shape can be grasped in FIG. 6).
두께 t 부분은 도 7에서 보이는 구멍 부분 즉, 입구장착부재(100)의 일측 입구부분에 장착되어 대응되는 부분이며, 그 반대편은 도 5에서와 같이 입구장착부재(100)의 하부(140) 부근의 구멍 넓이를 막고 있어서, 부채꼴 형태의 면적 부분으로만 수돗물이 통과하도록 유도한다. The portion of the thickness t corresponds to the hole portion shown in Fig. 7, that is, the corresponding portion mounted on one inlet portion of the inlet mounting member 100, and the opposite portion thereof is located near the lower portion 140 of the inlet mounting member 100 , Thus inducing the tap to pass through only the area of the sector.
도 5와 같이 수돗물이 한쪽편으로 편향되어 통과할 경우에, 도 1에 도시된 하우징(10)의 제2 홀(15)로 자연스럽게 통과하게 되므로, 적은 양의 수돗물이 흘러 갈 때에도 검침부재(20)의 기어 구조물이나 전자 계량 구조물에 회전력 또는 자력이 효과적으로 전달되어, 수도사용량 검침의 정밀도가 향상되게 된다. 즉, 임펠러(60)의 회전이 용이해지는 것이다.When the tap water is deflected to one side as shown in FIG. 5, the water passes naturally through the second hole 15 of the housing 10 shown in FIG. 1, so that even when a small amount of tap water flows, The rotational force or the magnetic force is effectively transmitted to the gear structure or the electronic metering structure of the engine. That is, the rotation of the impeller 60 is facilitated.
많은 양의 수돗물이 케이싱(30) 내로 유입되는 경우에, 종래 기술에 따른 도 2의 입구부(31) 구멍(32)을 수돗물이 통과할 때, 하우징(10)에 외곽 측부에 강하게 수돗물이 부딪혀서, 큰 압력 손실이 있어서 펌프 동력이 소실되는 원인이 됨은 물론이고, 상기 설명된 바와 같이, 검침부재(20)의 유량 측정 정밀도에도 악영향이 미치게 되므로, 본 발명과 같은 유수면적가변부재(200)와 같이 한쪽으로(도 4의 경우, 우측으로 수돗물을 유도함) 수돗물의 방향을 유도하게 되어, 유량 검침의 정밀도가 향상된다.When tap water passes through the hole 32 of the inlet portion 31 of Fig. 2 according to the prior art, when the large amount of tap water flows into the casing 30, the tap water strongly hits the outer side portion of the housing 10 , The pump power is lost due to a large pressure loss, and the flow measurement accuracy of the meter reading member 20 is also adversely affected as described above. Therefore, the water surface area variable member 200 and the water surface area variable member 200, As a result, the direction of the tap water is guided to one side (in the case of FIG. 4, the tap is guided to the right side), thereby improving the accuracy of the flow meter inspection.
도 4에서는 입구부 정면에서 바라본 입구부의 개략도인데, 상대적으로 넓은 면적의 구멍(32) 부분으로 수돗물이 진입하다가 유수면적가변부재(200)의 형상적 특징에 의하여, 일측으로 편심되어 총 직경면적에 대하여 1/4의 크기로 편심된 쿼터(50)를 지나도록 물의 방향이 유도되는 것이다.4 is a schematic view of the inlet portion seen from the front of the inlet portion. As tap water enters the relatively large area of the hole 32, due to the shape characteristic of the water surface area changeable member 200, The direction of the water is induced to pass through the quarter eccentric 50 of 1/4 of the size of the water.
유수면적가변부재(200)를 보다 상세히 설명한다.The variable flow area member 200 will be described in more detail.
도 6을 참조하면, 일측의 두께는 상대적으로 얇고 점점 타측으로 두터워지는 형태를 가진다. 또한, 내측면(220)은 인입된 물의 원류(原流, main stream)과 직접 접하는 부분으로서, 이는 곡면으로 처리되어 물의 압력 손실을 최소화하는 형태를 갖는다. Referring to FIG. 6, the thickness of one side is relatively thin and gradually increases toward the other side. In addition, the inner surface 220 is a portion directly contacting the main stream of the incoming water, which is processed to a curved surface to minimize the pressure loss of the water.
그리고 내측면(220)의 반대편인 외측면(210)의 원기둥의 표면과 유사하게 형성되어 입구장착부재(100)의 내측면의 크기와 형태에 대응하여 형성되어야 한다. And is formed to be similar to the surface of the cylinder of the outer side surface 210 opposite to the inner side surface 220 to correspond to the size and shape of the inner surface of the inlet mounting member 100.
유수면적가변부재의 밑면부(250)의 형태는 부채꼴 형태를 잘라낸 원의 일부 형태로 형성됨이 바람직하다.Preferably, the shape of the bottom surface portion 250 of the flow area varying member is formed as a part of a circle cut out in a fan shape.
유수면적가변부재(200)는 입구장착부재(100) 내부에 수용되면서 장착되는 것이 바람직한데, 도 8과 같이 돌기 형태의 체결수단(260,261)이 유수면적가변부재(200)의 몸체에 각각 형성되어 있고, 그에 대응하여 체결수단(260,261)을 수용하는 홈의 형태로 입구장착부재(100)의 몸체에 수용부(110,142)가 형성되어 있다. 이러한 체결수단과 수용부의 홈을 상호 결합하여 유수면적가변부재와 입구장착부재를 결합할 수 있으나, 그외에도 통상적인 당업자 수준에서 다양한 결합방법이 있을 수 있다. 도 9는 도 8과 다른 방향에서 바라본 그림이다. As shown in FIG. 8, protrusion-type fastening means 260 and 261 are formed on the body of the water surface area variable member 200, respectively, as shown in FIG. 8 And accommodating portions 110 and 142 are formed in the body of the inlet mounting member 100 in the form of a groove for accommodating the fastening means 260 and 261 corresponding thereto. The coupling means and the groove of the receiving portion can be coupled to each other to couple the connecting portion with the variable area member and the inlet fitting member. However, there are various joining methods at the ordinary skill in the art. FIG. 9 is a view taken in a direction different from FIG. 8. FIG.
도 10은 입구장착부재의 하부(140)를 편의상 절단하여 도시한 그림으로서 체결수단을 수용하는 수용부를 도시한 도면이다.10 is a view showing a lower portion 140 of the inlet mounting member for convenience of illustration and showing a receiving portion for receiving the fastening means.
도 11의 S 부분은 입구장착부재와 유수면적가변부재가 장착되는 공간을 도시한 것이다.S in Fig. 11 shows a space in which the inlet mounting member and the flow area varying member are mounted.
한편, 입구장착부재의 측면에는 구멍이 형성된 것으로 도시되어 있지만, 이 부분에 구멍이 없을 수도 있으며, 입구장착부재가 필터의 역할을 수행할 수 있도록 측부(120)에 미세구멍이 형성되고 또한 입구장착부재의 하부(140)에도 미세구멍(미도시)가 형성될 수 있음은 물론이다. 이러한 필터의 역할을 수행할 때에는 주기적으로 입구장착부재를 주기적으로 교체할 필요가 있다.On the other hand, although the side of the inlet mounting member is shown as being formed with a hole, there may be no hole in this portion, and a fine hole is formed in the side portion 120 so that the inlet mounting member can act as a filter, Needless to say, fine holes (not shown) may also be formed in the lower portion 140 of the member. In order to act as such a filter, it is necessary to periodically replace the inlet mounting member periodically.
본 발명에서는 수도계량기 입구부에 유수량이 한쪽 방향으로 편심되도록 유도하는 유수면적 가변부재를 설치하여, 계량기의 회전익차를 한쪽방향으로 효과적으로 돌리도록 유도하여 유수량의 측정 정밀도를 향상시키며, 그와 동시에 유수면적 가변부재를 열전도율이 낮은 재료를 사용하여 겨울철 계량기 동파방지에도 기여를 할 수 있는 장점을 갖는다.In the present invention, a flow area variable member for guiding the amount of water flow to be eccentric in one direction is provided at the inlet of the water meter, thereby inducing the flow channel of the meter to be effectively turned in one direction to improve the measurement accuracy of the flow rate, It is advantageous to contribute to prevention of frost wave in the winter meter by using a material having a low coefficient of thermal conductivity and a variable area member.
한편, 유입되는 물의 유량에 대해서는 입구장착부재(100)와 유수면적가변부재(200)가 케이싱(30)의 입구부(31)에 장착됨과 동시에 쿼터(50)와의 유기적인 결합관계에 의해 항상 동일한 양의 물이 케이싱(30) 내부로 유입되도록 할 수 있으나, 사용되는 물의 양이나 세기에 따라 달라지는 유속에 의해 임펠러가 회전하는 회전수가 달라지기 때문에 소정의 오차범위가 발생된다.On the other hand, with respect to the flow rate of the incoming water, the inlet fitting member 100 and the flowable area varying member 200 are mounted on the inlet 31 of the casing 30 and at the same time, A predetermined error range is generated because the number of revolutions of the impeller varies due to the flow rate depending on the amount and intensity of water used.
본 발명에서는 이러한 문제점을 극복하기 위하여, 변경된 하우징(10)을 다음과 같이 제안한다.In order to overcome this problem, the present invention proposes a modified housing 10 as follows.
설명에 앞서, 임펠러는 이의 블레이드 부분 중 하단부를 약간 잘라내어 임펠러의 블레이드 하단부가 '
Figure PCTKR2017012982-appb-I000001
'의 형태로 만곡되도록 구성할 수도 있다.
Prior to the description, the impeller slightly cuts off the lower portion of the blade portion of the impeller,
Figure PCTKR2017012982-appb-I000001
&Quot; as shown in FIG.
도 13은 본 발명에 따른 유로 유도 및 3축 홀 센서가 적용된 수도계량기에서 하우징을 나타낸 것이고, 도 14는 본 발명에 따른 유로 유도 및 3축 홀 센서가 적용된 수도계량기에서 하부 하우징을 하부방향에서 바라본 것을 나타낸 것이다.FIG. 13 is a view showing a housing of a water meter to which a flow path guide and a three-axis hall sensor according to the present invention are applied, FIG. 14 is a view showing a housing of a water meter, .
먼저, 하우징(10)은 상부 하우징(11)과 하부 하우징(13)을 주요하게 포함한다.First, the housing 10 mainly includes an upper housing 11 and a lower housing 13.
이때, 상부 하우징(11)은 상술된 검침부재(20)가 수용되며, 상측이 커버가 덮히도록 구성된다.At this time, the upper housing 11 receives the above-described meter reading member 20, and the upper side is configured to cover the cover.
이러한 상부 하우징(11)은 제1 상부 하우징(11a)과 상기 제1 상부 하우징(11a) 보다 작은 직경을 갖으며 하부방향으로 연장된 제2 상부 하우징(11b)으로 구성되는데, 특히, 제1 상부 하우징(11a)의 내측면의 내경을 따라서 단턱이 형성됨으로써, 오링이 안착될 수 있도록 구성된다.The upper housing 11 includes a first upper housing 11a and a second upper housing 11b having a smaller diameter than the first upper housing 11a and extending in the lower direction. A step is formed along the inner diameter of the inner surface of the housing 11a so that the O-ring can be seated.
상부 하우징(11)의 제2 상부 하우징(11b)의 하측으로는 하부 하우징(13)이 결합될 수 있다.The lower housing 13 can be coupled to the lower side of the second upper housing 11b of the upper housing 11. [
이러한 하부 하우징(13)은, 제2 상부 하우징(11b)의 하측에 직접 연결되는 제1 하부 하우징(13a)과 상기 제1 하부 하우징(13a) 보다 작은 직경을 갖고 하부방향으로 연장되는 제2 하부 하우징(15a)으로 이루어진다.The lower housing 13 includes a first lower housing 13a directly connected to a lower side of the second upper housing 11b and a second lower housing 13b having a smaller diameter than the first lower housing 13a, And a housing 15a.
제1 하부 하우징(13a)에는 제1 홀(13aa)이 일정 간격을 갖으며 복수 개가 배열되는데, 상기 제1 홀(13aa)은 소정의 방향성을 갖도록 각도를 갖게 형성된다.In the first lower housing 13a, a plurality of first holes 13aa are arranged at regular intervals, and the first holes 13aa are formed to have an angle so as to have predetermined directionality.
또한, 제1 하부 하우징(13a)의 구조를 보면, 하측에서부터 소정의 높이를 갖도록 상부방향으로 수직으로 연장되되, 수직되어 연장된 일측에서부터는 내부방향으로 소정의 각도만큼 경사지도록 더 연장될 수 있다.In addition, the first lower housing 13a may be further extended to extend vertically from a lower side to a predetermined height and vertically extend from a vertically extended side to an inner side by a predetermined angle .
즉, 제1 하부 하우징(13a)은 상측방향으로 갈수록 직경이 작아지는 것으로서, 이때 제1 홀(13aa)은 제1 하부 하우징(13a)의 경사진 영역에 구성될 수 있다.That is, the diameter of the first lower housing 13a decreases toward the upper direction. At this time, the first hole 13aa may be formed in an inclined region of the first lower housing 13a.
다시 말해, 제1 홀(13aa)은 수직으로 연장된 제1 하부 하우징(13a)에는 형성되지 않는 것으로서, 이는 후술되는 제2 하부 하우징(15a)에 형성되는 제2 홀(15)으로부터 일정간격 이격되도록 함으로써, 하부 하우징(13) 내부로 물이 유입되고 배출될 때 일률적인 속도로 이동하도록 한다. 구체적으로는 후술되는 실험예를 참조하기로 한다.In other words, the first hole 13aa is not formed in the vertically extending first lower housing 13a, but is spaced apart from the second hole 15 formed in the second lower housing 15a, which will be described later, Thereby allowing water to flow into the lower housing 13 at a uniform speed when the water flows in and is discharged. Specifically, the following experimental examples will be referred to.
제2 하부 하우징(15a)에는 상술된 바와 같이 제2 홀(15)이 형성되며, 상기 제2 홀(15) 역시 소정의 각도를 갖도록 형성되며, 제2 하부 하우징(15a)의 외주연을 따라 일정한 간격으로 복수 개 배열된다.The second lower housing 15a is formed with a second hole 15 as described above and the second hole 15 is also formed to have a predetermined angle and is formed along the outer circumference of the second lower housing 15a A plurality is arranged at regular intervals.
이러한 제2 홀(15)은 제2 하부 하우징(15a)의 높이와 동일한 높이를 갖을 수도 있으나, 제2 하부 하우징(15a)의 높이보다 작은 높이를 갖도록 할 수도 있다.The second hole 15 may have the same height as that of the second lower housing 15a, but may have a height smaller than the height of the second lower housing 15a.
이때, 제1 홀(13aa) 및 제2 홀(15)은 모두 물이 유입되는 방향 외에 어느 한 방향이 개방되도록 형성된다.At this time, the first holes 13aa and the second holes 15 are all formed to open in any direction other than the direction in which water is introduced.
다시 말해, 제1 홀(13aa)의 경우, 제1 하부 하우징(13a)의 최상면 방향이 개방되도록 형성되고, 제2 홀(15)은 제2 하부 하우징(15a)의 최하면 방향이 개방되도록 형성된다.In other words, in the case of the first hole 13aa, the uppermost surface direction of the first lower housing 13a is formed to be open, and the second hole 15 is formed such that the lowermost direction of the second lower housing 15a is opened do.
다만, 제1 홀(13aa)의 경우, 상부 하우징(11)과 결합되면서 개방된 영역이 일부 막힐 수 있고, 제2 홀(15)의 경우, 하우징이 케이싱(30)의 내면에 닿음으로써 개방된 영역이 일부 막힐 수 있는데,However, in the case of the first hole 13aa, the open area may be partially blocked by being coupled with the upper housing 11. In the case of the second hole 15, when the housing contacts the inner surface of the casing 30, Some areas may be clogged,
이는 처음부터 개방된 영역이 없는 종래의 하우징의 홀 구조와 다르게, 유입이 지연되는 물이 유입될 수 있는 공간을 만들어 주기 때문에, 물의 일률적인 이동이 가능하도록 하는데 기여하게 된다.This contributes to the uniform movement of water because it creates a space into which water with a delayed inflow can be introduced unlike the structure of a conventional housing without an open area from the beginning.
또한, 제1 홀(13aa)과 제2 홀(15)은 상호 반대되는 방향으로 가짐으로써, 물의 유입과 배출이 원활하도록 한다.Further, the first hole 13aa and the second hole 15 have mutually opposite directions, thereby facilitating the inflow and outflow of water.
특히, 제2 홀(15)이 물이 유입되는 홀로써, 하부 하우징(13)의 내부에 설치되는 임펠러가 회전하는 방향과 동일한 방향을 갖도록 각이 지고, 제1 홀(13aa)은 물이 배출되는 홀로써, 상술된 제2 홀(15)과 반대방향으로 형성될 수 있다.Particularly, the second holes 15 are angled so as to have the same direction as the direction of rotation of the impeller installed in the lower housing 13, and the first holes 13aa are formed in the lower housing 13, And can be formed in the opposite direction to the second hole 15 described above.
한편, 상기 제2 홀(15)은 상술된 비율과 구조로 인해 총 12개의 홀로 형성되는데, 이때 6개의 홀을 에폭시로 막음으로써, 6구의 홀만 사용하도록 할 수 있다. 이는 아래 실험 예에 설명된 바와 같이 12구일 때보다 임펠러의 회전 오차범위를 감소하는데 유리하다.Meanwhile, the second hole 15 is formed by a total of 12 holes due to the above-mentioned ratio and structure. In this case, only six holes can be used by blocking six holes with epoxy. This is advantageous to reduce the rotational error range of the impeller as compared to the twelfth embodiment, as described in the experimental example below.
다른 한편, 고무패킹은 오링의 형태로 구성되어 상부 하우징(10)과 하부 하우징(13) 각각의 외면에 하나씩 끼워질 수 있다.On the other hand, the rubber packing is formed in the form of an O-ring and can be fitted on the outer surface of each of the upper housing 10 and the lower housing 13 one by one.
구체적으로는, 제1 상부 하우징(11)과 제2 상부 하우징(12)이 구분되는 단턱 외면, 그리고 제1 하부 하우징(13a)과 제2 하부 하우징(15a)이 구분되는 단턱 외면에 끼워지는 것으로서, 이러한 하우징 외면에 끼워지는 고무패킹은, 본 발명에 따른 하우징이 수도계량기용 금속 관에 고정될 경우, 유입되는 수돗물이 제2 홀(15)로 유입되지 못하고 정체되면서 하우징 외부의 상측으로 유입되는 것을 방지한다.Specifically, the first upper housing 11 and the second upper housing 12 are separated from each other, and the first lower housing 13a and the second lower housing 15a are separated from each other, When the housing according to the present invention is fixed to the metal pipe for the water meter, the inflowing tap water can not flow into the second hole 15 and is stagnant and flows upward into the outside of the housing ≪ / RTI >
만약, 수돗물이 제2 홀(15)로 유입되지 않고, 하우징 외부의 상측으로 유입된다면, 사용된 수돗물 대비 계량되는 양이 달리지는 등 임펠러 회전수에 오차가 발생되게 되지만, 본 발명과 같이 고무패킹을 포함함으로써, 이러한 문제점을 방지할 수 있게 된다.If the tap water does not flow into the second hole 15 but flows into the upper side of the housing, an error occurs in the impeller rotational speed, such as an amount to be metered relative to tap water used. However, It is possible to prevent such a problem.
또한, 하부 하우징(13)에 형성된 제2 홀(15)에는 유량볼트가 체결될 수 있다. 이러한 유량볼트는 제2 홀(15)의 개폐를 담당하는 기능을 하며, 체결정도는 실제 설치장소의 유량, 유속 등을 기반으로 현장에서 수도계량기를 설치하는 작업자의 전문지식에 따른다.In addition, a flow bolt may be fastened to the second hole 15 formed in the lower housing 13. This flow bolt functions to open and close the second hole 15. The degree of engagement depends on the expertise of the operator installing the water meter on the site based on the flow rate and flow rate of the actual installation site.
이러한 유량볼트는 제2 홀(15) 중 제2 하부 하우징(15a)의 개방된 하측의 반대면에 체결될 수 있는데, 이때 유량볼트는 헤드가 없는 형태의 볼트(스터드 볼트 등)로 구성될 수 있다.The flow bolt may be fastened to the opposite lower side of the second lower housing 15a of the second hole 15, wherein the flow bolt may be composed of a headless bolt (such as a stud bolt) have.
종래의 것은, 하우징 가장 저면에서 상부방향으로 체결되기 때문에, 볼트의 헤드가 하우징 저면에 닿도록 체결된 경우, 그 이상으로 체결이 불가능하고, 체결정도를 풀어놓게 되면 볼트의 헤드와 하우징 간에 이격됨에 따라 하우징이 케이싱에 설치된 경우 빈 공간이 발생되어 수도 계량에 치명적이게 된다.In the conventional art, when the head of the bolt is fastened to the bottom surface of the housing, it can not be fastened further. Since the fastening degree is released, the head of the bolt is separated from the housing Therefore, when the housing is installed in the casing, an empty space is generated, and the water metering becomes fatal.
뿐만 아니라, 볼트의 헤드가 하우징 저면으로부터 돌출되기 때문에 볼트의 헤드를 하우징에 꽉 조여놓아도, 케이싱과 하우징 사이의 공간이 불가피하게 형성되어 수돗물이 유입되는 공간을 제공하는 문제점이 있다.In addition, since the head of the bolt protrudes from the bottom surface of the housing, a space between the casing and the housing is unavoidably formed even if the head of the bolt is tightly fixed to the housing.
반면, 본 발명에 따르면, 하우징과 케이싱 사이의 공간을 발생시키지 않기 때문에, 상술된 수돗물의 유입에 따른 문제점을 극복할 수 있으며, 아울러, 상술된 문제점을 극복함과 동시에 볼트의 조임에 따라 제2 홀(15)을 막는 정도를 완전 폐쇄에서 완전 개방까지 자유롭게 조절 가능한 이점이 있다.According to the present invention, since the space between the housing and the casing is not generated, it is possible to overcome the problem caused by the inflow of the tap water described above, and to overcome the above-mentioned problem, There is an advantage that the degree of blocking the hole 15 can be freely adjusted from the fully closed state to the fully opened state.
다른 한편, 본 발명 또는 종래의 것과 같은 수도계량기를 보면 시동침이 구성된다. 이러한 시동침은 일반적으로 수돗물의 유입이 없음에도 회전되는 것을 감지하여 누수를 확인할 수 있도록 하는 기능을 하는데,On the other hand, when the water meter such as the present invention or the conventional one is viewed, a starter is constituted. Such a starting needle generally functions to detect leakage of water even when there is no influx of tap water,
수도계량기 제조업에 있는 당업자들에게는 해당 수도계량기의 제품 출시전 합격 또는 불합격을 판단할 수 있도록 하는 기준이 되기도 한다.It is also a standard for those who are in the water meter manufacturing industry to judge whether the water meter is acceptable or not before the product launch.
다만, 본 명세서에 기재된 바와 같이 수돗물을 유입시키고 유입된 수돗물에 따른 임펠러의 회전을 판단하여 합격 또는 불합격을 판단하기도 하지만, 이는 많은 양의 수도계량기의 합격 또는 불합격을 판단하기에 매우 번거롭기 때문에, 광학센서를 통해 시동침의 회전을 기반으로 수도계량기의 합격 또는 불합격을 판단하는 방식을 채용하고 있는 실정이다.However, as described in the present specification, it is also possible to judge whether the impeller is rotated according to the influx of tap water into the tap water and judge whether the impeller is passed or failed. However, since it is very troublesome to judge whether the water meter is passed or failed, A sensor is used to determine whether the water meter is passed or failed based on the rotation of the starter needle.
종래의 시동침은 ★형태로 형성되어 있다. 모든 종래의 시동침이 상기의 형태는 아니겠지만, 공통적으로 면으로 된 면적이 상당부분을 차지하고 있는 실정이다.A conventional starter is formed in the shape of a star. Although all of the conventional starting needles are not of the above-mentioned type, a common plane area occupies a large portion.
이에 따라, 광학센서를 이용하여 광(光)을 입광시켜, 반사된 광을 수신한다고 하더라도, 시동침의 회전을 광학센서를 이용하여 감지해내는 것은 상당히 어려운 문제점이 있었다. 왜냐하면, 면으로 된 면적이 상당하기 때문에 회전을 감지하기 까다롭기 때문이다.Accordingly, even when the light is received by using the optical sensor and the reflected light is received, there is a problem in that it is difficult to detect the rotation of the starting needle by using the optical sensor. This is because it is difficult to detect the rotation because the area of the surface is considerable.
반면, 본 발명에 따른 시동침은, 면으로 된 면적을 최소화하여 *형태로 시동침을 구성하도록 한다. 이에 따라, 광학센서를 통해 시동침의 회전을 감지해내는데 정확도를 증가시킬 수 있는 현저한 효과를 보유한다.On the other hand, the starting needle according to the present invention minimizes the surface area and forms a starting needle in the form of *. Thereby, it has a remarkable effect that it is possible to increase the accuracy of detecting the rotation of the starting needle through the optical sensor.
본 출원인은 하우징의 최적 구조를 도출하기 위하여 아래의 실험을 수행하였다.The Applicant has conducted the following experiment to derive the optimum structure of the housing.
실험예Experimental Example 1. 최적의  1. Optimal 하우징housing 구조를 도출하기 위한 실험 Experiment to derive structure
(실험방법)(Experimental Method)
실험방법은 상술된 구조를 갖는 본 발명에 따른 수도계량기용 하우징 구조를 갖는 수도계량기를 이용하되, 종래 수도계량기에 구성된 임펠러의 회전수를 측정하는 실험방법을 이용하여 실험을 진행한다.The experiment is carried out by using a water meter having a housing structure for a water meter according to the present invention having the above-described structure, and an experiment method for measuring the number of revolutions of an impeller configured in a conventional water meter.
이때, 실험은 각 샘플(실험군)에 대하여 Q1, Q2, Q3에 따른 유량별로 실험을 수행하되, 각각 유량별로 복수 회 실험을 수행한다.At this time, the experiment is performed for each sample (experimental group) by the flow rate according to Q1, Q2, and Q3, and the experiment is performed plural times for each flow rate.
이때, Q1, Q2, Q3는 국제법정계량기구(OIML, International Organization of Legal Metrology) 규격에 따른 것으로서,In this case, Q1, Q2 and Q3 are in accordance with the International Organization for Legal Metrology (OIML)
앞으로, 수도계량기가 국제법정계량기구 규격을 따르게 규정됨에 따라, 본 발명에 따른 수도계량기도 국제법정계량기구(OIML, International Organization of Legal Metrology) 규격에 맞출 수 있어야 하기 때문이다.In the future, the water meter according to the present invention should be able to meet the International Organization of Legal Metrology (OIML) standard as the water meter is defined to conform to the international statutory measuring instrument standard.
상기 규격은, [표 1]을 참조할 수 있다.Refer to [Table 1] for the above specification.
유량범위Flow range 설명Explanation
Q1Q1 최대허용차 (MPE, Maximum Permissible Error) 내에서 작동해야 하는 최소유량Minimum flowrate that should operate within maximum permissible error (MPE)
Q2Q2 항시(permanent) 유량과 최소유량 사이의 유량 범위.이 범위는 다시 고유량구역과 저유량구역으로 나뉘며, 각각의 구멱마다 최대허용오차가 정의된다.The range of flow between the permanent flow and the minimum flow rate. This range is again divided into the high flow rate zone and the low flow rate zone, and the maximum tolerance is defined for each flow.
Q3Q3 규정작동조건에서 계량기가 최대허용오차 내에서 측정할 수 있는 최고유량Maximum flow at which the meter can measure within the maximum allowable error under the specified operating conditions
Q4Q4 짧은 시간 동안 계량기가 최대허용오차 내에서 측정할 수 있는 최고유량, 곧바로 규정작동조건으로 동작하더라도 측정성능을 유지해야 함.For the shortest time, the meter should be able to measure the maximum flow rate that can be measured within the maximum allowable error, even if it operates at the specified operating conditions.
※ OIML 유량범위※ OIML flow range
[표 1]을 기반으로, 고유량 범위(Q2≤Q≤Q4)에서의 최대허용오차는 온도가 0.1~30℃일 경우 ±2%이고, 30℃를 초과하는 온도에서는 ±3%이며, 저유량 범위(Q1≤Q≤Q2)에서의 최대허용오차는 온도에 상관없이 ±5% 일 것을 규정하고 있는데, 본 발명에서는 고유량 범위와 저유량 범위에 관계없이 유량이 적던 많던 동일한 유량으로 측정했을 때 오차범위가 최대한 감소된 구성을 제안하는 것이다.Based on Table 1, the maximum tolerance in the high flow range (Q2 ≤ Q ≤ Q4) is ± 2% for temperatures between 0.1 and 30 ℃, ± 3% for temperatures above 30 ℃, The maximum allowable error in the flow rate range (Q1 ≤ Q ≤ Q2) is specified to be ± 5% irrespective of the temperature. In the present invention, the same flow rate was measured at the same flow rate, regardless of the high flow rate range and the low flow rate range The error range is reduced as much as possible.
실험예 1은 상술된 본 발명에 따른 구조를 갖되, 하우징(10)에 형성된 제2 홀(15)이 종래의 제품과 같이 폐쇄된 것(2번 샘플)과 개방된 것(1번 샘플)을 대상으로 임펠러 회전수를 평가하고, 각각의 Q1, Q2, Q3에 대하여 오차범위를 평가하는 방법으로 실험을 수행하였다.Experimental Example 1 shows the structure according to the present invention described above in which the second hole 15 formed in the housing 10 is closed like the conventional product (2 samples) and opened (1 sample) Experiments were carried out by evaluating the number of revolutions of the impeller and evaluating the error range for each of Q1, Q2 and Q3.
이때, Q1 : 5L, Q2 : 5L, Q3 : 100L의 물을 사용하고, Q1은 0.016m3/h의 압력을 사용하고, Q2는 0.0256m3/h의 압력을 사용하며, Q3는 1.6m3/h의 압력을 사용하도록 한다.In this case, Q1: 5L, Q2: 5L , Q3: the use of water and 100L of, Q1 is using the pressure of 0.016m 3 / h and, Q2 is and using the pressure of 0.0256m 3 / h, Q3 is 1.6m 3 / h. < / RTI >
실험이 진행되는 형태는 [표 2]의 사진을 참조할 수 있다.The shape of the experiment can be seen in [Table 2].
Figure PCTKR2017012982-appb-I000002
Figure PCTKR2017012982-appb-I000002
Figure PCTKR2017012982-appb-I000003
Figure PCTKR2017012982-appb-I000003
A와 실시예 제품의 임펠러 회전량 측정A and Example Measuring Impeller Rotation Amount of Product 광학센서를 이용한 임펠로 회전수 적산Accumulation of impeller rotation using optical sensor
(실험진행)(Experimental progress)
실험진행 경과는 아래의 [표 3]의 이하를 참조한다.The progress of the experiment is shown in the following [Table 3].
참고로 부연하면, 오차범위의 산정은 상술된 압력 대비 5L 또는 100L에 대하여 임펠러의 회전수는 Q1 : 720 바퀴, Q2 : 740 바퀴, Q3 : 15267 바퀴가 나와야 하므로, 전체 회전수의 최저값과 최대값을 상기 기준 회전수에 대비하여 오차범위를 산정하였다.For reference, the calculation of the error range is based on the above-mentioned pressure of 5L or 100L, the number of revolutions of the impeller should be Q1: 720, Q2: 740, Q3: Was calculated with respect to the reference rotation speed.
1번 샘플1 sample 2번 샘플Sample No. 2
1차Primary Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
663663 693693 1432014320 652652 668668 1368213682
771771 795795 1399213992 789789 810810 1375813758
1450614506 1651216512
1520015200 1542515425
1457514575 1612416124
1632516325 1671216712
1523515235 1395813958
오차범위error range 8%8% 8%8% 8%8% 10%10% 10%10% 10%10%
[표 3]의 결과에 따라, 제2 홀(15)이 개방된 형태를 이용하기로 결정하였으나, 8%의 오차범위는 여전히 제품으로 승인되기 어려울 정도로 큰 오차범위이기 때문에, 본 출원인은 제2 홀(15)의 구조를 설계 변경하는 방안으로 접근하였고, 이는 [표 4]와 같다.According to the results of Table 3, it was decided to use the form in which the second hole 15 was opened, but since the tolerance range of 8% is still so large that it can not be approved as a product, The design of the structure of the hole 15 was approached as a design change, as shown in [Table 4].
1-1번 샘플Sample 1-1 1-2번 샘플1-2 samples 1-3번 샘플1-3 samples 1-4번 샘플1-4 samples 1-5번 샘플Samples 1-5
2차Secondary Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
711711 702702 1456214562 725725 741741 1452314523 660660 694694 1429214292 706706 770770 1595815958 708708 699699 1399913999
757757 765765 1399813998 743743 702702 1465814658 725725 701701 1542315423 718718 707707 1452114521 765765 732732 1455614556
770770 796796 1641516415 771771 784784 1523415234 765765 722722 1523815238 701701 725725 1465214652 715715 799799 1601216012
1631916319 1621116211 1601416014 1542615426 1425314253
1548615486 1632816328 1610916109 1539815398 1641116411
오차범위error range 8%8% 8%8% 8%8% 8%8% 8%8% 8%8% 6%6% 6%6% 6%6% 5%5% 5%5% 5%5% 8%8% 8%8% 8%8%
※ 1-1번 샘플 : 제2 홀의 a':a의 비율이 2:1※ Sample 1-1: The ratio of a ': a in the second hole is 2: 1
※ 1-2번 샘플 : 제2 홀의 a':a의 비율이 3:1※ Sample 1-2: The ratio of a ': a in the second hole is 3: 1
※ 1-3번 샘플 : 제2 홀의 a':a의 비율이 4:1※ Sample 1-3: The ratio of a ': a in the second hole is 4: 1
※ 1-4번 샘플 : 제2 홀의 a':a의 비율이 5:1※ Sample 1-4: The ratio of a ': a in the second hole is 5: 1
※ 1-5번 샘플 : 제2 홀의 a':a의 비율이 6:1※ Sample 1-5: The ratio of a ': a in the second hole is 6: 1
실험결과, 제2 홀(15)의 a':a의 비율을 5:1로 했을 때, 오차범위가 5%로 가장 적게 나타났으며, 오히려 4번 샘플보다 홀의 크기가 더 작아지는 비율인 5번 샘플에서는 오차범위가 급증하는 것으로 나타났다.As a result of the experiment, when the ratio of a ': a in the second hole 15 is 5: 1, the error range is the smallest at 5%. Rather, the ratio of the hole size The error range was found to increase sharply.
이는 제2 홀(15)의 크기가 너무 크거나 일정치 이상으로 작게 되면, 물의 유입되는 양이 일정하지 않아서 오차범위가 증가하는 것을 알 수 있었다.This means that if the size of the second hole 15 is too large or smaller than a certain value, the amount of water introduced is not constant and the error range increases.
이때, a':a의 비율을 5:1인 경우, 제2 홀(15)을 이루는 내각 중에서 가장 작은 각(b°)은 40°이고, 제2 홀(15) 사이의 돌출구성을 이루는 내각 중에서 가장 작은 각(a°)은 60°로 나타났다.In this case, when the ratio of a ': a is 5: 1, the smallest angle b ° of the internal angle of the second hole 15 is 40 °, and the internal angle of the protruding configuration between the second holes 15 The smallest angle (a °) was 60 °.
즉, 상기 a°의 각도 60°와 b°의 각도 40°를 벗어나는 경우, a':a의 비율을 5:1이 나오지 않으며, 이로 인해 오차범위에 영향을 미치는 것으로 확인되었다.That is, when the angles of a ° and b ° deviate from the angles of 60 ° and 40 °, the ratio of a ': a is not 5: 1, which affects the error range.
그러나 여전히 5%의 오차범위는 제품으로 승인받기에 높은 값이므로, 오차범위를 줄여야 할 필요가 있다.However, the error range of 5% is still too high to be approved by the product, so it is necessary to reduce the error range.
따라서, 본 출원인은 체결볼트를 종래 방식으로 체결한 방식인 1-4-1번 샘플과, 본 발명에 기반하여 체결한 방식인 1-4-2번 샘플을 대상으로 실험을 다시 수행하였다([표 5] 참조).Therefore, the present applicant conducted the experiment again on the sample 1-4-1 in which the fastening bolts were fastened in the conventional manner and on the sample 1-4-2 in which the fastening bolts were fastened in accordance with the present invention [ Table 5]).
1-4-1번 샘플Sample 1-4-1 1-4-2번 샘플Sample 1-4-2
4차Fourth Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
693693 769769 1535215352 33 3030 1479414794
747747 754754 1579815798 00 2727 1524615246
704704 725725 1459414594 1515 2929 1564815648
오차범위error range 4%4% 4%4% 4%4% -- -- 3%3%
[표 5]를 참조하면, 유량 조절을 수행하는 체결볼트가 체결함에 따라, 체결볼트를 사용하지 않은 경우보다 오차범위가 감소되긴 하였으나, 본 발명에 기반하여 체결볼트를 체결한 방식에 보다는 오차범위가 높게 나타났다.Referring to Table 5, although the error range is reduced as compared with the case where the fastening bolts are not used as the fastening bolts for adjusting the flow amount are fastened, the error range is reduced compared to the fastening bolts fastened according to the present invention Respectively.
이는 상술된 바와 같이, 종래의 체결볼트 체결방식은 물이 새는 것을 방지할 수 없었기 때문인 것으로 판단된다.This is because, as described above, it is judged that the conventional fastening bolt fastening method can not prevent water from leaking.
다만, 2번 샘플의 경우에는 Q1, Q2에서 회전수가 지나치게 낮게 평가되었다.However, in the case of the second sample, the number of rotations was evaluated to be excessively low in Q1 and Q2.
다만, Q3에서 오차범위가 3%로 절감된 것을 확인하였기 때문에, Q1, Q2에서 회전수가 낮아진 것의 원인을 찾는다면, 오차범위의 감소를 실현할 수 있을 것으로 판단되었다.However, since it was confirmed that the error range was reduced to 3% in Q3, if the cause of the decrease in the number of revolutions in Q1 and Q2 is found, it is considered that the error range can be reduced.
본 출원인의 판단으로는 체결볼트로 인해 5L의 적은 유량의 물이 유입되면 임펠러를 회전시키지 못하는 것으로 판단되는데, 이는 구체적으로 아래의 실험들을 참조한다.According to the judgment of the present applicant, it is judged that the impeller can not be rotated if a small amount of water having a flow rate of 5 L is introduced due to the fastening bolt, which will be specifically referred to the following experiments.
[표 6]에 따른 실험은, [표 4]의 1-4-2번 샘플을 대상으로 다시 5회의 실험을 더 수행한 것이다.The experiment according to [Table 6] was further performed five times again on the samples 1-4-2 in [Table 4].
1회1 time 2회Episode 2 3회3rd time 4회4 times 5회5 times
5차5th Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1 Q1 Q2Q2 Q3Q3
00 00 00 671671 715715 1501515015 115115 468468 1553915539 711711 725725 1522315223 716716 758758 1560315603
※ 1-4-2 샘플을 이용※ Using 1-4-2 samples
[표 6]을 참조하면 알 수 있듯이, 1회차 및 3회차에서 Q1, Q2에 따른 회전값이 제대로 측정되지 않으므로, 본 출원인은 임펠러의 회전수를 측정하는 광학센서의 민감도 문제를 염려하여 센서 주변의 주위조명을 Off 시킨 상태로 실험을 수행해보았고, 이는 [표 7]과 같다.As can be seen from Table 6, since the rotation values according to Q1 and Q2 can not be properly measured in the 1st and 3rd rotation, the present applicant is concerned about the sensitivity problem of the optical sensor for measuring the rotation number of the impeller, And the ambient illumination of the lamp was turned off, as shown in [Table 7].
1회1 time 2회Episode 2 3회3rd time
6차6th Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
7575 112112 1520515205 00 00 1506215062 1414 4141 1572015720
708708 741741 1525015250 00 00 1503515035 1111 2626 1570315703
※ 1-4-2 샘플을 이용※ Using 1-4-2 samples
상술된 바와 같이, 센서의 민감도를 고려하여 다시 평가를 수행하였음에도 불구하고, 여전히 Q1, Q2의 회전값에서 낮은 결과를 나타내었다.As described above, although the evaluation was performed again in consideration of the sensitivity of the sensor, the results were still lower in the rotation values of Q1 and Q2.
이에 따라, 본 출원인은 임펠러의 블레이드 부분 중 하단부를 약간 잘라내어 임펠러의 블레이드 하단부가 '
Figure PCTKR2017012982-appb-I000004
'의 형태로 만곡되도록 구성하여 다시 평가를 수행하였고, 그 결과 [표 8]과 같이 Q1, Q2가 다시 정상값을 나타내는 것을 확인하였다.
Accordingly, the present applicant has found that the lower end portion of the blade portion of the impeller is slightly cut off,
Figure PCTKR2017012982-appb-I000004
', As shown in Table 8. As a result, it was confirmed that Q1 and Q2 again showed normal values as shown in [Table 8].
샘플Sample 1-4-2-1번 샘플 이용1-4-2-1 Sample use
회차Turn 1회1 time 2회Episode 2 3회3rd time
7차Seventh Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
699699 715715 1562315623 754754 718718 1549015490 698698 762762 1539615396
715715 776776 1558215582 745745 749749 1546015460 731731 719719 1572215722
765765 742742 1565515655 731731 714714 1549615496 726726 717717 1474714747
오차범위error range 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3%
※ 1-4-2-1번 샘플 : 임펠러의 블레이드 구조 변경한 1-4-2번 샘플※ Samples 1-4-2-1: Samples 1-4-2 of the blade structure of the impeller
상기와 같이, 임펠러의 형태를 일부 변경함으로써, [표 8]과 같이 각 샘플에 대하여 오차범위가 3%로 감소하는 한편, 문제시되었던 Q1, Q2의 결과가 정상으로 나타났다.As described above, by partially changing the shape of the impeller, the error range was reduced to 3% for each sample as shown in Table 8, while the results of the problems Q1 and Q2 were normal.
이에 본 출원인은, 오차범위를 더욱 감소시키기 위하여 제2 홀(15)의 개수를 조절하여 평가를 수행하도록 한다.Thus, the applicant of the present invention adjusts the number of the second holes 15 to further reduce the error range.
이는 상술된 본 발명에 따른 하우징(10) 구조를 갖되, 제2 홀(15)이 12구로 구성된 샘플을 대상으로 총 5회 실험을 하였으며, 각 횟수마다 3번씩 반복하도록 하여 오차범위를 산출하도록 하였다.This experiment was performed five times in total for a sample having 12 holes of the second hole 15 having the structure of the housing 10 according to the present invention, and the error range was calculated by repeating the experiment three times for each number of times .
샘플Sample 1-4-2-1-1번 샘플 이용1-4-2-1-1 Sample use
회차Turn 1회1 time 2회Episode 2 3회3rd time 4회4 times 5회5 times
8차8th car Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
701701 719719 1474514745 739739 720720 1473514735 699699 762762 1485914859 709709 758758 1562215622 738738 742742 1542515425
735735 745745 1565515655 715715 725725 1479514795 704704 724724 1492314923 715715 736736 1557715577 732732 719719 1544115441
712712 760760 1542515425 708708 721721 1485614856 719719 758758 1565615656 737737 727727 1495814958 729729 758758 1565515655
오차범위error range 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3% 3%3%
※ 1-4-2-1-1번 샘플 : 1-4-2-1번 샘플에서 제2 홀의 개수를 12구로 형성한 샘플* Samples 1-4-2-1-1: Samples 1-4-2-1 in which the number of the second holes is 12
[표 9]와 같이 제2 홀(15)을 12구로 구성한 경우, 오차범위는 3%로 나타났다.As shown in Table 9, when the second hole 15 is composed of 12 balls, the error range is 3%.
샘플Sample 1-4-2-1-2번 샘플 이용Sample use 1-4-2-1-2
회차Turn 1회1 time 2회Episode 2 3회3rd time 4회4 times 5회5 times
9차9th Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
705705 729729 1489614896 729729 730730 1493514935 699699 752752 1495914959 709709 751751 1542215422 728728 742742 1542515425
733733 745745 1545515455 715715 725725 1492914929 707707 734734 1492314923 715715 736736 1547715477 732732 729729 1544115441
712712 752752 1542515425 708708 731731 1495614956 719719 754754 1545615456 727727 727727 1495814958 719719 749749 1489814898
오차범위error range 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 2%2%
※ 1-4-2-1-2번 샘플 : 1-4-2-1번 샘플에서 제2 홀의 개수를 8구로 형성한 샘플* Samples 1-4-2-1-2: Samples formed with 8 holes in the number of the second holes in the samples 1-4-2-1
[표 10]과 같이 제2 홀(15)을 12구에서 4개를 에폭시로 폐쇄시켜 8구로 구성한 경우 오차범위는 2%로 감소하였고, 또한 [표 11]과 같이 12구의 제2 홀(15)을 에폭시로 6개 폐쇄시켜 6구로 구성한 경우 오차범위는 1%로 감소하는 것으로 나타났다.As shown in [Table 10], when the second hole 15 was closed with four holes in the eight holes in the twelve holes, the error range was reduced to 2%, and in the second hole 15 ) Was closed with six epoxies, the error range was reduced to 1%.
따라서, 최종적으로 하우징(10)의 최적화된 구조는 제2 홀(15)의 하부방향을 개방하고, 제2 홀(15)의 개수를 6구로 하며, 이때 제2 홀(15)의 비율은 a°의 각도 60°와 b°의 각도 40°이되, 이로 인한 a':a의 비율이 5:1이 되어야 한다.Thus, finally, the optimized structure of the housing 10 opens the lower direction of the second hole 15, and the number of the second holes 15 is 6, wherein the ratio of the second holes 15 is a The angle of 60 ° and the angle of b ° of 40 °, resulting in a ratio of a ': a of 5: 1.
이와 함께, 임펠러의 블레이드의 상술된 구조 역시 제2 홀(15)의 구조에 연관된다.In addition, the above-described structure of the blade of the impeller is also associated with the structure of the second hole 15.
샘플Sample 1-4-2-1-3번 샘플 이용Sample use 1-4-2-1-3
회차Turn 1회1 time 2회Episode 2 3회3rd time 4회4 times 5회5 times
10차Ten cars Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
711711 741741 1527415274 715715 728728 1504815048 721721 736736 1524515245 725725 745745 1514115141 717717 741741 1509715097
726726 746746 1515215152 722722 740740 1535115351 724724 745745 1534815348 716716 734734 1524515245 725725 739739 1524715247
719719 739739 1518915189 719719 745745 1524515245 722722 741741 1526715267 724724 742742 1531115311 721721 740740 1532715327
오차범위error range 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One%
※ 1-4-2-1-3번 샘플 : 1-4-2-1번 샘플에서 제2 홀의 개수를 6구로 형성한 샘플* Samples 1-4-2-1-3: Samples 1-4-2-1 in which the number of the second holes is six
한편, 본 출원인은 상술된 본 발명에 따른 조건으로 구성하되, 제2 홀(15)의 12구 중 6개를 폐쇄시켜 6구로 형성한 것(1-4-2-1-3번 샘플)과, 처음부터 상기 비율을 지키되 제2 홀(15)을 일정간격으로 6개 형성한 것(1-4-2-1-3'번 샘플)의 차이를 살펴보고자 [표 12]와 같은 실험을 수행하였다.On the other hand, the applicant of the present invention has been made up of the above-mentioned conditions according to the present invention, in which six of the 12 holes of the second hole 15 are closed to form six holes (1-4-2-1-3 sample) To investigate the difference in the number of holes (samples 1-4-2-1-3 ') in which six holes were formed at regular intervals while keeping the above ratios from the beginning, the experiment as shown in Table 12 was performed. Respectively.
1-4-2-1-2번 샘플Sample 1-4-2-1-2 1-4-2-1-2'번 샘플1-4-2-1-2 'sample number 1-4-2-1-3번 샘플Sample 1-4-2-1-3 1-4-2-1-3'번 샘플1-4-2-1-3 'sample number
11차11th car Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3 Q1Q1 Q2Q2 Q3Q3
715715 745745 1489614896 705705 734734 1495714957 720720 736736 1523215232 721721 742742 1524115241
707707 730730 1492914929 729729 751751 1544115441 718718 745745 1535115351 721721 738738 1513715137
732732 731731 1547715477 719719 742742 1542515425 723723 741741 1534715347 717717 739739 1529115291
오차범위error range 2%2% 2%2% 2%2% 2%2% 2%2% 2%2% 1%One% 1%One% 1%One% 1%One% 1%One% 1%One%
※ 1-4-2-1-2'번 샘플 : 처음부터 제2 홀의 개수를 8구로 형성한 것※ 1-4-2-1-2 'sample: The number of the second hole from the beginning is formed into 8 spheres
※ 1-4-2-1-3'번 샘플 : 처음부터 제2 홀의 개수를 6구로 형성한 것※ 1-4-2-1-3 'sample: The number of the second holes from the beginning to six
[표 12]를 참조하면 알 수 있듯이, 하우징(10)의 하부측에 형성되는 제2 홀(15)은 12구에서 일정개수를 막아 일정간격을 갖는 8구 또는 6구로 구성하던, 처음부터 일정간격으로 8구 또는 6구로 구성하던, 오차범위에는 영향을 미치지 않는 것으로 확인되었다.As can be seen from Table 12, the second hole 15 formed on the lower side of the housing 10 is composed of 8 or 6 holes having a predetermined distance by blocking a certain number of holes in 12 holes, It is confirmed that the error range, which is composed of 8 or 6 intervals, does not affect the error range.
한편, 상기와 같은 구조를 갖는 본 발명에 따른 유로 유도 및 3축 홀 센서가 적용된 수도계량기에 대해 아래와 같은 구조를 더 제안한다.Meanwhile, the following structure is further proposed for a water meter to which the flow path induction and three-axis hall sensor according to the present invention having the above-described structure is applied.
상기와 같이 오차범위를 1% 대로 감소시키더라도 여전히 오차범위가 존재하기 때문에, 이하에서는 존재하는 오차범위에 따라 회전된 임펠러의 회전수를 기반으로 검침수단(20)에서 검침(계량)된 유량을 실제 유량으로 보정하는 것이다.Since the error range is still present even if the error range is reduced to 1% as described above, the flow rate measured by the meter reading unit 20 based on the number of revolutions of the impeller according to the error range exists The actual flow rate.
이는 첨부된 도면의 도 15 내지 17을 참조한다.This is illustrated in Figures 15-17 of the accompanying drawings.
도 15 내지 17은 3축 홀 센서가 적용된 수도계량기를 도시한 것으로, 수도관이 연결되는 입구부(31)와 출구부(38)가 양측에 각각 형성되며 상면에는 개구부가 형성된 케이싱(30)과, 상기 케이싱(30)의 내부에 구비된 하우징(10)과, 상기 하우징(10)의 내부에 회전가능하게 결합된 임펠러(60)와, 상기 임펠러(60)의 상단에 결합된 영구자석(M)과, 상기 하우징(10)의 상면에 구비되며 하측면에는 상기 영구자석(M)의 회전을 감지하는 감지센서(20a)가 구비된 검침수단(20)으로 구성된다.15 to 17 illustrate a water meter to which a three-axis hall sensor is applied. The water meter includes a casing 30 having an inlet 31 and an outlet 38 to which water pipes are connected, A housing 10 provided in the casing 30; an impeller 60 rotatably coupled to the inside of the housing 10; a permanent magnet M coupled to an upper end of the impeller 60; And a meter reading means 20 provided on the upper surface of the housing 10 and having a sensing sensor 20a for detecting the rotation of the permanent magnet M on a lower side thereof.
설계 조건에 따라서는, 상기 케이싱(30)에 결합되어 상기 케이싱(30)의 상측 개구부를 밀폐하는 밀폐부재(70)로 구성된다.And a sealing member 70 coupled to the casing 30 to seal the upper opening of the casing 30 according to design conditions.
이러한 밀폐부재(70)는 상기 케이싱(30)의 상측 둘레부에 나사결합되며, 중앙부에는 상기 검침수단(20)이 관통하여 고정되고, 상기 검침수단(20)을 덮을 수 있는 내벽이 형성되어, 상기 밀폐부재(70)는 상기 검침수단(20)을 덮는 커버로 구성된다.The sealing member 70 is screwed to the upper circumferential portion of the casing 30 and the center of the sealing member 70 is fixed to the center through the inspecting means 20. An inner wall for covering the inspecting means 20 is formed, The sealing member (70) is constituted by a cover covering the inspection means (20).
이러한 밀폐부재(70)는, 상기 하우징(10)의 상면에 밀착되도록 가압함과 동시에, 상기 케이싱(30)과 검침수단(20) 사이의 틈을 밀폐하여, 상기 케이싱(30)을 통과하는 수돗물이 외부로 유출되지 않도록 한다.The sealing member 70 is pressed so as to be in close contact with the upper surface of the housing 10 and seals the gap between the casing 30 and the meter reading means 20, To the outside.
이때, 상기한 밀폐부재(70)는 도면과 같이 케이싱(30)에 나사결합으로 결합되어 검침수단(20)을 덮을 수도 있으나, 단순 판 형태로서 케이싱(30) 또는 상부 하우징(11)의 제1 상부 하우징(11a) 내경에 결합되어 덮는 구성일 수도 있을 것이다.In this case, the sealing member 70 may be screwed to the casing 30 to cover the meter reading means 20 as shown in the figure, but it may be formed in a simple plate shape as the casing 30 or the first housing 11 And may be configured to be coupled to and cover the inner diameter of the upper housing 11a.
이때, 검침수단(20)에는 계속 언급되었다시피, 영구자석(M)의 회전을 감지하는 감지센서(20a)와, 감지센서(20a)의 신호를 수신하여 상기 임펠러(60)의 회전수를 측정하는 제어수단(도 15의 점선 참조)과, 상기 제어수단에 연결된 디스플레이수단(도 15의 점선 참조)이 구비되며, 이때 감지센서(20a)는 보조검침수단(21)의 삽입홈(21c)에 삽입되도록 케이싱(30)에 결합된다.At this time, the sensing means 20 includes a sensing sensor 20a for sensing the rotation of the permanent magnet M and a sensor for sensing the rotation speed of the impeller 60 by receiving a signal from the sensing sensor 20a, (See the dotted line in Fig. 15) connected to the control means and the detection sensor 20a is connected to the insertion groove 21c of the auxiliary inspection means 21 And is inserted into the casing 30 for insertion.
구체적으로, 감지센서(20a)는 3축 홀 센서의 기능을 수행할 수 있도록 구성된다. 이에 따라, 영구자석(M)의 x축 및 y축(90°위상차, 임펠러(60)의 n/s극 자기장 감지)과 z축(상, 하 방향의 유동)을 감지할 수 있게 된다.Specifically, the detection sensor 20a is configured to perform the function of a three-axis Hall sensor. Accordingly, the x-axis and y-axis (90 ° phase difference, n / s pole magnetic field sensing of the impeller 60) and the z-axis (upward and downward flow) of the permanent magnet M can be sensed.
이러한 감지센서(20a)는, 영구자석(M)의 유동변화를 감지하는 것으로서, 구체적으로는 영구자석(M)까지의 높이를 판단하여 영구자석(M)이 유량 또는 유속에 의해 상, 하 방향으로 유동되는 것을 감지한다.The detection sensor 20a senses a change in the flow of the permanent magnet M and specifically detects the height of the permanent magnet M so that the permanent magnet M can move upward and downward As shown in FIG.
아울러, 검침수단(20)에 포함된 제어수단(52)을 이용하거나, 또는 도면에 도시되지는 않았지만, 검침수단(20)이 외부 장치와 통신할 수 있도록 하여 외부 장치에 제어수단(도면에 미도시)을 더 포함함으로써,It is also possible to use the control means 52 included in the meter reading means 20 or allow the meter reading means 20 to communicate with the external device, Time)
상기 제어수단을 통해 영구자석(M)의 회전과 영구자석(M)의 유동변화를 감지한 감지센서(20a)의 센싱값을 기반으로 임펠러(60)의 회전값을 보정함으로써, 만약 유량 또는 유속이 셈으로 인해 임펠러(60)에 마찰이 증가되어 회전수가 절감되더라도, 회전수를 보정하여 정확한 유량이 적산되도록 할 수 있다.By correcting the rotation value of the impeller 60 based on the sensing value of the sensing sensor 20a sensing the rotation of the permanent magnet M and the flow change of the permanent magnet M through the control means, Even if the number of revolutions is reduced due to an increase in friction in the impeller 60 due to this calculation, the correct number of revolutions can be corrected so that the correct amount of flow can be accumulated.
이때, 영구자석(M)의 유동변화란, 유량 또는 유속의 세기에 따라 임펠러(60)에 마찰이 발생되어 임펠러(60)가 상방향으로 들리게 되면, 영구자석(M)도 함께 들리게 되므로 이를 유동변화로 지칭한다. 이로 인해 감지센서(20a)로부터 이격된 영구자석(M)까지의 거리를 감지하여 영구자석(M)의 유동변화를 감지할 수 있는 것이다.In this case, the flow change of the permanent magnet M means that when the impeller 60 is raised due to the friction of the impeller 60 depending on the flow rate or the velocity, the permanent magnet M is also heard, Change. Therefore, a change in the flow of the permanent magnet M can be sensed by sensing the distance from the sensing sensor 20a to the permanent magnet M spaced apart.
또한, 보정이란, 감지센서(20a)에 의해 감지된 실제 영구자석(M)의 회전수와, 감지센서(20a)에 의해 감지된 유동변화를 기반으로 하여,The correction is based on the number of revolutions of the actual permanent magnet M sensed by the sensor 20a and the flow change sensed by the sensor 20a,
실제 임펠러(60)가 특정 유량에 대하여 회전하도록 설정된 회전값과 비교하고, 비교 결과, 실제 회전수와 설정된 회전값이 다른 경우, 설정된 회전값만큼 계량되어 표시되도록 하는 것을 의미한다. 이를 위해 유량 또는 유속을 판단하기 위한 센서가 더 포함될 수도 있을 것이다.The actual impeller 60 is compared with the rotation value set to rotate with respect to a specific flow rate. When the actual rotation number differs from the set rotation value, the measured impeller 60 is metered and displayed by the set rotation value. To this end, a sensor for determining the flow rate or the flow velocity may be further included.
예를 들어, 임펠러(60)가 100L의 물에 대하여 100바퀴 회전하도록 기본 설정된 경우라도, 실제 물의 유량이나 유속 또는 물에 포함된 이물질 등의 다양한 문제로 인해 정확히 100바퀴가 회전되지 않고, 소정의 오차범위만큼 회전수의 ± 차이가 있을 수 있다.For example, even when the impeller 60 is set so as to rotate 100 times with respect to 100 L of water, it is impossible to accurately rotate 100 revolutions due to various problems such as actual water flow rate, flow velocity, There may be a ± difference in the number of revolutions by the error range.
이에 따라, 본 발명에서는 상술된 보정을 통해, 100바퀴의 회전값이 나왔어야 하지만, 95바퀴 혹은 105바퀴 등 특정 오차범위 내에서 다른 회전수를 실제 회전수로 갖는 경우, 최초 설정된 100바퀴 만큼의 회전값으로 계량하여 디스플레이수단을 통해 출력하는 것이다.Accordingly, in the present invention, a rotation value of 100 revolutions must be obtained through the above-described correction. However, in the case where the revolving revolutions are different within a specific error range such as 95 or 105 revolutions, And outputs it through the display means.
이때, 상술되지는 않았지만 상기 설정된 회전값을 제어수단을 통해 미리 저장하고 있을 수 있으며, 제어수단은 정보의 비교와 보정을 위한 기능이 가능하도록 비교모듈 또는 보정모듈 등을 더 포함할 수도 있을 것이다.At this time, though not described in detail, the set rotation value may be stored in advance through the control means, and the control means may further include a comparison module or a correction module so as to enable the function for comparison and correction of information.
이때, 상기 하우징(10)은 상면이 개방된 원통형으로 구성되며 둘레면에 다수개의 제1 홀(13aa)과 제2 홀(15)이 형성된 하부 하우징(13)과, 상기 하부 하우징(13)의 상측에 결합되며 하측면에는 상측으로 오목한 결합홈(21a)이 형성된 보조검침수단(21)로 구성된다.The lower housing 13 is formed in a cylindrical shape with an open upper surface and a plurality of first holes 13aa and a second hole 15 formed on the circumferential surface of the lower housing 13, And an auxiliary inspection means 21 having a coupling groove 21a concaved upward on the lower side thereof.
그리고 상기 하부 하우징(13)의 내부 하측면에는 상측으로 돌출된 지지축(15c)이 구비되며, 상기 제1 홀(13aa)과 제2 홀(15)은 상기 하부 하우징(13)에 원주방향으로 경사지게 형성된다.The lower housing 13 is provided with a support shaft 15c protruding upward and the first hole 13aa and the second hole 15 are formed in the lower housing 13 in the circumferential direction .
또한, 상기 보조검침수단(21)의 상면 중앙부에는 상기 감지센서(20a)가 삽입되는 삽입홈(22c)이 하측으로 오목하게 형성된다.An insertion groove 22c for inserting the detection sensor 20a is formed at the center of the upper surface of the auxiliary reading means 21 in a downward direction.
그리고, 본 발명에 따르면, 상기 임펠러(60)는 상하방향으로 연장되며 상면이 개방된 지지통체(61)와, 상기 지지통체(61)의 둘레부에서 방사방향으로 연장된 복수 개의 블레이드(62)와, 상기 지지통체(61)의 내부 바닥면에서 상측으로 연장된 회전축(63)으로 구성된다.According to the present invention, the impeller 60 includes a support cylinder 61 extending upward and downward and having an open upper surface, a plurality of blades 62 extending in the radial direction at the periphery of the support cylinder 61, And a rotating shaft 63 extending upward from the inner bottom surface of the supporting cylinder 61. [
이때, 상기 지지통체(61)의 하단에는 상기 지지축(15c)이 삽입되는 결합공(61a)이 형성된다.At this time, a coupling hole 61a into which the support shaft 15c is inserted is formed at the lower end of the support cylinder 61. [
그리고 상기 회전축(63)의 외경은 상기 지지통체(61)의 내경에 비해 작게 구성되어, 회전축(63)의 외주면과 지지통체(61)의 내주면 사이에 틈(G)이 형성되도록 구성된다.The outer diameter of the rotary shaft 63 is smaller than the inner diameter of the support cylinder 61 so that a gap G is formed between the outer circumferential surface of the rotary shaft 63 and the inner circumferential surface of the support cylinder 61.
또한, 상기 회전축(63)의 상단에는 상측으로 연장된 연장바(63a)가 구비된다. 상기 영구자석(M)은 상하방향으로 연장되고 중앙부에 관통공(64)이 형성된 원통형상으로 구성되어, 상기 회전축(63)의 상단 외측, 즉, 상기 연장바(63a)의 외측에 끼움결합된다.Further, an extension bar 63a extending upward is provided at an upper end of the rotary shaft 63. [ The permanent magnet M is cylindrical and extends in the vertical direction and has a through hole 64 formed at the center thereof and is fitted to the outer side of the upper end of the rotary shaft 63, that is, the outer side of the extension bar 63a .
이때, 상기 연장바(63a)의 상하방향 길이는 상기 영구자석(M)의 상하방향 길이에 비해 길게 형성되어, 상기 연장바(63a)에 영구자석(M)을 결합하면, 상기 연장바(63a)의 상단이 상기 영구자석(M)의 상측으로 돌출되도록 구성된다. 이러한 연장바(63a)는 결합홈(21a)의 상면에서 상부방향으로 오목하게 형성된 지지관체(21b)에 삽입되어 지지된다.The length of the extension bar 63a in the up and down direction is longer than the length of the permanent magnet M in the vertical direction. When the permanent magnet M is coupled to the extension bar 63a, Is protruded upward from the permanent magnet M. The extension bar 63a is inserted into and supported by the support tube body 21b formed in the concave upward direction from the upper surface of the coupling groove 21a.
이와 같이 구성된 3축 홀 센서가 적용된 수도계량기는, 상기 임펠러(60)가 상하방향으로 연장되며 상면이 개방된 지지통체(61)와, 상기 지지통체(61)의 둘레부에서 방사방향으로 연장된 복수 개의 블레이드(62)와, 상기 지지통체(61)의 내부 바닥면에서 상측으로 연장된 회전축(63)으로 구성되며, 상기 영구자석(M)은 상하방향으로 연장되고 중앙부에 관통공(64)이 형성된 원통형상으로 구성되어 상기 회전축(63)의 상단 외측에 끼움결합된다.The water meter to which the three-axis hall sensor thus configured is applied is characterized in that the impeller (60) includes a support cylinder (61) whose upper surface is open and which extends in the vertical direction, A plurality of blades 62 and a rotating shaft 63 extending upward from an inner bottom surface of the support cylinder 61. The permanent magnet M extends vertically and has a through hole 64 at the center, And is engaged with the upper end of the upper end of the rotating shaft (63).
또한, 블레이드(62)는 상기에서 하우징(10)을 설명할 때 서술된 바와 같이, 블레이드(62) 부분 중 하단부를 약간 잘라내어 임펠러(60)의 블레이드(62) 하단부가 '
Figure PCTKR2017012982-appb-I000005
'의 형태로 만곡되도록 구성할 수 있다.
The blade 62 may also be formed by cutting a small portion of the lower portion of the blade 62 so that the lower end of the blade 62 of the impeller 60 is &
Figure PCTKR2017012982-appb-I000005
≪ / RTI >
따라서, 상기 임펠러(60)가 고속으로 회전될 때, 영구자석(M)에서 슬립이 발생되는 것을 방지할 수 있을 뿐 아니라, 상기 회전축(63)의 지름을 작게 구성하여, 상기 하우징(10)의 내부를 통과하는 수돗물의 흐름에 의해 회전축(63)과 영구자석(M)이 유동되는 것을 최소화함으로써, 상기 감지센서(20a)로 영구자석(M)의 회전을 측정할 때 오차가 발생되는 것을 방지할 수 있는 장점이 있다.Therefore, when the impeller 60 is rotated at a high speed, the permanent magnet M can be prevented from slipping, and the diameter of the rotation shaft 63 can be reduced, The flow of tap water passing through the inside of the rotating shaft 63 minimizes the flow of the rotating shaft 63 and the permanent magnet M so that an error is prevented from occurring when the rotation of the permanent magnet M is measured by the detection sensor 20a There is an advantage to be able to do.
그리고 상기 회전축(63)의 외경은 상기 지지통체(61)의 내경에 비해 작게 구성되어, 회전축(63)의 외주면과 지지통체(61)의 내주면 사이에 틈(G)이 형성됨으로, 임펠러(60)의 높이를 종래와 동일하게 유지하면서 상기 회전축(63)의 길이를 최대한 길게 연장하는 효과가 발생됨으로, 상기 블레이드(62)에서 발생된 진동이 회전축(63)을 통해 영구자석(M)에 전달되는 것을 최소화하고, 상기 감지센서(20a)로 영구자석(M)의 회전을 측정할 때 오차가 발생되는 것을 더욱 효과적으로 방지할 수 있는 장점이 있다.The outer diameter of the rotating shaft 63 is smaller than the inner diameter of the supporting cylinder 61 so that a gap G is formed between the outer circumferential surface of the rotating shaft 63 and the inner circumferential surface of the supporting cylinder 61, The vibration generated in the blade 62 is transmitted to the permanent magnet M through the rotary shaft 63. The vibration of the permanent magnet M is transmitted to the permanent magnet M through the rotary shaft 63, And it is possible to more effectively prevent an error from occurring when the rotation of the permanent magnet M is measured by the detection sensor 20a.
본 실시예의 경우, 상기 회전축(63)의 외주면과 지지통체(61)의 내주면의 사이에 형성된 틈(G)은 개방된 상태로 구성된 것을 예시하였으나, 도 17에 도시한 바와 같이, 상기 회전축(63)이 외측에 끼움결합되는 탄성링체(65)를 이용하여 상기 틈(G)의 입구부분을 밀폐하는 것도 가능하다.The gap G formed between the outer circumferential surface of the rotary shaft 63 and the inner circumferential surface of the support cylinder 61 is opened in the present embodiment. However, as shown in FIG. 17, the rotary shaft 63 It is also possible to seal the inlet portion of the gap G by using the elastic ring body 65 fitted to the outside of the gap G.
이때, 상기 탄성링체(65)는 탄성이 있는 고무재질로 구성되며, 외주면이 상기 지지통체(61)의 내주면에 밀착되도록 상기 회전축(63)의 외측에 끼움결합됨으로써, 상기 틈(G)의 입구부분을 밀폐할 수 있도록 구성된다.The elastic ring body 65 is made of an elastic rubber material and is fitted to the outer side of the rotation shaft 63 so that the outer circumferential surface thereof is in close contact with the inner circumferential surface of the support cylinder 61, Thereby sealing the portion.
이와 같이, 상기 탄성링체(65)를 이용하여 상기 틈(G)의 입구부분을 밀폐하면, 상기 하우징(10)의 내부를 통과하는 수돗물이 상기 틈(G)으로 유입되어, 상기 임펠러(60)의 무게중심이 틀어짐으로써, 임펠러(60)가 회전될 때 임펠러(60) 전체가 진동되는 것을 방지할 수 있는 장점이 있다.When the inlet of the gap G is sealed using the elastic ring body 65 as described above, tap water passing through the inside of the housing 10 flows into the gap G, It is possible to prevent the entire impeller 60 from being vibrated when the impeller 60 is rotated.
또한, 상기 탄성링체(65)는 탄성이 있는 고무재질로 구성되어, 상기 블레이드(62)에 진동이 발생되면, 상기 탄성링체(65)가 적절히 압축 및 팽창되어 진동을 흡수하는 댐퍼의 기능을 함으로써, 블레이드(62)의 진동이 탄성링체(65)를 통해 회전축(63)으로 전달되는 것을 더욱 효과적으로 방지할 수 있는 장점이 있다.The elastic ring body 65 is made of an elastic rubber material and functions as a damper for absorbing vibration when the elastic ring body 65 is appropriately compressed and expanded when vibration is generated in the blade 62 It is possible to more effectively prevent the vibration of the blade 62 from being transmitted to the rotary shaft 63 through the elastic ring body 65.
상기에서 도면을 이용하여 서술한 것은, 본 발명의 주요 사항만을 서술한 것으로, 그 기술적 범위 내에서 다양한 설계가 가능한 만큼, 본 발명이 도면의 구성에 한정되는 것이 아님은 자명하다.It is apparent that the present invention is not limited to the configuration of the drawings, as described above with reference to the drawings, only the main points of the present invention are described, and various designs can be made within the technical scope thereof.

Claims (8)

  1. 수도계량기의 케이싱(30);A casing (30) of the water meter;
    상기 케이싱(30)에 임펠러와 함께 삽입된 하우징(10);A housing (10) inserted into the casing (30) together with an impeller;
    상기 하우징(10)에 삽입되어 케이싱(30)으로 유입된 수돗물을 계량하는 검침수단(20);A meter reading means (20) inserted into the housing (10) and measuring tap water introduced into the casing (30);
    상기 하우징(10)의 내부에 회전가능하게 결합된 임펠러(60); 및An impeller 60 rotatably coupled to the inside of the housing 10; And
    상기 임펠러(60)의 상단에 결합된 영구자석(M);을 포함하는 수도계량기에 있어서,And a permanent magnet (M) coupled to an upper end of the impeller (60), the meter comprising:
    상기 수도계량기는,The water meter comprises:
    상기 임펠러(60)가 유량의 세짐으로 인해 유동되는 것을 감지하고,It is sensed that the impeller 60 is flowing due to the deterioration of the flow rate,
    임펠러(60)가 유동된 것이 감지되면, 임펠러(60)의 회전수를 보정하여 계량하는 것을 특징으로 하는, 유로 유도 및 3축 홀 센서가 적용된 수도계량기.The meter of claim 1, wherein when the impeller (60) is detected to flow, the flow rate of the impeller (60) is corrected and metered.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 케이싱(30)에 결합되어 상기 케이싱(30)의 개구부를 밀폐하고, 상기 검침수단(20)을 덮는 커버로 구성된 밀폐부재(70);를 더 포함하는 것을 특징으로 하는, 유로 유도 및 3축 홀 센서가 적용된 수도계량기.Further comprising a sealing member (70) coupled to the casing (30) and configured to seal the opening of the casing (30) and to cover the meter reading means (20) Water meter with Hall sensor applied.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 하우징(10)은,The housing (10)
    제1 상부 하우징(11a)와 상기 제1 상부 하우징(11) 보다 작은 직경을 갖으며 하부 방향으로 연장된 제2 상부 하우징(11b)로 구성된 상부 하우징(11); 및An upper housing 11 composed of a first upper housing 11a and a second upper housing 11b having a smaller diameter than the first upper housing 11 and extending in a downward direction; And
    상기 상부 하우징(11)의 하측에 결합되고, 내부에 임펠러가 구비되며, 상기 제2 상부 하우징(11b)의 하측에 직접 연결되는 제1 하부 하우징(13a)과 상기 제1 하부 하우징(13a) 보다 작은 직경을 갖고 하부방향으로 연장되는 제2 하부 하우징(15a)으로 구성된 하부 하우징(13);을 포함하되,A first lower housing 13a coupled to a lower side of the upper housing 11 and having an impeller therein and directly connected to a lower side of the second upper housing 11b, And a lower housing (13) composed of a second lower housing (15a) having a small diameter and extending in a downward direction,
    상기 하부 하우징(13)은,The lower housing (13)
    내부에 구비된 임펠러를 회전시키기 위해 제2 하부 하우징(15a)에 물을 유입시키는 제2 홀(15)이 일정 간격을 가지며 복수 개 배열되어 형성되고, 상기 제2 홀(15)은 물이 유입되는 방향 외에도 하부 하우징(13)의 하부방향으로 더 개방되는 것을 특징으로 하는, 유로 유도 및 3축 홀 센서가 적용된 수도계량기.A second hole 15 for introducing water into the second lower housing 15a for rotating the impeller provided therein, and a plurality of second holes 15 arranged at regular intervals, , And is further opened in the lower direction of the lower housing (13) in addition to the direction of flow.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 케이싱(30)은,The casing (30)
    상기 케이싱(30)의 입구부(31)에 장착되도록 파이프 형태로 형성된 입구장착부재(100); 및An inlet mounting member (100) formed in a pipe shape to be mounted on an inlet (31) of the casing (30); And
    상기 입구장착부재의 내측에 장착되며, 그 단면이 일측단부로부터 타측단부에 이르기까지 점점 넓어지는 형태를 가지는 유수면적가변부재(200);를 포함하되,And a flow area variable member (200) mounted on the inside of the inlet mounting member and having a shape gradually widening from one end to the other end,
    유수면적가변부재(200)의 물외측면(210)의 입구장착부재(100)의 내측면의 크기와 형태에 대응하여 형성되며, 유수면적가변부재의 밑면부(250)의 형태는 부채꼴 형태를 잘라낸 원의 일부 형태로 형성되고,The shape of the bottom surface portion 250 of the water surface area deformable member is formed in correspondence with the size and shape of the inner surface of the inlet mounting member 100 of the outboard side surface 210 of the water surface area variable member 200, Formed in some form of a circle,
    돌기 형태의 체결수단(260,261)이 유수면적가변부재(200)의 몸체에 각각 형성되어 있고, 그에 대응하여 체결수단(260,261)을 수용하는 홈의 형태로 입구장착부재(100)의 몸체에 수용부(110,142)가 형성된 것을 특징으로 하는, 유로 유도 및 3축 홀 센서가 적용된 수도계량기.The protrusion-type fastening means 260 and 261 are respectively formed on the body of the water surface area changeable member 200 and corresponding to the receiving member 100 in the form of a groove for receiving the fastening means 260 and 261, (110, 142) are formed on the upper surface of the water meter.
  5. 청구항 2에 있어서,The method of claim 2,
    상기 하부 하우징(13)은,The lower housing (13)
    상기 제1 하부 하우징(13a)에 일정 간격을 가지며 복수 개 배열되는 제1 홀(13aa)이 형성되되, 상기 제1 홀(13aa)은 상기 제2 상부 하우징(11b)에 맞닿는 영역인 상면이 개방된 형태를 갖고,A first hole 13aa is formed in the first lower housing 13a at a predetermined interval and the first hole 13aa is in contact with the second upper housing 11b. Lt; / RTI >
    제1 홀(13aa) 및 제2 홀(15)은 소정의 방향을 갖도록 경사져 형성되되, 상기 제1 홀(13aa)과 제2 홀(15)은 상호 반대 방향으로 경사지며,The first hole 13aa and the second hole 15 are inclined so as to have a predetermined direction and the first hole 13aa and the second hole 15 are inclined in mutually opposite directions,
    (a) 제2 홀(15)의 경사진 폭(a')은,(a) The inclined width (a ') of the second hole (15)
    제2 하부 하우징(15a)의 반지름(a)에 대하여 1/5의 크기를 갖고,Has a size of 1/5 of the radius (a) of the second lower housing 15a,
    (b) 제2 홀(15)을 이루는 내각 중 가장 작은 각은 40°이고, 제2 홀(15) 사이를 구분하는 돌출벽면을 이루는 내각 중 가장 작은 각은 60°이며,(b) The smallest angle among the internal angles constituting the second holes 15 is 40 DEG, and the smallest angle among the internal angles forming the protruding wall faces that distinguish between the second holes 15 is 60 DEG,
    제2 홀(15)은 6구로 형성되고, 제1 홀(13aa)은 9구로 형성된 것을 특징으로 하는, 유로 유도 및 3축 홀 센서가 적용된 수도계량기.Wherein the second hole (15) is formed in six spheres, and the first hole (13aa) is formed in nine spheres.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 검침수단(20)은,The reading means (20)
    상기 영구자석(M)의 회전을 감지하는 감지센서(20a)와,A sensing sensor 20a for sensing the rotation of the permanent magnet M,
    감지센서(20a)의 신호를 수신하여 상기 임펠러(60)의 회전수를 측정하는 제어수단과,Control means for receiving a signal from the detection sensor 20a and measuring the number of revolutions of the impeller 60,
    상기 제어수단에 연결된 디스플레이수단을 포함하는 것을 특징으로 하는, 유로 유도 및 3축 홀 센서가 적용된 수도계량기.And a display means connected to the control means, wherein the flow path guide and the triaxial hole sensor are applied.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 감지센서(20a)는 3축 홀 센서이고, 영구자석(M)의 90°위상차, n극과 s극의 자기장 감지 및 상 방향 또는 하 방향으로의 유동변화를 감지함으로써,The sensing sensor 20a is a three-axis hall sensor, and detects the magnetic field of the 90 ° phase difference, the n-pole and the s-pole of the permanent magnet M, and senses the upward or downward flow change,
    유량의 세짐으로 인해 임펠러(60)에 마찰이 증가됨에 따라 상기 임펠러(60)가 유동되는 경우, 함께 유동되는 영구자석(M)의 유동변화를 감지하는 것을 특징으로 하는, 유로 유도 및 3축 홀 센서가 적용된 수도계량기.Characterized in that a change in the flow of the permanent magnet (M) flowing together with the impeller (60) is detected when the impeller (60) flows as the friction of the impeller (60) Water meter with sensor applied.
  8. 청구항 6에 있어서,The method of claim 6,
    보정은,The correction may be performed,
    감지센서(51)에 의해 감지된 실제 영구자석(M)의 회전수와, 감지센서(51)에 의해 감지된 유동변화를 기반으로, 실제 임펠러(60)가 특정 유량에 대하여 회전하도록 설정된 회전값과 비교하고, 비교 결과, 실제 회전수와 설정된 회전값이 다른 경우, 설정된 회전값만큼 계량되어 표시되도록 하는 것을 특징으로 하는, 유로 유도 및 3축 홀 센서가 적용된 수도계량기.Based on the number of rotations of the actual permanent magnet M sensed by the sensing sensor 51 and the flow change sensed by the sensing sensor 51, the actual impeller 60 is set to a rotation value And when the actual rotation number and the set rotation value are different from each other as a result of the comparison, the metering is metered and displayed by the set rotation value.
PCT/KR2017/012982 2017-11-15 2017-11-16 Water meter to which flow path guidance and three-axis hall sensor are applied WO2019098408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170152660A KR101841120B1 (en) 2017-11-15 2017-11-15 Water-meter using a inducement water course and 3-axis hall sensor
KR10-2017-0152660 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019098408A1 true WO2019098408A1 (en) 2019-05-23

Family

ID=61901050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012982 WO2019098408A1 (en) 2017-11-15 2017-11-16 Water meter to which flow path guidance and three-axis hall sensor are applied

Country Status (2)

Country Link
KR (1) KR101841120B1 (en)
WO (1) WO2019098408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049049A (en) * 2021-03-10 2021-06-29 福水智联技术有限公司 Water meter anti-rotation detection device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200181250Y1 (en) * 1999-11-26 2000-05-15 신한정밀전자주식회사 Measure error adjustment device of dry water meter
KR200260591Y1 (en) * 2001-09-17 2002-01-10 한국에이오씨(주) Flow sensor capable of stable liquid flow
KR20120135212A (en) * 2009-12-24 2012-12-12 엘비 인터내셔널 에스.피.에이. A device for measuring the flow rate of a fluid, in particular a liquid
KR101381700B1 (en) * 2014-01-15 2014-04-04 서만제 A water gauge
KR101790326B1 (en) * 2016-11-14 2017-10-26 부경수도 주식회사 electric water metering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167960B1 (en) * 2010-08-05 2012-07-23 경성제닉스(주) A Magnetic Shielding Water Meter for Preventing a Rigging
KR101228427B1 (en) * 2012-05-09 2013-01-31 심수택 Digital meter capable of modifying flow and automatic modifying system for the same digital meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200181250Y1 (en) * 1999-11-26 2000-05-15 신한정밀전자주식회사 Measure error adjustment device of dry water meter
KR200260591Y1 (en) * 2001-09-17 2002-01-10 한국에이오씨(주) Flow sensor capable of stable liquid flow
KR20120135212A (en) * 2009-12-24 2012-12-12 엘비 인터내셔널 에스.피.에이. A device for measuring the flow rate of a fluid, in particular a liquid
KR101381700B1 (en) * 2014-01-15 2014-04-04 서만제 A water gauge
KR101790326B1 (en) * 2016-11-14 2017-10-26 부경수도 주식회사 electric water metering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049049A (en) * 2021-03-10 2021-06-29 福水智联技术有限公司 Water meter anti-rotation detection device and method
CN113049049B (en) * 2021-03-10 2022-06-28 福水智联技术有限公司 Water meter anti-rotation detection device and method

Also Published As

Publication number Publication date
KR101841120B1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2019098406A1 (en) Water meter providing enhanced accuracy of flow rate measurement through flow path guidance
WO2019098408A1 (en) Water meter to which flow path guidance and three-axis hall sensor are applied
WO2013187584A1 (en) Clinometer and method for measuring strike and dip angle using same
WO2016186351A1 (en) Truck scale combined with axle-load scale sensor
WO2013176403A1 (en) Electrical gas meter and apparatus and method for remotely transmitting gas usage
US4395907A (en) Air flow rate measuring device
WO2019124947A1 (en) Flow rate measurement device and flow rate measurement method thereby
WO2012067281A1 (en) Gas flow meter and method for measuring velocity of gas
KR100324840B1 (en) Thermal flow sensor
WO2020171413A1 (en) Flow meter for electric drug injection pump and method for measuring flow using same
EP3472598A1 (en) Apparatus and method for measuring dust
US4776213A (en) Mass airflow meter
WO2017073924A1 (en) System and method for determining location of underwater working apparatus using welding line of underwater structure
WO2013168866A1 (en) System and method for detecting ambiguities in satellite signals for gps tracking of vessels
JPS5595373A (en) Semiconductor pressure sensor
KR940002189B1 (en) Throttle body with internally mounted anemometer
WO2021182672A1 (en) Air purifier
WO2019231251A1 (en) Pipe damage detection apparatus, pipe damage detection system using same and pipe damage detection method using same
WO2023128218A1 (en) Method and system for detecting abnormality in hull through combined analysis of vibration and strain
US6694728B2 (en) Exhaust gas dilution apparatus
WO2018074666A1 (en) Flare gas system with vent analysis function
WO2021261813A1 (en) Ultrasonic flow rate measuring apparatus
WO2021029586A1 (en) Tip dresser
WO2021261814A1 (en) Ultrasonic flowrate measurement device, controller therefor, and ultrasonic flowrate measurement method
IE52083B1 (en) A radiation sensing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932488

Country of ref document: EP

Kind code of ref document: A1