WO2019098128A1 - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator Download PDF

Info

Publication number
WO2019098128A1
WO2019098128A1 PCT/JP2018/041617 JP2018041617W WO2019098128A1 WO 2019098128 A1 WO2019098128 A1 WO 2019098128A1 JP 2018041617 W JP2018041617 W JP 2018041617W WO 2019098128 A1 WO2019098128 A1 WO 2019098128A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacer
drive
cylinder
housing
chamber
Prior art date
Application number
PCT/JP2018/041617
Other languages
French (fr)
Japanese (ja)
Inventor
名堯 許
乾 包
孝明 森江
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2019098128A1 publication Critical patent/WO2019098128A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the present invention relates to a cryogenic refrigerator.
  • GM refrigerator Conventionally, GM (Gifford-McMahon) refrigerator is known as a representative example of a cryogenic refrigerator.
  • GM refrigerators are roughly divided into two types, motor-driven and gas-driven, according to their drive sources.
  • motor drive type the displacer is mechanically connected to the motor and driven by the motor.
  • gas drive type the displacer is driven by gas pressure.
  • the rotational motion output from the motor is converted into linear reciprocating motion by a drive mechanism such as a scotch yoke mechanism, whereby the displacer axially reciprocates in the cylinder.
  • a drive mechanism such as a scotch yoke mechanism
  • the lower end of the shaft extending from the scotch yoke mechanism to the displacer is fixed to the upper end of the displacer using an engagement pin.
  • the displacer is located in the cylinder and the scotch yoke mechanism is located in the housing with the motor.
  • the housing is fixed to the cylinder, so to speak, as a lid of the cylinder.
  • the engagement pin is accommodated together with the displacer in the cylinder interior space closed by the housing in this way.
  • Patent No. 5575880 gazette
  • cryogenic refrigerator is disassembled to perform maintenance, and internal components are taken out.
  • an operator when disassembling the above-described typical GM refrigerator, an operator removes the engagement pin from the assembly of the displacer and the scotch yoke mechanism to release the pin engagement, and removes the scotch yoke mechanism from the displacer. The operator then removes the housing from the cylinder and removes the displacer from the cylinder.
  • the engagement pin since the engagement pin is located in a closed space in the cylinder and out of reach of the operator, it is difficult to remove the engagement pin from the assembly of the displacer and the scotch yoke mechanism.
  • the housing can not be completely removed from the cylinder without first removing the engagement pins and removing the scotch yoke mechanism from the displacer. Because the diameter of the shaft connecting the scotch yoke mechanism to the displacer is smaller than the diameter of the scotch yoke mechanism, the scotch yoke mechanism can not pass through the through hole of the housing for passing the shaft.
  • the housing is lifted from the cylinder to create a gap to the extent that the worker's hand or a working tool for removing the engagement pin can be inserted between the cylinder and the housing, and the worker The mating pin can be removed.
  • removing the engagement pin while lifting the housing in that way is by no means an easy task.
  • the total weight of a structure such as a housing to be lifted to create a gap can be quite large, for example, several tens of kg. It is difficult to lift by hand, and it takes time and effort to work, such as the need for lifting equipment such as a crane. Such problems can also occur in the disassembling operation of a gas-driven GM refrigerator.
  • the same decrease in workability may occur also in the assembly operation of the cryogenic refrigerator during the manufacture or maintenance of the cryogenic refrigerator.
  • One of the exemplary objects of an aspect of the present invention is to provide a cryogenic refrigerator having an internal structure that helps to facilitate the disassembly and assembly operations of the cryogenic refrigerator.
  • a cryogenic refrigerator is an axially reciprocable displacer, an axially reciprocable drive flange, and an axially extending drive shaft, said drive flange And a drive shaft having one end rigidly coupled to the displacer and the other end rigidly coupled to the drive flange so as to axially reciprocate the displacer axially reciprocate the displacer axially.
  • a cylinder which can be accommodated, a removable housing lid, and a driving flange chamber which axially reciprocates the driving flange and which is open to the outside when the housing lid is removed,
  • a housing removably secured to the cylinder, the drive flange being alone or as little as the drive shaft With a part, in a state where the housing is removed the placement vital the housing lid to the cylinder, and it is detachably attached to the displacer.
  • a cryogenic refrigerator having an internal structure that helps make the disassembling and assembling operations of the cryogenic refrigerator easier.
  • FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2;
  • FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2;
  • FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2;
  • FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2;
  • FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2;
  • FIG.10 (a) to FIG.10 (c) is a figure which shows roughly the other example of the cryogenic refrigerator which concerns on embodiment.
  • FIG. 1 is a view schematically showing a cryogenic refrigerator 10 according to a first embodiment.
  • the cryogenic refrigerator 10 includes a compressor 12 that compresses a working gas (e.g., helium gas) and a cold head 14 that cools the working gas by adiabatic expansion.
  • the compressor 12 has a compressor discharge port 12a and a compressor suction port 12b.
  • the cold head 14 is also called an expander.
  • the compressor 12 supplies a high pressure (PH) working gas from the compressor discharge port 12 a to the cold head 14.
  • the cold head 14 is provided with a regenerator 15 for precooling the working gas.
  • the precooled working gas is further cooled by expansion in the cold head 14.
  • the working gas is recovered through the regenerator 15 to the compressor suction port 12b.
  • the working gas cools the regenerator 15 as it passes through the regenerator 15.
  • the compressor 12 compresses the recovered low pressure (PL) working gas and supplies it to the cold head 14 again.
  • the illustrated cold head 14 is single stage. However, the cold head 14 may be of a multistage type.
  • the cold head 14 is gas driven. Therefore, the cold head 14 includes an axially movable body 16 as a free piston driven by gas pressure, and a cold head pressure vessel 18 which is airtightly configured and accommodates the axially movable body 16.
  • the cold head pressure vessel 18 axially reciprocably supports the axially movable body 16.
  • the cold head 14 does not have a motor for driving the axially movable body 16 and a coupling mechanism (for example, a scotch yoke mechanism).
  • the axially movable body 16 includes a displacer 20 capable of reciprocating in the axial direction (vertical direction in FIG. 1 and indicated by an arrow C), and a drive flange that is capable of reciprocating in the axial direction.
  • the drive flange forms a drive piston 22 which drives the axial reciprocation of the displacer 20 by means of the acting gas pressure.
  • the drive piston 22 is coupled to the displacer 20 to axially drive the displacer 20.
  • the drive piston 22 is disposed coaxially with and axially separated from the displacer 20.
  • the axially movable body 16 also includes an axially extending drive shaft 24.
  • the drive shaft 24 rigidly couples the displacer 20 to the drive piston 22 such that the displacer 20 axially reciprocates integrally with the drive piston 22.
  • Drive shaft 24 also extends from displacer 20 to drive piston 22 coaxially with displacer 20 and drive piston 22.
  • One axial end (lower end) of the drive shaft 24 is rigidly connected to the displacer 20, and the other axial end (upper end) of the drive shaft 24 is rigidly connected to the drive piston 22. Therefore, the displacer 20 reciprocates in the axial direction by the axial reciprocation of the drive piston 22.
  • the cold head pressure vessel 18 includes a displacer cylinder (also simply referred to as a cylinder) 26 that accommodates the displacer 20 in an axial reciprocating manner, and a housing 27 that accommodates the drive piston 22 in an axial reciprocating manner. And.
  • the housing 27 is removably fixed to the displacer cylinder 26.
  • the housing 27 includes a housing lid 27a and a piston cylinder 28 which is an example of a drive flange chamber.
  • the housing lid 27 a is removable from the piston cylinder 28.
  • the piston cylinder 28 axially reciprocates the drive piston 22 and is opened to the outside when the housing cover 27a is removed.
  • the piston cylinder 28 is disposed coaxially with and axially adjacent to the displacer cylinder 26.
  • the drive piston 22 has smaller dimensions compared to the displacer 20.
  • the axial length of the drive piston 22 is shorter than the axial length of the displacer 20, and the diameter of the drive piston 22 is smaller than the diameter of the displacer 20.
  • the diameter of the drive shaft 24 is smaller than the diameter of the drive piston 22.
  • the volume of the piston cylinder 28 is smaller than the volume of the displacer cylinder 26.
  • the axial length (inner dimension) of the piston cylinder 28 is shorter than the axial length of the displacer cylinder 26, and the inner diameter of the piston cylinder 28 is smaller than the inner diameter of the displacer cylinder 26.
  • the dimensional relationship between the drive piston 22 and the displacer 20 is not limited to that described above, and may be different therefrom.
  • the dimensional relationship between the piston cylinder 28 and the displacer cylinder 26 is not limited to that described above, and may be different therefrom.
  • the axial reciprocation of the displacer 20 is guided by the displacer cylinder 26.
  • the displacer 20 and the displacer cylinder 26 are each an axially extending cylindrical member, the inner diameter of the displacer cylinder 26 corresponding to or slightly larger than the outer diameter of the displacer 20.
  • axial reciprocation of the drive piston 22 is guided by the piston cylinder 28.
  • the drive piston 22 is an axially extending cylindrical member.
  • the piston cylinder 28 is an axially extending cylindrical member, and the inner diameter of the piston cylinder 28 corresponds to the outer diameter of the drive piston 22 or is slightly larger.
  • the axial stroke of the drive piston 22 is equal to the axial stroke of the displacer 20, and both move integrally over the entire stroke.
  • the position of the drive piston 22 relative to the displacer 20 remains unchanged during axial reciprocation of the axially movable body 16.
  • the housing 27 also comprises a shaft guide 30 connecting the displacer cylinder 26 to the piston cylinder 28.
  • the shaft guide 30 extends from the displacer cylinder 26 to the piston cylinder 28 coaxially with the displacer cylinder 26 and the piston cylinder 28.
  • a drive shaft 24 passes through the shaft guide 30.
  • the shaft guide 30 is configured as a bearing for guiding the axial reciprocation of the drive shaft 24. Since the through hole of the shaft guide 30 is formed in accordance with the drive shaft 24, the diameter of the through hole is smaller than the diameter of the displacer 20 and smaller than the diameter of the drive piston 22.
  • the displacer cylinder 26 is airtightly connected to the piston cylinder 28 via the shaft guide 30.
  • the shaft guide 30 is also a partition that separates the inner cavity of the displacer cylinder 26 (ie, the reciprocating space of the displacer 20) and the inner cavity of the piston cylinder 28 (ie, the reciprocating space of the drive piston 22).
  • the housing lid 27a is airtightly attached to the piston cylinder 28.
  • the cold head pressure vessel 18 is configured as a pressure vessel for working gas.
  • the shaft guide 30 is not essential to form a part of the housing 27 and may be a separate member from the housing 27.
  • the cold head pressure vessel 18 may be composed of four members of a housing lid 27 a, a housing body, a shaft guide 30 and a displacer cylinder 26.
  • the housing lid 27a, the housing body and the shaft guide 30 respectively define an upper wall, a side wall and a lower wall of the reciprocating space of the drive piston 22.
  • the housing 27 may be composed of two parts, the shaft guide 30 and the remaining part including the housing lid 27a.
  • the shaft guide 30 may also be part of the displacer cylinder 26.
  • a first seal 32 is provided between the drive shaft 24 and the shaft guide 30.
  • the first seal portion 32 is mounted on either the drive shaft 24 or the shaft guide 30 and slides on the other of the drive shaft 24 or the shaft guide 30.
  • the first seal portion 32 is formed of, for example, a seal member such as a slipper seal or an O-ring. Further, instead of the seal member, the gap between the drive shaft 24 and the shaft guide 30 may be made extremely small to function as a clearance seal.
  • the piston cylinder 28 is airtightly configured with respect to the displacer cylinder 26 by the first seal portion 32. Thus, the piston cylinder 28 is fluidly isolated from the displacer cylinder 26 and no direct gas flow between the piston cylinder 28 and the displacer cylinder 26 occurs.
  • the displacer cylinder 26 is partitioned by the displacer 20 into an expansion chamber 34 and a room temperature chamber 36.
  • the displacer 20 forms an expansion chamber 34 with the displacer cylinder 26 at one axial end, and forms a room temperature chamber 36 with the displacer cylinder 26 at the other axial end.
  • the expansion chamber 34 is disposed on the bottom dead center LP1 side, and the room temperature chamber 36 is disposed on the top dead center UP1 side.
  • the cold head 14 is provided with a cooling stage 38 fixed to the displacer cylinder 26 so as to enclose the expansion chamber 34.
  • the regenerator 15 is built in the displacer 20.
  • the displacer 20 has an inlet channel 40 in the upper lid thereof, which connects the regenerator 15 to the room temperature chamber 36. Further, the displacer 20 has an outlet flow passage 42 communicating the regenerator 15 with the expansion chamber 34 in the cylindrical portion thereof. Alternatively, the outlet channel 42 may be provided in the lower lid of the displacer 20.
  • the regenerator 15 includes an inlet retainer 41 inscribed in the upper lid portion, an outlet retainer 43 inscribed in the lower lid portion, and a regenerator material sandwiched between the two retainers.
  • the cool storage material is illustrated as a dotted area sandwiched by the inlet retainer 41 and the outlet retainer 43.
  • the cold storage material may be, for example, a copper wire mesh.
  • the retainer may be a wire mesh coarser than the regenerator material.
  • a second seal portion 44 is provided between the displacer 20 and the displacer cylinder 26.
  • the second seal portion 44 is, for example, a slipper seal, and is attached to the cylindrical portion or the upper lid portion of the displacer 20. Since the clearance between the displacer 20 and the displacer cylinder 26 is sealed by the second seal portion 44, there is no direct gas flow between the room temperature chamber 36 and the expansion chamber 34 (that is, the gas flow bypassing the regenerator 15).
  • the expansion chamber 34 and the room temperature chamber 36 complementarily increase or decrease in volume. That is, when the displacer 20 moves downward, the expansion chamber 34 narrows and the room temperature chamber 36 widens. The reverse is also true.
  • the working gas flows from the room temperature chamber 36 into the regenerator 15 through the inlet channel 40. More precisely, the working gas flows from the inlet channel 40 into the regenerator 15 through the inlet retainer 41. The working gas flows from the regenerator 15 into the expansion chamber 34 via the outlet retainer 43 and the outlet channel 42. When the working gas returns from the expansion chamber 34 to the room temperature chamber 36, it passes the reverse path. That is, the working gas returns from the expansion chamber 34 to the room temperature chamber 36 through the outlet channel 42, the regenerator 15, and the inlet channel 40. The working gas that bypasses the regenerator 15 and tries to flow through the clearance is shut off by the second seal portion 44.
  • the piston cylinder 28 is divided into two sections by the drive piston 22.
  • the piston cylinder 28 includes a drive chamber 46 as a first section and a gas spring chamber 48 as a second section.
  • the drive piston 22 forms a drive chamber 46 with the piston cylinder 28 at one axial end, and forms a gas spring chamber 48 with the piston cylinder 28 at the other axial end.
  • the drive chamber 46 and the gas spring chamber 48 complementarily increase and decrease the volume.
  • the pressure in the drive chamber 46 is controllable to drive the drive piston 22.
  • the pressure of the gas spring chamber 48 fluctuates as the drive piston 22 moves.
  • the drive chamber 46 is disposed axially opposite to the displacer cylinder 26 with respect to the drive piston 22.
  • the gas spring chamber 48 is disposed on the same side of the drive piston 22 in the axial direction as the displacer cylinder 26. In other words, the drive chamber 46 is disposed on the top dead center UP2 side, and the gas spring chamber 48 is disposed on the bottom dead center LP2 side.
  • the upper surface of the drive piston 22 receives the gas pressure of the drive chamber 46, and the lower surface of the drive piston 22 receives the gas pressure of the gas spring chamber 48.
  • the drive shaft 24 extends from the lower surface of the drive piston 22 through the gas spring chamber 48 to the shaft guide 30. Further, the drive shaft 24 extends through the room temperature chamber 36 to the upper lid of the displacer 20.
  • the gas spring chamber 48 is disposed on the same side as the drive shaft 24 with respect to the drive piston 22, and the drive chamber 46 is disposed on the opposite side of the drive shaft 24 with respect to the drive piston 22.
  • a third seal 50 is provided between the drive piston 22 and the piston cylinder 28.
  • the third seal portion 50 is, for example, a clearance seal, and a slight radial clearance is formed between the drive piston 22 and the piston cylinder 28.
  • the radial clearance substantially prevents the gas flow in the drive chamber 46 and the gas spring chamber 48 or acts as a flow path resistance to the gas flow in the drive chamber 46 and the gas spring chamber 48.
  • the gas spring chamber 48 narrows. At this time, the gas in the gas spring chamber 48 is compressed to increase the pressure. The pressure of the gas spring chamber 48 acts upward on the lower surface of the drive piston 22. Thus, the gas spring chamber 48 generates a gas spring force that resists the downward movement of the drive piston 22. Conversely, the gas spring chamber 48 expands when the drive piston 22 moves up. The pressure of the gas spring chamber 48 decreases, and the gas spring force acting on the drive piston 22 also decreases.
  • the third seal portion 50 may be formed of a seal member such as a slipper seal or an O-ring.
  • the gas spring chamber 48 is sealed by the first seal portion 32 and the third seal portion 50.
  • the drive portion of the gas driven cold head 14 includes the drive piston 22 and the piston cylinder 28.
  • the cold head 14 also includes a gas spring mechanism that acts on the drive piston 22 to relieve or prevent a collision or contact between the displacer 20 and the displacer cylinder 26.
  • the cold head 14 is installed at the site where it is used in the orientation shown. That is, the cold head 14 is installed vertically so that the displacer cylinder 26 is disposed vertically downward and the piston cylinder 28 vertically disposed.
  • the cryogenic refrigerator 10 has the highest refrigeration capacity when installed with the cooling stage 38 oriented vertically downward.
  • the arrangement of the cryogenic refrigerator 10 is not limited to this.
  • the cold head 14 may be installed in a posture in which the cooling stage 38 is directed vertically upward.
  • the coldhead 14 may be installed in a sideways or other orientation.
  • the cold head 14 is provided with a gas spring chamber 48.
  • the gas stored in the gas spring chamber 48 is compressed when the drive piston 22 moves downward, and the pressure increases. Since this pressure acts in the opposite direction to gravity, the driving force acting on the drive piston 22 is reduced. The speed immediately before the drive piston 22 reaches the bottom dead center LP2 can be reduced.
  • the cryogenic refrigerator 10 includes a working gas circuit 52 connecting the compressor 12 to the cold head 14.
  • the working gas circuit 52 is configured to create a pressure differential between the piston cylinder 28 (ie, the drive chamber 46) and the displacer cylinder 26 (ie, the expansion chamber 34 and / or the room temperature chamber 36).
  • the pressure difference causes the axially movable body 16 to move in the axial direction. If the pressure of the displacer cylinder 26 with respect to the piston cylinder 28 is low, the drive piston 22 moves downward, and the displacer 20 also moves downward accordingly. Conversely, if the pressure of the displacer cylinder 26 with respect to the piston cylinder 28 is high, the drive piston 22 moves upward, and the displacer 20 also moves upward accordingly.
  • the working gas circuit 52 comprises a valve unit 54 configured to control the pressure differential between the expansion chamber 34 and the drive chamber 46.
  • the valve unit 54 is attached to the housing lid 27a. Thus, the housing lid 27 a contacts the bottom plate of the valve unit 54.
  • the valve unit 54 is connected to the compressor 12 by piping.
  • the housing lid 27a includes the valve unit 54, and the valve unit 54 is provided separately from the cold head 14 and is disposed outside the cold head pressure vessel 18, and the cold head 14 and piping are provided. It may be connected.
  • the housing lid 27a may be a removable flat plate for closing the piston cylinder 28.
  • the valve unit 54 includes a main pressure switching valve 60 and a sub pressure switching valve 62.
  • the main pressure switching valve 60 has a main intake on-off valve V1 and a main exhaust on-off valve V2.
  • the auxiliary pressure switching valve 62 has an auxiliary intake on-off valve V3 and an auxiliary exhaust on-off valve V4.
  • the main pressure switching valve 60 is disposed in the main intake and exhaust flow path 64 connecting the compressor 12 to the room temperature chamber 36 of the cold head 14.
  • the main intake and exhaust flow passage 64 is branched into a main intake passage 64 a and a main exhaust passage 64 b by the main pressure switching valve 60.
  • the main intake on-off valve V1 is disposed in the main intake passage 64a, and connects the compressor discharge port 12a to the room temperature chamber 36.
  • the main exhaust on-off valve V2 is disposed in the main exhaust passage 64b, and connects the compressor suction port 12b to the room temperature chamber 36.
  • the main pressure switching valve 60 is configured to selectively communicate the compressor discharge port 12 a or the compressor suction port 12 b with the room temperature chamber 36 of the displacer cylinder 26.
  • main intake on-off valve V1 and main exhaust on-off valve V2 are opened exclusively. That is, simultaneous opening of the main intake on-off valve V1 and the main exhaust on-off valve V2 is prohibited.
  • the main intake on-off valve V1 is open, the main exhaust on-off valve V2 is closed.
  • Working gas is supplied from the compressor discharge port 12 a to the displacer cylinder 26 through the main intake and exhaust flow path 64.
  • the main exhaust on-off valve V2 is open, the main intake on-off valve V1 is closed.
  • Working gas is recovered from the displacer cylinder 26 through the main intake and exhaust flow path 64 to the compressor suction port 12 b.
  • the main intake on-off valve V1 and the main exhaust on-off valve V2 may be temporarily closed together.
  • the displacer cylinder 26 is alternately connected to the compressor discharge port 12a and the compressor suction port 12b.
  • the sub pressure switching valve 62 is disposed in the sub air suction and discharge flow path 66 connecting the compressor 12 to the drive chamber 46 of the piston cylinder 28.
  • the auxiliary intake and exhaust flow passage 66 is branched into an auxiliary intake passage 66 a and an auxiliary exhaust passage 66 b by an auxiliary pressure switching valve 62.
  • the auxiliary intake on-off valve V3 is disposed in the auxiliary intake passage 66a, and connects the compressor discharge port 12a to the drive chamber 46.
  • the sub exhaust on-off valve V4 is disposed in the sub exhaust path 66b, and connects the compressor suction port 12b to the drive chamber 46.
  • the auxiliary pressure switching valve 62 is configured to selectively communicate the compressor discharge port 12 a or the compressor suction port 12 b with the drive chamber 46 of the piston cylinder 28.
  • the auxiliary pressure switching valve 62 is configured such that the auxiliary intake on-off valve V3 and the auxiliary exhaust on-off valve V4 are opened exclusively. That is, the simultaneous opening of the auxiliary intake on-off valve V3 and the auxiliary exhaust on-off valve V4 is prohibited.
  • the auxiliary intake on-off valve V3 is open, the auxiliary exhaust on-off valve V4 is closed. The working gas is supplied from the compressor discharge port 12 a to the drive chamber 46 through the sub intake / exhaust flow path 66.
  • the secondary intake on-off valve V3 is closed.
  • the working gas is recovered from the drive chamber 46 through the sub intake / exhaust flow path 66 to the compressor suction port 12 b.
  • the sub air intake on-off valve V3 and the sub exhaust on-off valve V4 may be temporarily closed together.
  • the drive chamber 46 is alternately connected to the compressor discharge port 12a and the compressor suction port 12b.
  • the valve unit 54 may take the form of a rotary valve. That is, the valve unit 54 may be configured such that the valves V1 to V4 are properly switched by rotational sliding of the valve disc with respect to the valve body.
  • the valve unit 54 may include a rotational drive source 56 for rotationally driving the valve unit 54 (for example, a valve disc).
  • the rotational drive source 56 may be attached to the housing lid 27a.
  • the rotational drive source 56 is, for example, a motor. However, the rotational drive source 56 is not connected to the axially movable body 16.
  • the valve unit 54 may also include a control unit 58 that controls the valve unit 54.
  • the controller 58 may control the rotational drive source 56.
  • the valve unit 54 may include a plurality of individually controllable valves V1 to V4, and the control unit 58 may control the opening and closing of each of the valves V1 to V4. In this case, the valve unit 54 may not include the rotational drive source 56.
  • the valve unit 54 can adopt various known configurations.
  • the drive piston 22 alone is configured to be removable from the displacer 20 with the housing 27 mounted on the displacer cylinder 26 and the housing cover 27a removed. That is, with the housing 27 mounted on the displacer cylinder 26 and the housing lid 27 a removed from the housing 27, the operator can attach the drive piston 22 to the drive shaft 24 and remove it from the drive shaft 24. . The operator can attach and detach the drive piston 22 to the displacer 20 by attaching and detaching the drive piston 22 to and from the drive shaft 24.
  • the drive shaft 24 has a shaft tip 24a.
  • the shaft tip 24 a is an end of the drive shaft 24 axially opposite to the displacer 20, and axially protrudes from the main body of the drive shaft 24.
  • the shaft tip 24 a is disposed in the piston cylinder 28 (specifically, the drive chamber 46) and axially extends coaxially with the drive shaft 24.
  • the shaft tip 24 a has a smaller diameter than the main body of the drive shaft 24, and the shaft tip 24 a and the shaft main body can also be referred to as a small diameter portion and a large diameter portion of the drive shaft 24, respectively.
  • a step is formed between the shaft tip 24a and the main body of the drive shaft 24, but this is not essential, and the shaft tip 24a has a small diameter continuously or stepwise from the shaft main body It may be tapered to be
  • the drive piston 22 has a shaft insertion hole shaped to engage with the shaft tip 24 a and is formed in a ring shape. Therefore, the shaft tip 24 a can be inserted into the shaft insertion hole of the drive piston 22. By inserting the shaft tip 24 a into the drive piston 22, the drive piston 22 engages with the shaft tip 24 a. Thus, the drive piston 22 is held in a fixed position at the end of the drive shaft 24 axially opposite to the displacer 20 in the piston cylinder 28. When the drive piston 22 is engaged with the shaft tip 24 a, a portion of the shaft tip 24 a protrudes from the top surface of the drive piston 22 and is located outside the drive piston 22.
  • the axially movable body 16 is provided with a fixing member 68 for detachably fixing the drive piston 22 to the drive shaft 24.
  • the fixed member 68 is mounted on the axially movable body 16 so as to be operable by the operator through the opening of the housing 27 when the housing lid 27a is removed from the housing 27.
  • the fixing member 68 is disposed in the drive chamber 46. When the housing lid 27a is removed from the housing 27, the drive chamber 46 is opened to the outside.
  • the fixing member 68 is configured to be attachable to and detachable from the shaft tip 24 a, and is disposed on the upper surface of the drive piston 22.
  • the fixing member 68 is, for example, a nut, and is screwed to the shaft tip 24a.
  • the fixing member 68 fastens the drive piston 22 by positive rotation around the axis of the fixing member 68 with respect to the drive shaft 24, and reverses fastening of the drive piston 22 by reverse rotation of the fixing member 68 with respect to the drive shaft 24.
  • the drive piston 22 is sandwiched between the fixing member 68 and the drive shaft 24 and fixed to the drive shaft 24.
  • the fixing member 68 is not limited to a nut.
  • the locking member 68 may be a bolt, a snap ring, a pin or any other locking member that removably secures the drive piston 22 to the drive shaft 24.
  • the displacer cylinder 26 comprises a cylinder flange 26a defining a cylinder top opening.
  • the cylinder flange 26 a extends radially outward from the upper end in the axial direction of the displacer cylinder 26.
  • the cylinder top opening is part of the room temperature chamber 36 and allows the displacer 20 to be taken in and out through the cylinder top opening when the housing 27 is removed from the displacer cylinder 26.
  • the housing 27 is removably fixed to the displacer cylinder 26 using a housing fastening member 70.
  • the housing fastening member 70 secures the housing lid 27a to the housing 27 and secures the housing 27 to the cylinder flange 26a.
  • the housing fastening member 70 is, for example, a bolt. Bolt holes pass through the housing lid 27 a and the housing 27, and bolts are inserted into the bolt holes to fix the housing lid 27 a and the housing 27 to the displacer cylinder 26.
  • a separate fastening member may be used for fixing the housing lid 27 a to the housing 27 and for fixing the housing 27 to the displacer cylinder 26.
  • the housing lid 27 a and the housing 27 are formed with a through hole which is a part of the main intake and exhaust flow path 64.
  • the through hole is a gas inlet / outlet corresponding to the end of the main intake / exhaust flow path 64, and the main pressure switching valve 60 is connected to the room temperature chamber 36 through this.
  • a through hole which is a part of the auxiliary air suction and discharge passage 66 is formed in the housing lid 27a.
  • the through hole is a gas inlet / outlet corresponding to the end of the auxiliary air suction and discharge passage 66, and the auxiliary pressure switching valve 62 is connected to the drive chamber 46 through this.
  • the intake process of the cold head 14 is started.
  • the main intake on-off valve V 1 is opened, and high pressure gas is supplied from the discharge port of the compressor 12 to the room temperature chamber 36 of the cold head 14.
  • the gas is cooled while passing through the regenerator 15 and enters the expansion chamber 34.
  • the sub exhaust on-off valve V4 is opened, and the drive chamber 46 of the piston cylinder 28 is connected to the suction port of the compressor 12.
  • the drive chamber 46 is at a low pressure relative to the room temperature chamber 36 and the expansion chamber 34.
  • the drive piston 22 moves from the bottom dead center LP2 toward the top dead center UP2.
  • the drive piston 22 and the displacer 20 also move from the bottom dead center LP1 toward the top dead center UP1.
  • the main intake on-off valve V1 and the sub exhaust on-off valve V4 are closed.
  • the drive piston 22 and the displacer 20 continue to move toward the top dead center UP1, UP2.
  • the volume of the expansion chamber 34 is increased and filled with high pressure gas.
  • the evacuation process of the cold head 14 is started.
  • the main exhaust on-off valve V 2 is opened, and the cold head 14 is connected to the suction port of the compressor 12.
  • the high pressure gas is expanded and cooled in the expansion chamber 34.
  • the expanded gas is recovered by the compressor 12 through the room temperature chamber 36 while cooling the regenerator 15.
  • the sub-intake on-off valve V3 is opened, and high pressure gas is supplied from the discharge port of the compressor 12 to the drive chamber 46 of the piston cylinder 28. Therefore, the driving chamber 46 has a high pressure with respect to the room temperature chamber 36 and the expansion chamber 34.
  • the drive piston 22 moves from the top dead center UP2 toward the bottom dead center LP2.
  • the drive piston 22 and the displacer 20 also move from the top dead center UP1 toward the bottom dead center LP1.
  • the main exhaust on-off valve V2 and the secondary intake on-off valve V3 are closed.
  • the drive piston 22 and the displacer 20 continue to move toward the bottom dead center LP1, LP2.
  • the volume of the expansion chamber 34 is reduced and the low pressure gas is exhausted.
  • the cold head 14 cools the cooling stage 38 by repeating such a cooling cycle (i.e., GM cycle). Thereby, the cryogenic refrigerator 10 can cool a superconducting device or other object (not shown) thermally coupled to the cooling stage 38.
  • a cooling cycle i.e., GM cycle
  • the cryogenic refrigerator 10 is regularly maintained. Prior to maintenance, the cooling operation of the cryogenic refrigerator 10 is stopped. During shutdown, the cryogenic refrigerator 10 is disassembled and internal components such as the displacer 20 are taken out. Necessary maintenance operations such as inspection, repair, and replacement are performed on each component of the cryogenic refrigerator 10, and the cryogenic refrigerator 10 is reassembled. Thus, when the maintenance of the cryogenic refrigerator 10 is completed, the cooling operation of the cryogenic refrigerator 10 is resumed.
  • FIG. 2 is a flowchart illustrating the method of disassembling the cryogenic refrigerator 10 according to the first embodiment.
  • 3 to 6 are schematic views showing the cryogenic refrigerator 10 in each step of the present decomposition method.
  • the housing lid 27a is removed (S10 in FIG. 2).
  • the operator removes the housing fastening member 70 and removes the housing lid 27 a from the housing 27.
  • the housing 27 is mounted as it is on the cylinder flange 26a.
  • the drive chamber 46 is opened to the outside by removing the housing lid 27a.
  • the fixing member 68 is removed (S12). Since the drive chamber 46 is opened to the outside and the fixing member 68 is in the drive chamber 46, the operator performs the removing operation of the fixing member 68 manually or using a suitable work tool. The operator releases the fixation of the drive piston 22 by the fixing member 68. When the fixing member 68 is a nut, the operator rotates the fixing member 68 about the axis in the loosening direction and removes it from the shaft tip 24 a. The fixing member 68 is taken out of the drive chamber 46.
  • the drive piston 22 as a drive flange is removed (S14).
  • the fixing member 68 As the fixing member 68 is removed, the operator removes the drive piston 22 from the drive shaft 24.
  • the drive piston 22 is taken out of the drive chamber 46.
  • the drive shaft 24 can pass through the shaft guide 30.
  • the housing 27 is removed (S16).
  • the operator lifts the housing 27 upward using a manual operation or a lifting device such as a crane, and removes the housing 27.
  • Drive shaft 24 is withdrawn from housing 27.
  • the drive piston 22 does not disturb the removal of the housing 27 since the drive piston 22 has already been removed.
  • the displacer 20 is removed from the displacer cylinder 26 (S18). Since the housing 27 has already been removed from the displacer cylinder 26 and the room temperature chamber 36 is open, the operator takes the displacer 20 out of the displacer cylinder 26 through the cylinder upper opening. Thus, the cryogenic refrigerator 10 is disassembled. The operator can do the reverse procedure when assembling the cryogenic refrigerator 10.
  • FIG. 7 is a schematic view showing a cryogenic refrigerator 10 'according to a comparative example.
  • the drive piston 22 is non-removably fixed to the drive shaft 24.
  • the cryogenic refrigerator 10 ′ does not have the fixing member 68.
  • the lower end of the drive shaft 24 is fixed to the upper end of the displacer 20 using an engagement pin 72.
  • the engagement pin 72 is accommodated in the internal space of the displacer cylinder 26 together with the displacer 20. Since the cylinder internal space is closed by the housing 27, the engagement pin 72 can not reach the operator's hand.
  • the worker in disassembling work of the cryogenic refrigerator 10 'according to the comparative example, the worker must lift the housing 27 from the displacer cylinder 26 to create a gap, and the worker must remove the engagement pin 72 from the gap .
  • the lifting operation is not easy because the weight of the housing 27 can be, for example, several tens of kg. It is difficult to lift by hand, and it takes time and effort to work, such as the need for lifting equipment such as a crane.
  • the operator can remove the drive piston 22 from the displacer 20 with the housing 27 mounted on the displacer cylinder 26 and the housing lid 27a removed. It is. With the housing 27 still mounted on the displacer cylinder 26, the operator can release the fixation of the drive piston 22 by the fixing member 68 through the opening of the housing 27 and remove the drive piston 22 from the drive shaft 24. Then, the operator can remove the housing 27 from the displacer cylinder 26. In addition, when assembling the cryogenic refrigerator 10, the worker can carry out in the reverse procedure.
  • the cryogenic refrigerator 10 according to the first embodiment As in the comparative example, the cryogenic refrigerator 10 according to the first embodiment And the assembly operation becomes easy. The time required for work is reduced.
  • the drive piston 22 is detachably fixed to the drive shaft 24 by a fixing member 68.
  • the fixing member 68 can adopt an easily detachable structure such as a nut. This also helps to improve the workability.
  • the drive chamber 46 is opened to the outside, and the fixing member 68 is disposed in the drive chamber 46. Therefore, it is easier for the operator to operate the fixing member 68 than when the fixing member 68 is disposed at another place such as the gas spring chamber 48, for example.
  • cryogenic refrigerator 10 is a gas drive-type GM refrigerator, it is not restricted to this, but cryogenic refrigerator 10 may be a motor drive-type GM refrigerator .
  • FIG. 8 is a view schematically showing a cryogenic refrigerator 10 according to a second embodiment.
  • the cryogenic refrigerator 10 is a motor driven GM refrigerator.
  • the cryogenic refrigerator 10 according to the second embodiment will be described focusing on a configuration different from the first embodiment, and the common configuration will be briefly described or omitted.
  • the axially movable body 16 of the cold head 14 includes an axially reciprocable displacer 20 and an axially reciprocable drive flange.
  • the drive flange forms the yoke plate 74 of the scotch yoke mechanism.
  • One axial end (lower end) of the drive shaft 24 is rigidly connected to the displacer 20, and the other axial end (upper end) of the drive shaft 24 is rigidly connected to the yoke plate 74. Therefore, the displacer 20 reciprocates in the axial direction by the axial reciprocation of the yoke plate 74.
  • the yoke plate 74 is accommodated in a reciprocating space 76 of the yoke plate 74 which is an internal cavity of the housing 27.
  • the radial width of the yoke plate 74 is smaller than the diameter of the displacer 20.
  • the diameter of the drive shaft 24 is smaller than the radial width of the yoke plate 74. Since the through hole of the shaft guide 30 is formed to match the drive shaft 24, the diameter of the through hole is smaller than the diameter of the displacer 20 and smaller than the radial width of the yoke plate 74.
  • the scotch yoke mechanism may be a well-known one, and an example thereof is described in, for example, Japanese Patent No. 5575880, and therefore will not be described in detail here. No. 5,575,880 is hereby incorporated by reference in its entirety.
  • the yoke plate 74 is configured to be removable from the displacer 20 in a state where the housing 27 is mounted on the displacer cylinder 26 and the housing lid 27a is removed together with a part of the drive shaft 24.
  • the axially movable body 16 comprises a threaded connection 78 arranged on the drive shaft 24.
  • the drive shaft 24 is divided into a shaft upper portion 24b on the yoke plate 74 side and a shaft lower portion 24c on the displacer 20 side, with the screw connection portion 78 as a boundary.
  • the upper shaft portion 24 b is fixed to the yoke plate 74, and the lower shaft portion 24 c is fixed to the displacer 20.
  • the housing lid 27a may be provided with another shaft guide 33.
  • FIG. 9 is a schematic view showing one step of the method of disassembling the cryogenic refrigerator 10 according to the second embodiment.
  • FIG. 9 shows the housing lid 27a removed and the housing 27 mounted on the cylinder flange 26a. By removing the housing cover 27a, the reciprocating space 76 of the yoke plate 74 is opened to the outside.
  • the operator can remove the yoke plate 74 from the displacer 20 by operating the screw connection portion 78.
  • the screw connection portion 78 fastens the yoke plate 74 by the positive rotation E around the axis of the yoke plate 74 with respect to the displacer 20, and disengages the yoke plate 74 by the reverse rotation F around the yoke plate 74 with respect to the displacer 20.
  • the shaft upper portion 24b rotates with the yoke plate 74 relative to the shaft lower portion 24c, and the screw connection portion 78 can be tightened and released.
  • the operator can detach the yoke plate 74 from the displacer 20 with the housing 27 placed on the displacer cylinder 26 and the housing lid 27a removed. It is. With the housing 27 still mounted on the displacer cylinder 26, the operator can release the fastening by the screw connection 78 through the opening of the housing 27 and remove the yoke plate 74 from the lower shaft 24c together with the upper shaft 24b. Then, the operator can remove the housing 27 from the displacer cylinder 26. In addition, when assembling the cryogenic refrigerator 10, the worker can carry out in the reverse procedure.
  • the cryogenic refrigerator 10 according to the second embodiment performs disassembly work And the assembly operation becomes easy. The time required for work is reduced.
  • a threaded connection 78 may be disposed between the drive shaft 24 and the displacer 20, as shown in FIG. 10 (a).
  • the screw connection portion 78 is disposed in the reciprocating space 76 of the yoke plate 74, but as shown in FIG. 10, the screw connection portion 78 may be disposed in the room temperature chamber 36. .
  • the operator can remove the yoke plate 74 from the displacer 20 along with the entire drive shaft 24.
  • the screw connection portion 78 is also applicable to a gas driven GM refrigerator.
  • the screw connection 78 may be disposed between the drive piston 22 and the drive shaft 24.
  • the screw connection portion 78 fastens the drive piston 22 by positive rotation around the axis of the drive piston 22 with respect to the displacer 20, and disengages the drive piston 22 by reverse rotation around the axis of the drive piston 22 with respect to the displacer 20.
  • the screw connection portion 78 may be disposed on the drive shaft 24 or may be disposed between the drive shaft 24 and the displacer 20.
  • the fixing member 68 is applicable not only to a gas driven GM refrigerator but also to a motor driven GM refrigerator.
  • the fixing member 68 may be provided on the lower frame portion of the yoke plate 74 so as to detachably fix the yoke plate 74 to the drive shaft 24.
  • the housing 27 placed on the displacer cylinder 26 and the housing cover 27a removed, the operator can detachably attach the yoke plate 74 to the displacer 20 alone.
  • the fixing member 68 it is not essential that the fixing member 68 be installed on the upper surface of the drive flange, and the fixing member 68 may be installed on the lower part of the drive flange.
  • the drive flange mounting structure according to the embodiment is also applicable to other cryogenic refrigerators such as a Solvay refrigerator.
  • An axially reciprocable displacer An axially reciprocable drive flange, An axially extending drive shaft having one end rigidly coupled to the displacer and the other end rigidly coupled to the drive flange such that the displacer axially reciprocates by axial reciprocation of the drive flange;
  • a cylinder which accommodates the displacer so as to be axially reciprocable;
  • a removable housing lid and a drive flange chamber axially reciprocably accommodating the drive flange and open to the outside when the housing lid is removed, and removably fixed to the cylinder A housing, and
  • the drive flange may be configured to be removable from the displacer in a state in which the housing is mounted on the cylinder and the housing lid is removed alone or together with at least a part of the drive shaft. Cryogenic refrigerator.
  • cryogenic refrigerator according to claim 1, further comprising a fixing member for detachably fixing the drive flange to the drive shaft.
  • the drive flange is disposed in the drive flange chamber so as to divide the drive flange chamber into a first section axially opposite to the displacer and a second section on the displacer side.
  • the first section of the drive flange chamber is open to the outside when the housing lid is removed,
  • the cryogenic refrigerator according to Embodiment 2 wherein the fixing member is disposed in the first section of the driving flange chamber.
  • the drive flange and the drive shaft are coupled such that the drive flange is fastened by positive rotation around the drive flange relative to the displacer while fastening the drive flange by reverse rotation around the drive flange relative to the displacer.
  • cryogenic refrigerator 20 displacers, 22 drive pistons, 24 drive shafts, 27 housings, 27a housing lids, 68 fixing members, 74 yoke plates, 78 screw connections.
  • the invention can be used in the field of cryogenic refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

A cryogenic refrigerator 10 is provided with: a displacer 20 capable of reciprocating in an axial direction; a drive piston 22 capable of reciprocating in the axial direction; a drive shaft 24, one end of which is rigidly coupled to the displacer 20 and the other end of which is rigidly coupled to the drive piston 22; a displacer cylinder 26 housing the displacer 20 such that the displacer 20 can reciprocate in the axial direction; and a housing 27 provided with a removable housing cover 27a. The drive piston 22 is configured to place the housing 27 onto the displacer cylinder 26 independently or together with at least a part of the drive shaft 24 and to be attachable to and detachable from the displacer 20 with the housing cover 27a removed.

Description

極低温冷凍機Cryogenic refrigerator
 本発明は、極低温冷凍機に関する。 The present invention relates to a cryogenic refrigerator.
 従来から、GM(ギフォード・マクマホン、Gifford-McMahon)冷凍機が極低温冷凍機の代表例として知られている。GM冷凍機はその駆動源によってモータ駆動型とガス駆動型の2種類に大きく分けられる。モータ駆動型においては、ディスプレーサがモータに機械的に連結され、モータによって駆動される。ガス駆動型においては、ディスプレーサがガス圧によって駆動される。 Conventionally, GM (Gifford-McMahon) refrigerator is known as a representative example of a cryogenic refrigerator. GM refrigerators are roughly divided into two types, motor-driven and gas-driven, according to their drive sources. In the motor drive type, the displacer is mechanically connected to the motor and driven by the motor. In the gas drive type, the displacer is driven by gas pressure.
 典型的なモータ駆動型のGM冷凍機においては、モータが出力する回転運動がスコッチヨーク機構などの駆動機構によって直線往復運動に変換され、それによりディスプレーサがシリンダ内を軸方向に往復動する。スコッチヨーク機構からディスプレーサに延びるシャフトの下端がディスプレーサ上端に係合ピンを用いて固定されている。通例、ディスプレーサはシリンダ内に配置され、スコッチヨーク機構はハウジング内にモータとともに配置されている。ハウジングはシリンダに固定され、いわばシリンダの蓋となる。こうしてハウジングにより閉鎖されたシリンダ内部空間に、係合ピンはディスプレーサとともに収容されている。 In a typical motor-driven GM refrigerator, the rotational motion output from the motor is converted into linear reciprocating motion by a drive mechanism such as a scotch yoke mechanism, whereby the displacer axially reciprocates in the cylinder. The lower end of the shaft extending from the scotch yoke mechanism to the displacer is fixed to the upper end of the displacer using an engagement pin. Typically, the displacer is located in the cylinder and the scotch yoke mechanism is located in the housing with the motor. The housing is fixed to the cylinder, so to speak, as a lid of the cylinder. The engagement pin is accommodated together with the displacer in the cylinder interior space closed by the housing in this way.
特許第5575880号公報Patent No. 5575880 gazette
 一般に、極低温冷凍機には定期的にメンテナンスを施すことが望まれる。メンテナンスを行うために極低温冷凍機は分解され、内部の構成部品が取り出される。 Generally, it is desirable to perform periodic maintenance on cryogenic refrigerators. The cryogenic refrigerator is disassembled to perform maintenance, and internal components are taken out.
 たとえば上述の典型的なGM冷凍機を分解する場合、作業者は、ディスプレーサとスコッチヨーク機構の組立体から係合ピンを取り外してピン係合を解除し、スコッチヨーク機構をディスプレーサから取り外す。それから作業者はハウジングをシリンダから取り外し、ディスプレーサをシリンダから取り出す。しかし、係合ピンはシリンダ内の閉鎖空間という作業者の手が届かない場所にあるから、ディスプレーサとスコッチヨーク機構の組立体からの係合ピンの取り外し作業には困難がある。 For example, when disassembling the above-described typical GM refrigerator, an operator removes the engagement pin from the assembly of the displacer and the scotch yoke mechanism to release the pin engagement, and removes the scotch yoke mechanism from the displacer. The operator then removes the housing from the cylinder and removes the displacer from the cylinder. However, since the engagement pin is located in a closed space in the cylinder and out of reach of the operator, it is difficult to remove the engagement pin from the assembly of the displacer and the scotch yoke mechanism.
 係合ピンの取り外し作業を始める前に、あらかじめハウジングをシリンダから取り外すことが仮にできたとすれば、閉じられていたシリンダ内部空間が開放され、作業者の手が届くようになるから、係合ピンの取り外し作業は容易になる。しかし、実際には、まず係合ピンを取り外してスコッチヨーク機構をディスプレーサから取り外さなければ、ハウジングをシリンダから完全に取り外すことができない。なぜなら、スコッチヨーク機構をディスプレーサに連結するシャフトの径がスコッチヨーク機構の径よりも小さいので、シャフトを通すためのハウジングの貫通穴をスコッチヨーク機構が通り抜けられないからである。 If it was possible to remove the housing from the cylinder in advance before starting the removal operation of the engagement pin, the closed cylinder internal space would be opened and the hand of the operator could be reached. Removal work of will be easier. However, in practice, the housing can not be completely removed from the cylinder without first removing the engagement pins and removing the scotch yoke mechanism from the displacer. Because the diameter of the shaft connecting the scotch yoke mechanism to the displacer is smaller than the diameter of the scotch yoke mechanism, the scotch yoke mechanism can not pass through the through hole of the housing for passing the shaft.
 例示的な分解作業手順においては、作業者の手または係合ピン取り外し用の作業工具をシリンダとハウジングの間に挿入できる程度にハウジングをシリンダから持ち上げて隙間を作り出し、作業者はその隙間から係合ピンを取り外すことができる。しかし、そのようにハウジングを持ち上げながら係合ピンを取り外すのは決して簡単な作業ではない。とりわけ、大型のGM冷凍機であれば、隙間を作るために持ち上げるべきハウジングなどの構造物の総重量がかなり大きくなり、例えば数十kgにもなりうる。人手で持ち上げるのは困難であり、クレーンなどの持ち上げ器具を要するなど、作業に手間と時間がかかる。このような問題は、ガス駆動型のGM冷凍機の分解作業においても起こりうる。 In an exemplary disassembly procedure, the housing is lifted from the cylinder to create a gap to the extent that the worker's hand or a working tool for removing the engagement pin can be inserted between the cylinder and the housing, and the worker The mating pin can be removed. However, removing the engagement pin while lifting the housing in that way is by no means an easy task. In particular, in the case of a large GM refrigerator, the total weight of a structure such as a housing to be lifted to create a gap can be quite large, for example, several tens of kg. It is difficult to lift by hand, and it takes time and effort to work, such as the need for lifting equipment such as a crane. Such problems can also occur in the disassembling operation of a gas-driven GM refrigerator.
 また、極低温冷凍機の製造時またはメンテナンス後における極低温冷凍機の組立作業においても同様の作業性の低下は起こりうる。 In addition, the same decrease in workability may occur also in the assembly operation of the cryogenic refrigerator during the manufacture or maintenance of the cryogenic refrigerator.
 本発明のある態様の例示的な目的のひとつは、極低温冷凍機の分解作業および組立作業をより容易にすることに役立つ内部構造を有する極低温冷凍機を提供することにある。 One of the exemplary objects of an aspect of the present invention is to provide a cryogenic refrigerator having an internal structure that helps to facilitate the disassembly and assembly operations of the cryogenic refrigerator.
 本発明のある態様によると、極低温冷凍機は、軸方向に往復動可能なディスプレーサと、軸方向に往復動可能な駆動フランジと、軸方向に延在する駆動シャフトであって、前記駆動フランジの軸方向往復動により前記ディスプレーサが軸方向に往復動するように一端が前記ディスプレーサに剛に連結され他端が前記駆動フランジに剛に連結された駆動シャフトと、前記ディスプレーサを軸方向に往復動可能に収容するシリンダと、取り外し可能なハウジング蓋と、前記駆動フランジを軸方向に往復動可能に収容するとともに、前記ハウジング蓋が取り外されたとき外部に開放される駆動フランジ室と、を備え、前記シリンダに取り外し可能に固定されたハウジングと、を備え、前記駆動フランジは、単体でまたは前記駆動シャフトの少なくとも一部とともに、前記ハウジングを前記シリンダに載置しかつ前記ハウジング蓋を取り外した状態で、前記ディスプレーサに着脱可能に構成されている。 According to one aspect of the present invention, a cryogenic refrigerator is an axially reciprocable displacer, an axially reciprocable drive flange, and an axially extending drive shaft, said drive flange And a drive shaft having one end rigidly coupled to the displacer and the other end rigidly coupled to the drive flange so as to axially reciprocate the displacer axially reciprocate the displacer axially. A cylinder which can be accommodated, a removable housing lid, and a driving flange chamber which axially reciprocates the driving flange and which is open to the outside when the housing lid is removed, A housing removably secured to the cylinder, the drive flange being alone or as little as the drive shaft With a part, in a state where the housing is removed the placement vital the housing lid to the cylinder, and it is detachably attached to the displacer.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It is to be noted that any combination of the above-described constituent elements, or one in which the constituent elements and expressions of the present invention are mutually replaced among methods, apparatuses, systems, etc. is also effective as an aspect of the present invention.
 本発明によれば、極低温冷凍機の分解作業および組立作業をより容易にすることに役立つ内部構造を有する極低温冷凍機を提供することができる。 According to the present invention, it is possible to provide a cryogenic refrigerator having an internal structure that helps make the disassembling and assembling operations of the cryogenic refrigerator easier.
第1の実施の形態に係る極低温冷凍機を概略的に示す図である。It is a figure showing roughly the cryogenic refrigerator concerning a 1st embodiment. 第1の実施の形態に係る極低温冷凍機の分解方法を例示するフローチャートである。It is a flowchart which illustrates the decomposition | disassembly method of the cryogenic refrigerator which concerns on 1st Embodiment. 図2に示される分解方法のある工程における極低温冷凍機を示す概略図である。FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2; 図2に示される分解方法のある工程における極低温冷凍機を示す概略図である。FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2; 図2に示される分解方法のある工程における極低温冷凍機を示す概略図である。FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2; 図2に示される分解方法のある工程における極低温冷凍機を示す概略図である。FIG. 3 is a schematic view of the cryogenic refrigerator in one step of the decomposition method shown in FIG. 2; 比較例に係る極低温冷凍機を示す概略図である。It is the schematic which shows the cryogenic refrigerator concerning a comparative example. 第2の実施の形態に係る極低温冷凍機を概略的に示す図である。It is a figure showing roughly the cryogenic refrigerator concerning a 2nd embodiment. 第2の実施の形態に係る極低温冷凍機の分解方法の一工程を示す概略図である。It is the schematic which shows 1 process of the decomposition | disassembly method of the cryogenic refrigerator which concerns on 2nd Embodiment. 図10(a)から図10(c)は、実施の形態に係る極低温冷凍機の他の例を概略的に示す図である。Fig.10 (a) to FIG.10 (c) is a figure which shows roughly the other example of the cryogenic refrigerator which concerns on embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。また、以下の説明において参照する図面において、各構成部材の大きさや厚みは説明の便宜上のものであり、必ずしも実際の寸法や比率を示すものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the description, the same elements will be denoted by the same reference signs, and overlapping descriptions will be omitted as appropriate. Further, the configurations described below are exemplifications and do not limit the scope of the present invention. Further, in the drawings referred to in the following description, the size and thickness of each component are for convenience of description, and do not necessarily indicate actual dimensions and ratios.
 図1は、第1の実施の形態に係る極低温冷凍機10を概略的に示す図である。 FIG. 1 is a view schematically showing a cryogenic refrigerator 10 according to a first embodiment.
 極低温冷凍機10は、作動ガス(例えばヘリウムガス)を圧縮する圧縮機12と、作動ガスを断熱膨張により冷却するコールドヘッド14と、を備える。圧縮機12は、圧縮機吐出口12aおよび圧縮機吸入口12bを有する。コールドヘッド14は膨張機とも呼ばれる。 The cryogenic refrigerator 10 includes a compressor 12 that compresses a working gas (e.g., helium gas) and a cold head 14 that cools the working gas by adiabatic expansion. The compressor 12 has a compressor discharge port 12a and a compressor suction port 12b. The cold head 14 is also called an expander.
 詳しくは後述するように、圧縮機12は、圧縮機吐出口12aからコールドヘッド14に高圧(PH)の作動ガスを供給する。コールドヘッド14には作動ガスを予冷する蓄冷器15が備えられている。予冷された作動ガスは、コールドヘッド14内での膨張によって更に冷却される。作動ガスは蓄冷器15を通じて圧縮機吸入口12bに回収される。作動ガスは蓄冷器15を通るとき蓄冷器15を冷却する。圧縮機12は、回収した低圧(PL)の作動ガスを圧縮し、再びコールドヘッド14に供給する。 As described in detail later, the compressor 12 supplies a high pressure (PH) working gas from the compressor discharge port 12 a to the cold head 14. The cold head 14 is provided with a regenerator 15 for precooling the working gas. The precooled working gas is further cooled by expansion in the cold head 14. The working gas is recovered through the regenerator 15 to the compressor suction port 12b. The working gas cools the regenerator 15 as it passes through the regenerator 15. The compressor 12 compresses the recovered low pressure (PL) working gas and supplies it to the cold head 14 again.
 図示されるコールドヘッド14は単段式である。ただし、コールドヘッド14は、多段式であってもよい。 The illustrated cold head 14 is single stage. However, the cold head 14 may be of a multistage type.
 コールドヘッド14は、ガス駆動型である。よって、コールドヘッド14は、ガス圧で駆動されるフリーピストンとしての軸方向可動体16と、気密に構成され軸方向可動体16を収容するコールドヘッド圧力容器18と、を備える。コールドヘッド圧力容器18は、軸方向可動体16を軸方向に往復動可能に支持する。モータ駆動型のGM冷凍機とは異なり、コールドヘッド14は、軸方向可動体16を駆動するモータおよび連結機構(例えばスコッチヨーク機構)を有しない。 The cold head 14 is gas driven. Therefore, the cold head 14 includes an axially movable body 16 as a free piston driven by gas pressure, and a cold head pressure vessel 18 which is airtightly configured and accommodates the axially movable body 16. The cold head pressure vessel 18 axially reciprocably supports the axially movable body 16. Unlike a motor driven GM refrigerator, the cold head 14 does not have a motor for driving the axially movable body 16 and a coupling mechanism (for example, a scotch yoke mechanism).
 軸方向可動体16は、軸方向(図1において上下方向、矢印Cで示す)に往復動可能なディスプレーサ20と、軸方向に往復動可能な駆動フランジと、を備える。駆動フランジは、作用するガス圧力によってディスプレーサ20の軸方向往復動を駆動する駆動ピストン22を形成する。駆動ピストン22は、ディスプレーサ20を軸方向に駆動するようディスプレーサ20に連結される。駆動ピストン22は、ディスプレーサ20と同軸にかつ軸方向に離れて配設されている。 The axially movable body 16 includes a displacer 20 capable of reciprocating in the axial direction (vertical direction in FIG. 1 and indicated by an arrow C), and a drive flange that is capable of reciprocating in the axial direction. The drive flange forms a drive piston 22 which drives the axial reciprocation of the displacer 20 by means of the acting gas pressure. The drive piston 22 is coupled to the displacer 20 to axially drive the displacer 20. The drive piston 22 is disposed coaxially with and axially separated from the displacer 20.
 また軸方向可動体16は、軸方向に延在する駆動シャフト24を備える。駆動シャフト24は、ディスプレーサ20が駆動ピストン22と一体に軸方向に往復動するようディスプレーサ20を駆動ピストン22に剛に連結する。駆動シャフト24もまたディスプレーサ20および駆動ピストン22と同軸にディスプレーサ20から駆動ピストン22へと延びている。駆動シャフト24の軸方向一端(下端)がディスプレーサ20に剛に連結され駆動シャフト24の軸方向他端(上端)が駆動ピストン22に剛に連結されている。そのため、駆動ピストン22の軸方向往復動によりディスプレーサ20が軸方向に往復動する。 The axially movable body 16 also includes an axially extending drive shaft 24. The drive shaft 24 rigidly couples the displacer 20 to the drive piston 22 such that the displacer 20 axially reciprocates integrally with the drive piston 22. Drive shaft 24 also extends from displacer 20 to drive piston 22 coaxially with displacer 20 and drive piston 22. One axial end (lower end) of the drive shaft 24 is rigidly connected to the displacer 20, and the other axial end (upper end) of the drive shaft 24 is rigidly connected to the drive piston 22. Therefore, the displacer 20 reciprocates in the axial direction by the axial reciprocation of the drive piston 22.
 コールドヘッド圧力容器18は、ディスプレーサ20を軸方向に往復動可能に収容するディスプレーサシリンダ(単に、シリンダと称することもある)26と、駆動ピストン22を軸方向に往復動可能に収容するハウジング27と、を備える。ハウジング27は、ディスプレーサシリンダ26に取り外し可能に固定されている。ハウジング27は、ハウジング蓋27aと、駆動フランジ室の一例であるピストンシリンダ28と、を備える。ハウジング蓋27aはピストンシリンダ28から取り外し可能である。ピストンシリンダ28は、駆動ピストン22を軸方向に往復動可能に収容するとともに、ハウジング蓋27aが取り外されたとき外部に開放される。ピストンシリンダ28は、ディスプレーサシリンダ26と同軸にかつ軸方向に隣接して配設されている。 The cold head pressure vessel 18 includes a displacer cylinder (also simply referred to as a cylinder) 26 that accommodates the displacer 20 in an axial reciprocating manner, and a housing 27 that accommodates the drive piston 22 in an axial reciprocating manner. And. The housing 27 is removably fixed to the displacer cylinder 26. The housing 27 includes a housing lid 27a and a piston cylinder 28 which is an example of a drive flange chamber. The housing lid 27 a is removable from the piston cylinder 28. The piston cylinder 28 axially reciprocates the drive piston 22 and is opened to the outside when the housing cover 27a is removed. The piston cylinder 28 is disposed coaxially with and axially adjacent to the displacer cylinder 26.
 駆動ピストン22は、ディスプレーサ20に比べて小さい寸法を有する。駆動ピストン22の軸方向長さはディスプレーサ20の軸方向長さより短く、駆動ピストン22の径もディスプレーサ20の径より小さい。駆動シャフト24の径は駆動ピストン22の径より小さい。 The drive piston 22 has smaller dimensions compared to the displacer 20. The axial length of the drive piston 22 is shorter than the axial length of the displacer 20, and the diameter of the drive piston 22 is smaller than the diameter of the displacer 20. The diameter of the drive shaft 24 is smaller than the diameter of the drive piston 22.
 ピストンシリンダ28の容積はディスプレーサシリンダ26の容積より小さい。ピストンシリンダ28の軸方向長さ(内寸)はディスプレーサシリンダ26の軸方向長さより短く、ピストンシリンダ28の内径もディスプレーサシリンダ26の内径より小さい。 The volume of the piston cylinder 28 is smaller than the volume of the displacer cylinder 26. The axial length (inner dimension) of the piston cylinder 28 is shorter than the axial length of the displacer cylinder 26, and the inner diameter of the piston cylinder 28 is smaller than the inner diameter of the displacer cylinder 26.
 なお、駆動ピストン22とディスプレーサ20の寸法関係は上述のものに限られず、それと異なっていてもよい。同様に、ピストンシリンダ28とディスプレーサシリンダ26の寸法関係は上述のものに限られず、それと異なっていてもよい。 The dimensional relationship between the drive piston 22 and the displacer 20 is not limited to that described above, and may be different therefrom. Similarly, the dimensional relationship between the piston cylinder 28 and the displacer cylinder 26 is not limited to that described above, and may be different therefrom.
 ディスプレーサ20の軸方向往復動は、ディスプレーサシリンダ26によって案内される。通例、ディスプレーサ20およびディスプレーサシリンダ26はそれぞれ軸方向に延在する円筒状の部材であり、ディスプレーサシリンダ26の内径はディスプレーサ20の外径に一致するか又はわずかに大きい。同様に、駆動ピストン22の軸方向往復動は、ピストンシリンダ28によって案内される。通例、駆動ピストン22は軸方向に延在する円柱状の部材である。ピストンシリンダ28は軸方向に延在する円筒状の部材であり、ピストンシリンダ28の内径は駆動ピストン22の外径に一致するか又はわずかに大きい。 The axial reciprocation of the displacer 20 is guided by the displacer cylinder 26. Typically, the displacer 20 and the displacer cylinder 26 are each an axially extending cylindrical member, the inner diameter of the displacer cylinder 26 corresponding to or slightly larger than the outer diameter of the displacer 20. Similarly, axial reciprocation of the drive piston 22 is guided by the piston cylinder 28. Typically, the drive piston 22 is an axially extending cylindrical member. The piston cylinder 28 is an axially extending cylindrical member, and the inner diameter of the piston cylinder 28 corresponds to the outer diameter of the drive piston 22 or is slightly larger.
 ディスプレーサ20と駆動ピストン22は駆動シャフト24によって軸方向に剛に連結されているので、駆動ピストン22の軸方向ストロークはディスプレーサ20の軸方向ストロークと等しく、両者はストローク全体にわたって一体に移動する。ディスプレーサ20に対する駆動ピストン22の位置は軸方向可動体16の軸方向往復動の間、不変である。 Since the displacer 20 and the drive piston 22 are axially and rigidly connected by the drive shaft 24, the axial stroke of the drive piston 22 is equal to the axial stroke of the displacer 20, and both move integrally over the entire stroke. The position of the drive piston 22 relative to the displacer 20 remains unchanged during axial reciprocation of the axially movable body 16.
 また、ハウジング27は、ディスプレーサシリンダ26をピストンシリンダ28に接続するシャフトガイド30を備える。シャフトガイド30はディスプレーサシリンダ26およびピストンシリンダ28と同軸にディスプレーサシリンダ26からピストンシリンダ28へと延びている。シャフトガイド30には駆動シャフト24が貫通している。シャフトガイド30は駆動シャフト24の軸方向往復動を案内する軸受として構成されている。シャフトガイド30の貫通穴は駆動シャフト24に合わせて形成されているから、この貫通穴の径は、ディスプレーサ20の径より小さく、かつ駆動ピストン22の径より小さい。 The housing 27 also comprises a shaft guide 30 connecting the displacer cylinder 26 to the piston cylinder 28. The shaft guide 30 extends from the displacer cylinder 26 to the piston cylinder 28 coaxially with the displacer cylinder 26 and the piston cylinder 28. A drive shaft 24 passes through the shaft guide 30. The shaft guide 30 is configured as a bearing for guiding the axial reciprocation of the drive shaft 24. Since the through hole of the shaft guide 30 is formed in accordance with the drive shaft 24, the diameter of the through hole is smaller than the diameter of the displacer 20 and smaller than the diameter of the drive piston 22.
 ディスプレーサシリンダ26は、シャフトガイド30を介してピストンシリンダ28と気密に連結されている。シャフトガイド30は、ディスプレーサシリンダ26の内部空洞(すなわちディスプレーサ20の往復動スペース)とピストンシリンダ28の内部空洞(すなわち駆動ピストン22の往復動スペース)を互いに仕切る隔壁でもある。また、ハウジング蓋27aは、ピストンシリンダ28に気密に取り付けられる。こうして、コールドヘッド圧力容器18は、作動ガスの圧力容器として構成されている。 The displacer cylinder 26 is airtightly connected to the piston cylinder 28 via the shaft guide 30. The shaft guide 30 is also a partition that separates the inner cavity of the displacer cylinder 26 (ie, the reciprocating space of the displacer 20) and the inner cavity of the piston cylinder 28 (ie, the reciprocating space of the drive piston 22). In addition, the housing lid 27a is airtightly attached to the piston cylinder 28. Thus, the cold head pressure vessel 18 is configured as a pressure vessel for working gas.
 なおシャフトガイド30は、ハウジング27の一部を形成することは必須ではなく、ハウジング27とは別体の部材であってもよい。その場合、コールドヘッド圧力容器18は、ハウジング蓋27a、ハウジング本体、シャフトガイド30、およびディスプレーサシリンダ26の4つの部材から構成されてもよい。ハウジング蓋27a、ハウジング本体、シャフトガイド30がそれぞれ、駆動ピストン22の往復動スペースの上壁、側壁、下壁を定める。あるいは、ハウジング27は、シャフトガイド30と、ハウジング蓋27aを含む残りの部分との二部材で構成されてもよい。また、シャフトガイド30は、ディスプレーサシリンダ26の一部であってもよい。 The shaft guide 30 is not essential to form a part of the housing 27 and may be a separate member from the housing 27. In that case, the cold head pressure vessel 18 may be composed of four members of a housing lid 27 a, a housing body, a shaft guide 30 and a displacer cylinder 26. The housing lid 27a, the housing body and the shaft guide 30 respectively define an upper wall, a side wall and a lower wall of the reciprocating space of the drive piston 22. Alternatively, the housing 27 may be composed of two parts, the shaft guide 30 and the remaining part including the housing lid 27a. The shaft guide 30 may also be part of the displacer cylinder 26.
 第1シール部32が、駆動シャフト24とシャフトガイド30の間に設けられている。第1シール部32は、駆動シャフト24またはシャフトガイド30のいずれか一方に装着され、駆動シャフト24またはシャフトガイド30の他方と摺動する。第1シール部32は例えば、スリッパーシールまたはOリングなどのシール部材で構成される。また、シール部材に代えて、駆動シャフト24とシャフトガイド30の隙間をごく小さくして、隙間をクリアランスシールとして機能させてもよい。第1シール部32によって、ピストンシリンダ28は、ディスプレーサシリンダ26に対し気密に構成されている。こうして、ピストンシリンダ28はディスプレーサシリンダ26から流体的に隔離されており、ピストンシリンダ28とディスプレーサシリンダ26との直接のガス流通は生じない。 A first seal 32 is provided between the drive shaft 24 and the shaft guide 30. The first seal portion 32 is mounted on either the drive shaft 24 or the shaft guide 30 and slides on the other of the drive shaft 24 or the shaft guide 30. The first seal portion 32 is formed of, for example, a seal member such as a slipper seal or an O-ring. Further, instead of the seal member, the gap between the drive shaft 24 and the shaft guide 30 may be made extremely small to function as a clearance seal. The piston cylinder 28 is airtightly configured with respect to the displacer cylinder 26 by the first seal portion 32. Thus, the piston cylinder 28 is fluidly isolated from the displacer cylinder 26 and no direct gas flow between the piston cylinder 28 and the displacer cylinder 26 occurs.
 ディスプレーサシリンダ26は、ディスプレーサ20によって膨張室34と室温室36に仕切られている。ディスプレーサ20は、軸方向一端にてディスプレーサシリンダ26との間に膨張室34を形成し、軸方向他端にてディスプレーサシリンダ26との間に室温室36を形成する。膨張室34は下死点LP1側に配置され、室温室36は上死点UP1側に配置されている。また、コールドヘッド14には、膨張室34を外包するようディスプレーサシリンダ26に固着された冷却ステージ38が設けられている。 The displacer cylinder 26 is partitioned by the displacer 20 into an expansion chamber 34 and a room temperature chamber 36. The displacer 20 forms an expansion chamber 34 with the displacer cylinder 26 at one axial end, and forms a room temperature chamber 36 with the displacer cylinder 26 at the other axial end. The expansion chamber 34 is disposed on the bottom dead center LP1 side, and the room temperature chamber 36 is disposed on the top dead center UP1 side. Further, the cold head 14 is provided with a cooling stage 38 fixed to the displacer cylinder 26 so as to enclose the expansion chamber 34.
 蓄冷器15はディスプレーサ20に内蔵されている。ディスプレーサ20はその上蓋部に、蓄冷器15を室温室36に連通する入口流路40を有する。また、ディスプレーサ20はその筒部に、蓄冷器15を膨張室34に連通する出口流路42を有する。あるいは、出口流路42は、ディスプレーサ20の下蓋部に設けられていてもよい。加えて、蓄冷器15は、上蓋部に内接する入口リテーナ41と、下蓋部に内接する出口リテーナ43と、両リテーナに挟持された蓄冷材と、を備える。図1において蓄冷材は、入口リテーナ41と出口リテーナ43に挟まれた、ドットを付した領域として図示されている。蓄冷材は、たとえば銅製の金網でもよい。リテーナは蓄冷材よりも粗い金網でもよい。 The regenerator 15 is built in the displacer 20. The displacer 20 has an inlet channel 40 in the upper lid thereof, which connects the regenerator 15 to the room temperature chamber 36. Further, the displacer 20 has an outlet flow passage 42 communicating the regenerator 15 with the expansion chamber 34 in the cylindrical portion thereof. Alternatively, the outlet channel 42 may be provided in the lower lid of the displacer 20. In addition, the regenerator 15 includes an inlet retainer 41 inscribed in the upper lid portion, an outlet retainer 43 inscribed in the lower lid portion, and a regenerator material sandwiched between the two retainers. In FIG. 1, the cool storage material is illustrated as a dotted area sandwiched by the inlet retainer 41 and the outlet retainer 43. The cold storage material may be, for example, a copper wire mesh. The retainer may be a wire mesh coarser than the regenerator material.
 第2シール部44が、ディスプレーサ20とディスプレーサシリンダ26の間に設けられている。第2シール部44は、例えばスリッパーシールであり、ディスプレーサ20の筒部または上蓋部に装着されている。ディスプレーサ20とディスプレーサシリンダ26とのクリアランスが第2シール部44によって封じられているので、室温室36と膨張室34との直接のガス流通(つまり蓄冷器15を迂回するガス流れ)はない。 A second seal portion 44 is provided between the displacer 20 and the displacer cylinder 26. The second seal portion 44 is, for example, a slipper seal, and is attached to the cylindrical portion or the upper lid portion of the displacer 20. Since the clearance between the displacer 20 and the displacer cylinder 26 is sealed by the second seal portion 44, there is no direct gas flow between the room temperature chamber 36 and the expansion chamber 34 (that is, the gas flow bypassing the regenerator 15).
 ディスプレーサ20が軸方向に動くとき、膨張室34および室温室36は相補的に容積を増減させる。すなわち、ディスプレーサ20が下動するとき、膨張室34は狭くなり室温室36は広くなる。逆も同様である。 As the displacer 20 moves axially, the expansion chamber 34 and the room temperature chamber 36 complementarily increase or decrease in volume. That is, when the displacer 20 moves downward, the expansion chamber 34 narrows and the room temperature chamber 36 widens. The reverse is also true.
 作動ガスは、室温室36から入口流路40を通じて蓄冷器15に流入する。より正確には、作動ガスは、入口流路40から入口リテーナ41を通って蓄冷器15に流入する。作動ガスは、蓄冷器15から出口リテーナ43および出口流路42を経由して膨張室34に流入する。作動ガスが膨張室34から室温室36に戻るときは逆の経路を通る。つまり、作動ガスは、膨張室34から、出口流路42、蓄冷器15、および入口流路40を通って室温室36に戻る。蓄冷器15を迂回してクリアランスを流れようとする作動ガスは第2シール部44によって遮断される。 The working gas flows from the room temperature chamber 36 into the regenerator 15 through the inlet channel 40. More precisely, the working gas flows from the inlet channel 40 into the regenerator 15 through the inlet retainer 41. The working gas flows from the regenerator 15 into the expansion chamber 34 via the outlet retainer 43 and the outlet channel 42. When the working gas returns from the expansion chamber 34 to the room temperature chamber 36, it passes the reverse path. That is, the working gas returns from the expansion chamber 34 to the room temperature chamber 36 through the outlet channel 42, the regenerator 15, and the inlet channel 40. The working gas that bypasses the regenerator 15 and tries to flow through the clearance is shut off by the second seal portion 44.
 ピストンシリンダ28は、駆動ピストン22によって二つの区画に仕切られている。ピストンシリンダ28は、第1区画としての駆動室46と、第2区画としてのガスばね室48と、を備える。駆動ピストン22は、軸方向一端にてピストンシリンダ28との間に駆動室46を形成し、軸方向他端にてピストンシリンダ28との間にガスばね室48を形成する。駆動ピストン22が軸方向に動くとき、駆動室46およびガスばね室48は相補的に容積を増減させる。駆動室46の圧力は、駆動ピストン22を駆動するように制御可能である。ガスばね室48の圧力は、駆動ピストン22の移動に伴って変動する。 The piston cylinder 28 is divided into two sections by the drive piston 22. The piston cylinder 28 includes a drive chamber 46 as a first section and a gas spring chamber 48 as a second section. The drive piston 22 forms a drive chamber 46 with the piston cylinder 28 at one axial end, and forms a gas spring chamber 48 with the piston cylinder 28 at the other axial end. When the drive piston 22 moves axially, the drive chamber 46 and the gas spring chamber 48 complementarily increase and decrease the volume. The pressure in the drive chamber 46 is controllable to drive the drive piston 22. The pressure of the gas spring chamber 48 fluctuates as the drive piston 22 moves.
 駆動室46は、駆動ピストン22に対しディスプレーサシリンダ26と軸方向に反対側に配置されている。ガスばね室48は、駆動ピストン22に対しディスプレーサシリンダ26と軸方向に同じ側に配置されている。言い換えれば、駆動室46は上死点UP2側に配置され、ガスばね室48は下死点LP2側に配置されている。駆動ピストン22の上面は駆動室46のガス圧を受け、駆動ピストン22の下面はガスばね室48のガス圧を受ける。 The drive chamber 46 is disposed axially opposite to the displacer cylinder 26 with respect to the drive piston 22. The gas spring chamber 48 is disposed on the same side of the drive piston 22 in the axial direction as the displacer cylinder 26. In other words, the drive chamber 46 is disposed on the top dead center UP2 side, and the gas spring chamber 48 is disposed on the bottom dead center LP2 side. The upper surface of the drive piston 22 receives the gas pressure of the drive chamber 46, and the lower surface of the drive piston 22 receives the gas pressure of the gas spring chamber 48.
 駆動シャフト24は、駆動ピストン22の下面からガスばね室48を通ってシャフトガイド30へと延びている。さらに、駆動シャフト24は、室温室36を通ってディスプレーサ20の上蓋部まで延びている。ガスばね室48は、駆動ピストン22に対し駆動シャフト24と同じ側に配置され、駆動室46は、駆動ピストン22に対し駆動シャフト24と反対側に配置されている。 The drive shaft 24 extends from the lower surface of the drive piston 22 through the gas spring chamber 48 to the shaft guide 30. Further, the drive shaft 24 extends through the room temperature chamber 36 to the upper lid of the displacer 20. The gas spring chamber 48 is disposed on the same side as the drive shaft 24 with respect to the drive piston 22, and the drive chamber 46 is disposed on the opposite side of the drive shaft 24 with respect to the drive piston 22.
 第3シール部50が、駆動ピストン22とピストンシリンダ28の間に設けられている。第3シール部50は、例えばクリアランスシールであり、駆動ピストン22とピストンシリンダ28の間に僅かな径方向クリアランスが形成されている。この径方向クリアランスは、駆動室46とガスばね室48のガス流通を実質的に妨げるか、または、駆動室46とガスばね室48のガス流通に対し流路抵抗として作用する。 A third seal 50 is provided between the drive piston 22 and the piston cylinder 28. The third seal portion 50 is, for example, a clearance seal, and a slight radial clearance is formed between the drive piston 22 and the piston cylinder 28. The radial clearance substantially prevents the gas flow in the drive chamber 46 and the gas spring chamber 48 or acts as a flow path resistance to the gas flow in the drive chamber 46 and the gas spring chamber 48.
 駆動ピストン22が下動するときガスばね室48は狭くなる。このときガスばね室48のガスは圧縮され、圧力が高まる。ガスばね室48の圧力は駆動ピストン22の下面に上向きに作用する。よって、ガスばね室48は、駆動ピストン22の下動に抗するガスばね力を発生させる。逆に、駆動ピストン22が上動するときガスばね室48は広がる。ガスばね室48の圧力は下がり、駆動ピストン22に作用するガスばね力も小さくなる。 When the drive piston 22 moves downward, the gas spring chamber 48 narrows. At this time, the gas in the gas spring chamber 48 is compressed to increase the pressure. The pressure of the gas spring chamber 48 acts upward on the lower surface of the drive piston 22. Thus, the gas spring chamber 48 generates a gas spring force that resists the downward movement of the drive piston 22. Conversely, the gas spring chamber 48 expands when the drive piston 22 moves up. The pressure of the gas spring chamber 48 decreases, and the gas spring force acting on the drive piston 22 also decreases.
 なお、第3シール部50は、第1シール部32と同様に、スリッパーシールまたはOリングなどのシール部材で構成されてもよい。この場合、ガスばね室48は、第1シール部32および第3シール部50によって密封される。 Similarly to the first seal portion 32, the third seal portion 50 may be formed of a seal member such as a slipper seal or an O-ring. In this case, the gas spring chamber 48 is sealed by the first seal portion 32 and the third seal portion 50.
 このように、ガス駆動型であるコールドヘッド14の駆動部は、駆動ピストン22とピストンシリンダ28を含んで構成されている。また、コールドヘッド14は、ディスプレーサ20とディスプレーサシリンダ26の衝突または接触を緩和または防止するように駆動ピストン22に作用するガスばね機構を備える。 Thus, the drive portion of the gas driven cold head 14 includes the drive piston 22 and the piston cylinder 28. The cold head 14 also includes a gas spring mechanism that acts on the drive piston 22 to relieve or prevent a collision or contact between the displacer 20 and the displacer cylinder 26.
 コールドヘッド14は、使用される現場で図示の向きに設置される。すなわち、ディスプレーサシリンダ26が鉛直方向下方に、ピストンシリンダ28が鉛直方向上方に、それぞれ配置されるようにして、コールドヘッド14は縦向きに設置される。このように、冷却ステージ38を鉛直方向下方に向ける姿勢で設置されるとき極低温冷凍機10は冷凍能力が最も高くなる。ただし、極低温冷凍機10の配置はこれに限定されない。逆に、コールドヘッド14は冷却ステージ38を鉛直方向上方に向ける姿勢で設置されてもよい。あるいは、コールドヘッド14は、横向きまたはその他の向きに設置されてもよい。 The cold head 14 is installed at the site where it is used in the orientation shown. That is, the cold head 14 is installed vertically so that the displacer cylinder 26 is disposed vertically downward and the piston cylinder 28 vertically disposed. Thus, the cryogenic refrigerator 10 has the highest refrigeration capacity when installed with the cooling stage 38 oriented vertically downward. However, the arrangement of the cryogenic refrigerator 10 is not limited to this. On the contrary, the cold head 14 may be installed in a posture in which the cooling stage 38 is directed vertically upward. Alternatively, the coldhead 14 may be installed in a sideways or other orientation.
 コールドヘッド14が冷却ステージ38を鉛直方向下方に向ける姿勢で設置される場合、重力は、矢印Dで図示するように、下向きに作用する。そのため、軸方向可動体16の自重は、駆動ピストン22の下向きの駆動力を補助するように働く。駆動ピストン22には上動時に比べて下動時に大きな駆動力が働く。よって、典型的なガス駆動式のGM冷凍機においては、ディスプレーサの下死点でディスプレーサとディスプレーサシリンダの衝突または接触が生じやすい。 When the cold head 14 is installed with the cooling stage 38 oriented vertically downward, gravity acts downward as shown by the arrow D. Therefore, the weight of the axially movable body 16 acts to assist the downward driving force of the drive piston 22. A larger driving force acts on the drive piston 22 at the time of downward movement than at the time of upward movement. Thus, in a typical gas-powered GM refrigerator, collision or contact between the displacer and the displacer cylinder is likely to occur at the bottom dead center of the displacer.
 ところが、コールドヘッド14にはガスばね室48が設けられている。ガスばね室48に貯留されたガスは、駆動ピストン22が下動するときに圧縮され、圧力が高まる。この圧力は重力と逆向きに働くから、駆動ピストン22に作用する駆動力が小さくなる。駆動ピストン22が下死点LP2に到達する直前の速度を遅くすることができる。 However, the cold head 14 is provided with a gas spring chamber 48. The gas stored in the gas spring chamber 48 is compressed when the drive piston 22 moves downward, and the pressure increases. Since this pressure acts in the opposite direction to gravity, the driving force acting on the drive piston 22 is reduced. The speed immediately before the drive piston 22 reaches the bottom dead center LP2 can be reduced.
 こうして、駆動ピストン22とピストンシリンダ28の、及び/またはディスプレーサ20とディスプレーサシリンダ26の、接触または衝突を回避することができる。あるいは、たとえ衝突が起こったとしても、駆動ピストン22の速度低下により衝突エネルギーが低減されるので、衝突音は抑制される。 In this way, contact or collision between the drive piston 22 and the piston cylinder 28 and / or the displacer 20 and the displacer cylinder 26 can be avoided. Alternatively, even if a collision occurs, the collision sound is suppressed because the collision energy is reduced by the decrease in speed of the drive piston 22.
 さらに、極低温冷凍機10は、圧縮機12をコールドヘッド14に接続する作動ガス回路52を備える。作動ガス回路52は、ピストンシリンダ28(すなわち駆動室46)とディスプレーサシリンダ26(すなわち膨張室34及び/または室温室36)との間に圧力差を生成するよう構成されている。この圧力差によって軸方向可動体16が軸方向に動く。ピストンシリンダ28に対しディスプレーサシリンダ26の圧力が低ければ、駆動ピストン22が下動し、それに伴ってディスプレーサ20も下動する。逆に、ピストンシリンダ28に対しディスプレーサシリンダ26の圧力が高ければ、駆動ピストン22が上動し、それに伴ってディスプレーサ20も上動する。 Further, the cryogenic refrigerator 10 includes a working gas circuit 52 connecting the compressor 12 to the cold head 14. The working gas circuit 52 is configured to create a pressure differential between the piston cylinder 28 (ie, the drive chamber 46) and the displacer cylinder 26 (ie, the expansion chamber 34 and / or the room temperature chamber 36). The pressure difference causes the axially movable body 16 to move in the axial direction. If the pressure of the displacer cylinder 26 with respect to the piston cylinder 28 is low, the drive piston 22 moves downward, and the displacer 20 also moves downward accordingly. Conversely, if the pressure of the displacer cylinder 26 with respect to the piston cylinder 28 is high, the drive piston 22 moves upward, and the displacer 20 also moves upward accordingly.
 作動ガス回路52は、膨張室34と駆動室46の圧力差を制御するよう構成されたバルブユニット54を備える。バルブユニット54は、ハウジング蓋27aに取り付けられている。よって、ハウジング蓋27aは、バルブユニット54の底板にあたる。バルブユニット54は、圧縮機12と配管で接続されている。 The working gas circuit 52 comprises a valve unit 54 configured to control the pressure differential between the expansion chamber 34 and the drive chamber 46. The valve unit 54 is attached to the housing lid 27a. Thus, the housing lid 27 a contacts the bottom plate of the valve unit 54. The valve unit 54 is connected to the compressor 12 by piping.
 なお、ハウジング蓋27aがバルブユニット54を備えることは必須ではなく、バルブユニット54は、コールドヘッド14と別体に設けられ、コールドヘッド圧力容器18の外に配設され、コールドヘッド14と配管で接続されてもよい。その場合、ハウジング蓋27aは、ピストンシリンダ28を閉じるための取り外し可能な平板であってもよい。 It is not essential that the housing lid 27a includes the valve unit 54, and the valve unit 54 is provided separately from the cold head 14 and is disposed outside the cold head pressure vessel 18, and the cold head 14 and piping are provided. It may be connected. In that case, the housing lid 27a may be a removable flat plate for closing the piston cylinder 28.
 バルブユニット54は、主圧力切換バルブ60と副圧力切換バルブ62を備える。主圧力切換バルブ60は、主吸気開閉バルブV1と主排気開閉バルブV2とを有する。副圧力切換バルブ62は、副吸気開閉バルブV3と副排気開閉バルブV4とを有する。 The valve unit 54 includes a main pressure switching valve 60 and a sub pressure switching valve 62. The main pressure switching valve 60 has a main intake on-off valve V1 and a main exhaust on-off valve V2. The auxiliary pressure switching valve 62 has an auxiliary intake on-off valve V3 and an auxiliary exhaust on-off valve V4.
 主圧力切換バルブ60は、圧縮機12をコールドヘッド14の室温室36に接続する主吸排気流路64に配設されている。主吸排気流路64は主圧力切換バルブ60にて主吸気路64aと主排気路64bに分岐している。主吸気開閉バルブV1は、主吸気路64aに配設され、圧縮機吐出口12aを室温室36に接続する。主排気開閉バルブV2は、主排気路64bに配設され、圧縮機吸入口12bを室温室36に接続する。 The main pressure switching valve 60 is disposed in the main intake and exhaust flow path 64 connecting the compressor 12 to the room temperature chamber 36 of the cold head 14. The main intake and exhaust flow passage 64 is branched into a main intake passage 64 a and a main exhaust passage 64 b by the main pressure switching valve 60. The main intake on-off valve V1 is disposed in the main intake passage 64a, and connects the compressor discharge port 12a to the room temperature chamber 36. The main exhaust on-off valve V2 is disposed in the main exhaust passage 64b, and connects the compressor suction port 12b to the room temperature chamber 36.
 主圧力切換バルブ60は、圧縮機吐出口12aまたは圧縮機吸入口12bをディスプレーサシリンダ26の室温室36に選択的に連通するよう構成されている。主圧力切換バルブ60においては、主吸気開閉バルブV1および主排気開閉バルブV2がそれぞれ排他的に開放される。すなわち、主吸気開閉バルブV1および主排気開閉バルブV2が同時に開くことは禁止されている。主吸気開閉バルブV1が開いているとき主排気開閉バルブV2は閉じられる。圧縮機吐出口12aから主吸排気流路64を通じてディスプレーサシリンダ26に作動ガスが供給される。一方、主排気開閉バルブV2が開いているとき主吸気開閉バルブV1は閉じられる。ディスプレーサシリンダ26から主吸排気流路64を通じて圧縮機吸入口12bに作動ガスが回収される。なお主吸気開閉バルブV1および主排気開閉バルブV2が一時的にともに閉じられてもよい。このようにして、ディスプレーサシリンダ26は、圧縮機吐出口12aおよび圧縮機吸入口12bと交互に接続される。 The main pressure switching valve 60 is configured to selectively communicate the compressor discharge port 12 a or the compressor suction port 12 b with the room temperature chamber 36 of the displacer cylinder 26. In main pressure switching valve 60, main intake on-off valve V1 and main exhaust on-off valve V2 are opened exclusively. That is, simultaneous opening of the main intake on-off valve V1 and the main exhaust on-off valve V2 is prohibited. When the main intake on-off valve V1 is open, the main exhaust on-off valve V2 is closed. Working gas is supplied from the compressor discharge port 12 a to the displacer cylinder 26 through the main intake and exhaust flow path 64. On the other hand, when the main exhaust on-off valve V2 is open, the main intake on-off valve V1 is closed. Working gas is recovered from the displacer cylinder 26 through the main intake and exhaust flow path 64 to the compressor suction port 12 b. The main intake on-off valve V1 and the main exhaust on-off valve V2 may be temporarily closed together. Thus, the displacer cylinder 26 is alternately connected to the compressor discharge port 12a and the compressor suction port 12b.
 副圧力切換バルブ62は、圧縮機12をピストンシリンダ28の駆動室46に接続する副吸排気流路66に配設されている。副吸排気流路66は副圧力切換バルブ62にて副吸気路66aと副排気路66bに分岐している。副吸気開閉バルブV3は、副吸気路66aに配設され、圧縮機吐出口12aを駆動室46に接続する。副排気開閉バルブV4は、副排気路66bに配設され、圧縮機吸入口12bを駆動室46に接続する。 The sub pressure switching valve 62 is disposed in the sub air suction and discharge flow path 66 connecting the compressor 12 to the drive chamber 46 of the piston cylinder 28. The auxiliary intake and exhaust flow passage 66 is branched into an auxiliary intake passage 66 a and an auxiliary exhaust passage 66 b by an auxiliary pressure switching valve 62. The auxiliary intake on-off valve V3 is disposed in the auxiliary intake passage 66a, and connects the compressor discharge port 12a to the drive chamber 46. The sub exhaust on-off valve V4 is disposed in the sub exhaust path 66b, and connects the compressor suction port 12b to the drive chamber 46.
 副圧力切換バルブ62は、圧縮機吐出口12aまたは圧縮機吸入口12bをピストンシリンダ28の駆動室46に選択的に連通するよう構成されている。副圧力切換バルブ62は、副吸気開閉バルブV3および副排気開閉バルブV4がそれぞれ排他的に開放されるよう構成されている。すなわち、副吸気開閉バルブV3および副排気開閉バルブV4が同時に開くことは禁止されている。副吸気開閉バルブV3が開いているとき副排気開閉バルブV4は閉じられる。圧縮機吐出口12aから副吸排気流路66を通じて駆動室46に作動ガスが供給される。一方、副排気開閉バルブV4が開いているとき副吸気開閉バルブV3は閉じられる。駆動室46から副吸排気流路66を通じて圧縮機吸入口12bに作動ガスが回収される。なお副吸気開閉バルブV3および副排気開閉バルブV4が一時的にともに閉じられてもよい。このようにして、駆動室46は、圧縮機吐出口12aおよび圧縮機吸入口12bと交互に接続される。 The auxiliary pressure switching valve 62 is configured to selectively communicate the compressor discharge port 12 a or the compressor suction port 12 b with the drive chamber 46 of the piston cylinder 28. The auxiliary pressure switching valve 62 is configured such that the auxiliary intake on-off valve V3 and the auxiliary exhaust on-off valve V4 are opened exclusively. That is, the simultaneous opening of the auxiliary intake on-off valve V3 and the auxiliary exhaust on-off valve V4 is prohibited. When the auxiliary intake on-off valve V3 is open, the auxiliary exhaust on-off valve V4 is closed. The working gas is supplied from the compressor discharge port 12 a to the drive chamber 46 through the sub intake / exhaust flow path 66. On the other hand, when the secondary exhaust on-off valve V4 is open, the secondary intake on-off valve V3 is closed. The working gas is recovered from the drive chamber 46 through the sub intake / exhaust flow path 66 to the compressor suction port 12 b. In addition, the sub air intake on-off valve V3 and the sub exhaust on-off valve V4 may be temporarily closed together. Thus, the drive chamber 46 is alternately connected to the compressor discharge port 12a and the compressor suction port 12b.
 バルブユニット54は、ロータリーバルブの形式をとってもよい。すなわち、バルブユニット54は、バルブ本体に対するバルブディスクの回転摺動によってバルブV1~V4が適正に切り替わるよう構成されていてもよい。その場合、バルブユニット54は、バルブユニット54(例えばバルブディスク)を回転駆動するための回転駆動源56を備えてもよい。回転駆動源56は、ハウジング蓋27aに取り付けられていてもよい。回転駆動源56は例えばモータである。ただし、回転駆動源56は、軸方向可動体16には接続されていない。また、バルブユニット54は、バルブユニット54を制御する制御部58を備えてもよい。制御部58は、回転駆動源56を制御してもよい。 The valve unit 54 may take the form of a rotary valve. That is, the valve unit 54 may be configured such that the valves V1 to V4 are properly switched by rotational sliding of the valve disc with respect to the valve body. In that case, the valve unit 54 may include a rotational drive source 56 for rotationally driving the valve unit 54 (for example, a valve disc). The rotational drive source 56 may be attached to the housing lid 27a. The rotational drive source 56 is, for example, a motor. However, the rotational drive source 56 is not connected to the axially movable body 16. The valve unit 54 may also include a control unit 58 that controls the valve unit 54. The controller 58 may control the rotational drive source 56.
 ある実施形態においては、バルブユニット54は、複数の個別に制御可能なバルブV1~V4を備え、制御部58がバルブV1~V4それぞれの開閉を制御してもよい。この場合、バルブユニット54は、回転駆動源56を備えなくてもよい。 In one embodiment, the valve unit 54 may include a plurality of individually controllable valves V1 to V4, and the control unit 58 may control the opening and closing of each of the valves V1 to V4. In this case, the valve unit 54 may not include the rotational drive source 56.
 バルブユニット54は、種々の公知の構成を採用することができる。 The valve unit 54 can adopt various known configurations.
 この実施の形態においては、駆動ピストン22は単体で、ハウジング27をディスプレーサシリンダ26に載置しかつハウジング蓋27aを取り外した状態で、ディスプレーサ20に着脱可能に構成されている。すなわち、ハウジング27がディスプレーサシリンダ26に載置されかつハウジング27からハウジング蓋27aが取り外された状態で、作業者は、駆動ピストン22を、駆動シャフト24に装着し、駆動シャフト24から取り外すことができる。作業者は、駆動ピストン22を駆動シャフト24に着脱することによって、駆動ピストン22を、ディスプレーサ20に装着し、ディスプレーサ20から取り外すことができる。 In this embodiment, the drive piston 22 alone is configured to be removable from the displacer 20 with the housing 27 mounted on the displacer cylinder 26 and the housing cover 27a removed. That is, with the housing 27 mounted on the displacer cylinder 26 and the housing lid 27 a removed from the housing 27, the operator can attach the drive piston 22 to the drive shaft 24 and remove it from the drive shaft 24. . The operator can attach and detach the drive piston 22 to the displacer 20 by attaching and detaching the drive piston 22 to and from the drive shaft 24.
 駆動シャフト24は、シャフト先端24aを有する。シャフト先端24aは、ディスプレーサ20とは軸方向反対側の駆動シャフト24の端部であり、駆動シャフト24の本体から軸方向に突き出している。シャフト先端24aは、ピストンシリンダ28(具体的には駆動室46)内に配置され、駆動シャフト24と同軸に軸方向に延びている。シャフト先端24aは駆動シャフト24の本体に比べて小径であり、シャフト先端24aおよびシャフト本体はそれぞれ、駆動シャフト24の小径部および大径部と呼ぶこともできる。図示される例では、シャフト先端24aと駆動シャフト24の本体との間には段部が形成されているが、これは必須ではなく、シャフト先端24aは、シャフト本体から連続的または段階的に小径となるように先細とされていてもよい。 The drive shaft 24 has a shaft tip 24a. The shaft tip 24 a is an end of the drive shaft 24 axially opposite to the displacer 20, and axially protrudes from the main body of the drive shaft 24. The shaft tip 24 a is disposed in the piston cylinder 28 (specifically, the drive chamber 46) and axially extends coaxially with the drive shaft 24. The shaft tip 24 a has a smaller diameter than the main body of the drive shaft 24, and the shaft tip 24 a and the shaft main body can also be referred to as a small diameter portion and a large diameter portion of the drive shaft 24, respectively. In the illustrated example, a step is formed between the shaft tip 24a and the main body of the drive shaft 24, but this is not essential, and the shaft tip 24a has a small diameter continuously or stepwise from the shaft main body It may be tapered to be
 駆動ピストン22は、シャフト先端24aに係合する形状のシャフト挿通穴を中心に有し、リング状に形成されている。したがって、駆動ピストン22のシャフト挿通穴にはシャフト先端24aを挿入可能である。駆動ピストン22にシャフト先端24aが挿入されることにより、駆動ピストン22はシャフト先端24aと係合する。こうして、駆動ピストン22は、ピストンシリンダ28内でディスプレーサ20とは軸方向反対側の駆動シャフト24の先端の定位置に保持される。駆動ピストン22がシャフト先端24aと係合しているとき、シャフト先端24aの一部が駆動ピストン22の上面から突出し、駆動ピストン22の外に位置する。 The drive piston 22 has a shaft insertion hole shaped to engage with the shaft tip 24 a and is formed in a ring shape. Therefore, the shaft tip 24 a can be inserted into the shaft insertion hole of the drive piston 22. By inserting the shaft tip 24 a into the drive piston 22, the drive piston 22 engages with the shaft tip 24 a. Thus, the drive piston 22 is held in a fixed position at the end of the drive shaft 24 axially opposite to the displacer 20 in the piston cylinder 28. When the drive piston 22 is engaged with the shaft tip 24 a, a portion of the shaft tip 24 a protrudes from the top surface of the drive piston 22 and is located outside the drive piston 22.
 軸方向可動体16は、駆動ピストン22を駆動シャフト24に着脱可能に固定する固定部材68を備える。固定部材68は、ハウジング蓋27aがハウジング27から取り外されたとき、作業者によりハウジング27の開口部を通じて操作可能であるように軸方向可動体16に装着されている。固定部材68は、駆動室46に配置されている。ハウジング蓋27aがハウジング27から取り外されたとき、駆動室46は外部に開放される。固定部材68は、シャフト先端24aに着脱可能に構成され、駆動ピストン22の上面に配置されている。 The axially movable body 16 is provided with a fixing member 68 for detachably fixing the drive piston 22 to the drive shaft 24. The fixed member 68 is mounted on the axially movable body 16 so as to be operable by the operator through the opening of the housing 27 when the housing lid 27a is removed from the housing 27. The fixing member 68 is disposed in the drive chamber 46. When the housing lid 27a is removed from the housing 27, the drive chamber 46 is opened to the outside. The fixing member 68 is configured to be attachable to and detachable from the shaft tip 24 a, and is disposed on the upper surface of the drive piston 22.
 固定部材68は、たとえばナットであり、シャフト先端24aにねじ連結される。固定部材68は、駆動シャフト24に対する固定部材68の軸周り正回転により駆動ピストン22を締結する一方、駆動シャフト24に対する固定部材68の軸周り逆回転により駆動ピストン22を締結解除する。駆動ピストン22は、固定部材68と駆動シャフト24との間に挟み込まれて駆動シャフト24に固定される。 The fixing member 68 is, for example, a nut, and is screwed to the shaft tip 24a. The fixing member 68 fastens the drive piston 22 by positive rotation around the axis of the fixing member 68 with respect to the drive shaft 24, and reverses fastening of the drive piston 22 by reverse rotation of the fixing member 68 with respect to the drive shaft 24. The drive piston 22 is sandwiched between the fixing member 68 and the drive shaft 24 and fixed to the drive shaft 24.
 固定部材68は、ナットには限られない。固定部材68は、駆動ピストン22を駆動シャフト24に着脱可能に固定する、ボルト、止め輪、ピン、または、そのほか任意の固定部材であってもよい。 The fixing member 68 is not limited to a nut. The locking member 68 may be a bolt, a snap ring, a pin or any other locking member that removably secures the drive piston 22 to the drive shaft 24.
 ディスプレーサシリンダ26は、シリンダ上部開口を定めるシリンダフランジ26aを備える。シリンダフランジ26aは、ディスプレーサシリンダ26の軸方向上端から径方向外側に延出している。シリンダ上部開口は、室温室36の一部であり、ハウジング27がディスプレーサシリンダ26から取り外されているときシリンダ上部開口を通じてディスプレーサ20を出し入れ可能である。 The displacer cylinder 26 comprises a cylinder flange 26a defining a cylinder top opening. The cylinder flange 26 a extends radially outward from the upper end in the axial direction of the displacer cylinder 26. The cylinder top opening is part of the room temperature chamber 36 and allows the displacer 20 to be taken in and out through the cylinder top opening when the housing 27 is removed from the displacer cylinder 26.
 ハウジング27は、ハウジング締結部材70を用いてディスプレーサシリンダ26に取り外し可能に固定されている。ハウジング締結部材70は、ハウジング蓋27aをハウジング27に固定するとともに、ハウジング27をシリンダフランジ26aに固定する。ハウジング締結部材70はたとえばボルトである。ハウジング蓋27aおよびハウジング27にはボルト穴が貫通しており、このボルト穴にボルトが挿入され、ハウジング蓋27aおよびハウジング27がディスプレーサシリンダ26に固定される。なお、ハウジング蓋27aのハウジング27への固定と、ハウジング27のディスプレーサシリンダ26への固定には、別々の締結部材が用いられてもよい。 The housing 27 is removably fixed to the displacer cylinder 26 using a housing fastening member 70. The housing fastening member 70 secures the housing lid 27a to the housing 27 and secures the housing 27 to the cylinder flange 26a. The housing fastening member 70 is, for example, a bolt. Bolt holes pass through the housing lid 27 a and the housing 27, and bolts are inserted into the bolt holes to fix the housing lid 27 a and the housing 27 to the displacer cylinder 26. A separate fastening member may be used for fixing the housing lid 27 a to the housing 27 and for fixing the housing 27 to the displacer cylinder 26.
 ハウジング蓋27aおよびハウジング27には、主吸排気流路64の一部をなす貫通穴が形成されている。この貫通穴は主吸排気流路64の末端にあたるガス出入口であり、これを通じて主圧力切換バルブ60が室温室36に接続される。また、ハウジング蓋27aには副吸排気流路66の一部をなす貫通穴が形成されている。この貫通穴は副吸排気流路66の末端にあたるガス出入口であり、これを通じて副圧力切換バルブ62が駆動室46に接続される。 The housing lid 27 a and the housing 27 are formed with a through hole which is a part of the main intake and exhaust flow path 64. The through hole is a gas inlet / outlet corresponding to the end of the main intake / exhaust flow path 64, and the main pressure switching valve 60 is connected to the room temperature chamber 36 through this. Further, a through hole which is a part of the auxiliary air suction and discharge passage 66 is formed in the housing lid 27a. The through hole is a gas inlet / outlet corresponding to the end of the auxiliary air suction and discharge passage 66, and the auxiliary pressure switching valve 62 is connected to the drive chamber 46 through this.
 上記の構成をもつ極低温冷凍機10の動作の一例を説明する。ディスプレーサ20が下死点LP1またはその近傍の位置にあるとき、コールドヘッド14の吸気工程が開始される。主吸気開閉バルブV1が開き、高圧ガスが圧縮機12の吐出口からコールドヘッド14の室温室36に供給される。ガスは蓄冷器15を通過しながら冷却され、膨張室34に入る。 An example of the operation of the cryogenic refrigerator 10 having the above configuration will be described. When the displacer 20 is at or near the bottom dead center LP1, the intake process of the cold head 14 is started. The main intake on-off valve V 1 is opened, and high pressure gas is supplied from the discharge port of the compressor 12 to the room temperature chamber 36 of the cold head 14. The gas is cooled while passing through the regenerator 15 and enters the expansion chamber 34.
 主吸気開閉バルブV1が開くと同時に、副排気開閉バルブV4が開き、ピストンシリンダ28の駆動室46は圧縮機12の吸入口に接続される。よって駆動室46は、室温室36および膨張室34に対し低圧となる。駆動ピストン22が下死点LP2から上死点UP2に向けて動く。 Simultaneously with the opening of the main intake on-off valve V1, the sub exhaust on-off valve V4 is opened, and the drive chamber 46 of the piston cylinder 28 is connected to the suction port of the compressor 12. Thus, the drive chamber 46 is at a low pressure relative to the room temperature chamber 36 and the expansion chamber 34. The drive piston 22 moves from the bottom dead center LP2 toward the top dead center UP2.
 駆動ピストン22とともにディスプレーサ20も下死点LP1から上死点UP1に向けて動く。主吸気開閉バルブV1および副排気開閉バルブV4は閉じられる。駆動ピストン22およびディスプレーサ20は引き続き上死点UP1、UP2に向けて移動する。こうして、膨張室34の容積が増加されるとともに高圧ガスで満たされる。 The drive piston 22 and the displacer 20 also move from the bottom dead center LP1 toward the top dead center UP1. The main intake on-off valve V1 and the sub exhaust on-off valve V4 are closed. The drive piston 22 and the displacer 20 continue to move toward the top dead center UP1, UP2. Thus, the volume of the expansion chamber 34 is increased and filled with high pressure gas.
 ディスプレーサ20が上死点UP1またはその近傍の位置にあるとき、コールドヘッド14の排気工程が開始される。主排気開閉バルブV2が開き、コールドヘッド14は圧縮機12の吸入口に接続される。高圧ガスは膨張室34で膨張し冷却される。膨張したガスは、蓄冷器15を冷却しながら室温室36を経て圧縮機12に回収される。 When the displacer 20 is at or near the top dead center UP1, the evacuation process of the cold head 14 is started. The main exhaust on-off valve V 2 is opened, and the cold head 14 is connected to the suction port of the compressor 12. The high pressure gas is expanded and cooled in the expansion chamber 34. The expanded gas is recovered by the compressor 12 through the room temperature chamber 36 while cooling the regenerator 15.
 主排気開閉バルブV2が開くと同時に、副吸気開閉バルブV3が開き、高圧ガスが圧縮機12の吐出口からピストンシリンダ28の駆動室46に供給される。よって駆動室46は、室温室36および膨張室34に対し高圧となる。駆動ピストン22が上死点UP2から下死点LP2に向けて動く。 Simultaneously with the opening of the main exhaust on-off valve V2, the sub-intake on-off valve V3 is opened, and high pressure gas is supplied from the discharge port of the compressor 12 to the drive chamber 46 of the piston cylinder 28. Therefore, the driving chamber 46 has a high pressure with respect to the room temperature chamber 36 and the expansion chamber 34. The drive piston 22 moves from the top dead center UP2 toward the bottom dead center LP2.
 駆動ピストン22とともにディスプレーサ20も上死点UP1から下死点LP1に向けて動く。主排気開閉バルブV2および副吸気開閉バルブV3は閉じられる。駆動ピストン22およびディスプレーサ20は引き続き下死点LP1、LP2に向けて移動する。こうして、膨張室34の容積が減少されるとともに低圧ガスは排出される。 The drive piston 22 and the displacer 20 also move from the top dead center UP1 toward the bottom dead center LP1. The main exhaust on-off valve V2 and the secondary intake on-off valve V3 are closed. The drive piston 22 and the displacer 20 continue to move toward the bottom dead center LP1, LP2. Thus, the volume of the expansion chamber 34 is reduced and the low pressure gas is exhausted.
 コールドヘッド14はこのような冷却サイクル(すなわちGMサイクル)を繰り返すことで、冷却ステージ38を冷却する。それにより、極低温冷凍機10は、冷却ステージ38に熱的に結合された超伝導装置またはその他の被冷却物(図示せず)を冷却することができる。 The cold head 14 cools the cooling stage 38 by repeating such a cooling cycle (i.e., GM cycle). Thereby, the cryogenic refrigerator 10 can cool a superconducting device or other object (not shown) thermally coupled to the cooling stage 38.
 極低温冷凍機10には定期的にメンテナンスが施される。メンテナンスに先立って、極低温冷凍機10の冷却運転は停止される。運転停止中に極低温冷凍機10は分解され、ディスプレーサ20など内部の構成部品が取り出される。極低温冷凍機10の各構成部品が点検や修理、交換など必要なメンテナンス作業が行われ、極低温冷凍機10は再び組み立てられる。こうして極低温冷凍機10のメンテナンスが完了すると、極低温冷凍機10の冷却運転が再開される。 The cryogenic refrigerator 10 is regularly maintained. Prior to maintenance, the cooling operation of the cryogenic refrigerator 10 is stopped. During shutdown, the cryogenic refrigerator 10 is disassembled and internal components such as the displacer 20 are taken out. Necessary maintenance operations such as inspection, repair, and replacement are performed on each component of the cryogenic refrigerator 10, and the cryogenic refrigerator 10 is reassembled. Thus, when the maintenance of the cryogenic refrigerator 10 is completed, the cooling operation of the cryogenic refrigerator 10 is resumed.
 図2は、第1の実施の形態に係る極低温冷凍機10の分解方法を例示するフローチャートである。図3から図6は、本分解方法の各工程における極低温冷凍機10を示す概略図である。 FIG. 2 is a flowchart illustrating the method of disassembling the cryogenic refrigerator 10 according to the first embodiment. 3 to 6 are schematic views showing the cryogenic refrigerator 10 in each step of the present decomposition method.
 まず、図3に示されるように、ハウジング蓋27aが取り外される(図2のS10)。作業者は、ハウジング締結部材70を取り外し、ハウジング27からハウジング蓋27aを取り外す。このとき、ハウジング27はシリンダフランジ26a上にそのまま載置されている。ハウジング蓋27aが取り外されることによって、駆動室46が外部に開放される。 First, as shown in FIG. 3, the housing lid 27a is removed (S10 in FIG. 2). The operator removes the housing fastening member 70 and removes the housing lid 27 a from the housing 27. At this time, the housing 27 is mounted as it is on the cylinder flange 26a. The drive chamber 46 is opened to the outside by removing the housing lid 27a.
 次に、図4に示されるように、固定部材68が取り外される(S12)。駆動室46が外部に開放され固定部材68が駆動室46にあるので、作業者は、手作業または適切な作業工具を用いて固定部材68の取り外し作業を行う。作業者は、固定部材68による駆動ピストン22の固定を解除する。固定部材68がナットである場合、作業者は、固定部材68を緩め方向に軸周りに回転させてシャフト先端24aから取り外す。固定部材68は、駆動室46の外に取り出される。 Next, as shown in FIG. 4, the fixing member 68 is removed (S12). Since the drive chamber 46 is opened to the outside and the fixing member 68 is in the drive chamber 46, the operator performs the removing operation of the fixing member 68 manually or using a suitable work tool. The operator releases the fixation of the drive piston 22 by the fixing member 68. When the fixing member 68 is a nut, the operator rotates the fixing member 68 about the axis in the loosening direction and removes it from the shaft tip 24 a. The fixing member 68 is taken out of the drive chamber 46.
 図5に示されるように、駆動フランジとしての駆動ピストン22が取り外される(S14)。固定部材68が取り外されているので、作業者は、駆動ピストン22を駆動シャフト24から取り外す。駆動ピストン22は、駆動室46の外に取り出される。こうして、駆動シャフト24がシャフトガイド30を通り抜けられるようになる。 As shown in FIG. 5, the drive piston 22 as a drive flange is removed (S14). As the fixing member 68 is removed, the operator removes the drive piston 22 from the drive shaft 24. The drive piston 22 is taken out of the drive chamber 46. Thus, the drive shaft 24 can pass through the shaft guide 30.
 図6に示されるように、ハウジング27が取り外される(S16)。作業者は、手作業またはクレーンなどの持ち上げ装置を用いてハウジング27を上方に持ち上げ、ハウジング27を取り外す。駆動シャフト24がハウジング27から引き抜かれる。駆動ピストン22が既に取り外されているので、駆動ピストン22はハウジング27の取り外しを邪魔しない。 As shown in FIG. 6, the housing 27 is removed (S16). The operator lifts the housing 27 upward using a manual operation or a lifting device such as a crane, and removes the housing 27. Drive shaft 24 is withdrawn from housing 27. The drive piston 22 does not disturb the removal of the housing 27 since the drive piston 22 has already been removed.
 ディスプレーサ20がディスプレーサシリンダ26から取り出される(S18)。ハウジング27がディスプレーサシリンダ26から既に取り外されて、室温室36が開放されているので、作業者は、ディスプレーサ20をシリンダ上部開口を通じてディスプレーサシリンダ26から外部に取り出す。このようにして、極低温冷凍機10は分解される。作業者は、極低温冷凍機10を組み立てる際には、逆の手順で行うことができる。 The displacer 20 is removed from the displacer cylinder 26 (S18). Since the housing 27 has already been removed from the displacer cylinder 26 and the room temperature chamber 36 is open, the operator takes the displacer 20 out of the displacer cylinder 26 through the cylinder upper opening. Thus, the cryogenic refrigerator 10 is disassembled. The operator can do the reverse procedure when assembling the cryogenic refrigerator 10.
 図7は、比較例に係る極低温冷凍機10’を示す概略図である。この極低温冷凍機10’は、実施の形態に係る極低温冷凍機10とは異なり、駆動ピストン22が駆動シャフト24に取り外し不能に固定されている。極低温冷凍機10’は、固定部材68を有しない。駆動シャフト24の下端がディスプレーサ20の上端に係合ピン72を用いて固定されている。係合ピン72は、ディスプレーサ20とともにディスプレーサシリンダ26の内部空間に収容されている。シリンダ内部空間はハウジング27により閉じられているから、係合ピン72に作業者の手は届かない。 FIG. 7 is a schematic view showing a cryogenic refrigerator 10 'according to a comparative example. Unlike the cryogenic refrigerator 10 according to the embodiment, in the cryogenic refrigerator 10 ′, the drive piston 22 is non-removably fixed to the drive shaft 24. The cryogenic refrigerator 10 ′ does not have the fixing member 68. The lower end of the drive shaft 24 is fixed to the upper end of the displacer 20 using an engagement pin 72. The engagement pin 72 is accommodated in the internal space of the displacer cylinder 26 together with the displacer 20. Since the cylinder internal space is closed by the housing 27, the engagement pin 72 can not reach the operator's hand.
 係合ピン72を取り外すためにハウジング締結部材70を取り外してハウジング27を持ち上げたとしても、駆動ピストン22がシャフトガイド30を通り抜けられず、ハウジング27を取り外せない。作業者は、ハウジング27と軸方向可動体16との係合を直ちに解除することはできない。 Even if the housing fastening member 70 is removed to lift the housing 27 in order to remove the engagement pin 72, the drive piston 22 can not pass through the shaft guide 30, and the housing 27 can not be removed. The operator can not immediately release the engagement between the housing 27 and the axially movable body 16.
 そこで、比較例に係る極低温冷凍機10’の分解作業においては、作業者は、ハウジング27をディスプレーサシリンダ26から持ち上げて隙間を作り出し、作業者はその隙間から係合ピン72を取り外さなければならない。しかし、極低温冷凍機10’が大型の場合にはとくに、ハウジング27の重量が例えば数十kgにもなりうるので、持ち上げ作業は簡単ではない。人手で持ち上げるのは困難であり、クレーンなどの持ち上げ器具を要するなど、作業に手間と時間がかかる。 Therefore, in disassembling work of the cryogenic refrigerator 10 'according to the comparative example, the worker must lift the housing 27 from the displacer cylinder 26 to create a gap, and the worker must remove the engagement pin 72 from the gap . However, especially when the cryogenic refrigerator 10 'is large, the lifting operation is not easy because the weight of the housing 27 can be, for example, several tens of kg. It is difficult to lift by hand, and it takes time and effort to work, such as the need for lifting equipment such as a crane.
 第1の実施の形態に係る極低温冷凍機10によれば、ハウジング27をディスプレーサシリンダ26に載置しかつハウジング蓋27aを取り外した状態で、作業者は、駆動ピストン22をディスプレーサ20に着脱可能である。ハウジング27をディスプレーサシリンダ26に載置したままで、作業者は、ハウジング27の開口部を通じて固定部材68による駆動ピストン22の固定を解除し、駆動ピストン22を駆動シャフト24から取り外すことができる。そして、作業者は、ハウジング27をディスプレーサシリンダ26から取り外すことができる。また、作業者は、極低温冷凍機10を組み立てる際には、逆の手順で行うことができる。 According to the cryogenic refrigerator 10 according to the first embodiment, the operator can remove the drive piston 22 from the displacer 20 with the housing 27 mounted on the displacer cylinder 26 and the housing lid 27a removed. It is. With the housing 27 still mounted on the displacer cylinder 26, the operator can release the fixation of the drive piston 22 by the fixing member 68 through the opening of the housing 27 and remove the drive piston 22 from the drive shaft 24. Then, the operator can remove the housing 27 from the displacer cylinder 26. In addition, when assembling the cryogenic refrigerator 10, the worker can carry out in the reverse procedure.
 したがって、比較例のようにディスプレーサシリンダ26の内部空間で駆動シャフト24がディスプレーサ20にピン係合される構成に比べて、第1の実施の形態に係る極低温冷凍機10によれば、分解作業および組立作業が容易となる。作業に要する時間が短縮される。 Therefore, compared with the configuration in which the drive shaft 24 is pin-engaged with the displacer 20 in the internal space of the displacer cylinder 26 as in the comparative example, the cryogenic refrigerator 10 according to the first embodiment And the assembly operation becomes easy. The time required for work is reduced.
 また、駆動ピストン22は固定部材68によって駆動シャフト24に着脱可能に固定されている。固定部材68にはナットなど着脱容易な構成を採用することができる。これも作業性の向上に役立つ。 Further, the drive piston 22 is detachably fixed to the drive shaft 24 by a fixing member 68. The fixing member 68 can adopt an easily detachable structure such as a nut. This also helps to improve the workability.
 ハウジング蓋27aが取り外されたとき駆動室46が外部に開放され、固定部材68は、駆動室46に配置されている。よって、固定部材68がたとえばガスばね室48など他の場所に配置される場合に比べて、作業者にとって固定部材68を操作することが容易である。 When the housing lid 27 a is removed, the drive chamber 46 is opened to the outside, and the fixing member 68 is disposed in the drive chamber 46. Therefore, it is easier for the operator to operate the fixing member 68 than when the fixing member 68 is disposed at another place such as the gas spring chamber 48, for example.
 上述の実施の形態においては、極低温冷凍機10は、ガス駆動型のGM冷凍機であるが、これに限られず、極低温冷凍機10は、モータ駆動型のGM冷凍機であってもよい。 In the above-mentioned embodiment, although cryogenic refrigerator 10 is a gas drive-type GM refrigerator, it is not restricted to this, but cryogenic refrigerator 10 may be a motor drive-type GM refrigerator .
 図8は、第2の実施の形態に係る極低温冷凍機10を概略的に示す図である。極低温冷凍機10は、モータ駆動型のGM冷凍機である。以下、第2の実施の形態に係る極低温冷凍機10について、第1の実施の形態と異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。 FIG. 8 is a view schematically showing a cryogenic refrigerator 10 according to a second embodiment. The cryogenic refrigerator 10 is a motor driven GM refrigerator. Hereinafter, the cryogenic refrigerator 10 according to the second embodiment will be described focusing on a configuration different from the first embodiment, and the common configuration will be briefly described or omitted.
 コールドヘッド14の軸方向可動体16は、軸方向に往復動可能なディスプレーサ20と、軸方向に往復動可能な駆動フランジと、を備える。駆動フランジは、スコッチヨーク機構のヨーク板74を形成する。駆動シャフト24の軸方向一端(下端)がディスプレーサ20に剛に連結され駆動シャフト24の軸方向他端(上端)がヨーク板74に剛に連結されている。そのため、ヨーク板74の軸方向往復動によりディスプレーサ20が軸方向に往復動する。ヨーク板74は、ハウジング27の内部空洞であるヨーク板74の往復動スペース76に収容されている。 The axially movable body 16 of the cold head 14 includes an axially reciprocable displacer 20 and an axially reciprocable drive flange. The drive flange forms the yoke plate 74 of the scotch yoke mechanism. One axial end (lower end) of the drive shaft 24 is rigidly connected to the displacer 20, and the other axial end (upper end) of the drive shaft 24 is rigidly connected to the yoke plate 74. Therefore, the displacer 20 reciprocates in the axial direction by the axial reciprocation of the yoke plate 74. The yoke plate 74 is accommodated in a reciprocating space 76 of the yoke plate 74 which is an internal cavity of the housing 27.
 ヨーク板74の径方向幅は、ディスプレーサ20の径より小さい。駆動シャフト24の径はヨーク板74の径方向幅より小さい。シャフトガイド30の貫通穴は駆動シャフト24に合わせて形成されているから、この貫通穴の径は、ディスプレーサ20の径より小さく、かつヨーク板74の径方向幅より小さい。 The radial width of the yoke plate 74 is smaller than the diameter of the displacer 20. The diameter of the drive shaft 24 is smaller than the radial width of the yoke plate 74. Since the through hole of the shaft guide 30 is formed to match the drive shaft 24, the diameter of the through hole is smaller than the diameter of the displacer 20 and smaller than the radial width of the yoke plate 74.
 スコッチヨーク機構はよく知られたものが採用されてもよく、例えば特許第5575880号公報にその一例が説明されているので、ここでは詳述しない。特許第5575880号公報は参照によりその全体が本願明細書に援用される。 The scotch yoke mechanism may be a well-known one, and an example thereof is described in, for example, Japanese Patent No. 5575880, and therefore will not be described in detail here. No. 5,575,880 is hereby incorporated by reference in its entirety.
 ヨーク板74は、駆動シャフト24の一部とともに、ハウジング27をディスプレーサシリンダ26に載置しかつハウジング蓋27aを取り外した状態でディスプレーサ20に着脱可能に構成されている。そのため、軸方向可動体16は、駆動シャフト24に配置されたねじ連結部78を備える。駆動シャフト24は、ねじ連結部78を境界として、ヨーク板74側のシャフト上部24bとディスプレーサ20側のシャフト下部24cに分割されている。シャフト上部24bがヨーク板74に固定され、シャフト下部24cがディスプレーサ20に固定されている。ハウジング蓋27aは、もう1つのシャフトガイド33を備えてもよい。 The yoke plate 74 is configured to be removable from the displacer 20 in a state where the housing 27 is mounted on the displacer cylinder 26 and the housing lid 27a is removed together with a part of the drive shaft 24. To that end, the axially movable body 16 comprises a threaded connection 78 arranged on the drive shaft 24. The drive shaft 24 is divided into a shaft upper portion 24b on the yoke plate 74 side and a shaft lower portion 24c on the displacer 20 side, with the screw connection portion 78 as a boundary. The upper shaft portion 24 b is fixed to the yoke plate 74, and the lower shaft portion 24 c is fixed to the displacer 20. The housing lid 27a may be provided with another shaft guide 33.
 図9は、第2の実施の形態に係る極低温冷凍機10の分解方法の一工程を示す概略図である。図9には、ハウジング蓋27aが取り外され、ハウジング27がシリンダフランジ26a上に載置された状態が示されている。ハウジング蓋27aが取り外されることによって、ヨーク板74の往復動スペース76が外部に開放される。 FIG. 9 is a schematic view showing one step of the method of disassembling the cryogenic refrigerator 10 according to the second embodiment. FIG. 9 shows the housing lid 27a removed and the housing 27 mounted on the cylinder flange 26a. By removing the housing cover 27a, the reciprocating space 76 of the yoke plate 74 is opened to the outside.
 作業者は、ねじ連結部78を操作することによって、ヨーク板74をディスプレーサ20と着脱可能である。ねじ連結部78は、ディスプレーサ20に対するヨーク板74の軸周り正回転Eによりヨーク板74を締結する一方、ディスプレーサ20に対するヨーク板74の軸周り逆回転Fによりヨーク板74を締結解除する。ヨーク板74とともにシャフト上部24bがシャフト下部24cに対し回転し、ねじ連結部78の締結および解除が可能である。 The operator can remove the yoke plate 74 from the displacer 20 by operating the screw connection portion 78. The screw connection portion 78 fastens the yoke plate 74 by the positive rotation E around the axis of the yoke plate 74 with respect to the displacer 20, and disengages the yoke plate 74 by the reverse rotation F around the yoke plate 74 with respect to the displacer 20. The shaft upper portion 24b rotates with the yoke plate 74 relative to the shaft lower portion 24c, and the screw connection portion 78 can be tightened and released.
 第2の実施の形態に係る極低温冷凍機10によれば、ハウジング27をディスプレーサシリンダ26に載置しかつハウジング蓋27aを取り外した状態で、作業者は、ヨーク板74をディスプレーサ20に着脱可能である。ハウジング27をディスプレーサシリンダ26に載置したままで、作業者は、ハウジング27の開口部を通じてねじ連結部78による締結を解除し、ヨーク板74をシャフト上部24bとともにシャフト下部24cから取り外すことができる。そして、作業者は、ハウジング27をディスプレーサシリンダ26から取り外すことができる。また、作業者は、極低温冷凍機10を組み立てる際には、逆の手順で行うことができる。 According to the cryogenic refrigerator 10 according to the second embodiment, the operator can detach the yoke plate 74 from the displacer 20 with the housing 27 placed on the displacer cylinder 26 and the housing lid 27a removed. It is. With the housing 27 still mounted on the displacer cylinder 26, the operator can release the fastening by the screw connection 78 through the opening of the housing 27 and remove the yoke plate 74 from the lower shaft 24c together with the upper shaft 24b. Then, the operator can remove the housing 27 from the displacer cylinder 26. In addition, when assembling the cryogenic refrigerator 10, the worker can carry out in the reverse procedure.
 したがって、比較例のようにディスプレーサシリンダ26の内部空間で駆動シャフト24がディスプレーサ20にピン係合される構成に比べて、第2の実施の形態に係る極低温冷凍機10によれば、分解作業および組立作業が容易となる。作業に要する時間が短縮される。 Therefore, compared with a configuration in which the drive shaft 24 is pin-engaged with the displacer 20 in the internal space of the displacer cylinder 26 as in the comparative example, the cryogenic refrigerator 10 according to the second embodiment performs disassembly work And the assembly operation becomes easy. The time required for work is reduced.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It is understood by those skilled in the art that the present invention is not limited to the above embodiment, and various design changes are possible, and various modifications are possible, and such modifications are also within the scope of the present invention. It is a place.
 図10(a)に示されるように、ねじ連結部78は、駆動シャフト24とディスプレーサ20の間に配置されてもよい。図8に示される例では、ねじ連結部78はヨーク板74の往復動スペース76に配置されているが、図10に示されるように、ねじ連結部78が室温室36に配置されてもよい。この場合、ハウジング27をディスプレーサシリンダ26に載置しかつハウジング蓋27aを取り外した状態で、作業者は、駆動シャフト24の全体とともにヨーク板74をディスプレーサ20に着脱可能である。 A threaded connection 78 may be disposed between the drive shaft 24 and the displacer 20, as shown in FIG. 10 (a). In the example shown in FIG. 8, the screw connection portion 78 is disposed in the reciprocating space 76 of the yoke plate 74, but as shown in FIG. 10, the screw connection portion 78 may be disposed in the room temperature chamber 36. . In this case, with the housing 27 placed on the displacer cylinder 26 and the housing cover 27 a removed, the operator can remove the yoke plate 74 from the displacer 20 along with the entire drive shaft 24.
 モータ駆動型のGM冷凍機だけではなく、ねじ連結部78は、ガス駆動型のGM冷凍機にも適用可能である。その場合、図10(b)に示されるように、ねじ連結部78は、駆動ピストン22と駆動シャフト24の間に配置されてもよい。ねじ連結部78は、ディスプレーサ20に対する駆動ピストン22の軸周り正回転により駆動ピストン22を締結する一方、ディスプレーサ20に対する駆動ピストン22の軸周り逆回転により駆動ピストン22を締結解除する。この場合、ハウジング27をディスプレーサシリンダ26に載置しかつハウジング蓋27aを取り外した状態で、作業者は、駆動ピストン22を単体でディスプレーサ20に着脱可能である。なお、ガス駆動型のGM冷凍機においても、ねじ連結部78は、駆動シャフト24に配置されてもよいし、駆動シャフト24とディスプレーサ20の間に配置されてもよい。 Not only the motor driven GM refrigerator, the screw connection portion 78 is also applicable to a gas driven GM refrigerator. In that case, as shown in FIG. 10 (b), the screw connection 78 may be disposed between the drive piston 22 and the drive shaft 24. The screw connection portion 78 fastens the drive piston 22 by positive rotation around the axis of the drive piston 22 with respect to the displacer 20, and disengages the drive piston 22 by reverse rotation around the axis of the drive piston 22 with respect to the displacer 20. In this case, with the housing 27 placed on the displacer cylinder 26 and the housing lid 27a removed, the operator can remove the drive piston 22 alone from the displacer 20. Note that, also in the gas driven GM refrigerator, the screw connection portion 78 may be disposed on the drive shaft 24 or may be disposed between the drive shaft 24 and the displacer 20.
 また、固定部材68は、ガス駆動型のGM冷凍機だけではなく、モータ駆動型のGM冷凍機にも適用可能である。その場合、図10(c)に示されるように、固定部材68は、ヨーク板74を駆動シャフト24に着脱可能に固定するようにヨーク板74の下枠部に設けられてもよい。この場合、ハウジング27をディスプレーサシリンダ26に載置しかつハウジング蓋27aを取り外した状態で、作業者は、ヨーク板74を単体でディスプレーサ20に着脱可能である。このように、固定部材68は駆動フランジの上面に設置されることは必須ではなく、固定部材68は駆動フランジの下部に設置されてもよい。 Further, the fixing member 68 is applicable not only to a gas driven GM refrigerator but also to a motor driven GM refrigerator. In that case, as shown in FIG. 10C, the fixing member 68 may be provided on the lower frame portion of the yoke plate 74 so as to detachably fix the yoke plate 74 to the drive shaft 24. In this case, with the housing 27 placed on the displacer cylinder 26 and the housing cover 27a removed, the operator can detachably attach the yoke plate 74 to the displacer 20 alone. Thus, it is not essential that the fixing member 68 be installed on the upper surface of the drive flange, and the fixing member 68 may be installed on the lower part of the drive flange.
 上述の実施形態は、GM冷凍機を例として説明したが、実施の形態に係る駆動フランジ取付構造は、ソルベー冷凍機などその他の極低温冷凍機にも適用可能である。 Although the above-described embodiment has been described by taking the GM refrigerator as an example, the drive flange mounting structure according to the embodiment is also applicable to other cryogenic refrigerators such as a Solvay refrigerator.
 以下、本発明の幾つかの実施形態を挙げる。 Hereinafter, some embodiments of the present invention will be listed.
 1.軸方向に往復動可能なディスプレーサと、
 軸方向に往復動可能な駆動フランジと、
 軸方向に延在する駆動シャフトであって、前記駆動フランジの軸方向往復動により前記ディスプレーサが軸方向に往復動するように一端が前記ディスプレーサに剛に連結され他端が前記駆動フランジに剛に連結された駆動シャフトと、
 前記ディスプレーサを軸方向に往復動可能に収容するシリンダと、
 取り外し可能なハウジング蓋と、前記駆動フランジを軸方向に往復動可能に収容するとともに、前記ハウジング蓋が取り外されたとき外部に開放される駆動フランジ室と、を備え、前記シリンダに取り外し可能に固定されたハウジングと、を備え、
 前記駆動フランジは、単体でまたは前記駆動シャフトの少なくとも一部とともに、前記ハウジングを前記シリンダに載置しかつ前記ハウジング蓋を取り外した状態で、前記ディスプレーサに着脱可能に構成されていることを特徴とする極低温冷凍機。
1. An axially reciprocable displacer,
An axially reciprocable drive flange,
An axially extending drive shaft having one end rigidly coupled to the displacer and the other end rigidly coupled to the drive flange such that the displacer axially reciprocates by axial reciprocation of the drive flange; Connected drive shaft,
A cylinder which accommodates the displacer so as to be axially reciprocable;
A removable housing lid and a drive flange chamber axially reciprocably accommodating the drive flange and open to the outside when the housing lid is removed, and removably fixed to the cylinder A housing, and
The drive flange may be configured to be removable from the displacer in a state in which the housing is mounted on the cylinder and the housing lid is removed alone or together with at least a part of the drive shaft. Cryogenic refrigerator.
 2.前記駆動フランジを前記駆動シャフトに着脱可能に固定する固定部材をさらに備えることを特徴とする実施形態1に記載の極低温冷凍機。 2. The cryogenic refrigerator according to claim 1, further comprising a fixing member for detachably fixing the drive flange to the drive shaft.
 3.前記駆動フランジは、前記駆動フランジ室を前記ディスプレーサとは軸方向反対側の第1区画とディスプレーサ側の第2区画に仕切るように前記駆動フランジ室に配置され、
 前記ハウジング蓋が取り外されたとき前記駆動フランジ室の前記第1区画が外部に開放され、
 前記固定部材は、前記駆動フランジ室の前記第1区画に配置されていることを特徴とする実施形態2に記載の極低温冷凍機。
3. The drive flange is disposed in the drive flange chamber so as to divide the drive flange chamber into a first section axially opposite to the displacer and a second section on the displacer side.
The first section of the drive flange chamber is open to the outside when the housing lid is removed,
The cryogenic refrigerator according to Embodiment 2, wherein the fixing member is disposed in the first section of the driving flange chamber.
 4.前記ディスプレーサに対する前記駆動フランジの軸周り正回転により前記駆動フランジを締結する一方、前記ディスプレーサに対する前記駆動フランジの軸周り逆回転により前記駆動フランジを締結解除するように、前記駆動フランジと前記駆動シャフトの間に、または前記駆動シャフトに、または前記駆動シャフトと前記ディスプレーサの間に配置されたねじ連結部をさらに備えることを特徴とする実施形態1に記載の極低温冷凍機。 4. The drive flange and the drive shaft are coupled such that the drive flange is fastened by positive rotation around the drive flange relative to the displacer while fastening the drive flange by reverse rotation around the drive flange relative to the displacer. The cryogenic refrigerator according to claim 1, further comprising a threaded connection disposed between, or on the drive shaft, or between the drive shaft and the displacer.
 5.前記駆動フランジは、作用するガス圧力によって前記ディスプレーサの軸方向往復動を駆動する駆動ピストンを形成することを特徴とする実施形態1から4のいずれかに記載の極低温冷凍機。 5. 5. The cryogenic refrigerator according to any one of the preceding embodiments, wherein the drive flange forms a drive piston that drives axial reciprocation of the displacer by the gas pressure acting thereon.
 6.前記駆動フランジは、スコッチヨーク機構のヨーク板を形成することを特徴とする実施形態1から4のいずれかに記載の極低温冷凍機。 6. The cryogenic refrigerator according to any one of the above embodiments, wherein the drive flange forms a yoke plate of a scotch yoke mechanism.
 10 極低温冷凍機、 20 ディスプレーサ、 22 駆動ピストン、 24 駆動シャフト、 27 ハウジング、 27a ハウジング蓋、 68 固定部材、 74 ヨーク板、 78 ねじ連結部。 10 cryogenic refrigerator, 20 displacers, 22 drive pistons, 24 drive shafts, 27 housings, 27a housing lids, 68 fixing members, 74 yoke plates, 78 screw connections.
 本発明は、極低温冷凍機の分野における利用が可能である。 The invention can be used in the field of cryogenic refrigerators.

Claims (6)

  1.  軸方向に往復動可能なディスプレーサと、
     軸方向に往復動可能な駆動フランジと、
     軸方向に延在する駆動シャフトであって、前記駆動フランジの軸方向往復動により前記ディスプレーサが軸方向に往復動するように一端が前記ディスプレーサに剛に連結され他端が前記駆動フランジに剛に連結された駆動シャフトと、
     前記ディスプレーサを軸方向に往復動可能に収容するシリンダと、
     取り外し可能なハウジング蓋と、前記駆動フランジを軸方向に往復動可能に収容するとともに、前記ハウジング蓋が取り外されたとき外部に開放される駆動フランジ室と、を備え、前記シリンダに取り外し可能に固定されたハウジングと、を備え、
     前記駆動フランジは、単体でまたは前記駆動シャフトの少なくとも一部とともに、前記ハウジングを前記シリンダに載置しかつ前記ハウジング蓋を取り外した状態で、前記ディスプレーサに着脱可能に構成されていることを特徴とする極低温冷凍機。
    An axially reciprocable displacer,
    An axially reciprocable drive flange,
    An axially extending drive shaft having one end rigidly coupled to the displacer and the other end rigidly coupled to the drive flange such that the displacer axially reciprocates by axial reciprocation of the drive flange; Connected drive shaft,
    A cylinder which accommodates the displacer so as to be axially reciprocable;
    A removable housing lid and a drive flange chamber axially reciprocably accommodating the drive flange and open to the outside when the housing lid is removed, and removably fixed to the cylinder A housing, and
    The drive flange may be configured to be removable from the displacer in a state in which the housing is mounted on the cylinder and the housing lid is removed alone or together with at least a part of the drive shaft. Cryogenic refrigerator.
  2.  前記駆動フランジを前記駆動シャフトに着脱可能に固定する固定部材をさらに備えることを特徴とする請求項1に記載の極低温冷凍機。 The cryogenic refrigerator according to claim 1, further comprising a fixing member for detachably fixing the drive flange to the drive shaft.
  3.  前記駆動フランジは、前記駆動フランジ室を前記ディスプレーサとは軸方向反対側の第1区画とディスプレーサ側の第2区画に仕切るように前記駆動フランジ室に配置され、
     前記ハウジング蓋が取り外されたとき前記駆動フランジ室の前記第1区画が外部に開放され、
     前記固定部材は、前記駆動フランジ室の前記第1区画に配置されていることを特徴とする請求項2に記載の極低温冷凍機。
    The drive flange is disposed in the drive flange chamber so as to divide the drive flange chamber into a first section axially opposite to the displacer and a second section on the displacer side.
    The first section of the drive flange chamber is open to the outside when the housing lid is removed,
    The cryogenic refrigerator according to claim 2, wherein the fixing member is disposed in the first section of the driving flange chamber.
  4.  前記ディスプレーサに対する前記駆動フランジの軸周り正回転により前記駆動フランジを締結する一方、前記ディスプレーサに対する前記駆動フランジの軸周り逆回転により前記駆動フランジを締結解除するように、前記駆動フランジと前記駆動シャフトの間に、または前記駆動シャフトに、または前記駆動シャフトと前記ディスプレーサの間に配置されたねじ連結部をさらに備えることを特徴とする請求項1に記載の極低温冷凍機。 The drive flange and the drive shaft are coupled such that the drive flange is fastened by positive rotation around the drive flange relative to the displacer while fastening the drive flange by reverse rotation around the drive flange relative to the displacer. The cryogenic refrigerator according to claim 1, further comprising a screw connection disposed between, or on the drive shaft, or between the drive shaft and the displacer.
  5.  前記駆動フランジは、作用するガス圧力によって前記ディスプレーサの軸方向往復動を駆動する駆動ピストンを形成することを特徴とする請求項1から4のいずれかに記載の極低温冷凍機。 5. A cryogenic refrigerator according to any one of the preceding claims, wherein the drive flange forms a drive piston which drives the axial reciprocation of the displacer by the gas pressure exerted.
  6.  前記駆動フランジは、スコッチヨーク機構のヨーク板を形成することを特徴とする請求項1から4のいずれかに記載の極低温冷凍機。 The cryogenic refrigerator according to any one of claims 1 to 4, wherein the drive flange forms a yoke plate of a scotch yoke mechanism.
PCT/JP2018/041617 2017-11-20 2018-11-09 Cryogenic refrigerator WO2019098128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017222630A JP2019095090A (en) 2017-11-20 2017-11-20 Cryogenic refrigerator
JP2017-222630 2017-11-20

Publications (1)

Publication Number Publication Date
WO2019098128A1 true WO2019098128A1 (en) 2019-05-23

Family

ID=66540152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041617 WO2019098128A1 (en) 2017-11-20 2018-11-09 Cryogenic refrigerator

Country Status (2)

Country Link
JP (1) JP2019095090A (en)
WO (1) WO2019098128A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023085949A (en) * 2021-12-09 2023-06-21 住友重機械工業株式会社 Disassembling method for cryogenic refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142479A (en) * 2012-01-06 2013-07-22 Sumitomo Heavy Ind Ltd Cryogenic refrigerator and displacer
JP2013217516A (en) * 2012-04-04 2013-10-24 Sumitomo Heavy Ind Ltd Regenerative refrigerator
JP2014020716A (en) * 2012-07-20 2014-02-03 Sumitomo Heavy Ind Ltd Cold storage type refrigeration machine
JP2017142036A (en) * 2016-02-12 2017-08-17 アイシン精機株式会社 GM refrigerator
JP2017161146A (en) * 2016-03-09 2017-09-14 アイシン精機株式会社 Gm freezer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142479A (en) * 2012-01-06 2013-07-22 Sumitomo Heavy Ind Ltd Cryogenic refrigerator and displacer
JP2013217516A (en) * 2012-04-04 2013-10-24 Sumitomo Heavy Ind Ltd Regenerative refrigerator
JP2014020716A (en) * 2012-07-20 2014-02-03 Sumitomo Heavy Ind Ltd Cold storage type refrigeration machine
JP2017142036A (en) * 2016-02-12 2017-08-17 アイシン精機株式会社 GM refrigerator
JP2017161146A (en) * 2016-03-09 2017-09-14 アイシン精機株式会社 Gm freezer

Also Published As

Publication number Publication date
JP2019095090A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US11408406B2 (en) GM cryocooler and method of operating GM cryocooler
KR20130018303A (en) Rotary valve and cryogenic refrigerator using same
US7600385B2 (en) Pulse tube cryogenic cooler
WO2018168304A1 (en) Extreme-low-temperature freezer and rotary valve unit for extreme-low-temperature freezers
EP3699516A2 (en) Method of decomposing cold head and lifting-up jig
WO2019098128A1 (en) Cryogenic refrigerator
US10520226B2 (en) Cryocooler
JP2014526012A (en) Compressor device, cooling device comprising a compressor device, and cooling unit comprising a compressor device
US10184693B2 (en) GM cryocooler
WO2018101273A1 (en) Gm refrigerator and operation method for gm refrigerator
US11971108B2 (en) Rotary valve of cryocooler and cryocooler
JP6573845B2 (en) Cryogenic refrigerator
JP6664843B2 (en) GM refrigerator
JP2017048937A (en) Cryogenic refrigeration machine
WO2024042860A1 (en) Disassembly method for two-stage cold head, and displacer removal jig
JP2007205679A (en) Cold-accumulator type refrigerator
EP4446671A1 (en) Method for disassembling cryogenic freezer
WO2018221371A1 (en) Extreme-low-temperature freezer
CN112236628B (en) Pulse tube refrigerator
WO2020049936A1 (en) Cryogenic refrigerator
CN112368525B (en) Cryogenic refrigerator and flow path switching mechanism for cryogenic refrigerator
WO2018163728A1 (en) Gm refrigerator
JP2024056390A (en) Cold head attachment structure, cryogenic temperature device, cold head and maintenance method of cold head
JP2019128064A (en) GM refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878642

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18878642

Country of ref document: EP

Kind code of ref document: A1