WO2019097936A1 - Solid state imaging element and electronic device - Google Patents

Solid state imaging element and electronic device Download PDF

Info

Publication number
WO2019097936A1
WO2019097936A1 PCT/JP2018/038588 JP2018038588W WO2019097936A1 WO 2019097936 A1 WO2019097936 A1 WO 2019097936A1 JP 2018038588 W JP2018038588 W JP 2018038588W WO 2019097936 A1 WO2019097936 A1 WO 2019097936A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip lens
lens
layer
pixel
light
Prior art date
Application number
PCT/JP2018/038588
Other languages
French (fr)
Japanese (ja)
Inventor
智之 蕨野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2019097936A1 publication Critical patent/WO2019097936A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present technology relates to a solid-state imaging device and an electronic device.
  • solid-state imaging devices such as complementary metal oxide semiconductor (CMOS) image sensors and charge coupled devices (CCDs) are widely used in digital still cameras and digital video cameras.
  • CMOS complementary metal oxide semiconductor
  • CCDs charge coupled devices
  • Patent Document 1 An image sensor having a double lens structure has been proposed (see Patent Document 1).
  • Patent Documents 1 to 3 may not be able to further improve the image quality.
  • the present technology has been made in view of such a situation, and has as its main object to provide a solid-state imaging device capable of improving the image quality and an electronic device equipped with the solid-state imaging device.
  • the on-chip lens, the in-layer lens, the antireflective layer, and the semiconductor substrate are sequentially arranged from the light incident side.
  • the curvature radius of the upper part on the light incident side of the on-chip lens is rl
  • the curvature radius of the lower part of the on-chip lens is rc
  • the refractive index of the on-chip lens is nl
  • the refractive index of the in-layer lens is nc
  • the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
  • the solid-state imaging device according to the present technology may further include an inter-pixel light shielding film.
  • the solid-state imaging device according to the present technology may further include a hard mask material between adjacent pixels.
  • the upper part on the light incident side of at least one in-layer lens of the in-layer lenses may have an upward convex shape, and is in contact with the at least one in-layer lens
  • the lower portion of the on-chip lens to be disposed may be convex upward.
  • an upper portion on a light incident side of at least one in-layer lens of the in-layer lenses may have a downward convex shape, and is in contact with the at least one in-layer lens
  • the lower portion of the on-chip lens to be disposed may be a downward convex shape.
  • the upper part on the light incident side of at least one in-layer lens of the in-layer lenses may have an upward convex shape, and is in contact with the at least one in-layer lens
  • the lower portion of the on-chip lens to be disposed may be convex upward, and
  • the upper part on the light incident side of at least one in-layer lens of the in-layer lenses may have a downward convex shape, and the on-chip lens disposed in contact with the at least one in-layer lens
  • the lower portion may have a downward convex shape.
  • the lower part of the on-chip lens is convex upward is synonymous with that the lower part of the on-chip lens is concave and it is the light incident side of the in-layer lens (including the color filter described later).
  • the downward convex shape on the upper portion is synonymous with the concave shape on the light incident side of the in-layer lens (including a color filter described later).
  • At least one in-layer lens of the in-layer lenses may have a color filter characteristic that transmits a specific wavelength band.
  • the solid-state imaging device according to the present technology may further include an on-chip lens anti-reflection film on the on-chip lens.
  • the curvature radius of the upper part on the light incident side of the on-chip lens is rl
  • the curvature radius of the lower part of the on-chip lens is rc
  • the refractive index of the on-chip lens is nl
  • the refractive index of the in-layer lens is nc
  • the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
  • the radius of curvature rl of the upper part of the on-chip lens and the radius of curvature rc of the lower part of the on-chip lens in the range of 0.96 to 1.04 in which al and ac satisfy the following formula (1)
  • the present invention provides a method of manufacturing a solid-state imaging device, which is processed into
  • the upper part of the on-chip lens when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl ⁇ 0.
  • the upper part of the on-chip lens is a downward convex shape, and when rc> 0, the lower part of the on-chip lens is an upward convex shape, and when rc ⁇ 0, the lower part of the on-chip lens is a downward convex shape It is.
  • the method of manufacturing a solid-state imaging device according to the present technology may further include the step of forming a hard mask material between adjacent pixels.
  • the method of manufacturing a solid-state imaging device according to the present technology may further include the step of forming an anti-reflection film for on-chip lens on the on-chip lens.
  • a solid-state image sensor is mounted,
  • the solid-state imaging device is At least an on-chip lens, an in-layer lens, an antireflective layer, and a semiconductor substrate are arranged in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions,
  • the curvature radius of the upper part on the light incident side of the on-chip lens is rl
  • the curvature radius of the lower part of the on-chip lens is rc
  • the refractive index of the on-chip lens is nl
  • the refractive index of the in-layer lens is nc
  • the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
  • the radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96
  • the upper part of the on-chip lens when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl ⁇ 0.
  • the upper part of the on-chip lens is a downward convex shape, and when rc> 0, the lower part of the on-chip lens is an upward convex shape, and when rc ⁇ 0, the lower part of the on-chip lens is a downward convex shape It is.
  • the image quality can be improved.
  • the effect described here is not necessarily limited and may be any effect described in the present technology.
  • Embodiment relating to solid-state imaging device 2-1.
  • Sixth Embodiment Example 6 of Solid-State Imaging Device) 2-7.
  • the present technology relates to a solid-state imaging device proposed regarding the chromatic aberration of the on-chip lens and an electronic apparatus equipped with the solid-state imaging device. According to the present technology, the image quality of the solid-state imaging device can be improved.
  • the curvature of the on-chip lens can be changed according to the refractive index for each wavelength and / or for each pixel without requiring an additional step.
  • the solid-state imaging device according to the first embodiment (example 1 of the solid-state imaging device) according to the present technology includes an on-chip lens and a layer sequentially from the light incident side for each of a plurality of pixels arranged in one or two dimensions.
  • At least an inner lens, a reflection preventing layer, and a semiconductor substrate are disposed, and the refractive index of the on-chip lens and the refractive index of the in-layer lens are different, and the curvature of the upper portion on the light incident side of the on-chip lens
  • the radius is rl
  • the curvature radius of the lower part of the on-chip lens is rc
  • the refractive index of the on-chip lens is nl
  • the refractive index of the intralayer lens is nc
  • the light incident side of the intralayer lens is from the antireflective layer
  • the radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and ac. Is a solid that satisfies the following formula (1) An image element.
  • the upper part of the on-chip lens when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl ⁇ 0.
  • the upper part of the on-chip lens is a downward convex shape
  • when rc>0 the lower part of the on-chip lens is an upward convex shape
  • when rc ⁇ 0 the lower part of the on-chip lens is a downward convex shape It is.
  • the light has a spread according to the wavelength without being condensed at one point even if condensed by the on-chip lens in nature.
  • al and ac mean the on-chip lens error range recognized from this spread.
  • al is an error range of the upper portion (upper surface) of the on-chip lens
  • ac is an error range of the lower portion (lower surface) of the on-chip lens.
  • the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
  • FIG. 1 shows a solid-state imaging device 1-1 which is an example of a solid-state imaging device according to a first embodiment of the present technology.
  • FIG. 1 is a cross-sectional view of four pixels (pixels 100-1-1 to 100-1-4) of a solid-state imaging device 1-1.
  • “upper” means the upper direction in FIG. 1
  • “lower” means the lower direction in FIG.
  • an on-chip lens 2-1-G In the pixel 100-1-1, an on-chip lens 2-1-G, a color filter 3-1-G that transmits green light (G light), and an insulating layer 5-1, in order from the light incident side, An antireflective layer 6-1 and a semiconductor substrate 10-1 are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-1, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-1.
  • the upper part of the on-chip lens 2-1-G (on the light incident surface side, and the upper side in FIG. 1) is convex upward, and the lower part of the on-chip lens 2-1-G (in FIG. 1 is the lower side) ) Is a downward convex shape.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-1-G is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-1-G is rc ⁇ 0.
  • the upper portion of the color filter 3-1-G (on the light incident surface side and the upper side in FIG. 1) has a downward convex shape (concave shape).
  • the on-chip lens 2-1-G may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-1-G.
  • the distance from the antireflection layer 6-1 to the upper end portion as the light incident side of the color filter 3-1-G is hg-1.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-1-G and the radius of curvature (rc) of the lower portion of the on-chip lens 2-1-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-1-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-1-G and the curvature radius (rc) of the lower part of the on-chip lens 2-1-G are ⁇ 4. A range of about% is acceptable.
  • an on-chip lens 2-1-R In the pixel 100-1-2, an on-chip lens 2-1-R, a color filter 3-1-R through which red light (R light) passes, and an insulating layer 5-1 in order from the light incident side An antireflective layer 6-1 and a semiconductor substrate 10-1 are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-1, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-1.
  • the upper part of the on-chip lens 2-1-R (on the light incident surface side, upper side in FIG. 1) is convex upward, and the lower part of the on-chip lens 2-1-R (lower side in FIG. 1) ) Is substantially flat.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-1-G is rl> 0, and rc of the curvature radius (rc) of the lower part of the on-chip lens 2-1-R is infinite.
  • the upper portion of the color filter 3-1-R (on the light incident surface side and the upper side in FIG. 1) is substantially flat.
  • the on-chip lens 2-1-R may be made of a material having a higher refractive index than the substantially flat color filter 3-1-R.
  • the distance from the antireflection layer 6-1 to the upper end portion as the light incident side of the color filter 3-1-R is hr-1.
  • the radius of curvature (rl) at the top of the on-chip lens 2-1-R is optimized so as to satisfy the above equation (1).
  • the radius of curvature (rc) at the bottom of the on-chip lens 2-1-R is infinite. Thereby, in the pixel 100-1-2 (wavelength band of R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-1-R is allowed to be in the range of about 4%.
  • An antireflective layer 6-1 and a semiconductor substrate 10-1 are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-1 and embedded in a silicon (Si) layer of the semiconductor substrate 10-1.
  • the upper part of the on-chip lens 2-1-B (on the light incident surface side, and the upper side in FIG. 1) is convex upward, and the lower part of the on-chip lens 2-1-B (in FIG. 1 is the lower side) ) Is a downward convex shape.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-1-B is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-1-B is rc ⁇ 0.
  • the upper portion of the color filter 3-1-B (the light incident surface side and the upper side in FIG. 1) has a downward convex shape (concave shape).
  • the on-chip lens 2-1-B may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-1-B.
  • the distance from the antireflection layer 6-1 to the upper end portion as the light incident side of the color filter 3-1-B is hb-1.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-1-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-1-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-1-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-1-B and the curvature radius (rc) of the lower part of the on-chip lens 2-1-B are ⁇ 4. A range of about% is acceptable.
  • W, an insulating layer 5-1, an antireflective layer 6-1, and a semiconductor substrate 10-1 are disposed.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-1 and embedded in a silicon (Si) layer of the semiconductor substrate 10-1.
  • the upper portion of the on-chip lens 2-1-W (the light incident surface side, and the upper side in FIG. 1) has an upwardly convex shape
  • the lower portion of the on-chip lens 2-1-W (the lower side in FIG. 1) ) Is a downward convex shape
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-1-W is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-1-W is rc ⁇ 0.
  • the upper portion of the in-layer lens 3-1-W (the light incident surface side and the upper side in FIG. 1) has a downward convex shape (concave shape).
  • the on-chip lens 2-1-W may be made of a material having a higher refractive index than the in-layer lens 3-1-W having a downward convex shape (concave shape).
  • the distance from the anti-reflection layer 6-1 to the upper end portion as the light incident side of the in-layer lens 3-1-W is hw-1.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-1-W and the radius of curvature (rc) of the lower part of the on-chip lens 2-1-W are optimized so as to satisfy the above equation (1).
  • the curvature radius (rl) of the upper part of the on-chip lens 2-1-W and the curvature radius (rc) of the lower part of the on-chip lens 2-1-W are ⁇ 4.
  • a range of about% is acceptable.
  • the pixel separating unit 9-1-G, the pixel separating unit 9-1-GR, the pixel separating unit 9-RB, the pixel separating unit 9- The 1-BW and the pixel separation unit 9-W are formed to be embedded in the semiconductor substrate 10-1.
  • the pixel separator 9-1-G, the pixel separator 9-1-GR, the pixel separator 9-1-RB, the pixel separator 9-1-BW, and the pixel separator 9-1- The pixels 100-1-1 to 100-1-4) are partitioned and electrically separated. As shown in FIG.
  • the pixel separating unit 9-1 -G may be composed of a silicon oxide film 7-1 -G and a silicon nitride film 8-1 -G
  • the pixel separating unit 9-1 -GR May be composed of a silicon oxide film 7- 1 GR and a silicon nitride film 8 1-GR
  • the pixel separating portion 9 1-RB is a silicon oxide film 7 1-RB and a silicon nitride film 8-
  • the pixel separating unit 9- 1 -BW may be composed of a silicon oxide film 7-1 -BW and a silicon nitride film 8-1 -BW.
  • -W may be composed of a silicon oxide film 7- 1 -W and a silicon nitride film 8-1 -W.
  • the solid-state imaging device 1-1 includes an inter-pixel light shielding film 4-1-G, an inter-pixel light shielding film 4-1-GR, an inter-pixel light shielding film 4-1-RB, an inter-pixel light shielding film 4-1-BW, and an inter-pixel A light shielding film 4-1-W is provided.
  • the inter-pixel light shielding film 4-1-G, the inter-pixel light shielding film 4-1-GR, the inter-pixel light shielding film 4-1-RB, the inter-pixel light shielding film 4-1-BW, and the inter-pixel light shielding film 4-1-W And the pixel boundary of each of the pixels 100-1-1 to 100-1-4 immediately above the insulating layer 5-1.
  • the color filter 3-1-G is embedded between the inter-pixel light shielding film 4-1-G and the inter-pixel light shielding film 4-1-GR, and the color filter 3-1-R is an inter-pixel light shielding film 4-
  • the color filter 3-1-B is embedded between the 1-GR and the inter-pixel light shielding film 4-1-RB, and the color filter 3-1-B includes the inter-pixel light shielding film 4-1-RB and the inter-pixel light shielding film 4-1-BW.
  • the inter-layer lens 3-1-W is embedded between the inter-pixel light shielding film 4-1-B and the inter-pixel light shielding film 4-1-W.
  • the inter-pixel light shielding film 4-1-G, the inter-pixel light shielding film 4-1-GR, the inter-pixel light shielding film 4-1-RB, the inter-pixel light shielding film 4-1-BW, and the inter-pixel light shielding film 4-1-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
  • the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
  • FIG. 2 shows a solid-state imaging device 1-2 which is an example of a solid-state imaging device according to a second embodiment of the present technology.
  • FIG. 2 is a cross-sectional view of four pixels (pixels 100-2-1 to 100-2-4) of the solid-state imaging device 1-2.
  • “upper” means the upper direction in FIG. 2
  • “lower” means the lower direction in FIG.
  • an on-chip lens 2-2 -G In the pixel 100-2-1, an on-chip lens 2-2 -G, a color filter 3-2 -G for transmitting green light (G light), and an insulating layer 5-2 in order from the light incident side, An antireflective layer 6-2 and a semiconductor substrate 10-2 are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-2, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-2.
  • the upper portion (on the light incident surface side, upper side in FIG. 2) of the on-chip lens 2-2-G has an upper convex shape
  • the lower portion (lower side in FIG. 1) of the on-chip lens 2-2-G. ) Is an upward convex shape (concave shape).
  • the curvature radius (rl) of the upper part of the on-chip lens 2-2-G is rl> 0, and the curvature radius (rc) of the lower part of the on-chip lens 2-2-G is rc> 0.
  • the upper portion of the color filter 3-2-G (on the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
  • the on-chip lens 2-2-G may use a material having a lower refractive index than the upwardly convex color filter 3-2-G.
  • the distance from the antireflection layer 6-2 to the upper end portion of the color filter 3-2 -G on the light incident side is hg-2.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-2-G and the radius of curvature (rc) of the lower part of the on-chip lens 2-2-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-2-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-2-G and the curvature radius (rc) of the lower part of the on-chip lens 2-2-G are ⁇ 4. A range of about% is acceptable.
  • An antireflective layer 6-2 and a semiconductor substrate 10-2 are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-2, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-2.
  • the upper portion (on the light incident surface side, upper side in FIG. 2) of the on-chip lens 2-2R is convex upward, and the lower portion (lower side in FIG. 2) of the on-chip lens 2-2R ) Is an upward convex shape (concave shape).
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-2R is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-2R is rc> 0.
  • the upper portion of the color filter 3-2-R (on the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
  • the on-chip lens 2-2-R may use a material having a lower refractive index than the upwardly convex color filter 3-2-R.
  • the distance from the antireflection layer 6-2 to the upper end portion as the light incident side of the color filter 3-2 -R is hr ⁇ 2.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-2R and the radius of curvature (rc) of the lower portion of the on-chip lens 2-2R are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-2-2 (wavelength band of R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-2-R and the curvature radius (rc) of the lower part of the on-chip lens 2-2-R are ⁇ 4. A range of about% is acceptable.
  • the pixel 100-2-3 includes, in order from the light incident side, an on-chip lens 2-2-B, a color filter 3-2-B that transmits blue light (B light), and an insulating layer 5-2.
  • An antireflective layer 6-2 and a semiconductor substrate 10-2 are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-2, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-2.
  • the upper portion (on the light incident surface side, upper side in FIG. 2) of the on-chip lens 2-2-B is convex upward, and the lower portion (lower side in FIG. 2) of the on-chip lens 2-2-B. ) Is an upward convex shape (concave shape).
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-2-B is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-2-B is rc> 0.
  • the upper portion of the color filter 3-2-B (on the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
  • the on-chip lens 2-2-B may use a material having a lower refractive index than the upwardly convex color filter 3-2-B.
  • the distance from the antireflective layer 6-2 to the upper end portion as the light incident side of the color filter 3-2-B is hb-2.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-2-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-2-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-2-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-2-B and the curvature radius (rc) of the lower part of the on-chip lens 2-2-B are ⁇ 4. A range of about% is acceptable.
  • an on-chip lens 2-2-W and an in-layer lens through which green light, red light and blue light (BGR (W) light) transmit in order from the light incident side W, the insulating layer 5-2, the antireflective layer 6-2, and the semiconductor substrate 10-2 are disposed.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-2, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-2.
  • the upper portion (on the light incident surface side, upper side in FIG. 2) of the on-chip lens 2-2-W is convex upward, and the lower portion (lower side in FIG. 2) of the on-chip lens 2-2-W ) Is an upward convex shape (concave shape).
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-2-W is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-2-W is rc> 0.
  • the upper portion of the in-layer lens 3-2 W (the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
  • the on-chip lens 2-2-W may be made of a material having a lower refractive index than the upper convex in-layer lens 3-2-W.
  • the distance from the antireflection layer 6-2 to the upper end portion as the light incident side of the in-layer lens 3-2W is hw-2.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-2-W and the radius of curvature (rc) of the lower part of the on-chip lens 2-2-W are optimized so as to satisfy the above equation (1).
  • the curvature radius (rl) of the upper part of the on-chip lens 2-2-W and the curvature radius (rc) of the lower part of the on-chip lens 2-2-W are ⁇ 4. A range of about% is acceptable.
  • the pixel separation unit 9-2-G, the pixel separation unit 9-2-GR, the pixel separation unit 9-2-RB, and the pixel separation unit 9- The 2-BW and the pixel separating unit 9-W are formed to be embedded in the semiconductor substrate 10-2.
  • the pixel separator 9-2-G, the pixel separator 9-2 -GR, the pixel separator 9-2 -RB, the pixel separator 9-2 -BW, and the pixel separator 9-2- The pixels 100-2-1 to 100-2-4) are partitioned and electrically separated. As shown in FIG.
  • the pixel separating unit 9-2 -G may be composed of a silicon oxide film 7-2 -G and a silicon nitride film 8-2 -G. May be composed of a silicon oxide film 7- 2-GR and a silicon nitride film 8- 2- GR, and the pixel separating portion 9- 2-RB is a silicon oxide film 7- 2-RB and a silicon nitride film 8-
  • the pixel separating unit 9-2 -BW may be composed of a silicon oxide film 7-2 -BW and a silicon nitride film 8-2 -BW.
  • -W may be composed of a silicon oxide film 7- 2-W and a silicon nitride film 8-2 -W.
  • the solid-state imaging device 1-2 includes an inter-pixel light shielding film 4-2-G, an inter-pixel light shielding film 4-2-GR, an inter-pixel light shielding film 4-2-RB, an inter-pixel light shielding film 4-2-BW, and an inter-pixel A light shielding film 4-2-W is provided.
  • the inter-pixel light shielding film 4-2-G, the inter-pixel light shielding film 4-2-GR, the inter-pixel light shielding film 4-2-RB, the inter-pixel light shielding film 4-2-BW, and the inter-pixel light shielding film 4-2-W It is formed directly on the insulating layer 5-2 and at the pixel boundary of each of the pixels 100-2-1 to 100-2-4.
  • the color filter 3-2-G is embedded between the inter-pixel light shielding film 4-2-G and the inter-pixel light shielding film 4-2-GR, and the color filter 3-2-R is an inter-pixel light shielding film 4-
  • the color filter 3-2-B is embedded between the 2-GR and the inter-pixel light shielding film 4-2-RB, and the color filter 3-2-B is formed of the inter-pixel light shielding film 4-2-RB and the inter-pixel light shielding film 4-2-BW.
  • the inter-layer lens 3-2-W is embedded between the inter-pixel light shielding film 4-2-BW and the inter-pixel light shielding film 4-2-W.
  • Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
  • the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
  • FIG. 3 shows a solid-state imaging device 1-3 which is an example of a solid-state imaging device according to a third embodiment of the present technology.
  • FIG. 3 is a cross-sectional view of four pixels (pixels 100-3-1 to 100-3-4) of the solid-state imaging device 1-3.
  • “upper” means the upper direction in FIG. 3
  • “lower” means the lower direction in FIG.
  • the pixel 100-3-1 includes, in order from the light incident side, an on-chip lens 2-3-G, a color filter 3-3-G that transmits green light (G light), and an insulating layer 5-3.
  • An antireflective layer 6-3 and a semiconductor substrate 10-3 are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-3 and embedded in the silicon (Si) layer of the semiconductor substrate 10-3.
  • the upper portion of the on-chip lens 2-3-G (on the light incident surface side, upper side in FIG. 3) is convex upward, and the lower portion of the on-chip lens 2-3-G (lower side in FIG. 3) ) Is a downward convex shape.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-3-G is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-3-G is rc ⁇ 0.
  • the upper portion of the color filter 3-3-G (on the light incident surface side and the upper side in FIG. 3) has a downward convex shape (concave shape).
  • the on-chip lens 2-3-G may be made of a material having a refractive index higher than that of the downward convex (concave) color filter 3-3-G.
  • the distance from the antireflection layer 6-3 to the upper end portion as the light incident side of the color filter 3-3-G is hg-3.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-3-G and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-3-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-3-G and the curvature radius (rc) of the lower part of the on-chip lens 2-3-G are ⁇ 4. A range of about% is acceptable.
  • an on-chip lens 2-3-R In the pixel 100-3-2, an on-chip lens 2-3-R, a color filter 3-3 -R through which red light (R light) passes, and an insulating layer 5-3 in order from the light incident side.
  • An antireflective layer 6-3 and a semiconductor substrate 10-3 are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-3 and is embedded in a silicon (Si) layer of the semiconductor substrate 10-3.
  • the upper part of the on-chip lens 2-3-R (on the light incident surface side, and the upper side in FIG. 3) is convex upward, and the lower part of the on-chip lens 2-3-R (in FIG. 2 is the lower side) ) Is an upward convex shape (concave shape).
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-3-R is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-3-R is rc> 0.
  • the upper portion of the color filter 3-3-R (on the light incident surface side and the upper side in FIG. 3) has an upwardly convex shape.
  • the upper convex color filter 3-3-R may be made of a material having a refractive index similar to or higher than that of the on-chip lens 2-3-R.
  • the distance from the antireflection layer 6-2 to the upper end portion as the light incident side of the color filter 3-3 -R is hr 3.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-3-R and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-R are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-3-2 (R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-3-R and the radius of curvature (rc) of the lower portion of the on-chip lens 2-3-R are ⁇ 4. A range of about% is acceptable.
  • the pixel 100-3-3 includes, in order from the light incident side, an on-chip lens 2-3-B, a color filter 3-3-B that transmits blue light (B light), and an insulating layer 5-3.
  • An antireflective layer 6-3 and a semiconductor substrate 10-3 are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-3 and is embedded in a silicon (Si) layer of the semiconductor substrate 10-3.
  • the upper part of the on-chip lens 2-3-B (on the light incident surface side, and the upper side in FIG. 3) is convex upward, and the lower part of the on-chip lens 2-3-B (in FIG. 3 is the lower side) ) Is a downward convex shape.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-3-B is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-B is rc ⁇ 0.
  • the upper portion of the color filter 3-3-B (on the light incident surface side and the upper side in FIG. 3) has a downward convex shape (concave shape).
  • the on-chip lens 2-3-B may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-3-B.
  • the distance from the antireflection layer 6-3 to the upper end portion as the light incident side of the color filter 3-3-B is hb-3.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-3-B and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-R are optimized so as to satisfy the above equation (1).
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-3-B and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-B are ⁇ 4. A range of about% is acceptable.
  • an on-chip lens 2-3-W and an in-layer lens through which green light, red light and blue light (BGR (W) light) transmit in order from the light incident side W, an insulating layer 5-3, an antireflective layer 6-3, and a semiconductor substrate 10-3 are disposed.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-3 and embedded in the silicon (Si) layer of the semiconductor substrate 10-3.
  • the upper portion of the on-chip lens 2-3-W (the light incident surface side, and the upper side in FIG. 3) has an upwardly convex shape
  • the lower portion of the on-chip lens 2-3-W (the lower side in FIG. 3) ) Is a downward convex shape
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-3-W is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-W is rc ⁇ 0.
  • the upper portion of the in-layer lens 3-3-W (the light incident surface side and the upper side in FIG. 3) has a downward convex shape (concave shape).
  • the on-chip lens 2-3-W may be made of a material having a higher refractive index than the in-layer lens 3-3-W having a downward convex shape (concave shape).
  • the distance from the antireflection layer 6-3 to the upper end portion as the light incident side of the in-layer lens 3-3-W is hw-3.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-3-W and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-W are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-3-4 (wavelength band of BGR (W) light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-3-W and the curvature radius (rc) of the lower part of the on-chip lens 2-3-W are ⁇ 4. A range of about% is acceptable.
  • the 3-BW and the pixel separation unit 9-W are formed to be embedded in the semiconductor substrate 10-3.
  • the pixel separator 9-3-G, the pixel separator 9-3-GR, the pixel separator 9-3 -RB, the pixel separator 9-3 -BW and the pixel separator 9-3- The pixels 100-3-1 to 100-3-4) are partitioned and electrically separated. As shown in FIG.
  • the pixel separating unit 9-3 -G may be composed of a silicon oxide film 7-3 -G and a silicon nitride film 8 -3 -G
  • the pixel separating unit 9 -3 -GR May be composed of a silicon oxide film 7-3-GR and a silicon nitride film 8-3-GR
  • the pixel separating portion 9-RB is a silicon oxide film 7-3-RB and a silicon nitride film 8-
  • the pixel separating portion 9-3-BW may be composed of a silicon oxide film 7-3 -BW and a silicon nitride film 8-3 -BW.
  • -W may be composed of a silicon oxide film 7-3-W and a silicon nitride film 8-3-W.
  • the solid-state imaging device 1-3 includes an inter-pixel light shielding film 4-3-G, an inter-pixel light shielding film 4-3-GR, an inter-pixel light shielding film 4-3-RB, an inter-pixel light shielding film 4-3-BW, and an inter-pixel A light shielding film 4-3-W is provided.
  • the inter-pixel light shielding film 4-3-G, the inter-pixel light shielding film 4-3-G, the inter-pixel light shielding film 4-3-RB, the inter-pixel light shielding film 4-3-BW and the inter-pixel light shielding film 4-3-W It is formed directly on the insulating layer 5-3 and at the pixel boundary of each of the pixels 100-3-1 to 100-3-4.
  • the color filter 3-3-G is embedded between the inter-pixel light shielding film 4-3-G and the inter-pixel light shielding film 4-3-GR, and the color filter 3-3-R is an inter-pixel light shielding film 4-
  • the color filter 3-3-B is embedded between the 3-GR and the inter-pixel light shielding film 4-3-RB, and the color filter 3-3-B is formed of the inter-pixel light shielding film 4-3-RB and the inter-pixel light shielding film 4-3-BW.
  • the inter-layer lens 3-3-W is embedded between the inter-pixel light shielding film 4-3-B and the inter-pixel light shielding film 4-3-W.
  • the inter-pixel light shielding film 4-3-G, the inter-pixel light shielding film 4-3-G, the inter-pixel light shielding film 4-3-RB, the inter-pixel light shielding film 4-3-BW and the inter-pixel light shielding film 4-3-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
  • the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
  • FIG. 4 shows a solid-state imaging device 1-4 which is an example of a solid-state imaging device according to a fourth embodiment of the present technology.
  • FIG. 4 is a cross-sectional view of four pixels (pixels 100-4-1 to 100-4-4) of the solid-state imaging device 1-4.
  • “upper” means the upper direction in FIG. 4
  • “lower” means the lower direction in FIG.
  • An antireflective layer 6-4 and a semiconductor substrate 10-4 are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-4 and embedded in a silicon (Si) layer of the semiconductor substrate 10-4.
  • the upper portion (on the light incident surface side, upper side in FIG. 4) of the on-chip lens 2-4-G has an upper convex shape
  • the lower portion (lower side in FIG. 4) of the on-chip lens 2-4-G. ) Is a downward convex shape.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-4-G is rl> 0, and the curvature radius (rc) of the lower part of the on-chip lens 2-4-G is rc ⁇ 0.
  • the upper portion (on the light incident surface side and the upper side in FIG. 4) of the color filter 3-4-G has a downward convex shape (concave shape).
  • the on-chip lens 2-4-G may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-4-G.
  • the distance from the antireflective layer 6-4 to the upper end portion of the color filter 3-4 -G on the light incident side is hg ⁇ 4.
  • the curvature radius (rl) of the upper portion of the on-chip lens 2-4-G and the curvature radius (rc) of the lower portion of the on-chip lens 2-4-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-4-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-4-G and the radius of curvature (rc) of the lower portion of the on-chip lens 2-4-G are ⁇ 4. A range of about% is acceptable.
  • An antireflective layer 6-4 and a semiconductor substrate 10-4 are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-4 and is embedded in a silicon (Si) layer of the semiconductor substrate 10-4.
  • the upper portion (on the light incident surface side, upper side in FIG. 4) of the on-chip lens 2-4-R has an upper convex shape, and the lower portion (lower side in FIG. 4) of the on-chip lens 2-4-R. ) Is substantially flat.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-4-G is rl> 0, and rc of the curvature radius (rc) of the lower part of the on-chip lens 2-4-G is infinite.
  • the upper portion (on the light incident surface side and the upper side in FIG. 4) of the color filter 3-4-R is substantially flat.
  • the on-chip lens 2-4-R may be made of a material having a higher refractive index than the substantially flat color filter 3-4-R.
  • the distance from the antireflection layer 6-4 to the upper end portion as the light incident side of the color filter 3-4 -R is hr 4.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-4-R is optimized so as to satisfy the above equation (1).
  • the radius of curvature (rc) of the lower part of the on-chip lens 2-4-R is infinite. Thereby, in the pixel 100-4-2 (wavelength band of R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-4-R is allowed to be in the range of about 4%.
  • the pixel 100-4-3 includes, in order from the light incident side, an on-chip lens 2-4-B, a color filter 3-4-B that transmits blue light (B light), and an insulating layer 5-4.
  • An antireflective layer 6-4 and a semiconductor substrate 10-4 are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-4 and is embedded in the silicon (Si) layer of the semiconductor substrate 10-4.
  • the upper portion (on the light incident surface side, upper side in FIG. 4) of the on-chip lens 2-4-B has an upper convex shape
  • the lower portion (lower side in FIG. 4) of the on-chip lens 2-4-B. ) Is a downward convex shape.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-4-B is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-4-B is rc ⁇ 0.
  • the upper portion of the color filter 3-4-B (on the light incident surface side and the upper side in FIG. 4) has a downward convex shape (concave shape).
  • the on-chip lens 2-4-B may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-4-B.
  • the distance from the antireflection layer 6-4 to the upper end portion as the light incident side of the color filter 3-4-B is hb-4.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-4-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-4-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-4-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-4-B and the curvature radius (rc) of the lower part of the on-chip lens 2-4-B are ⁇ 4. A range of about% is acceptable.
  • W, an insulating layer 5-4, an antireflective layer 6-4, and a semiconductor substrate 10-4 are disposed.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-4 and is embedded in a silicon (Si) layer of the semiconductor substrate 10-4.
  • the upper portion (on the light incident surface side, upper side in FIG. 4) of the on-chip lens 2-4-W is convex upward, and the lower portion (lower side in FIG. 4) of the on-chip lens 2-4-W ) Is a downward convex shape.
  • the upper radius of curvature (rl) of the on-chip lens 2-4-W is rl> 0, and the lower radius of curvature (rc) of the on-chip lens 2-4-W is rc ⁇ 0.
  • the upper portion of the in-layer lens 3-4-W (the light incident surface side and the upper side in FIG. 4) has a downward convex shape (concave shape).
  • the on-chip lens 2-4-W may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-4-W.
  • the distance from the anti-reflection layer 6-1 to the upper end portion as the light incident side of the in-layer lens 3-4-W is hw-4.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-4-W and the curvature radius (rc) of the lower part of the on-chip lens 2-4-W are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-4-4 (wavelength band of BGR (W) light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-4-W and the curvature radius (rc) of the lower part of the on-chip lens 2-4-W are ⁇ 4. A range of about% is acceptable.
  • the pixel separation unit 9-4-G, the pixel separation unit 9-4-GR, the pixel separation unit 9-4-RB, the pixel separation unit 9- The 4-BW and the pixel separating portion 9-4-W are formed to be embedded in the semiconductor substrate 10-4.
  • the pixel separating unit 9-4-G, the pixel separating unit 9-4-GR, the pixel separating unit 9-4-RB, the pixel separating unit 9-4-BW, and the pixel separating unit 9-4-W The pixels 100-4-1 to 100-4-4) are partitioned and electrically separated. As shown in FIG.
  • the pixel separating portion 9-4-G may be composed of a silicon oxide film 7-4-G and a silicon nitride film 8-4-G
  • the pixel separating portion 9-4-GR. May be composed of a silicon oxide film 7-4-GR and a silicon nitride film 8-4-GR
  • the pixel separating portion 9-4-RB is a silicon oxide film 7-4-RB and a silicon nitride film 8-
  • the pixel separating portion 9-4-BW may be composed of a silicon oxide film 7-4-BW and a silicon nitride film 8-4-BW.
  • -W may be composed of a silicon oxide film 7-4-W and a silicon nitride film 8-4-W.
  • the solid-state imaging device 1-4 includes an inter-pixel light shielding film 4-4-G, an inter-pixel light shielding film 4-4-GR, an inter-pixel light shielding film 4-4-RB, an inter-pixel light shielding film 4-4-BW and an inter-pixel A light shielding film 4-4-W is provided.
  • the solid-state imaging device 1-4 further includes a hard mask material 40-4-G, a hard mask material 40-4-GR, a hard mask material 40-4-RB, a hard mask material 40-4-BW, and a hard mask material 40. -4-W is equipped.
  • the inter-pixel light shielding film 4-4-G, the inter-pixel light shielding film 4-4-GR, the inter-pixel light shielding film 4-4-RB, the inter-pixel light shielding film 4-4-BW and the inter-pixel light shielding film 4-4-W And the pixel boundary of each of the pixels 100-4-1 to 100-4-4 immediately above the insulating layer 5-4.
  • Each of the hard mask material 40-4-G, the hard mask material 40-4-GR, the hard mask material 40-4-RB, the hard mask material 40-4-BW and the hard mask material 40-4-W Each of the light shielding film 4-4-G, the inter-pixel light shielding film 4-4-GR, the inter-pixel light shielding film 4-4-RB, the inter-pixel light shielding film 4-4-BW, and the inter-pixel light shielding film 4-4-W It is formed immediately above the pixel boundary of each of the pixels 100-4-1 to 100-4-4.
  • the hard mask material 40-4-G may be composed of a silicon oxide film 41-4-G and a silicon nitride film 42-4-G, and the hard mask material 40-4-GR is a silicon oxide film 41-4.
  • the hard mask material 40-4-RB may be composed of a silicon oxide film 41-4-RB and a silicon nitride film 42-4-RB.
  • the hard mask material 40-4-BW may be composed of a silicon oxide film 41-4-BW and a silicon nitride film 42-4-BW, and the hard mask material 40-4-W is a silicon oxide film 41. It may be composed of -4-W and silicon nitride film 42-4-W. Then, as shown in FIG. 4, the silicon nitride film 42-4-G, the silicon nitride film 42-4-GR, the silicon nitride film 42-4-RB, the silicon nitride film 42-4-BW, and the silicon nitride film 42.
  • Each of -4-W is an inter-pixel light shielding film 4-4-G, an inter-pixel light shielding film 4-4-GR, an inter-pixel light shielding film 4-4-RB, an inter-pixel light shielding film 4-4-BW and an inter-pixel It is disposed immediately above each of the light shielding films 4-4-W.
  • the color filter 3-4-G includes the inter-pixel light shielding film 4-4-G and the hard mask material 40-4-G, and the inter-pixel light shielding film 4-4-GR and the hard mask material. It is embedded between 40-4-GR.
  • the color filter 3-4-R is formed between the inter-pixel light shielding film 4-4-GR and the hard mask material 40-4-GR, and the inter-pixel light shielding film 4-4-RB and the hard mask material 40-4-RB.
  • Embedded in The color filter 3-4-B is provided between the inter-pixel light shielding film 4-4-RB and the hard mask material 40-4-RB and the inter-pixel light shielding film 4-4-BW and the hard mask material 40-4-BW.
  • the color filter 3-4-W is provided between the inter-pixel light shielding film 4-4-BW and the hard mask material 40-4-BW and the inter-pixel light shielding film 4-4-W and the hard mask material 40-4-W.
  • the inter-pixel light shielding film 4-4-G, the inter-pixel light shielding film 4-4-GR, the inter-pixel light shielding film 4-4-RB, the inter-pixel light shielding film 4-4-BW and the inter-pixel light shielding film 4-4-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
  • Hard mask processing can be performed using 40-4-RB, hard mask material 40-4-BW and hard mask material 40-4-W.
  • an inter-pixel light shielding film 4-4-G In each of -W, an inter-pixel light shielding film 4-4-G, an inter-pixel light shielding film 4-4-GR, an inter-pixel light shielding film 4-4-RB, an inter-pixel light shielding film 4-4-BW and an inter-pixel light shielding film It may remain right above each of 4-4-W.
  • the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
  • FIG. 5 shows a solid-state imaging device 1-5 which is an example of a solid-state imaging device according to a fifth embodiment of the present technology.
  • FIG. 5 is a cross-sectional view of four pixels (pixels 100-5-1 to 100-5-4) of the solid-state imaging device 1-5.
  • “upper” means the upper direction in FIG. 5
  • “lower” means the lower direction in FIG.
  • an on-chip lens 2-5-G In the pixel 100-5-1, an on-chip lens 2-5-G, a color filter 3-5-G that transmits green light (G light), and an insulating layer 5-5, in order from the light incident side, An antireflective layer 6-5 and a semiconductor substrate 10-5 are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-5 and embedded in the silicon (Si) layer of the semiconductor substrate 10-5.
  • the upper portion (on the light incident surface side, upper side in FIG. 5) of the on-chip lens 2-5-G is convex upward, and the lower portion (lower side in FIG. 5) of the on-chip lens 2-5-G ) Is an upward convex shape (concave shape).
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-5-G is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-G is rc> 0.
  • the upper portion of the color filter 3-5-G (on the light incident surface side and the upper side in FIG. 5) has an upwardly convex shape.
  • the on-chip lens 2-5-G may be made of a material having a lower refractive index than the upwardly convex color filter 3-5-G.
  • the distance from the antireflection layer 6-5 to the upper end portion as the light incident side of the color filter 3-5-G is hg-5.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-5-G and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-5-1 (G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-5-G and the radius of curvature (rc) of the lower part of the on-chip lens 2-5-G are ⁇ 4. A range of about% is acceptable.
  • the pixel 100-5-2 includes, in order from the light incident side, an on-chip lens 2-5-R, a color filter 3-5-R that transmits red light (R light), and an insulating layer 5-5.
  • An antireflective layer 6-5 and a semiconductor substrate 10-5 are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-5, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-5.
  • the upper portion (on the light incident surface side, upper side in FIG. 5) of the on-chip lens 2-5-R is convex upward, and the lower portion (lower side in FIG. 5) of the on-chip lens 2-5-R ) Is an upward convex shape (concave shape).
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-5-R is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-5-R is rc> 0.
  • the upper portion of the color filter 3-5-R (on the light incident surface side and the upper side in FIG. 5) has an upwardly convex shape.
  • the on-chip lens 2-5-R may be made of a material having a lower refractive index than the upwardly convex color filter 3-5-R.
  • the distance from the antireflection layer 6-5 to the upper end portion as the light incident side of the color filter 3-5-R is hg-5.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-5-R and the radius of curvature (rc) of the lower part of the on-chip lens 2-5-R are optimized so as to satisfy the above equation (1).
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-5-R and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-R are ⁇ 4. A range of about% is acceptable.
  • the pixel 100-5-3 includes, in order from the light incident side, an on-chip lens 2-5-B, a color filter 3-5-B that transmits blue light (B light), and an insulating layer 5-5.
  • An antireflective layer 6-5 and a semiconductor substrate 10-5 are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-5, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-5.
  • the upper portion (on the light incident surface side, upper side in FIG. 5) of the on-chip lens 2-5-B is convex upward, and the lower portion (lower side in FIG. 2) of the on-chip lens 2-5-B. ) Is an upward convex shape (concave shape).
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-5-B is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-B is rc> 0.
  • the upper portion of the color filter 3-5-B (on the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
  • the on-chip lens 2-5-B may use a material having a lower refractive index than the upwardly convex color filter 3-5-B.
  • the distance from the antireflection layer 6-5 to the upper end portion as the light incident side of the color filter 3-5-B is hb-5.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-5-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-5-3 (B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-5-B and the radius of curvature (rc) of the lower part of the on-chip lens 2-5-B are ⁇ 4. A range of about% is acceptable.
  • W, an insulating layer 5-5, an antireflective layer 6-5, and a semiconductor substrate 10-5 are disposed.
  • a photodiode (not shown) for white light (BGR (W) light) is formed and embedded in a silicon (Si) layer of the semiconductor substrate 10-5.
  • the upper portion (on the light incident surface side, upper side in FIG. 5) of the on-chip lens 2-5-W is upwardly convex
  • the lower portion (lower side in FIG. 5) of the on-chip lens 2-5-W. ) Is an upward convex shape (concave shape).
  • the upper radius of curvature (rl) of the on-chip lens 2-5-W is rl> 0, and the lower radius of curvature (rc) of the lower-end lens 2-5-W is rc> 0.
  • the upper portion of the in-layer lens 3-5-W (the light incident surface side, and the upper side in FIG. 5) has an upwardly convex shape.
  • the on-chip lens 2-5-W may be made of a material having a lower refractive index than the upper convex in-layer lens 3-5-W.
  • the distance from the antireflection layer 6-5 to the upper end portion as the light incident side of the in-layer lens 3-5-W is hw-5.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-5-W and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-W are optimized so as to satisfy the above equation (1).
  • the curvature radius (rl) of the upper part of the on-chip lens 2-5-W and the curvature radius (rc) of the lower part of the on-chip lens 2-5-W are ⁇ 4. A range of about% is acceptable.
  • the pixel separating portion 9-5-G, the pixel separating portion 9-5-GR, the pixel separating portion 9-5-RB, the pixel separating portion 9- A 5-BW and a pixel separation portion 9-5-W are formed embedded in the semiconductor substrate 10-5.
  • the pixel separating unit 9-5-G, the pixel separating unit 9-5-GR, the pixel separating unit 9-5-RB, the pixel separating unit 9-5-BW, and the pixel separating unit 9-5-W The pixels 100-5-1 to 100-5-4) are partitioned and electrically separated. As shown in FIG.
  • the pixel separating portion 9-5-G may be composed of a silicon oxide film 7-5-G and a silicon nitride film 8-5-G
  • the pixel separating portion 9-5-GR. May be composed of a silicon oxide film 7-5-GR and a silicon nitride film 8-5-GR
  • the pixel separating portion 9-5-RB is a silicon oxide film 7-5-RB and a silicon nitride film 8-
  • the pixel separating portion 9-5-BW may be composed of a silicon oxide film 7-5-BW and a silicon nitride film 8-5-BW.
  • -W may be composed of a silicon oxide film 7-5-W and a silicon nitride film 8-5-W.
  • the solid-state imaging device 1-5 includes an inter-pixel light shielding film 4-5-G, an inter-pixel light shielding film 4-5-GR, an inter-pixel light shielding film 4-5-RB, an inter-pixel light shielding film 4-5-BW, and an inter-pixel A light shielding film 4-5-W is provided.
  • the solid-state imaging device 1-5 further includes a hard mask material 40-5-G, a hard mask material 40-5-GR, a hard mask material 40-5-RB, a hard mask material 40-5-BW, and a hard mask material 40. -5-W is equipped.
  • the inter-pixel light shielding film 4-5-G, the inter-pixel light shielding film 4-5-GR, the inter-pixel light shielding film 4-5-RB, the inter-pixel light shielding film 4-5-BW, and the inter-pixel light shielding film 4-5-W It is formed directly on the insulating layer 5-5 and at the pixel boundary of each of the pixels 100-5-1 to 100-5-4.
  • Each of the hard mask material 40-5-G, hard mask material 40-5-GR, hard mask material 40-5-RB, hard mask material 40-5-BW and hard mask material 40-5-W is between pixels
  • the light shielding film 4-5-G, the inter-pixel light shielding film 4-5-GR, the inter-pixel light shielding film 4-5-RB, the inter-pixel light shielding film 4-5-BW, and the inter-pixel light shielding film 4-5-W It is formed immediately above the pixel boundary of each of the pixels 100-5-1 to 100-5-4.
  • the hard mask material 40-5-G may be composed of a silicon oxide film 41-5-G and a silicon nitride film 42-5-G, and the hard mask material 40-5-GR is a silicon oxide film 41-5.
  • the hard mask material 40-5-RB may be composed of a silicon oxide film 41-5-RB and a silicon nitride film 42-5-RB.
  • hard mask material 40-5-BW may be composed of silicon oxide film 41-5-BW and silicon nitride film 42-5-BW
  • hard mask material 40-5-W is silicon oxide film 41. It may be composed of -5-W and silicon nitride film 42-5-W. Then, as shown in FIG. 5, the silicon nitride film 42-5-G, the silicon nitride film 42-5-GR, the silicon nitride film 42-5-RB, the silicon nitride film 42-5-BW, and the silicon nitride film 42.
  • Each of -5-W is an inter-pixel light shielding film 4-5-G, an inter-pixel light shielding film 4-5-GR, an inter-pixel light shielding film 4-5-RB, an inter-pixel light shielding film 4-5-BW and an inter-pixel It is disposed immediately above each of the light shielding films 4-5-W.
  • the color filter 3-5-G includes an inter-pixel light shielding film 4-5-G and a hard mask material 40-5-G, and an inter-pixel light shielding film 4-5-GR and a hard mask material. It is embedded between 40-5-GR.
  • the color filter 3-5-R is provided between the inter-pixel light shielding film 4-5-GR and the hard mask material 40-5-GR and the inter-pixel light shielding film 4-5-RB and the hard mask material 40-5-RB.
  • Embedded in The color filter 3-5-B is provided between the inter-pixel light shielding film 4-5-RB and the hard mask material 40-5-RB and the inter-pixel light shielding film 4-5-BW and the hard mask material 40-5-BW.
  • the in-layer lens 3-5-W comprises an inter-pixel light shielding film 4-5-BW and a hard mask material 40-5-BW, and an inter-pixel light shielding film 4-5-W and a hard mask material 40-5-W. It is embedded in the middle.
  • the inter-pixel light shielding film 4-5-G, the inter-pixel light shielding film 4-5-GR, the inter-pixel light shielding film 4-5-RB, the inter-pixel light shielding film 4-5-BW, and the inter-pixel light shielding film 4-5-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
  • Hard mask processing can be performed using 40-5-RB, hard mask material 40-5-BW and hard mask material 40-5-W.
  • Each of -W is an inter-pixel light shielding film 4-5-G, an inter-pixel light shielding film 4-5-GR, an inter-pixel light shielding film 4-5-RB, an inter-pixel light shielding film 4-5-BW, and an inter-pixel light shielding film It may remain right above each of 4-5-W.
  • the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
  • FIG. 6 shows a solid-state imaging device 1-6, which is an example of a solid-state imaging device according to a sixth embodiment of the present technology.
  • FIG. 6 is a cross-sectional view of four pixels (pixels 100-6-1 to 100-6-4) of the solid-state imaging device 1-6.
  • “upper” means the upper direction in FIG. 6, and “lower” means the lower direction in FIG.
  • An antireflective layer 6-6 and a semiconductor substrate 10-6 are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-6, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-6.
  • the upper portion (on the light incident surface side, upper side in FIG. 6) of the on-chip lens 2-6-G is convex upward, and the lower portion (lower side in FIG. 6) of the on-chip lens 2-6-G ) Is a downward convex shape.
  • the radius of curvature (rl) of the upper part of the on-chip lens 2-6-G is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-6-G is rc ⁇ 0.
  • the upper portion of the color filter 3-6-G (on the light incident surface side and the upper side in FIG. 6) has a downward convex shape (concave shape).
  • the on-chip lens 2-6-G a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-6-G may be used.
  • the distance from the antireflection layer 6-6 to the upper end portion as the light incident side of the color filter 3-6-G is hg-6.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-6-G and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-6-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-6-G and the curvature radius (rc) of the lower part of the on-chip lens 2-6-G are ⁇ 4. A range of about% is acceptable.
  • the pixel 100-6-2 includes, in order from the light incident side, an on-chip lens 2-6-R, a color filter 3-6-R through which red light (R light) passes, and an insulating layer 5-6.
  • An antireflective layer 6-6 and a semiconductor substrate 10-6 are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-6, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-6.
  • the upper portion (on the light incident surface side, upper side in FIG. 6) of the on-chip lens 2-6-R is convex upward, and the lower portion (lower side in FIG. 6) of the on-chip lens 2-6-R ) Is an upward convex shape (concave shape).
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-6-R is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-R is rc> 0.
  • the upper portion of the color filter 3-6-R (on the light incident surface side and the upper side in FIG. 6) has an upwardly convex shape.
  • the upper convex color filter 3-6-R may be made of a material having a refractive index similar to or higher than that of the on-chip lens 2-6-R.
  • the distance from the antireflection layer 6-6 to the upper end portion as the light incident side of the color filter 3-6-R is hr-6.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-6-R and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-R are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-6-2 (wavelength band of R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the curvature radius (rl) of the upper portion of the on-chip lens 2-6-R and the curvature radius (rc) of the lower portion of the on-chip lens 2-6-R are ⁇ 4. A range of about% is acceptable.
  • Pixel 100-6-3 includes, in order from the light incident side, on-chip lens 2-6-B, color filter 3-6-B that transmits blue light (B light), and insulating layer 5-6.
  • An antireflective layer 6-6 and a semiconductor substrate 10-6 are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-6 and is embedded in the silicon (Si) layer of the semiconductor substrate 10-6.
  • the upper portion (on the light incident surface side, upper side in FIG. 6) of the on-chip lens 2-6-B is convex upward, and the lower portion (lower side in FIG. 6) of the on-chip lens 2-6-B ) Is a downward convex shape.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-6-B is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-B is rc ⁇ 0.
  • the upper portion of the color filter 3-6-B (on the light incident surface side and the upper side in FIG. 6) has a downward convex shape (concave shape).
  • the on-chip lens 2-6-B a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-6-B may be used.
  • the distance from the antireflection layer 6-6 to the upper end portion as the light incident side of the color filter 3-6-B is hb-6.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-6-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-6-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-6-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-B are ⁇ 4. A range of about% is acceptable.
  • W, an insulating layer 5-6, an antireflective layer 6-6, and a semiconductor substrate 10-6 are disposed.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-6, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-6.
  • the upper portion (on the light incident surface side, upper side in FIG. 6) of the on-chip lens 2-6-W is convex upward, and the lower portion (lower side in FIG. 6) of the on-chip lens 2-6-W ) Is a downward convex shape.
  • the curvature radius (rl) of the upper part of the on-chip lens 2-6-W is rl> 0, and the curvature radius (rc) of the lower part of the on-chip lens 2-6-W is rc ⁇ 0.
  • the upper portion of the color filter 3-6-W (on the light incident surface side and the upper side in FIG. 6) has a downward convex shape (concave shape).
  • the on-chip lens 2-6-W may be made of a material having a refractive index higher than that of the in-layer lens 3-6W having a downward convex shape (concave shape).
  • the distance from the anti-reflection layer 6-6 to the upper end portion as the light incident side of the in-layer lens 3-6W is hw-6.
  • the radius of curvature (rl) of the upper portion of the on-chip lens 2-6-W and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-W are optimized so as to satisfy the above equation (1).
  • the curvature radius (rl) of the upper part of the on-chip lens 2-6-W and the curvature radius (rc) of the lower part of the on-chip lens 2-6-W are ⁇ 4. A range of about% is acceptable.
  • the pixel separator 9-6-G, the pixel separator 9-6-GR, the pixel separator 9-6-RB, the pixel separator 9- The 6-BW and the pixel separating portion 9-6-W are formed embedded in the semiconductor substrate 10-6.
  • the pixel separator 9-6-G, the pixel separator 9-6-GR, the pixel separator 9-6-RB, the pixel separator 9-6-BW, and the pixel separator 9-6-W The pixels 100-6-1 to 100-6-4) are partitioned and electrically separated. As shown in FIG.
  • the pixel separating portion 9-6-G may be composed of a silicon oxide film 7-6-G and a silicon nitride film 8-6-G
  • the pixel separating portion 9-6-GR. May be composed of a silicon oxide film 7-6-GR and a silicon nitride film 8-6-GR
  • the pixel separating portion 9-6-RB is a silicon oxide film 7-6-RB and a silicon nitride film 8-
  • the pixel separating portion 9-6-BW may be composed of a silicon oxide film 7-6-BW and a silicon nitride film 8-6-BW.
  • -W may be composed of a silicon oxide film 7-6-W and a silicon nitride film 8-6-W.
  • the solid-state imaging device 1-6 includes an inter-pixel light shielding film 4-6-G, an inter-pixel light shielding film 4-6-GR, an inter-pixel light shielding film 4-6-RB, an inter-pixel light shielding film 4-6-BW, and an inter-pixel A light shielding film 4-6-W is provided.
  • the solid-state imaging device 1-6 further includes a hard mask material 40-6-G, a hard mask material 40-6-GR, a hard mask material 40-6-RB, a hard mask material 40-6-BW, and a hard mask material 40. -6-W is equipped.
  • the inter-pixel light shielding film 4-6-G, the inter-pixel light shielding film 4-6-GR, the inter-pixel light shielding film 4-6-RB, the inter-pixel light shielding film 4-6-BW, and the inter-pixel light shielding film 4-6-W And the pixel boundary of each of the pixels 100-6-1 to 100-6-4.
  • Each of the hard mask material 40-6-G, hard mask material 40-6-GR, hard mask material 40-6-RB, hard mask material 40-6-BW and hard mask material 40-6-W is between pixels
  • the light shielding film 4-6-G, the inter-pixel light shielding film 4-6-GR, the inter-pixel light shielding film 4-6-RB, the inter-pixel light shielding film 4-6-BW, and the inter-pixel light shielding film 4-6-W It is formed immediately above the pixel boundary of each of the pixels 100-6-1 to 100-6-4.
  • the hard mask material 40-6-G may be composed of a silicon oxide film 41-6-G and a silicon nitride film 42-6-G, and the hard mask material 40-6-GR is a silicon oxide film 41-6.
  • the hard mask material 40-6-RB may be composed of a silicon oxide film 41-6-RB and a silicon nitride film 42-6-RB.
  • the hard mask material 40-6-BW may be composed of a silicon oxide film 41-6-BW and a silicon nitride film 42-6-BW, and the hard mask material 40-6-W is a silicon oxide film 41. It may be composed of -6-W and silicon nitride film 42-6-W. Then, as shown in FIG. 6, the silicon nitride film 42-6-G, the silicon nitride film 42-6-GR, the silicon nitride film 42-6-RB, the silicon nitride film 42-6-BW, and the silicon nitride film 42.
  • Each of -6-W is an inter-pixel light shielding film 4-6-G, an inter-pixel light shielding film 4-6-GR, an inter-pixel light shielding film 4-6-RB, an inter-pixel light shielding film 4-6-BW and an inter-pixel It is disposed immediately above each of the light shielding films 4-6-W.
  • the color filter 3-6 -G includes the inter-pixel light shielding film 4-6 -G and the hard mask material 40-6 -G, the inter-pixel light shielding film 4-6 -GR and the hard mask material It is embedded between 40-6-GR.
  • the color filter 3-6-R is provided between the inter-pixel light shielding film 4-6-GR and the hard mask material 40-6-GR and the inter-pixel light shielding film 4-6-RB and the hard mask material 40-6-RB.
  • Embedded in The color filter 3-6-B is provided between the inter-pixel light shielding film 4-6-RB and the hard mask material 40-6-RB and the inter-pixel light shielding film 4-6-BW and the hard mask material 40-6-BW.
  • the color filter 3-6-W is provided between the inter-pixel light shielding film 4-6-BW and the hard mask material 40-6-BW and the inter-pixel light shielding film 4-6-W and the hard mask material 40-6-W. Embedded in
  • the inter-pixel light shielding film 4-6-G, the inter-pixel light shielding film 4-6-GR, the inter-pixel light shielding film 4-6-RB, the inter-pixel light shielding film 4-6-BW, and the inter-pixel light shielding film 4-6-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
  • Hard mask processing can be performed using 40-6-RB, hard mask material 40-6-BW and hard mask material 40-6-W.
  • an inter-pixel light shielding film 4-6-G In each of -W, an inter-pixel light shielding film 4-6-G, an inter-pixel light shielding film 4-6-GR, an inter-pixel light shielding film 4-6-RB, an inter-pixel light shielding film 4-6-BW, and an inter-pixel light shielding film It may remain right above each of 4-6-W.
  • FIGS. 7 and 8 show solid-state imaging devices 1-7 (a) to 1-7 (f) which are an example of a solid-state imaging device according to a seventh embodiment of the present technology.
  • FIG. 7 is a cross-sectional view of four pixels of the solid-state imaging device of each of the solid-state imaging devices 1-7a to 1-7c, and FIG. Is a cross-sectional view of four pixels.
  • “upper” means the upper direction in FIG.7 and FIG.8, and “lower” means the lower direction in FIG.7 and FIG.8.
  • the solid-state imaging device 1-7a is a solid-state imaging device according to the first embodiment of the present technology, which includes the on-chip lens antireflection film 20-7a-G formed on the on-chip lens 2-7a-G.
  • the respective refractive indices of W are determined from the respective refractive indices of the on-chip lens 2-7a-G, the on-chip lens 2-7a-R, the on-chip lens 2-7a-B, and the on-chip lens 2-7a-W. It may be as low as 0.1 to 0.2.
  • the anti-reflection film 20-7a-G for on-chip lens and the on-chip lens 2-7a-G are sequentially arranged from the light incident side.
  • an insulating layer 5-7a, an antireflective layer 6-7a, and a semiconductor substrate 10-7a are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-7a, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7a.
  • the anti-reflection film 20-7a-R for on-chip lens and the on-chip lens 2-7a-R are sequentially arranged from the light incident side.
  • a color filter 3-7a-R transmitting red light (R light), an insulating layer 5-7a, an antireflective layer 6-7a, and a semiconductor substrate 10-7a are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-7a, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7a.
  • the anti-reflection film 20-7a-B for on-chip lens and the on-chip lens 2-7a-B are sequentially arranged from the light incident side.
  • a color filter 3-7a-B transmitting blue light (B light), an insulating layer 5-7a, an antireflective layer 6-7a, and a semiconductor substrate 10-7a are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-7a, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7a.
  • the anti-reflection film 20-7a-W for on-chip lens and the on-chip lens 2-7a-W are sequentially arranged from the light incident side.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-7a, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7a.
  • the inter-pixel light shielding film 4-7a is directly on the insulating layer 5-7a, and the pixel boundary of each pixel of the four pixels Is formed.
  • the pixel separating portion 9-7a is located on the side of the back surface (upper surface in FIG. 7A) of the semiconductor substrate 10-7a. Embedded in the semiconductor substrate 10-7a. The pixel separating unit 9-7a divides the four pixels to electrically separate them.
  • the solid-state imaging device 1-7b is a solid-state imaging device according to the second embodiment of the present technology, including an on-chip lens anti-reflection film 20-7b-G formed on the on-chip lens 2-7b-G.
  • an on-chip lens anti-reflection film 20-7b-W formed on the on-chip lens 2-7b-W.
  • the respective refractive indices of W are calculated from the respective refractive indices of the on-chip lens 2-7b-G, the on-chip lens 2-7b-R, the on-chip lens 2-7b-B, and the on-chip lens 2-7b-W. It may be as low as 0.1 to 0.2.
  • the on-chip lens anti-reflection film 20-7b-G and the on-chip lens 2-7b-G are sequentially arranged from the light incident side.
  • an insulating layer 5-7b, an antireflective layer 6-7b, and a semiconductor substrate 10-7b are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-7b and embedded in the silicon (Si) layer of the semiconductor substrate 10-7b.
  • the anti-reflection film 20-7b-R for on-chip lens and the on-chip lens 2-7b-R are sequentially arranged from the light incident side.
  • a color filter 3-7b-R transmitting red light (R light), an insulating layer 5-7b, an antireflective layer 6-7b, and a semiconductor substrate 10-7b are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-7b, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-7b.
  • the anti-reflection film 20-7b-B for on-chip lens and the on-chip lens 2-7b-B are sequentially arranged from the light incident side.
  • a color filter 3-7b-B transmitting blue light (B light), an insulating layer 5-7b, an antireflection layer 6-7b, and a semiconductor substrate 10-7b are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-7b and embedded in the silicon (Si) layer of the semiconductor substrate 10-7b.
  • the anti-reflection film 20-7b-W for on-chip lens and the on-chip lens 2-7b-W are arranged in order from the light incident side.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-7 b and embedded in the silicon (Si) layer of the semiconductor substrate 10-7 b.
  • the inter-pixel light shielding film 4-7b is directly on the insulating layer 5-7b, and the pixel boundary of each pixel of the four pixels Is formed.
  • the pixel separating portion 9-7b is located on the side of the back surface (upper surface in FIG. 7B) of the semiconductor substrate 10-7b. Embedded in the semiconductor substrate 10-7b.
  • the pixel separation unit 9-7b divides the four pixels and electrically separates them.
  • the solid-state imaging device 1-7c is a solid-state imaging device according to the third embodiment of the present technology, which includes the on-chip lens anti-reflection film 20-7c-G formed on the on-chip lens 2-7c-G.
  • the refractive index of each of W is determined from the refractive index of each of on-chip lens 2-7c-G, on-chip lens 2-7c-R, on-chip lens 2-7c-B and on-chip lens 2-7c-W, It may be as low as 0.1 to 0.2.
  • the anti-reflection film 20-7c-G for on-chip lens and the on-chip lens 2-7c- are sequentially arranged from the light incident side.
  • G a color filter 3-7c-G that transmits green light (G light), an insulating layer 5-7c, an antireflective layer 6-7c, and a semiconductor substrate 10-7c are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-7c, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-7c.
  • the anti-reflection film 20-7c-R for on-chip lens and the on-chip lens 2-7c-R are sequentially arranged from the light incident side.
  • a color filter 3-7c-R transmitting red light (R light), an insulating layer 5-7c, an antireflective layer 6-7c, and a semiconductor substrate 10-7c are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-7c, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-7c.
  • the anti-reflection film 20-7c-B for on-chip lens and the on-chip lens 2-7c-B are sequentially arranged from the light incident side.
  • a color filter 3-7c-B transmitting blue light (B light), an insulating layer 5-7c, an antireflective layer 6-7c, and a semiconductor substrate 10-7c are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-7c, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-7c.
  • the anti-reflection film 20-7c-W for on-chip lens and the on-chip lens 2-7c-W are sequentially arranged from the light incident side.
  • An in-layer lens 3-7c-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-7c, an antireflective layer 6-7c, and a semiconductor substrate 10-7c are arranged.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-7c, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7c.
  • the inter-pixel light shielding film 4-7c is directly on the insulating layer 5-7c, and the pixel boundary of each pixel of the four pixels Is formed.
  • the pixel separating portion 9-7c is located on the side of the back surface (upper surface in FIG. 7C) of the semiconductor substrate 10-7c. Embedded in the semiconductor substrate 10-7c. The pixel separating unit 9-7c divides the four pixels to electrically separate them.
  • a solid-state imaging device 1-8d is a solid-state imaging device according to the fourth embodiment of the present technology, including an on-chip lens anti-reflection film 20-8d-G formed on the on-chip lens 2-8d-G; Anti-reflection film 20-8d-R for on-chip lens formed on tip lens 2-8d-R, Anti-reflection film 20-8d-B for on-chip lens formed on on-chip lens 2-8d-B And an on-chip lens antireflective film 20-8d-W formed on the on-chip lens 2-8d-W.
  • the respective refractive indices of W are calculated from the respective refractive indices of the on-chip lens 2-8 d-G, the on-chip lens 2-8 d-R, the on-chip lens 2-8 d-B, and the on-chip lens 2-8 d-W. It may be as low as 0.1 to 0.2.
  • the anti-reflection film 20-8d-G for on-chip lens and the on-chip lens 2-8d-G are arranged in order from the light incident side.
  • an insulating layer 5-8d, an antireflective layer 6-8d, and a semiconductor substrate 10-8d are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-8d and embedded in the silicon (Si) layer of the semiconductor substrate 10-8d.
  • the anti-reflection film 20-8d-R for on-chip lens and the on-chip lens 2-8d-R are sequentially arranged from the light incident side.
  • a color filter 3-8d-R transmitting red light (R light), an insulating layer 5-8d, an antireflective layer 6-8d, and a semiconductor substrate 10-8d are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-8d, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-8d.
  • the anti-reflection film 20-8d-B for on-chip lens and the on-chip lens 2-8d-B are sequentially arranged from the light incident side.
  • a color filter 3-8d-B transmitting blue light (B light), an insulating layer 5-8d, an antireflective layer 6-8d, and a semiconductor substrate 10-8d are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-8d and embedded in the silicon (Si) layer of the semiconductor substrate 10-8d.
  • the anti-reflection film 20-8d-W for on-chip lens and the on-chip lens 2-8d-W are arranged in order from the light incident side.
  • An in-layer lens 3-8d-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-8d, an antireflective layer 6-8d, and a semiconductor substrate 10-8d are arranged.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-8 d and embedded in the silicon (Si) layer of the semiconductor substrate 10-8 d.
  • the inter-pixel light shielding film 4-8d is directly on the insulating layer 5-8d, and the pixel boundary of each pixel of the four pixels Is formed.
  • the hard mask material 40-8d is directly on the inter-pixel light shielding film 4-8d, and each pixel of the four pixels is Is formed at the pixel boundary of
  • the pixel separating portion 9-8d is located on the side of the back surface (upper surface in FIG. 8D) of the semiconductor substrate 10-8d. Embedded in the semiconductor substrate 10-8d.
  • the pixel separating unit 9-8d divides electrically between four pixels.
  • the solid-state imaging device 1-8e is a solid-state imaging device according to the fifth embodiment of the present technology, including an on-chip lens anti-reflection film 20-8e-G formed on the on-chip lens 2-8e-G; Anti-reflection film 20-8e-R for on-chip lens formed on tip lens 2-8e-R, and anti-reflection film 20-8e-B for on-chip lens formed on on-chip lens 2-8e-B And an on-chip lens antireflective film 20-8e-W formed on the on-chip lens 2-8e-W.
  • the refractive index of each of W is determined by the refractive index of each of on-chip lens 2-8e-G, on-chip lens 2-8e-R, on-chip lens 2-8e-B, and on-chip lens 2-8e-W. It may be as low as 0.1 to 0.2.
  • the anti-reflection film 20-8e-G for on-chip lens and the on-chip lens 2-8e-G are arranged in order from the light incident side.
  • an insulating layer 5-8e, an antireflective layer 6-8e, and a semiconductor substrate 10-8e are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-8e and embedded in a silicon (Si) layer of the semiconductor substrate 10-8e.
  • the anti-reflection film 20-8e-R for on-chip lens and the on-chip lens 2-8e-R are sequentially arranged from the light incident side.
  • an insulating layer 5-8e, an antireflective layer 6-8e, and a semiconductor substrate 10-8e are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-8e, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-8e.
  • the anti-reflection film 20-8e-B for on-chip lens and the on-chip lens 2-8e-B are sequentially arranged from the light incident side.
  • a color filter 3-8e-B transmitting blue light (B light), an insulating layer 5-8e, an antireflective layer 6-8e, and a semiconductor substrate 10-8e are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-8e, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-8e.
  • the anti-reflection film 20-8e-W for on-chip lens and the on-chip lens 2-8e-W are arranged in order from the light incident side.
  • An in-layer lens 3-8e-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-8e, an antireflective layer 6-8e, and a semiconductor substrate 10-8e are arranged.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-8e and embedded in the silicon (Si) layer of the semiconductor substrate 10-8e.
  • the inter-pixel light shielding film 4-8e is directly on the insulating layer 5-8e, and the pixel boundary of each pixel of the four pixels Is formed.
  • the hard mask material 40-8e is directly on the inter-pixel light shielding film 4-8e, and each pixel of the four pixels is Is formed at the pixel boundary of
  • the pixel separating portion 9-8e is on the side of the back surface (upper surface in FIG. 8E) of the semiconductor substrate 10-8e. Embedded in the semiconductor substrate 10-8e.
  • the pixel separating unit 9-8e divides the four pixels to electrically separate them.
  • a solid-state imaging device 1-8f is a solid-state imaging device according to the sixth embodiment of the present technology, including an on-chip lens anti-reflection film 20-8f-G formed on the on-chip lens 2-8f-G; Anti-reflection film 20-8f-R for on-chip lens formed on tip lens 2-8f-R, and anti-reflection film 20-8f-B for on-chip lens formed on on-chip lens 2-8f-B And an on-chip lens anti-reflection film 20-8f-W formed on the on-chip lens 2-8f-W.
  • the respective refractive indices of W are calculated from the respective refractive indices of the on-chip lens 2-8 f-G, the on-chip lens 2-8 f-R, the on-chip lens 2-8 f-B, and the on-chip lens 2-8 f-W. It may be as low as 0.1 to 0.2.
  • the anti-reflection film 20-8f-G for on-chip lens and the on-chip lens 2-8f-G are arranged in order from the light incident side.
  • an insulating layer 5-8f, an antireflective layer 6-8f, and a semiconductor substrate 10-8f are disposed.
  • a photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-8f and embedded in the silicon (Si) layer of the semiconductor substrate 10-8f.
  • the anti-reflection film 20-8f-R for on-chip lens and the on-chip lens 2-8f-R are sequentially arranged from the light incident side.
  • a color filter 3-8f-R transmitting red light (R light), an insulating layer 5-8f, an antireflective layer 6-8f, and a semiconductor substrate 10-8f are disposed.
  • a photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-8f and is embedded in a silicon (Si) layer of the semiconductor substrate 10-8f.
  • the anti-reflection film 20-8f-B for on-chip lens and the on-chip lens 2-8f-B are sequentially arranged from the light incident side.
  • a color filter 3-8f-B transmitting blue light (B light), an insulating layer 5-8f, an antireflective layer 6-8f, and a semiconductor substrate 10-8f are disposed.
  • a photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-8f and embedded in the silicon (Si) layer of the semiconductor substrate 10-8f.
  • the on-chip lens anti-reflection film 20-8f-W and the on-chip lens anti-reflection film 20-8f-W and the on-chip lens 2-8f-W are arranged in order from the light incident side to the pixel on which the anti-reflection film 20-8f-W is formed.
  • An in-layer lens 3-8 f-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-8 f, an antireflective layer 6-8 f, and a semiconductor substrate 10-8 f Are arranged.
  • a photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-8f, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-8f.
  • the inter-pixel light shielding film 4-8f is immediately above the insulating layer 5-8f, and the pixel boundary of each pixel of the four pixels Is formed.
  • the hard mask material 40-8f is directly on the inter-pixel light shielding film 4-8f, and each pixel of the four pixels is Is formed at the pixel boundary of
  • the pixel separating portion 9-8f is on the side of the back surface (upper surface in FIG. 8F) of the semiconductor substrate 10-8f. Embedded in the semiconductor substrate 10-8f.
  • the pixel separation unit 9-8f divides the four pixels and electrically separates them.
  • a step of forming a film a step of spin-coating an intra-layer lens material (simply referred to as an intra-layer lens), adjusting the number of rotations after the spin coating, and drying the intra-layer lens material
  • the step of forming an in-layer lens by exposing and developing on the inter-pixel light shielding film or on the inner side of the inter-pixel light shielding film, and an on-chip lens material (simply referred to as an on-chip lens).
  • the method is a method for manufacturing a solid-state imaging device, in which the radius of curvature rl and the radius of curvature rc of the lower portion of the on-chip lens are processed to a length satisfying the following formula (1).
  • the upper part of the on-chip lens when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl ⁇ 0.
  • the upper part of the on-chip lens is a downward convex shape
  • when rc>0 the lower part of the on-chip lens is an upward convex shape
  • when rc ⁇ 0 the lower part of the on-chip lens is a downward convex shape It is.
  • the light has a spread according to the wavelength without being condensed at one point even if condensed by the on-chip lens in nature.
  • al and ac mean the on-chip lens error range recognized from this spread.
  • al is an error range of the upper portion (upper surface) of the on-chip lens
  • ac is an error range of the lower portion (lower surface) of the on-chip lens.
  • FIGS. 9 and 10 show an example of a method of manufacturing the solid-state imaging device according to the eighth embodiment of the present technology.
  • the manufacturing method of the solid-state imaging device of 8th Embodiment is shown by making into an example the process after formation of Deep Trench Isolation (pixel separation part) for pixel separation.
  • “upper” means the upper direction in FIG.9 and FIG.10
  • “lower” means the lower direction in FIG.9 and FIG.10.
  • FIG. 9A shows a cross-sectional view of a semiconductor substrate 10-9a having a pixel separation portion 9-9a.
  • the pixel separating portion 9-9a is formed to be embedded in the semiconductor substrate 10-9a on the side of the back surface (upper surface in FIG. 9A) of the semiconductor substrate 10-9a. Further, on the back surface of the semiconductor substrate 10-9a, an antireflective layer 6-9a and an insulating layer 5-9a are formed in this order.
  • the pixel separating unit 9-9a electrically separates four pixels.
  • the inter-pixel light shielding film 4-9b is formed by the resist mask 50-9b. Specifically, an antireflection layer 6-9b and an insulating layer formed on the back surface of the semiconductor substrate 10-9a above the pixel separating portion 9-9b formed inside the semiconductor substrate 10-9b An inter-pixel light shielding film 4-9b is formed on the top of 5-9b so as to partition four pixels.
  • the green color filter 3-9c-G is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-9c with respect to four pixels electrically partitioned by the pixel separating portion 9-9c formed inside the semiconductor substrate 10-9c. A green color filter 3-9c-G is formed on the upper surface of 6-9c and the insulating layer 5-9c so as to be embedded in the inter-pixel light shielding film 4-9c. At this time, the curvature of the green color filter 3-9c-G changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1).
  • a red color filter 3-9d-R is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-9d with respect to four pixels electrically partitioned by the pixel separating portion 9-9d formed inside the semiconductor substrate 10-9d.
  • the red color filter 3-9d-R is formed on the top of the insulating layer 5-9d and the insulating layer 5-9d so as to be embedded in the inter-pixel light shielding film 4-9d.
  • the rotation speed is adjusted so as to satisfy the above equation (1).
  • the red color filter 3-9d-R on the green color filter 3-9d-G formed on the first pixel from the left in FIG. 9D is removed.
  • a blue color filter 3-9e-B is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-9e with respect to four pixels electrically partitioned by the pixel separating portion 9-9e formed inside the semiconductor substrate 10-9e. A blue color filter 3-9e-B is formed on the top of the insulating layer 5-9e and the insulating layer 5-9e so as to be embedded in the inter-pixel light shielding film 4-9e. At this time, the curvature of the blue color filter 3-9e-B changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1).
  • the blue color filter 3-9e-B on the red color filter 3-9e-R formed in the pixel is removed.
  • the in-layer lens 3-10 fW is spin coated. Specifically, with respect to the fourth pixel from the left in FIG. 10F, which is electrically partitioned by the pixel separating portion 9-10f formed inside the semiconductor substrate 10-10f, the semiconductor substrate 10 is separated. In-layer lenses 3-10f-W are formed on top of the antireflective layer 6-10f and the insulating layer 5-10f formed on the back surface of the -10f so as to be embedded in the inter-pixel light shielding film 4-10f. . At that time, since the curvature of the in-layer lens 3-10 fW changes with the drying rotation speed after coating, the rotation speed is adjusted so as to satisfy the above equation (1).
  • FIG. 10G four pixels electrically divided by the pixel separating portion 9-10g formed inside the semiconductor substrate 10-10g are formed on the back surface of the semiconductor substrate 10-10g.
  • a green color filter 3-3 is formed on the top of the antireflective layer 6-10 g and the insulating layer 5-10 g so as to be embedded in the inter-pixel light shielding film 4-10 g from the left pixel in FIG. 10g-G, red color filter 3-10g-R, blue color filter 3-10g-B and in-layer lens 3-10g-W are shown.
  • on-chip lenses are formed.
  • a green color filter 3-10 h-G, a red color filter 3-10 h-R, and a blue color filter are formed in order of 4 pixels from the left pixel in FIG. 10 (h).
  • On-chip lens 2-10h is spin-coated on top of 3-10h-B and in-layer lens 3-10h-W, and base lens 30-10h is spin-coated on top of on-chip lens 2-10h Formed, sized and patterned.
  • the patterning width may be changed for each pixel, and the curvature at the time of melting may be changed for each pixel so as to satisfy the above equation (1).
  • a green color filter 3-10h-G is sequentially arranged from the left pixel in FIG. 10H so as to be embedded in the inter-pixel light shielding film 4-10h on the top of the antireflective layer 6-10h and the insulating layer 5-10h.
  • a red color filter 3-10 h-R, a blue color filter 3-10 h-B, and an in-layer lens 3-10 h-W is sequentially arranged from the left pixel in FIG. 10H so as to be embedded in the inter-pixel light shielding film 4-10h on the top of the antireflective layer 6-10h and the insulating layer 5-10h.
  • the base lens 30-10i formed on the on-chip lens 2-10i is melted (melted).
  • the on-chip lens 2-10i is formed of four pixels in order from the pixel at the left in FIG. 10 (i).
  • the green color filter 3-10i-G, the red color filter 3-10i-R, and the blue color filter 3 It is formed on top of the lens 10i-B and the in-layer lens 3-10i-W.
  • four pixels electrically divided by the pixel separation portion 9-10i formed inside the semiconductor substrate 10-10i are formed on the back surface of the semiconductor substrate 10-10i.
  • the green color filter 3-10i-G is sequentially arranged from the left pixel in FIG.
  • a red color filter 3-10i-R, a blue color filter 3-10i-B, and an in-layer lens 3-10i-W are examples of red color filter 3-10i-R, a blue color filter 3-10i-B, and an in-layer lens 3-10i-W.
  • On-chip lens 2-10 j-G, on-chip lens 2-10 j-R, on-chip lens 2 on top of each of 3-10 j-R, blue color filter 3-10 j-B and in-layer lens 3-10 j-W A solid-state image pickup device 1-10j is obtained by forming -10j-B and an on-chip lens 2-10j-W.
  • the solid-state imaging device 1-10j is formed on the back surface of the semiconductor substrate 10-10j with respect to four pixels electrically divided by the pixel separating portion 9-10j formed inside the semiconductor substrate 10-10j.
  • the green color filter 3-10j-G is sequentially arranged from the left pixel in FIG. 10J so as to be embedded in the inter-pixel light shielding film 4-10j on the top of the antireflective layer 6-10j and the insulating layer 5-10j.
  • a red color filter 3-10j-R, a blue color filter 3-10j-B, and an in-layer lens 3-10j-W are examples of the green color filter 3-10j-G.
  • FIGS. 11 and 12 show an example of a method of manufacturing a solid-state imaging device according to a ninth embodiment of the present technology.
  • FIGS. 11 and 12 illustrate a method of manufacturing the solid-state imaging device according to the ninth embodiment, taking as an example steps after the formation of the inter-pixel light shielding film using a resist mask. The steps before that are the same as in FIGS. 9 (a) to 9 (b). Note that “upper” means the upper direction in FIGS. 11 and 12 and “lower” means the lower direction in FIGS. 11 and 12 unless otherwise noted.
  • the inter-pixel light shielding film 4-11a is formed by the resist mask 50-11a. Specifically, an antireflection layer 6-11a and an insulating layer formed on the back surface of the semiconductor substrate 10-11a above the pixel separating portion 9-11a formed inside the semiconductor substrate 10-11a. An inter-pixel light shielding film 4-11a is formed on the top of 5-11a so as to partition four pixels.
  • the green color filters 3-11b-G are patterned. At this time, if exposure is performed slightly inward of the inter-pixel light shielding film 4-11b and development is performed, the corner is likely to be reduced in film thickness, so that it has a convex shape. When the shape after development does not satisfy the above equation (1), the number of steps increases, but the convex shape may be adjusted by etching.
  • the green color filter 3-11b-G corresponds to the semiconductor substrate 10 with respect to four pixels electrically divided by the pixel separating portion 9-11b formed inside the semiconductor substrate 10-11b.
  • a green color filter 3-11b-G is formed on the top of the reflection preventing layer 6-11b and the insulating layer 5-11b formed on the back surface of the second layer 11b so as to be embedded in the inter-pixel light shielding film 4-11b. There is.
  • the red color filter 3-11c-R is patterned. At this time, if exposure is performed slightly inward of the inter-pixel light shielding film 4-11 c and development is performed, the corner is likely to be reduced in film thickness, so that it has a convex shape. When the shape after development does not satisfy the above equation (1), the number of steps increases, but the convex shape may be adjusted by etching.
  • the red color filter 3-11c-R corresponds to the semiconductor substrate 10 for four pixels electrically divided by the pixel separating portion 9-11c formed inside the semiconductor substrate 10-11c.
  • the pixel on the right side of the green color filter 3-11c-G so as to be embedded in the inter-pixel light shielding film 4-11c on the top of the reflection preventing layer 6-11c and the insulating layer 5-11c formed on the back surface of -11c Is formed.
  • the blue color filter 3-12d-B is patterned. At this time, if exposure is performed slightly inward of the inter-pixel light shielding film 4-12 d and development is performed, the corner is easily reduced in film thickness, and therefore, it is convex. When the shape after development does not satisfy the above equation (1), the number of steps increases, but the convex shape may be adjusted by etching.
  • the blue color filter 3-12d-B corresponds to the semiconductor substrate 10 for four pixels electrically divided by the pixel separating portion 9-12d formed inside the semiconductor substrate 10-12d.
  • a green color filter 3-12d-G and a red color filter so as to be embedded in the inter-pixel light shielding film 4-12d on top of the reflection preventing layer 6-12d and the insulating layer 5-12d formed on the back surface of -12d It is formed in the pixel on the right side of 3-12d-R.
  • the in-layer lenses 3-12e-W are patterned. At this time, if exposure is performed slightly inward of the inter-pixel light shielding film 4-12 e and development is performed, the corner is easily reduced in film thickness, and therefore, it has a convex shape. When the shape after development does not satisfy the above equation (1), the number of steps increases, but the convex shape may be adjusted by etching.
  • the in-layer lens 3-12e-W corresponds to the semiconductor substrate 10 with respect to four pixels electrically divided by the pixel separating portion 9-12e formed inside the semiconductor substrate 10-12e.
  • Green color filter 3-12e-G red color filter so as to be embedded in the inter-pixel light shielding film 4-12e on the top of the reflection preventing layer 6-12e and the insulating layer 5-12e formed on the back surface of -12e 3-12e-R and blue color filters 3-12e-B are formed on the right side of the pixel.
  • the solid-state imaging device 1-12f is obtained by the same method as the on-chip lens forming method shown in FIG. 10 (j).
  • the solid-state imaging device 1-10f is formed on the back surface of the semiconductor substrate 10-10f with respect to four pixels electrically partitioned by the pixel separating portion 9-10f formed inside the semiconductor substrate 10-10f.
  • the green color filter 3-10f- is sequentially arranged from the left pixel in FIG. G, red color filter 3-10 f-R, blue color filter 3-10 f-B, and in-layer lens 3-10 f-W are formed.
  • FIGS. 13 and 14 show an example of a method of manufacturing the solid-state imaging device according to the tenth embodiment of the present technology.
  • FIGS. 13 and 14 illustrate a method of manufacturing the solid-state imaging device according to the tenth embodiment, taking as an example the steps after the formation of the inter-pixel light shielding film using a resist mask. The steps before that are the same as in FIGS. 9 (a) to 9 (b).
  • “upper” means the upper direction in FIG.13 and FIG.14
  • “lower” means the lower direction in FIG.13 and FIG.14.
  • the inter-pixel light shielding film 4-13a is formed by the resist mask 50-13a. Specifically, an antireflection layer 6-13a and an insulating layer formed on the back surface of the semiconductor substrate 10-13a above the pixel separating portion 9-13a formed inside the semiconductor substrate 10-13a. An inter-pixel light shielding film 4-13a is formed on the top of 5-13a so as to partition four pixels.
  • a green color filter 3-13b-G is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-13b with respect to four pixels electrically partitioned by the pixel separating portion 9-13b formed inside the semiconductor substrate 10-13b. A green color filter 3-13b-G is formed on the upper portion of the pixel 6-13b and the insulating layer 5-13b so as to be embedded in the inter-pixel light shielding film 4-13b. At this time, the curvature of the green color filter 3-13b-G changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1).
  • the red color filter 3-13c-R is spin coated. Specifically, with respect to the pixel on the right of the pixel on which the green color filter 3-13c-G is formed, which is electrically partitioned by the pixel separating portion 9-13c formed inside the semiconductor substrate 10-13c.
  • the red color filter 3-13 c- is embedded in the inter-pixel light shielding film 4-13 c above the antireflective layer 6-13 c and the insulating layer 5-13 c formed on the back surface of the semiconductor substrate 10-13 c. R is formed.
  • the curvature of the red color filter 3-13-R changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1).
  • a blue color filter 3-14d-B is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-14d with respect to four pixels electrically divided by the pixel separating portion 9-14d formed inside the semiconductor substrate 10-14d.
  • the blue color filter 3-14d-B is formed on the top of the insulating layer 6-14d and the insulating layer 5-14d so as to be embedded in the inter-pixel light shielding film 4-14d. At this time, the curvature of the blue color filter 3-14d-B changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1).
  • blue color filter 3-14d-B on the green color filter 3-14d-G formed on the first pixel from the left in FIG. 14 (d) and the second from the left in FIG. 14 (d).
  • the blue color filters 3-14d-B on the red color filters 3-14d-R formed in the pixels are removed.
  • in-layer lenses 3-14e-W are spin coated. Specifically, for the fourth pixel from the left in FIG. 14E, which is electrically partitioned by the pixel separating portion 9-10e formed inside the semiconductor substrate 10-10e, the semiconductor substrate 10 is separated. An in-layer lens 3-14e-W is formed on the top of the reflection preventing layer 6-14e and the insulating layer 5-14e formed on the back surface of -14e so as to be embedded in the inter-pixel light shielding film 4-14e. . At this time, since the curvature of the in-layer lens 3-14e-W changes with the number of rotations for drying after coating, the number of rotations is adjusted so as to satisfy the above equation (1).
  • the solid-state imaging device 1-14f is obtained by the same method as the method of forming the on-chip lens shown in FIG. 10 (j).
  • the solid-state imaging device 1-14f is formed on the back surface of the semiconductor substrate 10-14f with respect to four pixels electrically divided by the pixel separating portion 9-14f formed inside the semiconductor substrate 10-14f.
  • the green color filter 3-14f- is sequentially arranged from the left pixel in FIG. G, red color filter 3-14f-R, blue color filter 3-14f-B, and in-layer lens 3-14f-W are formed.
  • FIGS. 15 and 16 show an example of a method of manufacturing a solid-state imaging device according to an eleventh embodiment of the present technology.
  • FIGS. 15 and 16 show a method of manufacturing the solid-state imaging device according to the eleventh embodiment, taking as an example the steps after formation of the deep trench isolation (pixel separating portion) for pixel separation.
  • “upper” means the upper direction in FIG.15 and FIG.16
  • “lower” means the lower direction in FIG.15 and FIG.16.
  • FIG. 15A shows a cross-sectional view of the semiconductor substrate 10-15a having the pixel separating portion 9-15a.
  • the pixel separating portion 9-15a is formed embedded in the semiconductor substrate 10-15a on the side of the back surface (upper surface in FIG. 15A) of the semiconductor substrate 10-15a. Further, on the back surface of the semiconductor substrate 10-15a, an antireflective layer 6-15a and an insulating layer 5-15a are formed in this order.
  • the pixel separating unit 9-15a electrically separates four pixels.
  • the inter-pixel light shielding film 4-15b is formed by coating. Specifically, an antireflection layer 6-15b and an insulating layer formed on the back surface of the semiconductor substrate 10-15b above the pixel separating portion 9-15b formed inside the semiconductor substrate 10-15b. An inter-pixel light shielding film 4-15b is formed on top of 5-15b.
  • the hard mask material 40-15c is formed by coating. Specifically, an antireflection layer 6-15c formed on the back surface of the semiconductor substrate 10-15c above the pixel separating portion 9-15c formed inside the semiconductor substrate 10-15c, and an insulating layer A silicon nitride film 42-15 c and a silicon oxide film 41-15 c are applied in this order on top of 5-15 c and the inter-pixel light shielding film 4-15 c.
  • the hard mask processing resist 50-15d is patterned. Specifically, an antireflection layer 6-15d formed on the back surface of the semiconductor substrate 10-15d above the pixel separating portion 9-15d formed inside the semiconductor substrate 10-15d, and an insulating layer 5-15d, a resist 50- for hard mask processing on the upper portion of the inter-pixel light shielding film 4-15d and the hard mask material 40-15d (composed of the silicon nitride film 42-15d and the silicon oxide film 41-15d). 15 d is patterned.
  • the hard mask material 40-15e (made of the silicon nitride film 42-15e and the silicon oxide film 41-15e) is processed by etching. Specifically, an antireflection layer 6-15e formed on the back surface of the semiconductor substrate 10-15e above the pixel separating portion 9-15e formed inside the semiconductor substrate 10-15e, and an insulating layer A hard mask material 40-15e having a hard mask processing resist 50-15e formed on top of the light shielding film 5-15e and the inter-pixel light shielding film 4-15e is processed by etching.
  • the hard mask processing resist is removed. Specifically, an antireflection layer 6-16f formed on the back surface of the semiconductor substrate 10-16f above the pixel separating portion 9-16f formed inside the semiconductor substrate 10-16f, and an insulating layer 5-16f, the resist for hard mask processing disposed on the inter-pixel light shielding film 4-16f and the hard mask material 40-16f is removed.
  • the protective film of the inter-pixel light shielding film 4-16g is isotropically deposited with the hard mask material 40-16g remaining.
  • an antireflection layer 6-16g formed on the back surface of the semiconductor substrate 10-16g above the pixel separating portion 9-16g formed inside the semiconductor substrate 10-16g;
  • a hard mask material 40-16g and an inter-pixel light shielding film 4-16g are formed in this order on the insulating layer 5-16g.
  • 16H shows an antireflection layer 6-16h formed on the back surface of the semiconductor substrate 10-16h above the pixel separating portion 9-16h formed inside the semiconductor substrate 10-16h. It is shown that the hard mask material 40-16h and the inter-pixel light shielding film 4-16h are disposed in this order on the insulating layer 5-16h.
  • the green color filter 3-16i-G is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-16i with respect to four pixels electrically divided by the pixel separating portion 9-16i formed inside the semiconductor substrate 10-16i.
  • the green color filters 3-16i-G are formed on the upper portions of the layers 6-16i and the insulating layer 5-16i so as to be embedded in the inter-pixel light shielding film 4-16i.
  • the curvature of the green color filters 3-16i-G changes with the number of rotations at the time of drying after coating, the number of rotations is adjusted so as to satisfy the above equation (1).
  • the subsequent steps are the same as the steps shown in FIGS.
  • a solid-state imaging device may be obtained through the steps shown in FIG. 11 to FIG. 12 or FIG. 13 to FIG.
  • the solid-state imaging device 1-16j four pixels electrically divided by the pixel separation portion 9-16j formed inside the semiconductor substrate 10-16j are formed on the back surface of the semiconductor substrate 10-16j.
  • the green color filter 3-16 j- is sequentially arranged from the left pixel in FIG. 16 (j) so as to be embedded in the inter-pixel light shielding film 4-16 j above the antireflective layer 6-16 j and the insulating layer 5-16 j.
  • G red color filter 3-16j-R, blue color filter 3-16j-B, and in-layer lens 3-16j-W are formed.
  • an on-chip lens 2-16j An on-chip lens 2-16j-R, an on-chip lens 2-16j-B, and an on-chip lens 2-16j-W are formed.
  • FIG. 17 shows an example of a method of manufacturing a solid-state imaging device according to a twelfth embodiment of the present technology.
  • the manufacturing method of the solid-state imaging device of the twelfth embodiment is shown by taking the steps after formation of the on-chip lens as an example.
  • “upper” means the upper direction in FIG. 17, and “lower” means the lower direction in FIG.
  • FIG. 17A shows a solid-state imaging device 1-17a manufactured by the process of FIGS.
  • the solid-state imaging device may be manufactured in the process of FIGS. 11 to 12, 13 to 14, or 15 to 16.
  • the solid-state imaging device 1-17a four pixels electrically divided by the pixel separating portion 9-17a formed inside the semiconductor substrate 10-17a are formed on the back surface of the semiconductor substrate 10-17a.
  • the green color filter 3-17a- is sequentially arranged from the left pixel in FIG. 16J so as to be embedded in the inter-pixel light shielding film 4-17a on the antireflective layer 6-17a and the insulating layer 5-17a.
  • G red color filters 3-17a-R, blue color filters 3-17a-B, and in-layer lenses 3-17a-W are formed.
  • the on-chip lens 2-17a On-chip lenses 2-17a-R, on-chip lenses 2-17a-B, and on-chip lenses 2-17a-W are formed.
  • the antireflective film 20-17b-G, the antireflective film 20-17b-R, the antireflective film 20-17b-B, and the antireflective film 20-17b-W are isotropically turned on.
  • the solid-state imaging device 1-17b is obtained by forming a film on the tip lens 2-17b-G, the on-chip lens 2-17b-R, the on-chip lens 2-17b-B, and the on-chip lens 2-17b-W.
  • four pixels electrically divided by the pixel separating portion 9-17b formed inside the semiconductor substrate 10-17b are formed on the back surface of the semiconductor substrate 10-17b.
  • the green color filter 3-17b- is sequentially arranged from the left pixel in FIG. 16J so as to be embedded in the inter-pixel light shielding film 4-17b on the antireflective layer 6-17b and the insulating layer 5-17b.
  • G red color filter 3-17b-R, blue color filter 3-17b-B, and in-layer lens 3-17b-W are formed.
  • an on-chip lens 2-17b On-chip lenses 2-17b-R, on-chip lenses 2-17b-B, and on-chip lenses 2-17b-W are formed.
  • a solid-state imaging device is mounted, and the solid-state imaging device includes: At least an on-chip lens, an in-layer lens, an antireflective layer, and a semiconductor substrate are disposed in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions, and refraction of the on-chip lens Unlike the index and the refractive index of the in-layer lens, the upper radius of curvature on the light incident side of the on-chip lens is rl, the lower radius of curvature of the on-chip lens is rc, and the refractive index of the on-chip lens When nl, the refractive index of the intralayer lens is nc, and the distance from the antireflective layer to the upper end portion of the intralayer lens on the light incident side is hc, al and ac are
  • the upper part of the on-chip lens when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl ⁇ 0.
  • the upper part of the on-chip lens is a downward convex shape
  • when rc>0 the lower part of the on-chip lens is an upward convex shape
  • when rc ⁇ 0 the lower part of the on-chip lens is a downward convex shape It is.
  • the light has a spread according to the wavelength without being condensed at one point even if condensed by the on-chip lens in nature.
  • al and ac mean the on-chip lens error range recognized from this spread.
  • al is an error range of the upper portion (upper surface) of the on-chip lens
  • ac is an error range of the lower portion (lower surface) of the on-chip lens.
  • the electronic device of the thirteenth embodiment according to the present technology may be an electronic device on which the solid-state imaging device according to the first to seventh embodiments of the present technology is mounted.
  • FIG. 18 is a diagram showing an example of use of the solid-state imaging device according to the first to seventh embodiments of the present technology as an image sensor.
  • the solid-state imaging devices according to the first to seventh embodiments described above can be used, for example, in various cases of sensing light such as visible light, infrared light, ultraviolet light, X-rays, etc. as follows. it can. That is, as shown in FIG. 13, for example, the field of appreciation for capturing images to be used for appreciation, the field of transportation, the field of home appliances, the field of medical and healthcare, the field of security, the field of beauty, sports Using the solid-state imaging device according to any one of the first to seventh embodiments in a device (for example, the electronic device according to the thirteenth embodiment described above) used in the field of agriculture, the field of agriculture, etc. Can.
  • a device for example, the electronic device according to the thirteenth embodiment described above
  • devices for photographing an image to be provided for appreciation such as a digital camera, a smartphone, a mobile phone with a camera function, etc.
  • the solid-state imaging device according to any one of the embodiments can be used.
  • in-vehicle sensors for capturing images in front of, behind, around, inside of vehicles, etc., for monitoring safe driving such as automatic stop, etc., driving vehicles and roads.
  • the solid-state imaging device is used in an apparatus used for traffic, such as a surveillance camera, a ranging sensor for ranging between vehicles, etc. be able to.
  • a device provided to home appliances such as a television receiver, a refrigerator, an air conditioner, etc. in order to photograph a user's gesture and perform device operation according to the gesture.
  • the solid-state imaging device of any one of the seventh embodiments can be used.
  • first to seventh implementations for devices provided for medical use and healthcare such as endoscopes and devices that perform blood vessel imaging by receiving infrared light.
  • the solid-state imaging device according to any one of the embodiments can be used.
  • a solid of any one of the first to seventh embodiments in a device provided for security, such as a surveillance camera for security use or a camera for person authentication, a solid of any one of the first to seventh embodiments.
  • An imaging device can be used.
  • any one of the first to seventh embodiments of an apparatus provided for beauty use such as a skin measuring instrument for photographing the skin and a microscope for photographing the scalp
  • a solid-state imaging device in the form can be used.
  • a solid-state imaging device In the field of sports, for example, a solid-state imaging device according to any one of the first to seventh embodiments is provided as an apparatus used for sports, such as an action camera or wearable camera for sports use etc. It can be used.
  • a solid-state imaging apparatus in an apparatus used for agriculture, such as a camera for monitoring the condition of fields and crops. Elements can be used.
  • FIG. 19 shows a schematic configuration of the electronic device 102 (camera) as an example.
  • the electronic device 102 is, for example, a video camera capable of shooting still images or moving images, and drives the solid-state imaging device 101, an optical system (optical lens) 310, a shutter device 311, the solid-state imaging device 101, and the shutter device 311. And a signal processing unit 312.
  • the optical system 310 guides image light (incident light) from a subject to the pixel unit 101 a of the solid-state imaging device 101.
  • the optical system 310 may be composed of a plurality of optical lenses.
  • the shutter device 311 controls a light irradiation period and a light shielding period to the solid-state imaging device 101.
  • the drive unit 313 controls the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 311.
  • the signal processing unit 312 performs various types of signal processing on the signal output from the solid-state imaging device 101.
  • the video signal Dout after signal processing is It is stored in a storage medium such as a memory or output to a monitor or the like.
  • the present technology can also have the following configurations.
  • At least an on-chip lens, an in-layer lens, a reflection preventing layer, and a semiconductor substrate are arranged in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions;
  • the curvature radius of the upper part on the light incident side of the on-chip lens is rl
  • the curvature radius of the lower part of the on-chip lens is rc
  • the refractive index of the on-chip lens is nl
  • the refractive index of the in-layer lens is nc
  • the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
  • the radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and
  • the upper part on the light incident side of at least one in-layer lens of the in-layer lenses is upwardly convex, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens
  • the solid-state imaging device according to any one of [1] to [3], wherein is an upwardly convex shape.
  • the upper part on the light incident side of at least one in-layer lens of the in-layer lenses is a downward convex shape, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens
  • the solid-state imaging device according to any one of [1] to [3], wherein [6]
  • the upper part on the light incident side of at least one in-layer lens of the in-layer lenses is upwardly convex, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens Is convex upward, and further,
  • the upper part on the light incident side of at least one in-layer lens of the in-layer lenses is a downward convex shape, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens
  • the solid-state imaging device according to any one of [1] to [3], wherein [7]
  • the solid-state imaging device according to any one of [1] to [6], wherein at least one of the in-layer
  • the solid-state imaging device according to any one of [1] to [7], further including an anti-reflection film for on-chip lens on the on-chip lens.
  • [9] Forming an inter-pixel light shielding film between adjacent pixels in the upper direction of the antireflective layer on the semiconductor substrate; A step of spin-coating the in-layer lens material and adjusting the number of rotations after the spin-coating to dry; Forming an in-layer lens by exposing and developing the in-layer lens material on or between the in-pixel light shielding film or the in-pixel light blocking film; Coating the base lens after spin-coating the on-chip lens material, adjusting the dimensions and patterning; Melting and etching back the dimensioned base lens, and transferring the curvature to the on-chip lens material to form an on-chip lens.
  • the curvature radius of the upper part on the light incident side of the on-chip lens is rl
  • the curvature radius of the lower part of the on-chip lens is rc
  • the refractive index of the on-chip lens is nl
  • the refractive index of the in-layer lens is nc
  • the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc
  • the radius of curvature rl of the upper part of the on-chip lens and the radius of curvature rc of the lower part of the on-chip lens in the range of 0.96 to 1.04 in which al and ac satisfy the following formula (1)
  • the manufacturing method of the solid-state image sensor processed into (However, when the light incident surface side of the on-chip lens is the upper side in the equation (1), the upper part of the on-chip lens is convex upward when rl> 0, and rl ⁇ 0
  • the upper part of the on-chip lens has a lower
  • a solid-state image sensor is mounted,
  • the solid-state imaging device is At least an on-chip lens, an in-layer lens, an antireflective layer, and a semiconductor substrate are arranged in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions,
  • the curvature radius of the upper part on the light incident side of the on-chip lens is rl
  • the curvature radius of the lower part of the on-chip lens is rc
  • the refractive index of the on-chip lens is nl
  • the refractive index of the in-layer lens is nc
  • the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
  • the radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for
  • SYMBOLS 1 Solid-state image sensor, 2 ... On-chip lens, 3 ... lens in a layer (color filter), 6 ... Antireflection layer, 10 ... Semiconductor substrate, 100 ... Pixel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Optical Filters (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Provided is a solid state imaging element in which the image quality can be improved. The present invention provides the solid state imaging element in which: at least an on-chip lens, an in-layer lens, an anti-reflection layer, and a semiconductor substrate are arranged, in order from the light incidence side, on each of multiple one-dimensionally or two-dimensionally arranged pixels; the refractive index of the on-chip lens is different from the refractive index of the in-layer lens; and, when the curvature radius of the upper portion of the on-chip lens on the light incidence side thereof is defined as rl, the curvature radius of the lower portion of the on-chip lens is defined as rc, the refractive index of the on-chip lens is defined as nl, the refractive index of the in-layer lens is defined as nc, and the distance from the anti-reflection layer to the upper end of the in-layer lens on the light incidence side thereof, is defined as hc, the curvature radius rl of the upper portion of the on-chip lens and the curvature radius rc of the lower portion of the on-chip lens satisfy expression (1) with al and ac within a range of 0.96-1.04.

Description

固体撮像素子及び電子装置Solid-state imaging device and electronic device
 本技術は、固体撮像素子及び電子装置に関する。 The present technology relates to a solid-state imaging device and an electronic device.
 一般的に、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやCCD(Charge Coupled Device)などの固体撮像素子は、デジタルスチルカメラやデジタルビデオカメラなどに広く用いられている。 In general, solid-state imaging devices such as complementary metal oxide semiconductor (CMOS) image sensors and charge coupled devices (CCDs) are widely used in digital still cameras and digital video cameras.
 近年、固体撮像素子の画質の向上を図るために様々な開発が行われている。 In recent years, various developments have been made to improve the image quality of solid-state imaging devices.
 例えば、ダブルレンズ構造を有するイメージセンサが提案されている(特許文献1を参照)。 For example, an image sensor having a double lens structure has been proposed (see Patent Document 1).
 また、例えば、アクロマートレンズ構造を有するレンズ層を備える固体撮像素子が提案されている(特許文献2を参照)。 In addition, for example, a solid-state imaging device provided with a lens layer having an achromatic lens structure has been proposed (see Patent Document 2).
 さらに、例えば、受光する光の色に対応して異なった形状を有するマイクロレンズを備えて、隣接するマイクロレンズの端部同士が接触している固体撮像素子が提案されている(特許文献3を参照)。 Furthermore, for example, a solid-state imaging device has been proposed in which microlenses having different shapes corresponding to the color of light to be received are in contact and the ends of adjacent microlenses are in contact with each other (see Patent Document 3). reference).
特開2016-036004号公報JP, 2016-036004, A 特開2007-158179号公報JP 2007-158179 A 特開2014-154662号公報JP, 2014-154662, A
 しかしながら、特許文献1~3で提案された技術では、画質の更なる向上が図れないおそれがある。 However, the techniques proposed in Patent Documents 1 to 3 may not be able to further improve the image quality.
 そこで、本技術は、このような状況に鑑みてなされたものであり、画質を向上させることができる固体撮像素子、及び固体撮像素子を搭載した電子装置を提供することを主目的とする。 Therefore, the present technology has been made in view of such a situation, and has as its main object to provide a solid-state imaging device capable of improving the image quality and an electronic device equipped with the solid-state imaging device.
 本発明者らは、上述の目的を解決するために鋭意研究を行った結果、画質を飛躍的に向上させることに成功し、本技術を完成するに至った。 As a result of intensive studies to solve the above-described object, the present inventors succeeded in dramatically improving the image quality, and completed the present technology.
すなわち、本技術では、まず、1次元又は2次元に配列された複数の画素毎に、光入射側から順に、オンチップレンズと、層内レンズと、反射防止層と、半導体基板とが、少なくとも配され、
 該オンチップレンズの屈折率と該層内レンズの屈折率とは異なり、
 該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
 alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす、固体撮像素子を提供する。
That is, in the present technology, first, for each of a plurality of pixels arranged in one dimension or two dimensions, at least the on-chip lens, the in-layer lens, the antireflective layer, and the semiconductor substrate are sequentially arranged from the light incident side. Distributed,
Unlike the refractive index of the on-chip lens and the refractive index of the in-layer lens,
The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
The radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and ac satisfy the following formula (1): Provided is a solid-state imaging device.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 本技術に係る固体撮像素子は、画素間遮光膜を更に備えてよい。
 本技術に係る固体撮像素子は、互いに隣接する画素間にハードマスク材を更に備えてよい。
The solid-state imaging device according to the present technology may further include an inter-pixel light shielding film.
The solid-state imaging device according to the present technology may further include a hard mask material between adjacent pixels.
 本技術に係る固体撮像素子において、前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が上凸形状であってよく、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が上凸形状でよい。
 本技術に係る固体撮像素子において、前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が下凸形状であってよく、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が下凸形状でよい。
 本技術に係る固体撮像素子において、前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が上凸形状であってよく、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が上凸形状でよく、さらに、
 前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が下凸形状であってよく、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が下凸形状でよい。
 なお、オンチップレンズの下部が上凸形状であることは、オンチップレンズの下部が凹形状であることと同義であり、層内レンズ(後述するカラーフィルタも含む。)の光入射側である上部が下凸形状であることは、層内レンズ(後述するカラーフィルタも含む。)の光入射側である上部が凹形状であることと同義である。
In the solid-state imaging device according to the present technology, the upper part on the light incident side of at least one in-layer lens of the in-layer lenses may have an upward convex shape, and is in contact with the at least one in-layer lens The lower portion of the on-chip lens to be disposed may be convex upward.
In the solid-state imaging device according to the present technology, an upper portion on a light incident side of at least one in-layer lens of the in-layer lenses may have a downward convex shape, and is in contact with the at least one in-layer lens The lower portion of the on-chip lens to be disposed may be a downward convex shape.
In the solid-state imaging device according to the present technology, the upper part on the light incident side of at least one in-layer lens of the in-layer lenses may have an upward convex shape, and is in contact with the at least one in-layer lens The lower portion of the on-chip lens to be disposed may be convex upward, and
The upper part on the light incident side of at least one in-layer lens of the in-layer lenses may have a downward convex shape, and the on-chip lens disposed in contact with the at least one in-layer lens The lower portion may have a downward convex shape.
In addition, that the lower part of the on-chip lens is convex upward is synonymous with that the lower part of the on-chip lens is concave and it is the light incident side of the in-layer lens (including the color filter described later). The downward convex shape on the upper portion is synonymous with the concave shape on the light incident side of the in-layer lens (including a color filter described later).
 本技術に係る固体撮像素子において、前記層内レンズのうち、少なくとも1つの層内レンズが、特定の波長帯を透過させるカラーフィルタ特性を有してよい。
 本技術に係る固体撮像素子は、前記オンチップレンズ上に、オンチップレンズ用反射防止膜を更に備えてよい。
In the solid-state imaging device according to the present technology, at least one in-layer lens of the in-layer lenses may have a color filter characteristic that transmits a specific wavelength band.
The solid-state imaging device according to the present technology may further include an on-chip lens anti-reflection film on the on-chip lens.
 また、本技術では、
 半導体基板上の反射防止層の上方向に、互いに隣接する画素間に画素間遮光膜を形成する工程と、
 層内レンズ材を、回転塗布して該回転塗布後に回転数を調整して乾燥させる工程と、
 該層内レンズ材を該画素間遮光膜上か、又は該画素間遮光膜より内側に露光し現像して、層内レンズを形成する工程と、
 オンチップレンズ材を回転塗布した後に母材レンズを塗布して、寸法を調整してパターニングする工程と、
 寸法調整された母材レンズを融解させてエッチバックし、該オンチップレンズ材に曲率を転写させて、オンチップレンズを形成する工程と、を含み、
 該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
 alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす長さに加工される、固体撮像素子の製造方法を提供する。
Also, with this technology,
Forming an inter-pixel light shielding film between adjacent pixels in the upper direction of the antireflective layer on the semiconductor substrate;
A step of spin-coating the in-layer lens material and adjusting the number of rotations after the spin-coating to dry;
Forming an in-layer lens by exposing and developing the in-layer lens material on or between the in-pixel light shielding film or the in-pixel light blocking film;
Coating the base lens after spin-coating the on-chip lens material, adjusting the dimensions and patterning;
Melting and etching back the dimensioned base lens, and transferring the curvature to the on-chip lens material to form an on-chip lens.
The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
The radius of curvature rl of the upper part of the on-chip lens and the radius of curvature rc of the lower part of the on-chip lens in the range of 0.96 to 1.04 in which al and ac satisfy the following formula (1) The present invention provides a method of manufacturing a solid-state imaging device, which is processed into
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。 However, in the equation (1), when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl <0. The upper part of the on-chip lens is a downward convex shape, and when rc> 0, the lower part of the on-chip lens is an upward convex shape, and when rc <0, the lower part of the on-chip lens is a downward convex shape It is.
 本技術に係る固体撮像素子の製造方法は、互いに隣接する画素間にハードマスク材を形成する工程を更に含んでよい。
 本技術に係る固体撮像素子の製造方法は、前記オンチップレンズ上に、オンチップレンズ用反射防止膜を形成する工程を更に含んでよい。
The method of manufacturing a solid-state imaging device according to the present technology may further include the step of forming a hard mask material between adjacent pixels.
The method of manufacturing a solid-state imaging device according to the present technology may further include the step of forming an anti-reflection film for on-chip lens on the on-chip lens.
 さらに、本技術では、
 固体撮像素子が搭載されて、
 該固体撮像素子が、
 1次元又は2次元に配列された複数の画素毎に、光入射側から順に、オンチップレンズと、層内レンズと、反射防止層と半導体基板とが、少なくとも配され、
 該オンチップレンズの屈折率と該層内レンズの屈折率とは異なり、
 該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
 alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす、電子装置を提供する。
Furthermore, in the present technology,
A solid-state image sensor is mounted,
The solid-state imaging device is
At least an on-chip lens, an in-layer lens, an antireflective layer, and a semiconductor substrate are arranged in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions,
Unlike the refractive index of the on-chip lens and the refractive index of the in-layer lens,
The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
The radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and ac satisfy the following formula (1): Provide an electronic device.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。 However, in the equation (1), when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl <0. The upper part of the on-chip lens is a downward convex shape, and when rc> 0, the lower part of the on-chip lens is an upward convex shape, and when rc <0, the lower part of the on-chip lens is a downward convex shape It is.
 本技術によれば、画質を向上させることができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本技術中に記載されたいずれかの効果であってもよい。 According to the present technology, the image quality can be improved. In addition, the effect described here is not necessarily limited and may be any effect described in the present technology.
本技術を適用した第1の実施形態の固体撮像素子の構成例を示す断面図である。It is a sectional view showing an example of composition of a solid-state image sensing device of a 1st embodiment to which this art is applied. 本技術を適用した第2の実施形態の固体撮像素子の構成例を示す断面図である。It is a sectional view showing an example of composition of a solid-state image sensing device of a 2nd embodiment to which this art is applied. 本技術を適用した第3の実施形態の固体撮像素子の構成例を示す断面図である。It is a sectional view showing an example of composition of a solid-state image sensing device of a 3rd embodiment to which this art is applied. 本技術を適用した第4の実施形態の固体撮像素子の構成例を示す断面図である。It is a sectional view showing an example of composition of a solid-state image sensing device of a 4th embodiment to which this art is applied. 本技術を適用した第5の実施形態の固体撮像素子の構成例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state image sensor of 5th Embodiment to which this technique is applied. 本技術を適用した第6の実施形態の固体撮像素子の構成例を示す断面図である。It is a sectional view showing an example of composition of a solid-state image sensing device of a 6th embodiment to which this art is applied. 本技術を適用した第7の実施形態の固体撮像素子の構成例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state image sensor of 7th Embodiment to which this technique is applied. 本技術を適用した第7の実施形態の固体撮像素子の構成例を示す断面図である。It is sectional drawing which shows the structural example of the solid-state image sensor of 7th Embodiment to which this technique is applied. 本技術を適用した第8の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 8th Embodiment to which this technique is applied. 本技術を適用した第8の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 8th Embodiment to which this technique is applied. 本技術を適用した第9の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 9th Embodiment to which this technique is applied. 本技術を適用した第9の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 9th Embodiment to which this technique is applied. 本技術を適用した第10の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 10th Embodiment to which this technique is applied. 本技術を適用した第10の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 10th Embodiment to which this technique is applied. 本技術を適用した第11の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 11th Embodiment to which this technique is applied. 本技術を適用した第11の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 11th Embodiment to which this technique is applied. 本技術を適用した第12の実施形態の固体撮像素子の製造方法の例を示す断面図である。It is sectional drawing which shows the example of the manufacturing method of the solid-state image sensor of 12th Embodiment to which this technique is applied. 本技術を適用した第1~第7の実施形態の固体撮像素子の使用例を示す図である。It is a figure which shows the usage example of the solid-state image sensor of 1st-7th embodiment to which this technique is applied. 本技術を適用した第13の実施形態に係る電子装置の一例の機能ブロック図である。It is a functional block diagram of an example of the electronic device concerning a 13th embodiment to which this art is applied.
 以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。 Hereinafter, preferred embodiments for implementing the present technology will be described. The embodiments described below show an example of a representative embodiment of the present technology, and the scope of the present technology is not narrowly interpreted.
 なお、説明は以下の順序で行う。
 1.本技術の概要
 2.固体撮像素子に関する実施形態
 2-1.第1の実施形態(固体撮像素子の例1)
 2-2.第2の実施形態(固体撮像素子の例2)
 2-3.第3の実施形態(固体撮像素子の例3)
 2-4.第4の実施形態(固体撮像素子の例4)
 2-5.第5の実施形態(固体撮像素子の例5)
 2-6.第6の実施形態(固体撮像素子の例6)
 2-7.第7の実施形態(固体撮像素子の例7)
 3.固体撮像素子の製造方法に関する実施形態
 3-1.第8の実施形態(固体撮像素子の製造方法の例1)
 3-2.第9の実施形態(固体撮像素子の製造方法の例2)
 3-3.第10の実施形態(固体撮像素子の製造方法の例3)
 3-4.第11の実施形態(固体撮像素子の製造方法の例4)
 3-5.第12の実施形態(固体撮像素子の製造方法の例5)
 4.電子装置に関する実施形態
 4-1.第13の実施形態(電子装置の例)
 5.本技術を適用した固体撮像素子の使用例
The description will be made in the following order.
1. Overview of the present technology 2. Embodiment relating to solid-state imaging device 2-1. First Embodiment (Example 1 of Solid-State Imaging Device)
2-2. Second Embodiment (Example 2 of Solid-State Imaging Device)
2-3. Third embodiment (example 3 of solid-state imaging device)
2-4. Fourth Embodiment (Example 4 of Solid-State Imaging Device)
2-5. Fifth Embodiment (Example 5 of Solid-State Imaging Device)
2-6. Sixth Embodiment (Example 6 of Solid-State Imaging Device)
2-7. Seventh embodiment (example 7 of solid-state imaging device)
3. Embodiment Regarding Method of Manufacturing Solid-State Imaging Device 3-1. Eighth Embodiment (Example 1 of Manufacturing Method of Solid-State Imaging Device)
3-2. Ninth Embodiment (Example 2 of Method of Manufacturing Solid-State Imaging Device)
3-3. Tenth Embodiment (Example 3 of Method of Manufacturing Solid-State Imaging Device)
3-4. Eleventh Embodiment (Example 4 of Method of Manufacturing Solid-State Imaging Device)
3-5. Twelfth Embodiment (Example 5 of Method of Manufacturing Solid-State Imaging Device)
4. Embodiment related to electronic device 4-1. Thirteenth embodiment (example of electronic device)
5. Usage example of solid-state imaging device to which the present technology is applied
<1.本技術の概要>
 本技術は、オンチップレンズの色収差に関して提言した固体撮像素子及びその固体撮像素子を搭載した電子装置に関する。本技術によれば、固体撮像素子の画質を向上させることができる。
<1. Outline of this technology>
The present technology relates to a solid-state imaging device proposed regarding the chromatic aberration of the on-chip lens and an electronic apparatus equipped with the solid-state imaging device. According to the present technology, the image quality of the solid-state imaging device can be improved.
 アクロマート形状のオンチップレンズに関する技術がある。この技術では、凹レンズと凸レンズとに対して屈折率の大小関係が開示されて、波長帯によっては色収差を解決できないことがある。また、可視光帯においては、色収差を解決するためにアッベ数を用いた技術がある。光電変換層までの距離が大きく、凹レンズと凸レンズとの焦点距離だけでは色収差を解決できないことがある。また、アッベ数で定式化されているので可視光帯でしか有効でないことがある。さらに、画素毎に集光性を向上させる技術がある。この技術では、オンチップレンズの半径及び光電変換層までの距離が開示されておらず、追加の加工工程が必要な場合がある。 There is a technology related to an achromatic shaped on-chip lens. In this technique, the magnitude relationship of the refractive index is disclosed for the concave lens and the convex lens, and the chromatic aberration may not be able to be solved depending on the wavelength band. In the visible light band, there is a technique using Abbe's number to solve the chromatic aberration. The distance to the photoelectric conversion layer is large, and in some cases the chromatic aberration can not be solved only by the focal length of the concave lens and the convex lens. Moreover, since it is formulated by the Abbe number, it may be effective only in the visible light band. Furthermore, there is a technology for improving the light collecting performance for each pixel. In this technology, the radius of the on-chip lens and the distance to the photoelectric conversion layer are not disclosed, and additional processing steps may be required.
 本技術は上記の事情を鑑みてなされたものである。本技術では、追加工程を必要とせずに、波長毎及び/又は画素毎にオンチップレンズの曲率を屈折率に応じて変化させることができる。 The present technology has been made in view of the above circumstances. In the present technology, the curvature of the on-chip lens can be changed according to the refractive index for each wavelength and / or for each pixel without requiring an additional step.
<2.固体撮像素子に関する実施形態>
[2-1.第1の実施形態(固体撮像素子の例1)]
 本技術に係る第1の実施形態(固体撮像素子の例1)の固体撮像素子は、1次元又は2次元に配列された複数の画素毎に、光入射側から順に、オンチップレンズと、層内レンズと、反射防止層と、半導体基板とが、少なくとも配され、該オンチップレンズの屈折率と該層内レンズの屈折率とは異なり、該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす、固体撮像素子である。
<2. Embodiment regarding solid-state imaging device>
[2-1. First Embodiment (Example 1 of Solid-State Imaging Device)]
The solid-state imaging device according to the first embodiment (example 1 of the solid-state imaging device) according to the present technology includes an on-chip lens and a layer sequentially from the light incident side for each of a plurality of pixels arranged in one or two dimensions. At least an inner lens, a reflection preventing layer, and a semiconductor substrate are disposed, and the refractive index of the on-chip lens and the refractive index of the in-layer lens are different, and the curvature of the upper portion on the light incident side of the on-chip lens The radius is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the intralayer lens is nc, and the light incident side of the intralayer lens is from the antireflective layer When the distance to the upper end is hc, the radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and ac. Is a solid that satisfies the following formula (1) An image element.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。光は、性質上オンチップレンズで集光させても1点には集光せずに、波長に応じた広がりを有する。al及びacは、この広がりから認められるオンチップレンズの誤差範囲を意味する。なお、alは、オンチップレンズの上部(上面)の誤差範囲であり、acは、オンチップレンズの下部(下面)の誤差範囲である。 However, in the equation (1), when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl <0. The upper part of the on-chip lens is a downward convex shape, and when rc> 0, the lower part of the on-chip lens is an upward convex shape, and when rc <0, the lower part of the on-chip lens is a downward convex shape It is. The light has a spread according to the wavelength without being condensed at one point even if condensed by the on-chip lens in nature. al and ac mean the on-chip lens error range recognized from this spread. Here, al is an error range of the upper portion (upper surface) of the on-chip lens, and ac is an error range of the lower portion (lower surface) of the on-chip lens.
 本技術に係る第1の実施形態の固体撮像素子によれば、画質が向上し、特には、オンチップレンズの色収差が低減されて、回避され得る。 According to the solid-state imaging device of the first embodiment of the present technology, the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
 図1に、本技術に係る第1の実施形態の固体撮像素子の一例である固体撮像素子1-1を示す。図1は、固体撮像素子1-1の4画素分(画素100-1-1~100-1-4)の断面図である。なお、特に断りがない限り、「上」とは図1中の上方向を意味し、「下」とは、図1中の下方向を意味する。 FIG. 1 shows a solid-state imaging device 1-1 which is an example of a solid-state imaging device according to a first embodiment of the present technology. FIG. 1 is a cross-sectional view of four pixels (pixels 100-1-1 to 100-1-4) of a solid-state imaging device 1-1. In addition, unless there is particular notice, "upper" means the upper direction in FIG. 1, and "lower" means the lower direction in FIG.
 画素100-1-1には、光入射側から順に、オンチップレンズ2-1-Gと、緑色光(G光)が透過するカラーフィルタ3-1-Gと、絶縁層5-1と、反射防止層6-1と、半導体基板10-1とが配されている。半導体基板10-1には、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-1のシリコン(Si)層に埋め込まれている。 In the pixel 100-1-1, an on-chip lens 2-1-G, a color filter 3-1-G that transmits green light (G light), and an insulating layer 5-1, in order from the light incident side, An antireflective layer 6-1 and a semiconductor substrate 10-1 are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-1, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-1.
 オンチップレンズ2-1-Gの上部(光入射面側であって、図1中では上側)は上凸形状であって、オンチップレンズ2-1-Gの下部(図1中では下側)は下凸形状である。オンチップレンズ2-1-Gの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-1-Gの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-1-Gの上部(光入射面側であって、図1中では上側)は下凸形状(凹形状)である。 The upper part of the on-chip lens 2-1-G (on the light incident surface side, and the upper side in FIG. 1) is convex upward, and the lower part of the on-chip lens 2-1-G (in FIG. 1 is the lower side) ) Is a downward convex shape. The radius of curvature (rl) of the upper part of the on-chip lens 2-1-G is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-1-G is rc <0. The upper portion of the color filter 3-1-G (on the light incident surface side and the upper side in FIG. 1) has a downward convex shape (concave shape).
 オンチップレンズ2-1-Gは、下凸形状(凹形状)のカラーフィルタ3-1-Gより高屈折率の材料が用いられてよい。オンチップレンズ2-1-Gの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-1-Gの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-1-1において、反射防止層6-1から、カラーフィルタ3-1-Gの光入射側である上端部までの距離はhg-1である。上記の数式(1)を満たすように、オンチップレンズ2-1-Gの上部の曲率半径(rl)及びオンチップレンズ2-1-Gの下部の曲率半径(rc)は最適化される。これにより、画素100-1-1(G光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-1-Gの上部の曲率半径(rl)及びオンチップレンズ2-1-Gの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-1-G may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-1-G. The refractive index of the on-chip lens 2-1-G may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-1-G may be, for example, nc = 1.55 to 1.65. In the pixel 100-1-1, the distance from the antireflection layer 6-1 to the upper end portion as the light incident side of the color filter 3-1-G is hg-1. The radius of curvature (rl) of the upper portion of the on-chip lens 2-1-G and the radius of curvature (rc) of the lower portion of the on-chip lens 2-1-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-1-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-1-G and the curvature radius (rc) of the lower part of the on-chip lens 2-1-G are ± 4. A range of about% is acceptable.
 画素100-1-2には、光入射側から順に、オンチップレンズ2-1-Rと、赤色光(R光)が透過するカラーフィルタ3-1-Rと、絶縁層5-1と、反射防止層6-1と、半導体基板10-1とが配されている。半導体基板10-1には、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-1のシリコン(Si)層に埋め込まれている。 In the pixel 100-1-2, an on-chip lens 2-1-R, a color filter 3-1-R through which red light (R light) passes, and an insulating layer 5-1 in order from the light incident side An antireflective layer 6-1 and a semiconductor substrate 10-1 are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-1, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-1.
 オンチップレンズ2-1-Rの上部(光入射面側であって、図1中では上側)は上凸形状であって、オンチップレンズ2-1-Rの下部(図1中では下側)は略平坦である。オンチップレンズ2-1-Gの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-1-Rの下部の曲率半径(rc)のrcは無限大である。カラーフィルタ3-1-Rの上部(光入射面側であって、図1中では上側)は略平坦である。 The upper part of the on-chip lens 2-1-R (on the light incident surface side, upper side in FIG. 1) is convex upward, and the lower part of the on-chip lens 2-1-R (lower side in FIG. 1) ) Is substantially flat. The curvature radius (rl) of the upper part of the on-chip lens 2-1-G is rl> 0, and rc of the curvature radius (rc) of the lower part of the on-chip lens 2-1-R is infinite. The upper portion of the color filter 3-1-R (on the light incident surface side and the upper side in FIG. 1) is substantially flat.
 オンチップレンズ2-1-Rは、略平坦形状のカラーフィルタ3-1-Rより高屈折率の材料が用いられてよい。オンチップレンズ2-1-Rの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-1-Rの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-1-2において、反射防止層6-1から、カラーフィルタ3-1-Rの光入射側である上端部までの距離はhr-1である。上記の数式(1)を満たすように、オンチップレンズ2-1-Rの上部の曲率半径(rl)は最適化される。上述したように、オンチップレンズ2-1-Rの下部の曲率半径(rc)は無限大である。これにより、画素100-1-2(R光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-1-Rの上部の曲率半径(rl)は±4%程の範囲が許容される。 The on-chip lens 2-1-R may be made of a material having a higher refractive index than the substantially flat color filter 3-1-R. The refractive index of the on-chip lens 2-1-R may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-1-R may be, for example, nc = 1.55 to 1.65. In the pixel 100-1-2, the distance from the antireflection layer 6-1 to the upper end portion as the light incident side of the color filter 3-1-R is hr-1. The radius of curvature (rl) at the top of the on-chip lens 2-1-R is optimized so as to satisfy the above equation (1). As described above, the radius of curvature (rc) at the bottom of the on-chip lens 2-1-R is infinite. Thereby, in the pixel 100-1-2 (wavelength band of R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper part of the on-chip lens 2-1-R is allowed to be in the range of about 4%.
 画素100-1-3には、光入射側から順に、オンチップレンズ2-1-Bと、青色光(B光)が透過するカラーフィルタ3-1-Bと、絶縁層5-1と、反射防止層6-1と、半導体基板10-1とが配されている。半導体基板10-1には、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-1のシリコン(Si)層に埋め込まれている。 In the pixel 100-1-3, an on-chip lens 2-1-B, a color filter 3-1-B that transmits blue light (B light), and an insulating layer 5-1, in order from the light incident side. An antireflective layer 6-1 and a semiconductor substrate 10-1 are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-1 and embedded in a silicon (Si) layer of the semiconductor substrate 10-1.
 オンチップレンズ2-1-Bの上部(光入射面側であって、図1中では上側)は上凸形状であって、オンチップレンズ2-1-Bの下部(図1中では下側)は下凸形状である。オンチップレンズ2-1-Bの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-1-Bの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-1-Bの上部(光入射面側であって、図1中では上側)は下凸形状(凹形状)である。 The upper part of the on-chip lens 2-1-B (on the light incident surface side, and the upper side in FIG. 1) is convex upward, and the lower part of the on-chip lens 2-1-B (in FIG. 1 is the lower side) ) Is a downward convex shape. The radius of curvature (rl) of the upper portion of the on-chip lens 2-1-B is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-1-B is rc <0. The upper portion of the color filter 3-1-B (the light incident surface side and the upper side in FIG. 1) has a downward convex shape (concave shape).
 オンチップレンズ2-1-Bは、下凸形状(凹形状)のカラーフィルタ3-1-Bより高屈折率の材料が用いられてよい。オンチップレンズ2-1-Bの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-1-Bの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-1-3において、反射防止層6-1から、カラーフィルタ3-1-Bの光入射側である上端部までの距離はhb-1である。上記の数式(1)を満たすように、オンチップレンズ2-1-Bの上部の曲率半径(rl)及びオンチップレンズ2-1-Bの下部の曲率半径(rc)は最適化される。これにより、画素100-1-3(B光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-1-Bの上部の曲率半径(rl)及びオンチップレンズ2-1-Bの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-1-B may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-1-B. The refractive index of the on-chip lens 2-1-B may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-1-B may be, for example, nc = 1.55 to 1.65. In the pixel 100-1-3, the distance from the antireflection layer 6-1 to the upper end portion as the light incident side of the color filter 3-1-B is hb-1. The radius of curvature (rl) of the upper portion of the on-chip lens 2-1-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-1-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-1-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-1-B and the curvature radius (rc) of the lower part of the on-chip lens 2-1-B are ± 4. A range of about% is acceptable.
 画素100-1-4には、光入射側から順に、オンチップレンズ2-1-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-1-Wと、絶縁層5-1と、反射防止層6-1と、半導体基板10-1が配されている。半導体基板10-1には、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-1のシリコン(Si)層に埋め込まれている。 In the pixel 100-1-4, an on-chip lens 2-1 -W and an in-layer lens 3-1 through which green light, red light and blue light (BGR (W) light) are transmitted in order from the light incident side. W, an insulating layer 5-1, an antireflective layer 6-1, and a semiconductor substrate 10-1 are disposed. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-1 and embedded in a silicon (Si) layer of the semiconductor substrate 10-1.
 オンチップレンズ2-1-Wの上部(光入射面側であって、図1中では上側)は上凸形状であって、オンチップレンズ2-1-Wの下部(図1中では下側)は下凸形状である。オンチップレンズ2-1-Wの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-1-Wの下部の曲率半径(rc)はrc<0である。層内レンズ3-1-Wの上部(光入射面側であって、図1中では上側)は下凸形状(凹形状)である。 The upper portion of the on-chip lens 2-1-W (the light incident surface side, and the upper side in FIG. 1) has an upwardly convex shape, and the lower portion of the on-chip lens 2-1-W (the lower side in FIG. 1) ) Is a downward convex shape. The radius of curvature (rl) of the upper portion of the on-chip lens 2-1-W is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-1-W is rc <0. The upper portion of the in-layer lens 3-1-W (the light incident surface side and the upper side in FIG. 1) has a downward convex shape (concave shape).
 オンチップレンズ2-1-Wは、下凸形状(凹形状)の層内レンズ3-1-Wより高屈折率の材料が用いられてよい。オンチップレンズ2-1-Wの屈折率としては、例えば、nl=1.75~1.85でよい。一方、層内レンズ3-1-Wの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-1-4において、反射防止層6-1から、層内レンズ3-1-Wの光入射側である上端部までの距離はhw-1である。上記の数式(1)を満たすように、オンチップレンズ2-1-Wの上部の曲率半径(rl)及びオンチップレンズ2-1-Wの下部の曲率半径(rc)は最適化される。これにより、画素100-1-4(BGR(W)光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-1-Wの上部の曲率半径(rl)及びオンチップレンズ2-1-Wの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-1-W may be made of a material having a higher refractive index than the in-layer lens 3-1-W having a downward convex shape (concave shape). The refractive index of the on-chip lens 2-1-W may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the in-layer lens 3-1-W may be, for example, nc = 1.55 to 1.65. In the pixel 100-1-4, the distance from the anti-reflection layer 6-1 to the upper end portion as the light incident side of the in-layer lens 3-1-W is hw-1. The radius of curvature (rl) of the upper part of the on-chip lens 2-1-W and the radius of curvature (rc) of the lower part of the on-chip lens 2-1-W are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-1-4 (wavelength band of BGR (W) light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-1-W and the curvature radius (rc) of the lower part of the on-chip lens 2-1-W are ± 4. A range of about% is acceptable.
 半導体基板10-1の裏面(図1中では上面)の側において、画素分離部9-1-G、画素分離部9-1-GR、画素分離部9-1-RB、画素分離部9-1-BW及び画素分離部9-1-Wが、半導体基板10-1の内部に埋め込まれて形成されている。画素分離部9-1-G、画素分離部9-1-GR、画素分離部9-1-RB、画素分離部9-1-BW及び画素分離部9-1-Wは、4つの画素(画素100-1-1~100-1-4)の間を区画して電気的に分離している。図1に示されるように、画素分離部9-1-Gは、シリコン酸化膜7-1-Gとシリコン窒化膜8-1-Gとから構成されてよく、画素分離部9-1-GRは、シリコン酸化膜7-1-GRとシリコン窒化膜8-1-GRとから構成されてよく、画素分離部9-1-RBは、シリコン酸化膜7-1-RBとシリコン窒化膜8-1-RBとから構成されてよく、画素分離部9-1-BWは、シリコン酸化膜7-1-BWとシリコン窒化膜8-1-BWとから構成されてよく、画素分離部9-1-Wは、シリコン酸化膜7-1-Wとシリコン窒化膜8-1-Wとから構成されてよい。 On the side of the back surface (the upper surface in FIG. 1) of the semiconductor substrate 10-1, the pixel separating unit 9-1-G, the pixel separating unit 9-1-GR, the pixel separating unit 9-RB, the pixel separating unit 9- The 1-BW and the pixel separation unit 9-W are formed to be embedded in the semiconductor substrate 10-1. The pixel separator 9-1-G, the pixel separator 9-1-GR, the pixel separator 9-1-RB, the pixel separator 9-1-BW, and the pixel separator 9-1- The pixels 100-1-1 to 100-1-4) are partitioned and electrically separated. As shown in FIG. 1, the pixel separating unit 9-1 -G may be composed of a silicon oxide film 7-1 -G and a silicon nitride film 8-1 -G, and the pixel separating unit 9-1 -GR May be composed of a silicon oxide film 7- 1 GR and a silicon nitride film 8 1-GR, and the pixel separating portion 9 1-RB is a silicon oxide film 7 1-RB and a silicon nitride film 8- The pixel separating unit 9- 1 -BW may be composed of a silicon oxide film 7-1 -BW and a silicon nitride film 8-1 -BW. -W may be composed of a silicon oxide film 7- 1 -W and a silicon nitride film 8-1 -W.
 固体撮像素子1-1は、画素間遮光膜4-1-G、画素間遮光膜4-1-GR、画素間遮光膜4-1-RB、画素間遮光膜4-1-BW及び画素間遮光膜4-1-Wを備える。画素間遮光膜4-1-G、画素間遮光膜4-1-GR、画素間遮光膜4-1-RB、画素間遮光膜4-1-BW及び画素間遮光膜4-1-Wは、絶縁層5-1の直上であって、画素100-1-1~画素100-1-4のそれぞれの画素境界に形成される。カラーフィルタ3-1-Gは、画素間遮光膜4-1-Gと画素間遮光膜4-1-GRとの間に埋め込められ、カラーフィルタ3-1-Rは、画素間遮光膜4-1-GRと画素間遮光膜4-1-RBとの間に埋め込められ、カラーフィルタ3-1-Bは、画素間遮光膜4-1-RBと画素間遮光膜4-1-BWとの間に埋め込められ、層内レンズ3-1-Wは、画素間遮光膜4-1-BWと画素間遮光膜4-1-Wとの間に埋め込められている。画素間遮光膜4-1-G、画素間遮光膜4-1-GR、画素間遮光膜4-1-RB、画素間遮光膜4-1-BW及び画素間遮光膜4-1-Wは、光を遮光する材料であればよく、遮光性が強く、かつ微細加工、例えばエッチングで精度よく加工できる材料として、金属、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の膜で形成されてよい。 The solid-state imaging device 1-1 includes an inter-pixel light shielding film 4-1-G, an inter-pixel light shielding film 4-1-GR, an inter-pixel light shielding film 4-1-RB, an inter-pixel light shielding film 4-1-BW, and an inter-pixel A light shielding film 4-1-W is provided. The inter-pixel light shielding film 4-1-G, the inter-pixel light shielding film 4-1-GR, the inter-pixel light shielding film 4-1-RB, the inter-pixel light shielding film 4-1-BW, and the inter-pixel light shielding film 4-1-W And the pixel boundary of each of the pixels 100-1-1 to 100-1-4 immediately above the insulating layer 5-1. The color filter 3-1-G is embedded between the inter-pixel light shielding film 4-1-G and the inter-pixel light shielding film 4-1-GR, and the color filter 3-1-R is an inter-pixel light shielding film 4- The color filter 3-1-B is embedded between the 1-GR and the inter-pixel light shielding film 4-1-RB, and the color filter 3-1-B includes the inter-pixel light shielding film 4-1-RB and the inter-pixel light shielding film 4-1-BW. The inter-layer lens 3-1-W is embedded between the inter-pixel light shielding film 4-1-B and the inter-pixel light shielding film 4-1-W. The inter-pixel light shielding film 4-1-G, the inter-pixel light shielding film 4-1-GR, the inter-pixel light shielding film 4-1-RB, the inter-pixel light shielding film 4-1-BW, and the inter-pixel light shielding film 4-1-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
[2-2.第2の実施形態(固体撮像素子の例2)]
 以下に、本技術に係る第2の実施形態(固体撮像素子の例2)の固体撮像素子について、説明をする。
[2-2. Second Embodiment (Example 2 of Solid-State Imaging Device)]
The solid-state imaging device according to the second embodiment (example 2 of the solid-state imaging device) according to the present technology will be described below.
 本技術に係る第2の実施形態の固体撮像素子によれば、画質が向上し、特には、オンチップレンズの色収差が低減されて、回避され得る。 According to the solid-state imaging device of the second embodiment of the present technology, the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
 図2に、本技術に係る第2の実施形態の固体撮像素子の一例である固体撮像素子1-2を示す。図2は、固体撮像素子1-2の4画素分(画素100-2-1~100-2-4)の断面図である。なお、特に断りがない限り、「上」とは図2中の上方向を意味し、「下」とは、図2中の下方向を意味する。 FIG. 2 shows a solid-state imaging device 1-2 which is an example of a solid-state imaging device according to a second embodiment of the present technology. FIG. 2 is a cross-sectional view of four pixels (pixels 100-2-1 to 100-2-4) of the solid-state imaging device 1-2. In addition, unless there is particular notice, "upper" means the upper direction in FIG. 2, and "lower" means the lower direction in FIG.
 画素100-2-1には、光入射側から順に、オンチップレンズ2-2-Gと、緑色光(G光)が透過するカラーフィルタ3-2-Gと、絶縁層5-2と、反射防止層6-2と、半導体基板10-2とが配されている。半導体基板10-2には、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-2のシリコン(Si)層に埋め込まれている。 In the pixel 100-2-1, an on-chip lens 2-2 -G, a color filter 3-2 -G for transmitting green light (G light), and an insulating layer 5-2 in order from the light incident side, An antireflective layer 6-2 and a semiconductor substrate 10-2 are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-2, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-2.
 オンチップレンズ2-2-Gの上部(光入射面側であって、図2中では上側)は上凸形状であって、オンチップレンズ2-2-Gの下部(図1中では下側)は上凸形状(凹形状)である。オンチップレンズ2-2-Gの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-2-Gの下部の曲率半径(rc)はrc>0である。カラーフィルタ3-2-Gの上部(光入射面側であって、図2中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 2) of the on-chip lens 2-2-G has an upper convex shape, and the lower portion (lower side in FIG. 1) of the on-chip lens 2-2-G. ) Is an upward convex shape (concave shape). The curvature radius (rl) of the upper part of the on-chip lens 2-2-G is rl> 0, and the curvature radius (rc) of the lower part of the on-chip lens 2-2-G is rc> 0. The upper portion of the color filter 3-2-G (on the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
 オンチップレンズ2-2-Gは、上凸形状のカラーフィルタ3-2-Gより低屈折率の材料が用いられてよい。オンチップレンズ2-2-Gの屈折率としては、例えば、nl=1.35~1.45でよい。一方、カラーフィルタ3-2-Gの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-2-1において、反射防止層6-2から、カラーフィルタ3-2-Gの光入射側である上端部までの距離はhg-2である。上記の数式(1)を満たすように、オンチップレンズ2-2-Gの上部の曲率半径(rl)及びオンチップレンズ2-2-Gの下部の曲率半径(rc)は最適化される。これにより、画素100-2-1(G光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-2-Gの上部の曲率半径(rl)及びオンチップレンズ2-2-Gの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-2-G may use a material having a lower refractive index than the upwardly convex color filter 3-2-G. The refractive index of the on-chip lens 2-2-G may be, for example, nl = 1.35 to 1.45. On the other hand, the refractive index of the color filter 3-2-G may be, for example, nc = 1.55 to 1.65. In the pixel 100-2-1, the distance from the antireflection layer 6-2 to the upper end portion of the color filter 3-2 -G on the light incident side is hg-2. The radius of curvature (rl) of the upper part of the on-chip lens 2-2-G and the radius of curvature (rc) of the lower part of the on-chip lens 2-2-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-2-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-2-G and the curvature radius (rc) of the lower part of the on-chip lens 2-2-G are ± 4. A range of about% is acceptable.
 画素100-2-2には、光入射側から順に、オンチップレンズ2-2-Rと、赤色光(R光)が透過するカラーフィルタ3-2-Rと、絶縁層5-2と、反射防止層6-2と、半導体基板10-2とが配されている。半導体基板10-2には、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-2のシリコン(Si)層に埋め込まれている。 In the pixel 100-2-2, an on-chip lens 2-2 -R, a color filter 3-2 -R transmitting red light (R light), and an insulating layer 5-2 in order from the light incident side, An antireflective layer 6-2 and a semiconductor substrate 10-2 are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-2, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-2.
 オンチップレンズ2-2-Rの上部(光入射面側であって、図2中では上側)は上凸形状であって、オンチップレンズ2-2-Rの下部(図2中では下側)は上凸形状(凹形状)である。オンチップレンズ2-2-Rの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-2-Rの下部の曲率半径(rc)はrc>0である。カラーフィルタ3-2-Rの上部(光入射面側であって、図2中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 2) of the on-chip lens 2-2R is convex upward, and the lower portion (lower side in FIG. 2) of the on-chip lens 2-2R ) Is an upward convex shape (concave shape). The radius of curvature (rl) of the upper part of the on-chip lens 2-2R is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-2R is rc> 0. The upper portion of the color filter 3-2-R (on the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
 オンチップレンズ2-2-Rは、上凸形状のカラーフィルタ3-2-Rより低屈折率の材料が用いられてよい。オンチップレンズ2-2-Rの屈折率としては、例えば、nl=1.35~1.45でよい。一方、カラーフィルタ3-2-Rの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-2-2において、反射防止層6-2から、カラーフィルタ3-2-Rの光入射側である上端部までの距離はhr-2である。上記の数式(1)を満たすように、オンチップレンズ2-2-Rの上部の曲率半径(rl)及びオンチップレンズ2-2-Rの下部の曲率半径(rc)は最適化される。これにより、画素100-2-2(R光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-2-Rの上部の曲率半径(rl)及びオンチップレンズ2-2-Rの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-2-R may use a material having a lower refractive index than the upwardly convex color filter 3-2-R. The refractive index of the on-chip lens 2-2R may be, for example, nl = 1.35 to 1.45. On the other hand, the refractive index of the color filter 3-2-R may be, for example, nc = 1.55 to 1.65. In the pixel 100-2-2, the distance from the antireflection layer 6-2 to the upper end portion as the light incident side of the color filter 3-2 -R is hr−2. The radius of curvature (rl) of the upper portion of the on-chip lens 2-2R and the radius of curvature (rc) of the lower portion of the on-chip lens 2-2R are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-2-2 (wavelength band of R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-2-R and the curvature radius (rc) of the lower part of the on-chip lens 2-2-R are ± 4. A range of about% is acceptable.
 画素100-2-3には、光入射側から順に、オンチップレンズ2-2-Bと、青色光(B光)が透過するカラーフィルタ3-2-Bと、絶縁層5-2と、反射防止層6-2と、半導体基板10-2とが配されている。半導体基板10-2には、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-2のシリコン(Si)層に埋め込まれている。 The pixel 100-2-3 includes, in order from the light incident side, an on-chip lens 2-2-B, a color filter 3-2-B that transmits blue light (B light), and an insulating layer 5-2. An antireflective layer 6-2 and a semiconductor substrate 10-2 are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-2, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-2.
 オンチップレンズ2-2-Bの上部(光入射面側であって、図2中では上側)は上凸形状であって、オンチップレンズ2-2-Bの下部(図2中では下側)は上凸形状(凹形状)である。オンチップレンズ2-2-Bの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-2-Bの下部の曲率半径(rc)はrc>0である。カラーフィルタ3-2-Bの上部(光入射面側であって、図2中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 2) of the on-chip lens 2-2-B is convex upward, and the lower portion (lower side in FIG. 2) of the on-chip lens 2-2-B. ) Is an upward convex shape (concave shape). The radius of curvature (rl) of the upper part of the on-chip lens 2-2-B is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-2-B is rc> 0. The upper portion of the color filter 3-2-B (on the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
 オンチップレンズ2-2-Bは、上凸形状のカラーフィルタ3-2-Bより低屈折率の材料が用いられてよい。オンチップレンズ2-2-Bの屈折率としては、例えば、nl=1.35~1.45でよい。一方、カラーフィルタ3-2-Bの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-2-3において、反射防止層6-2から、カラーフィルタ3-2-Bの光入射側である上端部までの距離はhb-2である。上記の数式(1)を満たすように、オンチップレンズ2-2-Bの上部の曲率半径(rl)及びオンチップレンズ2-2-Bの下部の曲率半径(rc)は最適化される。これにより、画素100-2-3(B光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-2-Bの上部の曲率半径(rl)及びオンチップレンズ2-2-Bの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-2-B may use a material having a lower refractive index than the upwardly convex color filter 3-2-B. The refractive index of the on-chip lens 2-2-B may be, for example, nl = 1.35 to 1.45. On the other hand, the refractive index of the color filter 3-2-B may be, for example, nc = 1.55 to 1.65. In the pixel 100-2-3, the distance from the antireflective layer 6-2 to the upper end portion as the light incident side of the color filter 3-2-B is hb-2. The radius of curvature (rl) of the upper portion of the on-chip lens 2-2-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-2-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-2-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-2-B and the curvature radius (rc) of the lower part of the on-chip lens 2-2-B are ± 4. A range of about% is acceptable.
 画素100-2-4には、光入射側から順に、オンチップレンズ2-2-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-2-Wと、絶縁層5-2と、反射防止層6-2と、半導体基板10-2とが配されている。半導体基板10-2には、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-2のシリコン(Si)層に埋め込まれている。 In the pixel 100-2-4, an on-chip lens 2-2-W and an in-layer lens through which green light, red light and blue light (BGR (W) light) transmit in order from the light incident side W, the insulating layer 5-2, the antireflective layer 6-2, and the semiconductor substrate 10-2 are disposed. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-2, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-2.
 オンチップレンズ2-2-Wの上部(光入射面側であって、図2中では上側)は上凸形状であって、オンチップレンズ2-2-Wの下部(図2中では下側)は上凸形状(凹形状)である。オンチップレンズ2-2-Wの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-2-Wの下部の曲率半径(rc)はrc>0である。層内レンズ3-2-Wの上部(光入射面側であって、図2中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 2) of the on-chip lens 2-2-W is convex upward, and the lower portion (lower side in FIG. 2) of the on-chip lens 2-2-W ) Is an upward convex shape (concave shape). The radius of curvature (rl) of the upper part of the on-chip lens 2-2-W is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-2-W is rc> 0. The upper portion of the in-layer lens 3-2 W (the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
 オンチップレンズ2-2-Wは、上凸形状の層内レンズ3-2-Wより低屈折率の材料が用いられてよい。オンチップレンズ2-2-Wの屈折率としては、例えば、nl=1.35~1.45でよい。一方、層内レンズ3-2-Wの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-2-4において、反射防止層6-2から、層内レンズ3-2-Wの光入射側である上端部までの距離はhw-2である。上記の数式(1)を満たすように、オンチップレンズ2-2-Wの上部の曲率半径(rl)及びオンチップレンズ2-2-Wの下部の曲率半径(rc)は最適化される。これにより、画素100-2-4(BGR(W)光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-2-Wの上部の曲率半径(rl)及びオンチップレンズ2-2-Wの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-2-W may be made of a material having a lower refractive index than the upper convex in-layer lens 3-2-W. The refractive index of the on-chip lens 2-2-W may be, for example, nl = 1.35 to 1.45. On the other hand, the refractive index of the in-layer lens 3-2-W may be, for example, nc = 1.55 to 1.65. In the pixel 100-2-4, the distance from the antireflection layer 6-2 to the upper end portion as the light incident side of the in-layer lens 3-2W is hw-2. The radius of curvature (rl) of the upper part of the on-chip lens 2-2-W and the radius of curvature (rc) of the lower part of the on-chip lens 2-2-W are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-2-4 (wavelength band of BGR (W) light), the light collecting property is ensured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-2-W and the curvature radius (rc) of the lower part of the on-chip lens 2-2-W are ± 4. A range of about% is acceptable.
 半導体基板10-2の裏面(図2中では上面)の側において、画素分離部9-2-G、画素分離部9-2-GR、画素分離部9-2-RB、画素分離部9-2-BW及び画素分離部9-2-Wが、半導体基板10-2の内部に埋め込まれて形成されている。画素分離部9-2-G、画素分離部9-2-GR、画素分離部9-2-RB、画素分離部9-2-BW及び画素分離部9-2-Wは、4つの画素(画素100-2-1~100-2-4)の間を区画して電気的に分離している。図2に示されるように、画素分離部9-2-Gは、シリコン酸化膜7-2-Gとシリコン窒化膜8-2-Gとから構成されてよく、画素分離部9-2-GRは、シリコン酸化膜7-2-GRとシリコン窒化膜8-2-GRとから構成されてよく、画素分離部9-2-RBは、シリコン酸化膜7-2-RBとシリコン窒化膜8-2-RBとから構成されてよく、画素分離部9-2-BWは、シリコン酸化膜7-2-BWとシリコン窒化膜8-2-BWとから構成されてよく、画素分離部9-2-Wは、シリコン酸化膜7-2-Wとシリコン窒化膜8-2-Wとから構成されてよい。 On the side of the back surface (the upper surface in FIG. 2) of the semiconductor substrate 10-2, the pixel separation unit 9-2-G, the pixel separation unit 9-2-GR, the pixel separation unit 9-2-RB, and the pixel separation unit 9- The 2-BW and the pixel separating unit 9-W are formed to be embedded in the semiconductor substrate 10-2. The pixel separator 9-2-G, the pixel separator 9-2 -GR, the pixel separator 9-2 -RB, the pixel separator 9-2 -BW, and the pixel separator 9-2- The pixels 100-2-1 to 100-2-4) are partitioned and electrically separated. As shown in FIG. 2, the pixel separating unit 9-2 -G may be composed of a silicon oxide film 7-2 -G and a silicon nitride film 8-2 -G. May be composed of a silicon oxide film 7- 2-GR and a silicon nitride film 8- 2- GR, and the pixel separating portion 9- 2-RB is a silicon oxide film 7- 2-RB and a silicon nitride film 8- The pixel separating unit 9-2 -BW may be composed of a silicon oxide film 7-2 -BW and a silicon nitride film 8-2 -BW. -W may be composed of a silicon oxide film 7- 2-W and a silicon nitride film 8-2 -W.
 固体撮像素子1-2は、画素間遮光膜4-2-G、画素間遮光膜4-2-GR、画素間遮光膜4-2-RB、画素間遮光膜4-2-BW及び画素間遮光膜4-2-Wを備える。画素間遮光膜4-2-G、画素間遮光膜4-2-GR、画素間遮光膜4-2-RB、画素間遮光膜4-2-BW及び画素間遮光膜4-2-Wは、絶縁層5-2の直上であって、画素100-2-1~画素100-2-4のそれぞれの画素境界に形成される。カラーフィルタ3-2-Gは、画素間遮光膜4-2-Gと画素間遮光膜4-2-GRとの間に埋め込められ、カラーフィルタ3-2-Rは、画素間遮光膜4-2-GRと画素間遮光膜4-2-RBとの間に埋め込められ、カラーフィルタ3-2-Bは、画素間遮光膜4-2-RBと画素間遮光膜4-2-BWとの間に埋め込められ、層内レンズ3-2-Wは、画素間遮光膜4-2-BWと画素間遮光膜4-2-Wとの間に埋め込められている。画素間遮光膜4-2-G、画素間遮光膜4-2-GR、画素間遮光膜4-2-RB、画素間遮光膜4-2-BW及び画素間遮光膜4-2-Wは、光を遮光する材料であればよく、遮光性が強く、かつ微細加工、例えばエッチングで精度よく加工できる材料として、金属、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の膜で形成されてよい。 The solid-state imaging device 1-2 includes an inter-pixel light shielding film 4-2-G, an inter-pixel light shielding film 4-2-GR, an inter-pixel light shielding film 4-2-RB, an inter-pixel light shielding film 4-2-BW, and an inter-pixel A light shielding film 4-2-W is provided. The inter-pixel light shielding film 4-2-G, the inter-pixel light shielding film 4-2-GR, the inter-pixel light shielding film 4-2-RB, the inter-pixel light shielding film 4-2-BW, and the inter-pixel light shielding film 4-2-W It is formed directly on the insulating layer 5-2 and at the pixel boundary of each of the pixels 100-2-1 to 100-2-4. The color filter 3-2-G is embedded between the inter-pixel light shielding film 4-2-G and the inter-pixel light shielding film 4-2-GR, and the color filter 3-2-R is an inter-pixel light shielding film 4- The color filter 3-2-B is embedded between the 2-GR and the inter-pixel light shielding film 4-2-RB, and the color filter 3-2-B is formed of the inter-pixel light shielding film 4-2-RB and the inter-pixel light shielding film 4-2-BW. The inter-layer lens 3-2-W is embedded between the inter-pixel light shielding film 4-2-BW and the inter-pixel light shielding film 4-2-W. The inter-pixel light shielding film 4-2-G, the inter-pixel light shielding film 4-2-GR, the inter-pixel light shielding film 4-2-RB, the inter-pixel light shielding film 4-2-BW, and the inter-pixel light shielding film 4-2-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
[2-3.第3の実施形態(固体撮像素子の例3)]
 以下に、本技術に係る第3の実施形態(固体撮像素子の例3)の固体撮像素子について、説明をする。
[2-3. Third Embodiment (Example 3 of Solid-State Imaging Device)]
The solid-state imaging device according to the third embodiment (example 3 of the solid-state imaging device) according to the present technology will be described below.
 本技術に係る第3の実施形態の固体撮像素子によれば、画質が向上し、特には、オンチップレンズの色収差が低減されて、回避され得る。 According to the solid-state imaging device of the third embodiment of the present technology, the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
 図3に、本技術に係る第3の実施形態の固体撮像素子の一例である固体撮像素子1-3を示す。図3は、固体撮像素子1-3の4画素分(画素100-3-1~100-3-4)の断面図である。なお、特に断りがない限り、「上」とは図3中の上方向を意味し、「下」とは、図3中の下方向を意味する。 FIG. 3 shows a solid-state imaging device 1-3 which is an example of a solid-state imaging device according to a third embodiment of the present technology. FIG. 3 is a cross-sectional view of four pixels (pixels 100-3-1 to 100-3-4) of the solid-state imaging device 1-3. In addition, unless there is particular notice, "upper" means the upper direction in FIG. 3, and "lower" means the lower direction in FIG.
 画素100-3-1には、光入射側から順に、オンチップレンズ2-3-Gと、緑色光(G光)が透過するカラーフィルタ3-3-Gと、絶縁層5-3と、反射防止層6-3と、半導体基板10-3とが配されている。半導体基板10-3には、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-3のシリコン(Si)層に埋め込まれている。 The pixel 100-3-1 includes, in order from the light incident side, an on-chip lens 2-3-G, a color filter 3-3-G that transmits green light (G light), and an insulating layer 5-3. An antireflective layer 6-3 and a semiconductor substrate 10-3 are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-3 and embedded in the silicon (Si) layer of the semiconductor substrate 10-3.
 オンチップレンズ2-3-Gの上部(光入射面側であって、図3中では上側)は上凸形状であって、オンチップレンズ2-3-Gの下部(図3中では下側)は下凸形状である。オンチップレンズ2-3-Gの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-3-Gの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-3-Gの上部(光入射面側であって、図3中では上側)は下凸形状(凹形状)である。 The upper portion of the on-chip lens 2-3-G (on the light incident surface side, upper side in FIG. 3) is convex upward, and the lower portion of the on-chip lens 2-3-G (lower side in FIG. 3) ) Is a downward convex shape. The radius of curvature (rl) of the upper portion of the on-chip lens 2-3-G is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-3-G is rc <0. The upper portion of the color filter 3-3-G (on the light incident surface side and the upper side in FIG. 3) has a downward convex shape (concave shape).
 オンチップレンズ2-3-Gは、下凸形状(凹形状)のカラーフィルタ3-3-Gより高屈折率の材料が用いられてよい。オンチップレンズ2-3-Gの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-3-Gの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-3-1において、反射防止層6-3から、カラーフィルタ3-3-Gの光入射側である上端部までの距離はhg-3である。上記の数式(1)を満たすように、オンチップレンズ2-3-Gの上部の曲率半径(rl)及びオンチップレンズ2-3-Gの下部の曲率半径(rc)は最適化される。これにより、画素100-3-1(G光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-3-Gの上部の曲率半径(rl)及びオンチップレンズ2-3-Gの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-3-G may be made of a material having a refractive index higher than that of the downward convex (concave) color filter 3-3-G. The refractive index of the on-chip lens 2-3-G may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-3-G may be, for example, nc = 1.55 to 1.65. In the pixel 100-3-1, the distance from the antireflection layer 6-3 to the upper end portion as the light incident side of the color filter 3-3-G is hg-3. The radius of curvature (rl) of the upper part of the on-chip lens 2-3-G and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-3-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-3-G and the curvature radius (rc) of the lower part of the on-chip lens 2-3-G are ± 4. A range of about% is acceptable.
 画素100-3-2には、光入射側から順に、オンチップレンズ2-3-Rと、赤色光(R光)が透過するカラーフィルタ3-3-Rと、絶縁層5-3と、反射防止層6-3と、半導体基板10-3とが配されている。半導体基板10-3には、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-3のシリコン(Si)層に埋め込まれている。 In the pixel 100-3-2, an on-chip lens 2-3-R, a color filter 3-3 -R through which red light (R light) passes, and an insulating layer 5-3 in order from the light incident side. An antireflective layer 6-3 and a semiconductor substrate 10-3 are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-3 and is embedded in a silicon (Si) layer of the semiconductor substrate 10-3.
 オンチップレンズ2-3-Rの上部(光入射面側であって、図3中では上側)は上凸形状であって、オンチップレンズ2-3-Rの下部(図2中では下側)は上凸形状(凹形状)である。オンチップレンズ2-3-Rの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-3-Rの下部の曲率半径(rc)はrc>0である。カラーフィルタ3-3-Rの上部(光入射面側であって、図3中では上側)は上凸形状である。 The upper part of the on-chip lens 2-3-R (on the light incident surface side, and the upper side in FIG. 3) is convex upward, and the lower part of the on-chip lens 2-3-R (in FIG. 2 is the lower side) ) Is an upward convex shape (concave shape). The radius of curvature (rl) of the upper portion of the on-chip lens 2-3-R is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-3-R is rc> 0. The upper portion of the color filter 3-3-R (on the light incident surface side and the upper side in FIG. 3) has an upwardly convex shape.
 上凸形状のカラーフィルタ3-3-Rは、オンチップレンズ2-3-Rより同程度の屈折率か又は高屈折率の材料が用いられてよい。オンチップレンズ2-3-Rの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-3-Rの屈折率としては、例えば、nc=1.75~1.85でよい。画素100-3-2において、反射防止層6-2から、カラーフィルタ3-3-Rの光入射側である上端部までの距離はhr-3である。上記の数式(1)を満たすように、オンチップレンズ2-3-Rの上部の曲率半径(rl)及びオンチップレンズ2-3-Rの下部の曲率半径(rc)は最適化される。これにより、画素100-3-2(R光)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-3-Rの上部の曲率半径(rl)及びオンチップレンズ2-3-Rの下部の曲率半径(rc)は±4%程の範囲が許容される。 The upper convex color filter 3-3-R may be made of a material having a refractive index similar to or higher than that of the on-chip lens 2-3-R. The refractive index of the on-chip lens 2-3-R may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-3-R may be, for example, nc = 1.75 to 1.85. In the pixel 100-3-2, the distance from the antireflection layer 6-2 to the upper end portion as the light incident side of the color filter 3-3 -R is hr 3. The radius of curvature (rl) of the upper part of the on-chip lens 2-3-R and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-R are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-3-2 (R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper portion of the on-chip lens 2-3-R and the radius of curvature (rc) of the lower portion of the on-chip lens 2-3-R are ± 4. A range of about% is acceptable.
 画素100-3-3には、光入射側から順に、オンチップレンズ2-3-Bと、青色光(B光)が透過するカラーフィルタ3-3-Bと、絶縁層5-3と、反射防止層6-3と、半導体基板10-3が配されている。半導体基板10-3には、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-3のシリコン(Si)層に埋め込まれている。 The pixel 100-3-3 includes, in order from the light incident side, an on-chip lens 2-3-B, a color filter 3-3-B that transmits blue light (B light), and an insulating layer 5-3. An antireflective layer 6-3 and a semiconductor substrate 10-3 are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-3 and is embedded in a silicon (Si) layer of the semiconductor substrate 10-3.
 オンチップレンズ2-3-Bの上部(光入射面側であって、図3中では上側)は上凸形状であって、オンチップレンズ2-3-Bの下部(図3中では下側)は下凸形状である。オンチップレンズ2-3-Bの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-3-Bの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-3-Bの上部(光入射面側であって、図3中では上側)は下凸形状(凹形状)である。 The upper part of the on-chip lens 2-3-B (on the light incident surface side, and the upper side in FIG. 3) is convex upward, and the lower part of the on-chip lens 2-3-B (in FIG. 3 is the lower side) ) Is a downward convex shape. The radius of curvature (rl) of the upper part of the on-chip lens 2-3-B is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-B is rc <0. The upper portion of the color filter 3-3-B (on the light incident surface side and the upper side in FIG. 3) has a downward convex shape (concave shape).
 オンチップレンズ2-3-Bは、下凸形状(凹形状)のカラーフィルタ3-3-Bより高屈折率の材料が用いられてよい。オンチップレンズ2-3-Bの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-3-Bの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-3-3において、反射防止層6-3から、カラーフィルタ3-3-Bの光入射側である上端部までの距離はhb-3である。上記の数式(1)を満たすように、オンチップレンズ2-3-Bの上部の曲率半径(rl)及びオンチップレンズ2-3-Rの下部の曲率半径(rc)は最適化される。これにより、画素100-3-3(B光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-3-Bの上部の曲率半径(rl)及びオンチップレンズ2-3-Bの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-3-B may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-3-B. The refractive index of the on-chip lens 2-3-B may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-3-B may be, for example, nc = 1.55 to 1.65. In the pixel 100-3-3, the distance from the antireflection layer 6-3 to the upper end portion as the light incident side of the color filter 3-3-B is hb-3. The radius of curvature (rl) of the upper part of the on-chip lens 2-3-B and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-R are optimized so as to satisfy the above equation (1). As a result, in the pixel 100-3-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper part of the on-chip lens 2-3-B and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-B are ± 4. A range of about% is acceptable.
 画素100-3-4には、光入射側から順に、オンチップレンズ2-3-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-3-Wと、絶縁層5-3と、反射防止層6-3と、半導体基板10-3とが配されている。半導体基板10-3には、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-3のシリコン(Si)層に埋め込まれている。 In the pixel 100-3-4, an on-chip lens 2-3-W and an in-layer lens through which green light, red light and blue light (BGR (W) light) transmit in order from the light incident side W, an insulating layer 5-3, an antireflective layer 6-3, and a semiconductor substrate 10-3 are disposed. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-3 and embedded in the silicon (Si) layer of the semiconductor substrate 10-3.
 オンチップレンズ2-3-Wの上部(光入射面側であって、図3中では上側)は上凸形状であって、オンチップレンズ2-3-Wの下部(図3中では下側)は下凸形状である。オンチップレンズ2-3-Wの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-3-Wの下部の曲率半径(rc)はrc<0である。層内レンズ3-3-Wの上部(光入射面側であって、図3中では上側)は下凸形状(凹形状)である。 The upper portion of the on-chip lens 2-3-W (the light incident surface side, and the upper side in FIG. 3) has an upwardly convex shape, and the lower portion of the on-chip lens 2-3-W (the lower side in FIG. 3) ) Is a downward convex shape. The radius of curvature (rl) of the upper part of the on-chip lens 2-3-W is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-W is rc <0. The upper portion of the in-layer lens 3-3-W (the light incident surface side and the upper side in FIG. 3) has a downward convex shape (concave shape).
 オンチップレンズ2-3-Wは、下凸形状(凹形状)の層内レンズ3-3-Wより高屈折率の材料が用いられてよい。オンチップレンズ2-3-Wの屈折率としては、例えば、nl=1.75~1.85でよい。一方、層内レンズ3-3-Wの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-3-4において、反射防止層6-3から、層内レンズ3-3-Wの光入射側である上端部までの距離はhw-3である。上記の数式(1)を満たすように、オンチップレンズ2-3-Wの上部の曲率半径(rl)及びオンチップレンズ2-3-Wの下部の曲率半径(rc)は最適化される。これにより、画素100-3-4(BGR(W)光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-3-Wの上部の曲率半径(rl)及びオンチップレンズ2-3-Wの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-3-W may be made of a material having a higher refractive index than the in-layer lens 3-3-W having a downward convex shape (concave shape). The refractive index of the on-chip lens 2-3-W may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the in-layer lens 3-3-W may be, for example, nc = 1.55 to 1.65. In the pixel 100-3-4, the distance from the antireflection layer 6-3 to the upper end portion as the light incident side of the in-layer lens 3-3-W is hw-3. The radius of curvature (rl) of the upper part of the on-chip lens 2-3-W and the radius of curvature (rc) of the lower part of the on-chip lens 2-3-W are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-3-4 (wavelength band of BGR (W) light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-3-W and the curvature radius (rc) of the lower part of the on-chip lens 2-3-W are ± 4. A range of about% is acceptable.
 半導体基板10-3の裏面(図3中では上面)の側において、画素分離部9-3-G、画素分離部9-3-GR、画素分離部9-3-RB、画素分離部9-3-BW及び画素分離部9-3-Wが、半導体基板10-3の内部に埋め込まれて形成されている。画素分離部9-3-G、画素分離部9-3-GR、画素分離部9-3-RB、画素分離部9-3-BW及び画素分離部9-3-Wは、4つの画素(画素100-3-1~100-3-4)の間を区画して電気的に分離している。図3に示されるように、画素分離部9-3-Gは、シリコン酸化膜7-3-Gとシリコン窒化膜8-3-Gとから構成されてよく、画素分離部9-3-GRは、シリコン酸化膜7-3-GRとシリコン窒化膜8-3-GRとから構成されてよく、画素分離部9-3-RBは、シリコン酸化膜7-3-RBとシリコン窒化膜8-3-RBとから構成されてよく、画素分離部9-3-BWは、シリコン酸化膜7-3-BWとシリコン窒化膜8-3-BWとから構成されてよく、画素分離部9-3-Wは、シリコン酸化膜7-3-Wとシリコン窒化膜8-3-Wとから構成されてよい。 On the side of the back surface (the upper surface in FIG. 3) of the semiconductor substrate 10-3, the pixel separating unit 9-3-G, the pixel separating unit 9-3-GR, the pixel separating unit 9-3-RB, and the pixel separating unit 9- The 3-BW and the pixel separation unit 9-W are formed to be embedded in the semiconductor substrate 10-3. The pixel separator 9-3-G, the pixel separator 9-3-GR, the pixel separator 9-3 -RB, the pixel separator 9-3 -BW and the pixel separator 9-3- The pixels 100-3-1 to 100-3-4) are partitioned and electrically separated. As shown in FIG. 3, the pixel separating unit 9-3 -G may be composed of a silicon oxide film 7-3 -G and a silicon nitride film 8 -3 -G, and the pixel separating unit 9 -3 -GR May be composed of a silicon oxide film 7-3-GR and a silicon nitride film 8-3-GR, and the pixel separating portion 9-RB is a silicon oxide film 7-3-RB and a silicon nitride film 8- The pixel separating portion 9-3-BW may be composed of a silicon oxide film 7-3 -BW and a silicon nitride film 8-3 -BW. -W may be composed of a silicon oxide film 7-3-W and a silicon nitride film 8-3-W.
 固体撮像素子1-3は、画素間遮光膜4-3-G、画素間遮光膜4-3-GR、画素間遮光膜4-3-RB、画素間遮光膜4-3-BW及び画素間遮光膜4-3-Wを備える。画素間遮光膜4-3-G、画素間遮光膜4-3-GR、画素間遮光膜4-3-RB、画素間遮光膜4-3-BW及び画素間遮光膜4-3-Wは、絶縁層5-3の直上であって、画素100-3-1~画素100-3-4のそれぞれの画素境界に形成される。カラーフィルタ3-3-Gは、画素間遮光膜4-3-Gと画素間遮光膜4-3-GRとの間に埋め込められ、カラーフィルタ3-3-Rは、画素間遮光膜4-3-GRと画素間遮光膜4-3-RBとの間に埋め込められ、カラーフィルタ3-3-Bは、画素間遮光膜4-3-RBと画素間遮光膜4-3-BWとの間に埋め込められ、層内レンズ3-3-Wは、画素間遮光膜4-3-BWと画素間遮光膜4-3-Wとの間に埋め込められている。画素間遮光膜4-3-G、画素間遮光膜4-3-GR、画素間遮光膜4-3-RB、画素間遮光膜4-3-BW及び画素間遮光膜4-3-Wは、光を遮光する材料であればよく、遮光性が強く、かつ微細加工、例えばエッチングで精度よく加工できる材料として、金属、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の膜で形成されてよい。 The solid-state imaging device 1-3 includes an inter-pixel light shielding film 4-3-G, an inter-pixel light shielding film 4-3-GR, an inter-pixel light shielding film 4-3-RB, an inter-pixel light shielding film 4-3-BW, and an inter-pixel A light shielding film 4-3-W is provided. The inter-pixel light shielding film 4-3-G, the inter-pixel light shielding film 4-3-G, the inter-pixel light shielding film 4-3-RB, the inter-pixel light shielding film 4-3-BW and the inter-pixel light shielding film 4-3-W It is formed directly on the insulating layer 5-3 and at the pixel boundary of each of the pixels 100-3-1 to 100-3-4. The color filter 3-3-G is embedded between the inter-pixel light shielding film 4-3-G and the inter-pixel light shielding film 4-3-GR, and the color filter 3-3-R is an inter-pixel light shielding film 4- The color filter 3-3-B is embedded between the 3-GR and the inter-pixel light shielding film 4-3-RB, and the color filter 3-3-B is formed of the inter-pixel light shielding film 4-3-RB and the inter-pixel light shielding film 4-3-BW. The inter-layer lens 3-3-W is embedded between the inter-pixel light shielding film 4-3-B and the inter-pixel light shielding film 4-3-W. The inter-pixel light shielding film 4-3-G, the inter-pixel light shielding film 4-3-G, the inter-pixel light shielding film 4-3-RB, the inter-pixel light shielding film 4-3-BW and the inter-pixel light shielding film 4-3-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
[2-4.第4の実施形態(固体撮像素子の例4)]
 以下に、本技術に係る第4の実施形態(固体撮像素子の例4)の固体撮像素子について、説明をする。
[2-4. Fourth Embodiment (Example 4 of Solid-State Imaging Device)]
The solid-state imaging device according to the fourth embodiment (example 4 of the solid-state imaging device) according to the present technology will be described below.
 本技術に係る第4の実施形態の固体撮像素子によれば、画質が向上し、特には、オンチップレンズの色収差が低減されて、回避され得る。 According to the solid-state imaging device of the fourth embodiment of the present technology, the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
 図4に、本技術に係る第4の実施形態の固体撮像素子の一例である固体撮像素子1-4を示す。図4は、固体撮像素子1-4の4画素分(画素100-4-1~100-4-4)の断面図である。なお、特に断りがない限り、「上」とは図4中の上方向を意味し、「下」とは、図4中の下方向を意味する。 FIG. 4 shows a solid-state imaging device 1-4 which is an example of a solid-state imaging device according to a fourth embodiment of the present technology. FIG. 4 is a cross-sectional view of four pixels (pixels 100-4-1 to 100-4-4) of the solid-state imaging device 1-4. In addition, unless there is particular notice, "upper" means the upper direction in FIG. 4, and "lower" means the lower direction in FIG.
 画素100-4-1には、光入射側から順に、オンチップレンズ2-4-Gと、緑色光(G光)が透過するカラーフィルタ3-4-Gと、絶縁層5-4と、反射防止層6-4と、半導体基板10-4とが配されている。半導体基板10-4には、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-4のシリコン(Si)層に埋め込まれている。 In the pixel 100-4-1, an on-chip lens 2-4 -G, a color filter 3-4 -G that transmits green light (G light), and an insulating layer 5-4 in order from the light incident side, An antireflective layer 6-4 and a semiconductor substrate 10-4 are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-4 and embedded in a silicon (Si) layer of the semiconductor substrate 10-4.
 オンチップレンズ2-4-Gの上部(光入射面側であって、図4中では上側)は上凸形状であって、オンチップレンズ2-4-Gの下部(図4中では下側)は下凸形状である。オンチップレンズ2-4-Gの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-4-Gの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-4-Gの上部(光入射面側であって、図4中では上側)は下凸形状(凹形状)である。 The upper portion (on the light incident surface side, upper side in FIG. 4) of the on-chip lens 2-4-G has an upper convex shape, and the lower portion (lower side in FIG. 4) of the on-chip lens 2-4-G. ) Is a downward convex shape. The curvature radius (rl) of the upper part of the on-chip lens 2-4-G is rl> 0, and the curvature radius (rc) of the lower part of the on-chip lens 2-4-G is rc <0. The upper portion (on the light incident surface side and the upper side in FIG. 4) of the color filter 3-4-G has a downward convex shape (concave shape).
 オンチップレンズ2-4-Gは、下凸形状(凹形状)のカラーフィルタ3-4-Gより高屈折率の材料が用いられてよい。オンチップレンズ2-4-Gの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-4-Gの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-4-1において、反射防止層6-4から、カラーフィルタ3-4-Gの光入射側である上端部までの距離はhg-4である。上記の数式(1)を満たすように、オンチップレンズ2-4-Gの上部の曲率半径(rl)及びオンチップレンズ2-4-Gの下部の曲率半径(rc)は最適化される。これにより、画素100-4-1(G光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-4-Gの上部の曲率半径(rl)及びオンチップレンズ2-4-Gの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-4-G may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-4-G. The refractive index of the on-chip lens 2-4-G may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-4-G may be, for example, nc = 1.55 to 1.65. In the pixel 100-4-1, the distance from the antireflective layer 6-4 to the upper end portion of the color filter 3-4 -G on the light incident side is hg−4. The curvature radius (rl) of the upper portion of the on-chip lens 2-4-G and the curvature radius (rc) of the lower portion of the on-chip lens 2-4-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-4-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper portion of the on-chip lens 2-4-G and the radius of curvature (rc) of the lower portion of the on-chip lens 2-4-G are ± 4. A range of about% is acceptable.
 画素100-4-2には、光入射側から順に、オンチップレンズ2-4-Rと、赤色光(R光)が透過するカラーフィルタ3-4-Rと、絶縁層5-4と、反射防止層6-4と、半導体基板10-4とが配されている。半導体基板10-4には、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-4のシリコン(Si)層に埋め込まれている。 In the pixel 100-4-2, an on-chip lens 2-4 -R, a color filter 3-4 -R transmitting red light (R light), and an insulating layer 5-4 in order from the light incident side, An antireflective layer 6-4 and a semiconductor substrate 10-4 are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-4 and is embedded in a silicon (Si) layer of the semiconductor substrate 10-4.
 オンチップレンズ2-4-Rの上部(光入射面側であって、図4中では上側)は上凸形状であって、オンチップレンズ2-4-Rの下部(図4中では下側)は略平坦である。オンチップレンズ2-4-Gの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-4-Gの下部の曲率半径(rc)のrcは無限大である。カラーフィルタ3-4-Rの上部(光入射面側であって、図4中では上側)は略平坦である。 The upper portion (on the light incident surface side, upper side in FIG. 4) of the on-chip lens 2-4-R has an upper convex shape, and the lower portion (lower side in FIG. 4) of the on-chip lens 2-4-R. ) Is substantially flat. The curvature radius (rl) of the upper part of the on-chip lens 2-4-G is rl> 0, and rc of the curvature radius (rc) of the lower part of the on-chip lens 2-4-G is infinite. The upper portion (on the light incident surface side and the upper side in FIG. 4) of the color filter 3-4-R is substantially flat.
 オンチップレンズ2-4-Rは、略平坦形状のカラーフィルタ3-4-Rより高屈折率の材料が用いられてよい。オンチップレンズ2-4-Rの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-4-Rの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-4-2において、反射防止層6-4から、カラーフィルタ3-4-Rの光入射側である上端部までの距離はhr-4である。上記の数式(1)を満たすように、オンチップレンズ2-4-Rの上部の曲率半径(rl)は最適化される。上述したように、オンチップレンズ2-4-Rの下部の曲率半径(rc)は無限大である。これにより、画素100-4-2(R光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-4-Rの上部の曲率半径(rl)は±4%程の範囲が許容される。 The on-chip lens 2-4-R may be made of a material having a higher refractive index than the substantially flat color filter 3-4-R. The refractive index of the on-chip lens 2-4-R may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-4-R may be, for example, nc = 1.55 to 1.65. In the pixel 100-4-2, the distance from the antireflection layer 6-4 to the upper end portion as the light incident side of the color filter 3-4 -R is hr 4. The curvature radius (rl) of the upper part of the on-chip lens 2-4-R is optimized so as to satisfy the above equation (1). As described above, the radius of curvature (rc) of the lower part of the on-chip lens 2-4-R is infinite. Thereby, in the pixel 100-4-2 (wavelength band of R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper part of the on-chip lens 2-4-R is allowed to be in the range of about 4%.
 画素100-4-3には、光入射側から順に、オンチップレンズ2-4-Bと、青色光(B光)が透過するカラーフィルタ3-4-Bと、絶縁層5-4と、反射防止層6-4と、半導体基板10-4とが配されている。半導体基板10-4には、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-4のシリコン(Si)層に埋め込まれている。 The pixel 100-4-3 includes, in order from the light incident side, an on-chip lens 2-4-B, a color filter 3-4-B that transmits blue light (B light), and an insulating layer 5-4. An antireflective layer 6-4 and a semiconductor substrate 10-4 are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-4 and is embedded in the silicon (Si) layer of the semiconductor substrate 10-4.
 オンチップレンズ2-4-Bの上部(光入射面側であって、図4中では上側)は上凸形状であって、オンチップレンズ2-4-Bの下部(図4中では下側)は下凸形状である。オンチップレンズ2-4-Bの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-4-Bの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-4-Bの上部(光入射面側であって、図4中では上側)は下凸形状(凹形状)である。 The upper portion (on the light incident surface side, upper side in FIG. 4) of the on-chip lens 2-4-B has an upper convex shape, and the lower portion (lower side in FIG. 4) of the on-chip lens 2-4-B. ) Is a downward convex shape. The radius of curvature (rl) of the upper part of the on-chip lens 2-4-B is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-4-B is rc <0. The upper portion of the color filter 3-4-B (on the light incident surface side and the upper side in FIG. 4) has a downward convex shape (concave shape).
 オンチップレンズ2-4-Bは、下凸形状(凹形状)のカラーフィルタ3-4-Bより高屈折率の材料が用いられてよい。オンチップレンズ2-4-Bの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-4-Bの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-4-3において、反射防止層6-4から、カラーフィルタ3-4-Bの光入射側である上端部までの距離はhb-4である。上記の数式(1)を満たすように、オンチップレンズ2-4-Bの上部の曲率半径(rl)及びオンチップレンズ2-4-Bの下部の曲率半径(rc)は最適化される。これにより、画素100-4-3(B光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-4-Bの上部の曲率半径(rl)及びオンチップレンズ2-4-Bの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-4-B may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-4-B. The refractive index of the on-chip lens 2-4-B may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-4-B may be, for example, nc = 1.55 to 1.65. In the pixel 100-4-3, the distance from the antireflection layer 6-4 to the upper end portion as the light incident side of the color filter 3-4-B is hb-4. The radius of curvature (rl) of the upper portion of the on-chip lens 2-4-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-4-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-4-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-4-B and the curvature radius (rc) of the lower part of the on-chip lens 2-4-B are ± 4. A range of about% is acceptable.
 画素100-4-4には、光入射側から順に、オンチップレンズ2-4-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-4-Wと、絶縁層5-4と、反射防止層6-4と、半導体基板10-4とが配されている。半導体基板10-4には、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-4のシリコン(Si)層に埋め込まれている。 In the pixel 100-4-4, an on-chip lens 2-4 -W and an in-layer lens through which green light, red light and blue light (BGR (W) light) pass sequentially from the light incident side. W, an insulating layer 5-4, an antireflective layer 6-4, and a semiconductor substrate 10-4 are disposed. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-4 and is embedded in a silicon (Si) layer of the semiconductor substrate 10-4.
 オンチップレンズ2-4-Wの上部(光入射面側であって、図4中では上側)は上凸形状であって、オンチップレンズ2-4-Wの下部(図4中では下側)は下凸形状である。オンチップレンズ2-4-Wの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-4-Wの下部の曲率半径(rc)はrc<0である。層内レンズ3-4-Wの上部(光入射面側であって、図4中では上側)は下凸形状(凹形状)である。 The upper portion (on the light incident surface side, upper side in FIG. 4) of the on-chip lens 2-4-W is convex upward, and the lower portion (lower side in FIG. 4) of the on-chip lens 2-4-W ) Is a downward convex shape. The upper radius of curvature (rl) of the on-chip lens 2-4-W is rl> 0, and the lower radius of curvature (rc) of the on-chip lens 2-4-W is rc <0. The upper portion of the in-layer lens 3-4-W (the light incident surface side and the upper side in FIG. 4) has a downward convex shape (concave shape).
 オンチップレンズ2-4-Wは、下凸形状(凹形状)のカラーフィルタ3-4-Wより高屈折率の材料が用いられてよい。オンチップレンズ2-4-Wの屈折率としては、例えば、nl=1.75~1.85でよい。一方、層内レンズ3-4-Wの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-1-4において、反射防止層6-1から、層内レンズ3-4-Wの光入射側である上端部までの距離はhw-4である。上記の数式(1)を満たすように、オンチップレンズ2-4-Wの上部の曲率半径(rl)及びオンチップレンズ2-4-Wの下部の曲率半径(rc)は最適化される。これにより、画素100-4-4(BGR(W)光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-4-Wの上部の曲率半径(rl)及びオンチップレンズ2-4-Wの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-4-W may be made of a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-4-W. The refractive index of the on-chip lens 2-4-W may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the in-layer lens 3-4-W may be, for example, nc = 1.55 to 1.65. In the pixel 100-1-4, the distance from the anti-reflection layer 6-1 to the upper end portion as the light incident side of the in-layer lens 3-4-W is hw-4. The curvature radius (rl) of the upper part of the on-chip lens 2-4-W and the curvature radius (rc) of the lower part of the on-chip lens 2-4-W are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-4-4 (wavelength band of BGR (W) light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-4-W and the curvature radius (rc) of the lower part of the on-chip lens 2-4-W are ± 4. A range of about% is acceptable.
 半導体基板10-4の裏面(図4中では上面)の側において、画素分離部9-4-G、画素分離部9-4-GR、画素分離部9-4-RB、画素分離部9-4-BW及び画素分離部9-4-Wが、半導体基板10-4の内部に埋め込まれて形成されている。画素分離部9-4-G、画素分離部9-4-GR、画素分離部9-4-RB、画素分離部9-4-BW及び画素分離部9-4-Wは、4つの画素(画素100-4-1~100-4-4)の間を区画して電気的に分離している。図4に示されるように、画素分離部9-4-Gは、シリコン酸化膜7-4-Gとシリコン窒化膜8-4-Gとから構成されてよく、画素分離部9-4-GRは、シリコン酸化膜7-4-GRとシリコン窒化膜8-4-GRとから構成されてよく、画素分離部9-4-RBは、シリコン酸化膜7-4-RBとシリコン窒化膜8-4-RBとから構成されてよく、画素分離部9-4-BWは、シリコン酸化膜7-4-BWとシリコン窒化膜8-4-BWとから構成されてよく、画素分離部9-4-Wは、シリコン酸化膜7-4-Wとシリコン窒化膜8-4-Wとから構成されてよい。 On the side of the back surface (upper surface in FIG. 4) of the semiconductor substrate 10-4, the pixel separation unit 9-4-G, the pixel separation unit 9-4-GR, the pixel separation unit 9-4-RB, the pixel separation unit 9- The 4-BW and the pixel separating portion 9-4-W are formed to be embedded in the semiconductor substrate 10-4. The pixel separating unit 9-4-G, the pixel separating unit 9-4-GR, the pixel separating unit 9-4-RB, the pixel separating unit 9-4-BW, and the pixel separating unit 9-4-W The pixels 100-4-1 to 100-4-4) are partitioned and electrically separated. As shown in FIG. 4, the pixel separating portion 9-4-G may be composed of a silicon oxide film 7-4-G and a silicon nitride film 8-4-G, and the pixel separating portion 9-4-GR. May be composed of a silicon oxide film 7-4-GR and a silicon nitride film 8-4-GR, and the pixel separating portion 9-4-RB is a silicon oxide film 7-4-RB and a silicon nitride film 8- The pixel separating portion 9-4-BW may be composed of a silicon oxide film 7-4-BW and a silicon nitride film 8-4-BW. -W may be composed of a silicon oxide film 7-4-W and a silicon nitride film 8-4-W.
 固体撮像素子1-4は、画素間遮光膜4-4-G、画素間遮光膜4-4-GR、画素間遮光膜4-4-RB、画素間遮光膜4-4-BW及び画素間遮光膜4-4-Wを備える。固体撮像素子1-4は、更に、ハードマスク材40-4-G、ハードマスク材40-4-GR、ハードマスク材40-4-RB、ハードマスク材40-4-BW及びハードマスク材40-4-Wを備える。画素間遮光膜4-4-G、画素間遮光膜4-4-GR、画素間遮光膜4-4-RB、画素間遮光膜4-4-BW及び画素間遮光膜4-4-Wは、絶縁層5-4の直上であって、画素100-4-1~画素100-4-4のそれぞれの画素境界に形成される。ハードマスク材40-4-G、ハードマスク材40-4-GR、ハードマスク材40-4-RB、ハードマスク材40-4-BW及びハードマスク材40-4-Wのそれぞれは、画素間遮光膜4-4-G、画素間遮光膜4-4-GR、画素間遮光膜4-4-RB、画素間遮光膜4-4-BW及び画素間遮光膜4-4-Wのそれぞれの直上であって、画素100-4-1~画素100-4-4のそれぞれの画素境界に形成される。ハードマスク材40-4-Gは、シリコン酸化膜41-4-Gとシリコン窒化膜42-4-Gとから構成されてよく、ハードマスク材40-4-GRは、シリコン酸化膜41-4-GRとシリコン窒化膜42-4-GRとから構成されてよく、ハードマスク材40-4-RBは、シリコン酸化膜41-4-RBとシリコン窒化膜42-4-RBとから構成されてよく、ハードマスク材40-4-BWは、シリコン酸化膜41-4-BWとシリコン窒化膜42-4-BWとから構成されてよく、ハードマスク材40-4-Wは、シリコン酸化膜41-4-Wとシリコン窒化膜42-4-Wとから構成されてよい。そして、図4に示されるように、シリコン窒化膜42-4-G、シリコン窒化膜42-4-GR、シリコン窒化膜42-4-RB、シリコン窒化膜42-4-BW及びシリコン窒化膜42-4-Wのそれぞれが、画素間遮光膜4-4-G、画素間遮光膜4-4-GR、画素間遮光膜4-4-RB、画素間遮光膜4-4-BW及び画素間遮光膜4-4-Wのそれぞれの直上に配されている。 The solid-state imaging device 1-4 includes an inter-pixel light shielding film 4-4-G, an inter-pixel light shielding film 4-4-GR, an inter-pixel light shielding film 4-4-RB, an inter-pixel light shielding film 4-4-BW and an inter-pixel A light shielding film 4-4-W is provided. The solid-state imaging device 1-4 further includes a hard mask material 40-4-G, a hard mask material 40-4-GR, a hard mask material 40-4-RB, a hard mask material 40-4-BW, and a hard mask material 40. -4-W is equipped. The inter-pixel light shielding film 4-4-G, the inter-pixel light shielding film 4-4-GR, the inter-pixel light shielding film 4-4-RB, the inter-pixel light shielding film 4-4-BW and the inter-pixel light shielding film 4-4-W And the pixel boundary of each of the pixels 100-4-1 to 100-4-4 immediately above the insulating layer 5-4. Each of the hard mask material 40-4-G, the hard mask material 40-4-GR, the hard mask material 40-4-RB, the hard mask material 40-4-BW and the hard mask material 40-4-W Each of the light shielding film 4-4-G, the inter-pixel light shielding film 4-4-GR, the inter-pixel light shielding film 4-4-RB, the inter-pixel light shielding film 4-4-BW, and the inter-pixel light shielding film 4-4-W It is formed immediately above the pixel boundary of each of the pixels 100-4-1 to 100-4-4. The hard mask material 40-4-G may be composed of a silicon oxide film 41-4-G and a silicon nitride film 42-4-G, and the hard mask material 40-4-GR is a silicon oxide film 41-4. The hard mask material 40-4-RB may be composed of a silicon oxide film 41-4-RB and a silicon nitride film 42-4-RB. The hard mask material 40-4-BW may be composed of a silicon oxide film 41-4-BW and a silicon nitride film 42-4-BW, and the hard mask material 40-4-W is a silicon oxide film 41. It may be composed of -4-W and silicon nitride film 42-4-W. Then, as shown in FIG. 4, the silicon nitride film 42-4-G, the silicon nitride film 42-4-GR, the silicon nitride film 42-4-RB, the silicon nitride film 42-4-BW, and the silicon nitride film 42. Each of -4-W is an inter-pixel light shielding film 4-4-G, an inter-pixel light shielding film 4-4-GR, an inter-pixel light shielding film 4-4-RB, an inter-pixel light shielding film 4-4-BW and an inter-pixel It is disposed immediately above each of the light shielding films 4-4-W.
 図4に示されるように、カラーフィルタ3-4-Gは、画素間遮光膜4-4-G及びハードマスク材40-4-Gと、画素間遮光膜4-4-GR及びハードマスク材40-4-GRとの間に埋め込められている。カラーフィルタ3-4-Rは、画素間遮光膜4-4-GR及びハードマスク材40-4-GRと、画素間遮光膜4-4-RB及びハードマスク材40-4-RBとの間に埋め込められている。カラーフィルタ3-4-Bは、画素間遮光膜4-4-RB及びハードマスク材40-4-RBと、画素間遮光膜4-4-BW及びハードマスク材40-4-BWとの間に埋め込められている。カラーフィルタ3-4-Wは、画素間遮光膜4-4-BW及びハードマスク材40-4-BWと、画素間遮光膜4-4-W及びハードマスク材40-4-Wとの間に埋め込められている。 As shown in FIG. 4, the color filter 3-4-G includes the inter-pixel light shielding film 4-4-G and the hard mask material 40-4-G, and the inter-pixel light shielding film 4-4-GR and the hard mask material. It is embedded between 40-4-GR. The color filter 3-4-R is formed between the inter-pixel light shielding film 4-4-GR and the hard mask material 40-4-GR, and the inter-pixel light shielding film 4-4-RB and the hard mask material 40-4-RB. Embedded in The color filter 3-4-B is provided between the inter-pixel light shielding film 4-4-RB and the hard mask material 40-4-RB and the inter-pixel light shielding film 4-4-BW and the hard mask material 40-4-BW. Embedded in The color filter 3-4-W is provided between the inter-pixel light shielding film 4-4-BW and the hard mask material 40-4-BW and the inter-pixel light shielding film 4-4-W and the hard mask material 40-4-W. Embedded in
 画素間遮光膜4-4-G、画素間遮光膜4-4-GR、画素間遮光膜4-4-RB、画素間遮光膜4-4-BW及び画素間遮光膜4-4-Wは、光を遮光する材料であればよく、遮光性が強く、かつ微細加工、例えばエッチングで精度よく加工できる材料として、金属、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の膜で形成されてよい。 The inter-pixel light shielding film 4-4-G, the inter-pixel light shielding film 4-4-GR, the inter-pixel light shielding film 4-4-RB, the inter-pixel light shielding film 4-4-BW and the inter-pixel light shielding film 4-4-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
 固体撮像素子1-4において、画素間遮光膜4-4-G、画素間遮光膜4-4-GR、画素間遮光膜4-4-RB、画素間遮光膜4-4-BW及び画素間遮光膜4-4-Wが形成される際に、レジストマスクと選択比が取れないときや取りにくいときに、ハードマスク材40-4-G、ハードマスク材40-4-GR、ハードマスク材40-4-RB、ハードマスク材40-4-BW及びハードマスク材40-4-Wを用いて、ハードマスク加工することができる。図4に示されるように、ハードマスク材40-4-G、ハードマスク材40-4-GR、ハードマスク材40-4-RB、ハードマスク材40-4-BW及びハードマスク材40-4-Wのそれぞれは、画素間遮光膜4-4-G、画素間遮光膜4-4-GR、画素間遮光膜4-4-RB、画素間遮光膜4-4-BW及び画素間遮光膜4-4-Wのそれぞれの直上に残ったままでよい。 In the solid-state imaging device 1-4, the inter-pixel light shielding film 4-4-G, the inter-pixel light shielding film 4-4-GR, the inter-pixel light shielding film 4-4-RB, the inter-pixel light shielding film 4-4-BW, and the inter-pixel Hard mask material 40-4-G, hard mask material 40-4-GR, hard mask material when the light shielding film 4-4-W is formed or when the selectivity with the resist mask can not be obtained Hard mask processing can be performed using 40-4-RB, hard mask material 40-4-BW and hard mask material 40-4-W. As shown in FIG. 4, hard mask material 40-4-G, hard mask material 40-4-GR, hard mask material 40-4-RB, hard mask material 40-4-BW and hard mask material 40-4. In each of -W, an inter-pixel light shielding film 4-4-G, an inter-pixel light shielding film 4-4-GR, an inter-pixel light shielding film 4-4-RB, an inter-pixel light shielding film 4-4-BW and an inter-pixel light shielding film It may remain right above each of 4-4-W.
[2-5.第5の実施形態(固体撮像素子の例5)]
 以下に、本技術に係る第5の実施形態(固体撮像素子の例5)の固体撮像素子について、説明をする。
[2-5. Fifth Embodiment (Example 5 of Solid-State Imaging Device)]
Hereinafter, the solid-state imaging device according to the fifth embodiment (example 5 of the solid-state imaging device) according to the present technology will be described.
 本技術に係る第5の実施形態の固体撮像素子によれば、画質が向上し、特には、オンチップレンズの色収差が低減されて、回避され得る。 According to the solid-state imaging device of the fifth embodiment of the present technology, the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
 図5に、本技術に係る第5の実施形態の固体撮像素子の一例である固体撮像素子1-5を示す。図5は、固体撮像素子1-5の4画素分(画素100-5-1~100-5-4)の断面図である。なお、特に断りがない限り、「上」とは図5中の上方向を意味し、「下」とは、図5中の下方向を意味する。 FIG. 5 shows a solid-state imaging device 1-5 which is an example of a solid-state imaging device according to a fifth embodiment of the present technology. FIG. 5 is a cross-sectional view of four pixels (pixels 100-5-1 to 100-5-4) of the solid-state imaging device 1-5. In addition, unless there is particular notice, "upper" means the upper direction in FIG. 5, and "lower" means the lower direction in FIG.
 画素100-5-1には、光入射側から順に、オンチップレンズ2-5-Gと、緑色光(G光)が透過するカラーフィルタ3-5-Gと、絶縁層5-5と、反射防止層6-5と、半導体基板10-5とが配されている。半導体基板10-5には、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-5のシリコン(Si)層に埋め込まれている。 In the pixel 100-5-1, an on-chip lens 2-5-G, a color filter 3-5-G that transmits green light (G light), and an insulating layer 5-5, in order from the light incident side, An antireflective layer 6-5 and a semiconductor substrate 10-5 are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-5 and embedded in the silicon (Si) layer of the semiconductor substrate 10-5.
 オンチップレンズ2-5-Gの上部(光入射面側であって、図5中では上側)は上凸形状であって、オンチップレンズ2-5-Gの下部(図5中では下側)は上凸形状(凹形状)である。オンチップレンズ2-5-Gの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-5-Gの下部の曲率半径(rc)はrc>0である。カラーフィルタ3-5-Gの上部(光入射面側であって、図5中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 5) of the on-chip lens 2-5-G is convex upward, and the lower portion (lower side in FIG. 5) of the on-chip lens 2-5-G ) Is an upward convex shape (concave shape). The radius of curvature (rl) of the upper portion of the on-chip lens 2-5-G is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-G is rc> 0. The upper portion of the color filter 3-5-G (on the light incident surface side and the upper side in FIG. 5) has an upwardly convex shape.
 オンチップレンズ2-5-Gは、上凸形状のカラーフィルタ3-5-Gより低屈折率の材料が用いられてよい。オンチップレンズ2-5-Gの屈折率としては、例えば、nl=1.35~1.45でよい。一方、カラーフィルタ3-5-Gの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-5-1において、反射防止層6-5から、カラーフィルタ3-5-Gの光入射側である上端部までの距離はhg-5である。上記の数式(1)を満たすように、オンチップレンズ2-5-Gの上部の曲率半径(rl)及びオンチップレンズ2-5-Gの下部の曲率半径(rc)は最適化される。これにより、画素100-5-1(G光)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-5-Gの上部の曲率半径(rl)及びオンチップレンズ2-5-Gの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-5-G may be made of a material having a lower refractive index than the upwardly convex color filter 3-5-G. The refractive index of the on-chip lens 2-5-G may be, for example, nl = 1.35 to 1.45. On the other hand, the refractive index of the color filter 3-5-G may be, for example, nc = 1.55 to 1.65. In the pixel 100-5-1, the distance from the antireflection layer 6-5 to the upper end portion as the light incident side of the color filter 3-5-G is hg-5. The radius of curvature (rl) of the upper portion of the on-chip lens 2-5-G and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-5-1 (G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper part of the on-chip lens 2-5-G and the radius of curvature (rc) of the lower part of the on-chip lens 2-5-G are ± 4. A range of about% is acceptable.
 画素100-5-2には、光入射側から順に、オンチップレンズ2-5-Rと、赤色光(R光)が透過するカラーフィルタ3-5-Rと、絶縁層5-5と、反射防止層6-5と、半導体基板10-5とが配されている。半導体基板10-5には、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-5のシリコン(Si)層に埋め込まれている。 The pixel 100-5-2 includes, in order from the light incident side, an on-chip lens 2-5-R, a color filter 3-5-R that transmits red light (R light), and an insulating layer 5-5. An antireflective layer 6-5 and a semiconductor substrate 10-5 are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-5, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-5.
 オンチップレンズ2-5-Rの上部(光入射面側であって、図5中では上側)は上凸形状であって、オンチップレンズ2-5-Rの下部(図5中では下側)は上凸形状(凹形状)である。オンチップレンズ2-5-Rの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-5-Rの下部の曲率半径(rc)はrc>0である。カラーフィルタ3-5-Rの上部(光入射面側であって、図5中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 5) of the on-chip lens 2-5-R is convex upward, and the lower portion (lower side in FIG. 5) of the on-chip lens 2-5-R ) Is an upward convex shape (concave shape). The radius of curvature (rl) of the upper part of the on-chip lens 2-5-R is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-5-R is rc> 0. The upper portion of the color filter 3-5-R (on the light incident surface side and the upper side in FIG. 5) has an upwardly convex shape.
 オンチップレンズ2-5-Rは、上凸形状のカラーフィルタ3-5-Rより低屈折率の材料が用いられてよい。オンチップレンズ2-5-Rの屈折率としては、例えば、nl=1.35~1.45でよい。一方、カラーフィルタ3-5-Rの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-5-2において、反射防止層6-5から、カラーフィルタ3-5-Rの光入射側である上端部までの距離はhg-5である。上記の数式(1)を満たすように、オンチップレンズ2-5-Rの上部の曲率半径(rl)及びオンチップレンズ2-5-Rの下部の曲率半径(rc)は最適化される。これにより、画素100-5-2(R光)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-5-Rの上部の曲率半径(rl)及びオンチップレンズ2-5-Rの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-5-R may be made of a material having a lower refractive index than the upwardly convex color filter 3-5-R. The refractive index of the on-chip lens 2-5-R may be, for example, nl = 1.35 to 1.45. On the other hand, the refractive index of the color filter 3-5-R may be, for example, nc = 1.55 to 1.65. In the pixel 100-5-2, the distance from the antireflection layer 6-5 to the upper end portion as the light incident side of the color filter 3-5-R is hg-5. The radius of curvature (rl) of the upper part of the on-chip lens 2-5-R and the radius of curvature (rc) of the lower part of the on-chip lens 2-5-R are optimized so as to satisfy the above equation (1). As a result, in the pixel 100-5-2 (R light), the light collecting property is ensured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper portion of the on-chip lens 2-5-R and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-R are ± 4. A range of about% is acceptable.
 画素100-5-3には、光入射側から順に、オンチップレンズ2-5-Bと、青色光(B光)が透過するカラーフィルタ3-5-Bと、絶縁層5-5と、反射防止層6-5と、半導体基板10-5とが配されている。半導体基板10-5には、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-5のシリコン(Si)層に埋め込まれている。 The pixel 100-5-3 includes, in order from the light incident side, an on-chip lens 2-5-B, a color filter 3-5-B that transmits blue light (B light), and an insulating layer 5-5. An antireflective layer 6-5 and a semiconductor substrate 10-5 are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-5, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-5.
 オンチップレンズ2-5-Bの上部(光入射面側であって、図5中では上側)は上凸形状であって、オンチップレンズ2-5-Bの下部(図2中では下側)は上凸形状(凹形状)である。オンチップレンズ2-5-Bの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-5-Bの下部の曲率半径(rc)はrc>0である。カラーフィルタ3-5-Bの上部(光入射面側であって、図2中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 5) of the on-chip lens 2-5-B is convex upward, and the lower portion (lower side in FIG. 2) of the on-chip lens 2-5-B. ) Is an upward convex shape (concave shape). The radius of curvature (rl) of the upper portion of the on-chip lens 2-5-B is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-B is rc> 0. The upper portion of the color filter 3-5-B (on the light incident surface side and the upper side in FIG. 2) has an upwardly convex shape.
 オンチップレンズ2-5-Bは、上凸形状のカラーフィルタ3-5-Bより低屈折率の材料が用いられてよい。オンチップレンズ2-5-Bの屈折率としては、例えば、nl=1.35~1.45でよい。一方、カラーフィルタ3-5-Bの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-5-3において、反射防止層6-5から、カラーフィルタ3-5-Bの光入射側である上端部までの距離はhb-5である。上記の数式(1)を満たすように、オンチップレンズ2-5-Bの上部の曲率半径(rl)及びオンチップレンズ2-5-Bの下部の曲率半径(rc)は最適化される。これにより、画素100-5-3(B光)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-5-Bの上部の曲率半径(rl)及びオンチップレンズ2-5-Bの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-5-B may use a material having a lower refractive index than the upwardly convex color filter 3-5-B. The refractive index of the on-chip lens 2-5-B may be, for example, nl = 1.35 to 1.45. On the other hand, the refractive index of the color filter 3-5-B may be, for example, nc = 1.55 to 1.65. In the pixel 100-5-3, the distance from the antireflection layer 6-5 to the upper end portion as the light incident side of the color filter 3-5-B is hb-5. The radius of curvature (rl) of the upper portion of the on-chip lens 2-5-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-5-3 (B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper part of the on-chip lens 2-5-B and the radius of curvature (rc) of the lower part of the on-chip lens 2-5-B are ± 4. A range of about% is acceptable.
 画素100-5-4には、光入射側から順に、オンチップレンズ2-5-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-5-Wと、絶縁層5-5と、反射防止層6-5と、半導体基板10-5とが配されている。半導体基板10-5には、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-5のシリコン(Si)層に埋め込まれている。 In the pixel 100-5-4, an on-chip lens 2-5-W and an in-layer lens through which green light, red light and blue light (BGR (W) light) transmit in order from the light incident side. W, an insulating layer 5-5, an antireflective layer 6-5, and a semiconductor substrate 10-5 are disposed. In the semiconductor substrate 10-5, a photodiode (not shown) for white light (BGR (W) light) is formed and embedded in a silicon (Si) layer of the semiconductor substrate 10-5.
 オンチップレンズ2-5-Wの上部(光入射面側であって、図5中では上側)は上凸形状であって、オンチップレンズ2-5-Wの下部(図5中では下側)は上凸形状(凹形状)である。オンチップレンズ2-5-Wの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-5-Wの下部の曲率半径(rc)はrc>0である。層内レンズ3-5-Wの上部(光入射面側であって、図5中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 5) of the on-chip lens 2-5-W is upwardly convex, and the lower portion (lower side in FIG. 5) of the on-chip lens 2-5-W. ) Is an upward convex shape (concave shape). The upper radius of curvature (rl) of the on-chip lens 2-5-W is rl> 0, and the lower radius of curvature (rc) of the lower-end lens 2-5-W is rc> 0. The upper portion of the in-layer lens 3-5-W (the light incident surface side, and the upper side in FIG. 5) has an upwardly convex shape.
 オンチップレンズ2-5-Wは、上凸形状の層内レンズ3-5-Wより低屈折率の材料が用いられてよい。オンチップレンズ2-5-Wの屈折率としては、例えば、nl=1.35~1.45でよい。一方、層内レンズ3-5-Wの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-5-4において、反射防止層6-5から、層内レンズ3-5-Wの光入射側である上端部までの距離はhw-5である。上記の数式(1)を満たすように、オンチップレンズ2-5-Wの上部の曲率半径(rl)及びオンチップレンズ2-5-Wの下部の曲率半径(rc)は最適化される。これにより、画素100-5-4(BGR(W)光)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-5-Wの上部の曲率半径(rl)及びオンチップレンズ2-5-Wの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-5-W may be made of a material having a lower refractive index than the upper convex in-layer lens 3-5-W. The refractive index of the on-chip lens 2-5-W may be, for example, nl = 1.35 to 1.45. On the other hand, the refractive index of the in-layer lens 3-5-W may be, for example, nc = 1.55 to 1.65. In the pixel 100-5-4, the distance from the antireflection layer 6-5 to the upper end portion as the light incident side of the in-layer lens 3-5-W is hw-5. The radius of curvature (rl) of the upper portion of the on-chip lens 2-5-W and the radius of curvature (rc) of the lower portion of the on-chip lens 2-5-W are optimized so as to satisfy the above equation (1). As a result, in the pixel 100-5-4 (BGR (W) light), the light collecting property is ensured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-5-W and the curvature radius (rc) of the lower part of the on-chip lens 2-5-W are ± 4. A range of about% is acceptable.
 半導体基板10-5の裏面(図5中では上面)の側において、画素分離部9-5-G、画素分離部9-5-GR、画素分離部9-5-RB、画素分離部9-5-BW及び画素分離部9-5-Wが、半導体基板10-5の内部に埋め込まれて形成されている。画素分離部9-5-G、画素分離部9-5-GR、画素分離部9-5-RB、画素分離部9-5-BW及び画素分離部9-5-Wは、4つの画素(画素100-5-1~100-5-4)の間を区画して電気的に分離している。図5に示されるように、画素分離部9-5-Gは、シリコン酸化膜7-5-Gとシリコン窒化膜8-5-Gとから構成されてよく、画素分離部9-5-GRは、シリコン酸化膜7-5-GRとシリコン窒化膜8-5-GRとから構成されてよく、画素分離部9-5-RBは、シリコン酸化膜7-5-RBとシリコン窒化膜8-5-RBとから構成されてよく、画素分離部9-5-BWは、シリコン酸化膜7-5-BWとシリコン窒化膜8-5-BWとから構成されてよく、画素分離部9-5-Wは、シリコン酸化膜7-5-Wとシリコン窒化膜8-5-Wとから構成されてよい。 On the side of the back surface (the upper surface in FIG. 5) of the semiconductor substrate 10-5, the pixel separating portion 9-5-G, the pixel separating portion 9-5-GR, the pixel separating portion 9-5-RB, the pixel separating portion 9- A 5-BW and a pixel separation portion 9-5-W are formed embedded in the semiconductor substrate 10-5. The pixel separating unit 9-5-G, the pixel separating unit 9-5-GR, the pixel separating unit 9-5-RB, the pixel separating unit 9-5-BW, and the pixel separating unit 9-5-W The pixels 100-5-1 to 100-5-4) are partitioned and electrically separated. As shown in FIG. 5, the pixel separating portion 9-5-G may be composed of a silicon oxide film 7-5-G and a silicon nitride film 8-5-G, and the pixel separating portion 9-5-GR. May be composed of a silicon oxide film 7-5-GR and a silicon nitride film 8-5-GR, and the pixel separating portion 9-5-RB is a silicon oxide film 7-5-RB and a silicon nitride film 8- The pixel separating portion 9-5-BW may be composed of a silicon oxide film 7-5-BW and a silicon nitride film 8-5-BW. -W may be composed of a silicon oxide film 7-5-W and a silicon nitride film 8-5-W.
 固体撮像素子1-5は、画素間遮光膜4-5-G、画素間遮光膜4-5-GR、画素間遮光膜4-5-RB、画素間遮光膜4-5-BW及び画素間遮光膜4-5-Wを備える。固体撮像素子1-5は、更に、ハードマスク材40-5-G、ハードマスク材40-5-GR、ハードマスク材40-5-RB、ハードマスク材40-5-BW及びハードマスク材40-5-Wを備える。画素間遮光膜4-5-G、画素間遮光膜4-5-GR、画素間遮光膜4-5-RB、画素間遮光膜4-5-BW及び画素間遮光膜4-5-Wは、絶縁層5-5の直上であって、画素100-5-1~画素100-5-4のそれぞれの画素境界に形成される。ハードマスク材40-5-G、ハードマスク材40-5-GR、ハードマスク材40-5-RB、ハードマスク材40-5-BW及びハードマスク材40-5-Wのそれぞれは、画素間遮光膜4-5-G、画素間遮光膜4-5-GR、画素間遮光膜4-5-RB、画素間遮光膜4-5-BW及び画素間遮光膜4-5-Wのそれぞれの直上であって、画素100-5-1~画素100-5-4のそれぞれの画素境界に形成される。ハードマスク材40-5-Gは、シリコン酸化膜41-5-Gとシリコン窒化膜42-5-Gとから構成されてよく、ハードマスク材40-5-GRは、シリコン酸化膜41-5-GRとシリコン窒化膜42-5-GRとから構成されてよく、ハードマスク材40-5-RBは、シリコン酸化膜41-5-RBとシリコン窒化膜42-5-RBとから構成されてよく、ハードマスク材40-5-BWは、シリコン酸化膜41-5-BWとシリコン窒化膜42-5-BWとから構成されてよく、ハードマスク材40-5-Wは、シリコン酸化膜41-5-Wとシリコン窒化膜42-5-Wとから構成されてよい。そして、図5に示されるように、シリコン窒化膜42-5-G、シリコン窒化膜42-5-GR、シリコン窒化膜42-5-RB、シリコン窒化膜42-5-BW及びシリコン窒化膜42-5-Wのそれぞれが、画素間遮光膜4-5-G、画素間遮光膜4-5-GR、画素間遮光膜4-5-RB、画素間遮光膜4-5-BW及び画素間遮光膜4-5-Wのそれぞれの直上に配されている。 The solid-state imaging device 1-5 includes an inter-pixel light shielding film 4-5-G, an inter-pixel light shielding film 4-5-GR, an inter-pixel light shielding film 4-5-RB, an inter-pixel light shielding film 4-5-BW, and an inter-pixel A light shielding film 4-5-W is provided. The solid-state imaging device 1-5 further includes a hard mask material 40-5-G, a hard mask material 40-5-GR, a hard mask material 40-5-RB, a hard mask material 40-5-BW, and a hard mask material 40. -5-W is equipped. The inter-pixel light shielding film 4-5-G, the inter-pixel light shielding film 4-5-GR, the inter-pixel light shielding film 4-5-RB, the inter-pixel light shielding film 4-5-BW, and the inter-pixel light shielding film 4-5-W It is formed directly on the insulating layer 5-5 and at the pixel boundary of each of the pixels 100-5-1 to 100-5-4. Each of the hard mask material 40-5-G, hard mask material 40-5-GR, hard mask material 40-5-RB, hard mask material 40-5-BW and hard mask material 40-5-W is between pixels The light shielding film 4-5-G, the inter-pixel light shielding film 4-5-GR, the inter-pixel light shielding film 4-5-RB, the inter-pixel light shielding film 4-5-BW, and the inter-pixel light shielding film 4-5-W It is formed immediately above the pixel boundary of each of the pixels 100-5-1 to 100-5-4. The hard mask material 40-5-G may be composed of a silicon oxide film 41-5-G and a silicon nitride film 42-5-G, and the hard mask material 40-5-GR is a silicon oxide film 41-5. The hard mask material 40-5-RB may be composed of a silicon oxide film 41-5-RB and a silicon nitride film 42-5-RB. Well, hard mask material 40-5-BW may be composed of silicon oxide film 41-5-BW and silicon nitride film 42-5-BW, and hard mask material 40-5-W is silicon oxide film 41. It may be composed of -5-W and silicon nitride film 42-5-W. Then, as shown in FIG. 5, the silicon nitride film 42-5-G, the silicon nitride film 42-5-GR, the silicon nitride film 42-5-RB, the silicon nitride film 42-5-BW, and the silicon nitride film 42. Each of -5-W is an inter-pixel light shielding film 4-5-G, an inter-pixel light shielding film 4-5-GR, an inter-pixel light shielding film 4-5-RB, an inter-pixel light shielding film 4-5-BW and an inter-pixel It is disposed immediately above each of the light shielding films 4-5-W.
 図5に示されるように、カラーフィルタ3-5-Gは、画素間遮光膜4-5-G及びハードマスク材40-5-Gと、画素間遮光膜4-5-GR及びハードマスク材40-5-GRとの間に埋め込められている。カラーフィルタ3-5-Rは、画素間遮光膜4-5-GR及びハードマスク材40-5-GRと、画素間遮光膜4-5-RB及びハードマスク材40-5-RBとの間に埋め込められている。カラーフィルタ3-5-Bは、画素間遮光膜4-5-RB及びハードマスク材40-5-RBと、画素間遮光膜4-5-BW及びハードマスク材40-5-BWとの間に埋め込められている。層内レンズ3-5-Wは、画素間遮光膜4-5-BW及びハードマスク材40-5-BWと、画素間遮光膜4-5-W及びハードマスク材40-5-Wとの間に埋め込められている。 As shown in FIG. 5, the color filter 3-5-G includes an inter-pixel light shielding film 4-5-G and a hard mask material 40-5-G, and an inter-pixel light shielding film 4-5-GR and a hard mask material. It is embedded between 40-5-GR. The color filter 3-5-R is provided between the inter-pixel light shielding film 4-5-GR and the hard mask material 40-5-GR and the inter-pixel light shielding film 4-5-RB and the hard mask material 40-5-RB. Embedded in The color filter 3-5-B is provided between the inter-pixel light shielding film 4-5-RB and the hard mask material 40-5-RB and the inter-pixel light shielding film 4-5-BW and the hard mask material 40-5-BW. Embedded in The in-layer lens 3-5-W comprises an inter-pixel light shielding film 4-5-BW and a hard mask material 40-5-BW, and an inter-pixel light shielding film 4-5-W and a hard mask material 40-5-W. It is embedded in the middle.
 画素間遮光膜4-5-G、画素間遮光膜4-5-GR、画素間遮光膜4-5-RB、画素間遮光膜4-5-BW及び画素間遮光膜4-5-Wは、光を遮光する材料であればよく、遮光性が強く、かつ微細加工、例えばエッチングで精度よく加工できる材料として、金属、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の膜で形成されてよい。 The inter-pixel light shielding film 4-5-G, the inter-pixel light shielding film 4-5-GR, the inter-pixel light shielding film 4-5-RB, the inter-pixel light shielding film 4-5-BW, and the inter-pixel light shielding film 4-5-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
 固体撮像素子1-5において、画素間遮光膜4-5-G、画素間遮光膜4-5-GR、画素間遮光膜4-5-RB、画素間遮光膜4-5-BW及び画素間遮光膜4-5-Wが形成される際に、レジストマスクと選択比が取れないときや取りにくいときに、ハードマスク材40-5-G、ハードマスク材40-5-GR、ハードマスク材40-5-RB、ハードマスク材40-5-BW及びハードマスク材40-5-Wを用いて、ハードマスク加工することができる。図5に示されるように、ハードマスク材40-5-G、ハードマスク材40-5-GR、ハードマスク材40-5-RB、ハードマスク材40-5-BW及びハードマスク材40-5-Wのそれぞれは、画素間遮光膜4-5-G、画素間遮光膜4-5-GR、画素間遮光膜4-5-RB、画素間遮光膜4-5-BW及び画素間遮光膜4-5-Wのそれぞれの直上に残ったままでよい。 In the solid-state imaging device 1-5, the inter-pixel light shielding film 4-5-G, the inter-pixel light shielding film 4-5-GR, the inter-pixel light shielding film 4-5-RB, the inter-pixel light shielding film 4-5-BW, and the inter-pixel Hard mask material 40-5-G, hard mask material 40-5-GR, hard mask material when light shielding film 4-5-W is formed, and when selectivity ratio with resist mask can not be obtained Hard mask processing can be performed using 40-5-RB, hard mask material 40-5-BW and hard mask material 40-5-W. As shown in FIG. 5, hard mask material 40-5-G, hard mask material 40-5-GR, hard mask material 40-5-RB, hard mask material 40-5-BW and hard mask material 40-5. Each of -W is an inter-pixel light shielding film 4-5-G, an inter-pixel light shielding film 4-5-GR, an inter-pixel light shielding film 4-5-RB, an inter-pixel light shielding film 4-5-BW, and an inter-pixel light shielding film It may remain right above each of 4-5-W.
[2-6.第6の実施形態(固体撮像素子の例6)]
 以下に、本技術に係る第6の実施形態(固体撮像素子の例6)の固体撮像素子について、説明をする。
[2-6. Sixth Embodiment (Example 6 of Solid-State Imaging Device)]
The solid-state imaging device according to the sixth embodiment (example 6 of the solid-state imaging device) according to the present technology will be described below.
 本技術に係る第6の実施形態の固体撮像素子によれば、画質が向上し、特には、オンチップレンズの色収差が低減されて、回避され得る。 According to the solid-state imaging device of the sixth embodiment of the present technology, the image quality is improved, and in particular, the chromatic aberration of the on-chip lens can be reduced and avoided.
 図6に、本技術に係る第6の実施形態の固体撮像素子の一例である固体撮像素子1-6を示す。図6は、固体撮像素子1-6の4画素分(画素100-6-1~100-6-4)の断面図である。なお、特に断りがない限り、「上」とは図6中の上方向を意味し、「下」とは、図6中の下方向を意味する。 FIG. 6 shows a solid-state imaging device 1-6, which is an example of a solid-state imaging device according to a sixth embodiment of the present technology. FIG. 6 is a cross-sectional view of four pixels (pixels 100-6-1 to 100-6-4) of the solid-state imaging device 1-6. In addition, unless there is particular notice, "upper" means the upper direction in FIG. 6, and "lower" means the lower direction in FIG.
 画素100-6-1には、光入射側から順に、オンチップレンズ2-6-Gと、緑色光(G光)が透過するカラーフィルタ3-6-Gと、絶縁層5-6と、反射防止層6-6と、半導体基板10-6とが配されている。半導体基板10-6には、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-6のシリコン(Si)層に埋め込まれている。 In the pixel 100-6-1, an on-chip lens 2-6 -G, a color filter 3-6 -G for transmitting green light (G light), and an insulating layer 5-6 in order from the light incident side, An antireflective layer 6-6 and a semiconductor substrate 10-6 are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-6, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-6.
 オンチップレンズ2-6-Gの上部(光入射面側であって、図6中では上側)は上凸形状であって、オンチップレンズ2-6-Gの下部(図6中では下側)は下凸形状である。オンチップレンズ2-6-Gの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-6-Gの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-6-Gの上部(光入射面側であって、図6中では上側)は下凸形状(凹形状)である。 The upper portion (on the light incident surface side, upper side in FIG. 6) of the on-chip lens 2-6-G is convex upward, and the lower portion (lower side in FIG. 6) of the on-chip lens 2-6-G ) Is a downward convex shape. The radius of curvature (rl) of the upper part of the on-chip lens 2-6-G is rl> 0, and the radius of curvature (rc) of the lower part of the on-chip lens 2-6-G is rc <0. The upper portion of the color filter 3-6-G (on the light incident surface side and the upper side in FIG. 6) has a downward convex shape (concave shape).
 オンチップレンズ2-6-Gは、下凸形状(凹形状)のカラーフィルタ3-6-Gより高屈折率の材料が用いられてよい。オンチップレンズ2-6-Gの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-6-Gの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-6-1において、反射防止層6-6から、カラーフィルタ3-6-Gの光入射側である上端部までの距離はhg-6である。上記の数式(1)を満たすように、オンチップレンズ2-6-Gの上部の曲率半径(rl)及びオンチップレンズ2-6-Gの下部の曲率半径(rc)は最適化される。これにより、画素100-6-1(G光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-6-Gの上部の曲率半径(rl)及びオンチップレンズ2-6-Gの下部の曲率半径(rc)は±4%程の範囲が許容される。 For the on-chip lens 2-6-G, a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-6-G may be used. The refractive index of the on-chip lens 2-6-G may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-6-G may be, for example, nc = 1.55 to 1.65. In the pixel 100-6-1, the distance from the antireflection layer 6-6 to the upper end portion as the light incident side of the color filter 3-6-G is hg-6. The radius of curvature (rl) of the upper portion of the on-chip lens 2-6-G and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-G are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-6-1 (wavelength band of G light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-6-G and the curvature radius (rc) of the lower part of the on-chip lens 2-6-G are ± 4. A range of about% is acceptable.
 画素100-6-2には、光入射側から順に、オンチップレンズ2-6-Rと、赤色光(R光)が透過するカラーフィルタ3-6-Rと、絶縁層5-6と、反射防止層6-6と、半導体基板10-6とが配されている。半導体基板10-6には、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-6のシリコン(Si)層に埋め込まれている。 The pixel 100-6-2 includes, in order from the light incident side, an on-chip lens 2-6-R, a color filter 3-6-R through which red light (R light) passes, and an insulating layer 5-6. An antireflective layer 6-6 and a semiconductor substrate 10-6 are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-6, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-6.
 オンチップレンズ2-6-Rの上部(光入射面側であって、図6中では上側)は上凸形状であって、オンチップレンズ2-6-Rの下部(図6中では下側)は上凸形状(凹形状)である。オンチップレンズ2-6-Rの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-6-Rの下部の曲率半径(rc)はrc>0である。カラーフィルタ3-6-Rの上部(光入射面側であって、図6中では上側)は上凸形状である。 The upper portion (on the light incident surface side, upper side in FIG. 6) of the on-chip lens 2-6-R is convex upward, and the lower portion (lower side in FIG. 6) of the on-chip lens 2-6-R ) Is an upward convex shape (concave shape). The radius of curvature (rl) of the upper portion of the on-chip lens 2-6-R is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-R is rc> 0. The upper portion of the color filter 3-6-R (on the light incident surface side and the upper side in FIG. 6) has an upwardly convex shape.
 上凸形状のカラーフィルタ3-6-Rは、オンチップレンズ2-6-Rより同程度の屈折率か又は高屈折率の材料が用いられてよい。オンチップレンズ2-6-Rの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-6-Rの屈折率としては、例えば、nc=1.75~1.85でよい。画素100-6-2において、反射防止層6-6から、カラーフィルタ3-6-Rの光入射側である上端部までの距離はhr-6である。上記の数式(1)を満たすように、オンチップレンズ2-6-Rの上部の曲率半径(rl)及びオンチップレンズ2-6-Rの下部の曲率半径(rc)は最適化される。これにより、画素100-6-2(R光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-6-Rの上部の曲率半径(rl)及びオンチップレンズ2-6-Rの下部の曲率半径(rc)は±4%程の範囲が許容される。 The upper convex color filter 3-6-R may be made of a material having a refractive index similar to or higher than that of the on-chip lens 2-6-R. The refractive index of the on-chip lens 2-6-R may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-6-R may be, for example, nc = 1.75 to 1.85. In the pixel 100-6-2, the distance from the antireflection layer 6-6 to the upper end portion as the light incident side of the color filter 3-6-R is hr-6. The radius of curvature (rl) of the upper portion of the on-chip lens 2-6-R and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-R are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-6-2 (wavelength band of R light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper portion of the on-chip lens 2-6-R and the curvature radius (rc) of the lower portion of the on-chip lens 2-6-R are ± 4. A range of about% is acceptable.
 画素100-6-3には、光入射側から順に、オンチップレンズ2-6-Bと、青色光(B光)が透過するカラーフィルタ3-6-Bと、絶縁層5-6と、反射防止層6-6と、半導体基板10-6とが配されている。半導体基板10-6には、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-6のシリコン(Si)層に埋め込まれている。 Pixel 100-6-3 includes, in order from the light incident side, on-chip lens 2-6-B, color filter 3-6-B that transmits blue light (B light), and insulating layer 5-6. An antireflective layer 6-6 and a semiconductor substrate 10-6 are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-6 and is embedded in the silicon (Si) layer of the semiconductor substrate 10-6.
 オンチップレンズ2-6-Bの上部(光入射面側であって、図6中では上側)は上凸形状であって、オンチップレンズ2-6-Bの下部(図6中では下側)は下凸形状である。オンチップレンズ2-6-Bの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-6-Bの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-6-Bの上部(光入射面側であって、図6中では上側)は下凸形状(凹形状)である。 The upper portion (on the light incident surface side, upper side in FIG. 6) of the on-chip lens 2-6-B is convex upward, and the lower portion (lower side in FIG. 6) of the on-chip lens 2-6-B ) Is a downward convex shape. The radius of curvature (rl) of the upper portion of the on-chip lens 2-6-B is rl> 0, and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-B is rc <0. The upper portion of the color filter 3-6-B (on the light incident surface side and the upper side in FIG. 6) has a downward convex shape (concave shape).
 オンチップレンズ2-6-Bは、下凸形状(凹形状)のカラーフィルタ3-6-Bより高屈折率の材料が用いられてよい。オンチップレンズ2-6-Bの屈折率としては、例えば、nl=1.75~1.85でよい。一方、カラーフィルタ3-6-Bの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-6-3において、反射防止層6-6から、カラーフィルタ3-6-Bの光入射側である上端部までの距離はhb-6である。上記の数式(1)を満たすように、オンチップレンズ2-6-Bの上部の曲率半径(rl)及びオンチップレンズ2-6-Bの下部の曲率半径(rc)は最適化される。これにより、画素100-6-3(B光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-6-Bの上部の曲率半径(rl)及びオンチップレンズ2-6-Bの下部の曲率半径(rc)は±4%程の範囲が許容される。 For the on-chip lens 2-6-B, a material having a refractive index higher than that of the downwardly convex (concave) color filter 3-6-B may be used. The refractive index of the on-chip lens 2-6-B may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the color filter 3-6-B may be, for example, nc = 1.55 to 1.65. In the pixel 100-6-3, the distance from the antireflection layer 6-6 to the upper end portion as the light incident side of the color filter 3-6-B is hb-6. The radius of curvature (rl) of the upper portion of the on-chip lens 2-6-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-B are optimized so as to satisfy the above equation (1). Thereby, in the pixel 100-6-3 (wavelength band of B light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the radius of curvature (rl) of the upper portion of the on-chip lens 2-6-B and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-B are ± 4. A range of about% is acceptable.
 画素100-6-4には、光入射側から順に、オンチップレンズ2-6-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-5-Wと、絶縁層5-6と、反射防止層6-6と、半導体基板10-6とが配されている。半導体基板10-6には、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-6のシリコン(Si)層に埋め込まれている。 In the pixel 100-6-4, an on-chip lens 2-6 -W and an in-layer lens through which green light, red light and blue light (BGR (W) light) pass sequentially from the light incident side. W, an insulating layer 5-6, an antireflective layer 6-6, and a semiconductor substrate 10-6 are disposed. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-6, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-6.
 オンチップレンズ2-6-Wの上部(光入射面側であって、図6中では上側)は上凸形状であって、オンチップレンズ2-6-Wの下部(図6中では下側)は下凸形状である。オンチップレンズ2-6-Wの上部の曲率半径(rl)はrl>0であり、オンチップレンズ2-6-Wの下部の曲率半径(rc)はrc<0である。カラーフィルタ3-6-Wの上部(光入射面側であって、図6中では上側)は下凸形状(凹形状)である。 The upper portion (on the light incident surface side, upper side in FIG. 6) of the on-chip lens 2-6-W is convex upward, and the lower portion (lower side in FIG. 6) of the on-chip lens 2-6-W ) Is a downward convex shape. The curvature radius (rl) of the upper part of the on-chip lens 2-6-W is rl> 0, and the curvature radius (rc) of the lower part of the on-chip lens 2-6-W is rc <0. The upper portion of the color filter 3-6-W (on the light incident surface side and the upper side in FIG. 6) has a downward convex shape (concave shape).
 オンチップレンズ2-6-Wは、下凸形状(凹形状)の層内レンズ3-6-Wより高屈折率の材料が用いられてよい。オンチップレンズ2-6-Wの屈折率としては、例えば、nl=1.75~1.85でよい。一方、層内レンズ3-6-Wの屈折率としては、例えば、nc=1.55~1.65でよい。画素100-3-4において、反射防止層6-6から、層内レンズ3-6-Wの光入射側である上端部までの距離はhw-6である。上記の数式(1)を満たすように、オンチップレンズ2-6-Wの上部の曲率半径(rl)及びオンチップレンズ2-6-Wの下部の曲率半径(rc)は最適化される。これにより、画素100-6-4(BGR(W)光の波長帯)において、集光性が確保されて、色収差が低減されて、回避され得る。なお、例えば、上記の屈折率範囲の組み合わせのとき、オンチップレンズ2-6-Wの上部の曲率半径(rl)及びオンチップレンズ2-6-Wの下部の曲率半径(rc)は±4%程の範囲が許容される。 The on-chip lens 2-6-W may be made of a material having a refractive index higher than that of the in-layer lens 3-6W having a downward convex shape (concave shape). The refractive index of the on-chip lens 2-6-W may be, for example, nl = 1.75 to 1.85. On the other hand, the refractive index of the in-layer lens 3-6-W may be, for example, nc = 1.55 to 1.65. In the pixel 100-3-4, the distance from the anti-reflection layer 6-6 to the upper end portion as the light incident side of the in-layer lens 3-6W is hw-6. The radius of curvature (rl) of the upper portion of the on-chip lens 2-6-W and the radius of curvature (rc) of the lower portion of the on-chip lens 2-6-W are optimized so as to satisfy the above equation (1). As a result, in the pixel 100-6-4 (the wavelength band of BGR (W) light), the light collecting property is secured, the chromatic aberration is reduced, and can be avoided. For example, in the case of the combination of the above refractive index ranges, the curvature radius (rl) of the upper part of the on-chip lens 2-6-W and the curvature radius (rc) of the lower part of the on-chip lens 2-6-W are ± 4. A range of about% is acceptable.
 半導体基板10-6の裏面(図6中では上面)の側において、画素分離部9-6-G、画素分離部9-6-GR、画素分離部9-6-RB、画素分離部9-6-BW及び画素分離部9-6-Wが、半導体基板10-6の内部に埋め込まれて形成されている。画素分離部9-6-G、画素分離部9-6-GR、画素分離部9-6-RB、画素分離部9-6-BW及び画素分離部9-6-Wは、4つの画素(画素100-6-1~100-6-4)の間を区画して電気的に分離している。図6に示されるように、画素分離部9-6-Gは、シリコン酸化膜7-6-Gとシリコン窒化膜8-6-Gとから構成されてよく、画素分離部9-6-GRは、シリコン酸化膜7-6-GRとシリコン窒化膜8-6-GRとから構成されてよく、画素分離部9-6-RBは、シリコン酸化膜7-6-RBとシリコン窒化膜8-6-RBとから構成されてよく、画素分離部9-6-BWは、シリコン酸化膜7-6-BWとシリコン窒化膜8-6-BWとから構成されてよく、画素分離部9-6-Wは、シリコン酸化膜7-6-Wとシリコン窒化膜8-6-Wとから構成されてよい。 On the side of the back surface (upper surface in FIG. 6) of the semiconductor substrate 10-6, the pixel separator 9-6-G, the pixel separator 9-6-GR, the pixel separator 9-6-RB, the pixel separator 9- The 6-BW and the pixel separating portion 9-6-W are formed embedded in the semiconductor substrate 10-6. The pixel separator 9-6-G, the pixel separator 9-6-GR, the pixel separator 9-6-RB, the pixel separator 9-6-BW, and the pixel separator 9-6-W The pixels 100-6-1 to 100-6-4) are partitioned and electrically separated. As shown in FIG. 6, the pixel separating portion 9-6-G may be composed of a silicon oxide film 7-6-G and a silicon nitride film 8-6-G, and the pixel separating portion 9-6-GR. May be composed of a silicon oxide film 7-6-GR and a silicon nitride film 8-6-GR, and the pixel separating portion 9-6-RB is a silicon oxide film 7-6-RB and a silicon nitride film 8- The pixel separating portion 9-6-BW may be composed of a silicon oxide film 7-6-BW and a silicon nitride film 8-6-BW. -W may be composed of a silicon oxide film 7-6-W and a silicon nitride film 8-6-W.
 固体撮像素子1-6は、画素間遮光膜4-6-G、画素間遮光膜4-6-GR、画素間遮光膜4-6-RB、画素間遮光膜4-6-BW及び画素間遮光膜4-6-Wを備える。固体撮像素子1-6は、更に、ハードマスク材40-6-G、ハードマスク材40-6-GR、ハードマスク材40-6-RB、ハードマスク材40-6-BW及びハードマスク材40-6-Wを備える。画素間遮光膜4-6-G、画素間遮光膜4-6-GR、画素間遮光膜4-6-RB、画素間遮光膜4-6-BW及び画素間遮光膜4-6-Wは、絶縁層5-6の直上であって、画素100-6-1~画素100-6-4のそれぞれの画素境界に形成される。ハードマスク材40-6-G、ハードマスク材40-6-GR、ハードマスク材40-6-RB、ハードマスク材40-6-BW及びハードマスク材40-6-Wのそれぞれは、画素間遮光膜4-6-G、画素間遮光膜4-6-GR、画素間遮光膜4-6-RB、画素間遮光膜4-6-BW及び画素間遮光膜4-6-Wのそれぞれの直上であって、画素100-6-1~画素100-6-4のそれぞれの画素境界に形成される。ハードマスク材40-6-Gは、シリコン酸化膜41-6-Gとシリコン窒化膜42-6-Gとから構成されてよく、ハードマスク材40-6-GRは、シリコン酸化膜41-6-GRとシリコン窒化膜42-6-GRとから構成されてよく、ハードマスク材40-6-RBは、シリコン酸化膜41-6-RBとシリコン窒化膜42-6-RBとから構成されてよく、ハードマスク材40-6-BWは、シリコン酸化膜41-6-BWとシリコン窒化膜42-6-BWとから構成されてよく、ハードマスク材40-6-Wは、シリコン酸化膜41-6-Wとシリコン窒化膜42-6-Wとから構成されてよい。そして、図6に示されるように、シリコン窒化膜42-6-G、シリコン窒化膜42-6-GR、シリコン窒化膜42-6-RB、シリコン窒化膜42-6-BW及びシリコン窒化膜42-6-Wのそれぞれが、画素間遮光膜4-6-G、画素間遮光膜4-6-GR、画素間遮光膜4-6-RB、画素間遮光膜4-6-BW及び画素間遮光膜4-6-Wのそれぞれの直上に配されている。 The solid-state imaging device 1-6 includes an inter-pixel light shielding film 4-6-G, an inter-pixel light shielding film 4-6-GR, an inter-pixel light shielding film 4-6-RB, an inter-pixel light shielding film 4-6-BW, and an inter-pixel A light shielding film 4-6-W is provided. The solid-state imaging device 1-6 further includes a hard mask material 40-6-G, a hard mask material 40-6-GR, a hard mask material 40-6-RB, a hard mask material 40-6-BW, and a hard mask material 40. -6-W is equipped. The inter-pixel light shielding film 4-6-G, the inter-pixel light shielding film 4-6-GR, the inter-pixel light shielding film 4-6-RB, the inter-pixel light shielding film 4-6-BW, and the inter-pixel light shielding film 4-6-W And the pixel boundary of each of the pixels 100-6-1 to 100-6-4. Each of the hard mask material 40-6-G, hard mask material 40-6-GR, hard mask material 40-6-RB, hard mask material 40-6-BW and hard mask material 40-6-W is between pixels The light shielding film 4-6-G, the inter-pixel light shielding film 4-6-GR, the inter-pixel light shielding film 4-6-RB, the inter-pixel light shielding film 4-6-BW, and the inter-pixel light shielding film 4-6-W It is formed immediately above the pixel boundary of each of the pixels 100-6-1 to 100-6-4. The hard mask material 40-6-G may be composed of a silicon oxide film 41-6-G and a silicon nitride film 42-6-G, and the hard mask material 40-6-GR is a silicon oxide film 41-6. The hard mask material 40-6-RB may be composed of a silicon oxide film 41-6-RB and a silicon nitride film 42-6-RB. The hard mask material 40-6-BW may be composed of a silicon oxide film 41-6-BW and a silicon nitride film 42-6-BW, and the hard mask material 40-6-W is a silicon oxide film 41. It may be composed of -6-W and silicon nitride film 42-6-W. Then, as shown in FIG. 6, the silicon nitride film 42-6-G, the silicon nitride film 42-6-GR, the silicon nitride film 42-6-RB, the silicon nitride film 42-6-BW, and the silicon nitride film 42. Each of -6-W is an inter-pixel light shielding film 4-6-G, an inter-pixel light shielding film 4-6-GR, an inter-pixel light shielding film 4-6-RB, an inter-pixel light shielding film 4-6-BW and an inter-pixel It is disposed immediately above each of the light shielding films 4-6-W.
 図6に示されるように、カラーフィルタ3-6-Gは、画素間遮光膜4-6-G及びハードマスク材40-6-Gと、画素間遮光膜4-6-GR及びハードマスク材40-6-GRとの間に埋め込められている。カラーフィルタ3-6-Rは、画素間遮光膜4-6-GR及びハードマスク材40-6-GRと、画素間遮光膜4-6-RB及びハードマスク材40-6-RBとの間に埋め込められている。カラーフィルタ3-6-Bは、画素間遮光膜4-6-RB及びハードマスク材40-6-RBと、画素間遮光膜4-6-BW及びハードマスク材40-6-BWとの間に埋め込められている。カラーフィルタ3-6-Wは、画素間遮光膜4-6-BW及びハードマスク材40-6-BWと、画素間遮光膜4-6-W及びハードマスク材40-6-Wとの間に埋め込められている。 As shown in FIG. 6, the color filter 3-6 -G includes the inter-pixel light shielding film 4-6 -G and the hard mask material 40-6 -G, the inter-pixel light shielding film 4-6 -GR and the hard mask material It is embedded between 40-6-GR. The color filter 3-6-R is provided between the inter-pixel light shielding film 4-6-GR and the hard mask material 40-6-GR and the inter-pixel light shielding film 4-6-RB and the hard mask material 40-6-RB. Embedded in The color filter 3-6-B is provided between the inter-pixel light shielding film 4-6-RB and the hard mask material 40-6-RB and the inter-pixel light shielding film 4-6-BW and the hard mask material 40-6-BW. Embedded in The color filter 3-6-W is provided between the inter-pixel light shielding film 4-6-BW and the hard mask material 40-6-BW and the inter-pixel light shielding film 4-6-W and the hard mask material 40-6-W. Embedded in
 画素間遮光膜4-6-G、画素間遮光膜4-6-GR、画素間遮光膜4-6-RB、画素間遮光膜4-6-BW及び画素間遮光膜4-6-Wは、光を遮光する材料であればよく、遮光性が強く、かつ微細加工、例えばエッチングで精度よく加工できる材料として、金属、例えば、アルミニウム(Al)、タングステン(W)、銅(Cu)等の膜で形成されてよい。 The inter-pixel light shielding film 4-6-G, the inter-pixel light shielding film 4-6-GR, the inter-pixel light shielding film 4-6-RB, the inter-pixel light shielding film 4-6-BW, and the inter-pixel light shielding film 4-6-W Any material that shields light, which has strong light shielding properties and can be precisely processed by fine processing such as etching, may be a metal such as aluminum (Al), tungsten (W), copper (Cu), etc. It may be formed of a film.
 固体撮像素子1-6において、画素間遮光膜4-6-G、画素間遮光膜4-6-GR、画素間遮光膜4-6-RB、画素間遮光膜4-6-BW及び画素間遮光膜4-6-Wが形成される際に、レジストマスクと選択比が取れないときや取りにくいときに、ハードマスク材40-6-G、ハードマスク材40-6-GR、ハードマスク材40-6-RB、ハードマスク材40-6-BW及びハードマスク材40-6-Wを用いて、ハードマスク加工することができる。図6に示されるように、ハードマスク材40-6-G、ハードマスク材40-6-GR、ハードマスク材40-6-RB、ハードマスク材40-6-BW及びハードマスク材40-6-Wのそれぞれは、画素間遮光膜4-6-G、画素間遮光膜4-6-GR、画素間遮光膜4-6-RB、画素間遮光膜4-6-BW及び画素間遮光膜4-6-Wのそれぞれの直上に残ったままでよい。 In the solid-state imaging device 1-6, the inter-pixel light shielding film 4-6-G, the inter-pixel light shielding film 4-6-GR, the inter-pixel light shielding film 4-6-RB, the inter-pixel light shielding film 4-6-BW, and the inter-pixel Hard mask material 40-6-G, hard mask material 40-6-GR, hard mask material when the light shielding film 4-6-W is formed, or when the selectivity with the resist mask can not be obtained Hard mask processing can be performed using 40-6-RB, hard mask material 40-6-BW and hard mask material 40-6-W. As shown in FIG. 6, hard mask material 40-6-G, hard mask material 40-6-GR, hard mask material 40-6-RB, hard mask material 40-6-BW and hard mask material 40-6. In each of -W, an inter-pixel light shielding film 4-6-G, an inter-pixel light shielding film 4-6-GR, an inter-pixel light shielding film 4-6-RB, an inter-pixel light shielding film 4-6-BW, and an inter-pixel light shielding film It may remain right above each of 4-6-W.
[2-7.第7の実施形態(固体撮像素子の例7)]
 以下に、本技術に係る第7の実施形態(固体撮像素子の例7)の固体撮像素子について、説明をする。
[2-7. Seventh Embodiment (Example 7 of Solid-State Imaging Device)]
The solid-state imaging device according to the seventh embodiment (example 7 of the solid-state imaging device) according to the present technology will be described below.
 図7及び図8に、本技術に係る第7の実施形態の固体撮像素子の一例である固体撮像素子1-7(a)~1-7(f)を示す。図7は、固体撮像素子1-7a~1-7cのそれぞれの固体撮像素子の4画素分の断面図であり、図8は、固体撮像素子1-7d~1-7fのそれぞれの固体撮像素子の4画素分の断面図である。なお、特に断りがない限り、「上」とは図7及び図8中の上方向を意味し、「下」とは、図7及び図8中の下方向を意味する。 FIGS. 7 and 8 show solid-state imaging devices 1-7 (a) to 1-7 (f) which are an example of a solid-state imaging device according to a seventh embodiment of the present technology. FIG. 7 is a cross-sectional view of four pixels of the solid-state imaging device of each of the solid-state imaging devices 1-7a to 1-7c, and FIG. Is a cross-sectional view of four pixels. In addition, unless there is particular notice, "upper" means the upper direction in FIG.7 and FIG.8, and "lower" means the lower direction in FIG.7 and FIG.8.
 まず、図7(a)を参照する。固体撮像素子1-7aは、本技術に係る第1の実施形態の固体撮像素子に、オンチップレンズ2-7a-G上に形成されたオンチップレンズ用反射防止膜20-7a-G、オンチップレンズ2-7a-R上に形成されたオンチップレンズ用反射防止膜20-7a-R、オンチップレンズ2-7a-B上に形成されたオンチップレンズ用反射防止膜20-7a-B及びオンチップレンズ2-7a-W上に形成されたオンチップレンズ用反射防止膜20-7a-Wを備える固体撮像素子である。オンチップレンズ用反射防止膜20-7a-G、オンチップレンズ用反射防止膜20-7a-R、オンチップレンズ用反射防止膜20-7a-B及びオンチップレンズ用反射防止膜20-7a-Wのそれぞれの屈折率は、オンチップレンズ2-7a-G、オンチップレンズ2-7a-R、オンチップレンズ2-7a-B及びオンチップレンズ2-7a-Wのそれぞれの屈折率より、0.1~0.2低くてよい。 First, FIG. 7A will be referred to. The solid-state imaging device 1-7a is a solid-state imaging device according to the first embodiment of the present technology, which includes the on-chip lens antireflection film 20-7a-G formed on the on-chip lens 2-7a-G. Anti-reflection film 20-7a-R for on-chip lens formed on chip lens 2-7a-R, and anti-reflection film 20-7a-B for on-chip lens formed on on-chip lens 2-7a-B And an on-chip lens anti-reflection film 20-7a-W formed on the on-chip lens 2-7a-W. Antireflection film 20-7a-G for on-chip lens, Antireflection film 20-7a-R for on-chip lens, Antireflection film 20-7a-B for on-chip lens, Antireflection film 20-7a- for on-chip lens The respective refractive indices of W are determined from the respective refractive indices of the on-chip lens 2-7a-G, the on-chip lens 2-7a-R, the on-chip lens 2-7a-B, and the on-chip lens 2-7a-W. It may be as low as 0.1 to 0.2.
 オンチップレンズ用反射防止膜20-7a-Gが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7a-Gと、オンチップレンズ2-7a-Gと、緑色光(G光)が透過するカラーフィルタ3-7a-Gと、絶縁層5-7aと、反射防止層6-7aと、半導体基板10-7aとが配されている。半導体基板10-7aには、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-7aのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7a-G for on-chip lens is formed, the anti-reflection film 20-7a-G for on-chip lens and the on-chip lens 2-7a-G are sequentially arranged from the light incident side. A color filter 3-7a-G that transmits green light (G light), an insulating layer 5-7a, an antireflective layer 6-7a, and a semiconductor substrate 10-7a are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-7a, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7a.
 オンチップレンズ用反射防止膜20-7a-Rが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7a-Rと、オンチップレンズ2-7a-Rと、赤色光(R光)が透過するカラーフィルタ3-7a-Rと、絶縁層5-7aと、反射防止層6-7aと、半導体基板10-7aとが配されている。半導体基板10-7aには、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-7aのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7a-R for on-chip lens is formed, the anti-reflection film 20-7a-R for on-chip lens and the on-chip lens 2-7a-R are sequentially arranged from the light incident side. A color filter 3-7a-R transmitting red light (R light), an insulating layer 5-7a, an antireflective layer 6-7a, and a semiconductor substrate 10-7a are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-7a, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7a.
 オンチップレンズ用反射防止膜20-7a-Bが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7a-Bと、オンチップレンズ2-7a-Bと、青色光(B光)が透過するカラーフィルタ3-7a-Bと、絶縁層5-7aと、反射防止層6-7aと、半導体基板10-7aとが配されている。半導体基板10-7aには、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-7aのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7a-B for on-chip lens is formed, the anti-reflection film 20-7a-B for on-chip lens and the on-chip lens 2-7a-B are sequentially arranged from the light incident side. A color filter 3-7a-B transmitting blue light (B light), an insulating layer 5-7a, an antireflective layer 6-7a, and a semiconductor substrate 10-7a are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-7a, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7a.
 オンチップレンズ用反射防止膜20-7a-Wが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7a-Wと、オンチップレンズ2-7a-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-7a-Wと、絶縁層5-7aと、反射防止層6-7aと、半導体基板10-7aが配されている。半導体基板10-7aには、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-7aのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7a-W for on-chip lens is formed, the anti-reflection film 20-7a-W for on-chip lens and the on-chip lens 2-7a-W are sequentially arranged from the light incident side. , An in-layer lens 3-7a-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-7a, an antireflective layer 6-7a, and a semiconductor substrate 10-7a It is arranged. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-7a, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7a.
 図7(a)に示されるように、固体撮像素子1-7aには、画素間遮光膜4-7aが、絶縁層5-7aの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。また、図7(a)に示されるように、固体撮像素子1-7aには、画素分離部9-7aが、半導体基板10-7aの裏面(図7(a)中では上面)の側において、半導体基板10-7aの内部に埋め込まれて形成されている。画素分離部9-7aは、4つの画素の間を区画して電気的に分離している。 As shown in FIG. 7A, in the solid-state imaging device 1-7a, the inter-pixel light shielding film 4-7a is directly on the insulating layer 5-7a, and the pixel boundary of each pixel of the four pixels Is formed. Further, as shown in FIG. 7A, in the solid-state imaging device 1-7a, the pixel separating portion 9-7a is located on the side of the back surface (upper surface in FIG. 7A) of the semiconductor substrate 10-7a. Embedded in the semiconductor substrate 10-7a. The pixel separating unit 9-7a divides the four pixels to electrically separate them.
 図7(b)を参照する。固体撮像素子1-7bは、本技術に係る第2の実施形態の固体撮像素子に、オンチップレンズ2-7b-G上に形成されたオンチップレンズ用反射防止膜20-7b-G、オンチップレンズ2-7b-R上に形成されたオンチップレンズ用反射防止膜20-7b-R、オンチップレンズ2-7b-B上に形成されたオンチップレンズ用反射防止膜20-7b-B及びオンチップレンズ2-7b-W上に形成されたオンチップレンズ用反射防止膜20-7b-Wを備える固体撮像素子である。オンチップレンズ用反射防止膜20-7b-G、オンチップレンズ用反射防止膜20-7b-R、オンチップレンズ用反射防止膜20-7b-B及びオンチップレンズ用反射防止膜20-7b-Wのそれぞれの屈折率は、オンチップレンズ2-7b-G、オンチップレンズ2-7b-R、オンチップレンズ2-7b-B及びオンチップレンズ2-7b-Wのそれぞれの屈折率より、0.1~0.2低くてよい。 Refer to FIG. 7 (b). The solid-state imaging device 1-7b is a solid-state imaging device according to the second embodiment of the present technology, including an on-chip lens anti-reflection film 20-7b-G formed on the on-chip lens 2-7b-G. Anti-reflection film 20-7b-R for on-chip lens formed on chip lens 2-7b-R, and anti-reflection film 20-7b-B for on-chip lens formed on on-chip lens 2-7b-B And an on-chip lens anti-reflection film 20-7b-W formed on the on-chip lens 2-7b-W. Antireflection film 20-7b-G for on-chip lens, Antireflection film 20-7b-R for on-chip lens, Antireflection film 20-7b-B for on-chip lens, Antireflection film 20-7b- for on-chip lens The respective refractive indices of W are calculated from the respective refractive indices of the on-chip lens 2-7b-G, the on-chip lens 2-7b-R, the on-chip lens 2-7b-B, and the on-chip lens 2-7b-W. It may be as low as 0.1 to 0.2.
 オンチップレンズ用反射防止膜20-7b-Gが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7b-Gと、オンチップレンズ2-7b-Gと、緑色光(G光)が透過するカラーフィルタ3-7b-Gと、絶縁層5-7bと、反射防止層6-7bと、半導体基板10-7bとが配されている。半導体基板10-7bには、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-7bのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7b-G for on-chip lens is formed, the on-chip lens anti-reflection film 20-7b-G and the on-chip lens 2-7b-G are sequentially arranged from the light incident side. A color filter 3-7b-G that transmits green light (G light), an insulating layer 5-7b, an antireflective layer 6-7b, and a semiconductor substrate 10-7b are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-7b and embedded in the silicon (Si) layer of the semiconductor substrate 10-7b.
 オンチップレンズ用反射防止膜20-7b-Rが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7b-Rと、オンチップレンズ2-7b-Rと、赤色光(R光)が透過するカラーフィルタ3-7b-Rと、絶縁層5-7bと、反射防止層6-7bと、半導体基板10-7bとが配されている。半導体基板10-7bには、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-7bのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7b-R for on-chip lens is formed, the anti-reflection film 20-7b-R for on-chip lens and the on-chip lens 2-7b-R are sequentially arranged from the light incident side. A color filter 3-7b-R transmitting red light (R light), an insulating layer 5-7b, an antireflective layer 6-7b, and a semiconductor substrate 10-7b are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-7b, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-7b.
 オンチップレンズ用反射防止膜20-7b-Bが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7b-Bと、オンチップレンズ2-7b-Bと、青色光(B光)が透過するカラーフィルタ3-7b-Bと、絶縁層5-7bと、反射防止層6-7bと、半導体基板10-7bとが配されている。半導体基板10-7bには、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-7bのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7b-B for on-chip lens is formed, the anti-reflection film 20-7b-B for on-chip lens and the on-chip lens 2-7b-B are sequentially arranged from the light incident side. A color filter 3-7b-B transmitting blue light (B light), an insulating layer 5-7b, an antireflection layer 6-7b, and a semiconductor substrate 10-7b are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-7b and embedded in the silicon (Si) layer of the semiconductor substrate 10-7b.
 オンチップレンズ用反射防止膜20-7b-Wが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7b-Wと、オンチップレンズ2-7b-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-7b-Wと、絶縁層5-7bと、反射防止層6-7bと、半導体基板10-7bが配されている。半導体基板10-7bには、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-7bのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7b-W for on-chip lens is formed, the anti-reflection film 20-7b-W for on-chip lens and the on-chip lens 2-7b-W are arranged in order from the light incident side. , An in-layer lens 3-7b-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-7b, an antireflective layer 6-7b, and a semiconductor substrate 10-7b It is arranged. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-7 b and embedded in the silicon (Si) layer of the semiconductor substrate 10-7 b.
 図7(b)に示されるように、固体撮像素子1-7bには、画素間遮光膜4-7bが、絶縁層5-7bの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。また、図7(b)に示されるように、固体撮像素子1-7bには、画素分離部9-7bが、半導体基板10-7bの裏面(図7(b)中では上面)の側において、半導体基板10-7bの内部に埋め込まれて形成されている。画素分離部9-7bは、4つの画素の間を区画して電気的に分離している。 As shown in FIG. 7B, in the solid-state imaging device 1-7b, the inter-pixel light shielding film 4-7b is directly on the insulating layer 5-7b, and the pixel boundary of each pixel of the four pixels Is formed. Further, as shown in FIG. 7B, in the solid-state imaging device 1-7b, the pixel separating portion 9-7b is located on the side of the back surface (upper surface in FIG. 7B) of the semiconductor substrate 10-7b. Embedded in the semiconductor substrate 10-7b. The pixel separation unit 9-7b divides the four pixels and electrically separates them.
 図7(c)を参照する。固体撮像素子1-7cは、本技術に係る第3の実施形態の固体撮像素子に、オンチップレンズ2-7c-G上に形成されたオンチップレンズ用反射防止膜20-7c-G、オンチップレンズ2-7c-R上に形成されたオンチップレンズ用反射防止膜20-7c-R、オンチップレンズ2-7c-B上に形成されたオンチップレンズ用反射防止膜20-7c-B及びオンチップレンズ2-7c-W上に形成されたオンチップレンズ用反射防止膜20-7c-Wを備える固体撮像素子である。オンチップレンズ用反射防止膜20-7c-G、オンチップレンズ用反射防止膜20-7c-R、オンチップレンズ用反射防止膜20-7c-B及びオンチップレンズ用反射防止膜20-7c-Wのそれぞれの屈折率は、オンチップレンズ2-7c-G、オンチップレンズ2-7c-R、オンチップレンズ2-7c-B及びオンチップレンズ2-7c-Wのそれぞれの屈折率より、0.1~0.2低くてよい。 Refer to FIG. 7 (c). The solid-state imaging device 1-7c is a solid-state imaging device according to the third embodiment of the present technology, which includes the on-chip lens anti-reflection film 20-7c-G formed on the on-chip lens 2-7c-G. Anti-reflection film 20-7c-R for on-chip lens formed on tip lens 2-7c-R, and anti-reflection film 20-7c-B for on-chip lens formed on on-chip lens 2-7c-B And an on-chip lens anti-reflection film 20-7c-W formed on the on-chip lens 2-7c-W. Antireflection film 20-7c-G for on-chip lens, Antireflection film 20-7c-R for on-chip lens, Antireflection film 20-7c-B for on-chip lens, Antireflection film 20-7c- for on-chip lens The refractive index of each of W is determined from the refractive index of each of on-chip lens 2-7c-G, on-chip lens 2-7c-R, on-chip lens 2-7c-B and on-chip lens 2-7c-W, It may be as low as 0.1 to 0.2.
 すなわち、オンチップレンズ用反射防止膜20-7c-Gが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7c-Gと、オンチップレンズ2-7c-Gと、緑色光(G光)が透過するカラーフィルタ3-7c-Gと、絶縁層5-7cと、反射防止層6-7cと、半導体基板10-7cとが配されている。半導体基板10-7cには、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-7cのシリコン(Si)層に埋め込まれている。 That is, in the pixels on which the anti-reflection film 20-7c-G for on-chip lens is formed, the anti-reflection film 20-7c-G for on-chip lens and the on-chip lens 2-7c- are sequentially arranged from the light incident side. G, a color filter 3-7c-G that transmits green light (G light), an insulating layer 5-7c, an antireflective layer 6-7c, and a semiconductor substrate 10-7c are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-7c, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-7c.
 オンチップレンズ用反射防止膜20-7c-Rが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7c-Rと、オンチップレンズ2-7c-Rと、赤色光(R光)が透過するカラーフィルタ3-7c-Rと、絶縁層5-7cと、反射防止層6-7cと、半導体基板10-7cとが配されている。半導体基板10-7cには、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-7cのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7c-R for on-chip lens is formed, the anti-reflection film 20-7c-R for on-chip lens and the on-chip lens 2-7c-R are sequentially arranged from the light incident side. A color filter 3-7c-R transmitting red light (R light), an insulating layer 5-7c, an antireflective layer 6-7c, and a semiconductor substrate 10-7c are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-7c, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-7c.
 オンチップレンズ用反射防止膜20-7c-Bが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7c-Bと、オンチップレンズ2-7c-Bと、青色光(B光)が透過するカラーフィルタ3-7c-Bと、絶縁層5-7cと、反射防止層6-7cと、半導体基板10-7cとが配されている。半導体基板10-7cには、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-7cのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7c-B for on-chip lens is formed, the anti-reflection film 20-7c-B for on-chip lens and the on-chip lens 2-7c-B are sequentially arranged from the light incident side. A color filter 3-7c-B transmitting blue light (B light), an insulating layer 5-7c, an antireflective layer 6-7c, and a semiconductor substrate 10-7c are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-7c, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-7c.
 オンチップレンズ用反射防止膜20-7c-Wが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-7c-Wと、オンチップレンズ2-7c-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-7c-Wと、絶縁層5-7cと、反射防止層6-7cと、半導体基板10-7cとが配されている。半導体基板10-7cには、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-7cのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-7c-W for on-chip lens is formed, the anti-reflection film 20-7c-W for on-chip lens and the on-chip lens 2-7c-W are sequentially arranged from the light incident side. , An in-layer lens 3-7c-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-7c, an antireflective layer 6-7c, and a semiconductor substrate 10-7c Are arranged. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-7c, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-7c.
 図7(c)に示されるように、固体撮像素子1-7cには、画素間遮光膜4-7cが、絶縁層5-7cの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。また、図7(c)に示されるように、固体撮像素子1-7cには、画素分離部9-7cが、半導体基板10-7cの裏面(図7(c)中では上面)の側において、半導体基板10-7cの内部に埋め込まれて形成されている。画素分離部9-7cは、4つの画素の間を区画して電気的に分離している。 As shown in FIG. 7C, in the solid-state imaging device 1-7c, the inter-pixel light shielding film 4-7c is directly on the insulating layer 5-7c, and the pixel boundary of each pixel of the four pixels Is formed. Further, as shown in FIG. 7C, in the solid-state imaging device 1-7c, the pixel separating portion 9-7c is located on the side of the back surface (upper surface in FIG. 7C) of the semiconductor substrate 10-7c. Embedded in the semiconductor substrate 10-7c. The pixel separating unit 9-7c divides the four pixels to electrically separate them.
 図8(d)を参照する。固体撮像素子1-8dは、本技術に係る第4の実施形態の固体撮像素子に、オンチップレンズ2-8d-G上に形成されたオンチップレンズ用反射防止膜20-8d-G、オンチップレンズ2-8d-R上に形成されたオンチップレンズ用反射防止膜20-8d-R、オンチップレンズ2-8d-B上に形成されたオンチップレンズ用反射防止膜20-8d-B及びオンチップレンズ2-8d-W上に形成されたオンチップレンズ用反射防止膜20-8d-Wを備える固体撮像素子である。オンチップレンズ用反射防止膜20-8d-G、オンチップレンズ用反射防止膜20-8d-R、オンチップレンズ用反射防止膜20-8d-B及びオンチップレンズ用反射防止膜20-8d-Wのそれぞれの屈折率は、オンチップレンズ2-8d-G、オンチップレンズ2-8d-R、オンチップレンズ2-8d-B及びオンチップレンズ2-8d-Wのそれぞれの屈折率より、0.1~0.2低くてよい。 Please refer to FIG. 8 (d). A solid-state imaging device 1-8d is a solid-state imaging device according to the fourth embodiment of the present technology, including an on-chip lens anti-reflection film 20-8d-G formed on the on-chip lens 2-8d-G; Anti-reflection film 20-8d-R for on-chip lens formed on tip lens 2-8d-R, Anti-reflection film 20-8d-B for on-chip lens formed on on-chip lens 2-8d-B And an on-chip lens antireflective film 20-8d-W formed on the on-chip lens 2-8d-W. Antireflection film 20-8d-G for on-chip lens, Antireflection film 20-8d-R for on-chip lens, Antireflection film 20-8d-B for on-chip lens, Antireflection film 20-8d- for on-chip lens The respective refractive indices of W are calculated from the respective refractive indices of the on-chip lens 2-8 d-G, the on-chip lens 2-8 d-R, the on-chip lens 2-8 d-B, and the on-chip lens 2-8 d-W. It may be as low as 0.1 to 0.2.
 オンチップレンズ用反射防止膜20-8d-Gが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8d-Gと、オンチップレンズ2-8d-Gと、緑色光(G光)が透過するカラーフィルタ3-8d-Gと、絶縁層5-8dと、反射防止層6-8dと、半導体基板10-8dとが配されている。半導体基板10-8dには、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-8dのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8d-G for on-chip lens is formed, the anti-reflection film 20-8d-G for on-chip lens and the on-chip lens 2-8d-G are arranged in order from the light incident side. A color filter 3-8d-G which transmits green light (G light), an insulating layer 5-8d, an antireflective layer 6-8d, and a semiconductor substrate 10-8d are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-8d and embedded in the silicon (Si) layer of the semiconductor substrate 10-8d.
 オンチップレンズ用反射防止膜20-8d-Rが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8d-Rと、オンチップレンズ2-8d-Rと、赤色光(R光)が透過するカラーフィルタ3-8d-Rと、絶縁層5-8dと、反射防止層6-8dと、半導体基板10-8dとが配されている。半導体基板10-8dには、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-8dのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8d-R for on-chip lens is formed, the anti-reflection film 20-8d-R for on-chip lens and the on-chip lens 2-8d-R are sequentially arranged from the light incident side. A color filter 3-8d-R transmitting red light (R light), an insulating layer 5-8d, an antireflective layer 6-8d, and a semiconductor substrate 10-8d are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-8d, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-8d.
 オンチップレンズ用反射防止膜20-8d-Bが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8d-Bと、オンチップレンズ2-8d-Bと、青色光(B光)が透過するカラーフィルタ3-8d-Bと、絶縁層5-8dと、反射防止層6-8dと、半導体基板10-8dとが配されている。半導体基板10-8dには、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-8dのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8d-B for on-chip lens is formed, the anti-reflection film 20-8d-B for on-chip lens and the on-chip lens 2-8d-B are sequentially arranged from the light incident side. A color filter 3-8d-B transmitting blue light (B light), an insulating layer 5-8d, an antireflective layer 6-8d, and a semiconductor substrate 10-8d are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-8d and embedded in the silicon (Si) layer of the semiconductor substrate 10-8d.
 オンチップレンズ用反射防止膜20-8d-Wが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8d-Wと、オンチップレンズ2-8d-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-8d-Wと、絶縁層5-8dと、反射防止層6-8dと、半導体基板10-8dとが配されている。半導体基板10-8dには、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-8dのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8d-W for on-chip lens is formed, the anti-reflection film 20-8d-W for on-chip lens and the on-chip lens 2-8d-W are arranged in order from the light incident side. , An in-layer lens 3-8d-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-8d, an antireflective layer 6-8d, and a semiconductor substrate 10-8d Are arranged. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-8 d and embedded in the silicon (Si) layer of the semiconductor substrate 10-8 d.
 図8(d)に示されるように、固体撮像素子1-8dには、画素間遮光膜4-8dが、絶縁層5-8dの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。また、図8(d)に示されるように、固体撮像素子1-8dには、ハードマスク材40-8dが、画素間遮光膜4-8dの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。さらに、図8(d)に示されるように、固体撮像素子1-8dには、画素分離部9-8dが、半導体基板10-8dの裏面(図8(d)中では上面)の側において、半導体基板10-8dの内部に埋め込まれて形成されている。画素分離部9-8dは、4つの画素の間を区画して電気的に分離している。 As shown in FIG. 8D, in the solid-state imaging device 1-8d, the inter-pixel light shielding film 4-8d is directly on the insulating layer 5-8d, and the pixel boundary of each pixel of the four pixels Is formed. Further, as shown in FIG. 8D, in the solid-state imaging device 1-8d, the hard mask material 40-8d is directly on the inter-pixel light shielding film 4-8d, and each pixel of the four pixels is Is formed at the pixel boundary of Furthermore, as shown in FIG. 8D, in the solid-state imaging device 1-8d, the pixel separating portion 9-8d is located on the side of the back surface (upper surface in FIG. 8D) of the semiconductor substrate 10-8d. Embedded in the semiconductor substrate 10-8d. The pixel separating unit 9-8d divides electrically between four pixels.
 図8(e)を参照する。固体撮像素子1-8eは、本技術に係る第5の実施形態の固体撮像素子に、オンチップレンズ2-8e-G上に形成されたオンチップレンズ用反射防止膜20-8e-G、オンチップレンズ2-8e-R上に形成されたオンチップレンズ用反射防止膜20-8e-R、オンチップレンズ2-8e-B上に形成されたオンチップレンズ用反射防止膜20-8e-B及びオンチップレンズ2-8e-W上に形成されたオンチップレンズ用反射防止膜20-8e-Wを備える固体撮像素子である。オンチップレンズ用反射防止膜20-8e-G、オンチップレンズ用反射防止膜20-8e-R、オンチップレンズ用反射防止膜20-8e-B及びオンチップレンズ用反射防止膜20-8e-Wのそれぞれの屈折率は、オンチップレンズ2-8e-G、オンチップレンズ2-8e-R、オンチップレンズ2-8e-B及びオンチップレンズ2-8e-Wのそれぞれの屈折率より、0.1~0.2低くてよい。 Refer to FIG. 8 (e). The solid-state imaging device 1-8e is a solid-state imaging device according to the fifth embodiment of the present technology, including an on-chip lens anti-reflection film 20-8e-G formed on the on-chip lens 2-8e-G; Anti-reflection film 20-8e-R for on-chip lens formed on tip lens 2-8e-R, and anti-reflection film 20-8e-B for on-chip lens formed on on-chip lens 2-8e-B And an on-chip lens antireflective film 20-8e-W formed on the on-chip lens 2-8e-W. Antireflection film 20-8e-G for on-chip lens, Antireflection film 20-8e-R for on-chip lens, Antireflection film 20-8e-B for on-chip lens, Antireflection film 20-8e- for on-chip lens The refractive index of each of W is determined by the refractive index of each of on-chip lens 2-8e-G, on-chip lens 2-8e-R, on-chip lens 2-8e-B, and on-chip lens 2-8e-W. It may be as low as 0.1 to 0.2.
 オンチップレンズ用反射防止膜20-8e-Gが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8e-Gと、オンチップレンズ2-8e-Gと、緑色光(G光)が透過するカラーフィルタ3-8e-Gと、絶縁層5-8eと、反射防止層6-8eと、半導体基板10-8eとが配されている。半導体基板10-8eには、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-8eのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8e-G for on-chip lens is formed, the anti-reflection film 20-8e-G for on-chip lens and the on-chip lens 2-8e-G are arranged in order from the light incident side. A color filter 3-8e-G that transmits green light (G light), an insulating layer 5-8e, an antireflective layer 6-8e, and a semiconductor substrate 10-8e are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-8e and embedded in a silicon (Si) layer of the semiconductor substrate 10-8e.
 オンチップレンズ用反射防止膜20-8e-Rが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8e-Rと、オンチップレンズ2-8e-Rと、赤色光(R光)が透過するカラーフィルタ3-8e-Rと、絶縁層5-8eと、反射防止層6-8eと、半導体基板10-8eとが配されている。半導体基板10-8eには、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-8eのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8e-R for on-chip lens is formed, the anti-reflection film 20-8e-R for on-chip lens and the on-chip lens 2-8e-R are sequentially arranged from the light incident side. A color filter 3-8e-R that transmits red light (R light), an insulating layer 5-8e, an antireflective layer 6-8e, and a semiconductor substrate 10-8e are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-8e, and is embedded in a silicon (Si) layer of the semiconductor substrate 10-8e.
 オンチップレンズ用反射防止膜20-8e-Bが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8e-Bと、オンチップレンズ2-8e-Bと、青色光(B光)が透過するカラーフィルタ3-8e-Bと、絶縁層5-8eと、反射防止層6-8eと、半導体基板10-8eとが配されている。半導体基板10-8eには、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-8eのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8e-B for on-chip lens is formed, the anti-reflection film 20-8e-B for on-chip lens and the on-chip lens 2-8e-B are sequentially arranged from the light incident side. A color filter 3-8e-B transmitting blue light (B light), an insulating layer 5-8e, an antireflective layer 6-8e, and a semiconductor substrate 10-8e are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-8e, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-8e.
 オンチップレンズ用反射防止膜20-8e-Wが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8e-Wと、オンチップレンズ2-8e-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-8e-Wと、絶縁層5-8eと、反射防止層6-8eと、半導体基板10-8eとが配されている。半導体基板10-8eには、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-8eのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8e-W for on-chip lens is formed, the anti-reflection film 20-8e-W for on-chip lens and the on-chip lens 2-8e-W are arranged in order from the light incident side. , An in-layer lens 3-8e-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-8e, an antireflective layer 6-8e, and a semiconductor substrate 10-8e Are arranged. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-8e and embedded in the silicon (Si) layer of the semiconductor substrate 10-8e.
 図8(e)に示されるように、固体撮像素子1-8eには、画素間遮光膜4-8eが、絶縁層5-8eの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。また、図8(e)に示されるように、固体撮像素子1-8eには、ハードマスク材40-8eが、画素間遮光膜4-8eの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。さらに、図8(e)に示されるように、固体撮像素子1-8eには、画素分離部9-8eが、半導体基板10-8eの裏面(図8(e)中では上面)の側において、半導体基板10-8eの内部に埋め込まれて形成されている。画素分離部9-8eは、4つの画素の間を区画して電気的に分離している。 As shown in FIG. 8E, in the solid-state imaging device 1-8e, the inter-pixel light shielding film 4-8e is directly on the insulating layer 5-8e, and the pixel boundary of each pixel of the four pixels Is formed. Further, as shown in FIG. 8E, in the solid-state imaging device 1-8e, the hard mask material 40-8e is directly on the inter-pixel light shielding film 4-8e, and each pixel of the four pixels is Is formed at the pixel boundary of Furthermore, as shown in FIG. 8E, in the solid-state imaging device 1-8e, the pixel separating portion 9-8e is on the side of the back surface (upper surface in FIG. 8E) of the semiconductor substrate 10-8e. Embedded in the semiconductor substrate 10-8e. The pixel separating unit 9-8e divides the four pixels to electrically separate them.
 図8(f)を参照する。固体撮像素子1-8fは、本技術に係る第6の実施形態の固体撮像素子に、オンチップレンズ2-8f-G上に形成されたオンチップレンズ用反射防止膜20-8f-G、オンチップレンズ2-8f-R上に形成されたオンチップレンズ用反射防止膜20-8f-R、オンチップレンズ2-8f-B上に形成されたオンチップレンズ用反射防止膜20-8f-B及びオンチップレンズ2-8f-W上に形成されたオンチップレンズ用反射防止膜20-8f-Wを備える固体撮像素子である。オンチップレンズ用反射防止膜20-8f-G、オンチップレンズ用反射防止膜20-8f-R、オンチップレンズ用反射防止膜20-8f-B及びオンチップレンズ用反射防止膜20-8f-Wのそれぞれの屈折率は、オンチップレンズ2-8f-G、オンチップレンズ2-8f-R、オンチップレンズ2-8f-B及びオンチップレンズ2-8f-Wのそれぞれの屈折率より、0.1~0.2低くてよい。 Please refer to FIG. 8 (f). A solid-state imaging device 1-8f is a solid-state imaging device according to the sixth embodiment of the present technology, including an on-chip lens anti-reflection film 20-8f-G formed on the on-chip lens 2-8f-G; Anti-reflection film 20-8f-R for on-chip lens formed on tip lens 2-8f-R, and anti-reflection film 20-8f-B for on-chip lens formed on on-chip lens 2-8f-B And an on-chip lens anti-reflection film 20-8f-W formed on the on-chip lens 2-8f-W. Antireflection film 20-8f-G for on-chip lens, Antireflection film 20-8f-R for on-chip lens, Antireflection film 20-8f-B for on-chip lens, Antireflection film 20-8f- for on-chip lens The respective refractive indices of W are calculated from the respective refractive indices of the on-chip lens 2-8 f-G, the on-chip lens 2-8 f-R, the on-chip lens 2-8 f-B, and the on-chip lens 2-8 f-W. It may be as low as 0.1 to 0.2.
 オンチップレンズ用反射防止膜20-8f-Gが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8f-Gと、オンチップレンズ2-8f-Gと、緑色光(G光)が透過するカラーフィルタ3-8f-Gと、絶縁層5-8fと、反射防止層6-8fと、半導体基板10-8fとが配されている。半導体基板10-8fには、緑色光(G光)用のフォトダイオード(不図示)が形成され、半導体基板10-8fのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8f-G for on-chip lens is formed, the anti-reflection film 20-8f-G for on-chip lens and the on-chip lens 2-8f-G are arranged in order from the light incident side. A color filter 3-8f-G that transmits green light (G light), an insulating layer 5-8f, an antireflective layer 6-8f, and a semiconductor substrate 10-8f are disposed. A photodiode (not shown) for green light (G light) is formed on the semiconductor substrate 10-8f and embedded in the silicon (Si) layer of the semiconductor substrate 10-8f.
 オンチップレンズ用反射防止膜20-8f-Rが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8f-Rと、オンチップレンズ2-8f-Rと、赤色光(R光)が透過するカラーフィルタ3-8f-Rと、絶縁層5-8fと、反射防止層6-8fと、半導体基板10-8fとが配されている。半導体基板10-8fには、赤色光(R光)用のフォトダイオード(不図示)が形成され、半導体基板10-8fのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8f-R for on-chip lens is formed, the anti-reflection film 20-8f-R for on-chip lens and the on-chip lens 2-8f-R are sequentially arranged from the light incident side. A color filter 3-8f-R transmitting red light (R light), an insulating layer 5-8f, an antireflective layer 6-8f, and a semiconductor substrate 10-8f are disposed. A photodiode (not shown) for red light (R light) is formed on the semiconductor substrate 10-8f and is embedded in a silicon (Si) layer of the semiconductor substrate 10-8f.
 オンチップレンズ用反射防止膜20-8f-Bが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8f-Bと、オンチップレンズ2-8f-Bと、青色光(B光)が透過するカラーフィルタ3-8f-Bと、絶縁層5-8fと、反射防止層6-8fと、半導体基板10-8fとが配されている。半導体基板10-8fには、青色光(B光)用のフォトダイオード(不図示)が形成され、半導体基板10-8fのシリコン(Si)層に埋め込まれている。 In the pixels on which the anti-reflection film 20-8f-B for on-chip lens is formed, the anti-reflection film 20-8f-B for on-chip lens and the on-chip lens 2-8f-B are sequentially arranged from the light incident side. A color filter 3-8f-B transmitting blue light (B light), an insulating layer 5-8f, an antireflective layer 6-8f, and a semiconductor substrate 10-8f are disposed. A photodiode (not shown) for blue light (B light) is formed on the semiconductor substrate 10-8f and embedded in the silicon (Si) layer of the semiconductor substrate 10-8f.
 オンチップレンズ用反射防止膜20-8f-Wが形成されている画素には、光入射側から順に、オンチップレンズ用反射防止膜20-8f-Wと、オンチップレンズ2-8f-Wと、緑色光、赤色光及び青色光(BGR(W)光)が透過する層内レンズ3-8f-Wと、絶縁層5-8fと、反射防止層6-8fと、半導体基板10-8fとが配されている。半導体基板10-8fには、白色光(BGR(W)光)用のフォトダイオード(不図示)が形成され、半導体基板10-8fのシリコン(Si)層に埋め込まれている。 The on-chip lens anti-reflection film 20-8f-W and the on-chip lens anti-reflection film 20-8f-W and the on-chip lens 2-8f-W are arranged in order from the light incident side to the pixel on which the anti-reflection film 20-8f-W is formed. , An in-layer lens 3-8 f-W that transmits green light, red light and blue light (BGR (W) light), an insulating layer 5-8 f, an antireflective layer 6-8 f, and a semiconductor substrate 10-8 f Are arranged. A photodiode (not shown) for white light (BGR (W) light) is formed on the semiconductor substrate 10-8f, and is embedded in the silicon (Si) layer of the semiconductor substrate 10-8f.
 図8(f)に示されるように、固体撮像素子1-8fには、画素間遮光膜4-8fが、絶縁層5-8fの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。また、図8(f)に示されるように、固体撮像素子1-8fには、ハードマスク材40-8fが、画素間遮光膜4-8fの直上であって、4つの画素のそれぞれの画素の画素境界に形成されている。さらに、図8(f)に示されるように、固体撮像素子1-8fには、画素分離部9-8fが、半導体基板10-8fの裏面(図8(f)中では上面)の側において、半導体基板10-8fの内部に埋め込まれて形成されている。画素分離部9-8fは、4つの画素の間を区画して電気的に分離している。 As shown in FIG. 8F, in the solid-state imaging device 1-8f, the inter-pixel light shielding film 4-8f is immediately above the insulating layer 5-8f, and the pixel boundary of each pixel of the four pixels Is formed. Further, as shown in FIG. 8F, in the solid-state imaging device 1-8f, the hard mask material 40-8f is directly on the inter-pixel light shielding film 4-8f, and each pixel of the four pixels is Is formed at the pixel boundary of Further, as shown in FIG. 8F, in the solid-state imaging device 1-8f, the pixel separating portion 9-8f is on the side of the back surface (upper surface in FIG. 8F) of the semiconductor substrate 10-8f. Embedded in the semiconductor substrate 10-8f. The pixel separation unit 9-8f divides the four pixels and electrically separates them.
<3.固体撮像素子の製造方法に関する実施形態>
[3-1.第8の実施形態(固体撮像素子の製造方法の例1)]
 本技術に係る第8の実施形態(固体撮像素子の製造方法の例1)の固体撮像素子の製造方法は、半導体基板上の反射防止層の上方向に、互いに隣接する画素間に画素間遮光膜を形成する工程と、層内レンズ材(単に、層内レンズと称する場合がある。)を、回転塗布して該回転塗布後に回転数を調整して乾燥させる工程と、該層内レンズ材を該画素間遮光膜上か、又は該画素間遮光膜より内側に露光し現像して、層内レンズを形成する工程と、オンチップレンズ材(単に、オンチップレンズと称する場合がある。)を回転塗布した後に母材レンズを塗布して、寸法を調整してパターニングする工程と、寸法調整された母材レンズを融解させてエッチバックし、該オンチップレンズ材に曲率を転写させて、オンチップレンズを形成する工程と、を含み、該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす長さに加工される、固体撮像素子の製造方法である。
<3. Embodiment Regarding Method of Manufacturing Solid-State Imaging Device>
3-1. Eighth Embodiment (Example 1 of Manufacturing Method of Solid-State Imaging Device)]
In a method of manufacturing a solid-state imaging device according to an eighth embodiment (example 1 of a method of manufacturing a solid-state imaging device) according to the present technology, inter-pixel light shielding is performed between pixels adjacent to each other in the upper direction of the antireflection layer on the semiconductor substrate. A step of forming a film, a step of spin-coating an intra-layer lens material (simply referred to as an intra-layer lens), adjusting the number of rotations after the spin coating, and drying the intra-layer lens material The step of forming an in-layer lens by exposing and developing on the inter-pixel light shielding film or on the inner side of the inter-pixel light shielding film, and an on-chip lens material (simply referred to as an on-chip lens). And spin-coating a matrix lens, adjusting the dimensions and patterning, melting the dimension-adjusted matrix lens, etching back, and transferring the curvature to the on-chip lens material, Forming an on-chip lens; The radius of curvature of the upper portion on the light incident side of the on-chip lens is rl, the radius of curvature of the lower portion of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, Let hc be the distance from the antireflective layer to the upper end portion of the in-layer lens on the light incident side, where al and ac are in the range of 0.96 to 1.04, the upper portion of the on-chip lens The method is a method for manufacturing a solid-state imaging device, in which the radius of curvature rl and the radius of curvature rc of the lower portion of the on-chip lens are processed to a length satisfying the following formula (1).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。光は、性質上オンチップレンズで集光させても1点には集光せずに、波長に応じた広がりを有する。al及びacは、この広がりから認められるオンチップレンズの誤差範囲を意味する。なお、alは、オンチップレンズの上部(上面)の誤差範囲であり、acは、オンチップレンズの下部(下面)の誤差範囲である。 However, in the equation (1), when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl <0. The upper part of the on-chip lens is a downward convex shape, and when rc> 0, the lower part of the on-chip lens is an upward convex shape, and when rc <0, the lower part of the on-chip lens is a downward convex shape It is. The light has a spread according to the wavelength without being condensed at one point even if condensed by the on-chip lens in nature. al and ac mean the on-chip lens error range recognized from this spread. Here, al is an error range of the upper portion (upper surface) of the on-chip lens, and ac is an error range of the lower portion (lower surface) of the on-chip lens.
 図9及び図10に、本技術に係る第8の実施形態の固体撮像素子の製造方法の一例を示す。図9及び図10では、画素分離用Deep Trench Isolation(画素分離部)の形成以降の工程を例として、第8の実施形態の固体撮像素子の製造方法を示す。なお、特に断りがない限り、「上」とは図9及び図10中の上方向を意味し、「下」とは、図9及び図10中の下方向を意味する。 FIGS. 9 and 10 show an example of a method of manufacturing the solid-state imaging device according to the eighth embodiment of the present technology. In FIG. 9 and FIG. 10, the manufacturing method of the solid-state imaging device of 8th Embodiment is shown by making into an example the process after formation of Deep Trench Isolation (pixel separation part) for pixel separation. In addition, unless there is particular notice, "upper" means the upper direction in FIG.9 and FIG.10, and "lower" means the lower direction in FIG.9 and FIG.10.
 図9(a)には、画素分離部9-9aを有する半導体基板10-9aの断面図が示されている。画素分離部9-9aは、半導体基板10-9aの裏面(図9(a)中の上面)の側において、半導体基板10-9aの内部に埋め込められて形成されている。また、半導体基板10-9aの裏面上には、反射防止層6-9aと絶縁層5-9aとがこの順で形成されている。画素分離部9-9aは、図9(a)中では、4つの画素の間を区画して電気的に分離している。 FIG. 9A shows a cross-sectional view of a semiconductor substrate 10-9a having a pixel separation portion 9-9a. The pixel separating portion 9-9a is formed to be embedded in the semiconductor substrate 10-9a on the side of the back surface (upper surface in FIG. 9A) of the semiconductor substrate 10-9a. Further, on the back surface of the semiconductor substrate 10-9a, an antireflective layer 6-9a and an insulating layer 5-9a are formed in this order. In FIG. 9A, the pixel separating unit 9-9a electrically separates four pixels.
 図9(b)で、レジストマスク50-9bにて画素間遮光膜4-9bが形成されている。具体的には、半導体基板10-9bの内部に形成されている画素分離部9-9bの上方であって、半導体基板10-9aの裏面上に形成された反射防止層6-9b及び絶縁層5-9bの上部に、4つの画素を区画するようにして画素間遮光膜4-9bが形成されている。 In FIG. 9B, the inter-pixel light shielding film 4-9b is formed by the resist mask 50-9b. Specifically, an antireflection layer 6-9b and an insulating layer formed on the back surface of the semiconductor substrate 10-9a above the pixel separating portion 9-9b formed inside the semiconductor substrate 10-9b An inter-pixel light shielding film 4-9b is formed on the top of 5-9b so as to partition four pixels.
 図9(c)で、緑色カラーフィルタ3-9c-Gを回転塗布する。具体的には、半導体基板10-9cの内部に形成された画素分離部9-9cで電気的に区画された4画素に対して、半導体基板10-9cの裏面上に形成された反射防止層6-9c及び絶縁層5-9cの上部に、画素間遮光膜4-9cに埋め込まれるように、緑色カラーフィルタ3-9c-Gは形成される。その際、塗布後の乾燥時回転数で緑色カラーフィルタ3-9c-Gの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。 In FIG. 9C, the green color filter 3-9c-G is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-9c with respect to four pixels electrically partitioned by the pixel separating portion 9-9c formed inside the semiconductor substrate 10-9c. A green color filter 3-9c-G is formed on the upper surface of 6-9c and the insulating layer 5-9c so as to be embedded in the inter-pixel light shielding film 4-9c. At this time, the curvature of the green color filter 3-9c-G changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1).
 図9(d)で、赤色カラーフィルタ3-9d-Rを回転塗布する。具体的には、半導体基板10-9dの内部に形成された画素分離部9-9dで電気的に区画された4画素に対して、半導体基板10-9dの裏面上に形成された反射防止層6-9d及び絶縁層5-9dの上部に、画素間遮光膜4-9dに埋め込まれるように、赤色カラーフィルタ3-9d-Rは形成される。その際、塗布後の乾燥時回転数で赤色カラーフィルタ3-9d-Rの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。なお、図9(d)中の左から1番目の画素に形成された緑色カラーフィルタ3-9d-G上の赤色カラーフィルタ3-9d-Rは除去される。 In FIG. 9D, a red color filter 3-9d-R is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-9d with respect to four pixels electrically partitioned by the pixel separating portion 9-9d formed inside the semiconductor substrate 10-9d. The red color filter 3-9d-R is formed on the top of the insulating layer 5-9d and the insulating layer 5-9d so as to be embedded in the inter-pixel light shielding film 4-9d. At this time, since the curvature of the red color filter 3-9d-R changes with the drying rotation speed after coating, the rotation speed is adjusted so as to satisfy the above equation (1). The red color filter 3-9d-R on the green color filter 3-9d-G formed on the first pixel from the left in FIG. 9D is removed.
 図9(e)で、青色カラーフィルタ3-9e-Bを回転塗布する。具体的には、半導体基板10-9eの内部に形成された画素分離部9-9eで電気的に区画された4画素に対して、半導体基板10-9eの裏面上に形成された反射防止層6-9e及び絶縁層5-9eの上部に、画素間遮光膜4-9eに埋め込まれるように、青色カラーフィルタ3-9e-Bは形成される。その際、塗布後の乾燥時回転数で青色カラーフィルタ3-9e-Bの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。なお、図9(e)中の左から1番目の画素に形成された緑色カラーフィルタ3-9e-G上の青色カラーフィルタ3-9e-B及び図9(e)中の左から2番目の画素に形成された赤色カラーフィルタ3-9e-R上の青色カラーフィルタ3-9e-Bは除去される。 In FIG. 9 (e), a blue color filter 3-9e-B is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-9e with respect to four pixels electrically partitioned by the pixel separating portion 9-9e formed inside the semiconductor substrate 10-9e. A blue color filter 3-9e-B is formed on the top of the insulating layer 5-9e and the insulating layer 5-9e so as to be embedded in the inter-pixel light shielding film 4-9e. At this time, the curvature of the blue color filter 3-9e-B changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1). Note that the blue color filter 3-9e-B on the green color filter 3-9e-G formed in the first pixel from the left in FIG. 9E and the second from the left in FIG. 9E. The blue color filter 3-9e-B on the red color filter 3-9e-R formed in the pixel is removed.
 図10(f)で、層内レンズ3-10f-Wを回転塗布する。具体的には、半導体基板10-10fの内部に形成された画素分離部9-10fで電気的に区画された、図10(f)中の左から4番目の画素に対して、半導体基板10-10fの裏面上に形成された反射防止層6-10f及び絶縁層5-10fの上部に、画素間遮光膜4-10fに埋め込まれるように、層内レンズ3-10f-Wは形成される。その際、塗布後の乾燥時回転数で層内レンズ3-10f-Wの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。 In FIG. 10 (f), the in-layer lens 3-10 fW is spin coated. Specifically, with respect to the fourth pixel from the left in FIG. 10F, which is electrically partitioned by the pixel separating portion 9-10f formed inside the semiconductor substrate 10-10f, the semiconductor substrate 10 is separated. In-layer lenses 3-10f-W are formed on top of the antireflective layer 6-10f and the insulating layer 5-10f formed on the back surface of the -10f so as to be embedded in the inter-pixel light shielding film 4-10f. . At that time, since the curvature of the in-layer lens 3-10 fW changes with the drying rotation speed after coating, the rotation speed is adjusted so as to satisfy the above equation (1).
 図10(g)には、半導体基板10-10gの内部に形成された画素分離部9-10gで電気的に区画された4画素に対して、半導体基板10-10gの裏面上に形成された反射防止層6-10g及び絶縁層5-10gの上部に、画素間遮光膜4-10gに埋め込まれるように形成された、図10(f)中の左の画素から順に、緑色カラーフィルタ3-10g-G、赤色カラーフィルタ3-10g-R、青色カラーフィルタ3-10g-B及び層内レンズ3-10g-Wが示されている。 In FIG. 10G, four pixels electrically divided by the pixel separating portion 9-10g formed inside the semiconductor substrate 10-10g are formed on the back surface of the semiconductor substrate 10-10g. A green color filter 3-3 is formed on the top of the antireflective layer 6-10 g and the insulating layer 5-10 g so as to be embedded in the inter-pixel light shielding film 4-10 g from the left pixel in FIG. 10g-G, red color filter 3-10g-R, blue color filter 3-10g-B and in-layer lens 3-10g-W are shown.
 なお、緑色、赤色、青色等のカラーフィルタ及び/又は層内レンズが複数種あるときは、凹形状の曲率半径が大きい順、すなわち曲率半径が小さい順に塗布する方が好ましい場合がある。また、上記数式(1)を満たす曲率が乾燥時の回転数で制御できないときは、工程数が増えるがエッチングで凹形状を調整してもよい。 In addition, when there are a plurality of types of color filters such as green, red and blue and / or an in-layer lens, it may be preferable to apply in descending order of curvature radius of concave shape, that is, in ascending order of curvature radius. Moreover, when the curvature which satisfy | fills the said Numerical formula (1) can not be controlled by the rotation speed at the time of drying, although the number of processes increases, you may adjust concave shape by an etching.
 図10(h)~図10(j)で、オンチップレンズを形成する。まず、図10(h)では、図10(h)中の左の画素から順に4画素分で形成された、緑色カラーフィルタ3-10h-G、赤色カラーフィルタ3-10h-R、青色カラーフィルタ3-10h-B及び層内レンズ3-10h-Wの上部に、オンチップレンズ2-10hが回転塗布して形成され、オンチップレンズ2-10hの上部に母材レンズ30-10hが回転塗布して形成されて、寸法調整されてパターニングされる。なお、画素毎にパターニング幅を変えて、上記の数式(1)を満たすようにメルト時の曲率を画素毎に変えてもよい。図10(h)中では、半導体基板10-10hの内部に形成された画素分離部9-10hで電気的に区画された4画素に対して、半導体基板10-10hの裏面上に形成された反射防止層6-10h及び絶縁層5-10hの上部に、画素間遮光膜4-10hに埋め込まれるように、図10(h)中の左の画素から順に、緑色カラーフィルタ3-10h-G、赤色カラーフィルタ3-10h-R、青色カラーフィルタ3-10h-B及び層内レンズ3-10h-Wが形成されている。 In FIG. 10 (h) to FIG. 10 (j), on-chip lenses are formed. First, in FIG. 10 (h), a green color filter 3-10 h-G, a red color filter 3-10 h-R, and a blue color filter are formed in order of 4 pixels from the left pixel in FIG. 10 (h). On-chip lens 2-10h is spin-coated on top of 3-10h-B and in-layer lens 3-10h-W, and base lens 30-10h is spin-coated on top of on-chip lens 2-10h Formed, sized and patterned. The patterning width may be changed for each pixel, and the curvature at the time of melting may be changed for each pixel so as to satisfy the above equation (1). In FIG. 10H, four pixels electrically divided by the pixel separating portion 9-10h formed in the semiconductor substrate 10-10h are formed on the back surface of the semiconductor substrate 10-10h. A green color filter 3-10h-G is sequentially arranged from the left pixel in FIG. 10H so as to be embedded in the inter-pixel light shielding film 4-10h on the top of the antireflective layer 6-10h and the insulating layer 5-10h. , A red color filter 3-10 h-R, a blue color filter 3-10 h-B, and an in-layer lens 3-10 h-W.
 図10(i)で、オンチップレンズ2-10i上に形成された母材レンズ30-10iを融解(メルト)する。オンチップレンズ2-10iは、図10(i)中の左の画素から順に4画素分で形成された、緑色カラーフィルタ3-10i-G、赤色カラーフィルタ3-10i-R、青色カラーフィルタ3-10i-B及び層内レンズ3-10i-Wの上部に形成されている。図10(i)中では、半導体基板10-10iの内部に形成された画素分離部9-10iで電気的に区画された4画素に対して、半導体基板10-10iの裏面上に形成された反射防止層6-10i及び絶縁層5-10iの上部に、画素間遮光膜4-10iに埋め込まれるように、図10(i)中の左の画素から順に、緑色カラーフィルタ3-10i-G、赤色カラーフィルタ3-10i-R、青色カラーフィルタ3-10i-B及び層内レンズ3-10i-Wが形成されている。 In FIG. 10I, the base lens 30-10i formed on the on-chip lens 2-10i is melted (melted). The on-chip lens 2-10i is formed of four pixels in order from the pixel at the left in FIG. 10 (i). The green color filter 3-10i-G, the red color filter 3-10i-R, and the blue color filter 3 It is formed on top of the lens 10i-B and the in-layer lens 3-10i-W. In FIG. 10 (i), four pixels electrically divided by the pixel separation portion 9-10i formed inside the semiconductor substrate 10-10i are formed on the back surface of the semiconductor substrate 10-10i. The green color filter 3-10i-G is sequentially arranged from the left pixel in FIG. 10I so as to be embedded in the inter-pixel light shielding film 4-10i on the top of the antireflective layer 6-10i and the insulating layer 5-10i. , A red color filter 3-10i-R, a blue color filter 3-10i-B, and an in-layer lens 3-10i-W.
 図10(j)で、エッチバックして、曲率を転写させて、図10(j)中の左の画素から順に4画素分で形成された、緑色カラーフィルタ3-10j-G、赤色カラーフィルタ3-10j-R、青色カラーフィルタ3-10j-B及び層内レンズ3-10j-Wのそれぞれの上部にオンチップレンズ2-10j-G、オンチップレンズ2-10j-R、オンチップレンズ2-10j-B及びオンチップレンズ2-10j-Wが形成されて、固体撮像素子1-10jが得られる。固体撮像素子1-10jにおいて、半導体基板10-10jの内部に形成された画素分離部9-10jで電気的に区画された4画素に対して、半導体基板10-10jの裏面上に形成された反射防止層6-10j及び絶縁層5-10jの上部に、画素間遮光膜4-10jに埋め込まれるように、図10(j)中の左の画素から順に、緑色カラーフィルタ3-10j-G、赤色カラーフィルタ3-10j-R、青色カラーフィルタ3-10j-B及び層内レンズ3-10j-Wが形成されている。 In FIG. 10 (j), a green color filter 3-10j-G, a red color filter, formed by four pixels in order from the left pixel in FIG. 10 (j), is etched back to transfer the curvature. On-chip lens 2-10 j-G, on-chip lens 2-10 j-R, on-chip lens 2 on top of each of 3-10 j-R, blue color filter 3-10 j-B and in-layer lens 3-10 j-W A solid-state image pickup device 1-10j is obtained by forming -10j-B and an on-chip lens 2-10j-W. The solid-state imaging device 1-10j is formed on the back surface of the semiconductor substrate 10-10j with respect to four pixels electrically divided by the pixel separating portion 9-10j formed inside the semiconductor substrate 10-10j. The green color filter 3-10j-G is sequentially arranged from the left pixel in FIG. 10J so as to be embedded in the inter-pixel light shielding film 4-10j on the top of the antireflective layer 6-10j and the insulating layer 5-10j. , A red color filter 3-10j-R, a blue color filter 3-10j-B, and an in-layer lens 3-10j-W.
[3-2.第9の実施形態(固体撮像素子の製造方法の例2)]
 以下に、本技術に係る第9の実施形態(固体撮像素子の製造方法の例2)の固体撮像素子の製造方法について、説明をする。
[3-2. Ninth Embodiment (Example 2 of Method of Manufacturing Solid-State Imaging Device)]
Below, the manufacturing method of the solid-state image sensor of 9th Embodiment (Example 2 of the manufacturing method of a solid-state image sensor) which concerns on this technique is demonstrated.
 図11及び図12に、本技術に係る第9の実施形態の固体撮像素子の製造方法の一例を示す。図11及び図12では、レジストマスクによる画素間遮光膜の形成以降の工程を例として、第9の実施形態の固体撮像素子の製造方法を示す。それ以前の工程は、図9(a)~図9(b)と同様である。なお、特に断りがない限り、「上」とは図11及び図12中の上方向を意味し、「下」とは、図11及び図12中の下方向を意味する。 FIGS. 11 and 12 show an example of a method of manufacturing a solid-state imaging device according to a ninth embodiment of the present technology. FIGS. 11 and 12 illustrate a method of manufacturing the solid-state imaging device according to the ninth embodiment, taking as an example steps after the formation of the inter-pixel light shielding film using a resist mask. The steps before that are the same as in FIGS. 9 (a) to 9 (b). Note that “upper” means the upper direction in FIGS. 11 and 12 and “lower” means the lower direction in FIGS. 11 and 12 unless otherwise noted.
 図11(a)では、レジストマスク50-11aにて画素間遮光膜4-11aが形成されている。具体的には、半導体基板10-11aの内部に形成されている画素分離部9-11aの上方であって、半導体基板10-11aの裏面上に形成された反射防止層6-11a及び絶縁層5-11aの上部に、4つの画素を区画するようにして画素間遮光膜4-11aが形成されている。 In FIG. 11A, the inter-pixel light shielding film 4-11a is formed by the resist mask 50-11a. Specifically, an antireflection layer 6-11a and an insulating layer formed on the back surface of the semiconductor substrate 10-11a above the pixel separating portion 9-11a formed inside the semiconductor substrate 10-11a. An inter-pixel light shielding film 4-11a is formed on the top of 5-11a so as to partition four pixels.
 図11(b)で、緑色カラーフィルタ3-11b-Gをパターニングする。その際、画素間遮光膜4-11bよりやや内側に露光し現像すると角の方が膜減りしやすいので凸形状になる。現像後の形状が上記の数式(1)を満たさないときは工程数が増えるがエッチングで凸形状を調整してもよい。図11(b)では、緑色カラーフィルタ3-11b-Gは、半導体基板10-11bの内部に形成された画素分離部9-11bで電気的に区画された4画素に対して、半導体基板10-11bの裏面上に形成された反射防止層6-11b及び絶縁層5-11bの上部に、画素間遮光膜4-11bに埋め込まれるように、緑色カラーフィルタ3-11b-Gは形成されている。 In FIG. 11B, the green color filters 3-11b-G are patterned. At this time, if exposure is performed slightly inward of the inter-pixel light shielding film 4-11b and development is performed, the corner is likely to be reduced in film thickness, so that it has a convex shape. When the shape after development does not satisfy the above equation (1), the number of steps increases, but the convex shape may be adjusted by etching. In FIG. 11B, the green color filter 3-11b-G corresponds to the semiconductor substrate 10 with respect to four pixels electrically divided by the pixel separating portion 9-11b formed inside the semiconductor substrate 10-11b. A green color filter 3-11b-G is formed on the top of the reflection preventing layer 6-11b and the insulating layer 5-11b formed on the back surface of the second layer 11b so as to be embedded in the inter-pixel light shielding film 4-11b. There is.
 図11(c)で、赤色カラーフィルタ3-11c-Rをパターニングする。その際、画素間遮光膜4-11cよりやや内側に露光し現像すると角の方が膜減りしやすいので凸形状になる。現像後の形状が上記の数式(1)を満たさないときは工程数が増えるがエッチングで凸形状を調整してもよい。図11(c)では、赤色カラーフィルタ3-11c-Rは、半導体基板10-11cの内部に形成された画素分離部9-11cで電気的に区画された4画素に対して、半導体基板10-11cの裏面上に形成された反射防止層6-11c及び絶縁層5-11cの上部に、画素間遮光膜4-11cに埋め込まれるように、緑色カラーフィルタ3-11c-Gの右側の画素に形成されている。 In FIG. 11C, the red color filter 3-11c-R is patterned. At this time, if exposure is performed slightly inward of the inter-pixel light shielding film 4-11 c and development is performed, the corner is likely to be reduced in film thickness, so that it has a convex shape. When the shape after development does not satisfy the above equation (1), the number of steps increases, but the convex shape may be adjusted by etching. In FIG. 11C, the red color filter 3-11c-R corresponds to the semiconductor substrate 10 for four pixels electrically divided by the pixel separating portion 9-11c formed inside the semiconductor substrate 10-11c. The pixel on the right side of the green color filter 3-11c-G so as to be embedded in the inter-pixel light shielding film 4-11c on the top of the reflection preventing layer 6-11c and the insulating layer 5-11c formed on the back surface of -11c Is formed.
 図12(d)で、青色カラーフィルタ3-12d-Bをパターニングする。その際、画素間遮光膜4-12dよりやや内側に露光し現像すると角の方が膜減りしやすいので凸形状になる。現像後の形状が上記の数式(1)を満たさないときは工程数が増えるがエッチングで凸形状を調整してもよい。図12(d)では、青色カラーフィルタ3-12d-Bは、半導体基板10-12dの内部に形成された画素分離部9-12dで電気的に区画された4画素に対して、半導体基板10-12dの裏面上に形成された反射防止層6-12d及び絶縁層5-12dの上部に、画素間遮光膜4-12dに埋め込まれるように、緑色カラーフィルタ3-12d-G及び赤色カラーフィルタ3-12d-Rの右側の画素に形成されている。 In FIG. 12D, the blue color filter 3-12d-B is patterned. At this time, if exposure is performed slightly inward of the inter-pixel light shielding film 4-12 d and development is performed, the corner is easily reduced in film thickness, and therefore, it is convex. When the shape after development does not satisfy the above equation (1), the number of steps increases, but the convex shape may be adjusted by etching. In FIG. 12D, the blue color filter 3-12d-B corresponds to the semiconductor substrate 10 for four pixels electrically divided by the pixel separating portion 9-12d formed inside the semiconductor substrate 10-12d. A green color filter 3-12d-G and a red color filter so as to be embedded in the inter-pixel light shielding film 4-12d on top of the reflection preventing layer 6-12d and the insulating layer 5-12d formed on the back surface of -12d It is formed in the pixel on the right side of 3-12d-R.
 図12(e)で、層内レンズ3-12e-Wをパターニングする。その際、画素間遮光膜4-12eよりやや内側に露光し現像すると角の方が膜減りしやすいので凸形状になる。現像後の形状が上記の数式(1)を満たさないときは工程数が増えるがエッチングで凸形状を調整してもよい。図12(e)では、層内レンズ3-12e-Wは、半導体基板10-12eの内部に形成された画素分離部9-12eで電気的に区画された4画素に対して、半導体基板10-12eの裏面上に形成された反射防止層6-12e及び絶縁層5-12eの上部に、画素間遮光膜4-12eに埋め込まれるように、緑色カラーフィルタ3-12e-G、赤色カラーフィルタ3-12e-R及び青色カラーフィルタ3-12e-Bの右側の画素に形成されている。 In FIG. 12 (e), the in-layer lenses 3-12e-W are patterned. At this time, if exposure is performed slightly inward of the inter-pixel light shielding film 4-12 e and development is performed, the corner is easily reduced in film thickness, and therefore, it has a convex shape. When the shape after development does not satisfy the above equation (1), the number of steps increases, but the convex shape may be adjusted by etching. In FIG. 12E, the in-layer lens 3-12e-W corresponds to the semiconductor substrate 10 with respect to four pixels electrically divided by the pixel separating portion 9-12e formed inside the semiconductor substrate 10-12e. Green color filter 3-12e-G, red color filter so as to be embedded in the inter-pixel light shielding film 4-12e on the top of the reflection preventing layer 6-12e and the insulating layer 5-12e formed on the back surface of -12e 3-12e-R and blue color filters 3-12e-B are formed on the right side of the pixel.
 図12(f)中のオンチップレンズ2-12f-G、オンチップレンズ2-10f-R、オンチップレンズ2-10f-B及びオンチップレンズ2-10f-Wは、図10(h)~図10(j)に示されるオンチップレンズの形成方法と同様な方法で形成されて、固体撮像素子1-12fが得られる。固体撮像素子1-10fにおいては、半導体基板10-10fの内部に形成された画素分離部9-10fで電気的に区画された4画素に対して、半導体基板10-10fの裏面上に形成された反射防止層6-10f及び絶縁層5-10fの上部に、画素間遮光膜4-10fに埋め込まれるように、図10(f)中の左の画素から順に、緑色カラーフィルタ3-10f-G、赤色カラーフィルタ3-10f-R、青色カラーフィルタ3-10f-B及び層内レンズ3-10f-Wが形成されている。 The on-chip lens 2-12f-G, the on-chip lens 2-10f-R, the on-chip lens 2-10f-B and the on-chip lens 2-10f-W in FIG. The solid-state imaging device 1-12f is obtained by the same method as the on-chip lens forming method shown in FIG. 10 (j). The solid-state imaging device 1-10f is formed on the back surface of the semiconductor substrate 10-10f with respect to four pixels electrically partitioned by the pixel separating portion 9-10f formed inside the semiconductor substrate 10-10f. In order to be embedded in the inter-pixel light shielding film 4-10f above the antireflective layer 6-10f and the insulating layer 5-10f, the green color filter 3-10f- is sequentially arranged from the left pixel in FIG. G, red color filter 3-10 f-R, blue color filter 3-10 f-B, and in-layer lens 3-10 f-W are formed.
[3-3.第10の実施形態(固体撮像素子の製造方法の例3)]
 以下に、本技術に係る第10の実施形態(固体撮像素子の製造方法の例3)の固体撮像素子の製造方法について、説明をする。
[3-3. Tenth Embodiment (Example 3 of Method of Manufacturing Solid-State Imaging Device)]
Below, the manufacturing method of the solid-state image sensor of 10th Embodiment (Example 3 of the manufacturing method of a solid-state image sensor) which concerns on this technique is demonstrated.
 図13及び図14に、本技術に係る第10の実施形態の固体撮像素子の製造方法の一例を示す。図13及び図14では、レジストマスクによる画素間遮光膜の形成以降の工程を例として、第10の実施形態の固体撮像素子の製造方法を示す。それ以前の工程は、図9(a)~図9(b)と同様である。なお、特に断りがない限り、「上」とは図13及び図14中の上方向を意味し、「下」とは、図13及び図14中の下方向を意味する。 FIGS. 13 and 14 show an example of a method of manufacturing the solid-state imaging device according to the tenth embodiment of the present technology. FIGS. 13 and 14 illustrate a method of manufacturing the solid-state imaging device according to the tenth embodiment, taking as an example the steps after the formation of the inter-pixel light shielding film using a resist mask. The steps before that are the same as in FIGS. 9 (a) to 9 (b). In addition, unless there is particular notice, "upper" means the upper direction in FIG.13 and FIG.14, and "lower" means the lower direction in FIG.13 and FIG.14.
 図13(a)では、レジストマスク50-13aにて画素間遮光膜4-13aが形成されている。具体的には、半導体基板10-13aの内部に形成されている画素分離部9-13aの上方であって、半導体基板10-13aの裏面上に形成された反射防止層6-13a及び絶縁層5-13aの上部に、4つの画素を区画するようにして画素間遮光膜4-13aが形成されている。 In FIG. 13A, the inter-pixel light shielding film 4-13a is formed by the resist mask 50-13a. Specifically, an antireflection layer 6-13a and an insulating layer formed on the back surface of the semiconductor substrate 10-13a above the pixel separating portion 9-13a formed inside the semiconductor substrate 10-13a. An inter-pixel light shielding film 4-13a is formed on the top of 5-13a so as to partition four pixels.
 図13(b)で、緑色カラーフィルタ3-13b-Gを回転塗布する。具体的には、半導体基板10-13bの内部に形成された画素分離部9-13bで電気的に区画された4画素に対して、半導体基板10-13bの裏面上に形成された反射防止層6-13b及び絶縁層5-13bの上部に、画素間遮光膜4-13bに埋め込まれるように、緑色カラーフィルタ3-13b-Gは形成される。その際、塗布後の乾燥時回転数で緑色カラーフィルタ3-13b-Gの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。 In FIG. 13 (b), a green color filter 3-13b-G is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-13b with respect to four pixels electrically partitioned by the pixel separating portion 9-13b formed inside the semiconductor substrate 10-13b. A green color filter 3-13b-G is formed on the upper portion of the pixel 6-13b and the insulating layer 5-13b so as to be embedded in the inter-pixel light shielding film 4-13b. At this time, the curvature of the green color filter 3-13b-G changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1).
 図13(c)で、赤色カラーフィルタ3-13c-Rを回転塗布する。具体的には、半導体基板10-13cの内部に形成された画素分離部9-13cで電気的に区画された、緑色カラーフィルタ3-13c-Gが形成された画素の右隣の画素に対して、半導体基板10-13cの裏面上に形成された反射防止層6-13c及び絶縁層5-13cの上部に、画素間遮光膜4-13cに埋め込まれるように、赤色カラーフィルタ3-13c-Rは形成される。その際、塗布後の乾燥時回転数で赤色カラーフィルタ3-13-Rの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。 In FIG. 13 (c), the red color filter 3-13c-R is spin coated. Specifically, with respect to the pixel on the right of the pixel on which the green color filter 3-13c-G is formed, which is electrically partitioned by the pixel separating portion 9-13c formed inside the semiconductor substrate 10-13c. The red color filter 3-13 c-is embedded in the inter-pixel light shielding film 4-13 c above the antireflective layer 6-13 c and the insulating layer 5-13 c formed on the back surface of the semiconductor substrate 10-13 c. R is formed. At this time, the curvature of the red color filter 3-13-R changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1).
 図14(d)で、青色カラーフィルタ3-14d-Bを回転塗布する。具体的には、半導体基板10-14dの内部に形成された画素分離部9-14dで電気的に区画された4画素に対して、半導体基板10-14dの裏面上に形成された反射防止層6-14d及び絶縁層5-14dの上部に、画素間遮光膜4-14dに埋め込まれるように、青色カラーフィルタ3-14d-Bは形成される。その際、塗布後の乾燥時回転数で青色カラーフィルタ3-14d-Bの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。なお、図14(d)中の左から1番目の画素に形成された緑色カラーフィルタ3-14d-G上の青色カラーフィルタ3-14d-B及び図14(d)中の左から2番目の画素に形成された赤色カラーフィルタ3-14d-R上の青色カラーフィルタ3-14d-Bは除去される。 In FIG. 14 (d), a blue color filter 3-14d-B is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-14d with respect to four pixels electrically divided by the pixel separating portion 9-14d formed inside the semiconductor substrate 10-14d. The blue color filter 3-14d-B is formed on the top of the insulating layer 6-14d and the insulating layer 5-14d so as to be embedded in the inter-pixel light shielding film 4-14d. At this time, the curvature of the blue color filter 3-14d-B changes with the drying rotation speed after coating, so the rotation speed is adjusted so as to satisfy the above equation (1). Note that the blue color filter 3-14d-B on the green color filter 3-14d-G formed on the first pixel from the left in FIG. 14 (d) and the second from the left in FIG. 14 (d). The blue color filters 3-14d-B on the red color filters 3-14d-R formed in the pixels are removed.
 図14(e)で、層内レンズ3-14e-Wを回転塗布する。具体的には、半導体基板10-10eの内部に形成された画素分離部9-10eで電気的に区画された、図14(e)中の左から4番目の画素に対して、半導体基板10-14eの裏面上に形成された反射防止層6-14e及び絶縁層5-14eの上部に、画素間遮光膜4-14eに埋め込まれるように、層内レンズ3-14e-Wは形成される。その際、塗布後の乾燥時回転数で層内レンズ3-14e-Wの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。 In FIG. 14 (e), in-layer lenses 3-14e-W are spin coated. Specifically, for the fourth pixel from the left in FIG. 14E, which is electrically partitioned by the pixel separating portion 9-10e formed inside the semiconductor substrate 10-10e, the semiconductor substrate 10 is separated. An in-layer lens 3-14e-W is formed on the top of the reflection preventing layer 6-14e and the insulating layer 5-14e formed on the back surface of -14e so as to be embedded in the inter-pixel light shielding film 4-14e. . At this time, since the curvature of the in-layer lens 3-14e-W changes with the number of rotations for drying after coating, the number of rotations is adjusted so as to satisfy the above equation (1).
 なお、緑色、赤色、青色等のカラーフィルタ若しくは層内レンズが複数種ある場合、凹形状の曲率半径が大きい順、すなわち曲率半径が小さい順に塗布する方が好ましい場合がある。別のカラーフィルタ又は層内レンズが凸形状の場合(図13及び図14では赤色カラーフィルタが凸形状)は前述の順番に左右されず形成してよい。 When there are a plurality of types of color filters or in-layer lenses such as green, red and blue, it may be preferable to apply in the descending order of the radius of curvature of the concave shape, that is, in the ascending order of the radius of curvature. If another color filter or an intralayer lens is convex (in FIG. 13 and FIG. 14 the red color filter is convex), it may be formed without being influenced by the above-mentioned order.
 図14(f)中のオンチップレンズ2-14f-G、オンチップレンズ2-14f-R、オンチップレンズ2-14f-B及びオンチップレンズ2-14f-Wは、図10(h)~図10(j)に示されるオンチップレンズの形成方法と同様な方法で形成されて、固体撮像素子1-14fが得られる。固体撮像素子1-14fにおいては、半導体基板10-14fの内部に形成された画素分離部9-14fで電気的に区画された4画素に対して、半導体基板10-14fの裏面上に形成された反射防止層6-14f及び絶縁層5-14fの上部に、画素間遮光膜4-14fに埋め込まれるように、図14(f)中の左の画素から順に、緑色カラーフィルタ3-14f-G、赤色カラーフィルタ3-14f-R、青色カラーフィルタ3-14f-B及び層内レンズ3-14f-Wが形成されている。 The on-chip lens 2-14f-G, the on-chip lens 2-14f-R, the on-chip lens 2-14f-B and the on-chip lens 2-14f-W in FIG. The solid-state imaging device 1-14f is obtained by the same method as the method of forming the on-chip lens shown in FIG. 10 (j). The solid-state imaging device 1-14f is formed on the back surface of the semiconductor substrate 10-14f with respect to four pixels electrically divided by the pixel separating portion 9-14f formed inside the semiconductor substrate 10-14f. In order to be embedded in the inter-pixel light shielding film 4-14f above the antireflective layer 6-14f and the insulating layer 5-14f, the green color filter 3-14f- is sequentially arranged from the left pixel in FIG. G, red color filter 3-14f-R, blue color filter 3-14f-B, and in-layer lens 3-14f-W are formed.
[3-4.第11の実施形態(固体撮像素子の製造方法の例4)]
 以下に、本技術に係る第11の実施形態(固体撮像素子の製造方法の例4)の固体撮像素子の製造方法について、説明をする。
[3-4. Eleventh Embodiment (Example 4 of Method of Manufacturing Solid-State Imaging Device)]
Below, the manufacturing method of the solid-state image sensor of 11th Embodiment (Example 4 of the manufacturing method of a solid-state image sensor) which concerns on this technique is demonstrated.
 図15及び図16に、本技術に係る第11の実施形態の固体撮像素子の製造方法の一例を示す。図15及び図16では、画素分離用Deep Trench Isolation(画素分離部)の形成以降の工程を例として、第11の実施形態の固体撮像素子の製造方法を示す。なお、特に断りがない限り、「上」とは図15及び図16中の上方向を意味し、「下」とは、図15及び図16中の下方向を意味する。 FIGS. 15 and 16 show an example of a method of manufacturing a solid-state imaging device according to an eleventh embodiment of the present technology. FIGS. 15 and 16 show a method of manufacturing the solid-state imaging device according to the eleventh embodiment, taking as an example the steps after formation of the deep trench isolation (pixel separating portion) for pixel separation. In addition, unless there is particular notice, "upper" means the upper direction in FIG.15 and FIG.16, and "lower" means the lower direction in FIG.15 and FIG.16.
 図15(a)には、画素分離部9-15aを有する半導体基板10-15aの断面図が示されている。画素分離部9-15aは、半導体基板10-15aの裏面(図15(a)中の上面)の側において、半導体基板10-15aの内部に埋め込められて形成されている。また、半導体基板10-15aの裏面上には、反射防止層6-15aと絶縁層5-15aとがこの順で形成されている。画素分離部9-15aは、図15(a)中では、4つの画素の間を区画して電気的に分離している。 FIG. 15A shows a cross-sectional view of the semiconductor substrate 10-15a having the pixel separating portion 9-15a. The pixel separating portion 9-15a is formed embedded in the semiconductor substrate 10-15a on the side of the back surface (upper surface in FIG. 15A) of the semiconductor substrate 10-15a. Further, on the back surface of the semiconductor substrate 10-15a, an antireflective layer 6-15a and an insulating layer 5-15a are formed in this order. In FIG. 15A, the pixel separating unit 9-15a electrically separates four pixels.
 図15(b)で、画素間遮光膜4-15bが塗布して形成される。具体的には、半導体基板10-15bの内部に形成されている画素分離部9-15bの上方であって、半導体基板10-15bの裏面上に形成された反射防止層6-15b及び絶縁層5-15bの上部に、画素間遮光膜4-15bが形成される。 In FIG. 15B, the inter-pixel light shielding film 4-15b is formed by coating. Specifically, an antireflection layer 6-15b and an insulating layer formed on the back surface of the semiconductor substrate 10-15b above the pixel separating portion 9-15b formed inside the semiconductor substrate 10-15b. An inter-pixel light shielding film 4-15b is formed on top of 5-15b.
 図15(c)で、ハードマスク材40-15cが塗布して形成される。具体的には、半導体基板10-15cの内部に形成されている画素分離部9-15cの上方であって、半導体基板10-15cの裏面上に形成された反射防止層6-15c、絶縁層5-15c及び画素間遮光膜4-15cの上部に、シリコン窒化膜42-15c及びシリコン酸化膜41-15cがこの順で塗布される。 In FIG. 15C, the hard mask material 40-15c is formed by coating. Specifically, an antireflection layer 6-15c formed on the back surface of the semiconductor substrate 10-15c above the pixel separating portion 9-15c formed inside the semiconductor substrate 10-15c, and an insulating layer A silicon nitride film 42-15 c and a silicon oxide film 41-15 c are applied in this order on top of 5-15 c and the inter-pixel light shielding film 4-15 c.
 図15(d)で、ハードマスク加工用レジスト50-15dをパターニングする。具体的には、半導体基板10-15dの内部に形成されている画素分離部9-15dの上方であって、半導体基板10-15dの裏面上に形成された反射防止層6-15d、絶縁層5-15d、画素間遮光膜4-15d及びハードマスク材40-15d(シリコン窒化膜42-15d及びシリコン酸化膜41-15dで構成されている。)の上部に、ハードマスク加工用レジスト50-15dがパターニングされている。 In FIG. 15D, the hard mask processing resist 50-15d is patterned. Specifically, an antireflection layer 6-15d formed on the back surface of the semiconductor substrate 10-15d above the pixel separating portion 9-15d formed inside the semiconductor substrate 10-15d, and an insulating layer 5-15d, a resist 50- for hard mask processing on the upper portion of the inter-pixel light shielding film 4-15d and the hard mask material 40-15d (composed of the silicon nitride film 42-15d and the silicon oxide film 41-15d). 15 d is patterned.
 図15(e)で、ハードマスク材40-15e(シリコン窒化膜42-15e及びシリコン酸化膜41-15eで構成されている。)をエッチングで加工する。具体的には、半導体基板10-15eの内部に形成されている画素分離部9-15eの上方であって、半導体基板10-15eの裏面上に形成された反射防止層6-15e、絶縁層5-15e、及び画素間遮光膜4-15eの上部に形成された、ハードマスク加工用レジスト50-15eを有するハードマスク材40-15eをエッチングで加工する。 In FIG. 15E, the hard mask material 40-15e (made of the silicon nitride film 42-15e and the silicon oxide film 41-15e) is processed by etching. Specifically, an antireflection layer 6-15e formed on the back surface of the semiconductor substrate 10-15e above the pixel separating portion 9-15e formed inside the semiconductor substrate 10-15e, and an insulating layer A hard mask material 40-15e having a hard mask processing resist 50-15e formed on top of the light shielding film 5-15e and the inter-pixel light shielding film 4-15e is processed by etching.
 図16(f)で、ハードマスク加工用レジストを除去する。具体的には、半導体基板10-16fの内部に形成されている画素分離部9-16fの上方であって、半導体基板10-16fの裏面上に形成された反射防止層6-16f、絶縁層5-16f、画素間遮光膜4-16f及びハードマスク材40-16fの上部に配されたハードマスク加工用レジストを除去する。 In FIG. 16F, the hard mask processing resist is removed. Specifically, an antireflection layer 6-16f formed on the back surface of the semiconductor substrate 10-16f above the pixel separating portion 9-16f formed inside the semiconductor substrate 10-16f, and an insulating layer 5-16f, the resist for hard mask processing disposed on the inter-pixel light shielding film 4-16f and the hard mask material 40-16f is removed.
 図16(g)で、ハードマスク材40-16gを残した状態で画素間遮光膜4-16gの保護膜を等方的に堆積する。図16(g)では、半導体基板10-16gの内部に形成されている画素分離部9-16gの上方であって、半導体基板10-16gの裏面上に形成された反射防止層6-16g及び絶縁層5-16gの上部に、ハードマスク材40-16g及び画素間遮光膜4-16gがこの順で形成されている。 In FIG. 16G, the protective film of the inter-pixel light shielding film 4-16g is isotropically deposited with the hard mask material 40-16g remaining. In FIG. 16 (g), an antireflection layer 6-16g formed on the back surface of the semiconductor substrate 10-16g above the pixel separating portion 9-16g formed inside the semiconductor substrate 10-16g; A hard mask material 40-16g and an inter-pixel light shielding film 4-16g are formed in this order on the insulating layer 5-16g.
 図16(h)は、半導体基板10-16hの内部に形成されている画素分離部9-16hの上方であって、半導体基板10-16hの裏面上に形成された反射防止層6-16h及び絶縁層5-16hの上部に、ハードマスク材40-16h及び画素間遮光膜4-16hがこの順で配されていることを示す。 16H shows an antireflection layer 6-16h formed on the back surface of the semiconductor substrate 10-16h above the pixel separating portion 9-16h formed inside the semiconductor substrate 10-16h. It is shown that the hard mask material 40-16h and the inter-pixel light shielding film 4-16h are disposed in this order on the insulating layer 5-16h.
 図16(i)で、緑色カラーフィルタ3-16i-Gを回転塗布する。具体的には、半導体基板10-16iの内部に形成された画素分離部9-16iで電気的に区画された4画素に対して、半導体基板10-16iの裏面上に形成された反射防止層6-16i及び絶縁層5-16iの上部に、画素間遮光膜4-16iに埋め込まれるように、緑色カラーフィルタ3-16i-Gは形成される。その際、塗布後の乾燥時回転数で緑色カラーフィルタ3-16i-Gの曲率が変化するので、上記数式(1)を満たす曲率になるように回転数を調整する。その後の工程は、図9(d)~図9(e)~図10(f)~図10(j)と同様な工程を経て、図16(j)に示される固体撮像素子1-16jが得られる。また、図11~図12又は図13~図14に示される工程を経て、固体撮像素子が得られてもよい。 In FIG. 16I, the green color filter 3-16i-G is spin coated. Specifically, an antireflective layer formed on the back surface of the semiconductor substrate 10-16i with respect to four pixels electrically divided by the pixel separating portion 9-16i formed inside the semiconductor substrate 10-16i. The green color filters 3-16i-G are formed on the upper portions of the layers 6-16i and the insulating layer 5-16i so as to be embedded in the inter-pixel light shielding film 4-16i. At that time, since the curvature of the green color filters 3-16i-G changes with the number of rotations at the time of drying after coating, the number of rotations is adjusted so as to satisfy the above equation (1). The subsequent steps are the same as the steps shown in FIGS. 9 (d) to 9 (e) to 10 (f) to 10 (j), and the solid-state imaging device 1-16j shown in FIG. can get. In addition, a solid-state imaging device may be obtained through the steps shown in FIG. 11 to FIG. 12 or FIG. 13 to FIG.
 固体撮像素子1-16jにおいては、半導体基板10-16jの内部に形成された画素分離部9-16jで電気的に区画された4画素に対して、半導体基板10-16jの裏面上に形成された反射防止層6-16j及び絶縁層5-16jの上部に、画素間遮光膜4-16jに埋め込まれるように、図16(j)中の左の画素から順に、緑色カラーフィルタ3-16j-G、赤色カラーフィルタ3-16j-R、青色カラーフィルタ3-16j-B及び層内レンズ3-16j-Wが形成されている。そして、緑色カラーフィルタ3-16j-G、赤色カラーフィルタ3-16j-R、青色カラーフィルタ3-16j-B及び層内レンズ3-16j-Wのそれぞれの上部には、オンチップレンズ2-16j-G、オンチップレンズ2-16j-R、オンチップレンズ2-16j-B及びオンチップレンズ2-16j-Wが形成されている。 In the solid-state imaging device 1-16j, four pixels electrically divided by the pixel separation portion 9-16j formed inside the semiconductor substrate 10-16j are formed on the back surface of the semiconductor substrate 10-16j. The green color filter 3-16 j-is sequentially arranged from the left pixel in FIG. 16 (j) so as to be embedded in the inter-pixel light shielding film 4-16 j above the antireflective layer 6-16 j and the insulating layer 5-16 j. G, red color filter 3-16j-R, blue color filter 3-16j-B, and in-layer lens 3-16j-W are formed. And, on top of each of the green color filter 3-16j-G, the red color filter 3-16j-R, the blue color filter 3-16j-B and the in-layer lens 3-16j-W, an on-chip lens 2-16j An on-chip lens 2-16j-R, an on-chip lens 2-16j-B, and an on-chip lens 2-16j-W are formed.
[3-5.第12の実施形態(固体撮像素子の製造方法の例5)]
 以下に、本技術に係る第12の実施形態(固体撮像素子の製造方法の例5)の固体撮像素子の製造方法について、説明をする。
[3-5. Twelfth Embodiment (Example 5 of Method of Manufacturing Solid-State Imaging Device)]
Below, the manufacturing method of the solid-state image sensor of 12th Embodiment (Example 5 of the manufacturing method of a solid-state image sensor) which concerns on this technique is demonstrated.
 図17に、本技術に係る第12の実施形態の固体撮像素子の製造方法の一例を示す。図17では、オンチップレンズの形成以降の工程を例として、第12の実施形態の固体撮像素子の製造方法を示す。なお、特に断りがない限り、「上」とは図17中の上方向を意味し、「下」とは、図17中の下方向を意味する。 FIG. 17 shows an example of a method of manufacturing a solid-state imaging device according to a twelfth embodiment of the present technology. In FIG. 17, the manufacturing method of the solid-state imaging device of the twelfth embodiment is shown by taking the steps after formation of the on-chip lens as an example. In addition, unless there is particular notice, "upper" means the upper direction in FIG. 17, and "lower" means the lower direction in FIG.
 図17(a)は、図9~図10の工程で作製された固体撮像素子1-17aを示す。なお、固体撮像素子は、図11~図12、図13~図14又は図15~図16の工程で作製されてもよい。
 固体撮像素子1-17aにおいては、半導体基板10-17aの内部に形成された画素分離部9-17aで電気的に区画された4画素に対して、半導体基板10-17aの裏面上に形成された反射防止層6-17a及び絶縁層5-17aの上部に、画素間遮光膜4-17aに埋め込まれるように、図16(j)中の左の画素から順に、緑色カラーフィルタ3-17a-G、赤色カラーフィルタ3-17a-R、青色カラーフィルタ3-17a-B及び層内レンズ3-17a-Wが形成されている。そして、緑色カラーフィルタ3-17a-G、赤色カラーフィルタ3-17a-R、青色カラーフィルタ3-17a-B及び層内レンズ3-17a-Wのそれぞれの上部には、オンチップレンズ2-17a-G、オンチップレンズ2-17a-R、オンチップレンズ2-17a-B及びオンチップレンズ2-17a-Wが形成されている。
FIG. 17A shows a solid-state imaging device 1-17a manufactured by the process of FIGS. The solid-state imaging device may be manufactured in the process of FIGS. 11 to 12, 13 to 14, or 15 to 16.
In the solid-state imaging device 1-17a, four pixels electrically divided by the pixel separating portion 9-17a formed inside the semiconductor substrate 10-17a are formed on the back surface of the semiconductor substrate 10-17a. The green color filter 3-17a- is sequentially arranged from the left pixel in FIG. 16J so as to be embedded in the inter-pixel light shielding film 4-17a on the antireflective layer 6-17a and the insulating layer 5-17a. G, red color filters 3-17a-R, blue color filters 3-17a-B, and in-layer lenses 3-17a-W are formed. And, on top of each of the green color filter 3-17a-G, the red color filter 3-17a-R, the blue color filter 3-17a-B and the in-layer lens 3-17a-W, the on-chip lens 2-17a On-chip lenses 2-17a-R, on-chip lenses 2-17a-B, and on-chip lenses 2-17a-W are formed.
 図17(b)で、等方的に、反射防止膜20-17b-G、反射防止膜20-17b-R、反射防止膜20-17b-B及び反射防止膜20-17b-Wが、オンチップレンズ2-17b-G、オンチップレンズ2-17b-R、オンチップレンズ2-17b-B及びオンチップレンズ2-17b-W上に成膜されて、固体撮像素子1-17bが得られる。固体撮像素子1-17bにおいては、半導体基板10-17bの内部に形成された画素分離部9-17bで電気的に区画された4画素に対して、半導体基板10-17bの裏面上に形成された反射防止層6-17b及び絶縁層5-17bの上部に、画素間遮光膜4-17bに埋め込まれるように、図16(j)中の左の画素から順に、緑色カラーフィルタ3-17b-G、赤色カラーフィルタ3-17b-R、青色カラーフィルタ3-17b-B及び層内レンズ3-17b-Wが形成されている。そして、緑色カラーフィルタ3-17b-G、赤色カラーフィルタ3-17b-R、青色カラーフィルタ3-17b-B及び層内レンズ3-17b-Wのそれぞれの上部には、オンチップレンズ2-17b-G、オンチップレンズ2-17b-R、オンチップレンズ2-17b-B及びオンチップレンズ2-17b-Wが形成されている。 In FIG. 17B, the antireflective film 20-17b-G, the antireflective film 20-17b-R, the antireflective film 20-17b-B, and the antireflective film 20-17b-W are isotropically turned on. The solid-state imaging device 1-17b is obtained by forming a film on the tip lens 2-17b-G, the on-chip lens 2-17b-R, the on-chip lens 2-17b-B, and the on-chip lens 2-17b-W. . In the solid-state imaging device 1-17b, four pixels electrically divided by the pixel separating portion 9-17b formed inside the semiconductor substrate 10-17b are formed on the back surface of the semiconductor substrate 10-17b. The green color filter 3-17b- is sequentially arranged from the left pixel in FIG. 16J so as to be embedded in the inter-pixel light shielding film 4-17b on the antireflective layer 6-17b and the insulating layer 5-17b. G, red color filter 3-17b-R, blue color filter 3-17b-B, and in-layer lens 3-17b-W are formed. And, on top of each of the green color filter 3-17b-G, the red color filter 3-17b-R, the blue color filter 3-17b-B and the in-layer lens 3-17b-W, an on-chip lens 2-17b On-chip lenses 2-17b-R, on-chip lenses 2-17b-B, and on-chip lenses 2-17b-W are formed.
<4.電子装置に関する実施形態>
[4-1.第13の実施形態(電子装置の例)]
 本技術に係る第13の実施形態の電子装置は、固体撮像素子が搭載されて、該固体撮像素子が、
 1次元又は2次元に配列された複数の画素毎に、光入射側から順に、オンチップレンズと、層内レンズと、反射防止層と半導体基板とが、少なくとも配され、該オンチップレンズの屈折率と該層内レンズの屈折率とは異なり、該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす、電子装置である。
<4. Embodiments of Electronic Device>
[4-1. Thirteenth Embodiment (Example of Electronic Device)]
In an electronic device according to a thirteenth embodiment of the present technology, a solid-state imaging device is mounted, and the solid-state imaging device includes:
At least an on-chip lens, an in-layer lens, an antireflective layer, and a semiconductor substrate are disposed in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions, and refraction of the on-chip lens Unlike the index and the refractive index of the in-layer lens, the upper radius of curvature on the light incident side of the on-chip lens is rl, the lower radius of curvature of the on-chip lens is rc, and the refractive index of the on-chip lens When nl, the refractive index of the intralayer lens is nc, and the distance from the antireflective layer to the upper end portion of the intralayer lens on the light incident side is hc, al and ac are 0.96 to 1.04. In the electronic device, the upper radius of curvature rl of the on-chip lens and the lower radius of curvature rc of the on-chip lens satisfy the following equation (1).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。光は、性質上オンチップレンズで集光させても1点には集光せずに、波長に応じた広がりを有する。al及びacは、この広がりから認められるオンチップレンズの誤差範囲を意味する。なお、alは、オンチップレンズの上部(上面)の誤差範囲であり、acは、オンチップレンズの下部(下面)の誤差範囲である。 However, in the equation (1), when the light incident surface side of the on-chip lens is the upper side, the upper part of the on-chip lens is upwardly convex when rl> 0, and when rl <0. The upper part of the on-chip lens is a downward convex shape, and when rc> 0, the lower part of the on-chip lens is an upward convex shape, and when rc <0, the lower part of the on-chip lens is a downward convex shape It is. The light has a spread according to the wavelength without being condensed at one point even if condensed by the on-chip lens in nature. al and ac mean the on-chip lens error range recognized from this spread. Here, al is an error range of the upper portion (upper surface) of the on-chip lens, and ac is an error range of the lower portion (lower surface) of the on-chip lens.
 また、本技術に係る第13の実施形態の電子装置は、本技術に係る第1の実施形態~第7の実施形態の固体撮像素子が搭載された電子装置でもよい。 The electronic device of the thirteenth embodiment according to the present technology may be an electronic device on which the solid-state imaging device according to the first to seventh embodiments of the present technology is mounted.
 <5.本技術を適用した固体撮像素子の使用例>
 図18は、イメージセンサとしての本技術に係る第1~第7の実施形態の固体撮像素子の使用例を示す図である。
<5. Usage example of solid-state imaging device to which the present technology is applied>
FIG. 18 is a diagram showing an example of use of the solid-state imaging device according to the first to seventh embodiments of the present technology as an image sensor.
 上述した第1~第7の実施形態の固体撮像素子は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングするさまざまなケースに使用することができる。すなわち、図13に示すように、例えば、鑑賞の用に供される画像を撮影する鑑賞の分野、交通の分野、家電の分野、医療・ヘルスケアの分野、セキュリティの分野、美容の分野、スポーツの分野、農業の分野等において用いられる装置(例えば、上述した第13の実施形態の電子装置)に、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 The solid-state imaging devices according to the first to seventh embodiments described above can be used, for example, in various cases of sensing light such as visible light, infrared light, ultraviolet light, X-rays, etc. as follows. it can. That is, as shown in FIG. 13, for example, the field of appreciation for capturing images to be used for appreciation, the field of transportation, the field of home appliances, the field of medical and healthcare, the field of security, the field of beauty, sports Using the solid-state imaging device according to any one of the first to seventh embodiments in a device (for example, the electronic device according to the thirteenth embodiment described above) used in the field of agriculture, the field of agriculture, etc. Can.
 具体的には、鑑賞の分野においては、例えば、デジタルカメラやスマートフォン、カメラ機能付きの携帯電話機等の、鑑賞の用に供される画像を撮影するための装置に、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 Specifically, in the field of appreciation, for example, devices for photographing an image to be provided for appreciation, such as a digital camera, a smartphone, a mobile phone with a camera function, etc. The solid-state imaging device according to any one of the embodiments can be used.
 交通の分野においては、例えば、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置に、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 In the field of transportation, for example, in-vehicle sensors for capturing images in front of, behind, around, inside of vehicles, etc., for monitoring safe driving such as automatic stop, etc., driving vehicles and roads. The solid-state imaging device according to any one of the first to seventh embodiments is used in an apparatus used for traffic, such as a surveillance camera, a ranging sensor for ranging between vehicles, etc. be able to.
 家電の分野においては、例えば、ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、テレビ受像機や冷蔵庫、エアーコンディショナ等の家電に供される装置で、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 In the field of home appliances, for example, a device provided to home appliances such as a television receiver, a refrigerator, an air conditioner, etc. in order to photograph a user's gesture and perform device operation according to the gesture. The solid-state imaging device of any one of the seventh embodiments can be used.
 医療・ヘルスケアの分野においては、例えば、内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置に、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 In the field of medical and healthcare, for example, first to seventh implementations for devices provided for medical use and healthcare, such as endoscopes and devices that perform blood vessel imaging by receiving infrared light. The solid-state imaging device according to any one of the embodiments can be used.
 セキュリティの分野においては、例えば、防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置に、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 In the field of security, for example, in a device provided for security, such as a surveillance camera for security use or a camera for person authentication, a solid of any one of the first to seventh embodiments. An imaging device can be used.
 美容の分野においては、例えば、肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置に、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 In the field of beauty, for example, any one of the first to seventh embodiments of an apparatus provided for beauty use, such as a skin measuring instrument for photographing the skin and a microscope for photographing the scalp A solid-state imaging device in the form can be used.
 スポーツの分野において、例えば、スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置に、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 In the field of sports, for example, a solid-state imaging device according to any one of the first to seventh embodiments is provided as an apparatus used for sports, such as an action camera or wearable camera for sports use etc. It can be used.
 農業の分野においては、例えば、畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置に、第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子を使用することができる。 In the field of agriculture, for example, a solid-state imaging apparatus according to any one of the first to seventh embodiments in an apparatus used for agriculture, such as a camera for monitoring the condition of fields and crops. Elements can be used.
 次に、本技術に係る第1~第7の実施形態の固体撮像素子の使用例を具体的に説明する。例えば、上述で説明をした第1~第7の実施形態のいずれか1つの実施形態の固体撮像素子は、固体撮像素子101として、例えばデジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話など、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図19に、その一例として、電子機器102(カメラ)の概略構成を示す。この電子機器102は、例えば静止画または動画を撮影可能なビデオカメラであり、固体撮像素子101と、光学系(光学レンズ)310と、シャッタ装置311と、固体撮像素子101およびシャッタ装置311を駆動する駆動部313と、信号処理部312とを有する。 Next, usage examples of the solid-state imaging device according to the first to seventh embodiments of the present technology will be specifically described. For example, in the solid-state imaging device according to any one of the first to seventh embodiments described above, a camera system such as a digital still camera or a video camera, or an imaging function is used as the solid-state imaging device 101. The present invention can be applied to all types of electronic devices equipped with an imaging function, such as mobile phones having the same. FIG. 19 shows a schematic configuration of the electronic device 102 (camera) as an example. The electronic device 102 is, for example, a video camera capable of shooting still images or moving images, and drives the solid-state imaging device 101, an optical system (optical lens) 310, a shutter device 311, the solid-state imaging device 101, and the shutter device 311. And a signal processing unit 312.
 光学系310は、被写体からの像光(入射光)を固体撮像素子101の画素部101aへ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、固体撮像素子101への光照射期間および遮光期間を制御するものである。駆動部313は、固体撮像素子101の転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、固体撮像素子101から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、
メモリなどの記憶媒体に記憶されるか、あるいは、モニタ等に出力される。
The optical system 310 guides image light (incident light) from a subject to the pixel unit 101 a of the solid-state imaging device 101. The optical system 310 may be composed of a plurality of optical lenses. The shutter device 311 controls a light irradiation period and a light shielding period to the solid-state imaging device 101. The drive unit 313 controls the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 311. The signal processing unit 312 performs various types of signal processing on the signal output from the solid-state imaging device 101. The video signal Dout after signal processing is
It is stored in a storage medium such as a memory or output to a monitor or the like.
 なお、本技術に係る実施形態は、上述した実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments according to the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present technology.
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 In addition, the effects described in the present specification are merely illustrative and not limitative, and may have other effects.
 また、本技術は、以下のような構成も取ることができる。
[1]
 1次元又は2次元に配列された複数の画素毎に、光入射側から順に、オンチップレンズと、層内レンズと、反射防止層と、半導体基板とが、少なくとも配され、
 該オンチップレンズの屈折率と該層内レンズの屈折率とは異なり、
 該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
 alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす、固体撮像素子。
Figure JPOXMLDOC01-appb-M000010
(ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。)
[2]
 画素間遮光膜を更に備える、[1]に記載の固体撮像素子。
[3]
 互いに隣接する画素間にハードマスク材を更に備える、[1]又は[2]に記載の固体撮像素子。
[4]
 前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が上凸形状であって、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が上凸形状である、[1]から[3]のいずれか1つに記載の固体撮像素子。
[5]
 前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が下凸形状であって、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が下凸形状である、[1]から[3]のいずれか1つに記載の固体撮像素子。
[6]
 前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が上凸形状であって、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が上凸形状であり、さらに、
 前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が下凸形状であって、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が下凸形状である、[1]から[3]のいずれか1つに記載の固体撮像素子。
[7]
 前記層内レンズのうち、少なくとも1つの層内レンズが、特定の波長帯を透過させるカラーフィルタ特性を有する、[1]から[6]のいずれか1つに記載の固体撮像素子。
[8]
 前記オンチップレンズ上に、オンチップレンズ用反射防止膜を更に備える、[1]から[7]のいずれか1つに記載の固体撮像素子。
[9]
 半導体基板上の反射防止層の上方向に、互いに隣接する画素間に画素間遮光膜を形成する工程と、
 層内レンズ材を、回転塗布して該回転塗布後に回転数を調整して乾燥させる工程と、
 該層内レンズ材を該画素間遮光膜上か、又は該画素間遮光膜より内側に露光し現像して、層内レンズを形成する工程と、
 オンチップレンズ材を回転塗布した後に母材レンズを塗布して、寸法を調整してパターニングする工程と、
 寸法調整された母材レンズを融解させてエッチバックし、該オンチップレンズ材に曲率を転写させて、オンチップレンズを形成する工程と、を含み、
 該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
 alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす長さに加工される、固体撮像素子の製造方法。
Figure JPOXMLDOC01-appb-M000011
(ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。)
[10]
 互いに隣接する画素間にハードマスク材を形成する工程を更に含む、[9]に記載の固体撮像素子の製造方法。
[11]
 前記オンチップレンズ上に、オンチップレンズ用反射防止膜を形成する工程を更に含む、[9]又は[10]に記載の固体撮像素子の製造方法。
[12]
 固体撮像素子が搭載されて、
 該固体撮像素子が、
 1次元又は2次元に配列された複数の画素毎に、光入射側から順に、オンチップレンズと、層内レンズと、反射防止層と半導体基板とが、少なくとも配され、
 該オンチップレンズの屈折率と該層内レンズの屈折率とは異なり、
 該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
 alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす、電子装置。
Figure JPOXMLDOC01-appb-M000012
(ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。)
[13]
 [2]から[8]のいずれか1つに記載の固体撮像素子が搭載される、電子装置。
In addition, the present technology can also have the following configurations.
[1]
At least an on-chip lens, an in-layer lens, a reflection preventing layer, and a semiconductor substrate are arranged in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions;
Unlike the refractive index of the on-chip lens and the refractive index of the in-layer lens,
The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
The radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and ac satisfy the following formula (1): Solid-state image sensor.
Figure JPOXMLDOC01-appb-M000010
(However, when the light incident surface side of the on-chip lens is the upper side in the equation (1), the upper part of the on-chip lens is convex upward when rl> 0, and rl <0 The upper part of the on-chip lens has a lower convex shape, the lower part of the on-chip lens has an upper convex shape when rc> 0, and the lower part of the on-chip lens has a lower convex when rc <0. It is a shape.)
[2]
The solid-state imaging device according to [1], further comprising an inter-pixel light shielding film.
[3]
The solid-state imaging device according to [1] or [2], further comprising a hard mask material between adjacent pixels.
[4]
The upper part on the light incident side of at least one in-layer lens of the in-layer lenses is upwardly convex, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens The solid-state imaging device according to any one of [1] to [3], wherein is an upwardly convex shape.
[5]
The upper part on the light incident side of at least one in-layer lens of the in-layer lenses is a downward convex shape, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens The solid-state imaging device according to any one of [1] to [3], wherein
[6]
The upper part on the light incident side of at least one in-layer lens of the in-layer lenses is upwardly convex, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens Is convex upward, and further,
The upper part on the light incident side of at least one in-layer lens of the in-layer lenses is a downward convex shape, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens The solid-state imaging device according to any one of [1] to [3], wherein
[7]
The solid-state imaging device according to any one of [1] to [6], wherein at least one of the in-layer lenses has a color filter characteristic of transmitting a specific wavelength band.
[8]
The solid-state imaging device according to any one of [1] to [7], further including an anti-reflection film for on-chip lens on the on-chip lens.
[9]
Forming an inter-pixel light shielding film between adjacent pixels in the upper direction of the antireflective layer on the semiconductor substrate;
A step of spin-coating the in-layer lens material and adjusting the number of rotations after the spin-coating to dry;
Forming an in-layer lens by exposing and developing the in-layer lens material on or between the in-pixel light shielding film or the in-pixel light blocking film;
Coating the base lens after spin-coating the on-chip lens material, adjusting the dimensions and patterning;
Melting and etching back the dimensioned base lens, and transferring the curvature to the on-chip lens material to form an on-chip lens.
The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
The radius of curvature rl of the upper part of the on-chip lens and the radius of curvature rc of the lower part of the on-chip lens in the range of 0.96 to 1.04 in which al and ac satisfy the following formula (1) The manufacturing method of the solid-state image sensor processed into
Figure JPOXMLDOC01-appb-M000011
(However, when the light incident surface side of the on-chip lens is the upper side in the equation (1), the upper part of the on-chip lens is convex upward when rl> 0, and rl <0 The upper part of the on-chip lens has a lower convex shape, the lower part of the on-chip lens has an upper convex shape when rc> 0, and the lower part of the on-chip lens has a lower convex when rc <0. It is a shape.)
[10]
The manufacturing method of the solid-state image sensor as described in [9] which further includes the process of forming a hard mask material between the mutually adjacent pixels.
[11]
The manufacturing method of the solid-state image sensor as described in [9] or [10] which further includes the process of forming the anti-reflective film for on-chip lenses on the said on-chip lens.
[12]
A solid-state image sensor is mounted,
The solid-state imaging device is
At least an on-chip lens, an in-layer lens, an antireflective layer, and a semiconductor substrate are arranged in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions,
Unlike the refractive index of the on-chip lens and the refractive index of the in-layer lens,
The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
The radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and ac satisfy the following formula (1): Electronic device.
Figure JPOXMLDOC01-appb-M000012
(However, when the light incident surface side of the on-chip lens is the upper side in the equation (1), the upper part of the on-chip lens is convex upward when rl> 0, and rl <0 The upper part of the on-chip lens has a lower convex shape, the lower part of the on-chip lens has an upper convex shape when rc> 0, and the lower part of the on-chip lens has a lower convex when rc <0. It is a shape.)
[13]
The electronic device by which the solid-state image sensor as described in any one of [2] to [8] is mounted.
 1…固体撮像素子、2…オンチップレンズ、3…層内レンズ(カラーフィルタ)、6…反射防止層、10…半導体基板、100…画素 DESCRIPTION OF SYMBOLS 1 ... Solid-state image sensor, 2 ... On-chip lens, 3 ... lens in a layer (color filter), 6 ... Antireflection layer, 10 ... Semiconductor substrate, 100 ... Pixel

Claims (12)

  1.  1次元又は2次元に配列された複数の画素毎に、光入射側から順に、オンチップレンズと、層内レンズと、反射防止層と、半導体基板とが、少なくとも配され、
     該オンチップレンズの屈折率と該層内レンズの屈折率とは異なり、
     該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
     alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす、固体撮像素子。
    Figure JPOXMLDOC01-appb-M000001
    (ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。)
    At least an on-chip lens, an in-layer lens, a reflection preventing layer, and a semiconductor substrate are arranged in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions;
    Unlike the refractive index of the on-chip lens and the refractive index of the in-layer lens,
    The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
    The radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and ac satisfy the following formula (1): Solid-state image sensor.
    Figure JPOXMLDOC01-appb-M000001
    (However, when the light incident surface side of the on-chip lens is the upper side in the equation (1), the upper part of the on-chip lens is convex upward when rl> 0, and rl <0 The upper part of the on-chip lens has a lower convex shape, the lower part of the on-chip lens has an upper convex shape when rc> 0, and the lower part of the on-chip lens has a lower convex when rc <0. It is a shape.)
  2.  画素間遮光膜を更に備える、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, further comprising an inter-pixel light shielding film.
  3.  互いに隣接する画素間にハードマスク材を更に備える、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, further comprising a hard mask material between adjacent pixels.
  4.  前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が上凸形状であって、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が上凸形状である、請求項1に記載の固体撮像素子。 The upper part on the light incident side of at least one in-layer lens of the in-layer lenses is upwardly convex, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens The solid-state imaging device according to claim 1, wherein is an upward convex shape.
  5.  前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が下凸形状であって、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が下凸形状である、請求項1に記載の固体撮像素子。 The upper part on the light incident side of at least one in-layer lens of the in-layer lenses is a downward convex shape, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens The solid-state imaging device according to claim 1, wherein is a downward convex shape.
  6.  前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が上凸形状であって、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が上凸形状であり、さらに、
     前記層内レンズのうち、少なくとも1つの層内レンズの光入射側である上部が下凸形状であって、かつ、該少なくとも1つの層内レンズと接触して配される前記オンチップレンズの下部が下凸形状である、請求項1に記載の固体撮像素子。
    The upper part on the light incident side of at least one in-layer lens of the in-layer lenses is upwardly convex, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens Is convex upward, and further,
    The upper part on the light incident side of at least one in-layer lens of the in-layer lenses is a downward convex shape, and the lower part of the on-chip lens disposed in contact with the at least one in-layer lens The solid-state imaging device according to claim 1, wherein is a downward convex shape.
  7.  前記層内レンズのうち、少なくとも1つの層内レンズが、特定の波長帯を透過させるカラーフィルタ特性を有する、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein at least one of the in-layer lenses has a color filter characteristic that transmits a specific wavelength band.
  8.  前記オンチップレンズ上に、オンチップレンズ用反射防止膜を更に備える、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, further comprising an on-chip lens antireflection film on the on-chip lens.
  9.  半導体基板上の反射防止層の上方向に、互いに隣接する画素間に画素間遮光膜を形成する工程と、
     層内レンズ材を、回転塗布して該回転塗布後に回転数を調整して乾燥させる工程と、
     該層内レンズ材を該画素間遮光膜上か、又は該画素間遮光膜より内側に露光し現像して、層内レンズを形成する工程と、
     オンチップレンズ材を回転塗布した後に母材レンズを塗布して、寸法を調整してパターニングする工程と、
     寸法調整された母材レンズを融解させてエッチバックし、該オンチップレンズ材に曲率を転写させて、オンチップレンズを形成する工程と、を含み、
     該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
     alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす長さに加工される、固体撮像素子の製造方法。
    Figure JPOXMLDOC01-appb-M000002
    (ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。)
    Forming an inter-pixel light shielding film between adjacent pixels in the upper direction of the antireflective layer on the semiconductor substrate;
    A step of spin-coating the in-layer lens material and adjusting the number of rotations after the spin-coating to dry;
    Forming an in-layer lens by exposing and developing the in-layer lens material on or between the in-pixel light shielding film or the in-pixel light blocking film;
    Coating the base lens after spin-coating the on-chip lens material, adjusting the dimensions and patterning;
    Melting and etching back the dimensioned base lens, and transferring the curvature to the on-chip lens material to form an on-chip lens.
    The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
    The radius of curvature rl of the upper part of the on-chip lens and the radius of curvature rc of the lower part of the on-chip lens in the range of 0.96 to 1.04 in which al and ac satisfy the following formula (1) The manufacturing method of the solid-state image sensor processed into
    Figure JPOXMLDOC01-appb-M000002
    (However, when the light incident surface side of the on-chip lens is the upper side in the equation (1), the upper part of the on-chip lens is convex upward when rl> 0, and rl <0 The upper part of the on-chip lens has a lower convex shape, the lower part of the on-chip lens has an upper convex shape when rc> 0, and the lower part of the on-chip lens has a lower convex when rc <0. It is a shape.)
  10.  互いに隣接する画素間にハードマスク材を形成する工程を更に含む、請求項9に記載の固体撮像素子の製造方法。 The method for manufacturing a solid-state imaging device according to claim 9, further comprising the step of forming a hard mask material between adjacent pixels.
  11.  前記オンチップレンズ上に、オンチップレンズ用反射防止膜を形成する工程を更に含む、請求項9に記載の固体撮像素子の製造方法。 The method for manufacturing a solid-state imaging device according to claim 9, further comprising the step of forming an anti-reflection film for on-chip lens on the on-chip lens.
  12.  固体撮像素子が搭載されて、
     該固体撮像素子が、
     1次元又は2次元に配列された複数の画素毎に、光入射側から順に、オンチップレンズと、層内レンズと、反射防止層と半導体基板とが、少なくとも配され、
     該オンチップレンズの屈折率と該層内レンズの屈折率とは異なり、
     該オンチップレンズの光入射側である上部の曲率半径をrl、該オンチップレンズの下部の曲率半径をrc、該オンチップレンズの屈折率をnl、層内レンズの屈折率をnc、該反射防止層から該層内レンズの光入射側である上端部までの距離をhcとしたとき、
     alとacとが0.96~1.04の範囲で、該オンチップレンズの該上部の曲率半径rl及び該オンチップレンズの該下部の曲率半径rcが、下記の数式(1)を満たす、電子装置。
    Figure JPOXMLDOC01-appb-M000003
    (ただし、該数式(1)において、該オンチップレンズの光入射面側を上側としたとき、rl>0のときは、該オンチップレンズの上部は上凸形状であり、rl<0のときは該オンチップレンズの上部は下凸形状であり、rc>0のときは、該オンチップレンズの下部は上凸形状であり、rc<0のときは、該オンチップレンズの下部は下凸形状である。)
    A solid-state image sensor is mounted,
    The solid-state imaging device is
    At least an on-chip lens, an in-layer lens, an antireflective layer, and a semiconductor substrate are arranged in order from the light incident side for each of a plurality of pixels arranged in one or two dimensions,
    Unlike the refractive index of the on-chip lens and the refractive index of the in-layer lens,
    The curvature radius of the upper part on the light incident side of the on-chip lens is rl, the curvature radius of the lower part of the on-chip lens is rc, the refractive index of the on-chip lens is nl, the refractive index of the in-layer lens is nc, the reflection When the distance from the preventing layer to the upper end portion on the light incident side of the in-layer lens is hc,
    The radius of curvature rl of the upper portion of the on-chip lens and the radius of curvature rc of the lower portion of the on-chip lens in the range of 0.96 to 1.04 for al and ac satisfy the following formula (1): Electronic device.
    Figure JPOXMLDOC01-appb-M000003
    (However, when the light incident surface side of the on-chip lens is the upper side in the equation (1), the upper part of the on-chip lens is convex upward when rl> 0, and rl <0 The upper part of the on-chip lens has a lower convex shape, the lower part of the on-chip lens has an upper convex shape when rc> 0, and the lower part of the on-chip lens has a lower convex when rc <0. It is a shape.)
PCT/JP2018/038588 2017-11-16 2018-10-17 Solid state imaging element and electronic device WO2019097936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221080A JP2019091853A (en) 2017-11-16 2017-11-16 Solid state image pickup element and electronic apparatus
JP2017-221080 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019097936A1 true WO2019097936A1 (en) 2019-05-23

Family

ID=66538581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038588 WO2019097936A1 (en) 2017-11-16 2018-10-17 Solid state imaging element and electronic device

Country Status (2)

Country Link
JP (1) JP2019091853A (en)
WO (1) WO2019097936A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202151A1 (en) * 2021-03-26 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 Light detection device and electronic apparatus
WO2022220271A1 (en) * 2021-04-14 2022-10-20 凸版印刷株式会社 Microlens array and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068227A1 (en) * 2021-10-22 2023-04-27 ソニーセミコンダクタソリューションズ株式会社 Display device and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738075A (en) * 1993-07-23 1995-02-07 Nec Corp Solid-state imaging device
JP2006019588A (en) * 2004-07-02 2006-01-19 Sony Corp Solid-state imaging apparatus and its manufacturing method
JP2011216826A (en) * 2010-04-02 2011-10-27 Sony Corp Solid-state image pickup device, method of manufacturing the same, electronic equipment and camera module
JP2012204387A (en) * 2011-03-23 2012-10-22 Panasonic Corp Solid state imaging device and manufacturing method of the same
JP2013229446A (en) * 2012-04-25 2013-11-07 Sharp Corp Solid-state image sensor and method for manufacturing the same
JP2014154662A (en) * 2013-02-07 2014-08-25 Sony Corp Solid state image sensor, electronic apparatus, and manufacturing method
JP2016036004A (en) * 2014-07-31 2016-03-17 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Double lens structure and fabrication method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738075A (en) * 1993-07-23 1995-02-07 Nec Corp Solid-state imaging device
JP2006019588A (en) * 2004-07-02 2006-01-19 Sony Corp Solid-state imaging apparatus and its manufacturing method
JP2011216826A (en) * 2010-04-02 2011-10-27 Sony Corp Solid-state image pickup device, method of manufacturing the same, electronic equipment and camera module
JP2012204387A (en) * 2011-03-23 2012-10-22 Panasonic Corp Solid state imaging device and manufacturing method of the same
JP2013229446A (en) * 2012-04-25 2013-11-07 Sharp Corp Solid-state image sensor and method for manufacturing the same
JP2014154662A (en) * 2013-02-07 2014-08-25 Sony Corp Solid state image sensor, electronic apparatus, and manufacturing method
JP2016036004A (en) * 2014-07-31 2016-03-17 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Double lens structure and fabrication method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202151A1 (en) * 2021-03-26 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 Light detection device and electronic apparatus
WO2022220271A1 (en) * 2021-04-14 2022-10-20 凸版印刷株式会社 Microlens array and method for manufacturing same

Also Published As

Publication number Publication date
JP2019091853A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US8530814B2 (en) Solid-state imaging device with a planarized lens layer method of manufacturing the same, and electronic apparatus
JP6288075B2 (en) Imaging device and imaging apparatus
JP5086877B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
WO2019097936A1 (en) Solid state imaging element and electronic device
JP6364667B2 (en) Photodetector, solid-state imaging device, and manufacturing method thereof
US20050236553A1 (en) Solid-state image sensing element and its design support method, and image sensing device
KR102178387B1 (en) Solid-state imaging element, process for producing solid-state imaging element, and electronic device
WO2016129406A1 (en) Image-capture element and electronic device
CN107251224B (en) Solid-state imaging element and electronic device
JP2009021379A (en) Solid-state imaging apparatus and camera equipped with the same, and manufacturing method of solid-state imaging apparatus
JPH10270672A (en) Solid-state image pickup element
US20060169870A1 (en) Image sensor with embedded optical element
JP2007282054A (en) Solid-state imaging apparatus, camera, and signal processing method
WO2008130846A2 (en) Methods to make sidewall light shields for color filter array
WO2016114152A1 (en) Semiconductor device, method for manufacturing semiconductor device, solid state imaging element, imaging device, and electronic instrument
JP2013012518A (en) Solid state imaging device
JP2010027875A (en) Solid-state imaging element device
JP4564794B2 (en) Solid-state image sensor
KR100848945B1 (en) Microlens Array Compensating Chief Ray and Image Sensor Assembly Having the Same
JP2006140413A (en) Solid-state image sensing element
JP2011243749A (en) Solid state image pickup device and manufacturing method thereof
US7732745B2 (en) Imaging apparatus including a solid state imaging device including a plurality of photo diodes
JP2009124053A (en) Photoelectric converter and method of manufacturing the same
JPH06163863A (en) Solid-state image pickup device
JP2011109033A (en) In-layer lens and method for manufacturing the same, color filter and method for manufacturing the same, solid-state image pickup element and method for manufacturing the same and electronic information equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879790

Country of ref document: EP

Kind code of ref document: A1