WO2019097896A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2019097896A1
WO2019097896A1 PCT/JP2018/037434 JP2018037434W WO2019097896A1 WO 2019097896 A1 WO2019097896 A1 WO 2019097896A1 JP 2018037434 W JP2018037434 W JP 2018037434W WO 2019097896 A1 WO2019097896 A1 WO 2019097896A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
surrounding
control
host vehicle
acceleration
Prior art date
Application number
PCT/JP2018/037434
Other languages
French (fr)
Japanese (ja)
Inventor
悠太郎 伊東
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018129289A external-priority patent/JP6760331B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880074328.4A priority Critical patent/CN111356621B/en
Priority to DE112018005880.8T priority patent/DE112018005880T5/en
Publication of WO2019097896A1 publication Critical patent/WO2019097896A1/en
Priority to US16/876,303 priority patent/US11840228B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a vehicle control device.
  • This vehicle control device sets the minimum inter-vehicle distance according to the speed of the host vehicle, and when the inter-vehicle distance between the preceding vehicle traveling ahead of the host vehicle and the host vehicle becomes smaller than the minimum inter-vehicle distance, The power source such as a motor is stopped to make the vehicle coast. Further, the vehicle control device sets the maximum inter-vehicle distance according to the speed of the host vehicle, and starts driving the power source when the inter-vehicle distance becomes larger than the maximum inter-vehicle distance during coasting.
  • An object of the present disclosure is to provide a vehicle control device capable of improving fuel consumption while securing the followability to a preceding vehicle.
  • a vehicle control device executes traveling control capable of controlling traveling of the own vehicle in order to cause the preceding vehicle following the own vehicle to follow the own vehicle.
  • the vehicle control device predicts whether a change in the surrounding environment occurs such that the fuel efficiency of the host vehicle is deteriorated, and the change in the surrounding environment causes the fuel efficiency of the host vehicle to be deteriorated by the environment prediction unit.
  • an acceleration control unit that executes prediction control capable of limiting the acceleration of the host vehicle when it is predicted to occur.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle according to the first embodiment.
  • FIG. 2 is a graph showing an example of a method of controlling the vehicle by the ACC ECU according to the first embodiment.
  • FIG. 3 is a graph showing an example of a method of controlling a vehicle by the ACC ECU according to the first embodiment.
  • FIG. 4 is a flowchart showing the procedure of processing executed by the ACC ECU and the prediction ECU according to the first embodiment.
  • FIG. 5 is a graph showing an example of a method of calculating the departure amount of the host vehicle with respect to the ideal travel range by the prediction ECU of the first embodiment.
  • FIG. 6 is a graph showing the relationship between the vehicle speed and the probability used by the prediction ECU of the first embodiment.
  • FIGS. 7A to 7C are timing charts showing transitions of the vehicle speed, the driving energy, and the inter-vehicle distance in the vehicle of the first embodiment.
  • FIG. 8 is a block diagram showing a schematic configuration of a vehicle of the second embodiment.
  • FIG. 9 is a flowchart showing the procedure of processing executed by the ACC ECU and the prediction ECU of the second embodiment.
  • FIG. 10 is a map showing the relationship between acceleration and substantial engine efficiency used by the prediction ECU of the second embodiment.
  • FIGS. 11A to 11C are timing charts showing transitions of the vehicle speed, the driving energy, and the engine rotational speed in the vehicle of the second embodiment.
  • FIG. 12 is a time chart showing a switching procedure of a preceding vehicle executed by a prediction ECU according to another embodiment.
  • FIG. 13A and 13B are timing charts showing an example of the temporal transition of the vehicle speed and the deceleration behavior occurrence probability.
  • FIG. 14 shows the calculated value of the frequency of the decelerating behavior model, the calculated value of the frequency of the passing behavior model, and the decelerated behavior occurrence probability with respect to the difference between the likelihoods of the decelerating behavior model and the passing behavior model of the third embodiment. It is a graph which shows transition of a value.
  • FIG. 15 is a flow chart showing the procedure of processing executed by the ACC ECU and the prediction ECU of the third embodiment.
  • FIG. 16 is a flow chart showing a procedure of behavior occurrence probability calculation processing executed by the prediction ECU of the third embodiment.
  • FIG. 17 is a graph showing an example of a method of measuring the green signal duration according to the third embodiment.
  • FIG. 18 is a graph showing an example of a method of measuring the green signal duration according to the third embodiment.
  • FIG. 19 is a map showing the relationship between the green signal duration ⁇ and the probability p sig of switching from the green signal to the yellow signal according to the third embodiment.
  • vehicle 10 is a so-called electric vehicle that travels based on the motive power of motor generator 20.
  • Vehicle 10 includes inverter device 21, battery 22, and clutch 23 in addition to motor generator 20.
  • the battery 22 is formed of a secondary battery such as a lithium ion battery capable of charging and discharging.
  • the inverter device 21 converts the DC power charged in the battery 22 into AC power, and supplies the converted AC power to the motor generator 20.
  • the motor generator 20 is driven based on the AC power supplied from the inverter device 21 to rotate the first power transmission shaft 24.
  • the first power transmission shaft 24 is connected to the second power transmission shaft 25 via the clutch 23.
  • the clutch 23 connects the first power transmission shaft 24 and the second power transmission shaft 25 to enable transmission of power therebetween, the first power transmission shaft 24 and the second power transmission shaft. It is possible to transition to the non-connected state in which the transmission of power between them is cut off by releasing the connection with the switch 25.
  • the clutch 23 is in the connected state, the power transmitted from the motor generator 20 to the first power transmission shaft 24 is transmitted to the wheels 28 of the vehicle 10 through the second power transmission shaft 25, the differential gear 26, and the drive shaft 27. It is transmitted.
  • the vehicle 10 travels.
  • the motor generator 20 corresponds to a power train.
  • the motor generator 20 performs regenerative power generation when the vehicle 10 is braked. That is, the braking force acting on the wheels 28 at the time of braking of the vehicle 10 is input to the motor generator 20 via the drive shaft 27, the differential gear 26, the second power transmission shaft 25, the clutch 23 and the first power transmission shaft 24. Ru.
  • the motor generator 20 generates electric power based on the power input from the wheel 28.
  • the electric power generated by motor generator 20 is converted from AC power to DC power by inverter device 21 and charged in battery 22.
  • the vehicle 10 includes an MG (Motor Generator) ECU (Electronic Control Unit) 30, an EV (Electric Vehicle) ECU 31, an ACC (Adaptive Cruise Control) ECU 32, a prediction ECU 33, a periphery monitoring device 34, and a vehicle state quantity sensor 35. And further.
  • Each of the ECUs 30 to 33 is mainly configured of a microcomputer having a storage device such as a CPU, a ROM, and a RAM, and executes various controls by executing a program stored in advance in the storage device.
  • the vehicle state quantity sensor 35 detects various state quantities of the vehicle 10.
  • the various state quantities detected by the vehicle state quantity sensor 35 include information such as the speed and acceleration of the vehicle 10.
  • the periphery monitoring device 34 includes a camera, a millimeter wave radar device, a laser radar device, and the like.
  • the surrounding area monitoring device 34 detects surrounding vehicles traveling around the vehicle 10 and calculates various state quantities related to the surrounding vehicles.
  • the surrounding vehicles include a preceding vehicle traveling in front of the vehicle 10 in the lane in which the vehicle 10 is traveling, and an adjacent traveling vehicle traveling in the adjacent lane adjacent to the lane in which the vehicle 10 is traveling. .
  • the state quantities detected by the periphery monitoring device 34 include the relative position, relative distance, relative velocity, relative acceleration, and the like of the surrounding vehicle with respect to the host vehicle 10.
  • the relative distance of the surrounding vehicles corresponds to the distance between the vehicles.
  • the relative position of the surrounding vehicle to the host vehicle 10 is defined as, for example, a position of a biaxial coordinate system using an axis in the left-right direction of the host vehicle 10 and an axis in the front-rear direction of the vehicle 10.
  • the periphery monitoring device 34 corresponds to the periphery monitoring unit.
  • MGECU 30 controls the operation of motor generator 20 by driving inverter device 21 based on a command from EVECU 31.
  • EVECU 31 transmits, to MGECU 30, a power command value which is a command value of output power of motor generator 20.
  • MGECU 30 controls the drive of inverter device 21 such that the power corresponding to the power command value is output from motor generator 20.
  • MGECU 30 drives inverter device 21 such that the electric power generated by the regenerative power generation of motor generator 20 is charged to battery 22.
  • the EVECU 31 calculates a power command value necessary to realize traveling according to the driver's driving request, and transmits the calculated power command value to the MGECU 30 so that the vehicle responds to the driver's driving request. Achieve 10 runs. Further, the EVECU 31 exchanges information necessary for various controls with the ACCECU 32 and calculates a power command value according to the request of the ACCECU 32. For example, when the EVECU 31 receives an acceleration command value which is a command value of the acceleration of the vehicle 10 from the ACCECU 32, the EVECU 31 calculates a power command value corresponding to the acceleration command value, and transmits the calculated power command value to the MGECU 30. The vehicle 10 is accelerated at an acceleration according to the command value. Further, the EVECU 31 causes the clutch 23 to transition to the connected or disconnected state, for example, in response to a request from the ACC ECU 32. In the present embodiment, the EVECU 31 corresponds to a traveling control unit.
  • the ACC ECU 32 executes traveling control of the vehicle based on, for example, the operation of an operation unit provided on the vehicle 10 by the occupant.
  • the ACC ECU 32 performs, as traveling control, CC (Cruise Control) control for controlling the traveling of the vehicle 10 so that the vehicle 10 travels at a constant speed, and the preceding vehicle traveling ahead of the host vehicle 10.
  • CC Controller Control
  • Execute ACC Adaptive Cruise Control
  • ACC control corresponds to speed control for controlling the acceleration and deceleration of the host vehicle 10 in order to cause the host vehicle 10 to follow the preceding vehicle.
  • the ACC ECU 32 corresponds to an acceleration control unit.
  • the ACC ECU 32 calculates an inter-vehicle time THW which is the time until the vehicle 10 catches up with the preceding vehicle. As shown in FIG. 2, when the inter-vehicle time THW is equal to or greater than a predetermined first time threshold Tth1, the ACC ECU 32 has a time margin before the vehicle 10 catches up with the preceding vehicle. Performs CC control. The ACC ECU 32 repeatedly executes acceleration and deceleration of the vehicle 10 as CC control. At that time, the ACC ECU 32 controls the acceleration and the deceleration of the vehicle 10 so that the average velocity of the vehicle 10 becomes the velocity Vset set by the occupant through the operation unit.
  • the ACC ECU 32 sets a lower limit velocity VL smaller than the set velocity Vset and an upper limit velocity VH larger than the set velocity, based on the set velocity Vset of the occupant.
  • the ACC ECU 32 executes acceleration control to accelerate the vehicle 10 when the velocity Vc of the vehicle 10 reaches the lower limit velocity VL as the vehicle 10 decelerates.
  • the ACC ECU 32 transmits, to the EVECU 31, an acceleration command value which is a preset positive value as acceleration control.
  • the EVECU 31 calculates a power command value of a positive value corresponding to the acceleration command value, and transmits the power command value to the MGECU 30, whereby the vehicle 10 accelerates with a predetermined acceleration.
  • the ACC ECU 32 performs coasting control to decelerate the vehicle 10 by coasting the vehicle 10 when the velocity Vc of the vehicle reaches the upper limit velocity VH.
  • the ACC ECU 32 transmits an acceleration command value set to zero to the EVECU 31 as a coasting control, and transmits to the EV ECU 31 a command to put the clutch 23 in a disconnected state.
  • the EVECU 31 transmits the power command value set to zero to the MGECU 30 and puts the clutch 23 in the non-connected state.
  • the drive of the motor generator 20 is stopped, and the vehicle 10 is coasting, so the vehicle 10 is naturally decelerated.
  • the ACC ECU 32 transmits a command to put the clutch 23 in the connected state to the EVECU 31 and executes the above acceleration control again.
  • the ACC ECU 32 executes the ACC control.
  • the ACC ECU 32 executes, as ACC control, so-called burn and coast control in which acceleration and deceleration of the vehicle 10 are repeatedly performed so that the host vehicle 10 travels following the preceding vehicle.
  • the ACC ECU 32 performs regeneration control. Do.
  • the ACC ECU 32 transmits an acceleration command value set to a negative value to the EVECU 31 as regeneration control.
  • EVECU 31 calculates a power command value of a negative value corresponding to the acceleration command value, and transmits the power command value to MGECU 30 to cause motor generator 20 to perform regenerative power generation.
  • the motor generator 20 When the motor generator 20 performs regenerative power generation, a braking force is applied to the wheels 28 of the vehicle 10 by the regenerative energy, so that the vehicle 10 can be decelerated more quickly than when the vehicle 10 is coasting. Thus, the inter-vehicle distance between the vehicle 10 and the preceding vehicle can be increased.
  • the ACCECU 32 has the second speed threshold Vth2 larger than the first speed threshold Vth1 and the relative speed Vr of the leading vehicle is in the range from the first speed threshold Vth1 to the second speed threshold Vth2, Execute the above coasting control.
  • the ACC ECU 32 has a third time threshold Tth3 set to a value between the first time threshold Tth1 and the second time threshold Tth2, and the relative speed Vr of the leading vehicle is equal to or higher than the second speed threshold Vth2.
  • the coasting control described above is executed also when the inter-vehicle time THW is a value in the range from the second time threshold Tth2 to the third time threshold Tth3. This coasting control can increase the inter-vehicle distance between the vehicle 10 and the preceding vehicle.
  • the ACCECU 32 described above Execute acceleration control.
  • the ACC ECU 32 causes the host vehicle 10 to follow the preceding vehicle by selectively executing the regeneration control, the coasting control, and the acceleration control according to the inter-vehicle time THW and the relative speed Vr of the preceding vehicle.
  • the inter-vehicle time THW and the relative speed Vr may be rapidly reduced.
  • ACCECU 32 executes regeneration control and causes wheel 28 to generate braking force
  • part of kinetic energy of vehicle 10 can be recovered as electric energy to battery 22 by regeneration control, but other kinetic energy is
  • the wheel 28 generates a braking force, it is converted into heat energy and dissipated to the atmosphere, so it can not be recovered.
  • the loss of energy is inevitable.
  • energy loss occurs. Such loss of energy causes the fuel efficiency of the vehicle 10 to deteriorate.
  • the prediction ECU 33 predicts whether there is a change in the surrounding environment in which the preceding vehicle rapidly decelerates, that is, a change in the surrounding environment in which the fuel efficiency of the vehicle 10 is deteriorated.
  • the prediction ECU 33 corresponds to an environment prediction unit.
  • the ACCECU 32 predicts that a change in the surrounding environment such as the deterioration of the fuel efficiency of the vehicle 10 is occurring by the prediction ECU 33, the ACCECU 32 performs the vehicle 10 before the regenerative control by the ACC control is performed. Perform predictive control that limits the acceleration of the vehicle in advance.
  • the prediction ECU 33 can wirelessly connect to the network line 40 via the communication unit 36 mounted on the vehicle 10.
  • the prediction ECU 33 performs various communications with the server device 41 via the network line 40.
  • the server device 41 acquires various state quantities from a plurality of vehicles, and makes the state quantities into a database.
  • the server device 41 creates various traveling models based on the state quantities of the plurality of vehicles made into a database.
  • the prediction ECU 33 can predict the traveling locus of the surrounding vehicle by using the traveling model created by the server device 41.
  • a vehicle control device 50 is configured by the ACC ECU 32, the prediction ECU 33, and the communication unit 36.
  • the prediction ECU 33 Since the prediction ECU 33 requires high-speed processing and requires connection with a plurality of ECUs, the prediction ECU 33 is disposed independently of the ECU that controls each component. Next, with reference to FIG. 4, the processing procedure of the prediction control executed by the ACC ECU 32 and the prediction ECU 33 will be specifically described. The ACC ECU 32 and the prediction ECU 33 repeatedly execute the processing shown in FIG. 4 at a predetermined cycle.
  • the prediction ECU 33 first acquires the current state quantities of the surrounding vehicles from the surrounding area monitoring device 34 as the process of step S10.
  • the information acquired by the prediction ECU 33 from the surroundings monitoring device 34 includes the relative distance, the relative velocity, the relative acceleration, and the like of the surrounding vehicles.
  • the ACC ECU 32 After the process of step S10, the ACC ECU 32 temporarily sets the acceleration command value ⁇ transmitted to the EVECU 31 as the process of step S11. Specifically, the ACCECU 32 calculates the inter-vehicle time using the relative speed and the relative distance of the preceding vehicle among the information acquired from the surroundings monitoring device 34 in the process of step S10, and calculates the calculated inter-vehicle time and the relative speed By executing the control shown in FIG. 2 based on the above, the first set value ⁇ 1 of the acceleration command value ⁇ is calculated. Then, the ACC ECU 32 temporarily sets the acceleration command value ⁇ to the first set value ⁇ 1.
  • the prediction ECU 33 predicts future state quantities of surrounding vehicles including the preceding vehicle and the adjacent traveling vehicle as the process of step S12, subsequent to the process of step S11.
  • the predicted state quantities of the surrounding vehicles include future relative positions, relative distances, relative speeds, relative accelerations, time-series data of the surrounding vehicles, and the like.
  • the prediction ECU 33 predicts future state quantities from the present to a predetermined time after the current time and the past values of the state quantities of the surrounding vehicles using a computing equation, a model, and the like. As a result, the prediction ECU 33 can predict the behavior of the surrounding vehicle from the present time until a predetermined time has elapsed.
  • step S12 may perform the prediction process of step S12 based not only on the present value and the past value of the state quantity of a surrounding vehicle based on the information regarding the state quantity of another surrounding vehicle.
  • the behavior of surrounding vehicles may be expressed as a predetermined probability model based on past vehicle travel data, and may be predicted as a time-series waveform, or a vehicle that has traveled in the past at a point currently traveling
  • the traveling data of the above may be processed statistically to calculate the deceleration or interruption probability of the vehicle at a certain point.
  • the estimated time is a time that can reach all vehicle speeds that can be considered as traveling vehicle speed by acceleration in normal traveling.
  • the range of acceleration may be set in the range of “ ⁇ 1 [G]” to “1 [G]”, and the total vehicle speed may be a court limited vehicle speed from “0 [km / h]”.
  • the prediction ECU 33 determines whether the vehicle 10 needs to be decelerated based on the behavior of the surrounding vehicle as the process of step S13. Specifically, this determination process is performed by the following method.
  • the vehicle 10 uses the predetermined state quantity b (t I will drive by).
  • the state quantity b (t) is, for example, a function of acceleration with the time t as a variable. Then, when the host vehicle 10 travels with the state quantity b (t), it is assumed that the braking energy generated in the host vehicle 10 can be expressed by "E brk i (b (t))".
  • E brk i (b (t)) is a predicted value of braking energy which is predicted to be generated when the host vehicle 10 is decelerated by execution of the ACC control in a period from the current time until the elapse of a predetermined time.
  • the follow-up performance of the host vehicle 10 with respect to the i-th peripheral vehicle is ideal travel within an ideal inter-vehicle distance range when executing ACC control that causes the host vehicle 10 to follow the preceding vehicle.
  • evaluation can be made based on the deviation amount y i of the expected position of the vehicle 10 with respect to the ideal traveling range in the period from the present to the lapse of a predetermined time.
  • the ideal travel range A is set on the basis of the expected travel position of the i-th nearby vehicle indicated by the alternate long and short dash line, and can be obtained from the predicted travel position of the nearby vehicle using an arithmetic expression etc. .
  • the follow-up performance evaluation value C i (b (t)) of the vehicle 10 can be obtained by the following equation f1 using the deviation amount y i of the predicted position of the vehicle 10 with respect to the ideal travel range A is there.
  • "T" of Formula f1 is prediction time.
  • the expected value E brk (b (t)) of the braking energy of the host vehicle with respect to N neighboring vehicles and the expected value C (b (t)) of the following performance evaluation value are obtained by the following formulas f2 and f3. It can be defined.
  • p i in the equations f2 and f3 is the occurrence probability of the behavior of the i-th nearby vehicle.
  • the probability p i is used as a parameter indicating the likelihood that the state quantity of the i-th surrounding vehicle will appear.
  • the vehicle speed of the i-th nearby vehicle at a predetermined time can be expressed as a probability as shown in FIG.
  • "k" of Formula f4 is each weighting coefficient of braking energy and a tracking performance evaluation value.
  • the coefficient k is a value set in the range of “0 ⁇ k ⁇ 1”.
  • a predetermined value is used as the weighting factor.
  • the state quantity b (t) of the host vehicle 10 is determined so that the value of the evaluation function FE1 becomes minimum, the state quantity b (t of the host vehicle 10 in which the braking energy is suppressed while ensuring the tracking performance) ) Can be asked. In other words, it is possible to obtain the state quantity b (t) of the vehicle 10 capable of improving the fuel consumption while securing the following performance.
  • the prediction ECU 33 executes the determination process of step S13. Specifically, the prediction ECU 33 uses, for example, an arithmetic expression obtained in advance by an experiment or the like as an arithmetic expression of the braking energy E brk i (b (t)). Further, the prediction ECU 33 calculates the predicted traveling locus of the i-th peripheral vehicle from the traveling model etc. based on the predicted state quantity of the i-th peripheral vehicle among the prediction information acquired in the process of step S12. Further, the prediction ECU 33 obtains an ideal traveling range A based on the calculated predicted traveling locus of the i-th surrounding vehicle, thereby calculating an arithmetic expression of the tracking performance evaluation value C i (b (t)) of the host vehicle 10. decide.
  • the prediction ECU 33 acquires the traveling model from the server device 41 via the communication unit 36, and also determines the state quantity of the i-th peripheral vehicle based on the acquired traveling model and the state quantity of the i-th peripheral vehicle. Calculate the occurrence probability p i of Thus, the prediction ECU 33 calculates the braking energy E brk i (b (t)) in the above equation f4, the calculation equation of the following performance evaluation value C i (b (t)), and the occurrence probability p i Then, the state quantity b (t) of the vehicle 10 is determined such that the value of the evaluation function FE1 becomes minimum.
  • the behavior of the host vehicle 10 is considered in a plurality of ways, and the values of the evaluation function at those respective times are calculated, and the host vehicle with the smallest value of the evaluation function F E1
  • Ten state quantities b (t) may be selected or may be determined using an optimization method. Since the state quantity b (t) is a function of the acceleration of the vehicle 10, the operation of the above, the prediction ECU33 obtains a second set value ⁇ 2 of the evaluation function F acceleration command value as the value becomes the minimum E1 alpha be able to.
  • prediction ECU33 when computing prediction setting value alpha 2 of acceleration command value alpha, prediction ECU33 sets the lower limit to 2nd setting value alpha 2, etc., and can carry out the 2nd setting which can carry out coasting control of vehicles 10
  • the value ⁇ 2 may be determined.
  • the prediction ECU 33 determines whether the vehicle 10 needs to be decelerated by comparing the first set value ⁇ 1 with the second set value ⁇ 2 in the process of step S13. Specifically, when the first set value ⁇ 1 is equal to or less than the second set value ⁇ 2, the prediction ECU 33 determines that deceleration of the vehicle 10 is not necessary. That is, the prediction ECU 33 makes a negative determination in the process of step S13. In this case, the prediction ECU 33 determines that there is no change in the surrounding environment in which the fuel efficiency of the vehicle 10 deteriorates. When the prediction ECU 33 makes a negative determination in the process of step S13, the ACC ECU 32 transmits the acceleration command value ⁇ set to the first set value ⁇ 1 to the EVECU 31 as the process of step S15.
  • the prediction ECU 33 determines that the vehicle 10 needs to be decelerated. That is, the prediction ECU 33 makes an affirmative determination in the process of step S13. In this case, it is determined that there is a change in the surrounding environment in which the fuel efficiency of the vehicle 10 deteriorates.
  • the ACC ECU 32 changes the acceleration command value ⁇ from the first set value ⁇ 1 to the second set value ⁇ 2 as the process of step S14 when the prediction ECU 33 makes an affirmative determination in the process of step S13. Then, the ACC ECU 32 transmits the acceleration command value ⁇ set to the second set value ⁇ 2 to the EVECU 31 as the process of step S15.
  • the second set value ⁇ 2 smaller than the first set value ⁇ 1 set by the ACC control is transmitted to the EVECU 31 as the acceleration command value ⁇ .
  • the ACC ECU 32 implements deceleration control to decelerate the host vehicle 10 at a deceleration smaller than the deceleration that can be set by the ACC control.
  • the prediction ECU 33 of the present embodiment calculates braking energy by the calculation of the above-mentioned equation f4. While calculating the second set value ⁇ 2 of the acceleration command value ⁇ that can be suppressed, the acceleration command value ⁇ is set to the second set value ⁇ 2.
  • the EVECU 31 sets the power command value to zero by transmitting the acceleration command value ⁇ from the ACCECU 32 to the EVECU 31, as shown by a solid line in FIG. Ec becomes zero.
  • the ACC ECU 32 performs prediction control capable of limiting the acceleration of the vehicle 10 when the prediction ECU 33 predicts that a change in the surrounding environment is occurring such that the fuel efficiency of the vehicle 10 is deteriorated. Run.
  • the acceleration of the host vehicle 10 is limited in advance, so that the fuel efficiency of the host vehicle 10 is actually deteriorated. It is possible to avoid.
  • the fuel consumption of the host vehicle 10 can be improved.
  • the ACC ECU 32 predicts that a change in the surrounding environment has occurred such that the fuel efficiency of the host vehicle 10 is degraded.
  • the ACC ECU 32 uses the second set value ⁇ 2 smaller than the first set value ⁇ 1 of the acceleration command value ⁇ set by the ACC control when predicting a change in the surrounding environment where the host vehicle 10 needs to be decelerated. Acceleration control for actually limiting the acceleration of the vehicle 10 is executed.
  • the ACC ECU 32 executes, as predictive control, deceleration control to decelerate the host vehicle at a deceleration smaller than the deceleration that can be set by the ACC control. According to such a configuration, it is possible to reduce the loss of energy generated at the time of deceleration for securing the inter-vehicle distance.
  • the prediction ECU 33 predicts the presence or absence of a change in the surrounding environment in which the host vehicle 10 needs to be decelerated, based on the index related to the fuel efficiency of the host vehicle 10 and the index related to the follow-up performance of the host vehicle with respect to the preceding vehicle. Specifically, the prediction ECU 33 predicts braking energy that is predicted to occur when the host vehicle 10 is decelerated by execution of the ACC control in a period from the present to the end of a predetermined time period as an index related to fuel consumption of the host vehicle 10 Use the value.
  • the prediction ECU 33 uses the deviation y i of the position of the host vehicle with respect to the ideal value of the ACC control in the period from the present to the end of the predetermined time as an index related to the follow-up performance of the host vehicle with respect to the preceding vehicle.
  • the prediction ECU 33 represents the index related to the fuel efficiency of the host vehicle 10 and the index related to the following performance of the host vehicle with respect to the preceding vehicle as probability information as represented by the above formulas f2 and f3.
  • prediction ECU33 uses a function which can be expressed by the above-mentioned formula 4 as an evaluation function which consists of an expected value based on an index about fuel consumption of self-vehicles 10, and an index based on an index about follow-up performance of self-vehicle 10 over preceding vehicles
  • a change in the surrounding environment in which the vehicle 10 needs to be decelerated is predicted based on the calculated value of the equation f4. This makes it possible to reliably determine the deceleration of the vehicle 10 to obtain the effects of fuel efficiency improvement and suppression of the deterioration of the following performance even when uncertainty is included in the predicted information regarding the change in the surrounding environment. .
  • the prediction ECU 33 calculates a second set value ⁇ 2 of the acceleration command value capable of performing coasting control of the vehicle 10.
  • the ACC ECU 32 performs coasting control that causes the vehicle 10 to coast while the output from the motor generator 20 is not transmitted to the wheels of the vehicle 10. According to such a configuration, when decelerating the vehicle 10 using the prediction information, the vehicle 10 can be decelerated with higher fuel efficiency.
  • the ACC ECU 32 repeatedly executes acceleration and deceleration of the host vehicle 10 to execute burn-and-coast control that causes the host vehicle 10 to follow the preceding vehicle. Thereby, the vehicle 10 can travel generally by a travel method with high fuel efficiency.
  • the prediction ECU 33 predicts the deceleration of the preceding vehicle as a change in the surrounding environment such that the fuel efficiency of the host vehicle is deteriorated. This makes it possible to improve the fuel consumption with respect to changes in the surrounding environment that have a large impact on the fuel consumption.
  • the vehicle control device 50 of the present modification further includes an HMI (human machine interface) ECU 37.
  • the HMI ECU 37 is a part that controls the notification device 38 mounted on the vehicle 10 to notify the occupants of the vehicle 10 in various ways.
  • a speaker, a display or the like can be used as the notification device 38.
  • the ACC ECU 32 transmits the acceleration command value ⁇ to the HMIECU 37 in the process of step S15 shown in FIG. 4.
  • the HMIECU 37 executes instruction control for instructing the occupant of the host vehicle 10 of the driving method so that the acceleration of the host vehicle 10 is limited based on the acceleration command value ⁇ transmitted from the ACC ECU 32.
  • the HMI ECU 37 causes the passenger to drive the vehicle by causing the occupant to recognize the acceleration or velocity corresponding to the acceleration command value ⁇ by means of a speaker by voice or displaying the acceleration or velocity corresponding to the acceleration command value ⁇ on the display. To direct.
  • the HMI ECU 37 may instruct the driver on the driving method by adjusting the depression amount of the accelerator pedal based on the acceleration command value ⁇ or adjusting the depression amount of the brake pedal. Even with such a method, the vehicle 10 can be decelerated.
  • Second Embodiment a second embodiment of the vehicle control device 50 will be described.
  • differences from the vehicle control device 50 of the first embodiment will be mainly described.
  • First, a schematic configuration of a vehicle 10 on which the vehicle control device 50 of the second embodiment is mounted will be described.
  • the vehicle 10 is a so-called hybrid vehicle that uses not only the motor generator 20 but also the engine 60 as a power source.
  • the engine 60 rotates the first power transmission shaft 29a by its drive.
  • the first power transmission shaft 29 a is connected to the second power transmission shaft 29 b via the clutch 23.
  • the clutch 23 connects the first power transmission shaft 29a and the second power transmission shaft 29b to enable transmission of power therebetween, the first power transmission shaft 29a and the second power transmission shaft. It is possible to transition to a non-connected state in which the transmission of power between them is cut off by releasing the connection with 29b.
  • the motor generator 20 applies power to the second power transmission shaft 29b based on energization. Therefore, when the clutch 23 is in the connected state, power is applied to the second power transmission shaft 29 b from at least one of the engine 60 and the motor generator 20.
  • the power applied to the second power transmission shaft 29 b is input to the transmission 62.
  • the transmission 62 accelerates or decelerates the total power of the engine 60 and the motor generator 20 input from the second power transmission shaft 29 b or the power obtained by subtracting the power converted from the engine 60 into electric power by the motor generator 20. It transmits to the 3rd power transmission shaft 29c.
  • the power transmitted to the third power transmission shaft 29 c is transmitted to the wheels 28 of the vehicle 10 via the differential gear 26 and the drive shaft 27.
  • the vehicle 10 travels.
  • the motor generator 20 and the engine 60 correspond to a power train.
  • the vehicle 10 is mounted with an engine ECU 63 that controls the driving of the engine 60 in an integrated manner.
  • the engine ECU 63 also controls the drive of the clutch 23.
  • an HV (Hybrid Vehicle) ECU 39 is mounted in place of the EVECU 31.
  • the HVECU 39 performs integrated arbitration control of the engine 60, the motor generator 20, and the battery 22 by exchanging information necessary for control with the MGECU 30 and the engine ECU 63.
  • the HVECU 39 controls the drive of the motor generator 20 and the engine 60 based on the acceleration command value transmitted from the ACC ECU 32.
  • the HVECU 39 transmits a predetermined power command value to the engine ECU 63 so as to accelerate the vehicle 10, for example, when the engine 60 is in a stopped state and the acceleration command value ⁇ is equal to or greater than a predetermined acceleration threshold ⁇ th. Causes the engine 60 to restart. Further, when the acceleration command value ⁇ is less than the acceleration threshold value ⁇ th, the HVECU 39 transmits a command to stop the engine 60 to the engine ECU 63 and transmits a predetermined power command value to the MGECU 30 in order to reduce fuel consumption. Makes the vehicle 10 travel by EV.
  • the HVECU 39 corresponds to a traveling control unit that controls driving and stopping of the engine 60 and the motor generator 20 based on the traveling state of the host vehicle 10.
  • the processing procedure of prediction control executed by the ACC ECU 32 and the prediction ECU 33 will be specifically described.
  • the ACC ECU 32 and the prediction ECU 33 repeatedly execute the process shown in FIG. 9 at a predetermined cycle.
  • the prediction ECU 33 determines whether it is necessary to limit the acceleration of the vehicle 10 in order to suppress the short-time driving of the engine 60 as the process of step S20. judge. Specifically, this determination process is performed by the following method.
  • the efficiency at the time of taking energy from the engine 60 is deteriorated due to the intake delay of the engine 60, the energy consumption amount for starting the engine 60, the increase of the fuel consumption amount at the start of the engine 60, and the like. Taking these into consideration, the actual engine efficiency ⁇ eng at the time of engine traveling is expressed as shown in the following equation f5.
  • ⁇ delay indicates a coefficient for the intake delay.
  • ⁇ e indicates an ideal engine efficiency which is an engine efficiency when the engine 60 is moved in a steady state.
  • E out indicates the ideal output energy of the engine 60.
  • E egon indicates the starting energy of the engine 60.
  • E in indicates the input fuel energy of the engine 60.
  • E add indicates the start-up incremental energy.
  • T acc indicates the time required for acceleration.
  • the substantial engine efficiency ⁇ * eng on the left side of the equation f5 is used as an index related to the fuel efficiency of the vehicle 10. Further, the value on the right side of the equation f5 represents the ratio of the output energy of the engine to the input energy of the engine.
  • the real engine efficiency when the vehicle 10 performs so-called EV travel which travels with only the power of the motor generator 20, is defined by the system efficiency ⁇ sys based on the past travel results
  • the real engine efficiency ⁇ during EV travel sys can be expressed as the following equation f6.
  • Equation f6 "E sysout” indicates the output energy of the power train. "E sysin " represents input fuel energy.
  • the actual engine efficiency ⁇ sys at the time of EV travel indicates the ratio of the output energy of the powertrain to the input energy of the powertrain of the vehicle 10 in a state where the engine 60 is stopped.
  • the future substantial engine efficiency ⁇ * eng for the acceleration command value ⁇ can be expressed as shown in FIG. That is, when acceleration command value ⁇ is less than acceleration threshold value ⁇ th, vehicle 10 travels with the motive power of motor generator 20, and thus the actual engine efficiency ** eng in the future becomes the value of the right side of the above equation f6. . Further, when acceleration command value ⁇ is equal to or higher than acceleration threshold value ⁇ th and smaller than acceleration command value ⁇ bc used at the time of acceleration in burn-and-coast control under ACC control, future engine efficiency ⁇ * eng is It can be determined by the right side of the above equation f5. The future real engine efficiency ⁇ * eng determined in this way represents the ratio of the output energy of the powertrain to the input energy of the powertrain of the vehicle 10.
  • an evaluation function FE 2 represented by the following formula f 8 can be constructed.
  • the state quantity b (t) of the host vehicle 10 is determined such that the evaluation function FE2 becomes minimum, the host state quantity of the host vehicle 10 in which the short-time driving of the engine 60 is suppressed while securing the following performance.
  • b (t) it is possible to obtain the state quantity b (t) of the vehicle 10 capable of improving the fuel consumption while securing the following performance.
  • the prediction ECU 33 executes the determination process of step S20. Specifically, the prediction ECU 33 has a map showing the relationship between the acceleration command value ⁇ and the substantial engine efficiency ⁇ * eng as shown in FIG. Note that the prediction ECU 33 stores data of powertrain output energy and input fuel energy up to the present, and based on the stored data, the substantial engine efficiency ⁇ ⁇ sys during EV traveling from the above equation f6 It is calculating sequentially. Then, the prediction ECU 33 uses the calculated substantial engine efficiency sys sys as the substantial engine efficiency ** eng when the acceleration command value ⁇ is less than the acceleration threshold value ⁇ th.
  • Prediction ECU33 is the evaluation function F E2 determines the state quantity of the vehicle 10 b (t) so as to minimize. Since the state quantity b (t) is a function of the acceleration of the vehicle 10, the operation of the above, the prediction ECU33 obtains a third set value ⁇ 3 of the evaluation function F acceleration command value as the value becomes the minimum E2 alpha be able to.
  • the prediction ECU 33 is required to limit the acceleration of the vehicle 10 in order to suppress short-time driving of the engine 60 by comparing the first set value ⁇ 1 with the third set value ⁇ 3 in the process of step S20. Determine if it is or not. Specifically, when the first set value ⁇ 1 is equal to or less than the third set value ⁇ 3, the prediction ECU 33 determines that it is not necessary to limit the acceleration of the vehicle 10. That is, the prediction ECU 33 makes a negative determination in the process of step S20. In this case, the prediction ECU 33 determines that there is no change in the surrounding environment in which the fuel efficiency of the vehicle 10 deteriorates. Then, the ACC ECU 32 and the prediction ECU 33 execute the processing after step S13.
  • the prediction ECU 33 determines that it is necessary to limit the acceleration of the vehicle 10 when the third set value ⁇ 3 is less than the first set value ⁇ 1. That is, the prediction ECU 33 makes an affirmative determination in the process of step S20. In this case, the prediction ECU 33 determines that there is a change in the surrounding environment in which the fuel efficiency of the vehicle 10 deteriorates.
  • the ACC ECU 32 changes the acceleration command value ⁇ from the first set value ⁇ 1 to the third set value ⁇ 3 as the process of step S21 when the prediction ECU 33 makes an affirmative determination in the process of step S20. After that, the ACC ECU 32 and the prediction ECU 33 execute the processing after step S13.
  • the prediction ECU 33 determines whether the vehicle 10 needs to be decelerated by comparing the first set value ⁇ 1, the second set value ⁇ 2, and the third set value ⁇ 3 in the process of step S13. . Specifically, when the third set value ⁇ 3 is less than the first set value ⁇ 1 and the third set value ⁇ 3 is less than the second set value ⁇ 2, the prediction ECU 33 is affirmative in the process of step S13. to decide. On the other hand, when the first set value ⁇ 1 is equal to or less than the third set value ⁇ 3 or the second set value ⁇ 2 is equal to or less than the third set value ⁇ 3, the prediction ECU 33 makes a negative decision in the process of step S13.
  • the vehicle control device 50 of the present embodiment As shown by a dashed dotted line in FIG. 11A, it is assumed that the speed Vp of the preceding vehicle increases sharply and then decreases sharply.
  • the ACC ECU 32 starts the engine 60 at time t20 in order to cause the host vehicle 10 to follow the preceding vehicle.
  • the drive energy Ec of the vehicle 10 becomes larger than the energy Es at the time of engine start, as shown by a two-dot chain line in FIG. Further, as indicated by a two-dot chain line in FIG. 11C, the rotational speed Nc of the engine 60 increases after time t20.
  • the prediction ECU 33 calculates the third set value ⁇ 3 of the acceleration command value that can suppress the driving of the engine 60 for a short time by the calculation of the equation f8 described above, and ⁇ is set to a third set value ⁇ 3. Since the acceleration command value ⁇ is transmitted from the ACC ECU 32 to the HVECU 39, the actual acceleration of the vehicle 10 does not easily rise to the acceleration threshold value ⁇ th for starting the engine 60, so the engine 60 does not start. As a result, as shown in FIG. 11A, the speed Vc of the vehicle 10 decreases, and as shown in FIG. 11B, the drive energy Ec of the vehicle 10 rises to the energy Es at the time of engine start. I will not do. Thus, it is possible to suppress wasteful consumption of the energy Es at the time of engine start, and as a result, the fuel consumption of the vehicle 10 can be improved.
  • the actions and effects shown in the above (1) to (7) are obtained be able to.
  • the ACC ECU 32 limits the acceleration of the host vehicle 10 so that the engine ECU 63 can not easily restart the engine 60. As a result, driving of the engine 60 for a short time is suppressed, and energy loss can be reduced. Therefore, the fuel consumption of the vehicle 10 can be improved.
  • the prediction ECU 33 determines whether to limit the acceleration of the host vehicle 10 based on the index related to the fuel efficiency of the host vehicle 10 and the index related to the follow-up performance of the host vehicle 10 with respect to the preceding vehicle. Specifically, the prediction ECU 33 determines the powertrain for the input energy of the powertrain of the vehicle 10 in a period from the present to the time after the elapse of a predetermined time as shown by the above-mentioned equation f7 as an index related to the fuel efficiency of the vehicle 10.
  • the departure amount yi of the position of the host vehicle with respect to the ideal value of the ACC control in the period from the present until the elapse of a predetermined time is used.
  • the predicted value of the ratio of the output energy of the powertrain to the input energy of the powertrain of the vehicle 10 includes the predicted value represented by the equation f5 and the predicted value represented by the equation f6.
  • the predicted value represented by the equation f5 is a predicted value of the ratio of the output energy of the engine 60 to the input energy of the engine 60 in a state where the engine 60 is driven.
  • the predicted value represented by the equation f6 is a predicted value of the ratio of the output energy of the powertrain to the input energy of the powertrain of the vehicle 10 in the state where the engine 60 is stopped.
  • a third embodiment of the vehicle control device 50 will be described.
  • differences from the vehicle control device 50 of the first embodiment will be mainly described.
  • a probability p i of the behavior of the peripheral vehicle near the vehicle it will be described using a deceleration behavior occurrence probability is the probability of decelerating.
  • the deceleration behavior of the vehicle is predicted at a point where two patterns of a situation in which the surrounding vehicle decelerates in a predetermined place and a situation in which the surrounding vehicle passes through the predetermined place are assumed.
  • the prediction is performed based on the vehicle speed information of the surrounding vehicles in the past before the current time t30.
  • the speed of the surrounding vehicle is constant before time t30. Therefore, before time t30, as shown in FIG.
  • the deceleration behavior occurrence probability which is the probability that the surrounding vehicle takes the deceleration behavior, is calculated as, for example, "0.5", that is, "50%". Can. Therefore, before time t30, the probability that the peripheral vehicle decelerates is "0.5", and the probability that the peripheral vehicle passes is "0.5". Also, after time t30, if the speed of the surrounding vehicle gradually decreases with the passage of time, it is considered that the surrounding vehicle has started to take deceleration behavior, so the value of the deceleration behavior occurrence probability is gradually from "0.5" Will rise to
  • the traveling data such as the vehicle speed information of the surrounding vehicle in the past
  • learning the past traveling data to predict the deceleration behavior of the surrounding vehicle It is possible to calculate the deceleration behavior occurrence probability more accurately.
  • the surrounding vehicles pass through a place where a plurality of vehicles tend to be slowing down statistically or the traffic light in front of the surrounding vehicles is switched from green to yellow, It is possible to predict that the surrounding vehicles will take a decelerating behavior before is actually detected.
  • the server device 41 constructs a learning model of the vehicle behavior based on past travel data transmitted from a predetermined vehicle.
  • the number of predetermined vehicles is not limited to one but may be plural.
  • the learning model of the vehicle behavior uses the traveling data of the vehicle as an observation value, and a likelihood function capable of calculating the likelihood consisting of a numerical value representing the likelihood of occurrence of a predetermined behavior of the vehicle with respect to the observation value. It will be The likelihood corresponds to an index that represents the similarity between the travel data of the vehicle and the learning information.
  • the server device 41 creates an arithmetic expression capable of determining the deceleration behavior occurrence probability of the vehicle based on the constructed learning model of the vehicle behavior. This arithmetic expression is created, for example, as follows.
  • the server device 41 decelerates the behavior model and the passage behavior model based on the traveling data transmitted from the predetermined vehicle And build.
  • the deceleration behavior model and the passage behavior model are learning models of the vehicle behavior.
  • the traveling data includes information on the time series of the vehicle speed.
  • the server device 41 calculates the likelihood of the deceleration behavior model and the likelihood of the passage behavior model based on traveling data of a predetermined vehicle, and obtains a likelihood difference which is a difference value between them.
  • the server device 41 performs this calculation on all past traveling data to calculate the frequency at which the deceleration behavior occurs and the frequency at which the passage behavior occurs at each likelihood difference.
  • the server device 41 creates an arithmetic expression of a learning value p lrn of the deceleration behavior occurrence probability as shown in the following expression f9.
  • each variable of the functions N dec and N pass is the value of the horizontal axis shown in FIG. 14, that is, the likelihood difference of each behavior model. Therefore, the equation f9 is an operational equation capable of obtaining the learning value p lrn of the deceleration behavior occurrence probability from the likelihood difference of each model.
  • the vehicle control device 50 acquires the deceleration behavior model, the passage behavior model, and the above equation 9 from the server device 41.
  • the vehicle control device 50 calculates the likelihood of the deceleration behavior model and the likelihood of the passage behavior model from the past traveling data of the surrounding vehicle detected by the surroundings monitoring device 34 in a period from the present to a predetermined time ago.
  • the vehicle control device 50 calculates the likelihood difference of each calculated model, and substitutes the calculated likelihood difference of each model into the above-mentioned equation f9 to obtain the learning value p lrn of the deceleration behavior occurrence probability. calculate.
  • the vehicle control device 50 of the present embodiment predicts the future deceleration behavior of the surrounding vehicles statistically or based on the information detected by the surroundings monitoring device 34, and the predicted deceleration behavior of the surrounding vehicles Calculate the occurrence probability of The vehicle control device 50 uses the calculated value as the predicted value p ftr of the deceleration behavior occurrence probability.
  • the vehicle control device 50 by correcting the learning value p LRN deceleration behavior probability by the prediction value p ftr deceleration behavior probability, determine the final deceleration behavior probability p i. Specifically, the vehicle control device 50 calculates the deceleration behavior probability p i based on the following equation f10.
  • P lrn2 indicates the probability that a surrounding vehicle passes a predetermined place. For example, in a situation where two patterns of the case where the surrounding vehicle decelerates at a predetermined place and the case where the vehicle passes a predetermined place are assumed, the total value of "P lrn " and "P lrn2 " is "1". Become.
  • the peripheral vehicle other than the specific peripheral vehicle is referred to as “other around the vehicle.”
  • the surrounding vehicles include vehicles around the own vehicle 10 excluding the preceding vehicles.
  • the prediction ECU 33 of the present embodiment executes a deceleration behavior occurrence probability calculation process as the process of step S ⁇ b> 30 following step S ⁇ b> 12.
  • a specific procedure of the deceleration behavior occurrence probability calculation process is as shown in FIG.
  • the prediction ECU 33 first determines whether or not a specific surrounding vehicle is present as the process of step S31.
  • the periphery monitoring device 34 recognizes whether the detected object is a surrounding vehicle. At that time, the recognition accuracy of the specific surrounding vehicle by the periphery monitoring device 34 changes according to the situation. For example, in the surrounding area monitoring device 34, as the distance from the host vehicle 10 to the detected object increases, the object recognition accuracy decreases. Therefore, it is difficult for the periphery monitoring device 34 to accurately detect whether an object present at a location far from the host vehicle 10 is a specific surrounding vehicle. Therefore, when the specific surrounding vehicle is detected, the periphery monitoring device 34 of the present embodiment also calculates the recognition accuracy.
  • the surrounding area monitoring device 34 calculates the recognition accuracy based on the relative distance from the host vehicle 10 to the object using a map, an arithmetic expression, or the like. In the map, the arithmetic expression, etc., the value of the recognition accuracy is set to be smaller as the distance from the host vehicle 10 to the object is longer.
  • the periphery monitoring device 34 transmits the calculated recognition accuracy to the prediction ECU 33.
  • the prediction ECU 33 determines that the specific surrounding vehicle is present based on the detection of the specific surrounding vehicle by the periphery monitoring device 34 and the recognition accuracy of the detected specific surrounding vehicle being equal to or higher than a predetermined threshold.
  • the prediction ECU 33 makes an affirmative determination in the process of step S31, and determines whether or not learning information of traveling data of the specific surrounding vehicle exists as the process of step S32. Specifically, in order to calculate the learning value p lrn of the deceleration behavior occurrence probability using the above equation f 9 , the deceleration behavior model and the passage behavior model at the traveling point of the own vehicle 10 are constructed by the server device 41 Need to be. In addition, when using the above equation f9, since the likelihood of each model is required, the traveling data of a specific surrounding vehicle needs to be accumulated to such an extent that the likelihood of each model can be calculated. There is.
  • the prediction ECU 33 can acquire the deceleration behavior model and the passage behavior model at the traveling point of the own vehicle 10 from the server device 41, and accumulate the traveling data of the specific surrounding vehicles to such an extent that the likelihood of each model can be calculated. If it has been done, an affirmative decision is made in the process of step S32.
  • past travel data of the surrounding vehicle travel data such as vehicle speed information is transmitted from the communication unit 36 to the server device 41 to accumulate past travel data of the surrounding vehicle on the server device 41 It is also good.
  • past travel data of the surrounding vehicle may be accumulated by collecting the traveling history of the surrounding vehicle in the own vehicle 10.
  • the prediction ECU 33 When the prediction ECU 33 makes an affirmative determination in the process of step S32, it calculates the learning value p lrn of the deceleration behavior occurrence probability based on the past traveling data of the specific surrounding vehicle as the process of step S33. Specifically, the prediction ECU 33 calculates the likelihood of each of the deceleration behavior model and the passage behavior model based on the past traveling data of the specific surrounding vehicle, and the above-mentioned equation f9 from the likelihood difference of each model calculated The learning value p lrn of the deceleration behavior occurrence probability is calculated based on
  • the prediction ECU 33 calculates the learning value p lrn of the deceleration behavior occurrence probability based on the static information of the road detected by the surrounding area monitoring device 34 as the process of step S34.
  • the static information of the road includes the presence or absence of a traffic signal, the travel rule of the road, the speed limit, the slope, the curved road, the presence or absence of an intersection, and the like.
  • the prediction ECU 33 acquires static information of the road based on the road sign detected by the surrounding area monitoring device 34, the road condition, and the like.
  • the prediction ECU 33 also has in advance a map in which the deceleration behavior occurrence probability is defined for each item of static information of the road.
  • the prediction ECU 33 calculates the deceleration behavior occurrence probability for each item of the acquired static information of the road from the map, and learns the deceleration behavior occurrence probability using an arithmetic expression or the like from the deceleration behavior occurrence probability for each computed item. Calculate the value p lrn .
  • the prediction ECU 33 determines whether or not there is a traffic signal as a factor for the specific surrounding vehicle to take deceleration behavior in the future as the process of step S35. For example, the prediction ECU 33 may determine, based on the past travel history detected by the surroundings monitoring device 34, whether or not there is a traffic signal as a factor for the specific surrounding vehicle to take deceleration behavior in the future. . Alternatively, when the prediction ECU 33 determines that there is a traffic light installed within a predetermined range from the specific surrounding vehicle based on the road condition detected by the surrounding area monitoring device 34, the specific surrounding vehicle will take deceleration behavior in the future It may be determined that there is a traffic signal as a factor.
  • the prediction ECU 33 determines that there is a traffic signal as a factor that causes the specific surrounding vehicle to decelerate in the future, it makes an affirmative determination in the process of step S35, and continues the current of the specific surrounding vehicle as the process of subsequent step S36. It is determined whether the traveling position is in the vicinity of a traffic light and the signal information of the traffic light can be recognized by the surroundings monitoring device 34. The prediction ECU 33 determines that the current traveling position of the specific surrounding vehicle is near the traffic light when the distance from the specific surrounding vehicle to the traffic light is less than a predetermined threshold based on the road condition detected by the surrounding area monitoring device 34 Do. The signal information is information indicating whether the traffic light is lit in blue, yellow or red. The prediction ECU 33 acquires the signal information of the traffic signal by the periphery monitoring device 34.
  • the prediction ECU 33 makes an affirmative determination in the process of step S36. In this case, the prediction ECU 33 calculates the predicted value p ftr of the deceleration behavior occurrence probability according to the switching timing of the traffic signal as the process of the subsequent step S37.
  • the prediction ECU 33 stores information on the switching timing of the signal of the traffic light based on the signal information of the traffic light detected by the surroundings monitoring device 34.
  • the prediction ECU 33 according to the present embodiment stores green signal duration information as information on the switching timing of the signal of the traffic light.
  • the green signal duration information means the time required for the signal of the traffic light to switch from red to green to switch to yellow.
  • the prediction ECU 33 switches the signal of the traffic light to a green light when the signal of the traffic light is a red light at time t40 when the traffic light is recognized by the periphery monitoring device 34
  • the time from time t41 to time t42 at which the signal of the traffic light switches to yellow light is stored in the storage device as green light duration time information.
  • the signal of the traffic light is a red signal at time t50 when the traffic light is recognized by the surrounding area monitoring device 34, for example, as shown in FIG.
  • the time until the time t51 at which the signal is switched to is stored in the storage device as green light duration time information.
  • the green signal duration information is learned according to the traffic flow information acquired by VICS (Vehicle Information and Communication System, registered trademark) or the like. May be
  • VICS Vehicle Information and Communication System, registered trademark
  • the prediction ECU 33 creates a map as shown in FIG. 19 based on the green signal duration information stored in the storage device.
  • the map shown in FIG. 19 shows the relationship between the green signal duration ⁇ as the horizontal axis and the probability p sig as the switching from the green signal to the yellow signal as the vertical axis. This map is stored in the storage device of the prediction ECU 33.
  • the server apparatus 41 learns the green light continuation time information transmitted from each vehicle, and the server apparatus 41 is obtained.
  • the map as shown in FIG. 19 may be created.
  • the prediction ECU 33 can use the map shown in FIG. 19 by acquiring this map from the server device 41 via the communication unit 36.
  • the prediction ECU 33 switches the red signal to a green signal thereafter.
  • the probability p sig switched from the green light to the yellow light after ⁇ seconds with respect to the green signal duration ⁇ measured in this way is that when the value of the horizontal axis is “ ⁇ + ⁇ ” in the map as shown in FIG. It can be obtained as the value of the probability p sig of
  • the prediction ECU 33 of the present embodiment uses the probability p sig calculated based on the map shown in FIG. 19 as the predicted value p ftr of the deceleration behavior occurrence probability.
  • step S 36 when the prediction ECU 33 makes a negative determination in the process of step S 36, that is, when the current traveling position of the specific surrounding vehicle is not in the vicinity of a traffic light, or If not recognized, in the subsequent step S38, the predicted value p ftr of the deceleration behavior occurrence probability is calculated based on the statistical information.
  • the server device 41 communicates with a plurality of vehicles to acquire information as to whether each vehicle adopts the behavior of deceleration or passing by a traffic signal, and also decelerates the vehicles based on the statistical information.
  • Behavior occurrence probability is calculated. For example, when there are 100 vehicles targeted for statistics, the server device 41 decelerates when 50 vehicles of them are decelerated by the traffic light and the other 50 vehicles pass through the traffic light without decelerating. Calculate the deceleration behavior occurrence probability in “0.5”.
  • Prediction ECU33 acquires the statistic information Psta deceleration behavior occurrence probability in the traffic from the server device 41, using the statistics Psta of the deceleration behavior probability as a predicted value p ftr deceleration behavior probability.
  • step S 35 when the prediction ECU 33 makes a negative determination in the process of step S 35, that is, when it is determined that there is no traffic signal as a factor for the specific surrounding vehicle to take deceleration behavior in the future. Then, as the process of the subsequent step S39, it is determined whether the state quantities of other surrounding vehicles can be acquired.
  • the state quantities of other nearby vehicles include their traveling positions, speeds, and the like.
  • the prediction ECU 33 makes an affirmative determination in the process of step S39 when the state quantity of another surrounding vehicle can be acquired by the surrounding area monitoring device 34. Further, when inter-vehicle communication is possible between the own vehicle 10 and another surrounding vehicle, the prediction ECU 33 performs the process of step S39 by acquiring the state quantity by communication with the other surrounding vehicle. You may make a positive decision on
  • the prediction ECU 33 calculates the predicted value p ftr of the deceleration behavior occurrence probability based on the state quantities of other surrounding vehicles as the process of the subsequent step S40. Specifically, the prediction ECU 33 calculates the future behavior of each vehicle based on the information such as the current traveling position and speed of the specific peripheral vehicle and the information on the current traveling position and speed of the other peripheral vehicles. Predict by simulation. By this simulation, the probability p sur is calculated that the predetermined behavior causing the specific surrounding vehicle to decelerate is generated in another surrounding vehicle.
  • the predetermined behavior of another surrounding vehicle that causes the specific surrounding vehicle to decelerate is, for example, a behavior in which the other surrounding vehicle changes lanes to the lane in which the specific surrounding vehicle is traveling.
  • the prediction ECU 33 uses the calculated occurrence probability p sur of the predetermined behavior of another surrounding vehicle as the predicted value p ftr of the deceleration behavior occurrence probability.
  • the prediction ECU 33 When the prediction ECU 33 makes a negative determination in the process of step S39, it calculates the predicted value pftr of the deceleration behavior occurrence probability based on the statistical information as the process of the subsequent step S41. Specifically, the server device 41 communicates whether or not each vehicle has decelerated at a predetermined place or passed by communication with a plurality of vehicles, and the deceleration behavior occurrence probability of the vehicle is calculated based on the statistical information. It is calculated. For example, when the number of vehicles targeted for statistics is 100, the server device 41 decelerates 50 of the vehicles at a predetermined location and the other 50 vehicles pass through the predetermined location without deceleration. In this case, the deceleration behavior occurrence probability in the traffic light is calculated as “0.5”.
  • the prediction ECU 33 acquires statistical information Psta of the deceleration behavior occurrence probability corresponding to the current location of the host vehicle from the server device 41, and uses the statistical information Psta of the deceleration behavior occurrence probability as the prediction value p ftr of the deceleration behavior occurrence probability Use.
  • the prediction ECU 33 determines whether or not there is a specific surrounding vehicle corresponding to the distant vehicle as the process of the subsequent step S43.
  • a distant vehicle is a vehicle whose recognition accuracy is less than a predetermined threshold.
  • the prediction ECU 33 makes an affirmative determination in the process of step S43, and predicts the deceleration behavior occurrence probability based on the information of the distant vehicle as the process of subsequent step S44. Calculate p ftr .
  • the prediction ECU 33 calculates the distance from the host vehicle 10 to an object recognized as a distant vehicle, and calculates the existence probability p far of the object based on an arithmetic expression or the like based on the calculated distance.
  • the value of the object presence probability p far decreases as the distance to the object increases.
  • the prediction ECU 33 uses the calculated existence probability p far of the object as the prediction value p ftr of the deceleration behavior occurrence probability.
  • Prediction ECU33 the step S37, S38, S40, S41, after calculating the predicted value p ftr deceleration behavior occurrence probability in the process of S44, the processing in step S42, calculates the deceleration behavior probability p i.
  • the prediction ECU 33 performs the calculation in the learning value p lrn of the deceleration behavior occurrence probability calculated in one of the processes in steps S33 and S34 and the process in one of the steps S37, S38, S40, S41, and S44. It is the computed deceleration behavior probability p i using the above equation 10 from the predicted value p ftr deceleration behavior probability.
  • step S43 if a negative determination is made in the process of step S43, that is, if there is no distant vehicle information, the prediction ECU 33 ends the series of processes shown in FIG. 4 without executing the process of step S42. In this case, there is no vehicle around the host vehicle 10 that causes the host vehicle 10 to generate deceleration behavior, so the prediction ECU 33 makes a negative determination in the process of step S13 shown in FIG. Therefore, as the process of step S15, the ACC ECU 32 transmits, to the EVECU 31, the acceleration command value ⁇ temporarily set to the first set value ⁇ 1 in the process of step S11.
  • the prediction ECU 33 learns the behavior of the vehicle based on the traveling data of the vehicle, specifically, the deceleration behavior of the specific surrounding vehicle based on the learning model of the vehicle behavior such as the deceleration behavior model or the passing behavior model.
  • the occurrence probability p i is calculated.
  • the prediction ECU 33 determines the computing equation of the equations f2 and f3 using the deceleration behavior occurrence probability p i and then determines the state amount b of the vehicle 10 for which the value of the evaluation function FE1 of the equation f4 becomes minimum.
  • the second set value ⁇ 2 of the acceleration command value ⁇ is calculated. Then, as shown in FIG. 15, when the prediction ECU 33 determines that the host vehicle 10 needs to be decelerated in the process of step S13, the ACC ECU 32 performs the process of step S14 to execute the second acceleration command value ⁇ .
  • the set value ⁇ 2 is set.
  • the prediction ECU 33 calculates the likelihood, which is an index indicating the similarity between the traveling data of the specific surrounding vehicle acquired by the surroundings monitoring device 34 and the learning model of the vehicle behavior such as the deceleration behavior model or the passing behavior model. Then, based on the likelihood, the deceleration behavior occurrence probability p i of the specific surrounding vehicle is calculated. According to such a configuration, it is possible to calculate the deceleration behavior occurrence probability p i of the specific surrounding vehicle with high accuracy.
  • the prediction ECU 33 can not calculate the deceleration behavior occurrence probability p i using the learning model of the vehicle behavior such as the deceleration behavior model or the passage behavior model, the deceleration behavior is generated based on static information of the road. Calculate the probability p i . According to such a configuration, even in a situation where it is impossible to use a learning model of vehicle behavior, it is possible to calculate the deceleration behavior probability p i.
  • the prediction ECU 33 uses the existence probability indicating that the object recognized as the specific surrounding vehicle may actually exist. Based on the above, the deceleration behavior occurrence probability p i is corrected. According to such a configuration, it can be calculated in accordance with the recognition accuracy of the surroundings monitoring device 34, the accuracy high reduction behavior occurrence probability of p i.
  • prediction ECU33 corrects the deceleration behavior probability p i based on the occurrence probability of the switching of the traffic signals. According to such a configuration, it can be calculated according to the situation of the switching of the traffic signal, a more accurate reduction behavior probability p i. (16) prediction ECU33 corrects the deceleration behavior probability p i around the vehicle based on the deceleration occurrence probability of the statistical information of the vehicle. According to such a configuration, can be calculated according to the statistical information, the accuracy high reduction behavior occurrence probability of p i.
  • the prediction ECU 33 acquires traveling data of the surrounding vehicle by communication between the vehicle 10 and the surrounding vehicle. According to such a configuration, it is possible to acquire traveling data of nearby vehicles with higher accuracy.
  • each embodiment can also be implemented in the following modes.
  • the vehicle 10 according to the second embodiment may not include the motor generator 20, the inverter device 21, the battery 22, and the MGECU 30. That is, the vehicle 10 of the second embodiment may use only the engine 60 as the power for traveling.
  • the prediction ECU 33 according to the third embodiment uses the deceleration behavior model and the passage behavior model as a learning model of the behavior of a surrounding vehicle, but may use other learning models. For example, as the deceleration behavior model, a first deceleration behavior model that assumes a stop and a second deceleration behavior model that does not assume a stop may be used.
  • the prediction ECU 33 may perform construction of a learning model of the vehicle behavior instead of the server device 41.
  • the prediction ECU 33 according to the third embodiment is not limited to one that predicts the deceleration behavior of the surrounding vehicle as the behavior of the surrounding vehicle, and may predict any behavior of the surrounding vehicle. Also, in accordance with this, the server device 41 or the prediction ECU 33 may learn any behavior of the vehicle.
  • the prediction ECU 33 may predict the interruption of the vehicle traveling on the adjacent lane as a change in the surrounding environment such that the fuel efficiency of the host vehicle 10 is deteriorated. Specifically, when the vehicle Cb cuts into between the vehicle Ca and the vehicle traveling in front of the own vehicle, the prediction ECU 33 determines the state of the vehicle Ca before the interruption as shown by the solid line in FIG. 12. The amount is used as the state amount of the leading vehicle, and when the vehicle Cb cuts in at time t30, the state amount of the vehicle Cb is used as the state amount of the leading vehicle after that.
  • a function including information such as the speed and the position of the vehicle 10 may be used as the state quantity b (t).
  • the ACC ECU 32 may transmit a speed command value for specifying the speed of the vehicle 10 to the EVECU 31 or the HVECU 39 instead of the acceleration command value ⁇ .
  • the prediction ECU 33 may use the speed information of each of the i-th preceding vehicle and the own vehicle 10 instead of the positional information of the same. For example, after defining the ideal traveling range in the range from the lowest speed V min to the highest speed V max , the amount of deviation z i of the expected future speed of the vehicle 10 from this ideal traveling range is expressed by the following equation (11) Represented by
  • the periphery monitoring device 34 may acquire information such as pedestrians walking around the road, traffic signals, road travel restrictions, speed limits, slopes, curves, intersections, and the like. In this case, the prediction ECU 33 may determine whether or not the vehicle 10 needs to be decelerated based on the information acquired by the surroundings monitoring device 34.
  • the prediction ECU 33 may use the predicted value of the fuel consumption as an index related to the fuel consumption of the host vehicle 10. Specifically, the prediction ECU 33 stores fuel consumption data and calculates a fuel consumption prediction value based on the stored past fuel consumption data.
  • the method of limiting the acceleration of the vehicle 10 is not limited to the method of changing the acceleration command value ⁇ , but may be a command method such that the acceleration changes as a result, such as a method of limiting the driving torque or power of the vehicle 10 It may be adopted.
  • the limitation of the drive torque and the power of the vehicle 10 unlike the output limitation for protection of the motor generator 20 and the battery 22, limits the output in control regardless of the maximum output of the component.
  • the ACC ECU 32 uses speed control for controlling the speed of the vehicle 10, instead of using acceleration control for controlling the acceleration of the vehicle 10, as a method for controlling the traveling of the vehicle 10 by ACC control, CC control, etc. A method may be adopted.
  • the ACC ECU 32 can also use instruction control for instructing the occupant of the host vehicle 10 of the driving method as in the modification of the first embodiment.
  • the means and / or functions provided by the vehicle control device 50 can be provided by software stored in the tangible storage device and a computer that executes the software, only software, only hardware, or a combination thereof.
  • the vehicle control device 50 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit or analog circuit that includes a number of logic circuits.
  • the present disclosure is not limited to the above specific example. Those skilled in the art may appropriately modify the above-described specific example as long as the features of the present disclosure are included.
  • the elements included in the specific examples described above, and the arrangement, conditions, shape, and the like of the elements are not limited to those illustrated, and can be changed as appropriate.
  • the elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Abstract

This vehicle control device (50) is capable of controlling the travel of the host vehicle (10) so as to cause the host vehicle to follow a preceding vehicle traveling ahead of the host vehicle. This vehicle control device comprises: an environmental prediction unit (33) that predicts whether a change likely to lower the fuel economy of the host vehicle has arisen in the surrounding environment; and an acceleration control unit (32) that, if the environmental prediction unit predicts that a change likely to lower the fuel economy of the host vehicle has arisen in the surrounding environment, performs predictive control capable of restricting the acceleration of the host vehicle.

Description

車両制御装置Vehicle control device 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年11月17日に出願された日本国特許出願2017-221734号と、2018年7月6日に出願された日本国特許出願2018-129289号とに基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-221734 filed on November 17, 2017, and Japanese Patent Application No. 2018-129289 filed on July 6, 2018, It claims the benefit of its priority, and the entire content of that patent application is incorporated herein by reference.
 本開示は、車両制御装置に関する。 The present disclosure relates to a vehicle control device.
 従来、下記特許文献1に記載の車両制御装置がある。この車両制御装置は、自車両の速度に応じて最小車間距離を設定し、自車両前方を走行中の先行車両と自車両との車間距離が最小車間距離よりも小さくなったときに、エンジンやモータ等の動力源を停止させて自車両を惰性走行させる。また、この車両制御装置は、自車両の速度に応じて最大車間距離を設定し、惰性走行中、上記の車間距離が最大車間距離よりも大きくなったときに動力源の駆動を開始する。 Conventionally, there is a vehicle control device described in Patent Document 1 below. This vehicle control device sets the minimum inter-vehicle distance according to the speed of the host vehicle, and when the inter-vehicle distance between the preceding vehicle traveling ahead of the host vehicle and the host vehicle becomes smaller than the minimum inter-vehicle distance, The power source such as a motor is stopped to make the vehicle coast. Further, the vehicle control device sets the maximum inter-vehicle distance according to the speed of the host vehicle, and starts driving the power source when the inter-vehicle distance becomes larger than the maximum inter-vehicle distance during coasting.
特開2007-291919号公報JP 2007-291919 A
 先行車両が急減速したり、隣接車線から他車両が割り込んだりしたような場合、先行車両との車間距離を確保するために、制動による減速制御や、加速の制限により発生するエンジン始動直後のエンジンの停止が避けられなくなることがある。これにより、制動による減速制御が行われた場合にはエネルギの損失が発生する。また、エンジン始動直後のエンジンの停止はエンジン効率の悪化を招く。そのため、制動による減速制御やエンジン始動直後のエンジンの停止は、燃費の悪化を招く要因となる。 When the preceding vehicle suddenly decelerates or another vehicle breaks in from the adjacent lane, the engine immediately after engine start that occurs due to deceleration control by braking or limitation of acceleration in order to secure an inter-vehicle distance with the preceding vehicle In some cases, stoppages of the As a result, energy loss occurs when deceleration control is performed by braking. In addition, stopping the engine immediately after starting the engine causes deterioration of engine efficiency. Therefore, deceleration control by braking and stopping of the engine immediately after the start of the engine cause deterioration of fuel efficiency.
 一方、このような問題に対応するために、先行車両との車間距離を常に拡大したり、加速度を制限したりして走行することも対策として考えられるが、これらの対策を行うと、先行車両に対する追従性が悪化し、運転者が違和感を覚える。
 これらの問題に対する対策に関して、上記特許文献1に記載の車両制御装置では言及がなされていない。
On the other hand, in order to cope with such problems, it can be considered as a measure that the vehicle distance with the preceding vehicle is constantly increased or the acceleration is limited, or the like. The ability to follow the vehicle is degraded, and the driver feels uncomfortable.
No mention is made of the vehicle control device described in Patent Document 1 with respect to measures against these problems.
 本開示の目的は、先行車両に対する追従性を確保しつつ、燃費を改善することの可能な車両制御装置を提供することにある。 An object of the present disclosure is to provide a vehicle control device capable of improving fuel consumption while securing the followability to a preceding vehicle.
 本開示の一態様による車両制御装置は、自車両の前方を走行する先行車両に自車両を追従させるべく、自車両の走行を制御することの可能な走行制御を実行する。車両制御装置は、自車両の燃費が悪化するような周囲環境の変化が生じているか否かを予測する環境予測部と、環境予測部により自車両の燃費が悪化するような周囲環境の変化が生じていることが予測された際に、自車両の加速度を制限することの可能な予測制御を実行する加速度制御部と、を備える。 A vehicle control device according to an aspect of the present disclosure executes traveling control capable of controlling traveling of the own vehicle in order to cause the preceding vehicle following the own vehicle to follow the own vehicle. The vehicle control device predicts whether a change in the surrounding environment occurs such that the fuel efficiency of the host vehicle is deteriorated, and the change in the surrounding environment causes the fuel efficiency of the host vehicle to be deteriorated by the environment prediction unit. And an acceleration control unit that executes prediction control capable of limiting the acceleration of the host vehicle when it is predicted to occur.
 この構成によれば、自車両の燃費が悪化するような周囲環境の変化が生じた場合には、自車両の加速度が予め制限されるため、自車両の燃費が実際に悪化してしまう状況を回避することが可能である。よって、自車両の燃費を改善することができる。 According to this configuration, when a change in the surrounding environment occurs such that the fuel efficiency of the host vehicle is deteriorated, the acceleration of the host vehicle is limited in advance, so that the fuel efficiency of the host vehicle is actually deteriorated. It is possible to avoid. Therefore, the fuel consumption of the host vehicle can be improved.
図1は、第1実施形態の車両の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a vehicle according to the first embodiment. 図2は、第1実施形態のACCECUによる車両の制御方法の一例を示すグラフである。FIG. 2 is a graph showing an example of a method of controlling the vehicle by the ACC ECU according to the first embodiment. 図3は、第1実施形態のACCECUによる車両の制御方法の一例を示すグラフである。FIG. 3 is a graph showing an example of a method of controlling a vehicle by the ACC ECU according to the first embodiment. 図4は、第1実施形態のACCECU及び予測ECUにより実行される処理の手順を示すフローチャートである。FIG. 4 is a flowchart showing the procedure of processing executed by the ACC ECU and the prediction ECU according to the first embodiment. 図5は、第1実施形態の予測ECUによる理想走行範囲に対する自車両の逸脱量の算出方法の一例を示すグラフである。FIG. 5 is a graph showing an example of a method of calculating the departure amount of the host vehicle with respect to the ideal travel range by the prediction ECU of the first embodiment. 図6は、第1実施形態の予測ECUにより用いられる車速と確率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the vehicle speed and the probability used by the prediction ECU of the first embodiment. 図7(A)~(C)は、第1実施形態の車両における車速、駆動エネルギ、及び車間距離の推移を示すタイミングチャートである。FIGS. 7A to 7C are timing charts showing transitions of the vehicle speed, the driving energy, and the inter-vehicle distance in the vehicle of the first embodiment. 図8は、第2実施形態の車両の概略構成を示すブロック図である。FIG. 8 is a block diagram showing a schematic configuration of a vehicle of the second embodiment. 図9は、第2実施形態のACCECU及び予測ECUにより実行される処理の手順を示すフローチャートである。FIG. 9 is a flowchart showing the procedure of processing executed by the ACC ECU and the prediction ECU of the second embodiment. 図10は、第2実施形態の予測ECUにより用いられる加速度と実質エンジン効率との関係を示すマップである。FIG. 10 is a map showing the relationship between acceleration and substantial engine efficiency used by the prediction ECU of the second embodiment. 図11(A)~(C)は、第2実施形態の車両における車速、駆動エネルギ、及びエンジン回転速度の推移を示すタイミングチャートである。FIGS. 11A to 11C are timing charts showing transitions of the vehicle speed, the driving energy, and the engine rotational speed in the vehicle of the second embodiment. 図12は、他の実施形態の予測ECUにより実行される先行車両の切り替え手順を示すタイムチャートである。FIG. 12 is a time chart showing a switching procedure of a preceding vehicle executed by a prediction ECU according to another embodiment. 図13(A),(B)は、車速及び減速挙動発生確率の時間的な推移の一例を示すタイミングチャートである。FIGS. 13A and 13B are timing charts showing an example of the temporal transition of the vehicle speed and the deceleration behavior occurrence probability. 図14は、第3実施形態の減速挙動モデル及び通過挙動モデルのそれぞれの尤度の差に対する減速挙動モデルの頻度の算出値、通過挙動モデルの頻度の算出値、及び減速挙動発生確率のそれぞれの値の推移を示すグラフである。FIG. 14 shows the calculated value of the frequency of the decelerating behavior model, the calculated value of the frequency of the passing behavior model, and the decelerated behavior occurrence probability with respect to the difference between the likelihoods of the decelerating behavior model and the passing behavior model of the third embodiment. It is a graph which shows transition of a value. 図15は、第3実施形態のACCECU及び予測ECUにより実行される処理の手順を示すフローチャートである。FIG. 15 is a flow chart showing the procedure of processing executed by the ACC ECU and the prediction ECU of the third embodiment. 図16は、第3実施形態の予測ECUにより実行される挙動発生確率演算処理の手順を示すフローチャートである。FIG. 16 is a flow chart showing a procedure of behavior occurrence probability calculation processing executed by the prediction ECU of the third embodiment. 図17は、第3実施形態の青信号継続時間の計測方法の一例を示すグラフである。FIG. 17 is a graph showing an example of a method of measuring the green signal duration according to the third embodiment. 図18は、第3実施形態の青信号継続時間の計測方法の一例を示すグラフである。FIG. 18 is a graph showing an example of a method of measuring the green signal duration according to the third embodiment. 図19は、第3実施形態の青信号継続時間γと、青信号から黄信号に切り替わる確率psigとの関係を示すマップである。FIG. 19 is a map showing the relationship between the green signal duration γ and the probability p sig of switching from the green signal to the yellow signal according to the third embodiment.
 以下、車両制御装置の実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、第1実施形態の車両制御装置が搭載される車両の概略構成について説明する。
Hereinafter, embodiments of a vehicle control device will be described with reference to the drawings. In order to facilitate understanding of the description, the same constituent elements in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
First Embodiment
First, a schematic configuration of a vehicle on which the vehicle control device of the first embodiment is mounted will be described.
 図1に示されるように、車両10は、モータジェネレータ20の動力に基づいて走行する、いわゆる電気自動車である。車両10は、モータジェネレータ20の他、インバータ装置21と、バッテリ22と、クラッチ23とを備えている。
 バッテリ22は、充電及び放電の可能なリチウムイオン電池等の二次電池からなる。インバータ装置21は、バッテリ22に充電されている直流電力を交流電力に変換し、変換された交流電力をモータジェネレータ20に供給する。モータジェネレータ20は、インバータ装置21から供給される交流電力に基づき駆動し、第1動力伝達軸24を回転させる。第1動力伝達軸24は、クラッチ23を介して第2動力伝達軸25に連結されている。クラッチ23は、第1動力伝達軸24と第2動力伝達軸25とを連結することによりそれらの間の動力の伝達を可能とする接続状態と、第1動力伝達軸24と第2動力伝達軸25との連結を解除することによりそれらの間の動力の伝達を遮断する非接続状態とに遷移可能である。クラッチ23が接続状態である場合、モータジェネレータ20から第1動力伝達軸24に伝達された動力は、第2動力伝達軸25、ディファレンシャルギア26、及び駆動軸27を介して車両10の車輪28に伝達される。これにより、車両10が走行する。このように、本実施形態では、モータジェネレータ20がパワートレインに相当する。
As shown in FIG. 1, vehicle 10 is a so-called electric vehicle that travels based on the motive power of motor generator 20. Vehicle 10 includes inverter device 21, battery 22, and clutch 23 in addition to motor generator 20.
The battery 22 is formed of a secondary battery such as a lithium ion battery capable of charging and discharging. The inverter device 21 converts the DC power charged in the battery 22 into AC power, and supplies the converted AC power to the motor generator 20. The motor generator 20 is driven based on the AC power supplied from the inverter device 21 to rotate the first power transmission shaft 24. The first power transmission shaft 24 is connected to the second power transmission shaft 25 via the clutch 23. The clutch 23 connects the first power transmission shaft 24 and the second power transmission shaft 25 to enable transmission of power therebetween, the first power transmission shaft 24 and the second power transmission shaft. It is possible to transition to the non-connected state in which the transmission of power between them is cut off by releasing the connection with the switch 25. When the clutch 23 is in the connected state, the power transmitted from the motor generator 20 to the first power transmission shaft 24 is transmitted to the wheels 28 of the vehicle 10 through the second power transmission shaft 25, the differential gear 26, and the drive shaft 27. It is transmitted. Thus, the vehicle 10 travels. Thus, in the present embodiment, the motor generator 20 corresponds to a power train.
 モータジェネレータ20は、車両10の制動時に回生発電を行う。すなわち、車両10の制動時に車輪28に作用する制動力は、駆動軸27、ディファレンシャルギア26、第2動力伝達軸25、クラッチ23、及び第1動力伝達軸24を介してモータジェネレータ20に入力される。モータジェネレータ20は、この車輪28から入力される動力に基づいて発電する。モータジェネレータ20により発電される電力は、インバータ装置21により交流電力から直流電力に変換されてバッテリ22に充電される。 The motor generator 20 performs regenerative power generation when the vehicle 10 is braked. That is, the braking force acting on the wheels 28 at the time of braking of the vehicle 10 is input to the motor generator 20 via the drive shaft 27, the differential gear 26, the second power transmission shaft 25, the clutch 23 and the first power transmission shaft 24. Ru. The motor generator 20 generates electric power based on the power input from the wheel 28. The electric power generated by motor generator 20 is converted from AC power to DC power by inverter device 21 and charged in battery 22.
 車両10は、MG(Motor Generator)ECU(Electronic Control Unit)30と、EV(Electric Vehicle)ECU31と、ACC(Adaptive Cruise Control)ECU32と、予測ECU33と、周辺監視装置34と、車両状態量センサ35とを更に備えている。各ECU30~33は、CPUやROM、RAM等の記憶装置を有するマイクロコンピュータを中心に構成されており、記憶装置に予め記憶されているプログラムを実行することにより、各種制御を実行する。 The vehicle 10 includes an MG (Motor Generator) ECU (Electronic Control Unit) 30, an EV (Electric Vehicle) ECU 31, an ACC (Adaptive Cruise Control) ECU 32, a prediction ECU 33, a periphery monitoring device 34, and a vehicle state quantity sensor 35. And further. Each of the ECUs 30 to 33 is mainly configured of a microcomputer having a storage device such as a CPU, a ROM, and a RAM, and executes various controls by executing a program stored in advance in the storage device.
 車両状態量センサ35は、車両10の各種状態量を検出する。車両状態量センサ35により検出される各種状態量には、車両10の速度や加速度等の情報が含まれている。
 周辺監視装置34は、カメラやミリ波レーダ装置や、レーザレーダ装置等からなる。周辺監視装置34は、自車両10の周辺を走行する周辺車両を検出するとともに、周辺車両に関する各種状態量を算出する。周辺車両には、自車両10が走行中の車線において自車両10の前方を走行する先行車両や、自車両10が走行中の車線と隣り合う隣接車線を走行する隣接走行車両が含まれている。周辺監視装置34により検出される状態量には、自車両10に対する周辺車両の相対位置、相対距離、相対速度、及び相対加速度等が含まれている。周辺車両の相対距離は車間距離に相当する。なお、自車両10に対する周辺車両の相対位置は、例えば自車両10の左右方向の軸、及び車両10の前後方向の軸を用いた二軸座標系の位置として定義される。本実施形態では、周辺監視装置34が周辺監視部に相当する。
The vehicle state quantity sensor 35 detects various state quantities of the vehicle 10. The various state quantities detected by the vehicle state quantity sensor 35 include information such as the speed and acceleration of the vehicle 10.
The periphery monitoring device 34 includes a camera, a millimeter wave radar device, a laser radar device, and the like. The surrounding area monitoring device 34 detects surrounding vehicles traveling around the vehicle 10 and calculates various state quantities related to the surrounding vehicles. The surrounding vehicles include a preceding vehicle traveling in front of the vehicle 10 in the lane in which the vehicle 10 is traveling, and an adjacent traveling vehicle traveling in the adjacent lane adjacent to the lane in which the vehicle 10 is traveling. . The state quantities detected by the periphery monitoring device 34 include the relative position, relative distance, relative velocity, relative acceleration, and the like of the surrounding vehicle with respect to the host vehicle 10. The relative distance of the surrounding vehicles corresponds to the distance between the vehicles. The relative position of the surrounding vehicle to the host vehicle 10 is defined as, for example, a position of a biaxial coordinate system using an axis in the left-right direction of the host vehicle 10 and an axis in the front-rear direction of the vehicle 10. In the present embodiment, the periphery monitoring device 34 corresponds to the periphery monitoring unit.
 MGECU30は、EVECU31からの指令に基づいてインバータ装置21を駆動させることにより、モータジェネレータ20の動作を制御する。例えばEVECU31は、モータジェネレータ20の出力動力の指令値である動力指令値をMGECU30に送信する。MGECU30は、EVECU31から送信される動力指令値を受信すると、この動力指令値に応じた動力がモータジェネレータ20から出力されるようにインバータ装置21の駆動を制御する。また、MGECU30は、車両10の制動時には、モータジェネレータ20の回生発電により発電された電力がバッテリ22に充電されるようにインバータ装置21を駆動させる。 MGECU 30 controls the operation of motor generator 20 by driving inverter device 21 based on a command from EVECU 31. For example, EVECU 31 transmits, to MGECU 30, a power command value which is a command value of output power of motor generator 20. When receiving the power command value transmitted from EVECU 31, MGECU 30 controls the drive of inverter device 21 such that the power corresponding to the power command value is output from motor generator 20. When the vehicle 10 is braked, MGECU 30 drives inverter device 21 such that the electric power generated by the regenerative power generation of motor generator 20 is charged to battery 22.
 EVECU31は、運転者の運転要求に応じた走行を実現するために必要な動力指令値を演算するとともに、演算された動力指令値をMGECU30に送信することにより、運転者の運転要求に応じた車両10の走行を実現する。また、EVECU31は、各種制御に必要な情報をACCECU32との間で授受するとともに、ACCECU32の要求に応じた動力指令値を演算する。例えばEVECU31は、車両10の加速度の指令値である加速度指令値をACCECU32から受信すると、加速度指令値に対応した動力指令値を演算するとともに、演算した動力指令値をMGECU30に送信することにより、加速度指令値に応じた加速度で車両10を加速させる。また、EVECU31は、例えばACCECU32からの要求に応じてクラッチ23を接続又は非接続状態に遷移させる。本実施形態では、EVECU31が走行制御部に相当する。 The EVECU 31 calculates a power command value necessary to realize traveling according to the driver's driving request, and transmits the calculated power command value to the MGECU 30 so that the vehicle responds to the driver's driving request. Achieve 10 runs. Further, the EVECU 31 exchanges information necessary for various controls with the ACCECU 32 and calculates a power command value according to the request of the ACCECU 32. For example, when the EVECU 31 receives an acceleration command value which is a command value of the acceleration of the vehicle 10 from the ACCECU 32, the EVECU 31 calculates a power command value corresponding to the acceleration command value, and transmits the calculated power command value to the MGECU 30. The vehicle 10 is accelerated at an acceleration according to the command value. Further, the EVECU 31 causes the clutch 23 to transition to the connected or disconnected state, for example, in response to a request from the ACC ECU 32. In the present embodiment, the EVECU 31 corresponds to a traveling control unit.
 ACCECU32は、例えば車両10に設けられた操作部が乗員により操作されることに基づいて車両の走行制御を実行する。ACCECU32は、走行制御として、車両10が一定速度で走行するように車両10の走行を制御するCC(Cruise Control)制御と、自車両10の前方を走行する先行車両に追従するように車両10の走行を制御するACC(Adaptive Cruise Control)制御とを実行する。本実施形態では、ACC制御が、自車両10を先行車両に追従させるべく自車両10の加速及び減速を制御する速度制御に相当する。本実施形態では、ACCECU32が加速度制御部に相当する。 The ACC ECU 32 executes traveling control of the vehicle based on, for example, the operation of an operation unit provided on the vehicle 10 by the occupant. The ACC ECU 32 performs, as traveling control, CC (Cruise Control) control for controlling the traveling of the vehicle 10 so that the vehicle 10 travels at a constant speed, and the preceding vehicle traveling ahead of the host vehicle 10. Execute ACC (Adaptive Cruise Control) control to control traveling. In the present embodiment, ACC control corresponds to speed control for controlling the acceleration and deceleration of the host vehicle 10 in order to cause the host vehicle 10 to follow the preceding vehicle. In the present embodiment, the ACC ECU 32 corresponds to an acceleration control unit.
 具体的には、ACCECU32は、車両10に対する先行車両の相対速度及び相対距離に基づいて、車両10が先行車両に追いつくまでの時間である車間時間THWを演算する。ACCECU32は、図2に示されるように、車間時間THWが所定の第1時間閾値Tth1以上である場合には、すなわち車両10が先行車両に追いつく状態になるまでに時間的な余裕がある場合には、CC制御を実行する。ACCECU32は、CC制御として、車両10の加速及び減速を繰り返して実行する。その際、ACCECU32は、車両10の平均速度が、操作部を通じて乗員により設定された速度Vsetとなるように、車両10の加速度及び減速度を制御する。 Specifically, based on the relative velocity and relative distance of the preceding vehicle with respect to the vehicle 10, the ACC ECU 32 calculates an inter-vehicle time THW which is the time until the vehicle 10 catches up with the preceding vehicle. As shown in FIG. 2, when the inter-vehicle time THW is equal to or greater than a predetermined first time threshold Tth1, the ACC ECU 32 has a time margin before the vehicle 10 catches up with the preceding vehicle. Performs CC control. The ACC ECU 32 repeatedly executes acceleration and deceleration of the vehicle 10 as CC control. At that time, the ACC ECU 32 controls the acceleration and the deceleration of the vehicle 10 so that the average velocity of the vehicle 10 becomes the velocity Vset set by the occupant through the operation unit.
 詳しくは、ACCECU32は、乗員の設定速度Vsetに基づいて、図3に示されるように、設定速度Vsetよりも小さい下限速度VLと、設定速度よりも大きい上限速度VHとを設定する。ACCECU32は、車両10が減速することにより車両10の速度Vcが下限速度VLに達した場合には、車両10を加速させる加速制御を実行する。ACCECU32は、加速制御として、予め設定された正の値の加速度指令値をEVECU31に送信する。これにより、EVECU31が、加速指令値に応じた正の値の動力指令値を演算するとともに、この動力指令値をMGECU30に送信することにより、車両10が所定の加速度で加速する。 Specifically, as shown in FIG. 3, the ACC ECU 32 sets a lower limit velocity VL smaller than the set velocity Vset and an upper limit velocity VH larger than the set velocity, based on the set velocity Vset of the occupant. The ACC ECU 32 executes acceleration control to accelerate the vehicle 10 when the velocity Vc of the vehicle 10 reaches the lower limit velocity VL as the vehicle 10 decelerates. The ACC ECU 32 transmits, to the EVECU 31, an acceleration command value which is a preset positive value as acceleration control. Thus, the EVECU 31 calculates a power command value of a positive value corresponding to the acceleration command value, and transmits the power command value to the MGECU 30, whereby the vehicle 10 accelerates with a predetermined acceleration.
 また、ACCECU32は、車両10を加速させている際に車両の速度Vcが上限速度VHに達した場合には、車両10を惰性走行させることにより車両10を減速させるコースティング制御を実行する。ACCECU32は、コースティング制御として、零に設定された加速度指令値をEVECU31に送信するとともに、クラッチ23を非接続状態にする旨の指令をEVECU31に送信する。これにより、EVECU31が、零に設定された動力指令値をMGECU30に送信するとともに、クラッチ23を非接続状態にする。結果的に、モータジェネレータ20の駆動が停止し、車両10が惰性走行するようになるため、車両10が自然に減速する。その後、ACCECU32は、車両10の速度Vcが下限速度VLに達すると、クラッチ23を接続状態にする旨の指令をEVECU31に送信するとともに、上記の加速制御を再び実行する。 Further, when accelerating the vehicle 10, the ACC ECU 32 performs coasting control to decelerate the vehicle 10 by coasting the vehicle 10 when the velocity Vc of the vehicle reaches the upper limit velocity VH. The ACC ECU 32 transmits an acceleration command value set to zero to the EVECU 31 as a coasting control, and transmits to the EV ECU 31 a command to put the clutch 23 in a disconnected state. Thereby, the EVECU 31 transmits the power command value set to zero to the MGECU 30 and puts the clutch 23 in the non-connected state. As a result, the drive of the motor generator 20 is stopped, and the vehicle 10 is coasting, so the vehicle 10 is naturally decelerated. Thereafter, when the speed Vc of the vehicle 10 reaches the lower limit speed VL, the ACC ECU 32 transmits a command to put the clutch 23 in the connected state to the EVECU 31 and executes the above acceleration control again.
 一方、図2に示されるように、ACCECU32は、車間時間THWが第2時間閾値Th2以上であって、且つ第1時間閾値Tth1未満である場合には、ACC制御を実行する。ACCECU32は、ACC制御として、自車両10が先行車両に追従して走行するように車両10の加速及び減速を繰り返して実行する、いわゆるバーンアンドコースト制御を実行する。 On the other hand, as shown in FIG. 2, when the inter-vehicle time THW is equal to or greater than the second time threshold Th2 and less than the first time threshold Tth1, the ACC ECU 32 executes the ACC control. The ACC ECU 32 executes, as ACC control, so-called burn and coast control in which acceleration and deceleration of the vehicle 10 are repeatedly performed so that the host vehicle 10 travels following the preceding vehicle.
 具体的には、ACCECU32は、先行車両の相対速度Vrが所定の第1速度閾値Vth1未満である場合には、すなわち自車両10が先行車両に急速に接近している場合には、回生制御を行う。ACCECU32は、回生制御として、負の値に設定された加速度指令値をEVECU31に送信する。これにより、EVECU31は、加速度指令値に応じた負の値の動力指令値を演算するとともに、この動力指令値をMGECU30に送信することにより、モータジェネレータ20に回生発電を行わせる。モータジェネレータ20が回生発電を行うと、その回生エネルギにより車両10の車輪28に制動力が加わるため、車両10を惰性走行させる場合と比較すると、より速く車両10を減速させることができる。よって、車両10と先行車両との車間距離を広げることができる。 Specifically, if the relative speed Vr of the preceding vehicle is less than the predetermined first speed threshold Vth1, that is, if the host vehicle 10 is rapidly approaching the preceding vehicle, the ACC ECU 32 performs regeneration control. Do. The ACC ECU 32 transmits an acceleration command value set to a negative value to the EVECU 31 as regeneration control. Thus, EVECU 31 calculates a power command value of a negative value corresponding to the acceleration command value, and transmits the power command value to MGECU 30 to cause motor generator 20 to perform regenerative power generation. When the motor generator 20 performs regenerative power generation, a braking force is applied to the wheels 28 of the vehicle 10 by the regenerative energy, so that the vehicle 10 can be decelerated more quickly than when the vehicle 10 is coasting. Thus, the inter-vehicle distance between the vehicle 10 and the preceding vehicle can be increased.
 また、ACCECU32は、第1速度閾値Vth1よりも大きい第2速度閾値Vth2を有しており、先行車両の相対速度Vrが第1速度閾値Vth1から第2速度閾値Vth2の範囲である場合には、上記のコースティング制御を実行する。また、ACCECU32は、第1時間閾値Tth1と第2時間閾値Tth2との間の値に設定された第3時間閾値Tth3を有しており、先行車両の相対速度Vrが第2速度閾値Vth2以上であって、且つ車間時間THWが第2時間閾値Tth2から第3時間閾値Tth3までの範囲の値である場合にも、上記のコースティング制御を実行する。このコースティング制御により、車両10と先行車両との車間距離を広げることができる。 Further, when the ACCECU 32 has the second speed threshold Vth2 larger than the first speed threshold Vth1 and the relative speed Vr of the leading vehicle is in the range from the first speed threshold Vth1 to the second speed threshold Vth2, Execute the above coasting control. Further, the ACC ECU 32 has a third time threshold Tth3 set to a value between the first time threshold Tth1 and the second time threshold Tth2, and the relative speed Vr of the leading vehicle is equal to or higher than the second speed threshold Vth2. The coasting control described above is executed also when the inter-vehicle time THW is a value in the range from the second time threshold Tth2 to the third time threshold Tth3. This coasting control can increase the inter-vehicle distance between the vehicle 10 and the preceding vehicle.
 さらに、ACCECU32は、先行車両の相対速度Vrが第2速度閾値Vth2以上であり、且つ車間時間THWが第3時間閾値Tth3から第1時間閾値Tth1までの範囲の値である場合には、上記の加速制御を実行する。
 このように、ACCECU32は、車間時間THW及び先行車両の相対速度Vrに応じて回生制御、コースティング制御、及び加速制御を選択的に実行することにより、自車両10を先行車両に追従させる。
Furthermore, when the relative speed Vr of the preceding vehicle is equal to or higher than the second speed threshold Vth2 and the inter-vehicle time THW is a value in the range from the third time threshold Tth3 to the first time threshold Tth1, the ACCECU 32 described above Execute acceleration control.
As described above, the ACC ECU 32 causes the host vehicle 10 to follow the preceding vehicle by selectively executing the regeneration control, the coasting control, and the acceleration control according to the inter-vehicle time THW and the relative speed Vr of the preceding vehicle.
 ところで、ACCECU32がCC制御又はACC制御において加速制御を実行している状況において先行車両が急減速したような場合、車間時間THWや相対速度Vrが急激に小さくなる可能性がある。これにより、ACCECU32が回生制御を実行して車輪28に制動力を発生させると、車両10の運動エネルギの一部は回生制御によってバッテリ22に電気エネルギとして回収可能であるが、その他の運動エネルギは、車輪28に制動力を発生させる際に熱エネルギに変換され大気に放熱されるため、回収できない。よって、エネルギの損失が避けられないものとなる。また、車両10の運動エネルギを電気エネルギに変換する際にも、エネルギの損失が発生する。このようなエネルギの損失は、車両10の燃費を悪化させる要因となる。 By the way, when the preceding vehicle suddenly decelerates in a situation where the ACC ECU 32 executes acceleration control in CC control or ACC control, the inter-vehicle time THW and the relative speed Vr may be rapidly reduced. Thereby, when ACCECU 32 executes regeneration control and causes wheel 28 to generate braking force, part of kinetic energy of vehicle 10 can be recovered as electric energy to battery 22 by regeneration control, but other kinetic energy is When the wheel 28 generates a braking force, it is converted into heat energy and dissipated to the atmosphere, so it can not be recovered. Thus, the loss of energy is inevitable. In addition, when converting kinetic energy of the vehicle 10 into electrical energy, energy loss occurs. Such loss of energy causes the fuel efficiency of the vehicle 10 to deteriorate.
 そこで、本実施形態の車両10では、先行車両が急減速するような周囲環境の変化、すなわち車両10の燃費を悪化させるような周囲環境の変化が生じているか否かを予測ECU33が予測する。本実施形態では、予測ECU33が環境予測部に相当する。ACCECU32は、予測ECU33により自車両10の燃費が悪化するような周囲環境の変化が生じていることを予測した際に、上記のACC制御による回生制御が実行されるよりも前に、自車両10の加速度を予め制限する予測制御を実行する。 Therefore, in the vehicle 10 of the present embodiment, the prediction ECU 33 predicts whether there is a change in the surrounding environment in which the preceding vehicle rapidly decelerates, that is, a change in the surrounding environment in which the fuel efficiency of the vehicle 10 is deteriorated. In the present embodiment, the prediction ECU 33 corresponds to an environment prediction unit. When the ACCECU 32 predicts that a change in the surrounding environment such as the deterioration of the fuel efficiency of the vehicle 10 is occurring by the prediction ECU 33, the ACCECU 32 performs the vehicle 10 before the regenerative control by the ACC control is performed. Perform predictive control that limits the acceleration of the vehicle in advance.
 また、図1に示されるように、予測ECU33は、車両10に搭載された通信部36を介してネットワーク回線40に無線接続することが可能となっている。予測ECU33は、ネットワーク回線40を介してサーバ装置41と各種通信を行う。サーバ装置41は、複数の車両から各種状態量を取得するとともに、その状態量をデータベース化している。また、サーバ装置41は、データベース化された複数の車両の状態量に基づいて、各種走行モデルを作成する。予測ECU33は、サーバ装置41により作成された走行モデルを用いることにより、周辺車両の走行軌跡を予測することが可能である。本実施形態では、ACCECU32、予測ECU33、及び通信部36により車両制御装置50が構成されている。 Further, as shown in FIG. 1, the prediction ECU 33 can wirelessly connect to the network line 40 via the communication unit 36 mounted on the vehicle 10. The prediction ECU 33 performs various communications with the server device 41 via the network line 40. The server device 41 acquires various state quantities from a plurality of vehicles, and makes the state quantities into a database. In addition, the server device 41 creates various traveling models based on the state quantities of the plurality of vehicles made into a database. The prediction ECU 33 can predict the traveling locus of the surrounding vehicle by using the traveling model created by the server device 41. In the present embodiment, a vehicle control device 50 is configured by the ACC ECU 32, the prediction ECU 33, and the communication unit 36.
 なお、予測ECU33は、高速処理が必要なこと,及び複数のECUとの接続が必要なことから、各コンポーネントを制御するECUとは独立に配置されている。
 次に、図4を参照して、ACCECU32及び予測ECU33により実行される予測制御の処理手順について具体的に説明する。なお、ACCECU32及び予測ECU33は、図4に示される処理を所定の周期で繰り返し実行する。
Since the prediction ECU 33 requires high-speed processing and requires connection with a plurality of ECUs, the prediction ECU 33 is disposed independently of the ECU that controls each component.
Next, with reference to FIG. 4, the processing procedure of the prediction control executed by the ACC ECU 32 and the prediction ECU 33 will be specifically described. The ACC ECU 32 and the prediction ECU 33 repeatedly execute the processing shown in FIG. 4 at a predetermined cycle.
 図4に示されるように、予測ECU33は、まず、ステップS10の処理として、周辺監視装置34から周辺車両の現在の状態量を取得する。予測ECU33が周辺監視装置34から取得する情報には、周辺車両の相対距離、相対速度、及び相対加速度等が含まれている。 As shown in FIG. 4, the prediction ECU 33 first acquires the current state quantities of the surrounding vehicles from the surrounding area monitoring device 34 as the process of step S10. The information acquired by the prediction ECU 33 from the surroundings monitoring device 34 includes the relative distance, the relative velocity, the relative acceleration, and the like of the surrounding vehicles.
 ACCECU32は、ステップS10の処理に続いて、ステップS11の処理として、EVECU31に送信される加速度指令値αを仮設定する。具体的には、ACCECU32は、ステップS10の処理で周辺監視装置34から取得した情報のうち、先行車両の相対速度及び相対距離を用いて車間時間を演算するとともに、演算された車間時間及び相対速度に基づいて図2に示される制御を実行することにより加速度指令値αの第1設定値α1を演算する。そして、ACCECU32は、加速度指令値αを第1設定値α1に仮設定する。 After the process of step S10, the ACC ECU 32 temporarily sets the acceleration command value α transmitted to the EVECU 31 as the process of step S11. Specifically, the ACCECU 32 calculates the inter-vehicle time using the relative speed and the relative distance of the preceding vehicle among the information acquired from the surroundings monitoring device 34 in the process of step S10, and calculates the calculated inter-vehicle time and the relative speed By executing the control shown in FIG. 2 based on the above, the first set value α1 of the acceleration command value α is calculated. Then, the ACC ECU 32 temporarily sets the acceleration command value α to the first set value α1.
 予測ECU33は、ステップS11の処理に続いて、ステップS12の処理として、先行車両や隣接走行車両を含む周辺車両の将来の状態量を予測する。予測される周辺車両の状態量には、周辺車両の将来の相対位置、相対距離、相対速度、相対加速度の時系列的なデータ等が含まれている。具体的には、予測ECU33は、周辺車両の状態量の現在の値及び過去の値から演算式やモデル等を用いて、現在から所定時間経過後までの将来の状態量を予測する。これにより、予測ECU33は、現在から所定時間経過後までの周辺車両の挙動を予測することができる。 The prediction ECU 33 predicts future state quantities of surrounding vehicles including the preceding vehicle and the adjacent traveling vehicle as the process of step S12, subsequent to the process of step S11. The predicted state quantities of the surrounding vehicles include future relative positions, relative distances, relative speeds, relative accelerations, time-series data of the surrounding vehicles, and the like. Specifically, the prediction ECU 33 predicts future state quantities from the present to a predetermined time after the current time and the past values of the state quantities of the surrounding vehicles using a computing equation, a model, and the like. As a result, the prediction ECU 33 can predict the behavior of the surrounding vehicle from the present time until a predetermined time has elapsed.
 なお、ステップS12の予測処理は、周辺車両の状態量の現在の値及び過去の値に限らず、その他の周辺車両の状態量に関する情報に基づいて実行してもよい。本予測は、過去の車両走行データを基に、周辺車両の挙動を所定の確率モデルで表現して、時系列波形として予想してもよいし、現在走行している地点を過去に走行した車両の走行データを統計的に処理して、ある地点における車両の減速や割り込み確率を算出してもよい。予想時間は、通常走行における加速度で走行車速として考え得る全車速まで至れるだけの時間とする。例えば、加速度の範囲は、「-1[G]」から「1[G]」の範囲に設定し、全車速は、「0[km/h]」から法廷制限車速とすればよい。 In addition, you may perform the prediction process of step S12 based not only on the present value and the past value of the state quantity of a surrounding vehicle based on the information regarding the state quantity of another surrounding vehicle. In this prediction, the behavior of surrounding vehicles may be expressed as a predetermined probability model based on past vehicle travel data, and may be predicted as a time-series waveform, or a vehicle that has traveled in the past at a point currently traveling The traveling data of the above may be processed statistically to calculate the deceleration or interruption probability of the vehicle at a certain point. The estimated time is a time that can reach all vehicle speeds that can be considered as traveling vehicle speed by acceleration in normal traveling. For example, the range of acceleration may be set in the range of “−1 [G]” to “1 [G]”, and the total vehicle speed may be a court limited vehicle speed from “0 [km / h]”.
 予測ECU33は、ステップS12の処理に続いて、ステップS13の処理として、周辺車両の挙動に基づいて車両10を減速させる必要があるか否かを判定する。この判定処理は、具体的には以下のような手法により実行される。
 N個の周辺車両が存在する場合、値iを「1≦i≦N」の範囲の整数と定義したとき、i番目の周辺車両の走行に対して自車両10が所定の状態量b(t)で走行するとする。状態量b(t)は、例えば時間tを変数とする加速度の関数である。そして、自車両10が状態量b(t)で走行するとき、自車両10に発生する制動エネルギが「Ebrk i(b(t))」で表せるとする。「Ebrk i(b(t))」は、現在から所定時間経過後までの期間にACC制御の実行により自車両10を減速させる際に発生すると予測される制動エネルギの予測値である。
After the process of step S12, the prediction ECU 33 determines whether the vehicle 10 needs to be decelerated based on the behavior of the surrounding vehicle as the process of step S13. Specifically, this determination process is performed by the following method.
When there are N nearby vehicles, when the value i is defined as an integer in the range of "1 ≦ i N N", the vehicle 10 uses the predetermined state quantity b (t I will drive by). The state quantity b (t) is, for example, a function of acceleration with the time t as a variable. Then, when the host vehicle 10 travels with the state quantity b (t), it is assumed that the braking energy generated in the host vehicle 10 can be expressed by "E brk i (b (t))". “E brk i (b (t))” is a predicted value of braking energy which is predicted to be generated when the host vehicle 10 is decelerated by execution of the ACC control in a period from the current time until the elapse of a predetermined time.
 また、i番目の周辺車両に対する自車両10の追従性能は、図5に示されるように、自車両10を先行車両に追従させるACC制御を実行する上で理想的な車間距離の範囲を理想走行範囲Aとすると、現在から所定時間経過後までの期間における理想走行範囲に対する自車両10の予想位置の逸脱量yiにより評価することができる。理想走行範囲Aは、一点鎖線で示されるi番目の周辺車両の予想走行位置を基準に設定されており、周辺車両の予測走行位置から演算式等を用いて求めることができるようになっている。そして、自車両10の追従性能評価値Ci(b(t))は、理想走行範囲Aに対する自車両10の予想位置の逸脱量yiを用いて、以下の式f1により求めることが可能である。なお、式f1の「T」は、予測時間である。 Further, as shown in FIG. 5, the follow-up performance of the host vehicle 10 with respect to the i-th peripheral vehicle is ideal travel within an ideal inter-vehicle distance range when executing ACC control that causes the host vehicle 10 to follow the preceding vehicle. In the case of the range A, evaluation can be made based on the deviation amount y i of the expected position of the vehicle 10 with respect to the ideal traveling range in the period from the present to the lapse of a predetermined time. The ideal travel range A is set on the basis of the expected travel position of the i-th nearby vehicle indicated by the alternate long and short dash line, and can be obtained from the predicted travel position of the nearby vehicle using an arithmetic expression etc. . The follow-up performance evaluation value C i (b (t)) of the vehicle 10 can be obtained by the following equation f1 using the deviation amount y i of the predicted position of the vehicle 10 with respect to the ideal travel range A is there. In addition, "T" of Formula f1 is prediction time.
Figure JPOXMLDOC01-appb-M000001
 以上により、N個の周辺車両に対する自車両の制動エネルギの期待値Ebrk(b(t))、及び追従性能評価値の期待値C(b(t))は、以下の式f2,f3により定義することができる。
Figure JPOXMLDOC01-appb-M000001
From the above, the expected value E brk (b (t)) of the braking energy of the host vehicle with respect to N neighboring vehicles and the expected value C (b (t)) of the following performance evaluation value are obtained by the following formulas f2 and f3. It can be defined.
Figure JPOXMLDOC01-appb-M000002
 なお、式f2,f3の「pi」は、i番目の周辺車両の挙動の発生確率である。詳しくは、i番目の周辺車両の挙動の予測結果には所定の不確かさが含まれていることを考慮して、本実施形態では、自車両10が状態量b(t)で走行する際にi番目の周辺車両の状態量が出現する確からしさを示すパラメータとして確率piが用いられている。例えば、所定の時刻におけるi番目の周辺車両の車速は、図6に示されるような確率として表すことができる。
Figure JPOXMLDOC01-appb-M000002
Note that “p i ” in the equations f2 and f3 is the occurrence probability of the behavior of the i-th nearby vehicle. Specifically, in consideration of the fact that the prediction result of the behavior of the i-th peripheral vehicle includes a predetermined uncertainty, in the present embodiment, when the host vehicle 10 travels with the state quantity b (t), The probability p i is used as a parameter indicating the likelihood that the state quantity of the i-th surrounding vehicle will appear. For example, the vehicle speed of the i-th nearby vehicle at a predetermined time can be expressed as a probability as shown in FIG.
 上記の自車両の制動エネルギの期待値Ebrk(b(t))、及び追従性能評価値の期待値C(b(t))を用いることにより、以下の式f4で表されるような評価関数FE1を構成することができる。 By using the expected value E brk (b (t)) of the braking energy of the host vehicle and the expected value C (b (t)) of the following performance evaluation value, evaluation as represented by the following formula f 4 Function F E1 can be constructed.
Figure JPOXMLDOC01-appb-M000003
 なお、式f4の「k」は、制動エネルギ及び追従性能評価値のそれぞれの重み付け係数である。係数kは、「0≦k≦1」の範囲で設定される値である。本実施形態では、重み付け係数として、予め定められた値が用いられている。
Figure JPOXMLDOC01-appb-M000003
In addition, "k" of Formula f4 is each weighting coefficient of braking energy and a tracking performance evaluation value. The coefficient k is a value set in the range of “0 ≦ k ≦ 1”. In the present embodiment, a predetermined value is used as the weighting factor.
 この評価関数FE1の値が最小となるように自車両10の状態量b(t)を決定すれば、追従性能を確保しつつ、制動エネルギが抑制された自車両10の状態量b(t)を求めることができる。換言すれば、追従性能を確保しつつ、燃費を改善することの可能な自車両10の状態量b(t)を求めることができる。 If the state quantity b (t) of the host vehicle 10 is determined so that the value of the evaluation function FE1 becomes minimum, the state quantity b (t of the host vehicle 10 in which the braking energy is suppressed while ensuring the tracking performance) ) Can be asked. In other words, it is possible to obtain the state quantity b (t) of the vehicle 10 capable of improving the fuel consumption while securing the following performance.
 以上の手法に基づいて、予測ECU33は、ステップS13の判定処理を実行する。具体的には、予測ECU33は、制動エネルギEbrk i(b(t))の演算式として、例えば予め実験等により求められた演算式を用いる。
 また、予測ECU33は、ステップS12の処理で取得した予測情報のうち、i番目の周辺車両の予測状態量に基づいて、i番目の周辺車両の予想走行軌跡を走行モデル等から演算する。また、予測ECU33は、演算されたi番目の周辺車両の予想走行軌跡に基づいて理想走行範囲Aを求めることにより、自車両10の追従性能評価値Ci(b(t))の演算式を決定する。
Based on the above method, the prediction ECU 33 executes the determination process of step S13. Specifically, the prediction ECU 33 uses, for example, an arithmetic expression obtained in advance by an experiment or the like as an arithmetic expression of the braking energy E brk i (b (t)).
Further, the prediction ECU 33 calculates the predicted traveling locus of the i-th peripheral vehicle from the traveling model etc. based on the predicted state quantity of the i-th peripheral vehicle among the prediction information acquired in the process of step S12. Further, the prediction ECU 33 obtains an ideal traveling range A based on the calculated predicted traveling locus of the i-th surrounding vehicle, thereby calculating an arithmetic expression of the tracking performance evaluation value C i (b (t)) of the host vehicle 10. decide.
 さらに、予測ECU33は、通信部36を介してサーバ装置41から走行モデルを取得するとともに、取得した走行モデルと、i番目の周辺車両の状態量とに基づいて、i番目の周辺車両の状態量の発生確率piを演算する。
 このようにして、予測ECU33は、上記の式f4における制動エネルギEbrk i(b(t))の演算式、追従性能評価値Ci(b(t))の演算式、及び発生確率piを決定した後、評価関数FE1の値が最小となるように自車両10の状態量b(t)を決定する。評価関数FE1の最小化にあたっては、自車両10の挙動を複数通り考え、それらのそれぞれの時の評価関数の値を算出するとともに、それらのうち評価関数FE1の値が最小となる自車両10の状態量b(t)を選んでもよいし、最適化手法を用いて決定してもよい。状態量b(t)は車両10の加速度の関数であるため、以上の演算により、予測ECU33は、評価関数FE1の値が最小となるような加速度指令値αの第2設定値α2を得ることができる。
Further, the prediction ECU 33 acquires the traveling model from the server device 41 via the communication unit 36, and also determines the state quantity of the i-th peripheral vehicle based on the acquired traveling model and the state quantity of the i-th peripheral vehicle. Calculate the occurrence probability p i of
Thus, the prediction ECU 33 calculates the braking energy E brk i (b (t)) in the above equation f4, the calculation equation of the following performance evaluation value C i (b (t)), and the occurrence probability p i Then, the state quantity b (t) of the vehicle 10 is determined such that the value of the evaluation function FE1 becomes minimum. In the minimization of the evaluation function F E1 , the behavior of the host vehicle 10 is considered in a plurality of ways, and the values of the evaluation function at those respective times are calculated, and the host vehicle with the smallest value of the evaluation function F E1 Ten state quantities b (t) may be selected or may be determined using an optimization method. Since the state quantity b (t) is a function of the acceleration of the vehicle 10, the operation of the above, the prediction ECU33 obtains a second set value α2 of the evaluation function F acceleration command value as the value becomes the minimum E1 alpha be able to.
 なお、予測ECU33は、加速度指令値αの第2設定値α2を演算する際に、第2設定値α2に下限値を設ける等して、車両10をコースティング制御させることの可能な第2設定値α2を求めてもよい。これにより、第2設定値α2を加速度指令値αとして用いて車両10を減速させた際に、車両10に制動エネルギが発生することを回避できるため、車両10の燃費を向上させることができる。 In addition, when computing prediction setting value alpha 2 of acceleration command value alpha, prediction ECU33 sets the lower limit to 2nd setting value alpha 2, etc., and can carry out the 2nd setting which can carry out coasting control of vehicles 10 The value α2 may be determined. Thus, when the vehicle 10 is decelerated using the second set value α2 as the acceleration command value α, generation of braking energy in the vehicle 10 can be avoided, and the fuel efficiency of the vehicle 10 can be improved.
 予測ECU33は、ステップS13の処理として、第1設定値α1と第2設定値α2とを比較することにより、車両10の減速が必要であるか否かを判断する。具体的には、予測ECU33は、第1設定値α1が第2設定値α2以下である場合には、車両10の減速が必要でないと判断する。すなわち、予測ECU33は、ステップS13の処理で否定判断する。この場合、予測ECU33は、自車両10の燃費が悪化する周囲環境の変化が生じていないと判定する。ACCECU32は、予測ECU33がステップS13の処理で否定判断した場合には、ステップS15の処理として、第1設定値α1に設定された加速度指令値αをEVECU31に送信する。 The prediction ECU 33 determines whether the vehicle 10 needs to be decelerated by comparing the first set value α1 with the second set value α2 in the process of step S13. Specifically, when the first set value α1 is equal to or less than the second set value α2, the prediction ECU 33 determines that deceleration of the vehicle 10 is not necessary. That is, the prediction ECU 33 makes a negative determination in the process of step S13. In this case, the prediction ECU 33 determines that there is no change in the surrounding environment in which the fuel efficiency of the vehicle 10 deteriorates. When the prediction ECU 33 makes a negative determination in the process of step S13, the ACC ECU 32 transmits the acceleration command value α set to the first set value α1 to the EVECU 31 as the process of step S15.
 予測ECU33は、ステップS13の処理において、第2設定値α2が第1設定値α1未満である場合には、車両10の減速が必要であると判断する。すなわち、予測ECU33は、ステップS13の処理で肯定判断する。この場合、自車両10の燃費が悪化する周囲環境の変化が生じていると判定する。ACCECU32は、予測ECU33がステップS13の処理で肯定判断した場合には、ステップS14の処理として、加速度指令値αを第1設定値α1から第2設定値α2に変更する。そして、ACCECU32は、ステップS15の処理として、第2設定値α2に設定された加速度指令値αをEVECU31に送信する。これにより、EVECU31には、ACC制御により設定される第1設定値α1よりも小さい第2設定値α2が加速度指令値αとして送信される。これにより、ACCECU32は、ACC制御により設定可能な減速度よりも小さい減速度で自車両10を減速させる減速制御を実現する。 If the second set value α2 is less than the first set value α1 in the process of step S13, the prediction ECU 33 determines that the vehicle 10 needs to be decelerated. That is, the prediction ECU 33 makes an affirmative determination in the process of step S13. In this case, it is determined that there is a change in the surrounding environment in which the fuel efficiency of the vehicle 10 deteriorates. The ACC ECU 32 changes the acceleration command value α from the first set value α1 to the second set value α2 as the process of step S14 when the prediction ECU 33 makes an affirmative determination in the process of step S13. Then, the ACC ECU 32 transmits the acceleration command value α set to the second set value α2 to the EVECU 31 as the process of step S15. Thereby, the second set value α2 smaller than the first set value α1 set by the ACC control is transmitted to the EVECU 31 as the acceleration command value α. As a result, the ACC ECU 32 implements deceleration control to decelerate the host vehicle 10 at a deceleration smaller than the deceleration that can be set by the ACC control.
 次に、本実施形態の車両制御装置50の動作例について説明する。
 図7(A)に一点鎖線で示されるように、先行車両の速度Vpが、時刻t11から急激に低下したとする。このような状況では、自車両10と先行車両との車間時間や相対速度が急激に減少するため、ACC制御のみが実行されている場合、図7(B)に二点鎖線で示されるように、時刻t11以降に回生制御が実行されることにより、車両10の駆動エネルギEcが急激に減速する。なお、図7(B)に示される駆動エネルギEcは、モータジェネレータ20により生成される車両10の走行用の駆動エネルギの大きさを正の値で示し、回生制御時に発生する制動エネルギの大きさを負の値で示している。このような回生制御の実行により、図7(C)に二点鎖線で示されるように、時刻t11以降に、自車両10と先行車両との間の車間距離Lcが広がるとともに、図7(A)に二点鎖線で示されるように、自車両10の速度Vbが低下する。このように、制動エネルギが発生する場合、そのエネルギの一部が熱エネルギ等に変換されてしまうため、エネルギ損失が発生する。
Next, an operation example of the vehicle control device 50 of the present embodiment will be described.
As shown by a dashed dotted line in FIG. 7A, it is assumed that the speed Vp of the preceding vehicle has dropped sharply from time t11. In such a situation, since the inter-vehicle time and the relative speed between the own vehicle 10 and the preceding vehicle rapidly decrease, when only the ACC control is performed, as shown by a two-dot chain line in FIG. By executing the regeneration control after time t11, the drive energy Ec of the vehicle 10 is rapidly decelerated. The drive energy Ec shown in FIG. 7B indicates the magnitude of the drive energy for traveling of the vehicle 10 generated by the motor generator 20 as a positive value, and the magnitude of the braking energy generated at the time of the regeneration control Is indicated by a negative value. With the execution of such regenerative control, as shown by a two-dot chain line in FIG. 7C, the inter-vehicle distance Lc between the host vehicle 10 and the preceding vehicle is increased after time t11, as shown in FIG. The speed Vb of the vehicle 10 decreases as indicated by the two-dot chain line in FIG. As described above, when braking energy is generated, a part of the energy is converted to heat energy or the like, resulting in energy loss.
 この点、本実施形態の予測ECU33は、時刻t11よりも前の時刻t10の時点で、時刻t11以降に制動エネルギの発生が予測される場合には、上記の式f4の演算により、制動エネルギを抑制することの可能な加速度指令値αの第2設定値α2を演算するとともに、加速度指令値αを第2設定値α2に設定する。この加速度指令値αがACCECU32からEVECU31に送信されることにより、例えばEVECU31が動力指令値を零に設定すると、図7(B)に実線で示されるように、時刻t10でモータジェネレータ20の駆動エネルギEcが零になる。これにより、図7(A)に実線で示されるように、時刻t10以降、車両10の速度Vaが低下するとともに、図7(C)に実線で示されるように、自車両10と先行車両との間の車間距離Lcが広がる。このように、車両10を減速させることにより、図7(B)に示されるように、制動エネルギの発生を抑制することができるため、結果的に車両10の燃費を改善することができる。 In this respect, when the generation of braking energy is predicted after time t11 at time t10 before time t11, the prediction ECU 33 of the present embodiment calculates braking energy by the calculation of the above-mentioned equation f4. While calculating the second set value α2 of the acceleration command value α that can be suppressed, the acceleration command value α is set to the second set value α2. When, for example, the EVECU 31 sets the power command value to zero by transmitting the acceleration command value α from the ACCECU 32 to the EVECU 31, as shown by a solid line in FIG. Ec becomes zero. Thus, as shown by the solid line in FIG. 7 (A), the speed Va of the vehicle 10 decreases after time t10, and the vehicle 10 and the leading vehicle are as shown by the solid line in FIG. 7 (C). Inter-vehicle distance Lc increases. By thus decelerating the vehicle 10, as shown in FIG. 7B, the generation of braking energy can be suppressed, and as a result, the fuel efficiency of the vehicle 10 can be improved.
 以上説明した本実施形態の車両制御装置50によれば、以下の(1)~(7)に示される作用及び効果を得ることができる。
 (1)ACCECU32は、予測ECU33により自車両10の燃費が悪化するような周囲環境の変化が生じていることが予測された際に、自車両10の加速度を制限することの可能な予測制御を実行する。これにより、自車両10の燃費が悪化するような周囲環境の変化が生じた場合には、自車両10の加速度が予め制限されるため、自車両10の燃費が実際に悪化してしまう状況を回避することが可能である。よって、自車両10の燃費を改善することができる。
According to the vehicle control device 50 of the present embodiment described above, the actions and effects shown in the following (1) to (7) can be obtained.
(1) The ACC ECU 32 performs prediction control capable of limiting the acceleration of the vehicle 10 when the prediction ECU 33 predicts that a change in the surrounding environment is occurring such that the fuel efficiency of the vehicle 10 is deteriorated. Run. Thus, when a change in the surrounding environment occurs such that the fuel efficiency of the host vehicle 10 is deteriorated, the acceleration of the host vehicle 10 is limited in advance, so that the fuel efficiency of the host vehicle 10 is actually deteriorated. It is possible to avoid. Thus, the fuel consumption of the host vehicle 10 can be improved.
 (2)ACCECU32は、自車両10の減速が必要となる周囲環境の変化を予測した場合に、自車両10の燃費が悪化するような周囲環境の変化が生じていると予測する。ACCECU32は、自車両10の減速が必要となる周囲環境の変化を予測した場合には、ACC制御により設定される加速度指令値αの第1設定値α1よりも小さい第2設定値α2を用いることにより車両10の加速度を実際に制限する加速度制御を実行する。これにより、ACCECU32は、予測制御として、ACC制御により設定可能な減速度よりも小さい減速度で自車両を減速させる減速制御を実行する。このような構成によれば、車間距離確保のための減速の際に発生するエネルギの損失を低減することができる。 (2) When the ACC ECU 32 predicts a change in the surrounding environment in which the host vehicle 10 needs to be decelerated, the ACC ECU 32 predicts that a change in the surrounding environment has occurred such that the fuel efficiency of the host vehicle 10 is degraded. The ACC ECU 32 uses the second set value α2 smaller than the first set value α1 of the acceleration command value α set by the ACC control when predicting a change in the surrounding environment where the host vehicle 10 needs to be decelerated. Acceleration control for actually limiting the acceleration of the vehicle 10 is executed. As a result, the ACC ECU 32 executes, as predictive control, deceleration control to decelerate the host vehicle at a deceleration smaller than the deceleration that can be set by the ACC control. According to such a configuration, it is possible to reduce the loss of energy generated at the time of deceleration for securing the inter-vehicle distance.
 (3)予測ECU33は、自車両10の燃費に関する指標、及び先行車両に対する自車両の追従性能に関する指標に基づいて、自車両10の減速が必要となる周囲環境の変化の有無を予測する。具体的には、予測ECU33は、自車両10の燃費に関する指標として、現在から所定時間経過後までの期間にACC制御の実行により自車両10を減速させる際に発生すると予測される制動エネルギの予測値を用いる。また、予測ECU33は、先行車両に対する自車両の追従性能に関する指標として、現在から所定時間経過後までの期間におけるACC制御の理想値に対する自車両の位置の逸脱量yiを用いる。これにより、狙いの燃費改善、及び追従性能の悪化の抑制の効果を得るための車両10の減速を確実に判断することができる。 (3) The prediction ECU 33 predicts the presence or absence of a change in the surrounding environment in which the host vehicle 10 needs to be decelerated, based on the index related to the fuel efficiency of the host vehicle 10 and the index related to the follow-up performance of the host vehicle with respect to the preceding vehicle. Specifically, the prediction ECU 33 predicts braking energy that is predicted to occur when the host vehicle 10 is decelerated by execution of the ACC control in a period from the present to the end of a predetermined time period as an index related to fuel consumption of the host vehicle 10 Use the value. Further, the prediction ECU 33 uses the deviation y i of the position of the host vehicle with respect to the ideal value of the ACC control in the period from the present to the end of the predetermined time as an index related to the follow-up performance of the host vehicle with respect to the preceding vehicle. Thus, it is possible to reliably determine the deceleration of the vehicle 10 to obtain the effects of the target fuel efficiency improvement and the suppression of the deterioration of the follow-up performance.
 (4)予測ECU33は、自車両10の燃費に関する指標、及び先行車両に対する自車両の追従性能に関する指標を、上記の式f2,f3で示されるように、確率情報として表すこととした。そして、予測ECU33は、自車両10の燃費に関する指標に基づく期待値、及び先行車両に対する自車両10の追従性能に関する指標に基づく期待値からなる評価関数として上記の式4で表せるような関数を用いるとともに、式f4の演算値に基づいて自車両10の減速が必要となる周囲環境の変化を予測する。これにより、周囲環境の変化に関する予想情報に不確かさが含まれている場合にも、燃費改善、及び追従性能の悪化の抑制の効果を得るための車両10の減速を確実に判断することができる。 (4) The prediction ECU 33 represents the index related to the fuel efficiency of the host vehicle 10 and the index related to the following performance of the host vehicle with respect to the preceding vehicle as probability information as represented by the above formulas f2 and f3. And prediction ECU33 uses a function which can be expressed by the above-mentioned formula 4 as an evaluation function which consists of an expected value based on an index about fuel consumption of self-vehicles 10, and an index based on an index about follow-up performance of self-vehicle 10 over preceding vehicles At the same time, a change in the surrounding environment in which the vehicle 10 needs to be decelerated is predicted based on the calculated value of the equation f4. This makes it possible to reliably determine the deceleration of the vehicle 10 to obtain the effects of fuel efficiency improvement and suppression of the deterioration of the following performance even when uncertainty is included in the predicted information regarding the change in the surrounding environment. .
 (5)予測ECU33は、車両10をコースティング制御させることの可能な加速度指令値の第2設定値α2を演算する。これにより、ACCECU32は、自車両10の車輪にモータジェネレータ20からの出力が伝わらない状態で自車両10を惰性走行させるコースティング制御を実行する。このような構成によれば、予測情報を用いて車両10を減速させる際に、より高い燃料効率で車両10を減速させることができる。 (5) The prediction ECU 33 calculates a second set value α2 of the acceleration command value capable of performing coasting control of the vehicle 10. As a result, the ACC ECU 32 performs coasting control that causes the vehicle 10 to coast while the output from the motor generator 20 is not transmitted to the wheels of the vehicle 10. According to such a configuration, when decelerating the vehicle 10 using the prediction information, the vehicle 10 can be decelerated with higher fuel efficiency.
 (6)ACCECU32は、自車両10の加速及び減速を繰り返して実行することにより、自車両10を先行車両に追従させるバーンアンドコースト制御を実行する。これにより、通常は燃料効率の高い走行方法で車両10が走行することができる。
 (7)予測ECU33は、自車両の燃費が悪化するような周囲環境の変化として、先行車両の減速を予測する。これにより、燃費への影響が大きい周囲環境の変化に対して、燃費を改善させることが可能となる。
(6) The ACC ECU 32 repeatedly executes acceleration and deceleration of the host vehicle 10 to execute burn-and-coast control that causes the host vehicle 10 to follow the preceding vehicle. Thereby, the vehicle 10 can travel generally by a travel method with high fuel efficiency.
(7) The prediction ECU 33 predicts the deceleration of the preceding vehicle as a change in the surrounding environment such that the fuel efficiency of the host vehicle is deteriorated. This makes it possible to improve the fuel consumption with respect to changes in the surrounding environment that have a large impact on the fuel consumption.
 (変形例)
 次に、第1実施形態の車両制御装置50の変形例について説明する。
 図1に破線で示されるように、本変形例の車両制御装置50は、HMI(human machine interface)ECU37を更に有している。HMIECU37は、車両10に搭載された報知装置38を制御することにより、車両10の乗員に対して各種報知を行う部分である。報知装置38としては、スピーカやディスプレイ等を用いることができる。
(Modification)
Next, a modification of the vehicle control device 50 of the first embodiment will be described.
As shown by a broken line in FIG. 1, the vehicle control device 50 of the present modification further includes an HMI (human machine interface) ECU 37. The HMI ECU 37 is a part that controls the notification device 38 mounted on the vehicle 10 to notify the occupants of the vehicle 10 in various ways. A speaker, a display or the like can be used as the notification device 38.
 ACCECU32は、図4に示されるステップS15の処理において、加速度指令値αをHMIECU37に送信する。HMIECU37は、ACCECU32から送信される加速度指令値αに基づいて、自車両10の加速度が制限されるように自車両10の乗員に運転方法を指示する指示制御を実行する。例えば、HMIECU37は、加速度指令値αに対応した加速度や速度をスピーカにより音声で乗員に認知させることにより、あるいは加速度指令値αに対応した加速度や速度をディスプレイに表示することにより乗員に運転方法を指示する。 The ACC ECU 32 transmits the acceleration command value α to the HMIECU 37 in the process of step S15 shown in FIG. 4. The HMIECU 37 executes instruction control for instructing the occupant of the host vehicle 10 of the driving method so that the acceleration of the host vehicle 10 is limited based on the acceleration command value α transmitted from the ACC ECU 32. For example, the HMI ECU 37 causes the passenger to drive the vehicle by causing the occupant to recognize the acceleration or velocity corresponding to the acceleration command value α by means of a speaker by voice or displaying the acceleration or velocity corresponding to the acceleration command value α on the display. To direct.
 なお、HMIECU37は、加速度指令値αに基づいてアクセルペダルの踏み込み量を調整したり、ブレーキペダルの踏み込み量を調整したりすることにより、乗員に運転方法を指示してもよい。
 このような方法であっても、車両10を減速させることが可能である。
The HMI ECU 37 may instruct the driver on the driving method by adjusting the depression amount of the accelerator pedal based on the acceleration command value α or adjusting the depression amount of the brake pedal.
Even with such a method, the vehicle 10 can be decelerated.
 <第2実施形態>
 次に、車両制御装置50の第2実施形態について説明する。以下、第1実施形態の車両制御装置50との相違点を中心に説明する。はじめに、第2実施形態の車両制御装置50が搭載される車両10の概略構成について説明する。
Second Embodiment
Next, a second embodiment of the vehicle control device 50 will be described. Hereinafter, differences from the vehicle control device 50 of the first embodiment will be mainly described. First, a schematic configuration of a vehicle 10 on which the vehicle control device 50 of the second embodiment is mounted will be described.
 図8に示されるように、本実施形態の車両10は、モータジェネレータ20だけでなく、エンジン60を動力源として用いる、いわゆるハイブリッド車である。エンジン60は、その駆動により第1動力伝達軸29aを回転させる。第1動力伝達軸29aは、クラッチ23を介して第2動力伝達軸29bに連結されている。クラッチ23は、第1動力伝達軸29aと第2動力伝達軸29bとを連結することによりそれらの間の動力の伝達を可能とする接続状態と、第1動力伝達軸29aと第2動力伝達軸29bとの連結を解除することによりそれらの間の動力の伝達を遮断する非接続状態とに遷移可能である。 As shown in FIG. 8, the vehicle 10 according to the present embodiment is a so-called hybrid vehicle that uses not only the motor generator 20 but also the engine 60 as a power source. The engine 60 rotates the first power transmission shaft 29a by its drive. The first power transmission shaft 29 a is connected to the second power transmission shaft 29 b via the clutch 23. The clutch 23 connects the first power transmission shaft 29a and the second power transmission shaft 29b to enable transmission of power therebetween, the first power transmission shaft 29a and the second power transmission shaft. It is possible to transition to a non-connected state in which the transmission of power between them is cut off by releasing the connection with 29b.
 モータジェネレータ20は、通電に基づいて第2動力伝達軸29bに動力を付与する。したがって、クラッチ23が接続状態である場合、第2動力伝達軸29bには、エンジン60及びモータジェネレータ20の少なくとも一方から動力が付与される。第2動力伝達軸29bに付与された動力は、変速機62に入力される。変速機62は、第2動力伝達軸29bから入力されるエンジン60及びモータジェネレータ20の合算動力、もしくはエンジン60からモータジェネレータ20で電力に変換された動力を差し引いた動力を増速又は減速して第3動力伝達軸29cに伝達する。第3動力伝達軸29cに伝達された動力は、ディファレンシャルギア26、及び駆動軸27を介して車両10の車輪28に伝達される。これにより車両10が走行する。このように、本実施形態では、モータジェネレータ20及びエンジン60がパワートレインに相当する。 The motor generator 20 applies power to the second power transmission shaft 29b based on energization. Therefore, when the clutch 23 is in the connected state, power is applied to the second power transmission shaft 29 b from at least one of the engine 60 and the motor generator 20. The power applied to the second power transmission shaft 29 b is input to the transmission 62. The transmission 62 accelerates or decelerates the total power of the engine 60 and the motor generator 20 input from the second power transmission shaft 29 b or the power obtained by subtracting the power converted from the engine 60 into electric power by the motor generator 20. It transmits to the 3rd power transmission shaft 29c. The power transmitted to the third power transmission shaft 29 c is transmitted to the wheels 28 of the vehicle 10 via the differential gear 26 and the drive shaft 27. Thus, the vehicle 10 travels. Thus, in the present embodiment, the motor generator 20 and the engine 60 correspond to a power train.
 車両10には、エンジン60の駆動を統括的に制御するエンジンECU63が搭載されている。また、エンジンECU63は、クラッチ23の駆動を制御する。
 車両10には、EVECU31に代えて、HV(Hybrid Vehicle)ECU39が搭載されている。HVECU39は、MGECU30及びエンジンECU63と制御に必要な情報を授受することにより、エンジン60、モータジェネレータ20、及びバッテリ22の統合調停制御を行う。具体的には、HVECU39は、ACCECU32から送信される加速度指令値に基づいてモータジェネレータ20及びエンジン60の駆動を制御する。HVECU39は、例えばエンジン60が停止状態であって、且つ加速度指令値αが所定の加速度閾値αth以上である場合には、車両10を加速させるべく、所定の動力指令値をエンジンECU63に送信することによりエンジン60を再始動させる。また、HVECU39は、加速度指令値αが加速度閾値αth未満である場合には、燃料消費を抑えるべく、エンジン60の停止指令をエンジンECU63に送信するとともに、所定の動力指令値をMGECU30に送信することにより、車両10をEV走行させる。本実施形態では、HVECU39が、自車両10の走行状態に基づいてエンジン60及びモータジェネレータ20の駆動及び停止を制御する走行制御部に相当する。
The vehicle 10 is mounted with an engine ECU 63 that controls the driving of the engine 60 in an integrated manner. The engine ECU 63 also controls the drive of the clutch 23.
In the vehicle 10, an HV (Hybrid Vehicle) ECU 39 is mounted in place of the EVECU 31. The HVECU 39 performs integrated arbitration control of the engine 60, the motor generator 20, and the battery 22 by exchanging information necessary for control with the MGECU 30 and the engine ECU 63. Specifically, the HVECU 39 controls the drive of the motor generator 20 and the engine 60 based on the acceleration command value transmitted from the ACC ECU 32. The HVECU 39 transmits a predetermined power command value to the engine ECU 63 so as to accelerate the vehicle 10, for example, when the engine 60 is in a stopped state and the acceleration command value α is equal to or greater than a predetermined acceleration threshold αth. Causes the engine 60 to restart. Further, when the acceleration command value α is less than the acceleration threshold value αth, the HVECU 39 transmits a command to stop the engine 60 to the engine ECU 63 and transmits a predetermined power command value to the MGECU 30 in order to reduce fuel consumption. Makes the vehicle 10 travel by EV. In the present embodiment, the HVECU 39 corresponds to a traveling control unit that controls driving and stopping of the engine 60 and the motor generator 20 based on the traveling state of the host vehicle 10.
 次に、図9を参照して、ACCECU32及び予測ECU33により実行される予測制御の処理手順について具体的に説明する。なお、ACCECU32及び予測ECU33は、図9に示される処理を所定の周期で繰り返し実行する。
 図9に示されるように、予測ECU33は、ステップS12の処理に続いて、ステップS20の処理として、エンジン60の短時間の駆動を抑制するために車両10の加速度の制限が必要か否かを判定する。この判定処理は、具体的には以下のような手法により実行される。
Next, with reference to FIG. 9, the processing procedure of prediction control executed by the ACC ECU 32 and the prediction ECU 33 will be specifically described. The ACC ECU 32 and the prediction ECU 33 repeatedly execute the process shown in FIG. 9 at a predetermined cycle.
As shown in FIG. 9, following the process of step S12, the prediction ECU 33 determines whether it is necessary to limit the acceleration of the vehicle 10 in order to suppress the short-time driving of the engine 60 as the process of step S20. judge. Specifically, this determination process is performed by the following method.
 エンジン60からエネルギを取り出す際の効率は、エンジン60の吸気遅れ、エンジン60の始動のためのエネルギ消費量、エンジン60の始動時の消費燃料量の増加等により悪化する。これらを考慮して、エンジン走行時の実質エンジン効率ηengを、以下の式f5に示されるように表現する。 The efficiency at the time of taking energy from the engine 60 is deteriorated due to the intake delay of the engine 60, the energy consumption amount for starting the engine 60, the increase of the fuel consumption amount at the start of the engine 60, and the like. Taking these into consideration, the actual engine efficiency η eng at the time of engine traveling is expressed as shown in the following equation f5.
Figure JPOXMLDOC01-appb-M000004
 なお、式f5において、「δdelay」は、吸気遅れ分の係数を示す。「ηe」は、エンジン60を定常状態で動かした時のエンジン効率である理想エンジン効率を示す。「Eout」は、エンジン60の理想出力エネルギを示す。「Eegon」は、エンジン60の始動エネルギを示す。「Ein」は、エンジン60の投入燃料エネルギを示す。「Eadd」は、始動時増量分エネルギを示す。「Tacc」は、加速に要する時間を示す。
Figure JPOXMLDOC01-appb-M000004
In the equation f5, “δ delay ” indicates a coefficient for the intake delay. “Η e ” indicates an ideal engine efficiency which is an engine efficiency when the engine 60 is moved in a steady state. “E out ” indicates the ideal output energy of the engine 60. "E egon " indicates the starting energy of the engine 60. “E in ” indicates the input fuel energy of the engine 60. "E add " indicates the start-up incremental energy. "T acc " indicates the time required for acceleration.
 式f5の左辺の実質エンジン効率η* engは、自車両10の燃費に関する指標として用いられるものである。また、式f5の右辺の値は、エンジンの入力エネルギに対するエンジンの出力エネルギの比率を示したものである。
 一方、モータジェネレータ20の動力のみで走行する、いわゆるEV走行を車両10が行う際の実質エンジン効率を、現在までの走行実績に基づくシステム効率ηsysにより定義すると、EV走行時の実質エンジン効率ηsysは、以下の式f6のように表すことができる。
The substantial engine efficiency η * eng on the left side of the equation f5 is used as an index related to the fuel efficiency of the vehicle 10. Further, the value on the right side of the equation f5 represents the ratio of the output energy of the engine to the input energy of the engine.
On the other hand, if the real engine efficiency when the vehicle 10 performs so-called EV travel, which travels with only the power of the motor generator 20, is defined by the system efficiency η sys based on the past travel results, the real engine efficiency η during EV travel sys can be expressed as the following equation f6.
Figure JPOXMLDOC01-appb-M000005
 なお、式f6において、「Esysout」は、パワートレインの出力エネルギを示す。「Esysin」は、投入燃料エネルギを示す。
 EV走行時の実質エンジン効率ηsysは、エンジン60が停止している状態における自車両10のパワートレインの入力エネルギに対するパワートレインの出力エネルギの比率を示したものである。
Figure JPOXMLDOC01-appb-M000005
In Equation f6, "E sysout " indicates the output energy of the power train. "E sysin " represents input fuel energy.
The actual engine efficiency η sys at the time of EV travel indicates the ratio of the output energy of the powertrain to the input energy of the powertrain of the vehicle 10 in a state where the engine 60 is stopped.
 以上により、加速度指令値αに対する将来の実質エンジン効率η* engは、図10に示されるように表すことができる。すなわち、加速度指令値αが加速度閾値αth未満である場合には、車両10がモータジェネレータ20の動力により走行するため、将来の実質エンジン効率η* engは、上記の式f6の右辺の値となる。また、加速度指令値αが加速度閾値αth以上であって、且つACC制御時のバーンアンドコースト制御において加速時に用いられる加速度指令値αbcよりも小さい場合には、将来の実質エンジン効率η* engは、上記の式f5の右辺により求めることができる。このようにして定まる将来の実質エンジン効率η* engは、自車両10のパワートレインの入力エネルギに対するパワートレインの出力エネルギの比率を示したものである。 From the above, the future substantial engine efficiency η * eng for the acceleration command value α can be expressed as shown in FIG. That is, when acceleration command value α is less than acceleration threshold value αth, vehicle 10 travels with the motive power of motor generator 20, and thus the actual engine efficiency ** eng in the future becomes the value of the right side of the above equation f6. . Further, when acceleration command value α is equal to or higher than acceleration threshold value αth and smaller than acceleration command value αbc used at the time of acceleration in burn-and-coast control under ACC control, future engine efficiency η * eng is It can be determined by the right side of the above equation f5. The future real engine efficiency η * eng determined in this way represents the ratio of the output energy of the powertrain to the input energy of the powertrain of the vehicle 10.
 第1実施形態で説明した制動エネルギの抑制のための減速制御と同様に、i番目の周辺車両の走行に対して自車両10が所定の状態量b(t)で走行すると、その際の自車両10の実質エンジン効率η* engの期待値η* eng(b(t))は、以下の式f7により求めることができる。 As in the case of the deceleration control for suppressing braking energy described in the first embodiment, when the host vehicle 10 travels with a predetermined state quantity b (t) while the i-th peripheral vehicle travels, the host vehicle 10 at that time The expected value ** eng (b (t)) of the real engine efficiency ** eng of the vehicle 10 can be obtained by the following equation f7.
Figure JPOXMLDOC01-appb-M000006
 上記の期待値η* eng(b(t))を用いることにより、以下の式f8で表されるような評価関数FE2を構成することができる。
Figure JPOXMLDOC01-appb-M000006
By using the above expected value η * eng (b (t)), an evaluation function FE 2 represented by the following formula f 8 can be constructed.
Figure JPOXMLDOC01-appb-M000007
 この評価関数FE2が最小となるように自車両10の状態量b(t)を決定すれば、追従性能を確保しつつ、エンジン60の短時間の駆動が抑制された自車両10の状態量b(t)を求めることができる。換言すれば、追従性能を確保しつつ、燃費を改善することの可能な自車両10の状態量b(t)を求めることができる。
Figure JPOXMLDOC01-appb-M000007
If the state quantity b (t) of the host vehicle 10 is determined such that the evaluation function FE2 becomes minimum, the host state quantity of the host vehicle 10 in which the short-time driving of the engine 60 is suppressed while securing the following performance. We can find b (t). In other words, it is possible to obtain the state quantity b (t) of the vehicle 10 capable of improving the fuel consumption while securing the following performance.
 以上の手法に基づいて、予測ECU33は、ステップS20の判定処理を実行する。具体的には、予測ECU33は、図10に示されるような加速度指令値αと実質エンジン効率η* engとの関係を示すマップを有している。なお、予測ECU33は、現在までのパワートレインの出力エネルギ、及び投入燃料エネルギのデータを蓄積しており、この蓄積されたデータに基づいて上記の式f6からEV走行時の実質エンジン効率ηsysを逐次演算している。そして、予測ECU33は、この演算された実質エンジン効率ηsysを、加速度指令値αが加速度閾値αth未満であるときの実質エンジン効率η* engとして用いる。 Based on the above method, the prediction ECU 33 executes the determination process of step S20. Specifically, the prediction ECU 33 has a map showing the relationship between the acceleration command value α and the substantial engine efficiency η * eng as shown in FIG. Note that the prediction ECU 33 stores data of powertrain output energy and input fuel energy up to the present, and based on the stored data, the substantial engine efficiency 時 のsys during EV traveling from the above equation f6 It is calculating sequentially. Then, the prediction ECU 33 uses the calculated substantial engine efficiency sys sys as the substantial engine efficiency ** eng when the acceleration command value α is less than the acceleration threshold value α th.
 予測ECU33は、評価関数FE2が最小となるように自車両10の状態量b(t)を決定する。状態量b(t)は車両10の加速度の関数であるため、以上の演算により、予測ECU33は、評価関数FE2の値が最小となるような加速度指令値αの第3設定値α3を得ることができる。 Prediction ECU33 is the evaluation function F E2 determines the state quantity of the vehicle 10 b (t) so as to minimize. Since the state quantity b (t) is a function of the acceleration of the vehicle 10, the operation of the above, the prediction ECU33 obtains a third set value α3 of the evaluation function F acceleration command value as the value becomes the minimum E2 alpha be able to.
 予測ECU33は、ステップS20の処理として、第1設定値α1と第3設定値α3とを比較することにより、エンジン60の短時間の駆動を抑制するために車両10の加速度を制限する必要があるか否かを判断する。具体的には、予測ECU33は、第1設定値α1が第3設定値α3以下である場合には、車両10の加速度を制限する必要がないと判断する。すなわち、予測ECU33は、ステップS20の処理で否定判断する。この場合、予測ECU33は、自車両10の燃費が悪化する周囲環境の変化が生じていないと判定する。そして、ACCECU32及び予測ECU33は、ステップS13以降の処理を実行する。 The prediction ECU 33 is required to limit the acceleration of the vehicle 10 in order to suppress short-time driving of the engine 60 by comparing the first set value α1 with the third set value α3 in the process of step S20. Determine if it is or not. Specifically, when the first set value α1 is equal to or less than the third set value α3, the prediction ECU 33 determines that it is not necessary to limit the acceleration of the vehicle 10. That is, the prediction ECU 33 makes a negative determination in the process of step S20. In this case, the prediction ECU 33 determines that there is no change in the surrounding environment in which the fuel efficiency of the vehicle 10 deteriorates. Then, the ACC ECU 32 and the prediction ECU 33 execute the processing after step S13.
 予測ECU33は、第3設定値α3が第1設定値α1未満である場合には、車両10の加速度を制限する必要があると判断する。すなわち、予測ECU33は、ステップS20の処理で肯定判断する。この場合、予測ECU33は、自車両10の燃費が悪化する周囲環境の変化が生じていると判定する。ACCECU32は、予測ECU33がステップS20の処理で肯定判断した場合には、ステップS21の処理として、加速度指令値αを第1設定値α1から第3設定値α3に変更する。その後、ACCECU32及び予測ECU33は、ステップS13以降の処理を実行する。 The prediction ECU 33 determines that it is necessary to limit the acceleration of the vehicle 10 when the third set value α3 is less than the first set value α1. That is, the prediction ECU 33 makes an affirmative determination in the process of step S20. In this case, the prediction ECU 33 determines that there is a change in the surrounding environment in which the fuel efficiency of the vehicle 10 deteriorates. The ACC ECU 32 changes the acceleration command value α from the first set value α1 to the third set value α3 as the process of step S21 when the prediction ECU 33 makes an affirmative determination in the process of step S20. After that, the ACC ECU 32 and the prediction ECU 33 execute the processing after step S13.
 なお、予測ECU33は、ステップS13の処理において、第1設定値α1、第2設定値α2、及び第3設定値α3を比較することにより、車両10の減速が必要であるか否かを判断する。具体的には、予測ECU33は、第3設定値α3が第1設定値α1未満であって、且つ第3設定値α3が第2設定値α2未満である場合には、ステップS13の処理で肯定判断する。一方、予測ECU33は、第1設定値α1が第3設定値α3以下である場合、あるいは第2設定値α2が第3設定値α3以下である場合には、ステップS13の処理で否定判断する。 The prediction ECU 33 determines whether the vehicle 10 needs to be decelerated by comparing the first set value α1, the second set value α2, and the third set value α3 in the process of step S13. . Specifically, when the third set value α3 is less than the first set value α1 and the third set value α3 is less than the second set value α2, the prediction ECU 33 is affirmative in the process of step S13. to decide. On the other hand, when the first set value α1 is equal to or less than the third set value α3 or the second set value α2 is equal to or less than the third set value α3, the prediction ECU 33 makes a negative decision in the process of step S13.
 次に、本実施形態の車両制御装置50の動作例について説明する。
 図11(A)に一点鎖線で示されるように、先行車両の速度Vpが急激に増加した後に急激に減少したとする。このような状況においてACC制御のみが実行されている場合、自車両10を先行車両に追従させるために、時刻t20でACCECU32がエンジン60を始動させる。ACCECU32が時刻t20でエンジン60を始動させると、図11(B)に二点鎖線で示されるように、車両10の駆動エネルギEcが、エンジン始動時のエネルギEsよりも大きくなる。また、図11(C)に二点鎖線で示されるように、エンジン60の回転速度Ncが時刻t20以降に増加する。
Next, an operation example of the vehicle control device 50 of the present embodiment will be described.
As shown by a dashed dotted line in FIG. 11A, it is assumed that the speed Vp of the preceding vehicle increases sharply and then decreases sharply. When only the ACC control is being performed in such a situation, the ACC ECU 32 starts the engine 60 at time t20 in order to cause the host vehicle 10 to follow the preceding vehicle. When the ACC ECU 32 starts the engine 60 at time t20, the drive energy Ec of the vehicle 10 becomes larger than the energy Es at the time of engine start, as shown by a two-dot chain line in FIG. Further, as indicated by a two-dot chain line in FIG. 11C, the rotational speed Nc of the engine 60 increases after time t20.
 その後に先行車両が急減速すると、自車両10と先行車両との車間時間や相対速度が急激に減少する。これにより、時刻t21で回生制御が実行されると、図11(B)に二点鎖線で示されるように、車両10の駆動エネルギEcが急激に減少する。このような回生制御の実行により、図11(C)に二点鎖線で示されるように、時刻t21以降に、エンジン60の回転速度Ncが急激に減少し、エンジン60が停止する。このように、エンジン60を始動させた後に短時間でエンジン60を停止させた場合、エンジン60の始動のために用いられるエネルギが損失となる。 Thereafter, when the preceding vehicle suddenly decelerates, the inter-vehicle time and the relative speed between the own vehicle 10 and the preceding vehicle rapidly decrease. As a result, when the regenerative control is executed at time t21, the drive energy Ec of the vehicle 10 is rapidly reduced as shown by the two-dot chain line in FIG. 11 (B). By execution of such regenerative control, as shown by a two-dot chain line in FIG. 11C, after time t21, the rotational speed Nc of the engine 60 rapidly decreases, and the engine 60 is stopped. Thus, if the engine 60 is stopped in a short time after the engine 60 is started, the energy used to start the engine 60 is lost.
 この点、本実施形態の予測ECU33は、上記の式f8の演算により、エンジン60の短時間の駆動を抑制することの可能な加速度指令値の第3設定値α3を演算するとともに、加速度指令値αを第3設定値α3に設定する。この加速度指令値αがACCECU32からHVECU39に送信されることにより、車両10の実際の加速度が、エンジン60を始動させる加速度閾値αthまで上昇し難くなるため、エンジン60が始動しなくなる。これにより、図11(A)に示されるように、車両10の速度Vcが減少するとともに、図11(B)に示されるように、車両10の駆動エネルギEcがエンジン始動時のエネルギEsまで上昇しなくなる。よって、エンジン始動時のエネルギEsが無駄に消費されることを抑制できるため、結果的に車両10の燃費を改善することができる。 In this respect, the prediction ECU 33 according to the present embodiment calculates the third set value α3 of the acceleration command value that can suppress the driving of the engine 60 for a short time by the calculation of the equation f8 described above, and α is set to a third set value α3. Since the acceleration command value α is transmitted from the ACC ECU 32 to the HVECU 39, the actual acceleration of the vehicle 10 does not easily rise to the acceleration threshold value αth for starting the engine 60, so the engine 60 does not start. As a result, as shown in FIG. 11A, the speed Vc of the vehicle 10 decreases, and as shown in FIG. 11B, the drive energy Ec of the vehicle 10 rises to the energy Es at the time of engine start. I will not do. Thus, it is possible to suppress wasteful consumption of the energy Es at the time of engine start, and as a result, the fuel consumption of the vehicle 10 can be improved.
 以上説明した本実施形態の車両制御装置50によれば、上記の(1)~(7)に示される作用及び効果に加え、以下の(8)~(10)に示される作用及び効果を得ることができる。
 (8)ACCECU32は、エンジンECU63によるエンジン60の再始動が行われ難くなるように自車両10の加速度を制限する。これにより、エンジン60の短時間の駆動が抑制されるため、エネルギ損失を少なくすることができる。よって、車両10の燃費を向上させることができる。
According to the vehicle control device 50 of the present embodiment described above, in addition to the actions and effects shown in the above (1) to (7), the actions and effects shown in the following (8) to (10) are obtained be able to.
(8) The ACC ECU 32 limits the acceleration of the host vehicle 10 so that the engine ECU 63 can not easily restart the engine 60. As a result, driving of the engine 60 for a short time is suppressed, and energy loss can be reduced. Therefore, the fuel consumption of the vehicle 10 can be improved.
 (9)予測ECU33は、自車両10の燃費に関する指標、及び先行車両に対する自車両10の追従性能に関する指標に基づいて、自車両10の加速度を制限するか否かを判断する。具体的には、予測ECU33は、自車両10の燃費に関する指標として、上記の式f7で示されるような、現在から所定時間経過後までの期間における自車両10のパワートレインの入力エネルギに対するパワートレインの出力エネルギの比率の予測値を用いる。また、先行車両に対する自車両10の追従性能に関する指標として、現在から所定時間経過後までの期間におけるACC制御の理想値に対する自車両の位置の逸脱量yiを用いる。これにより、狙いの燃費改善、及び追従性能の悪化の抑制の効果を得るための車両10の減速を確実に判断することができる。 (9) The prediction ECU 33 determines whether to limit the acceleration of the host vehicle 10 based on the index related to the fuel efficiency of the host vehicle 10 and the index related to the follow-up performance of the host vehicle 10 with respect to the preceding vehicle. Specifically, the prediction ECU 33 determines the powertrain for the input energy of the powertrain of the vehicle 10 in a period from the present to the time after the elapse of a predetermined time as shown by the above-mentioned equation f7 as an index related to the fuel efficiency of the vehicle 10. The predicted value of the ratio of the output energy of Further, as an index related to the follow-up performance of the host vehicle 10 with respect to the preceding vehicle, the departure amount yi of the position of the host vehicle with respect to the ideal value of the ACC control in the period from the present until the elapse of a predetermined time is used. Thus, it is possible to reliably determine the deceleration of the vehicle 10 to obtain the effects of the target fuel efficiency improvement and the suppression of the deterioration of the follow-up performance.
 (10)自車両10のパワートレインの入力エネルギに対するパワートレインの出力エネルギの比率の予測値には、式f5で示される予測値と、式f6で示される予測値とが含まれている。式f5で示される予測値は、エンジン60が駆動している状態におけるエンジン60の入力エネルギに対するエンジン60の出力エネルギの比率の予測値である。式f6で示される予測値は、エンジン60が停止している状態における自車両10のパワートレインの入力エネルギに対するパワートレインの出力エネルギの比率の予測値である。これにより、エンジン60が停止している状態における車両10の走行も含めて、燃料効率の良い走行方法を判断して車両10を走行させることができる。 (10) The predicted value of the ratio of the output energy of the powertrain to the input energy of the powertrain of the vehicle 10 includes the predicted value represented by the equation f5 and the predicted value represented by the equation f6. The predicted value represented by the equation f5 is a predicted value of the ratio of the output energy of the engine 60 to the input energy of the engine 60 in a state where the engine 60 is driven. The predicted value represented by the equation f6 is a predicted value of the ratio of the output energy of the powertrain to the input energy of the powertrain of the vehicle 10 in the state where the engine 60 is stopped. As a result, it is possible to make the vehicle 10 travel by determining the method of traveling with high fuel efficiency, including the traveling of the vehicle 10 in the state where the engine 60 is stopped.
 <第3実施形態>
 次に、車両制御装置50の第3実施形態について説明する。以下、第1実施形態の車両制御装置50との相違点を中心に説明する。
 本実施形態では、上記の式f2,f3に用いられる周辺車両の挙動の発生確率piの演算方法の一例について説明する。なお、以下では、簡単のために、周辺車両の挙動の発生確率piとして、周辺車両が減速する確率である減速挙動発生確率を用いる場合について説明する。
Third Embodiment
Next, a third embodiment of the vehicle control device 50 will be described. Hereinafter, differences from the vehicle control device 50 of the first embodiment will be mainly described.
In the present embodiment, an example of a method of calculating the occurrence probabilities p i of the behavior of the peripheral vehicle used for expression f2, f3 above. In the following, for simplicity, as a probability p i of the behavior of the peripheral vehicle, near the vehicle it will be described using a deceleration behavior occurrence probability is the probability of decelerating.
 まず、周辺車両が所定の場所で減速する状況と、所定の場所を通過する状況との2つのパターンが想定される地点における車両の減速挙動を予測する場合を考える。このとき、例えば周辺車両の車速情報として図13(A)に示されるような情報が周辺監視装置34により取得されたような場合、現在の時刻t30で周辺車両が減速挙動を取るか否かを予測するとなると、その予測は、現在の時刻t30よりも前の過去の周辺車両の車速情報に基づいて行われることになる。図13(A)に示されるように、時刻t30以前では周辺車両の速度が一定速度である。そのため、時刻t30以前では、図13(B)に示されるように、周辺車両が減速挙動を取る確率である減速挙動発生確率は、例えば「0.5」、すなわち「50%」と演算することができる。したがって、時刻t30以前では、周辺車両が減速する確率は「0.5」であり、周辺車両が通過する確率は「0.5」ということになる。また、時刻t30以降、時間の経過に伴って周辺車両の速度が徐々に低下した場合、周辺車両が減速挙動を取り始めたと考えられるため、減速挙動発生確率の値は「0.5」から徐々に上昇することになる。 First, consider a case where the deceleration behavior of the vehicle is predicted at a point where two patterns of a situation in which the surrounding vehicle decelerates in a predetermined place and a situation in which the surrounding vehicle passes through the predetermined place are assumed. At this time, for example, when information as shown in FIG. 13A is acquired by the surroundings monitoring device 34 as the vehicle speed information of the surroundings, whether or not the surroundings take deceleration behavior at the current time t30 When it comes to prediction, the prediction is performed based on the vehicle speed information of the surrounding vehicles in the past before the current time t30. As shown in FIG. 13A, the speed of the surrounding vehicle is constant before time t30. Therefore, before time t30, as shown in FIG. 13B, the deceleration behavior occurrence probability, which is the probability that the surrounding vehicle takes the deceleration behavior, is calculated as, for example, "0.5", that is, "50%". Can. Therefore, before time t30, the probability that the peripheral vehicle decelerates is "0.5", and the probability that the peripheral vehicle passes is "0.5". Also, after time t30, if the speed of the surrounding vehicle gradually decreases with the passage of time, it is considered that the surrounding vehicle has started to take deceleration behavior, so the value of the deceleration behavior occurrence probability is gradually from "0.5" Will rise to
 このように、過去の周辺車両の車速情報等の走行データを利用して周辺車両の減速挙動を予測する場合、過去の走行データを学習して周辺車両の減速挙動を予測するようにすれば、より精度良く減速挙動発生確率を演算することが可能である。
 一方、例えば複数の車両が統計的に減速挙動を取り易い場所を周辺車両が通過するような状況や、周辺車両の前方の信号機が青信号から黄信号に切り替わったような状況では、周辺車両の減速が実際に検出されるよりも前に、周辺車両が減速挙動を取ると予測することが可能である。このような状況を仮に時刻t30よりも前に検出した場合、その時点で減速挙動発生確率を「0.5」よりも大きい値に補正すれば、周辺車両の過去の走行データの情報だけでなく、周辺車両の将来の予測挙動の情報をも反映させた減速挙動発生確率を演算することができる。このようにして演算される減速挙動発生確率に基づいて自車両10の走行制御を実行すれば、予測される周辺車両の挙動に応じた、より適切な自車両10の走行制御の実現が可能となる。
As described above, in the case of predicting the deceleration behavior of the surrounding vehicle using the traveling data such as the vehicle speed information of the surrounding vehicle in the past, learning the past traveling data to predict the deceleration behavior of the surrounding vehicle It is possible to calculate the deceleration behavior occurrence probability more accurately.
On the other hand, for example, in a situation where the surrounding vehicles pass through a place where a plurality of vehicles tend to be slowing down statistically or the traffic light in front of the surrounding vehicles is switched from green to yellow, It is possible to predict that the surrounding vehicles will take a decelerating behavior before is actually detected. If such a situation is tentatively detected before time t30, if the deceleration behavior occurrence probability is corrected to a value larger than "0.5" at that time, not only the information on the past travel data of the surrounding vehicles but also the surrounding vehicles And, it is possible to calculate the deceleration behavior occurrence probability that also reflects the information of the future prediction behavior of the surrounding vehicles. If travel control of the host vehicle 10 is executed based on the deceleration behavior occurrence probability calculated in this manner, more appropriate travel control of the host vehicle 10 according to the predicted behavior of the surrounding vehicle can be realized. Become.
 そこで、本実施形態では、サーバ装置41が、所定の車両から送信される過去の走行データに基づいて車両挙動の学習モデルを構築している。なお、所定の車両には、自車両10に限らず、自車両10とは異なる車両が含まれていてもよい。また、所定の車両は、単数に限らず、複数であってもよい。車両挙動の学習モデルは、車両の走行データを観測値として、その観測値に対して車両の所定の挙動が発生する尤もらしさを表す数値からなる尤度を算出することの可能な尤度関数からなるものである。尤度は、車両の走行データと学習情報との類似性を表す指標に相当する。サーバ装置41は、構築した車両挙動の学習モデルに基づいて、車両の減速挙動発生確率を求めることの可能な演算式を作成する。この演算式は、例えば以下のように作成される。 Therefore, in the present embodiment, the server device 41 constructs a learning model of the vehicle behavior based on past travel data transmitted from a predetermined vehicle. In addition, not only the own vehicle 10 but a vehicle different from the own vehicle 10 may be included in the predetermined vehicle. Further, the number of predetermined vehicles is not limited to one but may be plural. The learning model of the vehicle behavior uses the traveling data of the vehicle as an observation value, and a likelihood function capable of calculating the likelihood consisting of a numerical value representing the likelihood of occurrence of a predetermined behavior of the vehicle with respect to the observation value. It will be The likelihood corresponds to an index that represents the similarity between the travel data of the vehicle and the learning information. The server device 41 creates an arithmetic expression capable of determining the deceleration behavior occurrence probability of the vehicle based on the constructed learning model of the vehicle behavior. This arithmetic expression is created, for example, as follows.
 所定の場所において車両が減速する状況と、車両が通過する状況との2パターンが想定される場合、サーバ装置41は、所定の車両から送信される走行データに基づいて減速挙動モデルと通過挙動モデルとを構築する。減速挙動モデル及び通過挙動モデルは、車両挙動の学習モデルである。走行データには、車速の時系列に関する情報等が含まれている。 In a case where two patterns of a situation in which the vehicle decelerates in a predetermined place and a situation in which the vehicle passes are assumed, the server device 41 decelerates the behavior model and the passage behavior model based on the traveling data transmitted from the predetermined vehicle And build. The deceleration behavior model and the passage behavior model are learning models of the vehicle behavior. The traveling data includes information on the time series of the vehicle speed.
 また、サーバ装置41は、所定の車両の走行データに基づいて減速挙動モデルの尤度及び通過挙動モデルの尤度を演算するとともに、それらの差分値である尤度差を求める。サーバ装置41は、この演算を過去の全走行データに対して行うことにより、各尤度差の時に、減速挙動が発生した頻度と、通過挙動が発生した頻度とを演算する。これにより、例えば図14に一点鎖線で示されるような尤度差と減速発生頻度との関係と、図14に二点鎖線で示されるような尤度差と通過発生頻度との関係を得ることができる。サーバ装置41は、この図14に示される情報に基づいて、以下の式f9に示されるような減速挙動発生確率の学習値plrnの演算式を作成する。 Further, the server device 41 calculates the likelihood of the deceleration behavior model and the likelihood of the passage behavior model based on traveling data of a predetermined vehicle, and obtains a likelihood difference which is a difference value between them. The server device 41 performs this calculation on all past traveling data to calculate the frequency at which the deceleration behavior occurs and the frequency at which the passage behavior occurs at each likelihood difference. Thus, for example, the relationship between the likelihood difference and the frequency of occurrence of deceleration as shown by the alternate long and short dash line in FIG. 14 and the relationship between the likelihood difference and the frequency of occurrence of passage as shown by the alternate long and two short dashes line in FIG. Can. Based on the information shown in FIG. 14, the server device 41 creates an arithmetic expression of a learning value p lrn of the deceleration behavior occurrence probability as shown in the following expression f9.
Figure JPOXMLDOC01-appb-M000008
 なお、式f9において、「t」は時刻を示す。「t=0」は各挙動モデルの開始時刻を示し、「t=Tstop」は各挙動モデルにおける終端時刻を示す。また、「μdec」は減速挙動モデルの平均値を示し、「σdec 2」は減速挙動モデルの分散を示し、「μpass」は通過挙動モデルの平均値を示し、「σpass 2」は通過挙動モデルの分散を示す。さらに、「Ndec」は図14に示される減速挙動モデルの頻度を正規分布化した関数であり、「Npass」は図14に示される通過挙動モデルの頻度を正規分布化した関数である。関数Ndec,Npassのそれぞれの変数は、図14に示される横軸の値、すなわち各挙動モデルの尤度差である。よって、式f9は、各モデルの尤度差から減速挙動発生確率の学習値plrnを求めることの可能な演算式となっている。
Figure JPOXMLDOC01-appb-M000008
In equation f9, "t" indicates time. “T = 0” indicates the start time of each behavior model, and “t = T stop ” indicates the end time in each behavior model. Also, “μ dec ” indicates the average value of the deceleration behavior model, “σ dec 2 ” indicates the dispersion of the deceleration behavior model, “μ pass ” indicates the average value of the passage behavior model, and “σ pass 2 ” indicates the average value The variance of the passage behavior model is shown. Further, “N dec ” is a function obtained by normalizing the frequency of the decelerating behavior model shown in FIG. 14, and “N pass ” is a function obtained by normalizing the frequency of the passing behavior model shown in FIG. 14. Each variable of the functions N dec and N pass is the value of the horizontal axis shown in FIG. 14, that is, the likelihood difference of each behavior model. Therefore, the equation f9 is an operational equation capable of obtaining the learning value p lrn of the deceleration behavior occurrence probability from the likelihood difference of each model.
 車両制御装置50は、減速挙動モデル、通過挙動モデル、及び上記の式9をサーバ装置41から取得する。車両制御装置50は、現在から所定時間前までの期間に周辺監視装置34により検出された周辺車両の過去の走行データから減速挙動モデルの尤度、及び通過挙動モデルの尤度を算出する。車両制御装置50は、算出された各モデルの尤度差を演算するとともに、演算された各モデルの尤度差を上記の式f9に代入することにより、減速挙動発生確率の学習値plrnを算出する。 The vehicle control device 50 acquires the deceleration behavior model, the passage behavior model, and the above equation 9 from the server device 41. The vehicle control device 50 calculates the likelihood of the deceleration behavior model and the likelihood of the passage behavior model from the past traveling data of the surrounding vehicle detected by the surroundings monitoring device 34 in a period from the present to a predetermined time ago. The vehicle control device 50 calculates the likelihood difference of each calculated model, and substitutes the calculated likelihood difference of each model into the above-mentioned equation f9 to obtain the learning value p lrn of the deceleration behavior occurrence probability. calculate.
 一方、本実施形態の車両制御装置50は、周辺車両の将来の減速挙動を統計的に、あるいは周辺監視装置34により検出される情報に基づいて予測するとともに、その予測される周辺車両の減速挙動の発生確率を演算する。車両制御装置50は、その演算値を減速挙動発生確率の予測値pftrとして用いる。 On the other hand, the vehicle control device 50 of the present embodiment predicts the future deceleration behavior of the surrounding vehicles statistically or based on the information detected by the surroundings monitoring device 34, and the predicted deceleration behavior of the surrounding vehicles Calculate the occurrence probability of The vehicle control device 50 uses the calculated value as the predicted value p ftr of the deceleration behavior occurrence probability.
 そして、車両制御装置50は、減速挙動発生確率の学習値plrnを減速挙動発生確率の予測値pftrにより補正することにより、最終的な減速挙動発生確率piを求める。具体的には、車両制御装置50は、以下の式f10に基づいて減速挙動発生確率piを演算する。 Then, the vehicle control device 50, by correcting the learning value p LRN deceleration behavior probability by the prediction value p ftr deceleration behavior probability, determine the final deceleration behavior probability p i. Specifically, the vehicle control device 50 calculates the deceleration behavior probability p i based on the following equation f10.
Figure JPOXMLDOC01-appb-M000009
 但し、「z=(plrn+plrn2)/2」である。「Plrn2」は、本実施形態では、周辺車両が所定の場所を通過する確率を示す。例えば、周辺車両が所定の場所で減速する場合と、所定の場所を通過する場合との2つのパターンが想定される状況では、「Plrn」及び「Plrn2」の合計値は「1」となる。
Figure JPOXMLDOC01-appb-M000009
However, it is "z = ( plrn + plrn2 ) / 2". In the present embodiment, “P lrn2 ” indicates the probability that a surrounding vehicle passes a predetermined place. For example, in a situation where two patterns of the case where the surrounding vehicle decelerates at a predetermined place and the case where the vehicle passes a predetermined place are assumed, the total value of "P lrn " and "P lrn2 " is "1". Become.
 上記の式f10を用いた場合、減速挙動発生確率の学習値plrnが「0.5」に近い場合には、挙動発生確率piにおいて減速挙動発生確率の予測値pftrが支配的となる。また、減速挙動発生確率の学習値plrnが「0」あるいは「1」に近い場合には、挙動発生確率piにおいて減速挙動発生確率の学習値plrnが支配的となる。 When the above equation f10 is used, when the learning value p lrn of the deceleration behavior occurrence probability is close to “0.5”, the predicted value p ftr of the deceleration behavior occurrence probability becomes dominant in the behavior occurrence probability p i . When the learning value p lrn of the deceleration behavior occurrence probability is close to “0” or “1”, the learning value p lrn of the deceleration behavior occurrence probability is dominant in the behavior occurrence probability p i .
 次に、減速挙動発生確率piの具体的な演算方法について説明する。なお、以下では、便宜上、減速挙動発生確率piの演算対象である周辺車両を「特定周辺車両」と称し、特定周辺車両を除く周辺車両を「他の周辺車両」と称する。また、周辺車両には、自車両10の前方を走行する先行車両の他、先行車両の除く自車両10の周辺の車両が含まれる。 Next, a specific method of calculating the deceleration behavior probability p i. In the following, for convenience, referred to around the vehicle on which an arithmetic operation of the deceleration behavior probability p i as "specific peripheral vehicle", the peripheral vehicle other than the specific peripheral vehicle is referred to as "other around the vehicle." In addition to the preceding vehicles traveling in front of the own vehicle 10, the surrounding vehicles include vehicles around the own vehicle 10 excluding the preceding vehicles.
 図15に示されるように、本実施形態の予測ECU33は、ステップS12に続くステップS30の処理として、減速挙動発生確率演算処理を実行する。減速挙動発生確率演算処理の具体的な手順は図16に示される通りである。
 図16に示されるように、予測ECU33は、まず、ステップS31の処理として、特定周辺車両が存在するか否かを判断する。
As shown in FIG. 15, the prediction ECU 33 of the present embodiment executes a deceleration behavior occurrence probability calculation process as the process of step S <b> 30 following step S <b> 12. A specific procedure of the deceleration behavior occurrence probability calculation process is as shown in FIG.
As shown in FIG. 16, the prediction ECU 33 first determines whether or not a specific surrounding vehicle is present as the process of step S31.
 具体的には、周辺監視装置34は、自車両10の周辺に物体が検出された場合、その検出物体が周辺車両であるか否かを認識する。その際、周辺監視装置34による特定周辺車両の認識精度は状況に応じて変化する。例えば、周辺監視装置34では、自車両10から検出物体までの距離が遠いほど、物体の認識精度が低下する。そのため、周辺監視装置34は、自車両10から遠い場所に存在する物体が特定周辺車両であるか否かを精度良く検出することは困難である。そこで、本実施形態の周辺監視装置34は、特定周辺車両を検出した場合、その認識精度も合わせて演算する。例えば、周辺監視装置34は、特定周辺車両に相当する物体を検出した際に、自車両10からその物体までの相対距離に基づいて認識精度をマップや演算式等により演算する。マップや演算式等では、自車両10からその物体までの距離が長くなるほど、認識精度の値が小さくなるように設定されている。周辺監視装置34は、演算された認識精度を予測ECU33に送信する。予測ECU33は、周辺監視装置34により特定周辺車両が検出され、且つその検出された特定周辺車両の認識精度が所定の閾値以上であることに基づいて、特定周辺車両が存在すると判断する。 Specifically, when an object is detected around the host vehicle 10, the periphery monitoring device 34 recognizes whether the detected object is a surrounding vehicle. At that time, the recognition accuracy of the specific surrounding vehicle by the periphery monitoring device 34 changes according to the situation. For example, in the surrounding area monitoring device 34, as the distance from the host vehicle 10 to the detected object increases, the object recognition accuracy decreases. Therefore, it is difficult for the periphery monitoring device 34 to accurately detect whether an object present at a location far from the host vehicle 10 is a specific surrounding vehicle. Therefore, when the specific surrounding vehicle is detected, the periphery monitoring device 34 of the present embodiment also calculates the recognition accuracy. For example, upon detecting an object corresponding to a specific surrounding vehicle, the surrounding area monitoring device 34 calculates the recognition accuracy based on the relative distance from the host vehicle 10 to the object using a map, an arithmetic expression, or the like. In the map, the arithmetic expression, etc., the value of the recognition accuracy is set to be smaller as the distance from the host vehicle 10 to the object is longer. The periphery monitoring device 34 transmits the calculated recognition accuracy to the prediction ECU 33. The prediction ECU 33 determines that the specific surrounding vehicle is present based on the detection of the specific surrounding vehicle by the periphery monitoring device 34 and the recognition accuracy of the detected specific surrounding vehicle being equal to or higher than a predetermined threshold.
 予測ECU33は、特定周辺車両が存在すると判断した場合、ステップS31の処理で肯定判断し、続くステップS32の処理として、特定周辺車両の走行データの学習情報が存在するか否かを判断する。
 具体的には、上記の式f9を用いて減速挙動発生確率の学習値plrnを算出するためには、自車両10の走行地点における減速挙動モデル及び通過挙動モデルがサーバ装置41により構築されている必要がある。また、上記の式f9を用いる際には、各モデルの尤度が必要になるため、特定周辺車両の走行データが、各モデルの尤度を演算することが可能な程度に蓄積されている必要がある。そのため、予測ECU33は、自車両10の走行地点における減速挙動モデル及び通過挙動モデルをサーバ装置41から取得できており、且つ各モデルの尤度を演算可能な程度に特定周辺車両の走行データが蓄積されていることをもって、ステップS32の処理で肯定判断する。
When it is determined that the specific surrounding vehicle exists, the prediction ECU 33 makes an affirmative determination in the process of step S31, and determines whether or not learning information of traveling data of the specific surrounding vehicle exists as the process of step S32.
Specifically, in order to calculate the learning value p lrn of the deceleration behavior occurrence probability using the above equation f 9 , the deceleration behavior model and the passage behavior model at the traveling point of the own vehicle 10 are constructed by the server device 41 Need to be. In addition, when using the above equation f9, since the likelihood of each model is required, the traveling data of a specific surrounding vehicle needs to be accumulated to such an extent that the likelihood of each model can be calculated. There is. Therefore, the prediction ECU 33 can acquire the deceleration behavior model and the passage behavior model at the traveling point of the own vehicle 10 from the server device 41, and accumulate the traveling data of the specific surrounding vehicles to such an extent that the likelihood of each model can be calculated. If it has been done, an affirmative decision is made in the process of step S32.
 なお、周辺車両の過去の走行データの蓄積に関しては、通信部36からサーバ装置41に車速情報等の走行データを送信することにより、サーバ装置41上に周辺車両の過去の走行データを蓄積してもよい。あるいは、自車両10において周辺車両の走行履歴を収集することにより、周辺車両の過去の走行データを蓄積してもよい。 In addition, regarding accumulation of past travel data of the surrounding vehicle, travel data such as vehicle speed information is transmitted from the communication unit 36 to the server device 41 to accumulate past travel data of the surrounding vehicle on the server device 41 It is also good. Alternatively, past travel data of the surrounding vehicle may be accumulated by collecting the traveling history of the surrounding vehicle in the own vehicle 10.
 予測ECU33は、ステップS32の処理で肯定判断した場合、ステップS33の処理として、特定周辺車両の過去の走行データに基づいて減速挙動発生確率の学習値plrnを演算する。具体的には、予測ECU33は、特定周辺車両の過去の走行データに基づいて減速挙動モデル及び通過挙動モデルのそれぞれの尤度を演算するとともに、演算された各モデルの尤度差から上記式f9に基づいて減速挙動発生確率の学習値plrnを演算する。 When the prediction ECU 33 makes an affirmative determination in the process of step S32, it calculates the learning value p lrn of the deceleration behavior occurrence probability based on the past traveling data of the specific surrounding vehicle as the process of step S33. Specifically, the prediction ECU 33 calculates the likelihood of each of the deceleration behavior model and the passage behavior model based on the past traveling data of the specific surrounding vehicle, and the above-mentioned equation f9 from the likelihood difference of each model calculated The learning value p lrn of the deceleration behavior occurrence probability is calculated based on
 一方、予測ECU33は、自車両10の走行地点における減速挙動モデル及び通過挙動モデルをサーバ装置41から取得できていない場合、あるいは各モデルの尤度を演算可能な程度に特定周辺車両の走行データが蓄積されていない場合には、図14に示されるステップS32の処理で否定判断する。この場合、予測ECU33は、ステップS34の処理として、周辺監視装置34により検出される道路の静的な情報に基づいて減速挙動発生確率の学習値plrnを演算する。この道路の静的な情報には、交通信号の有無、道路の走行規則、制限速度、勾配、カーブ路、交差点の有無等が含まれている。例えば周辺監視装置34としてカメラが用いられている場合、カメラにより撮像される車両周辺の画像データに基づいて道路標識や道路状態等を検出することが可能である。予測ECU33は、周辺監視装置34により検出される道路標識や道路状態等に基づいて道路の静的な情報を取得する。また、予測ECU33は、道路の静的な情報の各項目に対する減速挙動発生確率を定めたマップを予め有している。予測ECU33は、取得した道路の静的な情報の各項目に対する減速挙動発生確率をマップから演算するとともに、演算された各項目に対する減速挙動発生確率から演算式等を用いて減速挙動発生確率の学習値plrnを演算する。 On the other hand, if the prediction ECU 33 can not acquire the deceleration behavior model and the passage behavior model at the traveling point of the host vehicle 10 from the server device 41, or if the traveling data of the specific surrounding vehicle is sufficient to calculate the likelihood of each model. If not stored, the process of step S32 shown in FIG. 14 makes a negative determination. In this case, the prediction ECU 33 calculates the learning value p lrn of the deceleration behavior occurrence probability based on the static information of the road detected by the surrounding area monitoring device 34 as the process of step S34. The static information of the road includes the presence or absence of a traffic signal, the travel rule of the road, the speed limit, the slope, the curved road, the presence or absence of an intersection, and the like. For example, when a camera is used as the periphery monitoring device 34, it is possible to detect a road sign, a road state, and the like based on image data of the vehicle periphery captured by the camera. The prediction ECU 33 acquires static information of the road based on the road sign detected by the surrounding area monitoring device 34, the road condition, and the like. The prediction ECU 33 also has in advance a map in which the deceleration behavior occurrence probability is defined for each item of static information of the road. The prediction ECU 33 calculates the deceleration behavior occurrence probability for each item of the acquired static information of the road from the map, and learns the deceleration behavior occurrence probability using an arithmetic expression or the like from the deceleration behavior occurrence probability for each computed item. Calculate the value p lrn .
 予測ECU33は、ステップS33又はステップS34の処理を実行した後、ステップS35の処理として、特定周辺車両が将来的に減速挙動を取る要因として交通信号の存在があるか否かを判定する。例えば、予測ECU33は、周辺監視装置34により検出される過去の走行履歴に基づいて、特定周辺車両が将来的に減速挙動を取る要因として交通信号の存在があるか否かを判断してもよい。あるいは、予測ECU33は、周辺監視装置34により検出される道路状況に基づいて、特定周辺車両から所定範囲内に設置された信号機が存在すると判断した場合、特定周辺車両が将来的に減速挙動を取る要因として交通信号の存在があると判定してもよい。 After executing the process of step S33 or step S34, the prediction ECU 33 determines whether or not there is a traffic signal as a factor for the specific surrounding vehicle to take deceleration behavior in the future as the process of step S35. For example, the prediction ECU 33 may determine, based on the past travel history detected by the surroundings monitoring device 34, whether or not there is a traffic signal as a factor for the specific surrounding vehicle to take deceleration behavior in the future. . Alternatively, when the prediction ECU 33 determines that there is a traffic light installed within a predetermined range from the specific surrounding vehicle based on the road condition detected by the surrounding area monitoring device 34, the specific surrounding vehicle will take deceleration behavior in the future It may be determined that there is a traffic signal as a factor.
 予測ECU33は、特定周辺車両が将来的に減速挙動を取る要因として交通信号の存在があると判定した場合、ステップS35の処理で肯定判定し、続くステップS36の処理として、特定周辺車両の現在の走行位置が信号機付近であって、且つその信号機の信号情報を周辺監視装置34により認識できているか否かを判断する。予測ECU33は、周辺監視装置34により検出される道路状況に基づいて、特定周辺車両から信号機までの距離が所定の閾値未満である場合、特定周辺車両の現在の走行位置が信号機付近であると判断する。信号情報は、信号機が青色、黄色、及び赤色のいずれの色で点灯しているかを示す情報である。予測ECU33は、周辺監視装置34により信号機の信号情報を取得する。 If the prediction ECU 33 determines that there is a traffic signal as a factor that causes the specific surrounding vehicle to decelerate in the future, it makes an affirmative determination in the process of step S35, and continues the current of the specific surrounding vehicle as the process of subsequent step S36. It is determined whether the traveling position is in the vicinity of a traffic light and the signal information of the traffic light can be recognized by the surroundings monitoring device 34. The prediction ECU 33 determines that the current traveling position of the specific surrounding vehicle is near the traffic light when the distance from the specific surrounding vehicle to the traffic light is less than a predetermined threshold based on the road condition detected by the surrounding area monitoring device 34 Do. The signal information is information indicating whether the traffic light is lit in blue, yellow or red. The prediction ECU 33 acquires the signal information of the traffic signal by the periphery monitoring device 34.
 予測ECU33は、特定周辺車両の現在の走行位置が信号機付近であって、且つその信号機の信号情報を周辺監視装置34により認識できている場合、ステップS36の処理で肯定判断する。この場合、予測ECU33は、続くステップS37の処理として、信号機の切替タイミングに応じた減速挙動発生確率の予測値pftrを演算する。 If the current traveling position of the specific surrounding vehicle is in the vicinity of the traffic light and the signal information of the traffic light can be recognized by the vicinity monitoring device 34, the prediction ECU 33 makes an affirmative determination in the process of step S36. In this case, the prediction ECU 33 calculates the predicted value p ftr of the deceleration behavior occurrence probability according to the switching timing of the traffic signal as the process of the subsequent step S37.
 具体的には、自車両10が走行している際、予測ECU33は、周辺監視装置34により検出される信号機の信号情報に基づいて、信号機の信号の切替タイミングの情報を蓄積している。本実施形態の予測ECU33は、信号機の信号の切替タイミングの情報として、青信号継続時間情報を蓄積している。青信号継続時間情報とは、信号機の信号が赤信号から青信号に切り替わった時間から黄信号に切り替わるまでに要する時間を意味する。 Specifically, when the host vehicle 10 is traveling, the prediction ECU 33 stores information on the switching timing of the signal of the traffic light based on the signal information of the traffic light detected by the surroundings monitoring device 34. The prediction ECU 33 according to the present embodiment stores green signal duration information as information on the switching timing of the signal of the traffic light. The green signal duration information means the time required for the signal of the traffic light to switch from red to green to switch to yellow.
 予測ECU33は、例えば図17に示されるように、周辺監視装置34により信号機が認識された時刻t40の時点で信号機の信号が赤信号であった場合には、その後に信号機の信号が青信号に切り替わる時刻t41から、さらに信号機の信号が黄信号に切り替わる時刻t42までの時間を青信号継続時間情報として記憶装置に記憶させる。 For example, as shown in FIG. 17, the prediction ECU 33 switches the signal of the traffic light to a green light when the signal of the traffic light is a red light at time t40 when the traffic light is recognized by the periphery monitoring device 34 The time from time t41 to time t42 at which the signal of the traffic light switches to yellow light is stored in the storage device as green light duration time information.
 一方、予測ECU33は、例えば図18に示されるように、周辺監視装置34により信号機が認識された時刻t50の時点で信号機の信号が赤信号であった場合には、その後に信号機の信号が黄信号に切り替わる時刻t51までの時間を青信号継続時間情報として記憶装置に記憶させる。 On the other hand, when the signal of the traffic light is a red signal at time t50 when the traffic light is recognized by the surrounding area monitoring device 34, for example, as shown in FIG. The time until the time t51 at which the signal is switched to is stored in the storage device as green light duration time information.
 なお、信号機の切替周期が交通流に応じて変化する信号機の場合には、VICS(Vehicle Information and Communication System、登録商標)等により取得される交通流の情報に応じて青信号継続時間情報を学習してもよい。
 予測ECU33は、記憶装置に蓄積されている青信号継続時間情報に基づいて、図19に示されるようなマップを作成する。図19に示されるマップは、青信号継続時間γを横軸とし、青信号から黄信号に切り替わる確率psigを縦軸として、それらの関係を示したものである。このマップは、予測ECU33の記憶装置に記憶されている。
In addition, in the case of a traffic signal in which the switching cycle of the traffic signal changes according to the traffic flow, the green signal duration information is learned according to the traffic flow information acquired by VICS (Vehicle Information and Communication System, registered trademark) or the like. May be
The prediction ECU 33 creates a map as shown in FIG. 19 based on the green signal duration information stored in the storage device. The map shown in FIG. 19 shows the relationship between the green signal duration γ as the horizontal axis and the probability p sig as the switching from the green signal to the yellow signal as the vertical axis. This map is stored in the storage device of the prediction ECU 33.
 なお、複数の車両によりそれぞれ取得された青信号継続時間情報を各車両からサーバ装置41に送信するとともに、この各車両から送信される青信号継続時間情報をサーバ装置41が学習することにより、サーバ装置41が、図19に示されるようなマップを作成してもよい。この場合、予測ECU33は、このマップをサーバ装置41から通信部36を介して取得することにより、図19に示されるマップを利用することが可能である。 In addition, while transmitting the green light continuation time information each acquired by the several vehicle to the server apparatus 41 from each vehicle, the server apparatus 41 learns the green light continuation time information transmitted from each vehicle, and the server apparatus 41 is obtained. However, the map as shown in FIG. 19 may be created. In this case, the prediction ECU 33 can use the map shown in FIG. 19 by acquiring this map from the server device 41 via the communication unit 36.
 予測ECU33は、図16に示されるステップS35の処理やステップS36の処理において周辺監視装置34により信号機が認識された時点で信号機の信号が赤信号であった場合、その後に赤信号から青信号に切り替わった時点からの青信号の継続時間を計測している。また、予測ECU33は、ステップS35の処理やステップS36の処理において周辺監視装置34により信号機が認識された時点で信号機の信号が青信号であった場合、その時点からの青信号の継続時間を計測している。このようにして計測される青信号継続時間γに対して、δ秒後に青信号から黄信号に切り替わる確率psigは、図19に示されるようなマップにおいて、横軸の値が「γ+δ」であるときの確率psigの値として求めることができる。 If the traffic signal is a red signal when the traffic signal is recognized by the periphery monitoring device 34 in the process of step S35 or the process of step S36 shown in FIG. 16, the prediction ECU 33 switches the red signal to a green signal thereafter. The duration of the green light from the time of Further, when the signal of the traffic light is a green light when the traffic light is recognized by the periphery monitoring device 34 in the processing of step S35 and the processing of step S36, the prediction ECU 33 measures the duration of the green light from that time. There is. The probability p sig switched from the green light to the yellow light after δ seconds with respect to the green signal duration γ measured in this way is that when the value of the horizontal axis is “γ + δ” in the map as shown in FIG. It can be obtained as the value of the probability p sig of
 一方、特定周辺車両の現在の走行位置付近の信号機の信号が青信号から黄信号に切り替わった場合、特定周辺車両が減速挙動を取ることが想定される。すなわち、青信号から黄信号に切り替わる確率psigと、特定周辺車両が減速挙動を取る確率との間には相関関係がある。そこで、本実施形態の予測ECU33は、図19に示されるマップに基づいて演算される確率psigを減速挙動発生確率の予測値pftrとして用いる。 On the other hand, when the signal of the traffic light in the vicinity of the current traveling position of the specific surrounding vehicle is switched from the green light to the yellow light, it is assumed that the specific surrounding vehicle takes a decelerating behavior. That is, there is a correlation between the probability p sig switching from the green light to the yellow light and the probability that the particular surrounding vehicle takes the decelerating behavior. Therefore, the prediction ECU 33 of the present embodiment uses the probability p sig calculated based on the map shown in FIG. 19 as the predicted value p ftr of the deceleration behavior occurrence probability.
 図16に示されるように、予測ECU33は、ステップS36の処理で否定判断した場合には、すなわち特定周辺車両の現在の走行位置が信号機付近でない場合、あるいは信号機の信号情報を周辺監視装置34により認識できていない場合には、続くステップS38の処理として、統計的な情報に基づいて減速挙動発生確率の予測値pftrを演算する。 As shown in FIG. 16, when the prediction ECU 33 makes a negative determination in the process of step S 36, that is, when the current traveling position of the specific surrounding vehicle is not in the vicinity of a traffic light, or If not recognized, in the subsequent step S38, the predicted value p ftr of the deceleration behavior occurrence probability is calculated based on the statistical information.
 具体的には、サーバ装置41は、複数の車両との通信により、各車両が信号機で減速及び通過のいずれの挙動を採用したかの情報を取得するとともに、その統計情報に基づいて車両の減速挙動発生確率を算出している。例えば、サーバ装置41は、統計対象の車両が100台である場合、そのうちの50台の車両が信号機で減速し、且つその他の50台の車両が信号機を減速せずに通過した場合、その信号機における減速挙動発生確率を「0.5」と算出する。予測ECU33は、この信号機における減速挙動発生確率の統計情報Pstaをサーバ装置41から取得するとともに、この減速挙動発生確率の統計情報Pstaを減速挙動発生確率の予測値pftrとして用いる。 Specifically, the server device 41 communicates with a plurality of vehicles to acquire information as to whether each vehicle adopts the behavior of deceleration or passing by a traffic signal, and also decelerates the vehicles based on the statistical information. Behavior occurrence probability is calculated. For example, when there are 100 vehicles targeted for statistics, the server device 41 decelerates when 50 vehicles of them are decelerated by the traffic light and the other 50 vehicles pass through the traffic light without decelerating. Calculate the deceleration behavior occurrence probability in “0.5”. Prediction ECU33 acquires the statistic information Psta deceleration behavior occurrence probability in the traffic from the server device 41, using the statistics Psta of the deceleration behavior probability as a predicted value p ftr deceleration behavior probability.
 図16に示されるように、予測ECU33は、ステップS35の処理で否定判断した場合には、すなわち特定周辺車両が将来的に減速挙動を取る要因として交通信号の存在がないと判定した場合には、続くステップS39の処理として、他の周辺車両の状態量が取得できているか否かを判断する。他の周辺車両の状態量には、その走行位置や速度等が含まれている。具体的には、予測ECU33は、周辺監視装置34により他の周辺車両の状態量を取得できている場合には、ステップS39の処理で肯定判断する。また、自車両10と他の周辺車両との間で車車間通信が可能である場合には、予測ECU33は、他の周辺車両との通信によりその状態量を取得することをもって、ステップS39の処理で肯定判断してもよい。 As shown in FIG. 16, when the prediction ECU 33 makes a negative determination in the process of step S 35, that is, when it is determined that there is no traffic signal as a factor for the specific surrounding vehicle to take deceleration behavior in the future. Then, as the process of the subsequent step S39, it is determined whether the state quantities of other surrounding vehicles can be acquired. The state quantities of other nearby vehicles include their traveling positions, speeds, and the like. Specifically, the prediction ECU 33 makes an affirmative determination in the process of step S39 when the state quantity of another surrounding vehicle can be acquired by the surrounding area monitoring device 34. Further, when inter-vehicle communication is possible between the own vehicle 10 and another surrounding vehicle, the prediction ECU 33 performs the process of step S39 by acquiring the state quantity by communication with the other surrounding vehicle. You may make a positive decision on
 予測ECU33は、ステップS39の処理で肯定判断した場合には、続くステップS40の処理として、他の周辺車両の状態量に基づいて減速挙動発生確率の予測値pftrを演算する。具体的には、予測ECU33は、特定周辺車両の現在の走行位置や速度等の情報と、他の周辺車両の現在の走行位置や速度等の情報とに基づいて、各車両の将来の挙動をシミュレーションにより予測する。このシミュレーションにより、特定の周辺車両が減速するきっかけとなる所定の挙動が他の周辺車両に発生する確率psurを算出する。特定の周辺車両が減速するきっかけとなる他の周辺車両の所定の挙動とは、例えば特定の周辺車両の走行している車線に他の周辺車両が車線変更するような挙動である。予測ECU33は、算出された他の周辺車両の所定の挙動の発生確率psurを減速挙動発生確率の予測値pftrとして用いる。 When the prediction ECU 33 makes an affirmative determination in the process of step S39, it calculates the predicted value p ftr of the deceleration behavior occurrence probability based on the state quantities of other surrounding vehicles as the process of the subsequent step S40. Specifically, the prediction ECU 33 calculates the future behavior of each vehicle based on the information such as the current traveling position and speed of the specific peripheral vehicle and the information on the current traveling position and speed of the other peripheral vehicles. Predict by simulation. By this simulation, the probability p sur is calculated that the predetermined behavior causing the specific surrounding vehicle to decelerate is generated in another surrounding vehicle. The predetermined behavior of another surrounding vehicle that causes the specific surrounding vehicle to decelerate is, for example, a behavior in which the other surrounding vehicle changes lanes to the lane in which the specific surrounding vehicle is traveling. The prediction ECU 33 uses the calculated occurrence probability p sur of the predetermined behavior of another surrounding vehicle as the predicted value p ftr of the deceleration behavior occurrence probability.
 予測ECU33は、ステップS39の処理で否定判断した場合には、続くステップS41の処理として、統計的な情報に基づいて減速挙動発生確率の予測値pftrを演算する。
 具体的には、サーバ装置41は、複数の車両との通信により、各車両が所定の場所で減速したか、通過したかを統計するとともに、その統計情報に基づいて車両の減速挙動発生確率を算出している。例えば、サーバ装置41は、統計対象の車両が100台である場合、そのうちの50台の車両が所定の場所で減速し、且つその他の50台の車両が所定の場所を減速せずに通過した場合、その信号機における減速挙動発生確率を「0.5」と算出する。予測ECU33は、現在の自車両の場所に対応する減速挙動発生確率の統計情報Pstaをサーバ装置41から取得するとともに、この減速挙動発生確率の統計情報Pstaを減速挙動発生確率の予測値pftrとして用いる。
When the prediction ECU 33 makes a negative determination in the process of step S39, it calculates the predicted value pftr of the deceleration behavior occurrence probability based on the statistical information as the process of the subsequent step S41.
Specifically, the server device 41 communicates whether or not each vehicle has decelerated at a predetermined place or passed by communication with a plurality of vehicles, and the deceleration behavior occurrence probability of the vehicle is calculated based on the statistical information. It is calculated. For example, when the number of vehicles targeted for statistics is 100, the server device 41 decelerates 50 of the vehicles at a predetermined location and the other 50 vehicles pass through the predetermined location without deceleration. In this case, the deceleration behavior occurrence probability in the traffic light is calculated as “0.5”. The prediction ECU 33 acquires statistical information Psta of the deceleration behavior occurrence probability corresponding to the current location of the host vehicle from the server device 41, and uses the statistical information Psta of the deceleration behavior occurrence probability as the prediction value p ftr of the deceleration behavior occurrence probability Use.
 予測ECU33は、ステップS31の処理において認識精度が所定の閾値以上の特定周辺車両が存在しないと判断した場合には、ステップS31の処理で否定判断する。この場合、予測ECU33は、続くステップS43の処理として、遠方車両に対応する特定周辺車両が存在するか否かを判断する。遠方車両とは、認識精度が所定の閾値未満である車両である。予測ECU33は、遠方車両に対応する特定周辺車両が存在する場合には、ステップS43の処理で肯定判断し、続くステップS44の処理として、その遠方車両の情報に基づいて減速挙動発生確率の予測値pftrを演算する。 If the prediction ECU 33 determines that there is no specific surrounding vehicle whose recognition accuracy is equal to or higher than a predetermined threshold in the process of step S31, the prediction ECU 33 makes a negative determination in the process of step S31. In this case, the prediction ECU 33 determines whether or not there is a specific surrounding vehicle corresponding to the distant vehicle as the process of the subsequent step S43. A distant vehicle is a vehicle whose recognition accuracy is less than a predetermined threshold. When there is a specific surrounding vehicle corresponding to the distant vehicle, the prediction ECU 33 makes an affirmative determination in the process of step S43, and predicts the deceleration behavior occurrence probability based on the information of the distant vehicle as the process of subsequent step S44. Calculate p ftr .
 例えば、予測ECU33は、自車両10から、遠方車両と認識された物体までの距離を演算するとともに、演算された距離に基づいて物体の存在確率pfarを演算式等に基づいて算出する。この演算式等では、例えば物体までの距離が長くなるほど、物体の存在確率pfarの値が小さくなるように設定される。予測ECU33は、この算出された物体の存在確率pfarを減速挙動発生確率の予測値pftrとして用いる。 For example, the prediction ECU 33 calculates the distance from the host vehicle 10 to an object recognized as a distant vehicle, and calculates the existence probability p far of the object based on an arithmetic expression or the like based on the calculated distance. In this equation, for example, the value of the object presence probability p far decreases as the distance to the object increases. The prediction ECU 33 uses the calculated existence probability p far of the object as the prediction value p ftr of the deceleration behavior occurrence probability.
 予測ECU33は、ステップS37,S38,S40,S41,S44の処理で減速挙動発生確率の予測値pftrを算出した後、ステップS42の処理として、減速挙動発生確率piを演算する。具体的には、予測ECU33は、ステップS33及びS34のいずれかの処理で演算される減速挙動発生確率の学習値plrnと、ステップS37,S38,S40,S41,S44のいずれかの処理で演算される減速挙動発生確率の予測値pftrとから上記の式10を用いて減速挙動発生確率piを演算する。なお、「z」を演算する際に用いられる「Plrn2」に関しては、本実施形態では、「Plrn2=1―Plrn」という演算式から演算可能である。 Prediction ECU33, the step S37, S38, S40, S41, after calculating the predicted value p ftr deceleration behavior occurrence probability in the process of S44, the processing in step S42, calculates the deceleration behavior probability p i. Specifically, the prediction ECU 33 performs the calculation in the learning value p lrn of the deceleration behavior occurrence probability calculated in one of the processes in steps S33 and S34 and the process in one of the steps S37, S38, S40, S41, and S44. It is the computed deceleration behavior probability p i using the above equation 10 from the predicted value p ftr deceleration behavior probability. In the present embodiment, “P lrn2 ” used in calculating “z” can be calculated from an operation expression “P lrn2 = 1−P lrn ”.
 一方、予測ECU33は、ステップS43の処理で否定判断した場合、すなわち遠方車両情報が存在しない場合には、ステップS42の処理を実行することなく、図4に示される一連の処理を終了する。この場合、自車両10に減速挙動を生じさせるような車両が自車両10の周辺に存在しないことになるため、予測ECU33は、図15に示されるステップS13の処理において否定判断する。したがって、ACCECU32は、ステップS15の処理として、ステップS11の処理で第1設定値α1に仮設定された加速度指令値αをEVECU31に送信する。 On the other hand, if a negative determination is made in the process of step S43, that is, if there is no distant vehicle information, the prediction ECU 33 ends the series of processes shown in FIG. 4 without executing the process of step S42. In this case, there is no vehicle around the host vehicle 10 that causes the host vehicle 10 to generate deceleration behavior, so the prediction ECU 33 makes a negative determination in the process of step S13 shown in FIG. Therefore, as the process of step S15, the ACC ECU 32 transmits, to the EVECU 31, the acceleration command value α temporarily set to the first set value α1 in the process of step S11.
 以上説明した本実施形態の車両制御装置50によれば、以下の(11)~(17)に示される作用及び効果を得ることができる。
 (11)予測ECU33は、車両の走行データに基づいて車両の挙動を学習した学習情報、具体的には減速挙動モデルや通過挙動モデル等の車両挙動の学習モデルに基づいて特定周辺車両の減速挙動発生確率piを演算する。予測ECU33は、この減速挙動発生確率piを用いて上記の式f2,f3の演算式を確定した上で、上記の式f4の評価関数FE1の値が最小となる自車両10の状態量b(t)を決定することにより加速度指令値αの第2設定値α2を演算する。そして、図15に示されるように、予測ECU33がステップS13の処理で自車両10の減速が必要であると判断した場合には、ACCECU32が、ステップS14の処理として、加速度指令値αを第2設定値α2に設定する。このようにして設定された加速度指令値αに基づいて車両10の加速度制御が実行されることにより、より早期に特定周辺車両の減速挙動を予測して自車両10を減速させることが可能となる。
According to the vehicle control device 50 of the present embodiment described above, the actions and effects shown in the following (11) to (17) can be obtained.
(11) The prediction ECU 33 learns the behavior of the vehicle based on the traveling data of the vehicle, specifically, the deceleration behavior of the specific surrounding vehicle based on the learning model of the vehicle behavior such as the deceleration behavior model or the passing behavior model. The occurrence probability p i is calculated. The prediction ECU 33 determines the computing equation of the equations f2 and f3 using the deceleration behavior occurrence probability p i and then determines the state amount b of the vehicle 10 for which the value of the evaluation function FE1 of the equation f4 becomes minimum. By determining (t), the second set value α2 of the acceleration command value α is calculated. Then, as shown in FIG. 15, when the prediction ECU 33 determines that the host vehicle 10 needs to be decelerated in the process of step S13, the ACC ECU 32 performs the process of step S14 to execute the second acceleration command value α. The set value α2 is set. By executing the acceleration control of the vehicle 10 based on the acceleration command value α set in this way, it is possible to predict the deceleration behavior of the specific surrounding vehicle earlier and to decelerate the vehicle 10. .
 (12)予測ECU33は、周辺監視装置34により取得される特定周辺車両の走行データと、減速挙動モデルや通過挙動モデル等の車両挙動の学習モデルとの類似性を表す指標である尤度を算出し、この尤度に基づいて特定周辺車両の減速挙動発生確率piを演算する。このような構成によれば、特定周辺車両の減速挙動発生確率piを高い精度で演算することが可能である。 (12) The prediction ECU 33 calculates the likelihood, which is an index indicating the similarity between the traveling data of the specific surrounding vehicle acquired by the surroundings monitoring device 34 and the learning model of the vehicle behavior such as the deceleration behavior model or the passing behavior model. Then, based on the likelihood, the deceleration behavior occurrence probability p i of the specific surrounding vehicle is calculated. According to such a configuration, it is possible to calculate the deceleration behavior occurrence probability p i of the specific surrounding vehicle with high accuracy.
 (13)予測ECU33は、減速挙動モデルや通過挙動モデル等の車両挙動の学習モデルを用いて減速挙動発生確率piを演算することができない場合、道路の静的な情報に基づいて減速挙動発生確率piを演算する。このような構成によれば、車両挙動の学習モデルを用いることができない状況であっても、減速挙動発生確率piを演算することが可能である。 (13) When the prediction ECU 33 can not calculate the deceleration behavior occurrence probability p i using the learning model of the vehicle behavior such as the deceleration behavior model or the passage behavior model, the deceleration behavior is generated based on static information of the road. Calculate the probability p i . According to such a configuration, even in a situation where it is impossible to use a learning model of vehicle behavior, it is possible to calculate the deceleration behavior probability p i.
 (14)予測ECU33は、周辺監視装置34により認識された特定周辺車両の認識精度が所定の閾値未満である場合、特定周辺車両と認識された物体が実際に存在する可能性を示す存在確率に基づいて減速挙動発生確率piを補正する。このような構成によれば、周辺監視装置34の認識精度に応じた、より精度の高い減速挙動発生確率piを演算することができる。 (14) When the recognition accuracy of the specific surrounding vehicle recognized by the surrounding area monitoring device 34 is less than a predetermined threshold, the prediction ECU 33 uses the existence probability indicating that the object recognized as the specific surrounding vehicle may actually exist. Based on the above, the deceleration behavior occurrence probability p i is corrected. According to such a configuration, it can be calculated in accordance with the recognition accuracy of the surroundings monitoring device 34, the accuracy high reduction behavior occurrence probability of p i.
 (15)予測ECU33は、信号機の信号の切り替わりの発生確率に基づいて減速挙動発生確率piを補正する。このような構成によれば、信号機の信号の切り替わりの状況に応じた、より精度の高い減速挙動発生確率piを演算することができる。
 (16)予測ECU33は、車両の減速発生確率の統計情報に基づいて周辺車両の減速挙動発生確率piを補正する。このような構成によれば、統計情報に応じた、より精度の高い減速挙動発生確率piを演算することができる。
(15) prediction ECU33 corrects the deceleration behavior probability p i based on the occurrence probability of the switching of the traffic signals. According to such a configuration, it can be calculated according to the situation of the switching of the traffic signal, a more accurate reduction behavior probability p i.
(16) prediction ECU33 corrects the deceleration behavior probability p i around the vehicle based on the deceleration occurrence probability of the statistical information of the vehicle. According to such a configuration, can be calculated according to the statistical information, the accuracy high reduction behavior occurrence probability of p i.
 (17)予測ECU33は、周辺車両の走行データを自車両10と周辺車両との通信により取得する。このような構成によれば、より精度の高い周辺車両の走行データを取得することが可能である。
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
(17) The prediction ECU 33 acquires traveling data of the surrounding vehicle by communication between the vehicle 10 and the surrounding vehicle. According to such a configuration, it is possible to acquire traveling data of nearby vehicles with higher accuracy.
Other Embodiments
In addition, each embodiment can also be implemented in the following modes.
 ・第2実施形態の車両10は、モータジェネレータ20、インバータ装置21、バッテリ22、MGECU30を有していない構成であってもよい。すなわち、第2実施形態の車両10は、エンジン60のみを走行用の動力として用いるものであってもよい。
 ・第3実施形態の予測ECU33は、周辺車両の挙動の学習モデルとして、減速挙動モデルと通過挙動モデルとを用いるものであったが、それら以外の学習モデルを用いてもよい。例えば、減速挙動モデルとして、停車を前提とする第1減速挙動モデルと、停車を前提としない第2減速挙動モデルを用いてもよい。
The vehicle 10 according to the second embodiment may not include the motor generator 20, the inverter device 21, the battery 22, and the MGECU 30. That is, the vehicle 10 of the second embodiment may use only the engine 60 as the power for traveling.
The prediction ECU 33 according to the third embodiment uses the deceleration behavior model and the passage behavior model as a learning model of the behavior of a surrounding vehicle, but may use other learning models. For example, as the deceleration behavior model, a first deceleration behavior model that assumes a stop and a second deceleration behavior model that does not assume a stop may be used.
 ・第3実施形態の車両制御装置50では、車両挙動の学習モデルの構築を、サーバ装置41に代えて、予測ECU33により行ってもよい。
 ・第3実施形態の予測ECU33は、周辺車両の挙動として、周辺車両の減速挙動を予測するものに限らず、周辺車両の任意の挙動を予測してもよい。また、これに合わせて、サーバ装置41又は予測ECU33は、車両の任意の挙動を学習してもよい。
In the vehicle control device 50 of the third embodiment, the prediction ECU 33 may perform construction of a learning model of the vehicle behavior instead of the server device 41.
The prediction ECU 33 according to the third embodiment is not limited to one that predicts the deceleration behavior of the surrounding vehicle as the behavior of the surrounding vehicle, and may predict any behavior of the surrounding vehicle. Also, in accordance with this, the server device 41 or the prediction ECU 33 may learn any behavior of the vehicle.
 ・予測ECU33は、自車両10の燃費が悪化するような周囲環境の変化として、隣接車線を走行する車両の割り込みを予測してもよい。具体的には、予測ECU33は、自車両の前方を走行する車両Caとの間に車両Cbが割り込んだような場合には、図12に実線で示されるように、割り込み前は車両Caの状態量を先行車両の状態量として用いるとともに、時刻t30で車両Cbが割り込んだ場合、それ以降は車両Cbの状態量を先行車両の状態量として用いる。 The prediction ECU 33 may predict the interruption of the vehicle traveling on the adjacent lane as a change in the surrounding environment such that the fuel efficiency of the host vehicle 10 is deteriorated. Specifically, when the vehicle Cb cuts into between the vehicle Ca and the vehicle traveling in front of the own vehicle, the prediction ECU 33 determines the state of the vehicle Ca before the interruption as shown by the solid line in FIG. 12. The amount is used as the state amount of the leading vehicle, and when the vehicle Cb cuts in at time t30, the state amount of the vehicle Cb is used as the state amount of the leading vehicle after that.
 ・状態量b(t)として、車両10の速度や位置等の情報を含む関数を用いてもよい。
 ・ACCECU32は、加速度指令値αに代えて、車両10の速度を指定する速度指令値をEVECU31やHVECU39に送信してもよい。
A function including information such as the speed and the position of the vehicle 10 may be used as the state quantity b (t).
The ACC ECU 32 may transmit a speed command value for specifying the speed of the vehicle 10 to the EVECU 31 or the HVECU 39 instead of the acceleration command value α.
 ・予測ECU33は、自車両10の追従性能評価値を演算する際に、i番目の先行車両及び自車両10のそれぞれの位置情報に代えて、それらの速度情報を用いても良い。例えば、理想走行範囲を最低速度Vminから最高速度Vmaxまでの範囲で定義した上で、この理想走行範囲からの自車両10の将来の予想速度の逸脱量ziを以下の式(11)で表す。 In calculating the follow-up performance evaluation value of the own vehicle 10, the prediction ECU 33 may use the speed information of each of the i-th preceding vehicle and the own vehicle 10 instead of the positional information of the same. For example, after defining the ideal traveling range in the range from the lowest speed V min to the highest speed V max , the amount of deviation z i of the expected future speed of the vehicle 10 from this ideal traveling range is expressed by the following equation (11) Represented by
Figure JPOXMLDOC01-appb-M000010
 そして、この逸脱量ziを現在から予測時間Tの範囲で積分した値を、自車両10の追従性能評価値として用いてもよい。
 ・周辺監視装置34は、道路周辺を歩行する歩行者、交通信号、道路の走行規制、制限速度、勾配、カーブ、交差点等の情報を取得するものであってもよい。この場合、予測ECU33は、周辺監視装置34により取得されるそれらの情報に基づいて、車両10を減速させる必要があるか否かを判定してもよい。
Figure JPOXMLDOC01-appb-M000010
Then, a value obtained by integrating the deviation amount z i in the range of the prediction time T from the present may be used as the follow-up performance evaluation value of the own vehicle 10.
The periphery monitoring device 34 may acquire information such as pedestrians walking around the road, traffic signals, road travel restrictions, speed limits, slopes, curves, intersections, and the like. In this case, the prediction ECU 33 may determine whether or not the vehicle 10 needs to be decelerated based on the information acquired by the surroundings monitoring device 34.
 ・予測ECU33は、自車両10の燃費に関する指標として、燃費の予測値を用いてもよい。具体的には、予測ECU33は、燃費のデータを蓄積するとともに、蓄積された過去の燃費のデータに基づいて燃費の予測値を演算する。
 ・車両10の加速度を制限する方法としては、加速度指令値αを変更する方法に限らず、結果的に加速度が変化するような指令方法、例えば車両10の駆動トルクやパワーを制限する方法等を採用してもよい。車両10の駆動トルクやパワーの制限とは、モータジェネレータ20及びバッテリ22の保護のための出力制限とは異なり、コンポーネントの最大出力の如何に関わらず、制御上で出力を制限するものである。
The prediction ECU 33 may use the predicted value of the fuel consumption as an index related to the fuel consumption of the host vehicle 10. Specifically, the prediction ECU 33 stores fuel consumption data and calculates a fuel consumption prediction value based on the stored past fuel consumption data.
The method of limiting the acceleration of the vehicle 10 is not limited to the method of changing the acceleration command value α, but may be a command method such that the acceleration changes as a result, such as a method of limiting the driving torque or power of the vehicle 10 It may be adopted. The limitation of the drive torque and the power of the vehicle 10, unlike the output limitation for protection of the motor generator 20 and the battery 22, limits the output in control regardless of the maximum output of the component.
 ・ACCECU32は、ACC制御やCC制御等により車両10の走行を制御する方法として、自車両10の加速度を制御する加速度制御を用いる方法に代えて、自車両10の速度を制御する速度制御を用いる方法を採用してもよい。ACCECU32は、第1実施形態の変形例のように、自車両10の乗員に運転方法を指示する指示制御を用いることもできる。 The ACC ECU 32 uses speed control for controlling the speed of the vehicle 10, instead of using acceleration control for controlling the acceleration of the vehicle 10, as a method for controlling the traveling of the vehicle 10 by ACC control, CC control, etc. A method may be adopted. The ACC ECU 32 can also use instruction control for instructing the occupant of the host vehicle 10 of the driving method as in the modification of the first embodiment.
 ・車両制御装置50が提供する手段及び/又は機能は、実体的な記憶装置に記憶されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組み合わせにより提供することができる。例えば車両制御装置50がハードウェアである電子回路により提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路により提供することができる。 The means and / or functions provided by the vehicle control device 50 can be provided by software stored in the tangible storage device and a computer that executes the software, only software, only hardware, or a combination thereof. For example, if the vehicle control device 50 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit or analog circuit that includes a number of logic circuits.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present disclosure is not limited to the above specific example. Those skilled in the art may appropriately modify the above-described specific example as long as the features of the present disclosure are included. The elements included in the specific examples described above, and the arrangement, conditions, shape, and the like of the elements are not limited to those illustrated, and can be changed as appropriate. The elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Claims (21)

  1.  自車両(10)の前方を走行する先行車両に前記自車両を追従させるべく、前記自車両の走行を制御することの可能な走行制御を実行する車両制御装置(50)であって、
     前記自車両の燃費が悪化するような周囲環境の変化が生じているか否かを予測する環境予測部(33)と、
     前記環境予測部により前記自車両の燃費が悪化するような周囲環境の変化が生じていることが予測された際に、前記自車両の加速度を制限することの可能な予測制御を実行する加速度制御部(32)と、を備える
     車両制御装置。
    A vehicle control device (50) that executes traveling control capable of controlling traveling of the host vehicle in order to cause the host vehicle to follow a preceding vehicle traveling in front of the host vehicle (10),
    An environment prediction unit (33) for predicting whether or not there is a change in the surrounding environment such that the fuel efficiency of the host vehicle is deteriorated;
    Acceleration control that executes prediction control that can limit the acceleration of the host vehicle when it is predicted by the environment prediction unit that a change in the surrounding environment is occurring such that the fuel efficiency of the host vehicle is degraded A vehicle control device comprising: a part (32).
  2.  前記走行制御は、前記自車両を前記先行車両に追従させるべく前記自車両の加速及び減速を制御する速度制御であり、
     前記加速度制御部は、前記環境予測部により前記自車両の減速が必要となる周囲環境の変化が有ると予測することに基づいて、前記自車両の燃費が悪化するような周囲環境の変化が生じていると予測するものであり、前記自車両の減速が必要となる周囲環境の変化が有ると予測した場合には、前記予測制御として、前記速度制御により設定可能な減速度よりも小さい減速度で前記自車両を減速させる減速制御を実行する
     請求項1に記載の車両制御装置。
    The travel control is speed control that controls acceleration and deceleration of the host vehicle to make the host vehicle follow the preceding vehicle.
    The acceleration control unit causes a change in the surrounding environment such that the fuel efficiency of the own vehicle is deteriorated based on the environment prediction unit predicting that there is a change in the surrounding environment requiring deceleration of the own vehicle. When it is predicted that there is a change in the surrounding environment that requires the vehicle to decelerate, a deceleration smaller than the deceleration that can be set by the speed control is used as the prediction control. The vehicle control device according to claim 1, wherein deceleration control is performed to decelerate the host vehicle.
  3.  前記環境予測部は、前記自車両の燃費に関する指標、及び前記先行車両に対する前記自車両の追従性能に関する指標に基づいて、前記自車両の減速が必要となる周囲環境の変化の有無を予測する
     請求項2に記載の車両制御装置。
    The environment prediction unit predicts the presence or absence of a change in the surrounding environment in which the host vehicle needs to be decelerated, based on the indicator related to the fuel efficiency of the host vehicle and the indicator related to the follow-up performance of the host vehicle with respect to the preceding vehicle. The vehicle control apparatus of claim 2.
  4.  前記自車両の燃費に関する指標は、現在から所定時間経過後までの期間に前記走行制御の実行により前記自車両を減速させる際に発生すると予測される制動エネルギの予測値、又は燃費の予測値であり、
     前記自車両の追従性能に関する指標は、現在から所定時間経過後までの期間における前記走行制御の理想値に対する前記自車両の位置の逸脱量、又は現在から所定時間経過後までの期間における前記自車両の速度の逸脱量である
     請求項3に記載の車両制御装置。
    The index related to the fuel efficiency of the host vehicle is a predicted value of braking energy predicted to be generated when the host vehicle is decelerated by the execution of the travel control during a period from the present to the end of a predetermined time, or Yes,
    The index related to the follow-up performance of the vehicle is an amount of deviation of the position of the vehicle from the ideal value of the travel control in the period from the current time to the predetermined time, or the vehicle in the time period from the current time to the predetermined time The vehicle control device according to claim 3, wherein the deviation amount is a speed deviation amount.
  5.  前記加速度制御部は、前記減速制御として、前記自車両の車輪(28)にパワートレイン(20,60)からの出力が伝わらない状態で前記自車両を惰性走行させるコースティング制御を実行する
     請求項2に記載の車両制御装置。
    The acceleration control unit executes coasting control for causing the host vehicle to coast while the output from the power train (20, 60) is not transmitted to the wheels (28) of the host vehicle as the deceleration control. The vehicle control device according to 2.
  6.  前記自車両の走行状態に基づいて前記自車両のエンジン(60)の駆動及び停止を制御するとともに、前記自車両のエンジンが停止状態であるときに前記自車両の加速度に基づいて前記エンジンを再始動させる走行制御部を更に備え、
     前記加速度制御部は、前記予測制御として、前記走行制御部による前記エンジンの再始動が行われ難くなるように前記自車両の加速度を制限する
     請求項1に記載の車両制御装置。
    The driving and stopping of the engine (60) of the vehicle are controlled based on the traveling state of the vehicle, and the engine is re-generated based on the acceleration of the vehicle when the engine of the vehicle is stopped. The vehicle further comprises a traveling control unit for starting
    The vehicle control device according to claim 1, wherein the acceleration control unit limits an acceleration of the host vehicle such that restart of the engine by the travel control unit is less likely to be performed as the prediction control.
  7.  前記環境予測部は、前記自車両の燃費に関する指標、及び前記先行車両に対す前記自車両の追従性能に関する指標に基づいて、前記自車両の加速を制限するか否かを判断する
     請求項6に記載の車両制御装置。
    The environment prediction unit determines whether to limit the acceleration of the host vehicle based on the indicator related to the fuel efficiency of the host vehicle and the indicator related to the follow-up performance of the host vehicle with respect to the leading vehicle. Vehicle control device as described.
  8.  前記自車両の燃費に関する指標は、現在から所定時間経過後までの期間における前記自車両のパワートレイン(20,60)の入力エネルギに対する前記パワートレインの出力エネルギの比率の予測値、又は燃費の予測値であり、
     前記自車両の追従性能に関する指標は、現在から所定時間経過後までの期間における前記走行制御の理想値に対する前記自車両の位置の逸脱量、又は現在から所定時間経過後までの期間における前記自車両の速度の逸脱量である
     請求項7に記載の車両制御装置。
    The index related to the fuel efficiency of the host vehicle is a predicted value of the ratio of the output energy of the power train to the input energy of the power train (20, 60) of the host vehicle in the period from the current time to a predetermined time It is a value,
    The index related to the follow-up performance of the vehicle is an amount of deviation of the position of the vehicle from the ideal value of the travel control in the period from the current time to the predetermined time, or the vehicle in the time period from the current time to the predetermined time The vehicle control device according to claim 7, wherein the deviation amount is a speed deviation amount.
  9.  前記自車両のパワートレインの入力エネルギに対する前記パワートレインの出力エネルギの比率の予測値には、前記エンジンの入力エネルギに対する前記エンジンの出力エネルギの比率の予測値、及び前記エンジンが停止している状態における前記自車両のパワートレインの入力エネルギに対する前記パワートレインの出力エネルギの比率の予測値が含まれている
     請求項8に記載の車両制御装置。
    In the predicted value of the ratio of the output energy of the powertrain to the input energy of the powertrain of the host vehicle, the predicted value of the ratio of the output energy of the engine to the input energy of the engine and the state where the engine is stopped The vehicle control device according to claim 8, further comprising a predicted value of a ratio of output energy of the powertrain to input energy of the powertrain of the host vehicle at.
  10.  前記環境予測部は、
     周辺車両の挙動の発生確率と、前記周辺車両の挙動に対する前記自車両の燃費に関する指標の値とに基づいて、前記自車両の燃費に関する指標の期待値を算出し、
     前記周辺車両の挙動の発生確率と、前記周辺車両の挙動に対する前記自車両の追従性能に関する指標の値とに基づいて、前記自車両の追従性能に関する指標の期待値を算出し、
     前記環境予測部は、前記自車両の燃費に関する指標の期待値、及び前記自車両の追従性能に関する指標の期待値からなる評価関数の値を演算し、前記評価関数の値に基づいて前記自車両の減速が必要となる周囲環境の変化を予測する
     請求項3,4,7~9のいずれか一項に記載の車両制御装置。
    The environment prediction unit
    The expected value of the indicator related to the fuel efficiency of the own vehicle is calculated based on the occurrence probability of the behavior of the surrounding vehicle and the value of the indicator related to the fuel efficiency of the own vehicle relative to the behavior of the surrounding vehicle;
    The expected value of the indicator related to the follow-up performance of the own vehicle is calculated based on the occurrence probability of the behavior of the surrounding vehicle and the value of the indicator related to the follow-up performance of the own vehicle with respect to the behavior of the surrounding vehicle.
    The environment prediction unit calculates a value of an evaluation function including an expected value of an index related to fuel consumption of the host vehicle and an expected value of an index related to tracking performance of the host vehicle, and the host vehicle based on the value of the evaluation function. The vehicle control device according to any one of claims 3, 4, 7 to 9, which predicts a change in the surrounding environment that requires deceleration of the vehicle.
  11.  前記環境予測部は、車両の走行データに基づいて車両の挙動を学習した学習情報に基づいて前記周辺車両の挙動の発生確率を算出する
     請求項10に記載の車両制御装置。
    The vehicle control device according to claim 10, wherein the environment prediction unit calculates an occurrence probability of the behavior of the surrounding vehicle based on learning information in which the behavior of the vehicle is learned based on travel data of the vehicle.
  12.  前記自車両の周辺を走行する周辺車両の走行データを取得する周辺監視部を更に備え、
     前記環境予測部は、前記周辺監視部により取得される前記周辺車両の走行データと前記学習情報との類似性を表す指標である尤度を算出し、前記尤度に基づいて前記周辺車両の挙動の発生確率を算出する
     請求項11に記載の車両制御装置。
    The vehicle further includes a periphery monitoring unit that acquires traveling data of a surrounding vehicle traveling around the host vehicle.
    The environment prediction unit calculates the likelihood, which is an index indicating the similarity between the traveling data of the surrounding vehicle acquired by the surrounding area monitoring unit and the learning information, and the behavior of the surrounding vehicle is calculated based on the likelihood. The vehicle control device according to claim 11, wherein the occurrence probability of is calculated.
  13.  前記周辺監視部は、道路の静的な情報を更に取得するものであり、
     前記環境予測部は、前記学習情報を用いることができない場合、前記道路の静的な情報に基づいて前記周辺車両の挙動の発生確率を算出する
     請求項12に記載の車両制御装置。
    The periphery monitoring unit further acquires static information of the road,
    The vehicle control device according to claim 12, wherein the environment prediction unit calculates the occurrence probability of the behavior of the surrounding vehicle based on static information of the road when the learning information can not be used.
  14.  前記環境予測部は、前記周辺監視部による前記周辺車両の認識精度が所定の閾値未満である場合、前記周辺車両と認識された物体が実際に存在する可能性を示す存在確率に基づいて前記周辺車両の挙動の発生確率を補正する
     請求項12又は13に記載の車両制御装置。
    When the recognition accuracy of the surrounding vehicle by the surrounding area monitoring unit is less than a predetermined threshold, the environment predicting unit performs the surrounding based on the presence probability indicating that the object recognized as the surrounding vehicle may actually exist. The vehicle control device according to claim 12, wherein the occurrence probability of the behavior of the vehicle is corrected.
  15.  前記周辺監視部は、道路に設置された信号機の信号の切替タイミングの情報を更に取得するものであり、
     前記環境予測部は、前記信号機の信号の切り替わりの発生確率に基づいて前記周辺車両の挙動の発生確率を補正する
     請求項12又は13に記載の車両制御装置。
    The periphery monitoring unit further acquires information on switching timing of signals of traffic lights installed on the road,
    The vehicle control device according to claim 12, wherein the environment prediction unit corrects the occurrence probability of the behavior of the surrounding vehicle based on the occurrence probability of switching of the signal of the traffic light.
  16.  前記環境予測部は、車両の挙動の発生確率の統計情報に基づいて前記周辺車両の挙動の発生確率を補正する
     請求項12又は13に記載の車両制御装置。
    The vehicle control device according to claim 12, wherein the environment prediction unit corrects the occurrence probability of the behavior of the surrounding vehicle based on statistical information of the occurrence probability of the behavior of the vehicle.
  17.  前記環境予測部は、前記周辺車両の走行データを前記自車両と前記周辺車両との通信により取得する
     請求項12~16のいずれか一項に記載の車両制御装置。
    The vehicle control device according to any one of claims 12 to 16, wherein the environment prediction unit acquires travel data of the surrounding vehicle by communication between the host vehicle and the surrounding vehicle.
  18.  前記走行制御は、前記自車両の加速及び減速を繰り返して実行することにより、前記自車両を前記先行車両に追従させるバーンアンドコースト制御である
     請求項1~17のいずれか一項に記載の車両制御装置。
    The vehicle according to any one of claims 1 to 17, wherein the traveling control is burn-and-coast control that causes the host vehicle to follow the leading vehicle by repeatedly executing acceleration and deceleration of the host vehicle. Control device.
  19.  前記環境予測部は、前記自車両の燃費が悪化するような周囲環境の変化として、前記先行車両の減速、又は隣接車線を走行する車両の割り込みを予測する
     請求項1~18のいずれか一項に記載の車両制御装置。
    The environment prediction unit predicts deceleration of the preceding vehicle or interruption of a vehicle traveling in an adjacent lane as a change in the surrounding environment such that the fuel efficiency of the host vehicle is deteriorated. The vehicle control device according to claim 1.
  20.  前記走行制御は、前記自車両の速度を制御する速度制御、前記自車両の加速度を制御する加速度制御、及び前記自車両の乗員に運転方法を指示する指示制御のいずれかである
     請求項1~19のいずれか一項に記載の車両制御装置。
    The traveling control is any one of speed control for controlling the speed of the host vehicle, acceleration control for controlling an acceleration of the host vehicle, and instruction control for instructing an occupant of the host vehicle of a driving method. 19. The vehicle control device according to any one of 19.
  21.  前記加速度制御部は、前記予測制御として、前記自車両の加速度を実際に制限する加速度制御、又は前記自車両の加速度が制限されるように前記自車両の乗員に運転方法を指示する指示制御を実行する
     請求項1~20のいずれか一項に記載の車両制御装置。
    The acceleration control unit performs, as the prediction control, acceleration control for actually limiting the acceleration of the vehicle or instruction control for instructing the driver of the vehicle such that the acceleration of the vehicle is restricted. The vehicle control device according to any one of claims 1 to 20.
PCT/JP2018/037434 2017-11-17 2018-10-05 Vehicle control device WO2019097896A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880074328.4A CN111356621B (en) 2017-11-17 2018-10-05 Vehicle control device
DE112018005880.8T DE112018005880T5 (en) 2017-11-17 2018-10-05 Vehicle control device
US16/876,303 US11840228B2 (en) 2017-11-17 2020-05-18 Vehicle control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017221734 2017-11-17
JP2017-221734 2017-11-17
JP2018-129289 2018-07-06
JP2018129289A JP6760331B2 (en) 2017-11-17 2018-07-06 Vehicle control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/876,303 Continuation US11840228B2 (en) 2017-11-17 2020-05-18 Vehicle control device

Publications (1)

Publication Number Publication Date
WO2019097896A1 true WO2019097896A1 (en) 2019-05-23

Family

ID=66540174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037434 WO2019097896A1 (en) 2017-11-17 2018-10-05 Vehicle control device

Country Status (1)

Country Link
WO (1) WO2019097896A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070457A (en) * 2019-11-01 2021-05-06 株式会社デンソー Vehicle notification system
CN112977412A (en) * 2021-02-05 2021-06-18 西人马帝言(北京)科技有限公司 Vehicle control method, device and equipment and computer storage medium
CN114103924A (en) * 2020-08-25 2022-03-01 郑州宇通客车股份有限公司 Energy management control method and device for hybrid vehicle
WO2023213555A1 (en) * 2022-05-06 2023-11-09 Bayerische Motoren Werke Aktiengesellschaft Method and device for controlling the coasting mode of a motor vehicle while taking into consideration an object on the adjacent lane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158924A (en) * 2009-01-06 2010-07-22 Toyota Motor Corp Inter-vehicle distance controller
JP2013213433A (en) * 2012-04-02 2013-10-17 Toyota Motor Corp Drive control device
JP2015123831A (en) * 2013-12-26 2015-07-06 富士重工業株式会社 Control device and control method of vehicle
JP2016079934A (en) * 2014-10-21 2016-05-16 スズキ株式会社 Idle stop control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158924A (en) * 2009-01-06 2010-07-22 Toyota Motor Corp Inter-vehicle distance controller
JP2013213433A (en) * 2012-04-02 2013-10-17 Toyota Motor Corp Drive control device
JP2015123831A (en) * 2013-12-26 2015-07-06 富士重工業株式会社 Control device and control method of vehicle
JP2016079934A (en) * 2014-10-21 2016-05-16 スズキ株式会社 Idle stop control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070457A (en) * 2019-11-01 2021-05-06 株式会社デンソー Vehicle notification system
JP7375476B2 (en) 2019-11-01 2023-11-08 株式会社デンソー Vehicle notification system, program
CN114103924A (en) * 2020-08-25 2022-03-01 郑州宇通客车股份有限公司 Energy management control method and device for hybrid vehicle
CN112977412A (en) * 2021-02-05 2021-06-18 西人马帝言(北京)科技有限公司 Vehicle control method, device and equipment and computer storage medium
WO2023213555A1 (en) * 2022-05-06 2023-11-09 Bayerische Motoren Werke Aktiengesellschaft Method and device for controlling the coasting mode of a motor vehicle while taking into consideration an object on the adjacent lane

Similar Documents

Publication Publication Date Title
JP6760331B2 (en) Vehicle control device
WO2019097896A1 (en) Vehicle control device
US10632985B2 (en) Hybrid vehicle and method of predicting driving pattern in the same
US9409567B2 (en) Driving assistance apparatus
US20120239268A1 (en) Method and system of energy saving control
US11254313B2 (en) Travelling control apparatus
US10399555B2 (en) Hybrid vehicle and method of controlling charge mode therefor
JPWO2013072995A1 (en) Driving assistance device
WO2018123706A1 (en) Vehicle control device
US11414076B2 (en) Vehicle control system
KR101628563B1 (en) Coasting control method for eco-friendly vehicle
JP2019202693A (en) Collision mitigation apparatus
JP2019059474A (en) Hybrid vehicle control device
US9421975B2 (en) Vehicle control apparatus
JP6253646B2 (en) Vehicle control device
KR20160140053A (en) System and Method for controlling regenerative braking
CN116691680A (en) Lane changing method and device based on multi-vehicle motion model
KR20190008616A (en) Method for controlling coasting drive of environmentally friendly vehicle using dynamic traffic information
JP2016137835A (en) Travel control device for vehicle
CN110303893B (en) Vehicle control method and device
US11180028B2 (en) Vehicle notification system
US20220314941A1 (en) Driving support device, driving support method, and storage
JP7123867B2 (en) VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND PROGRAM
JP2021070457A (en) Vehicle notification system
JP2024036030A (en) Driving support device, driving support method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879022

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18879022

Country of ref document: EP

Kind code of ref document: A1