WO2019097603A1 - Permanent magnet type rotating electric machine - Google Patents

Permanent magnet type rotating electric machine Download PDF

Info

Publication number
WO2019097603A1
WO2019097603A1 PCT/JP2017/041095 JP2017041095W WO2019097603A1 WO 2019097603 A1 WO2019097603 A1 WO 2019097603A1 JP 2017041095 W JP2017041095 W JP 2017041095W WO 2019097603 A1 WO2019097603 A1 WO 2019097603A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor core
stator
electric machine
magnet type
Prior art date
Application number
PCT/JP2017/041095
Other languages
French (fr)
Japanese (ja)
Inventor
磯田 仁志
純士 北尾
義浩 深山
拓真 笹井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017008150.5T priority Critical patent/DE112017008150T5/en
Priority to CN201780096572.6A priority patent/CN111316537B/en
Priority to JP2019554091A priority patent/JP6929379B2/en
Priority to PCT/JP2017/041095 priority patent/WO2019097603A1/en
Publication of WO2019097603A1 publication Critical patent/WO2019097603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet type rotating electrical machine, and more particularly to a rotor structure.
  • a permanent magnet type rotating electric machine which does not require external field energy for size reduction and high output is widely used.
  • the stator winding structure of this type of rotating electrical machine is roughly classified into two types: concentrated winding in which a coil is wound on one tooth and distributed winding in which a coil is wound across a plurality of teeth. Ru.
  • the concentrated winding has a shorter coil end length than the distributed winding, so the motor axial length can be shortened.
  • the magnetomotive force generated in the concentrated winding stator includes low-order harmonic components that do not contribute to torque, and due to these effects, an increase in torque ripple and an electromagnetic excitation having a low-order deformation mode Cause the occurrence of force and so on.
  • the frame resonates to generate noise when the electromagnetic excitation force is at a specific rotation number that matches the resonance frequency of a component of the rotating electrical machine, for example, the frame.
  • Patent Documents 1 and 2 have a structure that reduces torque ripple. However, this structure can not necessarily reduce the radial electromagnetic force generated on the teeth causing vibration and noise.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a permanent magnet type rotary electric machine capable of reducing the radial electromagnetic force generated on teeth causing vibration and noise. .
  • a stator iron core is formed between the teeth in which teeth are radially projected from an annular core back and circumferentially arranged and slots are adjacent to each other in the circumferential direction; And a stator having a stator winding mounted on the stator core, and coaxially and rotatably disposed on the inner peripheral side of the stator via the magnetic gap with the stator.
  • the rotor core is formed so as to penetrate in the axial direction, and the magnet insertion hole into which the permanent magnet is inserted, and both circumferentially protruding from the magnet insertion hole, and penetrates the rotor core in the axial direction
  • a flux barrier formed as described above, and a notch formed on one end of the axial direction to the other end on the q axis of the outer peripheral surface of the rotor core, and the minimum iron in the q axis
  • the circumferential width D of the notch portion is larger than the minimum iron width C in the q axis.
  • the rotor core using a rotor core with a smaller amount of protrusion of the flux barrier from the magnet insertion hole and satisfying the relationship of A ⁇ C is subjected to centrifugal force. It is a figure which shows the result of having analyzed the stress which generate
  • FIG. 6 is a diagram showing the results of analysis of magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 3 is mounted.
  • FIG. 5 is a diagram showing a result of analysis of magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 4 is mounted.
  • FIG. 7 is a diagram showing a result of analysis of magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG.
  • FIG. 1 is a cross-sectional view showing a permanent magnet type rotary electric machine according to Embodiment 1 of the present invention
  • FIG. 2 is a view around a permanent magnet of a rotor in the permanent magnet type rotary electric machine according to Embodiment 1 of the present invention. It is a principal part cross-sectional view shown.
  • a cross-sectional view is a cross-sectional view which shows the cross section orthogonal to the axial center of a rotor. 1 and 2 are illustrated with hatching omitted for convenience.
  • the permanent magnet type rotating electric machine 1 is composed of a stator 10 and a rotor 20.
  • the stator 10 is composed of a stator core 11 and a stator winding 15 mounted on the stator core 11.
  • the stator core 11 is composed of an annular core back 12 and 36 teeth 13 formed on the core back 12.
  • the 36 teeth 13 respectively protrude radially inward from the inner circumferential surface of the core back 12 and are arranged at equal angular pitches in the circumferential direction.
  • the space formed between the adjacent teeth 13 is a slot 14.
  • the stator winding 15 is composed of 36 concentrated winding coils 16 wound around each of the teeth 13.
  • the stator winding 15 connects the concentrated winding coil 16 and is configured, for example, as a three-phase winding.
  • the rotor 20 is composed of a rotor core 21 fixed to a rotating shaft 22 inserted at an axial center position, and a permanent magnet 23 mounted on the rotor core 21.
  • 24 magnet insertion holes 24 axially penetrating the outer peripheral portion of the rotor core 21 are formed at equal angular pitches in the circumferential direction.
  • One permanent magnet 23 is inserted into each of the magnet insertion holes 24.
  • the permanent magnets 23 arranged in the circumferential direction are magnetized such that the polarity on the outer circumferential side alternately becomes the N pole and the S pole in the circumferential direction.
  • One permanent magnet 23 constitutes one magnetic pole.
  • the rotor core 21 is manufactured by laminating and integrating magnetic pieces punched out of a magnetic thin plate such as a magnetic steel sheet.
  • the permanent magnet type rotary electric machine 1 has a rotor 20 coaxially and rotatably disposed with the stator 10 on the inner circumferential side of the stator 10 with a magnetic air gap between the stator 10 and the stator 10, Configured
  • the permanent magnet type rotating electrical machine configured in this way is a rotating electrical machine of 24 poles and 36 slots, that is, a rotating electrical machine of 2-pole 3-slot series.
  • the magnet insertion hole 24 is formed in a hole shape having a substantially rectangular cross section, and is disposed on the outer peripheral portion of the rotor core 21 with the long side of the rectangular cross section directed circumferentially. A pair of air gaps are formed so as to project from the magnet insertion hole 24 on both sides in the circumferential direction. This void portion becomes the flux barrier 25.
  • the flux barrier 25 communicates with the magnet insertion hole 24 except for the portion on the inner diameter side of the short side of the rectangular cross section of the magnet insertion hole 24.
  • the inner wall surface on the outer diameter side of the flux barrier 25 extends in the circumferential direction from the inner wall surface on the outer diameter side of the magnet insertion hole 24 and is formed in a gentle curved surface gradually displaced to the inner diameter side as it is separated from the magnet insertion hole 24 There is.
  • the flux barrier 25 may be filled with varnish or the like in a state where the permanent magnet 23 is inserted into the magnet insertion hole 24.
  • the permanent magnet 23 is formed in a rectangular cross section equivalent to the magnet insertion hole 24.
  • the permanent magnet 23 is accommodated in each of the magnet insertion holes 24 with its circumferential movement restricted by a portion on the inner diameter side of the short side of the rectangular cross section of the magnet insertion hole 24.
  • the radial direction passing through the central position in the longitudinal direction of the long side of the rectangular cross section of the permanent magnet 23 is the d axis. Further, the radial direction passing through the center position between the d axes adjacent in the circumferential direction is the q axis.
  • the d axis is a magnetic flux axis of the permanent magnet 23.
  • the q-axis is an axis electrically and magnetically orthogonal to the d-axis.
  • a notch 26 for reducing torque ripple is formed on the q-axis with the groove direction as an axial direction by recessing the outer peripheral surface of the rotor core 21.
  • the notch portion 26 is configured in a single R shape, that is, a groove shape in which circular arcs of a single radius of curvature are axially connected.
  • A is the minimum iron width at the iron portion on the outer diameter side of the magnet insertion hole 24 and the flux barrier 25
  • B is the minimum iron width at the iron portion between the notch 26 and the flux barrier 25
  • C is the q axis
  • D in the iron portion between the flux barriers 25 opposed to each other across the surface is the circumferential width of the notch 26.
  • the notch portion is formed in a complicated R shape.
  • the notch portion 26 is formed in a single R shape, that is, a groove shape in which circular arcs of a single radius of curvature are axially connected. This facilitates dimensional inspection of the rotor core 21.
  • FIG. 3 shows that the centrifugal force is applied to the rotor using the rotor iron core 21A in which the cylindrical outer peripheral surface of the iron core and the outer diameter side wall surface of the flux barrier 25 are parallel while satisfying the relationship A> C.
  • FIG. 4 is a rotor in which the width of the iron portion between the cylindrical outer peripheral surface of the iron core and the outer diameter side wall surface of the flux barrier 25 becomes wider as it approaches the q axis while satisfying the relationship A> C.
  • the result of analyzing the stress generated when centrifugal force is applied to the rotor using the iron core 21B is shown.
  • the notch part 26 is not formed.
  • a and C of the rotor core 21B were the same as A and C of the rotor core 21A used in the analysis of FIG.
  • the numbers indicate the portions where the principal stress is the highest, and indicate the numerical values of the principal stress based on the maximum value of the principal stress in FIG. 3. From FIG. 4, even if the minimum iron width A of the iron portion between the outer peripheral surface of rotor core 21B and the outer diameter side wall surface of flux barrier 25 is the same, rotor core 21B is relative to rotor core 21A. It was confirmed that the principal stress could be reduced by nearly 60%.
  • FIG. 5 uses a rotor core 21C in which the amount of protrusion of the flux barrier 25 from the magnet insertion hole is reduced and the relationship A ⁇ C is satisfied. The results of analyzing the stress generated when centrifugal force is applied to the rotor are shown. In addition, the notch part 26 is not formed.
  • the numbers indicate the portions where the principal stress is the highest, and indicate the numerical values of the principal stress based on the maximum value of the principal stress in FIG. 3. From FIG. 5, even if the minimum iron width A of the iron portion between the outer peripheral surface of rotor core 21C and the outer diameter side wall surface of flux barrier 25 is the same, rotor core 21C is relative to rotor core 21A. It was confirmed that the principal stress could be reduced by nearly 50%. However, it was confirmed that the main stress of the rotor core 21C is increased with respect to the rotor core 21B. From this, it can be understood that in order to reduce the main stress acting on the flux barrier 25, the minimum iron width C between the flux barriers 25 adjacent in the circumferential direction may be made as narrow as possible within the processable range.
  • FIG. 6 shows that when a centrifugal force is applied to the rotor using the rotor core 21 in which the notches 26 are formed such that A ⁇ B in the rotor core 21B used in the analysis of FIG. 4. The results of analyzing the generated stress are shown.
  • the numbers indicate the portions where the principal stress is the highest, and indicate the numerical values of the principal stress based on the maximum value of the principal stress in FIG. 3. It was confirmed from FIG. 6 that the rotor core 21 can obtain a principal stress distribution equivalent to that of the rotor core 21B. Furthermore, it was confirmed from FIG. 6 that the rotor core 21 can reduce the principal stress with respect to the rotor core 21B.
  • FIG. 7 the results of analyzing the magnetic flux lines generated at the time of current conduction are shown in FIG.
  • part P of FIG. 7 it was found that a part of the magnetic flux emitted from the teeth 13 flows in the circumferential direction without passing through the rotor core 21A, and interlinks with the adjacent teeth 13. This is because the outer peripheral surface of the rotor core 21A and the outer diameter side wall surface of the flux barrier 25 are parallel to each other, so that iron between the outer peripheral surface of the rotor core 21A and the outer diameter side wall surface of the flux barrier 25 It is presumed that the part is magnetically saturated by the magnetic flux of the permanent magnet 23 linking the iron part.
  • the magnetic flux of the stator is hard to pass through the iron portion on the outer peripheral side of the flux barrier 25. Therefore, the magnetic flux of the stator passing through the portion P in FIG. 7 does not contribute to the torque and hardly contributes to the generation of the radial electromagnetic force in the teeth 13.
  • FIG. 8 shows the results of analysis of magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 4 is mounted.
  • part P of FIG. 8 it was found that a part of the magnetic flux coming out of the teeth 13 interlinks with the adjacent teeth 13 through the surface on the q axis of the rotor core 21B. This is because the outer peripheral surface of the rotor core 21B and the outer diameter side wall surface of the flux barrier 25 are not parallel to each other, so that the space between the outer peripheral surface of the rotor core 21B and the outer diameter side wall of the flux barrier 25 is It is presumed that only the minimum iron width portion of the iron portion is magnetically saturated by the magnetic flux of the permanent magnet 23 linking the iron portion.
  • the magnetic flux of the stator is likely to pass through the iron portion on the outer peripheral side of the flux barrier 25. Therefore, the magnetic flux of the stator passing through the P portion in FIG. 8 does not contribute to the torque because it links only a part of the surface of the rotor core 21B. However, since the magnetic flux of the stator passing through the portion P in FIG. 8 passes the teeth 13 in the radial direction, a radial electromagnetic force is generated in the teeth 13.
  • FIG. 9 shows the result of analyzing the magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 6 is mounted. As shown in part P of FIG. 9, it was found that a part of the magnetic flux emitted from the teeth 13 interlinks with the adjacent teeth 13 without passing through the rotor core 21. In this electric rotating machine, although the outer peripheral surface of the rotor core 21 and the outer diameter side wall surface of the flux barrier 25 are not parallel, the notch 26 is provided on the q-axis.
  • the magnetic air gap between the stator and the rotor on the q axis is expanded, and the magnetic flux of the stator is the iron portion between the outer peripheral surface of the rotor core 21 and the outer diameter side wall surface of the flux barrier 25. It is thought that it is difficult to pass through. Therefore, the magnetic flux of the stator passing through the portion P in FIG. 9 does not contribute to the torque, and the radial electromagnetic force generated in the teeth 13 can be reduced.
  • FIG. 10 is a diagram showing the result of analyzing the radial electromagnetic force generated in the teeth by changing the minimum iron width C of the rotor core.
  • the horizontal axis is D / C
  • the vertical axis is radial electromagnetic force (sixth component) generated in the teeth.
  • Each line shows radial electromagnetic force generated on the teeth when C is made constant and D is changed.
  • C is changing for every line.
  • an electromagnetic excitation force is generated in a magnetic gap between a stator and a rotor.
  • the electromagnetic excitation force generates a radial electromagnetic force in teeth of a stator. .
  • the radial electromagnetic force vibrates the stator, structural members around the stator, and the like to generate noise.
  • radial direction electromagnetic forces of various time components for example, radial direction electromagnetic force whose deformation mode of the stator is zero order and whose sixth order time component is generated.
  • the influence of the direction of the radial direction of the deformation mode is particularly large and the time component is 6 order is large.
  • C and D should be set to satisfy C ⁇ D, D / C. It is more preferable to set C and D so as to satisfy ⁇ 1.6.
  • FIG. 11 is a cross-sectional view showing a permanent magnet type rotary electric machine according to Embodiment 2 of the present invention
  • FIG. 12 is a view around a permanent magnet of a rotor in a permanent magnet type rotary electric machine according to Embodiment 2 of the present invention. It is a principal part cross-sectional view shown. 11 and 12 are illustrated with hatching omitted for the sake of convenience.
  • the permanent magnet type rotating electrical machine 1A is configured of a stator 10 and a rotor 20A. That is, the permanent magnet type rotary electric machine 1A is configured the same as the permanent magnet type rotary electric machine 1 of the first embodiment except that the rotor 20A is used instead of the rotor 20.
  • the rotor 20A is composed of a rotor core 21A fixed to the rotating shaft 22 inserted at the axial center position, and a permanent magnet 23A mounted on the rotor core 21A.
  • a magnet insertion hole 24A having a substantially rectangular cross section which penetrates the outer peripheral portion of the rotor core 21A in the axial direction, is convex toward the axis of the rotary shaft 22, and the outer periphery of the rotor core 21A
  • Twenty-four pairs of magnet insertion holes 24A arranged in a V shape extending toward the surface are formed at equal angular pitches in the circumferential direction.
  • One permanent magnet 23A having a substantially rectangular cross section is inserted into each of the magnet insertion holes 24A.
  • the pair of permanent magnets 23 inserted into the pair of magnet insertion holes 24A is magnetized so that the opposite surfaces, ie, the surfaces on the outer peripheral side, have the same polarity.
  • the 24 pairs of permanent magnets 23A arranged in the circumferential direction are arranged so that the polarities on the outer circumferential side alternately become the N pole and the S pole in the circumferential direction for each pair.
  • the rotor core 21A is manufactured by laminating and integrating magnetic pieces punched out of a magnetic thin plate such as a magnetic steel sheet.
  • a pair of air gaps are formed to project from the magnet insertion holes 24A on both sides in the circumferential direction. These void portions become flux barriers 25Aa and 25Ab.
  • the flux barriers 25Aa and 25Ab communicate with the magnet insertion hole 24A except for the portion on the inner diameter side of the short side of the rectangular cross section of the magnet insertion hole 24A.
  • the inner wall surface on the outer diameter side of the flux barrier 25Aa communicating with the outer diameter side of the magnet insertion hole 24A extends circumferentially from the inner wall surface on the outer diameter side of the magnet insertion hole 24A, and gradually changes in inner diameter as it separates from the magnet insertion hole 24A. It is formed in a gentle curved surface that is displaced to the side.
  • the flux barriers 25Aa and 25Ab may be filled with varnish or the like in a state in which the permanent magnet 23A is inserted into the magnet insertion hole 24A.
  • the permanent magnet 23A is accommodated in each of the magnet insertion holes 24A with its movement in the circumferential direction being restricted by the portion on the inner diameter side of the short side of the rectangular cross section of the magnet insertion hole 24A.
  • the pair of permanent magnets 23A inserted in the pair of magnet insertion holes 24A constitutes one magnetic pole.
  • the permanent magnet 23A constituting one magnetic pole, the magnet insertion holes 24A, and the flux barriers 25Aa, 25Ab pass through the circumferential center position between the pair of magnet insertion holes 24A, and a plane including the axial center of the rotation shaft 22 is a plane of symmetry. It is configured to be in plane symmetry.
  • the radial direction in this plane of symmetry is the d axis. Further, the radial direction passing through the center position between the d axes adjacent in the circumferential direction is the q axis.
  • a notch 26 for reducing torque ripple is disposed on the q-axis with the groove direction as an axial direction by recessing the outer peripheral surface of the rotor core 21A.
  • the notch 26 is configured in a single R shape.
  • A is the minimum iron width in the iron portion on the outer diameter side of the magnet insertion hole 24A and the flux barrier 25Aa
  • B is the minimum iron width in the iron portion between the notch 26 and the flux barrier 25Aa
  • C is , The minimum iron width in the iron portion between the flux barriers 25Aa facing each other across the q-axis
  • D is the circumferential width of the notch 26.
  • the rotor core 21A is manufactured so as to satisfy the relationship of A ⁇ B, C ⁇ D, and A ⁇ C. Further, C is twice as large as the thickness of the magnetic thin plate constituting the rotor core 21A. Therefore, also in the second embodiment, the same effect as that of the first embodiment can be obtained.
  • the concentrated winding permanent magnet type rotating electrical machine of 24 poles and 36 slots is used, but in the case of a concentrated pole permanent magnet type rotating electrical machine of 2-pole 3-slot series, the number of poles is equal to the number of slots. It is not limited to.

Abstract

A permanent magnet type rotating electric machine relating to the present invention is provided with: a magnet inserting hole that is formed such that the magnet inserting hole penetrates a rotor core in the axis direction; a permanent magnet inserted into the magnet inserting hole; a flux barrier that is formed such that the flux barrier protrudes from the magnet inserting hole to both sides in the peripheral direction, and penetrates the rotor core in the axis direction; and a cutout that is formed on a q axis of the outer peripheral surface of the rotor core such that the cutout extends from one end to the other end in the axis direction. When the minimum iron width on the q axis is represented by C, and the cutout width in the peripheral direction is represented by D, C and D satisfy the relationship of C<D.

Description

永久磁石式回転電機Permanent magnet type rotating electric machine
 この発明は、永久磁石式回転電機に関し、特に回転子構造に関する。 The present invention relates to a permanent magnet type rotating electrical machine, and more particularly to a rotor structure.
 産業用モータ、電気自動車、ハイブリッド自動車などに適用される回転電機においては、小型化・高出力化のため、外部からの界磁エネルギーを不要とする永久磁石式回転電機が広く用いられる。この種の回転電機の固定子巻線構造としては、一つのティースにコイルが巻回される集中巻と、複数のティースにまたがってコイルが巻回される分布巻との2つに大別される。集中巻は、分布巻に比べ、コイルエンド長が短いため、モータ軸長を短くすることができる。一方で、集中巻の固定子に発生する起磁力は、トルクに寄与しない低次の高調波成分が含まれており、これらの影響により、トルクリプルの増加、低次の変形モードを有する電磁加振力の発生などを引き起こす。そして、電磁加振力が、回転電機の部品、例えばフレーム、の共振周波数と一致する特定の回転数の時に、フレームが共振して騒音が発生する。 In a rotating electric machine applied to an industrial motor, an electric car, a hybrid car and the like, a permanent magnet type rotating electric machine which does not require external field energy for size reduction and high output is widely used. The stator winding structure of this type of rotating electrical machine is roughly classified into two types: concentrated winding in which a coil is wound on one tooth and distributed winding in which a coil is wound across a plurality of teeth. Ru. The concentrated winding has a shorter coil end length than the distributed winding, so the motor axial length can be shortened. On the other hand, the magnetomotive force generated in the concentrated winding stator includes low-order harmonic components that do not contribute to torque, and due to these effects, an increase in torque ripple and an electromagnetic excitation having a low-order deformation mode Cause the occurrence of force and so on. Then, the frame resonates to generate noise when the electromagnetic excitation force is at a specific rotation number that matches the resonance frequency of a component of the rotating electrical machine, for example, the frame.
 このような状況を鑑み、回転子鉄心の外周面のq軸上に切り欠き部を設け、トルクリプルを低減する従来の永久磁石式回転電機が提案されていた(例えば、特許文献1、2参照)。 In view of such a situation, a conventional permanent magnet type rotary electric machine has been proposed in which a notch is provided on the q axis of the outer peripheral surface of the rotor core to reduce torque ripple (see, for example, Patent Documents 1 and 2) .
特開2017-055560号公報Unexamined-Japanese-Patent No. 2017-055560 特許第5450472号公報Patent No. 5450472 gazette
 特許文献1,2に記載の従来の永久磁石式回転電機は、トルクリプルを低減する構造となっている。しかしながら、この構造は、必ずしも振動・騒音の原因となるティースに発生する径方向電磁力を低減できるものではなかった。 The conventional permanent magnet type rotary electric machines described in Patent Documents 1 and 2 have a structure that reduces torque ripple. However, this structure can not necessarily reduce the radial electromagnetic force generated on the teeth causing vibration and noise.
 この発明は、上記のような課題を解決するためになされたものであり、振動・騒音の原因となるティースに発生する径方向電磁力を低減できる永久磁石式回転電機を得ることを目的とする。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a permanent magnet type rotary electric machine capable of reducing the radial electromagnetic force generated on teeth causing vibration and noise. .
 この発明に係る永久磁石式回転電機は、ティースが円環状のコアバックから径方向に突出して周方向に複数配列され、スロットが周方向に隣り合う上記ティースの間に形成された固定子鉄心、および上記固定子鉄心に装着された固定子巻線を有する固定子と、上記固定子と磁気的空隙を介して、上記固定子の内周側に、同軸に、かつ回転可能に配設された円環状の回転子鉄心、および上記回転子鉄心に周方向に複数配設されて磁極を構成する永久磁石を有する回転子と、を備える。上記回転子鉄心を軸方向に貫通するように形成されて、上記永久磁石が挿入される磁石挿入孔と、上記磁石挿入孔から周方向両側に突出し、かつ上記回転子鉄心を軸方向に貫通するように形成されたフラックスバリアと、上記回転子鉄心の外周面のq軸上に、軸方向の一端から他端に至るように形成された切り欠き部と、を備え、上記q軸における最小鉄幅をC、上記切り欠き部の周方向幅をDとしたときに、上記CおよびDは、C<Dの関係を満足している。 In the permanent magnet type rotating electrical machine according to the present invention, a stator iron core is formed between the teeth in which teeth are radially projected from an annular core back and circumferentially arranged and slots are adjacent to each other in the circumferential direction; And a stator having a stator winding mounted on the stator core, and coaxially and rotatably disposed on the inner peripheral side of the stator via the magnetic gap with the stator. An annular rotor core, and a rotor having a plurality of permanent magnets circumferentially arranged on the rotor core to constitute a magnetic pole. The rotor core is formed so as to penetrate in the axial direction, and the magnet insertion hole into which the permanent magnet is inserted, and both circumferentially protruding from the magnet insertion hole, and penetrates the rotor core in the axial direction A flux barrier formed as described above, and a notch formed on one end of the axial direction to the other end on the q axis of the outer peripheral surface of the rotor core, and the minimum iron in the q axis When the width is C and the circumferential width of the notch is D, the C and D satisfy the relationship of C <D.
 この発明では、切り欠き部の周方向幅Dがq軸における最小鉄幅Cより大きくなっている。これにより、ティースに発生する径方向電磁力を低減でき、振動・騒音の発生が抑制される。 In the present invention, the circumferential width D of the notch portion is larger than the minimum iron width C in the q axis. As a result, the radial electromagnetic force generated in the teeth can be reduced, and the generation of vibration and noise can be suppressed.
この発明の実施の形態1に係る永久磁石式回転電機を示す横断面図である。It is a cross-sectional view which shows the permanent-magnet type rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る永久磁石式回転電機における回転子の永久磁石周りを示す要部横断面図である。It is a principal part cross-sectional view which shows the surroundings of the permanent magnet of the rotor in the permanent-magnet type rotary electric machine which concerns on Embodiment 1 of this invention. A>Cの関係を満足しつつ、鉄心の円筒状の外周面とフラックスバリアの外径側壁面とを平行とした回転子鉄心を用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を示す図である。Stress generated when a centrifugal force is applied to a rotor using a rotor core in which the cylindrical outer peripheral surface of the iron core and the outer diameter side wall surface of the flux barrier are parallel while satisfying the relationship A> C. It is a figure which shows the result of having analyzed. A>Cの関係を満足しつつ、鉄心の円筒状の外周面とフラックスバリアの外径側壁面と間の鉄部の幅をq軸に近づくにつれ広くなるようにした回転子鉄心を用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を示す図である。A rotor core using a rotor core in which the width of the iron portion between the cylindrical outer peripheral surface of the iron core and the outer diameter side wall surface of the flux barrier is increased toward the q axis while satisfying the relationship A> C. It is a figure which shows the result of having analyzed the stress which generate | occur | produces when a centrifugal force is made to act on a child. 図4の解析に用いられた回転子鉄心において、フラックスバリアの磁石挿入孔からの突出量を小さくし、A<Cの関係を満足するようにした回転子鉄心を用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を示す図である。In the rotor core used in the analysis of FIG. 4, the rotor core using a rotor core with a smaller amount of protrusion of the flux barrier from the magnet insertion hole and satisfying the relationship of A <C is subjected to centrifugal force. It is a figure which shows the result of having analyzed the stress which generate | occur | produces when making it act. 図4の解析に用いられた回転子鉄心において、A<Bとなるように切り欠き部を形成した回転子鉄心を用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を示す図である。In the rotor core used in the analysis of FIG. 4, the result of analyzing the stress generated when a centrifugal force is applied to the rotor using the rotor core having the notched portion so as to satisfy A <B FIG. 図3の解析に用いた回転子を搭載した回転電機において、電流通電時に発生する磁束線を解析した結果を示す図である。FIG. 6 is a diagram showing the results of analysis of magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 3 is mounted. 図4の解析に用いた回転子を搭載した回転電機において、電流通電時に発生する磁束線を解析した結果を示す図である。FIG. 5 is a diagram showing a result of analysis of magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 4 is mounted. 図6の解析に用いた回転子を搭載した回転電機において、電流通電時に発生する磁束線を解析した結果を示す図である。FIG. 7 is a diagram showing a result of analysis of magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 6 is mounted. 回転子鉄心の最小鉄幅Cを変化させて、ティースに発生する径方向電磁力を解析した結果を示す図である。It is a figure which shows the result of having analyzed the radial direction electromagnetic force which generate | occur | produces to teeth by changing the minimum iron width C of a rotor core, and changing it. この発明の実施の形態2に係る永久磁石式回転電機を示す横断面図である。It is a cross-sectional view which shows the permanent-magnet type rotary electric machine which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る永久磁石式回転電機における回転子の永久磁石周りを示す要部横断面図である。It is a principal part cross-sectional view which shows the surroundings of the permanent magnet of the rotor in the permanent-magnet type rotary electric machine which concerns on Embodiment 2 of this invention.
 実施の形態1.
 図1は、この発明の実施の形態1に係る永久磁石式回転電機を示す横断面図、図2は、この発明の実施の形態1に係る永久磁石式回転電機における回転子の永久磁石周りを示す要部横断面図である。なお、横断面図とは、回転子の軸心と直交する断面を示す断面図である。また、図1および図2は、便宜上、ハッチングを省略して図示されている。
Embodiment 1
FIG. 1 is a cross-sectional view showing a permanent magnet type rotary electric machine according to Embodiment 1 of the present invention, and FIG. 2 is a view around a permanent magnet of a rotor in the permanent magnet type rotary electric machine according to Embodiment 1 of the present invention. It is a principal part cross-sectional view shown. In addition, a cross-sectional view is a cross-sectional view which shows the cross section orthogonal to the axial center of a rotor. 1 and 2 are illustrated with hatching omitted for convenience.
 図1において、永久磁石式回転電機1は、固定子10と、回転子20と、から構成される。 In FIG. 1, the permanent magnet type rotating electric machine 1 is composed of a stator 10 and a rotor 20.
 固定子10は、固定子鉄心11と、固定子鉄心11に装着された固定子巻線15と、から構成される。固定子鉄心11は、円環状のコアバック12と、コアバック12に形成された36本のティース13と、から構成される。36本のティース13は、それぞれ、コアバック12の内周面から径方向内方に突出して、周方向に等角ピッチで配列されている。隣り合うティース13間に形成されたスペースがスロット14となる。固定子巻線15は、ティース13のそれぞれに巻回された36本の集中巻きコイル16から構成される。固定子巻線15は、集中巻きコイル16を結線して、例えば三相巻線に構成される。 The stator 10 is composed of a stator core 11 and a stator winding 15 mounted on the stator core 11. The stator core 11 is composed of an annular core back 12 and 36 teeth 13 formed on the core back 12. The 36 teeth 13 respectively protrude radially inward from the inner circumferential surface of the core back 12 and are arranged at equal angular pitches in the circumferential direction. The space formed between the adjacent teeth 13 is a slot 14. The stator winding 15 is composed of 36 concentrated winding coils 16 wound around each of the teeth 13. The stator winding 15 connects the concentrated winding coil 16 and is configured, for example, as a three-phase winding.
 回転子20は、軸心位置に挿入された回転軸22に固着された回転子鉄心21と、回転子鉄心21に装着された永久磁石23と、から構成される。回転子鉄心21には、回転子鉄心21の外周部を軸方向に貫通する磁石挿入孔24が、周方向に等角ピッチで24個形成されている。磁石挿入孔24のそれぞれには、一つの永久磁石23が挿入される。周方向に配列した永久磁石23は、外周側の極性が周方向に交互にN極とS極となるように、着磁されている。1つの永久磁石23が1磁極を構成する。回転子鉄心21は、電磁鋼板などの磁性薄板から打ち抜かれた磁性片を積層一体化して作製される。 The rotor 20 is composed of a rotor core 21 fixed to a rotating shaft 22 inserted at an axial center position, and a permanent magnet 23 mounted on the rotor core 21. In the rotor core 21, 24 magnet insertion holes 24 axially penetrating the outer peripheral portion of the rotor core 21 are formed at equal angular pitches in the circumferential direction. One permanent magnet 23 is inserted into each of the magnet insertion holes 24. The permanent magnets 23 arranged in the circumferential direction are magnetized such that the polarity on the outer circumferential side alternately becomes the N pole and the S pole in the circumferential direction. One permanent magnet 23 constitutes one magnetic pole. The rotor core 21 is manufactured by laminating and integrating magnetic pieces punched out of a magnetic thin plate such as a magnetic steel sheet.
 永久磁石式回転電機1は、固定子10の内周側に、固定子10との間に磁気的空隙を介して、固定子10と同軸に、かつ回転可能に回転子20を配置して、構成される。このように構成された永久磁石式回転電機は、24極36スロットの回転電機、すなわち2極3スロット系列の回転電機となる。 The permanent magnet type rotary electric machine 1 has a rotor 20 coaxially and rotatably disposed with the stator 10 on the inner circumferential side of the stator 10 with a magnetic air gap between the stator 10 and the stator 10, Configured The permanent magnet type rotating electrical machine configured in this way is a rotating electrical machine of 24 poles and 36 slots, that is, a rotating electrical machine of 2-pole 3-slot series.
 ここで、回転子20の要部の構成について図2を参照しつつ説明する。 Here, the configuration of the main part of the rotor 20 will be described with reference to FIG.
 磁石挿入孔24は、略長方形断面の穴形状に形成され、長方形断面の長辺の長さ方向を周方向に向けて、回転子鉄心21の外周部に配置されている。一対の空隙部が、磁石挿入孔24から周方向両側に突出するように形成されている。この空隙部がフラックスバリア25となる。フラックスバリア25は、磁石挿入孔24の長方形断面の短辺の内径側の部分を除いて、磁石挿入孔24と連通している。フラックスバリア25の外径側の内壁面は、磁石挿入孔24の外径側の内壁面から周方向に延びて、磁石挿入孔24から離れるにつれ漸次内径側に変位するなだらかな曲面に形成されている。なお、フラックスバリア25には、永久磁石23が磁石挿入孔24に挿入されている状態で、ワニスなどが充填されてもよい。 The magnet insertion hole 24 is formed in a hole shape having a substantially rectangular cross section, and is disposed on the outer peripheral portion of the rotor core 21 with the long side of the rectangular cross section directed circumferentially. A pair of air gaps are formed so as to project from the magnet insertion hole 24 on both sides in the circumferential direction. This void portion becomes the flux barrier 25. The flux barrier 25 communicates with the magnet insertion hole 24 except for the portion on the inner diameter side of the short side of the rectangular cross section of the magnet insertion hole 24. The inner wall surface on the outer diameter side of the flux barrier 25 extends in the circumferential direction from the inner wall surface on the outer diameter side of the magnet insertion hole 24 and is formed in a gentle curved surface gradually displaced to the inner diameter side as it is separated from the magnet insertion hole 24 There is. The flux barrier 25 may be filled with varnish or the like in a state where the permanent magnet 23 is inserted into the magnet insertion hole 24.
 永久磁石23は、磁石挿入孔24と同等の長方形断面に形成されている。永久磁石23は、磁石挿入孔24の長方形断面の短辺の内径側の部分により周方向の移動を規制されて、磁石挿入孔24のそれぞれに収納されている。永久磁石23の長方形断面の長辺の長さ方向の中央位置を通る半径方向がd軸となる。また、周方向に隣り合うd軸間の中央位置を通る半径方向がq軸となる。なお、d軸は、永久磁石23の磁束軸である。q軸は、d軸と電気的、磁気的に直交する軸である。 The permanent magnet 23 is formed in a rectangular cross section equivalent to the magnet insertion hole 24. The permanent magnet 23 is accommodated in each of the magnet insertion holes 24 with its circumferential movement restricted by a portion on the inner diameter side of the short side of the rectangular cross section of the magnet insertion hole 24. The radial direction passing through the central position in the longitudinal direction of the long side of the rectangular cross section of the permanent magnet 23 is the d axis. Further, the radial direction passing through the center position between the d axes adjacent in the circumferential direction is the q axis. The d axis is a magnetic flux axis of the permanent magnet 23. The q-axis is an axis electrically and magnetically orthogonal to the d-axis.
 トルクリプルを低減させるための切り欠き部26が、回転子鉄心21の外周面を窪ませて、溝方向を軸方向として、q軸上に形成されている。切り欠き部26は、単一のR形状、すなわち単一の曲率半径の円弧を軸方向に連ねた溝形状に構成されている。 A notch 26 for reducing torque ripple is formed on the q-axis with the groove direction as an axial direction by recessing the outer peripheral surface of the rotor core 21. The notch portion 26 is configured in a single R shape, that is, a groove shape in which circular arcs of a single radius of curvature are axially connected.
 ここで、回転子鉄心21の各部の寸法関係について説明する。Aは、磁石挿入孔24とフラックスバリア25の外径側の鉄部における最小鉄幅、Bは、切り欠き部26とフラックスバリア25との間の鉄部における最小鉄幅、Cは、q軸を挟んで相対するフラックスバリア25の間の鉄部における最小鉄幅、Dは、切り欠き部26の周方向幅である。 Here, the dimensional relationship of each part of the rotor core 21 will be described. A is the minimum iron width at the iron portion on the outer diameter side of the magnet insertion hole 24 and the flux barrier 25, B is the minimum iron width at the iron portion between the notch 26 and the flux barrier 25, C is the q axis The minimum iron width D in the iron portion between the flux barriers 25 opposed to each other across the surface is the circumferential width of the notch 26.
 まず、電磁鋼板などの磁性薄板をプレス成形する際に、Cを磁性薄板の板厚の2倍より小さくすると、打ち抜き精度が悪化する。良好な打ち抜き精度を確保するには、Cを磁性薄板の板厚の2倍以上とすることが望ましい。この実施の形態1では、Cは磁性薄板の板厚の2倍としている。これにより、回転子鉄心21の加工性を高めている。 First, when pressing a magnetic thin plate such as a magnetic steel plate or the like, if C is smaller than twice the thickness of the magnetic thin plate, the punching accuracy is degraded. In order to ensure a good punching accuracy, it is desirable to make C be twice or more the thickness of the magnetic thin plate. In the first embodiment, C is twice the thickness of the magnetic thin plate. Thereby, the workability of the rotor core 21 is enhanced.
 特許文献1,2では、切り欠き部が複雑なR形状で形成されていた。この実施の形態1では、切り欠き部26が単一のR形状、すなわち単一の曲率半径の円弧を軸方向に連ねた溝形状に形成されている。これにより、回転子鉄心21の寸法検査が容易となる。 In Patent Documents 1 and 2, the notch portion is formed in a complicated R shape. In the first embodiment, the notch portion 26 is formed in a single R shape, that is, a groove shape in which circular arcs of a single radius of curvature are axially connected. This facilitates dimensional inspection of the rotor core 21.
 つぎに、q軸周りの形状を変えた回転子鉄心を用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を図3から図6に示す。 Next, results of analysis of stress generated when centrifugal force is applied to a rotor using a rotor core whose shape around q axis is changed are shown in FIG. 3 to FIG.
 図3は、A>Cの関係を満足しつつ、鉄心の円筒状の外周面とフラックスバリア25の外径側壁面とを平行とした回転子鉄心21Aを用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を示した。なお、切り欠き部26は、形成されていない。 FIG. 3 shows that the centrifugal force is applied to the rotor using the rotor iron core 21A in which the cylindrical outer peripheral surface of the iron core and the outer diameter side wall surface of the flux barrier 25 are parallel while satisfying the relationship A> C. The results of analyzing the stress generated when In addition, the notch part 26 is not formed.
 図3から、回転子鉄心21Aの外周面とフラックスバリア25の外径側壁面とを平行とすると、フラックスバリア25のq軸側の角部近傍に応力が集中することが確認された。図3中、数字は、主応力が最も高い部位を示し、図3の主応力の最大値を基準とした主応力の数値を示している。 It was confirmed from FIG. 3 that when the outer peripheral surface of the rotor core 21A and the outer diameter side wall surface of the flux barrier 25 are parallel to each other, stress is concentrated in the vicinity of the corner on the q axis side of the flux barrier 25. In FIG. 3, the numbers indicate the portions where the principal stress is the highest, and indicate the numerical values of the principal stress based on the maximum value of the principal stress in FIG. 3.
 図4は、A>Cの関係を満足しつつ、鉄心の円筒状の外周面とフラックスバリア25の外径側壁面と間の鉄部の幅をq軸に近づくにつれ広くなるようにした回転子鉄心21Bを用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を示した。なお、切り欠き部26は形成されていない。回転子鉄心21BのA,Cは、図3の解析に用いられた回転子鉄心21AのA,Cと同じとした。 FIG. 4 is a rotor in which the width of the iron portion between the cylindrical outer peripheral surface of the iron core and the outer diameter side wall surface of the flux barrier 25 becomes wider as it approaches the q axis while satisfying the relationship A> C. The result of analyzing the stress generated when centrifugal force is applied to the rotor using the iron core 21B is shown. In addition, the notch part 26 is not formed. A and C of the rotor core 21B were the same as A and C of the rotor core 21A used in the analysis of FIG.
 図4中、数字は、主応力が最も高い部位を示し、図3の主応力の最大値を基準とした主応力の数値を示している。図4から、回転子鉄心21Bの外周面とフラックスバリア25の外径側壁面との間の鉄部の最小鉄幅Aが同じであっても、回転子鉄心21Bは、回転子鉄心21Aに対して、主応力を6割近く低減できたことが確認された。 In FIG. 4, the numbers indicate the portions where the principal stress is the highest, and indicate the numerical values of the principal stress based on the maximum value of the principal stress in FIG. 3. From FIG. 4, even if the minimum iron width A of the iron portion between the outer peripheral surface of rotor core 21B and the outer diameter side wall surface of flux barrier 25 is the same, rotor core 21B is relative to rotor core 21A. It was confirmed that the principal stress could be reduced by nearly 60%.
 図5は、図4の解析に用いられた回転子鉄心21Bにおいて、フラックスバリア25の磁石挿入孔からの突出量を小さくし、A<Cの関係を満足するようにした回転子鉄心21Cを用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を示した。なお、切り欠き部26は、形成されていない。 In the rotor core 21B used in the analysis of FIG. 4, FIG. 5 uses a rotor core 21C in which the amount of protrusion of the flux barrier 25 from the magnet insertion hole is reduced and the relationship A <C is satisfied. The results of analyzing the stress generated when centrifugal force is applied to the rotor are shown. In addition, the notch part 26 is not formed.
 図5中、数字は、主応力が最も高い部位を示し、図3の主応力の最大値を基準とした主応力の数値を示している。図5から、回転子鉄心21Cの外周面とフラックスバリア25の外径側壁面との間の鉄部の最小鉄幅Aが同じであっても、回転子鉄心21Cは、回転子鉄心21Aに対して、主応力を5割近く低減できたことが確認された。しかし、回転子鉄心21Cは、回転子鉄心21Bに対して、主応力が増加していることが確認された。このことから、フラックスバリア25に作用する主応力を低減するためには、加工可能な範囲内で、周方向に隣り合うフラックスバリア25間の最小鉄幅Cをできるだけ狭くすればよいことがわかる。 In FIG. 5, the numbers indicate the portions where the principal stress is the highest, and indicate the numerical values of the principal stress based on the maximum value of the principal stress in FIG. 3. From FIG. 5, even if the minimum iron width A of the iron portion between the outer peripheral surface of rotor core 21C and the outer diameter side wall surface of flux barrier 25 is the same, rotor core 21C is relative to rotor core 21A. It was confirmed that the principal stress could be reduced by nearly 50%. However, it was confirmed that the main stress of the rotor core 21C is increased with respect to the rotor core 21B. From this, it can be understood that in order to reduce the main stress acting on the flux barrier 25, the minimum iron width C between the flux barriers 25 adjacent in the circumferential direction may be made as narrow as possible within the processable range.
 図6は、図4の解析に用いられた回転子鉄心21Bにおいて、A<Bとなるように切り欠き部26を形成した回転子鉄心21を用いた回転子に遠心力を作用させたときに発生する応力を解析した結果を示した。 FIG. 6 shows that when a centrifugal force is applied to the rotor using the rotor core 21 in which the notches 26 are formed such that A <B in the rotor core 21B used in the analysis of FIG. 4. The results of analyzing the generated stress are shown.
 図6中、数字は、主応力が最も高い部位を示し、図3の主応力の最大値を基準とした主応力の数値を示している。図6から、回転子鉄心21は、回転子鉄心21Bと同等の主応力分布が得られることが確認できた。さらに、図6から、回転子鉄心21は、回転子鉄心21Bに対して、主応力を低減できることが確認できた。 In FIG. 6, the numbers indicate the portions where the principal stress is the highest, and indicate the numerical values of the principal stress based on the maximum value of the principal stress in FIG. 3. It was confirmed from FIG. 6 that the rotor core 21 can obtain a principal stress distribution equivalent to that of the rotor core 21B. Furthermore, it was confirmed from FIG. 6 that the rotor core 21 can reduce the principal stress with respect to the rotor core 21B.
 図3から図6の解析結果から、A<Bを満足していれば、q軸上に切り欠き部26を設けた場合、切り欠き部26を設けない場合に比べて、遠心力により回転子鉄心に発生する応力を低減できることがわかった。つまり、A<Bを満足する回転子鉄心では、切り欠き部26を設けることで、遠心力により回転子鉄心に発生する応力を分散し、主応力のピーク値を低減でき、かつトルクリプルを低減できることがわかった。さらに、B>A>Cを満足していれば、フラックスバリア25に作用する主応力をさらに低減できることがわかった。 According to the analysis results of FIGS. 3 to 6, when A <B is satisfied, when the notched portion 26 is provided on the q axis, compared with the case where the notched portion 26 is not provided, the rotor has a centrifugal force. It was found that the stress generated in the iron core can be reduced. That is, in the rotor core satisfying A <B, providing the notch 26 disperses the stress generated in the rotor core by the centrifugal force, and can reduce the peak value of the main stress and reduce the torque ripple. I understand. Furthermore, it was found that the principal stress acting on the flux barrier 25 can be further reduced if B> A> C is satisfied.
 つぎに、図3の解析に用いた回転子を搭載した回転電機において、電流通電時に発生する磁束線を解析した結果を図7に示す。図7のP部に示されるように、ティース13から出た磁束の一部は、回転子鉄心21Aを通らずに周方向に流れ、隣のティース13に鎖交することがわかった。これは、回転子鉄心21Aの外周面とフラックスバリア25の外径側壁面とが平行となっていることにより、回転子鉄心21Aの外周面とフラックスバリア25の外径側壁面との間の鉄部が、当該鉄部を鎖交する永久磁石23の磁束によって磁気飽和したためと推考される。つまり、固定子の磁束が、フラックスバリア25の外周側の鉄部を通りにくい状態になっているためと推考される。したがって、図7のP部を通る固定子の磁束は、トルクに寄与していないとともに、ティース13における径方向電磁力の発生にもほとんど寄与していない。 Next, in the rotating electrical machine on which the rotor used in the analysis of FIG. 3 is mounted, the results of analyzing the magnetic flux lines generated at the time of current conduction are shown in FIG. As shown in part P of FIG. 7, it was found that a part of the magnetic flux emitted from the teeth 13 flows in the circumferential direction without passing through the rotor core 21A, and interlinks with the adjacent teeth 13. This is because the outer peripheral surface of the rotor core 21A and the outer diameter side wall surface of the flux barrier 25 are parallel to each other, so that iron between the outer peripheral surface of the rotor core 21A and the outer diameter side wall surface of the flux barrier 25 It is presumed that the part is magnetically saturated by the magnetic flux of the permanent magnet 23 linking the iron part. That is, it is considered that the magnetic flux of the stator is hard to pass through the iron portion on the outer peripheral side of the flux barrier 25. Therefore, the magnetic flux of the stator passing through the portion P in FIG. 7 does not contribute to the torque and hardly contributes to the generation of the radial electromagnetic force in the teeth 13.
 図4の解析に用いた回転子を搭載した回転電機において、電流通電時に発生する磁束線を解析した結果を図8に示す。図8のP部に示されるように、ティース13から出た磁束の一部は、回転子鉄心21Bのq軸上の表面を通って、隣のティース13に鎖交することがわかった。これは、回転子鉄心21Bの外周面とフラックスバリア25の外径側壁面とが非平行となっていることにより、回転子鉄心21Bの外周面とフラックスバリア25の外径側壁面との間の鉄部の最小鉄幅部のみが、当該鉄部を鎖交する永久磁石23の磁束によって磁気飽和したためと推考される。つまり、固定子の磁束が、フラックスバリア25の外周側の鉄部を通りやすい状態になっているためと推考される。したがって、図8のP部を通る固定子の磁束は、回転子鉄心21Bの表面の一部のみを鎖交しているため、トルクに寄与していない。しかし、図8のP部を通る固定子の磁束は、ティース13を径方向に通るため、ティース13に径方向電磁力が発生する。 FIG. 8 shows the results of analysis of magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 4 is mounted. As shown in part P of FIG. 8, it was found that a part of the magnetic flux coming out of the teeth 13 interlinks with the adjacent teeth 13 through the surface on the q axis of the rotor core 21B. This is because the outer peripheral surface of the rotor core 21B and the outer diameter side wall surface of the flux barrier 25 are not parallel to each other, so that the space between the outer peripheral surface of the rotor core 21B and the outer diameter side wall of the flux barrier 25 is It is presumed that only the minimum iron width portion of the iron portion is magnetically saturated by the magnetic flux of the permanent magnet 23 linking the iron portion. That is, it is considered that the magnetic flux of the stator is likely to pass through the iron portion on the outer peripheral side of the flux barrier 25. Therefore, the magnetic flux of the stator passing through the P portion in FIG. 8 does not contribute to the torque because it links only a part of the surface of the rotor core 21B. However, since the magnetic flux of the stator passing through the portion P in FIG. 8 passes the teeth 13 in the radial direction, a radial electromagnetic force is generated in the teeth 13.
 図6の解析に用いた回転子を搭載した回転電機において、電流通電時に発生する磁束線を解析した結果を図9に示す。図9のP部に示されるように、ティース13から出た磁束の一部は、回転子鉄心21を通らずに、隣のティース13に鎖交することがわかった。この回転電機においては、回転子鉄心21の外周面とフラックスバリア25の外径側壁面とが非平行となっているが、q軸上に切り欠き部26が設けられている。これにより、q軸上における固定子と回転子との間の磁気的空隙がひろがり、固定子の磁束が、回転子鉄心21の外周面とフラックスバリア25の外径側壁面との間の鉄部を通りにくい状態となっているためと推考される。したがって、図9のP部を通る固定子の磁束は、トルクに寄与していないとともに、ティース13に発生する径方向電磁力を低減できる。 FIG. 9 shows the result of analyzing the magnetic flux lines generated at the time of current application in the rotating electrical machine on which the rotor used in the analysis of FIG. 6 is mounted. As shown in part P of FIG. 9, it was found that a part of the magnetic flux emitted from the teeth 13 interlinks with the adjacent teeth 13 without passing through the rotor core 21. In this electric rotating machine, although the outer peripheral surface of the rotor core 21 and the outer diameter side wall surface of the flux barrier 25 are not parallel, the notch 26 is provided on the q-axis. As a result, the magnetic air gap between the stator and the rotor on the q axis is expanded, and the magnetic flux of the stator is the iron portion between the outer peripheral surface of the rotor core 21 and the outer diameter side wall surface of the flux barrier 25. It is thought that it is difficult to pass through. Therefore, the magnetic flux of the stator passing through the portion P in FIG. 9 does not contribute to the torque, and the radial electromagnetic force generated in the teeth 13 can be reduced.
 図7から図9の解析結果から、切り欠き部26をq軸上に設けることにより、回転子鉄心21のq軸上の表面のみを通る固定子の磁束をなくし、ティース13に発生する径方向電磁力を低減できることがわかる。 From the analysis results of FIG. 7 to FIG. 9, by providing the notch 26 on the q axis, the magnetic flux of the stator passing only the surface on the q axis of the rotor core 21 is eliminated and the radial direction generated in the teeth 13 It can be seen that the electromagnetic force can be reduced.
 図10は、回転子鉄心の最小鉄幅Cを変化させて、ティースに発生する径方向電磁力を解析した結果を示す図である。図10中、横軸は、D/Cであり、縦軸は、ティースに発生する径方向電磁力(6次成分)である。また、各線は、Cを一定としてDを変化させたときのティースに発生する径方向電磁力を示している。また、Cは、線毎に変えている。 FIG. 10 is a diagram showing the result of analyzing the radial electromagnetic force generated in the teeth by changing the minimum iron width C of the rotor core. In FIG. 10, the horizontal axis is D / C, and the vertical axis is radial electromagnetic force (sixth component) generated in the teeth. Each line shows radial electromagnetic force generated on the teeth when C is made constant and D is changed. Moreover, C is changing for every line.
 一般的に、回転電機においては、固定子と回転子との間の磁気的空隙で、電磁加振力が発生する、この電磁加振力により、固定子のティースに径方向電磁力が発生する。この径方向電磁力により、固定子、固定子の周囲の構造部材などが振動し、騒音が発生する。固定子のティースには、様々な時間成分の径方向電磁力、例えば固定子の変形モードが0次、時間成分が6次の径方向電磁力が発生する。2極3スロット系列の集中巻き永久磁石式回転電機では、特に変形モードが0次、時間成分が6次の径方向電磁力の影響が大きいことが知られている。 In general, in a rotating electrical machine, an electromagnetic excitation force is generated in a magnetic gap between a stator and a rotor. The electromagnetic excitation force generates a radial electromagnetic force in teeth of a stator. . The radial electromagnetic force vibrates the stator, structural members around the stator, and the like to generate noise. In the teeth of the stator, radial direction electromagnetic forces of various time components, for example, radial direction electromagnetic force whose deformation mode of the stator is zero order and whose sixth order time component is generated. In the concentrated winding permanent magnet type rotary electric machine of 2 pole 3 slot series, it is known that the influence of the direction of the radial direction of the deformation mode is particularly large and the time component is 6 order is large.
 図10から、Cを一定とし、Dを大きくすると、ティースに発生する径方向電磁力が低下することが分かった。そして、D/Cが1以下の領域では、D/Cの値が大きくなるにつれて、ティースに発生する径方向電磁力が大きく低下し、D/Cが1を超えると、D/Cの値が大きくなるにつれて、ティースに発生する径方向電磁力がなだらかに低下し、D/Cが1.6以上となると、D/Cの値に依存せずに、ティースに発生する径方向電磁力がほぼ一定となることが分かった。 From FIG. 10, it was found that when C is fixed and D is increased, the radial electromagnetic force generated in the teeth decreases. Then, in a region where D / C is 1 or less, as the value of D / C increases, the radial electromagnetic force generated in the teeth decreases significantly, and when D / C exceeds 1, the value of D / C becomes As the radial direction electromagnetic force generated in the teeth gradually decreases as it becomes larger and the D / C becomes 1.6 or more, the radial direction electromagnetic force generated in the teeth is almost independent of the value of the D / C. It turned out to be constant.
 このことから、CとDの一方を決定し、他方をC<Dを満足するように決定することで、ティースに発生する径方向電磁力(6次成分)を小さくすることができる。さらに、D/C≧1.6を満足するようにCとDとを決定することで、ティースに発生する径方向電磁力(6次成分)をより小さくすることができる。このように、q軸上に切り欠き部26を設けても、D/C≦1を満足するようにC,Dを設定した場合には、ティースに発生する径方向電磁力の低減量が小さく、振動・騒音の発生を効果的に抑制できない。したがって、ティースに発生する径方向電磁力を大きく低減させ、振動・騒音の発生を効果的に抑制するためには、C<Dを満足するようにC,Dを設定すればよく、D/C≧1.6を満足するようにC,Dを設定することがより好ましい。 From this, by determining one of C and D and determining the other so as to satisfy C <D, it is possible to reduce the radial electromagnetic force (sixth component) generated in the teeth. Furthermore, by determining C and D so as to satisfy D / C ≧ 1.6, the radial electromagnetic force (sixth component) generated in the teeth can be further reduced. As described above, even if the notch 26 is provided on the q axis, when C and D are set to satisfy D / C ≦ 1, the reduction amount of the radial electromagnetic force generated in the teeth is small. Vibration and noise can not be effectively suppressed. Therefore, in order to significantly reduce the radial electromagnetic force generated in the teeth and to effectively suppress the generation of vibration and noise, C and D should be set to satisfy C <D, D / C. It is more preferable to set C and D so as to satisfy ≧ 1.6.
 実施の形態2.
 図11は、この発明の実施の形態2に係る永久磁石式回転電機を示す横断面図、図12は、この発明の実施の形態2に係る永久磁石式回転電機における回転子の永久磁石周りを示す要部横断面図である。なお、図11および図12は、便宜上、ハッチングを省略して図示されている。
Second Embodiment
FIG. 11 is a cross-sectional view showing a permanent magnet type rotary electric machine according to Embodiment 2 of the present invention, and FIG. 12 is a view around a permanent magnet of a rotor in a permanent magnet type rotary electric machine according to Embodiment 2 of the present invention. It is a principal part cross-sectional view shown. 11 and 12 are illustrated with hatching omitted for the sake of convenience.
 図11において、永久磁石式回転電機1Aは、固定子10と、回転子20Aと、から構成される。すなわち、永久磁石式回転電機1Aは、回転子20に代えて回転子20Aを用いている点を除いて、上記実施の形態1の永久磁石式回転電機1と同様に構成されている。 In FIG. 11, the permanent magnet type rotating electrical machine 1A is configured of a stator 10 and a rotor 20A. That is, the permanent magnet type rotary electric machine 1A is configured the same as the permanent magnet type rotary electric machine 1 of the first embodiment except that the rotor 20A is used instead of the rotor 20.
 ここで、回転子20Aの要部の構成について図12を参照しつつ説明する。 Here, the configuration of the main part of the rotor 20A will be described with reference to FIG.
 回転子20Aは、軸心位置に挿入された回転軸22に固着された回転子鉄心21Aと、回転子鉄心21Aに装着された永久磁石23Aと、から構成される。回転子鉄心21Aには、回転子鉄心21Aの外周部を軸方向に貫通する、略長方形断面を有する磁石挿入孔24Aを、回転軸22の軸心に向かって凸となり、回転子鉄心21Aの外周面に向かって広がるV字形に配置した磁石挿入孔24Aの対が、周方向に等角ピッチで24対形成されている。磁石挿入孔24Aのそれぞれには、略長方形断面を有する一つの永久磁石23Aが挿入される。磁石挿入孔24Aの対に挿入された永久磁石23の対は、相対する面、すなわち外周側の面が同極となるように着磁されている。周方向に配列された24対の永久磁石23Aは、外周側の極性が対毎に周方向に交互にN極とS極となるように配列されている。回転子鉄心21Aは、電磁鋼板などの磁性薄板から打ち抜かれた磁性片を積層一体化して作製される。 The rotor 20A is composed of a rotor core 21A fixed to the rotating shaft 22 inserted at the axial center position, and a permanent magnet 23A mounted on the rotor core 21A. In the rotor core 21A, a magnet insertion hole 24A having a substantially rectangular cross section, which penetrates the outer peripheral portion of the rotor core 21A in the axial direction, is convex toward the axis of the rotary shaft 22, and the outer periphery of the rotor core 21A Twenty-four pairs of magnet insertion holes 24A arranged in a V shape extending toward the surface are formed at equal angular pitches in the circumferential direction. One permanent magnet 23A having a substantially rectangular cross section is inserted into each of the magnet insertion holes 24A. The pair of permanent magnets 23 inserted into the pair of magnet insertion holes 24A is magnetized so that the opposite surfaces, ie, the surfaces on the outer peripheral side, have the same polarity. The 24 pairs of permanent magnets 23A arranged in the circumferential direction are arranged so that the polarities on the outer circumferential side alternately become the N pole and the S pole in the circumferential direction for each pair. The rotor core 21A is manufactured by laminating and integrating magnetic pieces punched out of a magnetic thin plate such as a magnetic steel sheet.
 一対の空隙部が、磁石挿入孔24Aから周方向両側に突出するように形成されている。この空隙部が、フラックスバリア25Aa,25Abとなる。フラックスバリア25Aa,25Abは、磁石挿入孔24Aの長方形断面の短辺の内径側の部分を除いて、磁石挿入孔24Aと連通している。磁石挿入孔24Aの外径側に連通するフラックスバリア25Aaの外径側の内壁面は、磁石挿入孔24Aの外径側の内壁面から周方向に延びて、磁石挿入孔24Aから離れるにつれ漸次内径側に変位するなだらかな曲面に形成されている。なお、フラックスバリア25Aa,25Abには、永久磁石23Aが磁石挿入孔24Aに挿入されている状態で、ワニスなどが充填されてもよい。 A pair of air gaps are formed to project from the magnet insertion holes 24A on both sides in the circumferential direction. These void portions become flux barriers 25Aa and 25Ab. The flux barriers 25Aa and 25Ab communicate with the magnet insertion hole 24A except for the portion on the inner diameter side of the short side of the rectangular cross section of the magnet insertion hole 24A. The inner wall surface on the outer diameter side of the flux barrier 25Aa communicating with the outer diameter side of the magnet insertion hole 24A extends circumferentially from the inner wall surface on the outer diameter side of the magnet insertion hole 24A, and gradually changes in inner diameter as it separates from the magnet insertion hole 24A. It is formed in a gentle curved surface that is displaced to the side. The flux barriers 25Aa and 25Ab may be filled with varnish or the like in a state in which the permanent magnet 23A is inserted into the magnet insertion hole 24A.
 永久磁石23Aは、磁石挿入孔24Aの長方形断面の短辺の内径側の部分により周方向の移動を規制されて、磁石挿入孔24Aのそれぞれに収納されている。磁石挿入孔24Aの対に挿入されている永久磁石23Aの対が、1磁極を構成する。1磁極を構成する永久磁石23A、磁石挿入孔24A、およびフラックスバリア25Aa,25Abは、磁石挿入孔24Aの対間の周方向の中央位置を通る、回転軸22の軸心を含む平面を対称面とする面対称に構成される。この対称面における半径方向がd軸となる。また、周方向に隣り合うd軸間の中央位置を通る半径方向がq軸となる。 The permanent magnet 23A is accommodated in each of the magnet insertion holes 24A with its movement in the circumferential direction being restricted by the portion on the inner diameter side of the short side of the rectangular cross section of the magnet insertion hole 24A. The pair of permanent magnets 23A inserted in the pair of magnet insertion holes 24A constitutes one magnetic pole. The permanent magnet 23A constituting one magnetic pole, the magnet insertion holes 24A, and the flux barriers 25Aa, 25Ab pass through the circumferential center position between the pair of magnet insertion holes 24A, and a plane including the axial center of the rotation shaft 22 is a plane of symmetry. It is configured to be in plane symmetry. The radial direction in this plane of symmetry is the d axis. Further, the radial direction passing through the center position between the d axes adjacent in the circumferential direction is the q axis.
 トルクリプルを低減させるための切り欠き部26が、回転子鉄心21Aの外周面を窪ませて、溝方向を軸方向として、q軸上に配置されている。切り欠き部26は、単一のR形状で構成されている。 A notch 26 for reducing torque ripple is disposed on the q-axis with the groove direction as an axial direction by recessing the outer peripheral surface of the rotor core 21A. The notch 26 is configured in a single R shape.
 ここで、Aは、磁石挿入孔24Aとフラックスバリア25Aaの外径側の鉄部における最小鉄幅、Bは、切り欠き部26とフラックスバリア25Aaとの間の鉄部における最小鉄幅、Cは、q軸を挟んで相対するフラックスバリア25Aaの間の鉄部における最小鉄幅、Dは、切り欠き部26の周方向幅である。(図12中の「B」の位置を、もう少し上目にずらした方が見やすいと思います) Here, A is the minimum iron width in the iron portion on the outer diameter side of the magnet insertion hole 24A and the flux barrier 25Aa, B is the minimum iron width in the iron portion between the notch 26 and the flux barrier 25Aa, and C is , The minimum iron width in the iron portion between the flux barriers 25Aa facing each other across the q-axis, D is the circumferential width of the notch 26. (I think that it would be easier to shift the position of "B" in Fig. 12 a little higher)
 実施の形態2では、回転子鉄心21Aは、A<B、C<D、かつA<Cの関係を満足するように作製されている。また、Cは、回転子鉄心21Aを構成する磁性薄板の板厚の2倍としている。
 したがって、実施の形態2においても、上記実施の形態1と同様の効果が得られる。
In the second embodiment, the rotor core 21A is manufactured so as to satisfy the relationship of A <B, C <D, and A <C. Further, C is twice as large as the thickness of the magnetic thin plate constituting the rotor core 21A.
Therefore, also in the second embodiment, the same effect as that of the first embodiment can be obtained.
 なお、上記各実施の形態では、24極36スロットの集中巻き永久磁石式回転電機を用いているが、2極3スロット系列の集中巻き永久磁石式回転電機であれば、極数スロット数はこれに限定されない。 In each of the above embodiments, the concentrated winding permanent magnet type rotating electrical machine of 24 poles and 36 slots is used, but in the case of a concentrated pole permanent magnet type rotating electrical machine of 2-pole 3-slot series, the number of poles is equal to the number of slots. It is not limited to.
 また、上記各実施の形態では、2極3スロット系列の集中巻き永久磁石式回転電機を用いているが、4極3スロット系列の集中巻き永久磁石式回転電機を用いても、同様の効果を奏する。 In each of the above embodiments, although the concentrated winding permanent magnet type rotating electrical machine of 2 pole 3-slot series is used, the same effect can be obtained by using the concentrated winding permanent magnet type rotating electrical machine of 4 pole 3 slot series. Play.
 10 固定子、11 固定子鉄心、12 コアバック、13 ティース、シャフト、14 スロット、15 固定子巻線、16 集中巻きコイル、20,20A 回転子、21,21A 回転子鉄心、23,23A 永久磁石、24,24A 磁石挿入孔、25,25Aa,25Ab フラックスバリア、26 切り欠き部。 Reference Signs List 10 stator, 11 stator core, 12 core back, 13 teeth, shaft, 14 slots, 15 stator winding, 16 concentrated winding coils, 20, 20 A rotor, 21, 21 A rotor core, 23, 23 A permanent magnet 24, 24A Magnet insertion holes 25, 25Aa, 25Ab Flux barrier, 26 Notches.

Claims (7)

  1.  ティースが円環状のコアバックから径方向に突出して周方向に複数配列され、スロットが周方向に隣り合う上記ティースの間に形成された固定子鉄心、および上記固定子鉄心に装着された固定子巻線を有する固定子と、
     上記固定子と磁気的空隙を介して、上記固定子の内周側に、同軸に、かつ回転可能に配設された円環状の回転子鉄心、および上記回転子鉄心に周方向に複数配設されて磁極を構成する永久磁石を有する回転子と、を備える永久磁石式回転電機において、
     上記回転子鉄心を軸方向に貫通するように形成されて、上記永久磁石が挿入される磁石挿入孔と、
     上記磁石挿入孔から周方向両側に突出し、かつ上記回転子鉄心を軸方向に貫通するように形成されたフラックスバリアと、
     上記回転子鉄心の外周面のq軸上に、軸方向の一端から他端に至るように形成された切り欠き部と、を備え、
     上記q軸における最小鉄幅をC、上記切り欠き部の周方向幅をDとしたときに、上記CおよびDは、C<Dの関係を満足している永久磁石式回転電機。
    A plurality of teeth radially protruding from an annular core back and arranged in a circumferential direction, and a stator core formed between the teeth adjacent in the circumferential direction and a stator mounted on the stator core A stator having a winding,
    A plurality of annular rotor cores coaxially and rotatably disposed on the inner circumferential side of the stator via the stator and the magnetic gap, and a plurality of circumferentially arranged on the rotor core And a rotor having a permanent magnet forming a magnetic pole, in a permanent magnet type rotating electric machine,
    A magnet insertion hole formed to penetrate the rotor core in the axial direction and into which the permanent magnet is inserted;
    A flux barrier that protrudes circumferentially on both sides from the magnet insertion hole and is formed to penetrate the rotor core in the axial direction;
    And a notch formed on the q-axis of the outer peripheral surface of the rotor core so as to extend from one end to the other end in the axial direction,
    The permanent magnet type rotary electric machine in which C and D satisfy the relationship of C <D, where C is the minimum iron width in the q-axis and D is the circumferential width of the notch.
  2.  上記CとDは、D/C≧1.6の関係を満足している請求項1記載の永久磁石式回転電機。 The permanent magnet type rotary electric machine according to claim 1, wherein C and D satisfy the relationship of D / C ≧ 1.6.
  3.  上記磁石挿入孔および上記フラックスバリアの外径側における最小鉄幅をA、上記フラックスバリアと上記切り欠き部との間における最小鉄幅をBとしたときに、上記A、Bは、A<Bの関係を満足している請求項1又は請求項2記載の永久磁石式回転電機。 Assuming that the minimum iron width on the outer diameter side of the magnet insertion hole and the flux barrier is A, and the minimum iron width between the flux barrier and the notch is B, A and B satisfy A <B. The permanent magnet type rotary electric machine according to claim 1 or 2, which satisfies the following relationship.
  4.  上記AとCは、A>Cの関係を満足している請求項3記載の永久磁石式回転電機。 The permanent magnet type rotary electric machine according to claim 3, wherein A and C satisfy a relationship of A> C.
  5.  上記固定子巻線が上記ティースのそれぞれに装着された集中巻きコイルにより構成された、2極3スロット系列、又は4極3スロット系列である請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機。 The two-pole three-slot series or the four-pole three-slot series according to any one of claims 1 to 4, wherein the stator winding is constituted by a concentrated winding coil attached to each of the teeth. Permanent magnet type rotating electrical machine.
  6.  上記切り欠き部は、単一の曲率半径の円弧を軸方向に連ねた溝形状である請求項1から請求項5のいずれか1項に記載の永久磁石式回転電機。 The permanent magnet type rotary electric machine according to any one of claims 1 to 5, wherein the notch portion has a groove shape in which circular arcs of a single radius of curvature are connected in the axial direction.
  7.  上記回転子鉄心は、磁性薄板の積層体であり、
     上記Cは、上記磁性薄板の板厚の2倍以上である請求項1から請求項6のいずれか1項に記載の永久磁石式回転電機。
    The rotor core is a laminate of magnetic thin plates,
    The permanent magnet type rotary electric machine according to any one of claims 1 to 6, wherein the C is at least twice the thickness of the magnetic thin plate.
PCT/JP2017/041095 2017-11-15 2017-11-15 Permanent magnet type rotating electric machine WO2019097603A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017008150.5T DE112017008150T5 (en) 2017-11-15 2017-11-15 Rotating electric permanent magnet machine
CN201780096572.6A CN111316537B (en) 2017-11-15 2017-11-15 Permanent magnet type rotating electrical machine
JP2019554091A JP6929379B2 (en) 2017-11-15 2017-11-15 Permanent magnet type rotary electric machine
PCT/JP2017/041095 WO2019097603A1 (en) 2017-11-15 2017-11-15 Permanent magnet type rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041095 WO2019097603A1 (en) 2017-11-15 2017-11-15 Permanent magnet type rotating electric machine

Publications (1)

Publication Number Publication Date
WO2019097603A1 true WO2019097603A1 (en) 2019-05-23

Family

ID=66539481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041095 WO2019097603A1 (en) 2017-11-15 2017-11-15 Permanent magnet type rotating electric machine

Country Status (4)

Country Link
JP (1) JP6929379B2 (en)
CN (1) CN111316537B (en)
DE (1) DE112017008150T5 (en)
WO (1) WO2019097603A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118687A (en) * 2007-11-08 2009-05-28 Nissan Motor Co Ltd Permanent magnet type rotating machine
JP2011097754A (en) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp Permanent magnet embedded motor and blower
WO2017077789A1 (en) * 2015-11-06 2017-05-11 アイシン精機株式会社 Rotating electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450472B2 (en) 2011-02-03 2014-03-26 株式会社日立産機システム Permanent magnet generator and hybrid vehicle using it
DE112015001725T5 (en) * 2014-04-08 2017-01-05 Mitsubishi Electric Corporation Rotating electrical machine with embedded permanent magnets
JP6507956B2 (en) 2015-09-09 2019-05-08 日産自動車株式会社 Permanent magnet type rotating electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118687A (en) * 2007-11-08 2009-05-28 Nissan Motor Co Ltd Permanent magnet type rotating machine
JP2011097754A (en) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp Permanent magnet embedded motor and blower
WO2017077789A1 (en) * 2015-11-06 2017-05-11 アイシン精機株式会社 Rotating electric machine

Also Published As

Publication number Publication date
JP6929379B2 (en) 2021-09-01
CN111316537A (en) 2020-06-19
JPWO2019097603A1 (en) 2020-04-02
CN111316537B (en) 2022-05-03
DE112017008150T5 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
US9407116B2 (en) Multi-gap rotary machine with dual stator and one rotor with dual permanent magnets and salient poles with dimensions and ratios for torque maximization
US10020698B2 (en) Multi-gap type rotary electric machine including inner and outer stators and a rotor with inner and outer magnets
JP5210150B2 (en) Permanent magnet type rotating electrical machine, elevator apparatus, and manufacturing method of permanent magnet type rotating electrical machine
WO2014038062A1 (en) Interior permanent magnet motor
JP2014131376A (en) Rotor, and dynamo-electric machine using the same
JP2007074870A (en) Rotor embedded with permanent magnet and motor embedded with permanent magnet
WO2016047078A1 (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
JP6048191B2 (en) Multi-gap rotating electric machine
US9293974B2 (en) Electric motor having stator core for reducing cogging torque
US20130221771A1 (en) Hybrid excitation rotating electrical machine
JP2007037317A (en) Armature core and motor
WO2018037529A1 (en) Rotary electric machine
WO2014119239A1 (en) Rotor and motor
JP2019126102A (en) Rotor and rotary electric machine
JP6507956B2 (en) Permanent magnet type rotating electric machine
US6707178B2 (en) Permanent magnet type twelve-pole stepping motor
JP2018082600A (en) Double-rotor dynamoelectric machine
US9735634B2 (en) Split pole spoke type PM machine with enclosed magnets
JP5954279B2 (en) Rotating electric machine
JP6895909B2 (en) Hybrid field double gap synchronous machine
JP2015154555A (en) motor
JP2009106002A (en) Electromagnetic rotating machine
WO2019097603A1 (en) Permanent magnet type rotating electric machine
WO2014115278A1 (en) Synchronous electric motor
JP2010115095A (en) Stator core and rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554091

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17931918

Country of ref document: EP

Kind code of ref document: A1