WO2019097575A1 - Lead storage battery - Google Patents
Lead storage battery Download PDFInfo
- Publication number
- WO2019097575A1 WO2019097575A1 PCT/JP2017/040943 JP2017040943W WO2019097575A1 WO 2019097575 A1 WO2019097575 A1 WO 2019097575A1 JP 2017040943 W JP2017040943 W JP 2017040943W WO 2019097575 A1 WO2019097575 A1 WO 2019097575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lid
- mass
- negative electrode
- group
- component
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/12—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lead storage battery.
- an idling stop system car (hereinafter, also referred to as "ISS car") that reduces the operating time of the engine
- ISS car idling stop system car
- a micro control vehicle such as a power generation control car that reduces the power generation of the alternator by the power of the engine.
- Hybrid vehicles are being considered.
- an exhaust chamber is provided inside a lid of a lead storage battery, and generated electrolytic solution mist is retained in the exhaust chamber to be liquefied and liquefied. It is known to reflux the electrolyte into the cell.
- an object of this invention is to provide the lead storage battery excellent in the point of liquid reduction suppression.
- the present invention includes, in one aspect, a battery case having a cell chamber and having an open upper surface, an electrode group and an electrolytic solution accommodated in the cell chamber, and a lid for closing the opening; It is a lead storage battery which has several negative electrodes and several positive electrodes, and several negative electrodes are connected by the strap formed of the alloy containing Pb and Sn.
- the lid includes a first lid, a second lid provided on the first lid, and an exhaust chamber formed between the first lid and the second lid.
- the bottom wall of the first lid separating the exhaust chamber and the cell chamber may be provided with a reflux hole for refluxing the electrolyte into the cell chamber.
- the negative electrode may contain a resin having a structural unit derived from a phenolic compound.
- the structural unit may contain a structural unit derived from a bisphenol-based compound.
- the structural unit may include structural units derived from lignin.
- the negative electrode may contain a carbon material.
- the carbon material may contain carbon black.
- the lead acid battery excellent in the point of liquid reduction suppression can be provided.
- FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3; It is a perspective view of the electrode plate group of the lead storage battery shown in FIG.
- FIG. 1 is a perspective view showing an entire configuration of a lead storage battery of an embodiment.
- the lead storage battery 1 is a liquid lead storage battery including a battery case 2 whose upper surface is open and a lid 3 for closing the opening of the battery case 2.
- FIG. 2 is a perspective view showing the battery case 2 of the lead storage battery 1 shown in FIG.
- the battery case 2 is, for example, a hollow rectangular parallelepiped.
- the bottom of the battery case 2 has a rectangular shape, and the substantially entire upper surface of the battery case 2 is open.
- the battery case 2 is formed of, for example, polypropylene.
- the direction along the long side and the direction along the short side of the bottom surface of the battery case 2 are respectively taken as the longitudinal direction and the short direction of the battery case 2.
- the inside of the battery case 2 is divided into six sections by, for example, five partitions 21 provided substantially in parallel with the short side direction of the battery case 2.
- first to sixth cell chambers 22a to 22f (hereinafter collectively referred to as “cell chamber 22") are formed inside the battery case 2 along the longitudinal direction of the battery case 2. It is done.
- An electrode group (electrode plate group, details will be described later) is accommodated in each of the cell chambers 22.
- Each electrode group is also called a single cell, and its electromotive force is 2 V, for example.
- a lead storage battery for an automobile is driven by boosting or stepping down a DC voltage 12 V
- six electrode groups accommodated in each of six cell chambers 22 are connected in series, and 2 V ⁇ 6 It has an electromotive force of 12 V.
- the number of cell chambers 22 is not limited to six. It is suitably selected according to the use of the lead storage battery 1.
- the side walls of the partition 21 (surfaces substantially parallel to the short direction of the battery case 2) and the inner surfaces of the pair of side walls 23 substantially parallel to the partition 21 of the battery case 2
- a plurality of ribs (rib portions) 24 extending in the height direction of 2 may be provided. That is, both side surfaces of the partition wall 21 and the inner surface of the side wall 23 may have the flat portion 25 and a plurality of ribs 24 protruding from the flat portion 25 and extending in the height direction of the battery case 2.
- the rib 24 has a function of appropriately pressing (compressing) the electrode group inserted in the cell chamber 22 in the stacking direction of the electrodes.
- the lid 3 has a double lid structure including a first lid 4 and a second lid 5, and the first lid 4 and the second lid 5 A plurality of exhaust chambers D1 to D6 are formed between them. That is, the lid 3 has a first lid 4, a second lid 5, and an exhaust chamber formed between the first lid 4 and the second lid 5.
- the lid 3 has a substantially rectangular shape in a plan view, and in each direction along the four sides of the rectangle, one end and the other end of the lid 3 in the longitudinal direction are one end and the other end of the battery case 2 in the longitudinal direction. They are provided on the battery case 2 in a state in which one end and the other end in the short direction of the lid 3 are respectively matched with one end and the other end in the short direction of the battery case 2.
- the lid 3 (the first lid 4 and the second lid 5) is made of, for example, polypropylene.
- a hollow protrusion 6 protruding upward from the upper surface of the first lid 4 is formed in a region of the upper surface of the first lid 4 where the second lid 5 is not provided. ing.
- An indicator mounting hole 7 is formed in a part of the protrusion 6.
- the indicator mounting hole 7 is used to mount an indicator (not shown) that indicates the liquid level of the electrolyte in the battery case.
- the indicator attachment hole 7 is provided above one of the cell chambers provided in the battery case 2, and the indicator for displaying the liquid level of the electrolytic solution in the cell chamber is used. It can be attached to the indicator attachment hole 7.
- the liquid level level of the electrolytic solution in another cell chamber is estimated by displaying the liquid level level of the electrolytic solution in one cell chamber on the indicator.
- the negative electrode terminal 8 and the positive electrode terminal 9 are formed in a region of the upper surface of the first lid 4 where the second lid 5 is not provided.
- the negative electrode terminal 8 and the positive electrode terminal 9 are connected to the electrode plate group accommodated in the battery case 2 via the negative electrode column and the positive electrode column.
- FIG. 3 is a plan view of the first lid
- FIG. 4 is a bottom view of the second lid
- FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3, and is a cross-sectional view of the lid 3 in a state in which the first lid 4 and the second lid 5 are welded.
- the first lid 4 has a substantially rectangular shape in plan view, and the second lid 5 is disposed on a part of the first lid 4.
- An exhaust chamber configuration 400 is formed.
- the exhaust chamber configuration 400 places the one end 400 a and the other end 400 b in the longitudinal direction near the one end 4 a and the other end 4 b in the longitudinal direction of the first lid 4, and the one end 400 c in the lateral direction as the first.
- a peripheral wall portion 40 extending along the outer peripheral edge is formed on the upper surface of the exhaust chamber configuration portion 400, and a first lid side concave portion is formed inside the peripheral wall portion 40.
- the exhaust chamber configuration 400 in order to expand the width dimension (the length in the short direction) of the portion near the one end 4 a in the longitudinal direction and the portion near the other end 4 b of the exhaust chamber configuration 400, the exhaust chamber configuration 400
- the protrusion parts 401 and 402 which protruded in the one end side of the transversal direction rather than the part of the center of the longitudinal direction are formed.
- the second lid 5 has the same contour as the exhaust chamber configuration 400, and the exhaust chamber configuration is provided on one end 5a side and the other end 5b side in the longitudinal direction. Similar to the protrusions 401 and 402 at both ends of the portion 400, protrusions 501 and 502 protruding in the short direction are formed. Further, as shown in FIG. 4, a peripheral wall 50 extending along the outer peripheral edge is also formed on the lower surface of the second cover 5, and a second cover side recess is formed inside the peripheral wall 50. ing. In the example shown in FIG. 4, an outer wall 51 surrounding the outer side of the peripheral wall 50 is formed on the lower surface of the second lid 5.
- the second lid 5 is provided on the exhaust chamber configuration 400, and the first lid 4 and the second lid 5 are joined by thermal welding. Specifically, the second lid 5 aligns one end 5a and the other end 5b in the longitudinal direction of the second lid 5 with the one end 4a and the other end 4b in the longitudinal direction of the first lid 4 respectively.
- the exhaust chamber configuration 400 and the second lid 5 are joined together in a state where the peripheral wall 40 and the peripheral wall 50 are combined, and the first lid side concave portion and the second lid side A space for forming an exhaust chamber is formed between the exhaust chamber configuration 400 of the first cover 4 and the second cover 5 by the recess.
- the first to sixth cell chambers 22a to 22f are positioned above the first to sixth cell chambers 22a to 22f, respectively.
- Six exhaust chambers D1 to D6 are formed (see FIGS. 3 and 4). These exhaust chambers are formed of the exhaust chamber forming portion 400 of the first cover 4 and the peripheral wall 50 of the second cover 5 with a predetermined thickness, and a first partition of a predetermined pattern. 42 and 52 are formed by being mutually joined.
- the exhaust chambers D1 to D6 have a function of keeping the mist of the electrolytic solution generated from each cell chamber 22 in the battery case 2 inside, and refluxing the liquefied electrolytic solution in the exhaust chamber into the respective cell chambers 22. .
- a part of the first exhaust chamber D1 and the sixth exhaust chamber D6 disposed at both ends is provided to the first lid 4 and the second lid 5 as a first partition wall.
- the second partitions 42a and 52a formed in parts of 42 and 52 one end 400a side and the other end 400b side of the exhaust chamber configuration 400 of the first cover 4 in the longitudinal direction, and Centralized exhaust chambers E1 and E2 are formed on one end 5a side and the other end 5b side in the longitudinal direction of the second lid 5, respectively.
- Each exhaust chamber has a pair of opposed longitudinal inner side surfaces Sa and Sb facing in the longitudinal direction of the first lid 4 and a pair facing the opposite direction in the lateral direction of the first lid 4 And four corner portions C1 to C4 are formed in each exhaust chamber.
- the inner side surfaces Sa to Sd of the exhaust chambers the inner side surfaces Sa and Sb opposed to the longitudinal direction of the first lid 4 are referred to as the longitudinal inner side surfaces.
- the inner side surfaces Sc and Sd opposed to the short side direction of the first cover 4 are referred to as the short side inner side surface.
- the first cover 4 of the pair of longitudinal inner side surfaces of the first cover 4 is provided.
- the longitudinal inner surface located on the one end 4a side in the longitudinal direction is one longitudinal inner surface Sa
- the longitudinal inner surface located on the other end 4b side of the first lid 4 in the longitudinal direction is the other longitudinal direction It is referred to as the inner side Sb.
- the length of the first lid 4 among the pair of longitudinal inner side surfaces is one longitudinal inner surface Sa, and the longitudinal inner surface located on the longitudinal end 4a of the first cover 4 is the other longitudinal inner surface It is referred to as Sb.
- the exhaust chambers D1 to D6 are formed in a substantially square shape in plan view, but the first exhaust chamber D1 and the sixth exhaust chamber D6 disposed at both ends in the longitudinal direction of the first lid 4 are respectively formed
- the centralized exhaust chambers E1 and E2 are formed in a part of the first, the one longitudinal inner side surface Sa has a deformed shape.
- the exhaust chambers D1 to D6 and the central exhaust chambers E1 and E2 are formed between the exhaust chamber forming portion 400 of the first cover 4 and the second cover 5, and further, As described later, various fluid passages for connecting the exhaust chambers D1 to D6 to the central exhaust chambers E1 and E2 are formed.
- These fluid passages are constituted by the first partition portions 42 and 52 provided in the first lid 4 and the second lid 5 and joined to each other, but in the following description, mainly the first
- the configuration of the fluid passage provided between the first cover 4 and the second cover 5 will be described with reference to FIG. 3 showing the cover 4 of FIG.
- the patterns of the walls provided on the first lid and the second lid to form the exhaust chamber, the fluid passage and the like are in mirror image to each other.
- a first longitudinal fluid passage L1 and a second longitudinal fluid passage L2 are provided between the exhaust chamber configuration 400 of the first lid 4 and the second lid 5.
- a first short direction fluid passage W1a and a second short direction fluid passage W1b are formed.
- the first longitudinal fluid passage L1 is located on the other end 400d side in the width direction of the exhaust chamber configuration 400, and the outer side of the exhaust chamber D1 to D6 (between the exhaust chamber D1 to D6 and the peripheral wall portion 40) It is provided to extend linearly along the longitudinal direction of the component 400.
- the ends of the enlarged portions L11 and L12 of the first longitudinal fluid passages L1 are flow paths 43 formed between the first exhaust chamber D1 and the sixth exhaust chamber D6 and the peripheral wall portion 40, and Through 44, the central exhaust chambers E1 and E2 are connected.
- the second longitudinal fluid passage L2 linearly extends outside the exhaust chambers D1 to D6 (between the exhaust chambers D1 to D6 and the peripheral wall portion 40) on one end 400c side of the exhaust chamber configuration 400 in the short direction. It is provided to extend.
- the first short direction fluid passage W1a and the second short direction fluid passage W1b are respectively disposed between the second and third exhaust chambers D2 and D3 and the fourth and fifth exhaust chambers D4 and D5 which are adjacent to each other. Between the first and second longitudinal fluid passages L1 and L2, the first longitudinal fluid passage L1 and the second longitudinal fluid passage L2 are connected.
- the second longitudinal fluid passage L2 is partitioned into a first portion L2a and a second portion L2b by a partition wall 45 provided at the central portion in the longitudinal direction of the exhaust chamber configuration 400.
- the first longitudinal fluid passage L1 passes through the first transverse fluid passage W1a and the second transverse fluid passage W1b to form a first portion L2a and a second portion of the second longitudinal fluid passage L2. Each is connected to L2b.
- electrolyte injection is carried out in the exhaust chambers D1 to D6 through the bottom walls of the exhaust chambers that separate the exhaust chambers from the corresponding cell chambers 22a to 22f.
- a reflux hole h having a size also serving as the hole is provided.
- the reflux hole h is formed between the longitudinal inner surface Sa of one of the exhaust chambers and the lateral surface Sc of one of the exhaust chambers located on the second longitudinal fluid passage L2 side. It is located in the vicinity of the corner portion C1 of 1, and only one is provided in each exhaust chamber.
- the exhaust chambers D1 to D6 are connected to the first to sixth cell chambers 22a to 22f through the reflux holes h provided in the respective bottom walls.
- a third short direction fluid passage W2 extending in the short direction of the exhaust chamber configuration 400 is formed between the fluid passage forming walls 46 and 56 and the longitudinal inner side surface Sb.
- One end of the third short direction fluid passage W2 opens to the fourth corner C4 at the diagonal position of the first corner C1 and the other end opens into the second longitudinal fluid passage L2 doing.
- first barrier portions 47, 57 integrated with the portions 46, 56 are provided in each exhaust chamber of the first cover 4 and the second cover 5.
- the first barrier portions 47, 57 project from the fluid passage forming walls 46, 56 toward one longitudinal inner side Sa of each exhaust chamber, and terminate at a position before the one longitudinal inner side Sa. doing.
- the first barrier portions 47 and 57 are provided integrally with the first lid 4 and the second lid 5.
- An electrolyte solution accommodation space A is formed between the first barrier portions 47 and 57 and one short side inner side surface Sc. The end positions of the tips of the first barrier portions 47 and 57 are set so as to position at least a part of the reflux hole h in the electrolyte solution accommodation space A.
- each exhaust chamber of the first cover 4 and the second cover 5 one longitudinal facing surface Sc of each exhaust chamber is located closer to the first barrier portions 47 and 57 than the return hole h.
- a second barrier portion 48, 58 is provided to extend from the electrolyte containing space A to the fluid passage forming wall 46, 56 side.
- the barriers 48 and 58 are provided integrally with the first lid 4 and the second lid 5.
- the second barrier portions 48, 58 are inclined to the second corner portion C2 side formed between the other longitudinal inner side surface Sb of each exhaust chamber and one shorter side inner side surface Sc. It is provided.
- the tips of the second barrier portions 48 and 58 are terminated at positions before the fluid passage forming walls 46 and 56.
- the second barrier 48 is provided along the short direction of the exhaust chamber from the position just before the tip of the first barriers 47 and 57. , 58, and further provided with first projecting wall portions 47a, 57a which end at positions before the second barrier portions 48, 58.
- first projecting wall portions 47a and 57a and the second projecting wall portions 48 a and 58 a are provided integrally with the first lid 4 and the second lid 5.
- the upper surface of the bottom wall of each exhaust chamber is gradually lowered toward the reflux hole h from the vicinity of the opening at one end of the third short direction fluid passage W 2 Is inclined.
- the bottom surface of the first longitudinal fluid passage L1 is gradually lowered toward the portion where the first and second transverse fluid passages W1a and W1b and the first longitudinal fluid passage L1 meet. It is inclined to go.
- the bottoms of the first and second short direction fluid passages W1a and W1b are inclined so that they gradually decrease from the first longitudinal fluid passage L1 side toward the second longitudinal fluid passage L2 side. It is attached.
- the bottom surface of the second longitudinal fluid passage L2 is inclined so as to be gradually lowered toward the opening of the other end of the third transverse fluid passage W2 provided in each exhaust chamber.
- each part described above is indicated by an arrow.
- Each arrow indicates that the front end side is lower than the rear end side.
- an exhaust port 65 for opening the centralized exhaust chambers E1 and E2 to the outside is formed at one end and the other end of the second lid 5 in the longitudinal direction.
- An explosion-proof filter 66 is accommodated in the central exhaust chambers E1 and E2. Exhaust gas that has flowed into the concentrated exhaust chambers through the first longitudinal fluid passage L1 is discharged to the outside through the explosion-proof filter 66 and the exhaust port 65.
- a liquid injection port 60 is formed in the second lid 5.
- the injection port 60 is provided at a position aligned with the reflux hole h in each exhaust chamber.
- a screw for attaching a stopper is formed at the inner periphery of the injection port 60.
- the lid 3 is provided with a welded portion 405 and a positioning rib 406.
- the welding portion 405 is welded to the upper end of the partition dividing the cell chamber by the battery case when the lid 3 is attached to the battery case 2 and forms a wall portion separating the cell chamber together with the battery case side partition wall Do.
- the positioning rib 406 engages with the side surface of the upper end of the partition between the cell chambers on the side of the battery case when the welded portion 405 is welded to the upper end of the partition between the cell chambers of the battery case 2 It is a positioning rib which positions 405 with respect to the partition by the side of a battery case.
- the liquid injection hole is provided in the second lid 5, but the liquid injection hole is not provided in the second lid 5, and after injecting the electrolytic solution, the first cover 4 is formed.
- the second lid 5 may be welded.
- Sc is one transverse side inner side surface
- Sd is the other transverse direction inner side surface.
- Sb may be one longitudinal inner side
- Sa may be the other longitudinal inner side.
- the reflux hole h is comprised by the aggregate
- the reflux hole h may be comprised by a single hole.
- the reflux hole h can also be made to have a function as a vent, by making the reflux hole h larger or increasing the number of the holes constituting the reflux hole h.
- the 1st projection wall parts 47a and 57a and the 2nd projection wall parts 48a and 58a were provided, the 1st projection wall parts 47a and 57a and the 2nd projection The walls 48a and 58a may not be provided.
- FIG. 6 is a perspective view showing an electrode group.
- the electrode group 10 includes a plate-like negative electrode (negative electrode plate) 11, a plate-like positive electrode (positive electrode plate) 12, and a separator 13 disposed between the negative electrode 11 and the positive electrode 12.
- the negative electrode 11 includes a negative electrode current collector (negative electrode grid body) 14 and a negative electrode active material 15 held by the negative electrode current collector 14.
- the positive electrode 12 includes a positive electrode current collector (positive electrode grid body) 16 and a positive electrode active material 17 held by the positive electrode current collector 16.
- the negative electrode after formation with the negative electrode collector removed is defined as “negative electrode active material”
- the positive electrode after formation with the positive electrode collector removed is defined as “positive electrode active material”.
- the electrode group 10 has a structure in which a plurality of negative electrodes 11 and positive electrodes 12 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 via the separators 13. That is, the electrode group 10 is accommodated in each of the cell chambers 22 such that the main surfaces of the negative electrode 11 and the positive electrode 12 extend in the direction perpendicular to the opening surface of the battery case 2.
- the ear portions 11a of the respective negative electrode current collectors 14 of the plurality of negative electrodes 11 are connected (for example, collective welding) by straps (negative electrode side straps) 18.
- the ear portions 12 a of the positive electrode current collectors 16 of the plurality of positive electrodes 12 are connected (for example, collective welding) by straps (positive electrode side straps) 19.
- the negative electrode side strap 18 and the positive electrode side strap 19 are connected to the negative electrode terminal 8 and the positive electrode terminal 9 via the negative electrode column and the positive electrode column, respectively.
- the separator 13 is formed in, for example, a bag shape, and accommodates the negative electrode 11.
- the separator 13 is made of, for example, polyethylene (PE), polypropylene (PP) or the like.
- the separator 13 may be obtained by adhering inorganic particles such as SiO 2 and Al 2 O 3 to a woven fabric, a non-woven fabric, a porous film or the like formed of these materials.
- the negative electrode current collector 14 and the positive electrode current collector 16 are each formed of a lead alloy.
- the lead alloy may be an alloy containing, in addition to Pb, Sn, Ca, Sb, Se, Ag, Bi, etc. Specifically, for example, an alloy containing Pb, Sn and Ca (Pb-Sn -Ca-based alloy).
- the negative electrode active material 15 contains at least Pb (single substance) as a Pb component, and may further contain a Pb component other than Pb (for example, PbSO 4 ) and an additive, if necessary.
- the negative electrode active material 15 preferably contains porous sponge lead as a Pb component.
- the content of the Pb component may be 90% by mass or more or 95% by mass or more, and may be 99% by mass or less or 98% by mass or less based on the total mass of the negative electrode active material.
- the negative electrode active material 15 preferably further includes, as an additive, a resin having a structural unit derived from a phenolic compound (hereinafter, also referred to as “phenolic resin”) from the viewpoint of further suppressing liquid reduction. That is, preferably, the negative electrode 11 further includes, in the negative electrode active material 15, a resin having a structural unit derived from a phenolic compound.
- the phenolic resin preferably further comprises a sulfonic acid group (sulfo group) or a sulfonic acid group. In this case, the sulfonic acid group or the sulfonate group may be contained in the structural unit derived from the phenolic compound, and may be contained in a structural unit other than the structural unit derived from the phenolic compound Good.
- the content of the phenolic resin may be 0.01 mass% or more, 0.05 mass% or more, or 0.1 mass% or more, 2 mass% or less, 1 mass based on the total mass of the negative electrode active material. % Or less or 0.5 mass% or less.
- the structural unit derived from the phenolic compound preferably includes a structural unit derived from a bisphenol compound from the viewpoint of being able to particularly suppress liquid reduction, and from the viewpoint of achieving both suppression of liquid reduction and excellent DCA performance, Preferably, it comprises structural units derived from lignin.
- the phenol resin is a bisphenol resin (also referred to as a "bisphenol resin” hereinafter) containing a sulfonic acid group or a sulfonate group from the viewpoint of suppressing liquid reduction particularly, and the DCA suppresses the liquid reduction and is excellent
- lignin sulfonic acid or a salt thereof hereinafter also referred to as “lignin sulfonic acid (salt)
- lignin sulfonic acid (salt) is preferable.
- the bisphenol resin has a structural unit derived from a bisphenol compound as a structural unit derived from a phenol compound.
- the bisphenol resin is, for example, a compound having (a) a bisphenol compound (hereinafter also referred to as “component (a)”) and (b) a sulfonic acid group (sulfo group) (hereinafter also referred to as “component (b)”) In the reactions of and, it can be obtained by replacing the hydrogen atom of the sulfonic acid group with, for example, a metal atom, if necessary.
- component (c) formaldehyde and a formaldehyde derivative
- the component (a) for example, 2,2-bis (4-hydroxyphenyl) propane (hereinafter also referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ) Ethane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis ( 4-hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, and bis (4-hydroxyphenyl) Sulfone (hereinafter also referred to as "bisphenol S”) can be mentioned.
- the component (a) can be used alone or in combination of two or more.
- the component (a) is preferably bisphenol A from the viewpoint of further excellent charge acceptance, and preferably
- the component (a) it is preferable to use bisphenol A and bisphenol S in combination, from the viewpoint of improving charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner.
- the content of bisphenol A in the reaction for obtaining a bisphenol resin is preferably based on the total amount of bisphenol A and bisphenol S from the viewpoint of improving charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner. It is 70 mol% or more, more preferably 75 mol% or more, and still more preferably 80 mol% or more.
- the content of bisphenol A is preferably 99 mol% or less, more preferably 98 mol% or less based on the total amount of bisphenol A and bisphenol S from the viewpoint of improving charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner. More preferably, it is 97 mol% or less.
- the component (b) may be a compound having an amino group and a sulfonic acid group.
- the compound having an amino group and a sulfonic acid group include 4-aminobenzenesulfonic acid (also called sulfanilic acid), aminoethylsulfonic acid (also called taurine), and 5-amino-1-naphthalenesulfonic acid (also called laurent acid) Can be mentioned.
- the component (b) can be used alone or in combination of two or more.
- the component (b) is preferably 4-aminobenzenesulfonic acid from the viewpoint of further improving charge acceptance.
- the content of the component (b) in the reaction for obtaining a bisphenol resin is preferably 0.5 mol or more, more preferably 0. 1 mol, per 1 mol of the component (a), from the viewpoint of further improving the discharge characteristics. It is at least 6 mol, more preferably at least 0.7 mol, particularly preferably at least 0.8 mol.
- the content of the component (b) is preferably 2.0 mol or less, more preferably 1.5 mol or less, and further preferably 1 mol or less with respect to 1 mol of the component (a) from the viewpoint of facilitating further improvement of the discharge characteristics and cycle characteristics. It is preferably at most 1.3 mol, particularly preferably at most 1.0 mol.
- formaldehyde which is the component (c) formaldehyde in formalin (for example, an aqueous solution of 37% by mass of formaldehyde) may be used.
- formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine and trioxane.
- the component (c) can be used alone or in combination of two or more.
- formaldehyde and a formaldehyde derivative may be used in combination.
- the component (c) is preferably a formaldehyde derivative, more preferably paraformaldehyde, from the viewpoint of easily obtaining excellent cycle characteristics.
- Paraformaldehyde has, for example, a structure represented by the following formula (1). HO (CH 2 O) n 1 H (1) In the formula (1), n1 represents an integer of 2 to 100.
- the compounding amount of the component (c) in the reaction for obtaining a bisphenol resin is preferably 2 mol or more, relative to 1 mol of the component (a), from the viewpoint of improving the reactivity of the component (b) More preferably, it is 2.2 mol or more, still more preferably 2.4 mol or more.
- the compounding amount of the component (c) in terms of formaldehyde is obtained by the reaction of the components (a), (b) and (c) and from the viewpoint of easily reducing the structural unit having a benzoxazine ring, the component (a)
- the amount is preferably 3.5 mol or less, more preferably 3.2 mol or less, still more preferably 3 mol or less, particularly preferably less than 2.8 mol, and most preferably 2.5 mol or less, per 1 mol.
- the bisphenol resin preferably has at least one of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II).
- X 1 represents a divalent group
- Y 1 represents a divalent aromatic hydrocarbon group, an aliphatic hydrocarbon group or an alicyclic hydrocarbon group
- R 11 , R 12 and Each R 13 independently represents a metal atom or a hydrogen atom
- n 11 represents an integer of 1 to 300
- n 12 represents an integer of 1 to 3.
- the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted by an alkyl group of 1 to 5 carbon atoms.
- X 2 represents a divalent group
- Y 2 represents a divalent aromatic hydrocarbon group, an aliphatic hydrocarbon group or an alicyclic hydrocarbon group
- R 21 , R 22 and Each R 23 independently represents a metal atom or a hydrogen atom
- n 21 represents an integer of 1 to 300
- n 22 represents an integer of 1 to 3.
- the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted by an alkyl group of 1 to 5 carbon atoms.
- the ratio of the structural unit represented by the formula (I) and the structural unit represented by the formula (II) is not particularly limited, and may vary depending on synthesis conditions and the like.
- a bisphenol resin you may use resin which has only any one of the structural unit represented by Formula (I), and the structural unit represented by Formula (II).
- an alkylidene group eg, methylidene group, ethylidene group, isopropylidene group and sec-butylidene group
- a cycloalkylidene group eg, cyclohexylidene group
- a phenyl alkylidene group eg, diphenylmethylidene group and phenyl
- Organic groups such as ethylidene group); sulfonyl group etc.
- X 1 and X 2 an isopropylidene group (—C (CH 3 ) 2 —) is preferable from the viewpoint of further excellent charge acceptance, and a sulfonyl group (—SO 2 —) is preferred from the viewpoint of further excellent discharge characteristics.
- X 1 and X 2 may be substituted by a halogen atom such as a fluorine atom.
- the hydrocarbon ring may be substituted by an alkyl group or the like.
- Examples of the divalent aromatic hydrocarbon group represented by Y 1 or Y 2 include a phenylene group and a naphthylene group, and examples of the divalent aliphatic hydrocarbon group include an ethylene group and a trimethylene group, and a divalent alicyclic group.
- a formula hydrocarbon group a cyclohexylidene group is mentioned, for example.
- Y 1 and Y 2 are preferably a phenylene group or a naphthylene group from the viewpoint of further excellent charge acceptance.
- the divalent aromatic hydrocarbon group, aliphatic hydrocarbon group or alicyclic hydrocarbon group represented by Y 1 and Y 2 may be substituted by a halogen atom such as a fluorine atom.
- the metal atom represented by R 11 , R 12 , R 13 , R 21 , R 22 or R 23 is, for example, a sodium atom, a potassium atom, a magnesium atom or a calcium atom.
- the bisphenol resin may have, for example, structural units represented by the following formulas (III) to (VI).
- the reason why the structural units represented by the formulas (III) to (VI) are formed is presumed to be the addition reaction of the formaldehyde component to the benzene ring of the component (a).
- X 3 , X 4 , X 5 and X 6 have the same meaning as X 1 and X 2 respectively
- R 31 , R 32 , R 33 , R 41 , R 42 , R 43 , R 51 , R 52 , R 61 And R 62 each independently has the same meaning as R 21 , R 22 and R 23 , n 31, n 41, n 51 and n 61 each independently has the same meaning as n 11 and n 21, and n 32 and n 42 each independently is n 12 And n22.
- the hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted by an alkyl group of 1 to 5 carbon atoms.
- the weight average molecular weight of the bisphenol resin is preferably 20000 or more, more preferably 30000 or more, still more preferably 40000 or more, particularly preferably 50000 or more, from the viewpoint of further improving the cycle characteristics.
- the weight average molecular weight of the bisphenol resin is preferably 80,000 or less, more preferably 70,000 or less, still more preferably 60000 or less, from the viewpoint of further improving the cycle characteristics. From these viewpoints, the weight average molecular weight of the bisphenol resin is preferably 20,000 to 80,000, more preferably 30,000 to 70,000, still more preferably 40,000 to 60000, and particularly preferably 50,000 to 60000.
- the weight average molecular weight of the bisphenol resin can be measured, for example, by gel permeation chromatography (hereinafter referred to as "GPC") under the following conditions.
- GPC conditions Device: High-performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation) Pump: PU-2080 Differential Refractometer: RI-2031 Detector: UV-visible spectrophotometer UV-2075 ( ⁇ : 254 nm) Column oven: CO-2065 Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation) Column temperature: 40 ° C Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: polyethylene glycol (molecular weight: 1.10 ⁇ 10 6 , 5.80 ⁇ 10 5 , 2.55 ⁇ 10 5 , 1.46
- the method for producing a bisphenol-based resin includes, for example, a resin-producing step of reacting a component (a), a component (b) and a component (c) to obtain a bisphenol-based resin.
- the bisphenol resin can be obtained, for example, by reacting component (a), component (b) and component (c) in a reaction solvent.
- the reaction solvent is preferably water (eg, ion exchanged water).
- an organic solvent, a catalyst, an additive, or the like may be used to promote the reaction.
- the compounding amount of the component (b) is 0.5 to 2.0 moles to 1 mole of the component (a) from the viewpoint of further improving the cycle characteristics, and the compounding of the component (c)
- More preferable is an embodiment in which the amount of component (c) is 2 to 2.5 moles in terms of formaldehyde relative to 1 mole of component (a).
- the preferable blending amounts of the components (b) and (c) are the ranges described above for the blending amounts of the components (b) and (c).
- the bisphenol resin is preferably obtained by reacting the components (a), (b) and (c) under basic conditions (alkaline conditions), from the viewpoint that a sufficient amount of bisphenol resin can be easily obtained.
- a basic compound may be used to adjust to basic conditions. Examples of the basic compound include potassium hydroxide and potassium carbonate. The basic compounds can be used alone or in combination of two or more. The basic compound is preferably potassium hydroxide from the viewpoint of excellent reactivity.
- the reaction for producing a bisphenol resin may not progress easily
- the reaction solution is acidic (pH ⁇ 7) side reactions (eg, benzo
- the reaction of producing a structural unit having an oxazine ring may proceed. Therefore, the pH of the reaction solution at the time of reaction is preferably alkaline (more than 7), and more preferably 7., from the viewpoint of easily suppressing the progress of the side reaction while advancing the formation reaction of the bisphenol resin. It is at least one, more preferably at least 7.2.
- the pH of the reaction solution is preferably 12 or less, more preferably 10 or less, and still more preferably 9 or less, from the viewpoint of suppressing the progress of hydrolysis of the group derived from the component (b) in the bisphenol resin.
- the pH of the reaction solution can be measured, for example, with a twin pH meter AS-212 manufactured by HORIBA, Ltd. The pH is defined as the pH at 25 ° C.
- the content of the strongly basic compound is preferably 1.01 mol or more, more preferably 1.02 mol or more, and still more preferably 1 mol of the component (b) because it is easy to adjust to the pH as described above. Is 1.03 mol or more. From the same viewpoint, the compounding amount of the strongly basic compound is preferably 1.1 mol or less, more preferably 1.08 mol or less, still more preferably 1.07 mol or less, per 1 mol of component (b). is there.
- strongly basic compounds include potassium hydroxide and potassium carbonate.
- the (a) component, the (b) component and the (c) component may be reacted to obtain the bisphenol resin, for example, the (a) component, the (b) component and the (c)
- the components may be reacted simultaneously, or after the two components of the components (a), (b) and (c) are reacted, the remaining one component may be reacted.
- the synthesis reaction of the bisphenol-based resin is preferably performed in two steps as follows.
- the first step reaction for example, after charging the component (b), the solvent (such as water) and the basic compound, stirring is performed, and the hydrogen atom of the sulfo group in the component (b) is substituted with a metal atom such as potassium To obtain a metal salt such as potassium salt of component (b).
- the temperature of the reaction system is preferably 0 ° C. or more, more preferably 25 ° C. or more from the viewpoint of excellent solubility of the component (b) in a solvent (such as water).
- the temperature of the reaction system is preferably 80 ° C. or less, more preferably 70 ° C. or less, and still more preferably 65 ° C. or less from the viewpoint of easily suppressing side reactions.
- the reaction time is, for example, 30 minutes.
- the component (a) and the component (c) are added to the reaction product obtained in the first step to cause a condensation reaction to obtain a bisphenol resin.
- the temperature of the reaction system is preferably 75 ° C. or more, more preferably 85 ° C. or more, from the viewpoint of excellent reactivity of the components (a), (b) and (c) and from the viewpoint of reduction of side reaction products. C. or higher, more preferably 92.degree. C. or higher.
- the temperature of the reaction system is preferably 100 ° C. or less, more preferably 98 ° C. or less, still more preferably 96 ° C. or less, from the viewpoint of easily suppressing side reactions.
- the reaction time is, for example, 5 to 20 hours.
- the content of the bisphenol-based resin may be 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, 2% by mass or less, or 1% by mass, based on the total mass of the negative electrode active material. % Or less or 0.5 mass% or less.
- Lignin sulfonic acid is lignin sulfonic acid or a salt thereof in which a part of lignin degradation product is sulfonated.
- Lignin sulfonic acid (salt) has a structural unit derived from lignin as a structural unit derived from a phenolic compound and also has a sulfonic acid group or a sulfonate group.
- the lignin sulfonic acid (salt) has, for example, a structure in which a sulfonic acid group or a sulfonate group is bonded to a carbon atom at the ⁇ position adjacent to a phenylene group.
- the salt of lignin sulfonic acid may be, for example, a sodium salt, a potassium salt, a magnesium salt or a calcium salt.
- the lignin sulfonic acid (salt) is obtained, for example, by neutralizing the black liquor remaining after the wood chips are digested to take out the cellulose with sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, etc. Can.
- the weight average molecular weight of lignin sulfonic acid (salt) is preferably 3,000 or more, from the viewpoint of further suppressing the elution of lignin sulfonic acid (salt) from the electrode to the electrolytic solution in the lead storage battery and obtaining further excellent cycle characteristics. More preferably, it is 7,000 or more, more preferably 8,000 or more.
- the weight average molecular weight of lignin sulfonic acid (salt) is preferably 70000 or less, more preferably 50000 or less, still more preferably 40000 or less, particularly preferably 30000 or less, very preferably 20000, from the viewpoint of excellent dispersibility of the electrode active material. It is below.
- the weight average molecular weight of lignin sulfonic acid (salt) is preferably 3000 to 70000, more preferably 3000 to 50000, still more preferably 3000 to 40000, particularly preferably 7000 to 30000, and very preferably 8000 to 20000. It is.
- the weight average molecular weight of lignin sulfonic acid (salt) can be measured by the same method as the weight average molecular weight of bisphenol resin.
- the content of lignin sulfonic acid (salt) may be 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, and 2% by mass or less based on the total mass of the negative electrode active material It may be 1% by mass or less or 0.5% by mass or less.
- the negative electrode active material 15 may further contain a carbon material as an additive. That is, the negative electrode 11 may further contain a carbon material in the negative electrode active material 15.
- the carbon material may contain, for example, carbon black, graphite or the like, and preferably contains carbon black from the viewpoint of being able to further suppress liquid reduction. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.
- the content of the carbon material may be 0.1% by mass or more, 0.5% by mass or more, 1.0% by mass or more, or 1.5% by mass or more, based on the total mass of the negative electrode active material, 3 .5 mass% or less, 3.0 mass% or less, 2.5 mass% or less, or 2.0 mass% or less.
- the negative electrode active material 15 may further contain barium sulfate, reinforcing short fibers and the like as an additive. That is, the negative electrode 11 may further contain barium sulfate, reinforcing short fibers and the like in the negative electrode active material 15.
- reinforcing staple fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers and the like.
- the content of barium sulfate may be, for example, 0.5% by mass or more and 3.0% by mass or less based on the total mass of the negative electrode active material.
- the content of reinforcing short fibers may be, for example, 0.05% by mass or more and 0.3% by mass or less based on the total mass of the negative electrode active material.
- the positive electrode active material 17 contains at least PbO 2 as a Pb component, and may further contain a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive, if necessary.
- the content of the Pb component may be 90% by mass or more or 95% by mass or more, and may be 99% by mass or less or 98% by mass or less based on the total mass of the positive electrode active material.
- Examples of the additive include carbon materials (excluding carbon fibers) and reinforcing staple fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, etc.).
- Examples of the carbon material include carbon black and graphite.
- Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.
- the negative electrode side strap 18 connecting the negative electrodes 11 to each other is formed of an alloy containing Pb and Sn (hereinafter referred to as “Pb—Sn-based alloy”) from the viewpoint of suppressing liquid reduction.
- Pb—Sn-based alloy an alloy containing Pb and Sn
- the content of Pb is 85 mass% or more, 90 mass% or more, 92 mass% or more, 95 mass% or more, 98 mass% or more, or 99 mass% or more, based on the total mass of the Pb-Sn alloy. You may
- the content of Sn is preferably 1% by mass or more, more preferably 2% by mass or more, based on the total mass of the Pb--Sn alloy from the viewpoint of improving the strength of the alloy and suppressing corrosion of the alloy. Preferably it is 5 mass% or more.
- the content of Sn is preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 8% by mass or less, based on the total mass of the Pb—Sn-based alloy, from the viewpoint of further suppressing liquid reduction. is there.
- the Pb—Sn-based alloy may further contain other components such as As, Se, etc. in addition to Pb and Sn.
- the content (total amount) of the other components may be 0.1% by mass or more and 1% by mass or less based on the total mass of the Pb—Sn-based alloy.
- the positive electrode side strap 19 connecting the positive electrodes 12 may be formed of a Pb—Sn based alloy, or may be formed of a lead alloy other than the Pb—Sn based alloy.
- the positive side strap 19 is preferably made of the same alloy as the negative side strap 18.
- the lead storage battery 1 described above is suitably used as a lead storage battery for an idling stop system car or for a micro hybrid car. That is, one embodiment of the present invention is an application of the above-described lead storage battery 1 to an idling stop system car or an application to a micro hybrid car.
- the lead storage battery 1 described above is manufactured by, for example, a manufacturing method including an electrode manufacturing process for obtaining an electrode (a negative electrode and a positive electrode) and an assembly process for assembling a component including the electrode to obtain the lead storage battery 1.
- the electrode manufacturing process for example, after holding the negative electrode active material paste on the negative electrode current collector 14, aging and drying are performed to obtain the unformed negative electrode 11, and the positive electrode current collector 16 holds the positive electrode active material paste. Then, the unformed positive electrode 12 is obtained by aging and drying under the conditions described above.
- the negative electrode active material paste contains, for example, lead powder, an additive, a solvent (eg, water or an organic solvent) and sulfuric acid (eg, dilute sulfuric acid).
- the negative electrode active material paste is obtained, for example, by mixing lead powder and an additive to obtain a mixture, and then adding a solvent and sulfuric acid to the mixture and kneading.
- the positive electrode active material paste contains, for example, lead powder, optionally added additives, a solvent (for example, water or an organic solvent) and sulfuric acid (for example, dilute sulfuric acid).
- the positive electrode active material paste may further contain red lead (Pb 3 O 4 ) from the viewpoint of shortening the formation time.
- the lead powder is, for example, a lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of a powder of main component PbO and scaly metallic lead Can be mentioned.
- Aging may be performed for 15 to 60 hours in an atmosphere at a temperature of 35 to 85 ° C. and a humidity of 50 to 98% RH. Drying may be performed at a temperature of 45-80 ° C. for 15-30 hours.
- the obtained negative electrode plate and positive electrode plate are stacked via the separator 13, and the current collecting portion of the electrode of the same polarity is welded with a strap to obtain an electrode group.
- This electrode group is disposed in a battery case to produce an unformed lead-acid battery.
- dilute sulfuric acid is put into an unformed lead storage battery, and direct current is applied to form a battery.
- the lead storage battery 1 is obtained by adjusting the specific gravity (20 ° C.) of sulfuric acid after formation to an appropriate specific gravity of the electrolytic solution.
- the specific gravity (20 ° C.) of sulfuric acid used for formation may be 1.15 to 1.25.
- the specific gravity (20 ° C.) of sulfuric acid after formation is preferably 1.25 to 1.33, more preferably 1.26 to 1.30.
- the formation conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode.
- the chemical conversion treatment may be performed in the assembly process or may be performed in the electrode manufacturing process (tank formation).
- Example 1 (Preparation of battery case) The battery case which consists of a box with an upper surface open
- the positive electrode active material paste was filled in an expanded current collector produced by subjecting a rolled sheet made of a lead alloy to expand processing, and then it was aged for 24 hours in an atmosphere with a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode which has an unformed positive electrode active material.
- Lead powder was used as a raw material of the negative electrode active material.
- the negative electrode active material paste was filled in an expanded current collector made by expanding a rolled sheet made of a lead alloy, and then aged for 24 hours in an atmosphere with a temperature of 50 ° C. and a humidity of 98%. Thereafter, the resultant was dried to prepare a negative electrode having an unformed negative electrode active material.
- Example 2 A lead-acid battery was manufactured in the same manner as Example 1, except that scale-like graphite (manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB) was used instead of the furnace black in the preparation of the negative electrode. In addition, content of scale-like graphite was mix
- scale-like graphite manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB
- Example 3 In the preparation of the negative electrode, Example 1 was used except that bisphenol-based resin (condensate of bisphenol, aminobenzene sulfonic acid and formaldehyde, Nippon Paper Industries Co., Ltd., trade name: Bisparz P 215) was used instead of sodium lignin sulfonate.
- a lead storage battery was produced in the same manner as in.
- content of bisphenol-type resin was mix
- Example 4 A lead-acid battery was produced in the same manner as in Example 2 except that, in the preparation of the negative electrode, a bisphenol resin having the same type and amount as in Example 3 was used instead of sodium lignin sulfonate.
- Comparative Example 1 Lead was prepared in the same manner as in Example 4 except that a Pb—Sb alloy (Pb content: 98 mass%, Sb content: 2 mass%) was used instead of the Pb—Sn alloy for the negative electrode side strap. A storage battery was made.
- DCA performance The DCA performance was evaluated by an evaluation method according to the Dynamic Charge Acceptance (DCA) test described in EN standard BS EN 50342-6: 2015. The average current values during charging standardized by the conversion equation are compared, and the larger the average current value, the better the DCA performance.
- DCA Dynamic Charge Acceptance
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Gas Exhaust Devices For Batteries (AREA)
Abstract
A lead storage battery according to one embodiment of the present invention is provided with: a battery case, which has a cell chamber and an open top; an electrode group and an electrolytic solution, which are stored in the cell chamber; and a lid that closes the opening. The electrode group has a plurality of negative electrodes and a plurality of positive electrodes, and the negative electrodes are connected to each other by means of a strap formed of an alloy containing Pb and Sn.
Description
本発明は、鉛蓄電池に関する。
The present invention relates to a lead storage battery.
近年、自動車においては、大気汚染防止又は地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、例えば、エンジンの動作時間を少なくするアイドリングストップシステム車(以下、「ISS車」ともいう)、エンジンの動力によるオルタネータの発電を低減する発電制御車等のマイクロハイブリッド車が検討されている。
In recent years, various measures for improving fuel consumption have been considered for preventing air pollution or global warming in automobiles. For example, an idling stop system car (hereinafter, also referred to as "ISS car") that reduces the operating time of the engine, and a micro control vehicle such as a power generation control car that reduces the power generation of the alternator by the power of the engine. Hybrid vehicles are being considered.
ISS車及びマイクロハイブリッド車では、短時間ではあるが、回生充電等により鉛蓄電池の大電流充電が繰り返される。大電流充電が繰り返されると、電解液中の水の電気分解が起こりやすく、それに伴って、酸素ガス及び水素ガスが発生し、鉛蓄電池内の圧力が上昇するおそれがある。これに対し、圧力を解放するために、鉛蓄電池の蓋に排気栓を設けることがある。この場合、排気栓を通して電解液のミストも電池外に排出されるため、電解液の量が減少してしまい、減少した分の電解液を補給してメンテナンスを行う必要がある。しかし、鉛蓄電池はメンテナンスフリーであることが望ましいため、電解液の減少(減液)を抑制することが求められている。
In ISS cars and micro hybrid cars, high current charging of lead acid batteries is repeated by regenerative charging etc., though for a short time. When the large current charging is repeated, electrolysis of water in the electrolyte is likely to occur, and accordingly, oxygen gas and hydrogen gas may be generated, and the pressure in the lead storage battery may be increased. On the other hand, in order to release the pressure, the lid of the lead storage battery may be provided with an exhaust plug. In this case, since the mist of the electrolytic solution is also discharged to the outside of the battery through the exhaust plug, the amount of the electrolytic solution is reduced, and it is necessary to perform maintenance by replenishing the reduced amount of the electrolytic solution. However, since it is desirable that lead-acid batteries be maintenance-free, it is required to suppress the decrease (liquid reduction) of the electrolyte.
減液を抑制する手段としては、例えば特許文献1に開示されているように、鉛蓄電池の蓋の内部に排気室を設け、発生した電解液のミストを排気室内に留めて液化させ、液化した電解液を電池内に還流させることが知られている。
As a means for suppressing liquid reduction, for example, as disclosed in Patent Document 1, an exhaust chamber is provided inside a lid of a lead storage battery, and generated electrolytic solution mist is retained in the exhaust chamber to be liquefied and liquefied. It is known to reflux the electrolyte into the cell.
しかし、特許文献1に開示されているような手段だけでは、必ずしも充分に減液を抑制できない。そこで、本発明は、減液抑制の点で優れた鉛蓄電池を提供することを目的とする。
However, the means as disclosed in Patent Document 1 can not necessarily suppress the liquid reduction sufficiently. Then, an object of this invention is to provide the lead storage battery excellent in the point of liquid reduction suppression.
本発明は、一態様において、セル室を有し、上面が開口している電槽と、セル室に収容された電極群及び電解液と、開口を閉じる蓋と、を備え、電極群は、複数の負極及び複数の正極を有し、複数の負極同士は、Pb及びSnを含有する合金で形成されたストラップで接続されている、鉛蓄電池である。
The present invention includes, in one aspect, a battery case having a cell chamber and having an open upper surface, an electrode group and an electrolytic solution accommodated in the cell chamber, and a lid for closing the opening; It is a lead storage battery which has several negative electrodes and several positive electrodes, and several negative electrodes are connected by the strap formed of the alloy containing Pb and Sn.
蓋は、第1の蓋部と、第1の蓋部上に設けられた第2の蓋部と、第1の蓋部と第2の蓋部との間に形成された排気室と、を有していてよく、排気室とセル室との間を隔てる第1の蓋部の底壁には、電解液をセル室内に還流させる還流孔が設けられていてよい。
The lid includes a first lid, a second lid provided on the first lid, and an exhaust chamber formed between the first lid and the second lid. The bottom wall of the first lid separating the exhaust chamber and the cell chamber may be provided with a reflux hole for refluxing the electrolyte into the cell chamber.
負極は、フェノール系化合物に由来する構造単位を有する樹脂を含んでいてよい。当該構造単位は、ビスフェノール系化合物に由来する構造単位を含んでいてよい。当該構造単位は、リグニンに由来する構造単位を含んでいてよい。
The negative electrode may contain a resin having a structural unit derived from a phenolic compound. The structural unit may contain a structural unit derived from a bisphenol-based compound. The structural unit may include structural units derived from lignin.
負極は、炭素材料を含んでいてよい。当該炭素材料は、カーボンブラックを含んでいてよい。
The negative electrode may contain a carbon material. The carbon material may contain carbon black.
本発明によれば、減液抑制の点で優れた鉛蓄電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the lead acid battery excellent in the point of liquid reduction suppression can be provided.
以下、本発明の実施形態について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail.
図1は、一実施形態の鉛蓄電池の全体構成を示す斜視図である。図1に示すように、一実施形態において、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3と、を備える液式鉛蓄電池である。
FIG. 1 is a perspective view showing an entire configuration of a lead storage battery of an embodiment. As shown in FIG. 1, in one embodiment, the lead storage battery 1 is a liquid lead storage battery including a battery case 2 whose upper surface is open and a lid 3 for closing the opening of the battery case 2.
図2は、図1に示した鉛蓄電池1の電槽2を示す斜視図である。図2に示すように、電槽2は、例えば、中空の直方体状である。電槽2の底面が長方形状であり、電槽2の上面の略全面が開口している。電槽2は、例えばポリプロピレンで形成されている。本明細書では、電槽2の底面の長辺に沿う方向及び短辺に沿う方向を、それぞれ電槽2の長手方向及び短手方向とする。
FIG. 2 is a perspective view showing the battery case 2 of the lead storage battery 1 shown in FIG. As shown in FIG. 2, the battery case 2 is, for example, a hollow rectangular parallelepiped. The bottom of the battery case 2 has a rectangular shape, and the substantially entire upper surface of the battery case 2 is open. The battery case 2 is formed of, for example, polypropylene. In the present specification, the direction along the long side and the direction along the short side of the bottom surface of the battery case 2 are respectively taken as the longitudinal direction and the short direction of the battery case 2.
電槽2の内部は、例えば、電槽2の短手方向に略平行に設けられた5枚の隔壁21によって6区画に分割されている。これにより、電槽2の内部には、電槽2の長手方向に沿って並ぶ第1~第6のセル室22a~22f(以下、これらをまとめて「セル室22」ともいう。)が形成されている。セル室22のそれぞれには、電極群(極板群、詳細は後述する)が収容されている。
The inside of the battery case 2 is divided into six sections by, for example, five partitions 21 provided substantially in parallel with the short side direction of the battery case 2. Thus, first to sixth cell chambers 22a to 22f (hereinafter collectively referred to as "cell chamber 22") are formed inside the battery case 2 along the longitudinal direction of the battery case 2. It is done. An electrode group (electrode plate group, details will be described later) is accommodated in each of the cell chambers 22.
各電極群は、単電池とも呼ばれており、その起電力は例えば2Vである。自動車用の鉛蓄電池は、例えば直流電圧12Vを昇圧又は降圧して駆動されるため、6個のセル室22のそれぞれに収容された6個の電極群同士が直列に接続されて、2V×6=12Vの起電力を有している。セル室22の数は、6個に限定されるものではなく。鉛蓄電池1の用途に応じて適宜選択される。
Each electrode group is also called a single cell, and its electromotive force is 2 V, for example. For example, since a lead storage battery for an automobile is driven by boosting or stepping down a DC voltage 12 V, six electrode groups accommodated in each of six cell chambers 22 are connected in series, and 2 V × 6 It has an electromotive force of 12 V. The number of cell chambers 22 is not limited to six. It is suitably selected according to the use of the lead storage battery 1.
図2に示すように、隔壁21の両側面(電槽2の短手方向に略平行な面)と、電槽2の隔壁21と略平行な一対の側壁23の内面とには、電槽2の高さ方向(開口面に垂直な方向)に延びる複数のリブ(リブ部)24が設けられていてよい。すなわち、隔壁21の両側面及び側壁23の内面は、それぞれ、平坦部25と、平坦部25から隆起した、電槽2の高さ方向に延びる複数のリブ24と、を有していてよい。リブ24は、セル室22に挿入された電極群を、電極の積層方向において適切に加圧(圧縮)する機能を有する。
As shown in FIG. 2, the side walls of the partition 21 (surfaces substantially parallel to the short direction of the battery case 2) and the inner surfaces of the pair of side walls 23 substantially parallel to the partition 21 of the battery case 2 A plurality of ribs (rib portions) 24 extending in the height direction of 2 (the direction perpendicular to the opening surface) may be provided. That is, both side surfaces of the partition wall 21 and the inner surface of the side wall 23 may have the flat portion 25 and a plurality of ribs 24 protruding from the flat portion 25 and extending in the height direction of the battery case 2. The rib 24 has a function of appropriately pressing (compressing) the electrode group inserted in the cell chamber 22 in the stacking direction of the electrodes.
図1に示すように、蓋3は、第1の蓋部4及び第2の蓋部5から構成される二重蓋構造を有しており、第1の蓋部4と第2の蓋部5との間には複数の排気室D1~D6が形成されている。すなわち、蓋3は、第1の蓋部4と、第2の蓋部5と、第1の蓋部4と第2の蓋部5との間に形成された排気室と、を有する。蓋3は、平面視略矩形状を呈しており、該矩形の4辺に沿う各方向のうち、蓋3の長手方向の一端及び他端を、電槽2の長手方向の一端及び他端にそれぞれ一致させ、蓋3の短手方向の一端及び他端を、電槽2の短手方向の一端及び他端にそれぞれ一致させた状態で、電槽2上に設けられている。蓋3(第1の蓋部4及び第2の蓋部5)は、例えばポリプロピレンで形成されている。
As shown in FIG. 1, the lid 3 has a double lid structure including a first lid 4 and a second lid 5, and the first lid 4 and the second lid 5 A plurality of exhaust chambers D1 to D6 are formed between them. That is, the lid 3 has a first lid 4, a second lid 5, and an exhaust chamber formed between the first lid 4 and the second lid 5. The lid 3 has a substantially rectangular shape in a plan view, and in each direction along the four sides of the rectangle, one end and the other end of the lid 3 in the longitudinal direction are one end and the other end of the battery case 2 in the longitudinal direction. They are provided on the battery case 2 in a state in which one end and the other end in the short direction of the lid 3 are respectively matched with one end and the other end in the short direction of the battery case 2. The lid 3 (the first lid 4 and the second lid 5) is made of, for example, polypropylene.
蓋3には、第1の蓋部4の上面のうち第2の蓋部5が設けられていない領域に、第1の蓋部4の上面から上方に突出した中空の突出部6が形成されている。この突出部6の一部には、インジケータ取り付け孔7が形成されている。このインジケータ取り付け孔7は、電槽内の電解液の液面レベルを表示するインジケータ(図示せず。)を取り付けるために用いられる。本実施形態では、電槽2に設けられているセル室のうちの一のセル室の上方にインジケータ取り付け孔7が設けられており、該セル室内の電解液の液面レベルを表示するインジケータがインジケータ取り付け孔7に取り付けられるようになっている。本実施形態では、一のセル室内の電解液の液面レベルを代表してインジケータに表示させることにより、他のセル室内の電解液の液面レベルを推測する。
In the lid 3, a hollow protrusion 6 protruding upward from the upper surface of the first lid 4 is formed in a region of the upper surface of the first lid 4 where the second lid 5 is not provided. ing. An indicator mounting hole 7 is formed in a part of the protrusion 6. The indicator mounting hole 7 is used to mount an indicator (not shown) that indicates the liquid level of the electrolyte in the battery case. In the present embodiment, the indicator attachment hole 7 is provided above one of the cell chambers provided in the battery case 2, and the indicator for displaying the liquid level of the electrolytic solution in the cell chamber is used. It can be attached to the indicator attachment hole 7. In the present embodiment, the liquid level level of the electrolytic solution in another cell chamber is estimated by displaying the liquid level level of the electrolytic solution in one cell chamber on the indicator.
蓋3には、第1の蓋部4の上面のうち第2の蓋部5が設けられていない領域に、負極端子8及び正極端子9が形成されている。負極端子8及び正極端子9は、負極柱及び正極柱を介して電槽2に収容された極板群と接続されている。
In the lid 3, the negative electrode terminal 8 and the positive electrode terminal 9 are formed in a region of the upper surface of the first lid 4 where the second lid 5 is not provided. The negative electrode terminal 8 and the positive electrode terminal 9 are connected to the electrode plate group accommodated in the battery case 2 via the negative electrode column and the positive electrode column.
以下、図3~図5を参照して、蓋3の詳細を説明する。図3は第1の蓋部の平面図であり、図4は第2の蓋部の底面図である。図5は、図3のV-V線に沿った断面図であり、第1の蓋部4と第2の蓋部5とを溶着した状態での蓋3の断面図である。
Hereinafter, the details of the lid 3 will be described with reference to FIGS. 3 to 5. FIG. 3 is a plan view of the first lid, and FIG. 4 is a bottom view of the second lid. FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3, and is a cross-sectional view of the lid 3 in a state in which the first lid 4 and the second lid 5 are welded.
図3に示すように、第1の蓋部4は、平面視略矩形状を呈しており、第1の蓋部4の一部には、その上に第2の蓋部5が配置される排気室構成部400が形成されている。排気室構成部400は、その長手方向の一端400a及び他端400bをそれぞれ第1の蓋部4の長手方向の一端4a及び他端4b寄りに位置させ、短手方向の一端400cを第1の蓋部4の短手方向の中央部付近に位置させ、かつ短手方向の他端400dを第1の蓋部4の短手方向(電槽の短手方向)の他端4d付近に位置させた状態で形成されている。排気室構成部400の上面には、その外周縁に沿って伸びる周壁部40が形成され、この周壁部40の内側に第1の蓋部側凹部が形成されている。図3に示す例では、排気室構成部400の長手方向の一端4a寄りの部分及び他端4b寄りの部分の幅寸法(短手方向の長さ)を拡大するために、排気室構成部400の長手方向の中央寄りの部分よりも短手方向の一端側に突出した突出部401及び402が形成されている。
As shown in FIG. 3, the first lid 4 has a substantially rectangular shape in plan view, and the second lid 5 is disposed on a part of the first lid 4. An exhaust chamber configuration 400 is formed. The exhaust chamber configuration 400 places the one end 400 a and the other end 400 b in the longitudinal direction near the one end 4 a and the other end 4 b in the longitudinal direction of the first lid 4, and the one end 400 c in the lateral direction as the first. Positioned near the center of the lid 4 in the width direction, and the other end 400 d in the width direction is positioned near the other end 4 d in the width direction (width direction of the battery case) of the first lid 4 It is formed in the A peripheral wall portion 40 extending along the outer peripheral edge is formed on the upper surface of the exhaust chamber configuration portion 400, and a first lid side concave portion is formed inside the peripheral wall portion 40. In the example shown in FIG. 3, in order to expand the width dimension (the length in the short direction) of the portion near the one end 4 a in the longitudinal direction and the portion near the other end 4 b of the exhaust chamber configuration 400, the exhaust chamber configuration 400 The protrusion parts 401 and 402 which protruded in the one end side of the transversal direction rather than the part of the center of the longitudinal direction are formed.
図4に示すように、第2の蓋部5は、排気室構成部400と同様の輪郭形状を有しており、その長手方向の一端5a側及び他端5b側には、それぞれ排気室構成部400の両端の突出部401及び402と同様に短手方向に突出した突出部501及び502が形成されている。また、図4に示すように、第2の蓋部5の下面にも、その外周縁に沿って伸びる周壁部50が形成され、周壁部50の内側に第2の蓋部側凹部が形成されている。図4に示す例では、第2の蓋部5の下面に、周壁部50の外側を取り囲む外壁部51が形成されている。
As shown in FIG. 4, the second lid 5 has the same contour as the exhaust chamber configuration 400, and the exhaust chamber configuration is provided on one end 5a side and the other end 5b side in the longitudinal direction. Similar to the protrusions 401 and 402 at both ends of the portion 400, protrusions 501 and 502 protruding in the short direction are formed. Further, as shown in FIG. 4, a peripheral wall 50 extending along the outer peripheral edge is also formed on the lower surface of the second cover 5, and a second cover side recess is formed inside the peripheral wall 50. ing. In the example shown in FIG. 4, an outer wall 51 surrounding the outer side of the peripheral wall 50 is formed on the lower surface of the second lid 5.
第2の蓋部5は、排気室構成部400上に設けられており、第1の蓋部4と第2の蓋部5とは熱溶着により接合されている。具体的には、第2の蓋部5は、第2の蓋部5の長手方向の一端5a及び他端5bをそれぞれ第1の蓋部4の長手方向の一端4a及び他端4bに一致させ、第2の蓋部5の短手方向の一端5c及び他端5dをそれぞれ第1の蓋部4の排気室構成部の短手方向の一端400c及び他端400dに一致させた状態で排気室構成部400上に配置されている。また、排気室構成部400と第2の蓋部5とは、周壁部40と周壁部50とを合わせた状態で接合されており、上記第1の蓋部側凹部及び第2の蓋部側凹部により、第1の蓋部4の排気室構成部400と第2の蓋部5との間に排気室を形成するための空間が形成されている。
The second lid 5 is provided on the exhaust chamber configuration 400, and the first lid 4 and the second lid 5 are joined by thermal welding. Specifically, the second lid 5 aligns one end 5a and the other end 5b in the longitudinal direction of the second lid 5 with the one end 4a and the other end 4b in the longitudinal direction of the first lid 4 respectively. The exhaust chamber with the one end 5c and the other end 5d of the second cover 5 in the short direction aligned with the one end 400c and the other end 400d of the exhaust chamber configuration of the first cover 4 respectively. It is disposed on component 400. Further, the exhaust chamber configuration 400 and the second lid 5 are joined together in a state where the peripheral wall 40 and the peripheral wall 50 are combined, and the first lid side concave portion and the second lid side A space for forming an exhaust chamber is formed between the exhaust chamber configuration 400 of the first cover 4 and the second cover 5 by the recess.
第1の蓋部4の排気室構成部400と第2の蓋部5との間の空間には、第1~第6のセル室22a~22fの上にそれぞれ位置させて、第1~第6の排気室D1~D6が形成されている(図3及び図4参照。)。これらの排気室は、第1の蓋部4の排気室構成部400及び第2の蓋部5の周壁部50の内側に所定の板厚を持って形成された所定パターンの第1の隔壁部42及び52が相互に接合されることにより形成されている。排気室D1~D6は、電槽2内の各セル室22から発生した電解液のミストを内部に留め、排気室内で液化した電解液を各セル室22内に還流させる機能を有している。
In the space between the exhaust chamber configuration 400 of the first cover 4 and the second cover 5, the first to sixth cell chambers 22a to 22f are positioned above the first to sixth cell chambers 22a to 22f, respectively. Six exhaust chambers D1 to D6 are formed (see FIGS. 3 and 4). These exhaust chambers are formed of the exhaust chamber forming portion 400 of the first cover 4 and the peripheral wall 50 of the second cover 5 with a predetermined thickness, and a first partition of a predetermined pattern. 42 and 52 are formed by being mutually joined. The exhaust chambers D1 to D6 have a function of keeping the mist of the electrolytic solution generated from each cell chamber 22 in the battery case 2 inside, and refluxing the liquefied electrolytic solution in the exhaust chamber into the respective cell chambers 22. .
本実施形態では、両端に配置された第1の排気室D1及び第6の排気室D6の一部を、第1の蓋部4及び第2の蓋部5に設けられた第1の隔壁部42及び52の一部に形成された第2の隔壁部42a及び52aで仕切ることにより、第1の蓋部4の排気室構成部400の長手方向の一端400a側及び他端400b側、並びに、第2の蓋部5の長手方向の一端5a側及び他端5b側に、それぞれ集中排気室E1及びE2が形成されている。
In the present embodiment, a part of the first exhaust chamber D1 and the sixth exhaust chamber D6 disposed at both ends is provided to the first lid 4 and the second lid 5 as a first partition wall. By dividing by the second partitions 42a and 52a formed in parts of 42 and 52, one end 400a side and the other end 400b side of the exhaust chamber configuration 400 of the first cover 4 in the longitudinal direction, and Centralized exhaust chambers E1 and E2 are formed on one end 5a side and the other end 5b side in the longitudinal direction of the second lid 5, respectively.
各排気室は、第1の蓋部4の長手方向に向いた状態で相対する一対の長手方向内側面Sa及びSbと、第1の蓋部4の短手方向に向いた状態で相対する一対の短手方向内側面Sc及びSdとを有しており、各排気室内に4つのコーナ部C1~C4が形成されている。本明細書においては、説明の便宜上、各排気室の4つの内側面Sa~Sdのうち、第1の蓋部4の長手方向に相対する内側面Sa及びSbを長手方向内側面といい、第1の蓋部4の短手方向に相対する内側面Sc及びSdを短手方向内側面という。
Each exhaust chamber has a pair of opposed longitudinal inner side surfaces Sa and Sb facing in the longitudinal direction of the first lid 4 and a pair facing the opposite direction in the lateral direction of the first lid 4 And four corner portions C1 to C4 are formed in each exhaust chamber. In the present specification, for convenience of explanation, of the four inner side surfaces Sa to Sd of the exhaust chambers, the inner side surfaces Sa and Sb opposed to the longitudinal direction of the first lid 4 are referred to as the longitudinal inner side surfaces. The inner side surfaces Sc and Sd opposed to the short side direction of the first cover 4 are referred to as the short side inner side surface.
第1の蓋部4の長手方向の一端4a寄りに配置された3個の排気室D1~D3においては、第1の蓋部4の一対の長手方向内側面のうち、第1の蓋部4の長手方向の一端4a側に位置する長手方向内側面を一方の長手方向内側面Saとし、第1の蓋部4の長手方向の他端4b側に位置する長手方向内側面を他方の長手方向内側面Sbとしている。また、第1の蓋部4の長手方向の他端4b寄りに配置された他の3個の排気室D4~D6においては、一対の長手方向内側面のうち、第1の蓋部4の長手方向の他端4b側に位置する長手方向内側面を一方の長手方向内側面Saとし、第1の蓋部4の長手方向の一端4a側に位置する長手方向内側面を他方の長手方向内側面Sbとしている。
In the three exhaust chambers D1 to D3 disposed near one longitudinal end 4a of the first cover 4, the first cover 4 of the pair of longitudinal inner side surfaces of the first cover 4 is provided. The longitudinal inner surface located on the one end 4a side in the longitudinal direction is one longitudinal inner surface Sa, and the longitudinal inner surface located on the other end 4b side of the first lid 4 in the longitudinal direction is the other longitudinal direction It is referred to as the inner side Sb. Further, in the other three exhaust chambers D4 to D6 arranged closer to the other end 4b in the longitudinal direction of the first lid 4, the length of the first lid 4 among the pair of longitudinal inner side surfaces The longitudinal inner surface located on the other end 4b side of the direction is one longitudinal inner surface Sa, and the longitudinal inner surface located on the longitudinal end 4a of the first cover 4 is the other longitudinal inner surface It is referred to as Sb.
排気室D1~D6は、平面視略正方形状に形成されているが、第1の蓋部4の長手方向の両端に配置された第1の排気室D1及び第6の排気室D6は、それぞれの一部に集中排気室E1及びE2が形成されていることにより、一方の長手方向内側面Saが変形された形状を呈している。
The exhaust chambers D1 to D6 are formed in a substantially square shape in plan view, but the first exhaust chamber D1 and the sixth exhaust chamber D6 disposed at both ends in the longitudinal direction of the first lid 4 are respectively formed By forming the centralized exhaust chambers E1 and E2 in a part of the first, the one longitudinal inner side surface Sa has a deformed shape.
上記のように、第1の蓋部4の排気室構成部400と第2の蓋部5との間には、排気室D1~D6と集中排気室E1及びE2とが形成される他、更に後述するように、排気室D1~D6を集中排気室E1及びE2に接続するための各種の流体通路が形成される。これらの流体通路は、第1の蓋部4及び第2の蓋部5にそれぞれ設けられて互いに接合される第1の隔壁部42,52により構成されるが、以下の説明では、主として第1の蓋部4を示す図3を用いて、第1の蓋部4と第2の蓋部5との間に設けられる流体通路の構成を説明する。排気室、流体通路等を形成するために第1の蓋部及び第2の蓋部にそれぞれ設けられる壁部のパターンは、互いに鏡像の関係にある。
As described above, the exhaust chambers D1 to D6 and the central exhaust chambers E1 and E2 are formed between the exhaust chamber forming portion 400 of the first cover 4 and the second cover 5, and further, As described later, various fluid passages for connecting the exhaust chambers D1 to D6 to the central exhaust chambers E1 and E2 are formed. These fluid passages are constituted by the first partition portions 42 and 52 provided in the first lid 4 and the second lid 5 and joined to each other, but in the following description, mainly the first The configuration of the fluid passage provided between the first cover 4 and the second cover 5 will be described with reference to FIG. 3 showing the cover 4 of FIG. The patterns of the walls provided on the first lid and the second lid to form the exhaust chamber, the fluid passage and the like are in mirror image to each other.
図3に示すように、第1の蓋部4の排気室構成部400と第2の蓋部5との間には、第1の長手方向流体通路L1と、第2の長手方向流体通路L2と、第1の短手方向流体通路W1aと、第2の短手方向流体通路W1bとが形成されている。
As shown in FIG. 3, a first longitudinal fluid passage L1 and a second longitudinal fluid passage L2 are provided between the exhaust chamber configuration 400 of the first lid 4 and the second lid 5. A first short direction fluid passage W1a and a second short direction fluid passage W1b are formed.
第1の長手方向流体通路L1は、排気室構成部400の短手方向の他端400d側で、排気室D1~D6の外側(排気室D1~D6と周壁部40との間)を排気室構成部400の長手方向に沿って直線的に延びるように設けられている。第1の長手方向流体通路L1の長手方向の一端側及び他端側には、それぞれ排気室構成部400の突出部401及び402に対応する位置で、幅寸法(短手方向の長さ)が拡大された拡大部L11及びL12が形成されている。これらの第1の長手方向流体通路L1の拡大部L11及びL12の端部が、それぞれ第1の排気室D1及び第6の排気室D6と周壁部40との間に形成された流路43及び44を通して、集中排気室E1及びE2に接続されている。
The first longitudinal fluid passage L1 is located on the other end 400d side in the width direction of the exhaust chamber configuration 400, and the outer side of the exhaust chamber D1 to D6 (between the exhaust chamber D1 to D6 and the peripheral wall portion 40) It is provided to extend linearly along the longitudinal direction of the component 400. The width dimension (length in the lateral direction) of the first longitudinal fluid passage L1 at positions corresponding to the protrusions 401 and 402 of the exhaust chamber configuration 400 on one end side and the other end side in the longitudinal direction, respectively. Enlarged enlarged portions L11 and L12 are formed. The ends of the enlarged portions L11 and L12 of the first longitudinal fluid passages L1 are flow paths 43 formed between the first exhaust chamber D1 and the sixth exhaust chamber D6 and the peripheral wall portion 40, and Through 44, the central exhaust chambers E1 and E2 are connected.
第2の長手方向流体通路L2は、排気室構成部400の短手方向の一端400c側で、排気室D1~D6の外側(排気室D1~D6と周壁部40との間)を直線的に延びるように設けられている。第1の短手方向流体通路W1a及び第2の短手方向流体通路W1bは、それぞれ、互いに隣り合う第2,第3の排気室D2,D3間及び第4,第5の排気室D4,D5間を、排気室構成部400の短手方向に延びるように設けられており、第1の長手方向流体通路L1と第2の長手方向流体通路L2との間を接続している。
The second longitudinal fluid passage L2 linearly extends outside the exhaust chambers D1 to D6 (between the exhaust chambers D1 to D6 and the peripheral wall portion 40) on one end 400c side of the exhaust chamber configuration 400 in the short direction. It is provided to extend. The first short direction fluid passage W1a and the second short direction fluid passage W1b are respectively disposed between the second and third exhaust chambers D2 and D3 and the fourth and fifth exhaust chambers D4 and D5 which are adjacent to each other. Between the first and second longitudinal fluid passages L1 and L2, the first longitudinal fluid passage L1 and the second longitudinal fluid passage L2 are connected.
第2の長手方向流体通路L2は、排気室構成部400の長手方向の中央部に設けられた仕切壁部45により、第1の部分L2aと、第2の部分L2bとに仕切られており、第1の長手方向流体通路L1が、第1の短手方向流体通路W1a及び第2の短手方向流体通路W1bを通して、第2の長手方向流体通路L2の第1の部分L2a及び第2の部分L2bにそれぞれ接続されている。
The second longitudinal fluid passage L2 is partitioned into a first portion L2a and a second portion L2b by a partition wall 45 provided at the central portion in the longitudinal direction of the exhaust chamber configuration 400. The first longitudinal fluid passage L1 passes through the first transverse fluid passage W1a and the second transverse fluid passage W1b to form a first portion L2a and a second portion of the second longitudinal fluid passage L2. Each is connected to L2b.
図3に示されているように、排気室D1~D6には、各排気室と対応する各セル室22a~22fとの間を区画する各排気室の底壁部を貫通する、電解液注入孔を兼ねる大きさの還流孔hが設けられている。還流孔hは、各排気室の一方の長手方向内側面Saと第2の長手方向流体通路L2側に位置する各排気室の一方の短手方向内側面Scとの間に形成されている第1のコーナ部C1付近に位置し、各排気室内に1つだけ設けられている。排気室D1~D6は、それぞれの底壁部に設けられた還流孔hを通して、第1~第6のセル室22a~22fに接続されている。
As shown in FIG. 3, electrolyte injection is carried out in the exhaust chambers D1 to D6 through the bottom walls of the exhaust chambers that separate the exhaust chambers from the corresponding cell chambers 22a to 22f. A reflux hole h having a size also serving as the hole is provided. The reflux hole h is formed between the longitudinal inner surface Sa of one of the exhaust chambers and the lateral surface Sc of one of the exhaust chambers located on the second longitudinal fluid passage L2 side. It is located in the vicinity of the corner portion C1 of 1, and only one is provided in each exhaust chamber. The exhaust chambers D1 to D6 are connected to the first to sixth cell chambers 22a to 22f through the reflux holes h provided in the respective bottom walls.
第1の蓋部4及び第2の蓋部5の各排気室内には、各排気室の他方の長手方向内側面Sbに沿って延びる流体通路形成用壁部46,56が設けられている。この流体通路形成用壁部46,56と長手方向内側面Sbとの間には、排気室構成部400の短手方向に延びる第3の短手方向流体通路W2が形成されている。第3の短手方向流体通路W2の一端は、第1のコーナ部C1の対角位置にある第4のコーナ部C4に開口し、他端は、第2の長手方向流体通路L2内に開口している。
In each of the exhaust chambers of the first cover 4 and the second cover 5, fluid passage forming walls 46 and 56 extending along the other longitudinal inner side surface Sb of each exhaust chamber are provided. A third short direction fluid passage W2 extending in the short direction of the exhaust chamber configuration 400 is formed between the fluid passage forming walls 46 and 56 and the longitudinal inner side surface Sb. One end of the third short direction fluid passage W2 opens to the fourth corner C4 at the diagonal position of the first corner C1 and the other end opens into the second longitudinal fluid passage L2 doing.
第1の蓋部4及び第2の蓋部5の各排気室内には、第3の短手方向流体通路W2の一端の開口部付近(第4のコーナ部C4付近)で流体通路形成用壁部46,56に一体化された第1の障壁部47,57が設けられている。第1の障壁部47,57は、流体通路形成用壁部46,56から各排気室の一方の長手方向内側面Sa側に突出して、該一方の長手方向内側面Saの手前の位置で終端している。第1の障壁部47,57は、第1の蓋部4及び第2の蓋部5に一体化された状態で設けられている。第1の障壁部47,57と一方の短手方向内側面Scとの間には、電解液収容空間Aが形成されている。第1の障壁部47,57の先端の終端位置は、還流孔hの少なくとも一部を電解液収容空間A内に位置させるように設定されている。
In each exhaust chamber of the first cover 4 and the second cover 5, a wall for forming a fluid passage in the vicinity of the opening at one end of the third short direction fluid passage W2 (near the fourth corner C4) First barrier portions 47, 57 integrated with the portions 46, 56 are provided. The first barrier portions 47, 57 project from the fluid passage forming walls 46, 56 toward one longitudinal inner side Sa of each exhaust chamber, and terminate at a position before the one longitudinal inner side Sa. doing. The first barrier portions 47 and 57 are provided integrally with the first lid 4 and the second lid 5. An electrolyte solution accommodation space A is formed between the first barrier portions 47 and 57 and one short side inner side surface Sc. The end positions of the tips of the first barrier portions 47 and 57 are set so as to position at least a part of the reflux hole h in the electrolyte solution accommodation space A.
第1の蓋部4及び第2の蓋部5の各排気室内には、還流孔hよりも第1の障壁部47,57側に寄った位置で各排気室の一方の長手方向対向面Scから突出して、電解液収容空間A内を流体通路形成用壁部46,56側に延びる第2の障壁部48,58が設けられている。この障壁部48,58は、第1の蓋部4及び第2の蓋部5に一体化されて設けられている。第2の障壁部48,58は、各排気室の他方の長手方向内側面Sbと一方の短手方向内側面Scとの間に形成されている第2のコーナ部C2側に傾斜した状態で設けられている。第2の障壁部48,58の先端は、流体通路形成用壁部46,56の手前の位置で終端されている。
In each exhaust chamber of the first cover 4 and the second cover 5, one longitudinal facing surface Sc of each exhaust chamber is located closer to the first barrier portions 47 and 57 than the return hole h. A second barrier portion 48, 58 is provided to extend from the electrolyte containing space A to the fluid passage forming wall 46, 56 side. The barriers 48 and 58 are provided integrally with the first lid 4 and the second lid 5. The second barrier portions 48, 58 are inclined to the second corner portion C2 side formed between the other longitudinal inner side surface Sb of each exhaust chamber and one shorter side inner side surface Sc. It is provided. The tips of the second barrier portions 48 and 58 are terminated at positions before the fluid passage forming walls 46 and 56.
第1の蓋部4及び第2の蓋部5の各排気室内には、第1の障壁部47,57の先端の手前の位置から排気室の短手方向に沿って第2の障壁部48,58側に突出して、第2の障壁部48,58の手前の位置で終端した第1の突出壁部47a,57aが更に設けられている。各排気室内には、第2の障壁部48,58の先端の手前の位置から各排気室の一方の短手方向内側面Sc側に突出して、一方の短手方向内側面Scの手前の位置で終端した第2の突出壁部48a,58aが更に設けられている。第1の突出壁部47a,57a及び第2の突出壁部48a,58aは、第1の蓋部4及び第2の蓋部5に一体化されて設けられている。
In each exhaust chamber of the first cover 4 and the second cover 5, the second barrier 48 is provided along the short direction of the exhaust chamber from the position just before the tip of the first barriers 47 and 57. , 58, and further provided with first projecting wall portions 47a, 57a which end at positions before the second barrier portions 48, 58. In each exhaust chamber, a position in front of the tip of the second barrier portion 48, 58 is projected to one short side inner side surface Sc side of each exhaust chamber, and a short side of one short side inner side surface Sc The second projecting wall portions 48a and 58a terminated at the end are further provided. The first projecting wall portions 47 a and 57 a and the second projecting wall portions 48 a and 58 a are provided integrally with the first lid 4 and the second lid 5.
第1の蓋部4において、各排気室の底壁部の上面には、第3の短手方向流体通路W2の一端の開口部付近から還流孔hに向かって、徐々に低くなっていくように傾斜がつけられている。第1の長手方向流体通路L1の底面には、第1,第2の短手方向流体通路W1a,W1bと第1の長手方向流体通路L1とが相会する部分に向かって、次第に低くなって行くように傾斜がつけられている。第1,第2の短手方向流体通路W1a,W1bの底面には、第1の長手方向流体通路L1側から第2の長手方向流体通路L2側に向かうに従って次第に低くなっていくように傾斜がつけられている。第2の長手方向流体通路L2の底面には、各排気室に設けられた第3の短手方向流体通路W2の他端の開口部に向かって次第に低くなっていくように傾斜がつけられている。図3においては、上記の各部の傾斜を矢印で示している。各矢印は、その先端側が後端側よりも低いことを示している。このような構成により、各排気室内の還流孔hから各排気室内に排出された電解液のミストが、第1の障壁部47,57、第2の障壁部48,58、第1の突出壁47a,57a及び第2の突出壁48a,58aに触れて液化した後、各排気室内の底面を伝って各排気室の還流孔hに戻ることができる。
In the first lid 4, the upper surface of the bottom wall of each exhaust chamber is gradually lowered toward the reflux hole h from the vicinity of the opening at one end of the third short direction fluid passage W 2 Is inclined. The bottom surface of the first longitudinal fluid passage L1 is gradually lowered toward the portion where the first and second transverse fluid passages W1a and W1b and the first longitudinal fluid passage L1 meet. It is inclined to go. The bottoms of the first and second short direction fluid passages W1a and W1b are inclined so that they gradually decrease from the first longitudinal fluid passage L1 side toward the second longitudinal fluid passage L2 side. It is attached. The bottom surface of the second longitudinal fluid passage L2 is inclined so as to be gradually lowered toward the opening of the other end of the third transverse fluid passage W2 provided in each exhaust chamber. There is. In FIG. 3, the inclination of each part described above is indicated by an arrow. Each arrow indicates that the front end side is lower than the rear end side. With such a configuration, the mist of the electrolyte solution discharged into the exhaust chambers from the reflux holes h in the exhaust chambers is the first barrier portions 47 and 57, the second barrier portions 48 and 58, and the first projecting wall. After contacting and liquefying the 47a, 57a and the second projecting wall 48a, 58a, it is possible to return to the reflux hole h of each exhaust chamber along the bottom surface of each exhaust chamber.
図4に示すように、第2の蓋部5の長手方向の一端及び他端には、集中排気室E1及びE2を外部に開放するための排気口65が形成されている。集中排気室E1及びE2内には、防爆フィルタ66が収容されている。第1の長手方向流体通路L1を通して各集中排気室内に流入した排気ガスは、防爆フィルタ66と排気口65とを通して外部に排出されるようになっている。
As shown in FIG. 4, at one end and the other end of the second lid 5 in the longitudinal direction, an exhaust port 65 for opening the centralized exhaust chambers E1 and E2 to the outside is formed. An explosion-proof filter 66 is accommodated in the central exhaust chambers E1 and E2. Exhaust gas that has flowed into the concentrated exhaust chambers through the first longitudinal fluid passage L1 is discharged to the outside through the explosion-proof filter 66 and the exhaust port 65.
第2の蓋部5には、注液口60が形成されている。注液口60は、各排気室内の還流孔hと整合する位置に設けられている。注液口60の内周には、栓を取り付けるためのネジが形成されている。
A liquid injection port 60 is formed in the second lid 5. The injection port 60 is provided at a position aligned with the reflux hole h in each exhaust chamber. At the inner periphery of the injection port 60, a screw for attaching a stopper is formed.
図5に示すように、蓋3には、溶着部405と、位置決め用リブ406と、が設けられている。溶着部405は、蓋3を電槽2に取り付ける際に電槽でセル室間を区画している隔壁の上端に溶着されて、電槽側の隔壁と共に、セル室間を隔てる壁部を形成する。また、位置決め用リブ406は、溶着部405を電槽2のセル室間の隔壁の上端に溶着する際に、電槽側のセル室間の隔壁の上端の側面に係合して、溶着部405を電槽側の隔壁に対して位置決めする位置決め用リブである。
As shown in FIG. 5, the lid 3 is provided with a welded portion 405 and a positioning rib 406. The welding portion 405 is welded to the upper end of the partition dividing the cell chamber by the battery case when the lid 3 is attached to the battery case 2 and forms a wall portion separating the cell chamber together with the battery case side partition wall Do. Further, the positioning rib 406 engages with the side surface of the upper end of the partition between the cell chambers on the side of the battery case when the welded portion 405 is welded to the upper end of the partition between the cell chambers of the battery case 2 It is a positioning rib which positions 405 with respect to the partition by the side of a battery case.
上記の実施形態では、第2の蓋部5に注液孔を設けているが、第2の蓋部5に注液孔を設けず、電解液を注液した後に、第1の蓋部4と第2の蓋部5とを溶着してもよい。
In the above embodiment, the liquid injection hole is provided in the second lid 5, but the liquid injection hole is not provided in the second lid 5, and after injecting the electrolytic solution, the first cover 4 is formed. And the second lid 5 may be welded.
上記の実施形態では、各排気室の一対の短手方向内側面Sc及びSdのうち、Scを一方の短手方向内側面とし、Sdを他方の短手方向内側面としたが、Sd及びScをそれぞれ一方の短手方向内側面及び他方の短手方向内側面としてもよい。同様にSbを一方の長手方向内側面とし、Saを他方の長手方向内側面としてもよい。
In the above embodiment, of the pair of transverse direction inner side surfaces Sc and Sd of each exhaust chamber, Sc is one transverse side inner side surface, and Sd is the other transverse direction inner side surface. These may be respectively one short side inner side and the other short side inner side. Similarly, Sb may be one longitudinal inner side, and Sa may be the other longitudinal inner side.
上記の実施形態では、還流孔hを複数の孔の集合体により構成しているが、還流孔hは、単一の孔により構成してもよい。還流孔hを大きめに構成するか、又は還流孔hを構成する孔の数を増やす等して、還流孔hに通気孔としての機能をも持たせることもできる。
In the above-mentioned embodiment, although the reflux hole h is comprised by the aggregate | assembly of several holes, the reflux hole h may be comprised by a single hole. The reflux hole h can also be made to have a function as a vent, by making the reflux hole h larger or increasing the number of the holes constituting the reflux hole h.
上記の実施形態では、第1の突出壁部47a,57a、及び、第2の突出壁部48a,58aが設けられていたが、第1の突出壁部47a,57a、及び、第2の突出壁部48a,58aを設けなくてもよい。
In the above-mentioned embodiment, although the 1st projection wall parts 47a and 57a and the 2nd projection wall parts 48a and 58a were provided, the 1st projection wall parts 47a and 57a and the 2nd projection The walls 48a and 58a may not be provided.
続いて、セル室22のそれぞれに収容される電極群について説明する。図6は、電極群を示す斜視図である。図6に示すように、電極群10は、板状の負極(負極板)11と、板状の正極(正極板)12と、負極11と正極12との間に配置されたセパレータ13と、を備えている。負極11は、負極集電体(負極格子体)14と、負極集電体14に保持された負極活物質15と、を備えている。正極12は、正極集電体(正極格子体)16と、正極集電体16に保持された正極活物質17と、を備えている。なお、本明細書では、化成後の負極から負極集電体を除いたものを「負極活物質」、化成後の正極から正極集電体を除いたものを「正極活物質」とそれぞれ定義する。
Then, the electrode group accommodated in each of the cell chamber 22 is demonstrated. FIG. 6 is a perspective view showing an electrode group. As shown in FIG. 6, the electrode group 10 includes a plate-like negative electrode (negative electrode plate) 11, a plate-like positive electrode (positive electrode plate) 12, and a separator 13 disposed between the negative electrode 11 and the positive electrode 12. Is equipped. The negative electrode 11 includes a negative electrode current collector (negative electrode grid body) 14 and a negative electrode active material 15 held by the negative electrode current collector 14. The positive electrode 12 includes a positive electrode current collector (positive electrode grid body) 16 and a positive electrode active material 17 held by the positive electrode current collector 16. In the present specification, the negative electrode after formation with the negative electrode collector removed is defined as “negative electrode active material”, and the positive electrode after formation with the positive electrode collector removed is defined as “positive electrode active material”. .
電極群10は、複数の負極11と正極12とが、セパレータ13を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、電極群10は、負極11及び正極12の主面が電槽2の開口面と垂直方向に広がるように、セル室22のそれぞれに収容されている。
The electrode group 10 has a structure in which a plurality of negative electrodes 11 and positive electrodes 12 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 via the separators 13. That is, the electrode group 10 is accommodated in each of the cell chambers 22 such that the main surfaces of the negative electrode 11 and the positive electrode 12 extend in the direction perpendicular to the opening surface of the battery case 2.
電極群10において、複数の負極11における各負極集電体14が有する耳部11a同士は、ストラップ(負極側ストラップ)18で接続(例えば集合溶接)されている。同様に、複数の正極12における各正極集電体16が有する耳部12a同士は、ストラップ(正極側ストラップ)19で接続(例えば集合溶接)されている。負極側ストラップ18及び正極側ストラップ19は、それぞれ、負極柱及び正極柱を介して負極端子8及び正極端子9に接続されている。
In the electrode group 10, the ear portions 11a of the respective negative electrode current collectors 14 of the plurality of negative electrodes 11 are connected (for example, collective welding) by straps (negative electrode side straps) 18. Similarly, the ear portions 12 a of the positive electrode current collectors 16 of the plurality of positive electrodes 12 are connected (for example, collective welding) by straps (positive electrode side straps) 19. The negative electrode side strap 18 and the positive electrode side strap 19 are connected to the negative electrode terminal 8 and the positive electrode terminal 9 via the negative electrode column and the positive electrode column, respectively.
セパレータ13は、例えば袋状に形成されており、負極11を収容している。セパレータ13は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等で形成されている。セパレータ13は、これらの材料で形成された織布、不織布、多孔質膜等にSiO2、Al2O3等の無機系粒子を付着させたものであってよい。
The separator 13 is formed in, for example, a bag shape, and accommodates the negative electrode 11. The separator 13 is made of, for example, polyethylene (PE), polypropylene (PP) or the like. The separator 13 may be obtained by adhering inorganic particles such as SiO 2 and Al 2 O 3 to a woven fabric, a non-woven fabric, a porous film or the like formed of these materials.
負極集電体14及び正極集電体16は、それぞれ、鉛合金で形成されている。鉛合金は、Pbに加えて、Sn、Ca、Sb、Se、Ag、Bi等を含有する合金であってよく、具体的には、例えば、Pb、Sn及びCaを含有する合金(Pb-Sn-Ca系合金)であってよい。
The negative electrode current collector 14 and the positive electrode current collector 16 are each formed of a lead alloy. The lead alloy may be an alloy containing, in addition to Pb, Sn, Ca, Sb, Se, Ag, Bi, etc. Specifically, for example, an alloy containing Pb, Sn and Ca (Pb-Sn -Ca-based alloy).
負極活物質15は、Pb成分として少なくともPb(単体)を含み、必要に応じて、Pb以外のPb成分(例えばPbSO4)及び添加剤を更に含んでいてよい。負極活物質15は、Pb成分として、好ましくは多孔質の海綿状鉛(Spongy Lead)を含む。
The negative electrode active material 15 contains at least Pb (single substance) as a Pb component, and may further contain a Pb component other than Pb (for example, PbSO 4 ) and an additive, if necessary. The negative electrode active material 15 preferably contains porous sponge lead as a Pb component.
Pb成分の含有量は、負極活物質の全質量を基準として、90質量%以上又は95質量%以上であってよく、99質量%以下又は98質量%以下であってよい。
The content of the Pb component may be 90% by mass or more or 95% by mass or more, and may be 99% by mass or less or 98% by mass or less based on the total mass of the negative electrode active material.
負極活物質15は、減液を更に抑制できる観点から、好ましくは、添加剤として、フェノール系化合物に由来する構造単位を有する樹脂(以下「フェノール系樹脂」ともいう)を更に含む。すなわち、負極11は、好ましくは、負極活物質15中に、フェノール系化合物に由来する構造単位を有する樹脂を更に含む。フェノール系樹脂は、好ましくは、スルホン酸基(スルホ基)又はスルホン酸塩基を更に有している。この場合、スルホン酸基又はスルホン酸塩基は、フェノール系化合物に由来する構造単位中に含まれていてもよく、フェノール系化合物に由来する構造単位とは別の構造単位中に含まれていてもよい。
The negative electrode active material 15 preferably further includes, as an additive, a resin having a structural unit derived from a phenolic compound (hereinafter, also referred to as “phenolic resin”) from the viewpoint of further suppressing liquid reduction. That is, preferably, the negative electrode 11 further includes, in the negative electrode active material 15, a resin having a structural unit derived from a phenolic compound. The phenolic resin preferably further comprises a sulfonic acid group (sulfo group) or a sulfonic acid group. In this case, the sulfonic acid group or the sulfonate group may be contained in the structural unit derived from the phenolic compound, and may be contained in a structural unit other than the structural unit derived from the phenolic compound Good.
フェノール系樹脂の含有量は、負極活物質の全質量を基準として、0.01質量%以上、0.05質量%以上又は0.1質量%以上であってよく、2質量%以下、1質量%以下又は0.5質量%以下であってよい。
The content of the phenolic resin may be 0.01 mass% or more, 0.05 mass% or more, or 0.1 mass% or more, 2 mass% or less, 1 mass based on the total mass of the negative electrode active material. % Or less or 0.5 mass% or less.
フェノール系化合物に由来する構造単位は、減液を特に抑制できる観点からは、好ましくはビスフェノール系化合物に由来する構造単位を含み、減液の抑制と優れたDCA性能とを両立できる観点からは、好ましくはリグニンに由来する構造単位を含む。すなわち、フェノール系樹脂は、減液を特に抑制できる観点からは、スルホン酸基又はスルホン酸塩基を含むビスフェノール系樹脂(以下「ビスフェノール系樹脂」ともいう)であり、減液の抑制と優れたDCA性能とを両立できる観点からは、好ましくはリグニンスルホン酸又はその塩(以下「リグニンスルホン酸(塩)」ともいう)である。
The structural unit derived from the phenolic compound preferably includes a structural unit derived from a bisphenol compound from the viewpoint of being able to particularly suppress liquid reduction, and from the viewpoint of achieving both suppression of liquid reduction and excellent DCA performance, Preferably, it comprises structural units derived from lignin. That is, the phenol resin is a bisphenol resin (also referred to as a "bisphenol resin" hereinafter) containing a sulfonic acid group or a sulfonate group from the viewpoint of suppressing liquid reduction particularly, and the DCA suppresses the liquid reduction and is excellent From the viewpoint of compatibility with the performance, lignin sulfonic acid or a salt thereof (hereinafter also referred to as “lignin sulfonic acid (salt)”) is preferable.
ビスフェノール系樹脂は、フェノール系化合物に由来する構造単位として、ビスフェノール系化合物に由来する構造単位を有している。ビスフェノール系樹脂は、例えば、(a)ビスフェノール系化合物(以下「(a)成分」ともいう)と、(b)スルホン酸基(スルホ基)を有する化合物(以下「(b)成分」ともいう)と、の反応において、必要に応じてスルホン酸基の水素原子を例えば金属原子で置換することにより得ることができる。(a)成分及び(b)成分の反応において、(c)ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種(以下「(c)成分」ともいう)を更に反応させてもよい。
The bisphenol resin has a structural unit derived from a bisphenol compound as a structural unit derived from a phenol compound. The bisphenol resin is, for example, a compound having (a) a bisphenol compound (hereinafter also referred to as “component (a)”) and (b) a sulfonic acid group (sulfo group) (hereinafter also referred to as “component (b)”) In the reactions of and, it can be obtained by replacing the hydrogen atom of the sulfonic acid group with, for example, a metal atom, if necessary. In the reaction of the component (a) and the component (b), at least one selected from the group consisting of (c) formaldehyde and a formaldehyde derivative (hereinafter also referred to as "component (c)") may be further reacted.
(a)成分としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下「ビスフェノールA」ともいう)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、及び、ビス(4-ヒドロキシフェニル)スルホン(以下「ビスフェノールS」ともいう)が挙げられる。(a)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(a)成分は、充電受入性に更に優れる観点からは好ましくはビスフェノールAであり、放電特性に更に優れる観点からは好ましくはビスフェノールSである。
As the component (a), for example, 2,2-bis (4-hydroxyphenyl) propane (hereinafter also referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ) Ethane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis ( 4-hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, and bis (4-hydroxyphenyl) Sulfone (hereinafter also referred to as "bisphenol S") can be mentioned. The component (a) can be used alone or in combination of two or more. The component (a) is preferably bisphenol A from the viewpoint of further excellent charge acceptance, and preferably bisphenol S from the viewpoint of further excellent discharge characteristics.
(a)成分としては、充電受入性、放電特性及びサイクル特性がバランス良く向上する観点から、ビスフェノールAとビスフェノールSとを併用することが好ましい。この場合、ビスフェノール系樹脂を得るための反応におけるビスフェノールAの含有量は、充電受入性、放電特性及びサイクル特性がバランス良く向上する観点から、ビスフェノールA及びビスフェノールSの合計量を基準として、好ましくは70モル%以上、より好ましくは75モル%以上、更に好ましくは80モル%以上である。ビスフェノールAの含有量は、充電受入性、放電特性及びサイクル特性がバランス良く向上する観点から、ビスフェノールA及びビスフェノールSの合計量を基準として、好ましくは99モル%以下、より好ましくは98モル%以下、更に好ましくは97モル%以下である。
As the component (a), it is preferable to use bisphenol A and bisphenol S in combination, from the viewpoint of improving charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner. In this case, the content of bisphenol A in the reaction for obtaining a bisphenol resin is preferably based on the total amount of bisphenol A and bisphenol S from the viewpoint of improving charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner. It is 70 mol% or more, more preferably 75 mol% or more, and still more preferably 80 mol% or more. The content of bisphenol A is preferably 99 mol% or less, more preferably 98 mol% or less based on the total amount of bisphenol A and bisphenol S from the viewpoint of improving charge acceptance, discharge characteristics and cycle characteristics in a well-balanced manner. More preferably, it is 97 mol% or less.
(b)成分は、アミノ基及びスルホン酸基を有する化合物であってよい。アミノ基及びスルホン酸基を有する化合物としては、例えば、4-アミノベンゼンスルホン酸(別名スルファニル酸)、アミノエチルスルホン酸(別名タウリン)、及び、5-アミノ-1-ナフタレンスルホン酸(別名ローレント酸)が挙げられる。
The component (b) may be a compound having an amino group and a sulfonic acid group. Examples of the compound having an amino group and a sulfonic acid group include 4-aminobenzenesulfonic acid (also called sulfanilic acid), aminoethylsulfonic acid (also called taurine), and 5-amino-1-naphthalenesulfonic acid (also called laurent acid) Can be mentioned.
(b)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(b)成分は、充電受入性が更に向上する観点から、好ましくは4-アミノベンゼンスルホン酸である。
The component (b) can be used alone or in combination of two or more. The component (b) is preferably 4-aminobenzenesulfonic acid from the viewpoint of further improving charge acceptance.
ビスフェノール系樹脂を得るための反応における(b)成分の含有量は、放電特性が更に向上する観点から、(a)成分1モルに対して、好ましくは0.5モル以上、より好ましくは0.6モル以上、更に好ましくは0.7モル以上、特に好ましくは0.8モル以上である。(b)成分の含有量は、放電特性及びサイクル特性が更に向上しやすい観点から、(a)成分1モルに対して、好ましくは2.0モル以下、より好ましくは1.5モル以下、更に好ましくは1.3モル以下、特に好ましくは1.0モル以下である。
The content of the component (b) in the reaction for obtaining a bisphenol resin is preferably 0.5 mol or more, more preferably 0. 1 mol, per 1 mol of the component (a), from the viewpoint of further improving the discharge characteristics. It is at least 6 mol, more preferably at least 0.7 mol, particularly preferably at least 0.8 mol. The content of the component (b) is preferably 2.0 mol or less, more preferably 1.5 mol or less, and further preferably 1 mol or less with respect to 1 mol of the component (a) from the viewpoint of facilitating further improvement of the discharge characteristics and cycle characteristics. It is preferably at most 1.3 mol, particularly preferably at most 1.0 mol.
(c)成分であるホルムアルデヒドとしては、ホルマリン(例えばホルムアルデヒド37質量%の水溶液)中のホルムアルデヒドを用いてもよい。ホルムアルデヒド誘導体としては、例えば、パラホルムアルデヒド、ヘキサメチレンテトラミン及びトリオキサンが挙げられる。(c)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。(c)成分として、ホルムアルデヒドとホルムアルデヒド誘導体とを併用してもよい。
As formaldehyde which is the component (c), formaldehyde in formalin (for example, an aqueous solution of 37% by mass of formaldehyde) may be used. Examples of formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine and trioxane. The component (c) can be used alone or in combination of two or more. As the component (c), formaldehyde and a formaldehyde derivative may be used in combination.
(c)成分は、優れたサイクル特性が得られやすい観点から、好ましくはホルムアルデヒド誘導体、より好ましくはパラホルムアルデヒドである。パラホルムアルデヒドは、例えば、下記式(1)で表される構造を有する。
HO(CH2O)n1H …(1)
式(1)中、n1は、2~100の整数を示す。 The component (c) is preferably a formaldehyde derivative, more preferably paraformaldehyde, from the viewpoint of easily obtaining excellent cycle characteristics. Paraformaldehyde has, for example, a structure represented by the following formula (1).
HO (CH 2 O) n 1 H (1)
In the formula (1), n1 represents an integer of 2 to 100.
HO(CH2O)n1H …(1)
式(1)中、n1は、2~100の整数を示す。 The component (c) is preferably a formaldehyde derivative, more preferably paraformaldehyde, from the viewpoint of easily obtaining excellent cycle characteristics. Paraformaldehyde has, for example, a structure represented by the following formula (1).
HO (CH 2 O) n 1 H (1)
In the formula (1), n1 represents an integer of 2 to 100.
ビスフェノール系樹脂を得るための反応における(c)成分のホルムアルデヒド換算の配合量は、(b)成分の反応性が向上する観点から、(a)成分1モルに対して、好ましくは2モル以上、より好ましくは2.2モル以上、更に好ましくは2.4モル以上である。(c)成分のホルムアルデヒド換算の配合量は、(a)成分、(b)成分及び(c)成分の反応により得られると共にベンゾオキサジン環を有する構造単位を低減しやすい観点から、(a)成分1モルに対して、好ましくは3.5モル以下、より好ましくは3.2モル以下、更に好ましくは3モル以下、特に好ましくは2.8モル未満、極めて好ましくは2.5モル以下である。
From the viewpoint of improving the reactivity of the component (b), the compounding amount of the component (c) in the reaction for obtaining a bisphenol resin is preferably 2 mol or more, relative to 1 mol of the component (a), from the viewpoint of improving the reactivity of the component (b) More preferably, it is 2.2 mol or more, still more preferably 2.4 mol or more. The compounding amount of the component (c) in terms of formaldehyde is obtained by the reaction of the components (a), (b) and (c) and from the viewpoint of easily reducing the structural unit having a benzoxazine ring, the component (a) The amount is preferably 3.5 mol or less, more preferably 3.2 mol or less, still more preferably 3 mol or less, particularly preferably less than 2.8 mol, and most preferably 2.5 mol or less, per 1 mol.
ビスフェノール系樹脂は、好ましくは、下記式(I)で表される構造単位、及び、下記式(II)で表される構造単位の少なくとも一方を有する。
The bisphenol resin preferably has at least one of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II).
式(I)で表される構造単位、及び、式(II)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(I)で表される構造単位、及び、式(II)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。
The ratio of the structural unit represented by the formula (I) and the structural unit represented by the formula (II) is not particularly limited, and may vary depending on synthesis conditions and the like. As a bisphenol resin, you may use resin which has only any one of the structural unit represented by Formula (I), and the structural unit represented by Formula (II).
X1及びX2としては、アルキリデン基(例えばメチリデン基、エチリデン基、イソプロピリデン基及びsec-ブチリデン基)、シクロアルキリデン基(例えばシクロヘキシリデン基)、フェニルアルキリデン基(例えばジフェニルメチリデン基及びフェニルエチリデン基)等の有機基;スルホニル基などが挙げられる。X1及びX2としては、充電受入性に更に優れる観点からはイソプロピリデン基(-C(CH3)2-)が好ましく、放電特性に更に優れる観点からはスルホニル基(-SO2-)が好ましい。X1及びX2は、フッ素原子等のハロゲン原子により置換されていてもよい。X1又はX2がシクロアルキリデン基である場合、炭化水素環はアルキル基等により置換されていてもよい。
As X 1 and X 2 , an alkylidene group (eg, methylidene group, ethylidene group, isopropylidene group and sec-butylidene group), a cycloalkylidene group (eg, cyclohexylidene group), a phenyl alkylidene group (eg, diphenylmethylidene group and phenyl) Organic groups such as ethylidene group); sulfonyl group etc. may be mentioned. As X 1 and X 2 , an isopropylidene group (—C (CH 3 ) 2 —) is preferable from the viewpoint of further excellent charge acceptance, and a sulfonyl group (—SO 2 —) is preferred from the viewpoint of further excellent discharge characteristics. preferable. X 1 and X 2 may be substituted by a halogen atom such as a fluorine atom. When X 1 or X 2 is a cycloalkylidene group, the hydrocarbon ring may be substituted by an alkyl group or the like.
Y1又はY2で表される2価の芳香族炭化水素基としては、例えばフェニレン基及びナフチレン基、2価の脂肪族炭化水素基としては、例えばエチレン基及びトリメチレン基、2価の脂環式炭化水素基としては、例えばシクロヘキシリデン基がそれぞれ挙げられる。Y1及びY2は、充電受入性に更に優れる観点から、好ましくはフェニレン基又はナフチレン基である。Y1及びY2で表される2価の芳香族炭化水素基、脂肪族炭化水素基又は脂環式炭化水素基は、それぞれフッ素原子等のハロゲン原子により置換されていてもよい。
Examples of the divalent aromatic hydrocarbon group represented by Y 1 or Y 2 include a phenylene group and a naphthylene group, and examples of the divalent aliphatic hydrocarbon group include an ethylene group and a trimethylene group, and a divalent alicyclic group. As a formula hydrocarbon group, a cyclohexylidene group is mentioned, for example. Y 1 and Y 2 are preferably a phenylene group or a naphthylene group from the viewpoint of further excellent charge acceptance. The divalent aromatic hydrocarbon group, aliphatic hydrocarbon group or alicyclic hydrocarbon group represented by Y 1 and Y 2 may be substituted by a halogen atom such as a fluorine atom.
R11、R12、R13、R21、R22又はR23で表される金属原子は、例えば、ナトリウム原子、カリウム原子、マグネシウム原子又はカルシウム原子である。
The metal atom represented by R 11 , R 12 , R 13 , R 21 , R 22 or R 23 is, for example, a sodium atom, a potassium atom, a magnesium atom or a calcium atom.
ビスフェノール系樹脂は、例えば、下記式(III)~(VI)で表される構造単位を有していてもよい。式(III)~(VI)で表される構造単位が生成する理由は、(a)成分のベンゼン環にホルムアルデヒド成分が付加反応をするためと推測される。
The bisphenol resin may have, for example, structural units represented by the following formulas (III) to (VI). The reason why the structural units represented by the formulas (III) to (VI) are formed is presumed to be the addition reaction of the formaldehyde component to the benzene ring of the component (a).
X3、X4、X5及びX6は、それぞれX1及びX2と同義であり、R31、R32、R33、R41、R42、R43、R51、R52、R61及びR62は、それぞれ独立にR21、R22及びR23と同義であり、n31、n41、n51及びn61は、それぞれ独立にn11及びn21と同義であり、n32及びn42は、それぞれ独立にn12及びn22と同義である。ベンゼン環を構成する炭素原子に直接結合している水素原子は、炭素数1~5のアルキル基で置換されていてもよい。
X 3 , X 4 , X 5 and X 6 have the same meaning as X 1 and X 2 respectively, and R 31 , R 32 , R 33 , R 41 , R 42 , R 43 , R 51 , R 52 , R 61 And R 62 each independently has the same meaning as R 21 , R 22 and R 23 , n 31, n 41, n 51 and n 61 each independently has the same meaning as n 11 and n 21, and n 32 and n 42 each independently is n 12 And n22. The hydrogen atom directly bonded to the carbon atom constituting the benzene ring may be substituted by an alkyl group of 1 to 5 carbon atoms.
ビスフェノール系樹脂の重量平均分子量は、サイクル特性が更に向上する観点から、好ましくは20000以上、より好ましくは30000以上、更に好ましくは40000以上、特に好ましくは50000以上である。ビスフェノール系樹脂の重量平均分子量は、サイクル特性が更に向上する観点から、好ましくは80000以下、より好ましくは70000以下、更に好ましくは60000以下である。これらの観点から、ビスフェノール系樹脂の重量平均分子量は、好ましくは20000~80000、より好ましくは30000~70000、更に好ましくは40000~60000、特に好ましくは50000~60000である。
The weight average molecular weight of the bisphenol resin is preferably 20000 or more, more preferably 30000 or more, still more preferably 40000 or more, particularly preferably 50000 or more, from the viewpoint of further improving the cycle characteristics. The weight average molecular weight of the bisphenol resin is preferably 80,000 or less, more preferably 70,000 or less, still more preferably 60000 or less, from the viewpoint of further improving the cycle characteristics. From these viewpoints, the weight average molecular weight of the bisphenol resin is preferably 20,000 to 80,000, more preferably 30,000 to 70,000, still more preferably 40,000 to 60000, and particularly preferably 50,000 to 60000.
ビスフェノール系樹脂の重量平均分子量は、例えば、下記条件のゲルパーミエイションクロマトグラフィー(以下、「GPC」という)により測定することができる。
(GPC条件)
装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
ポンプ:PU-2080
示差屈折率計:RI-2031
検出器:紫外可視吸光光度計UV-2075(λ:254nm)
カラムオーブン:CO-2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×106、5.80×105、2.55×105、1.46×105、1.01×105、4.49×104、2.70×104、2.10×104;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×102;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×102;キシダ化学株式会社製) The weight average molecular weight of the bisphenol resin can be measured, for example, by gel permeation chromatography (hereinafter referred to as "GPC") under the following conditions.
(GPC conditions)
Device: High-performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential Refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation, diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd., dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
(GPC条件)
装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
ポンプ:PU-2080
示差屈折率計:RI-2031
検出器:紫外可視吸光光度計UV-2075(λ:254nm)
カラムオーブン:CO-2065
カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
カラム温度:40℃
溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
流速:0.6mL/分
分子量標準試料:ポリエチレングリコール(分子量:1.10×106、5.80×105、2.55×105、1.46×105、1.01×105、4.49×104、2.70×104、2.10×104;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×102;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×102;キシダ化学株式会社製) The weight average molecular weight of the bisphenol resin can be measured, for example, by gel permeation chromatography (hereinafter referred to as "GPC") under the following conditions.
(GPC conditions)
Device: High-performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential Refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation, diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd., dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
ビスフェノール系樹脂の製造方法は、例えば、(a)成分、(b)成分及び(c)成分を反応させてビスフェノール系樹脂を得る樹脂製造工程を備えている。ビスフェノール系樹脂は、例えば、(a)成分、(b)成分及び(c)成分を反応溶媒中で反応させることにより得ることができる。反応溶媒は、好ましくは水(例えばイオン交換水)である。本工程では、反応を促進させるために、有機溶媒、触媒、添加剤等を用いてもよい。
The method for producing a bisphenol-based resin includes, for example, a resin-producing step of reacting a component (a), a component (b) and a component (c) to obtain a bisphenol-based resin. The bisphenol resin can be obtained, for example, by reacting component (a), component (b) and component (c) in a reaction solvent. The reaction solvent is preferably water (eg, ion exchanged water). In this step, an organic solvent, a catalyst, an additive, or the like may be used to promote the reaction.
樹脂製造工程は、サイクル特性が更に向上する観点から、(b)成分の配合量が(a)成分1モルに対して0.5~2.0モルであり、且つ、(c)成分の配合量が(a)成分1モルに対してホルムアルデヒド換算で2~3.5モルである態様が好ましく、(b)成分の配合量が(a)成分1モルに対して0.5~2.0モルであり、且つ、(c)成分の配合量が(a)成分1モルに対してホルムアルデヒド換算で2~2.5モルである態様がより好ましい。(b)成分及び(c)成分の好ましい配合量は、(b)成分及び(c)成分の配合量のそれぞれについて上述した範囲である。
In the resin production process, the compounding amount of the component (b) is 0.5 to 2.0 moles to 1 mole of the component (a) from the viewpoint of further improving the cycle characteristics, and the compounding of the component (c) An embodiment in which the amount is 2 to 3.5 mol in terms of formaldehyde relative to 1 mol of the component (a) is preferable, and the blending amount of the component (b) is 0.5 to 2.0 per 1 mol of the component (a) More preferable is an embodiment in which the amount of component (c) is 2 to 2.5 moles in terms of formaldehyde relative to 1 mole of component (a). The preferable blending amounts of the components (b) and (c) are the ranges described above for the blending amounts of the components (b) and (c).
ビスフェノール系樹脂は、充分量のビスフェノール系樹脂が得られやすい観点から、好ましくは、(a)成分、(b)成分及び(c)成分を塩基性条件(アルカリ性条件)で反応させることにより得られる。塩基性条件に調整するためには、塩基性化合物を用いてもよい。塩基性化合物としては、例えば、水酸化カリウム及び炭酸カリウムが挙げられる。塩基性化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。塩基性化合物は、反応性に優れる観点から、好ましくは水酸化カリウムである。
The bisphenol resin is preferably obtained by reacting the components (a), (b) and (c) under basic conditions (alkaline conditions), from the viewpoint that a sufficient amount of bisphenol resin can be easily obtained. . A basic compound may be used to adjust to basic conditions. Examples of the basic compound include potassium hydroxide and potassium carbonate. The basic compounds can be used alone or in combination of two or more. The basic compound is preferably potassium hydroxide from the viewpoint of excellent reactivity.
反応時の反応溶液が中性(pH=7)である場合、ビスフェノール系樹脂の生成反応が進行しにくい場合があり、反応溶液が酸性(pH<7)である場合、副反応(例えば、ベンゾオキサジン環を有する構造単位の生成反応)が進行する場合がある。そのため、反応時の反応溶液のpHは、ビスフェノール系樹脂の生成反応を進行させつつ副反応が進行することを抑制しやすい観点から、好ましくはアルカリ性であり(7を超え)、より好ましくは7.1以上、更に好ましくは7.2以上である。反応溶液のpHは、ビスフェノール系樹脂における(b)成分に由来する基の加水分解が進行することを抑制する観点から、好ましくは12以下、より好ましくは10以下、更に好ましくは9以下である。反応溶液のpHは、例えば株式会社堀場製作所製のツインpHメーター AS-212で測定することができる。pHは、25℃におけるpHとして定義される。
When the reaction solution at the time of reaction is neutral (pH = 7), the reaction for producing a bisphenol resin may not progress easily, and when the reaction solution is acidic (pH <7), side reactions (eg, benzo In some cases, the reaction of producing a structural unit having an oxazine ring may proceed. Therefore, the pH of the reaction solution at the time of reaction is preferably alkaline (more than 7), and more preferably 7., from the viewpoint of easily suppressing the progress of the side reaction while advancing the formation reaction of the bisphenol resin. It is at least one, more preferably at least 7.2. The pH of the reaction solution is preferably 12 or less, more preferably 10 or less, and still more preferably 9 or less, from the viewpoint of suppressing the progress of hydrolysis of the group derived from the component (b) in the bisphenol resin. The pH of the reaction solution can be measured, for example, with a twin pH meter AS-212 manufactured by HORIBA, Ltd. The pH is defined as the pH at 25 ° C.
上記のようなpHに調整しやすいことから、強塩基性化合物の配合量は、(b)成分1モルに対して、好ましくは1.01モル以上、より好ましくは1.02モル以上、更に好ましくは1.03モル以上である。同様の観点から、強塩基性化合物の配合量は、(b)成分1モルに対して、好ましくは1.1モル以下、より好ましくは1.08モル以下、更に好ましくは1.07モル以下である。強塩基性化合物としては、例えば、水酸化カリウム及び炭酸カリウムが挙げられる。
The content of the strongly basic compound is preferably 1.01 mol or more, more preferably 1.02 mol or more, and still more preferably 1 mol of the component (b) because it is easy to adjust to the pH as described above. Is 1.03 mol or more. From the same viewpoint, the compounding amount of the strongly basic compound is preferably 1.1 mol or less, more preferably 1.08 mol or less, still more preferably 1.07 mol or less, per 1 mol of component (b). is there. Examples of strongly basic compounds include potassium hydroxide and potassium carbonate.
ビスフェノール系樹脂の合成反応では、(a)成分、(b)成分及び(c)成分が反応してビスフェノール系樹脂が得られればよく、例えば、(a)成分、(b)成分及び(c)成分を同時に反応させてもよく、(a)成分、(b)成分及び(c)成分のうちの2成分を反応させた後に残りの1成分を反応させてもよい。
In the synthesis reaction of the bisphenol resin, the (a) component, the (b) component and the (c) component may be reacted to obtain the bisphenol resin, for example, the (a) component, the (b) component and the (c) The components may be reacted simultaneously, or after the two components of the components (a), (b) and (c) are reacted, the remaining one component may be reacted.
ビスフェノール系樹脂の合成反応は、好ましくは次のように二段階で行われる。第一段階の反応では、例えば、(b)成分、溶媒(水等)及び塩基性化合物を仕込んだ後に撹拌し、(b)成分におけるスルホ基の水素原子をカリウム原子等の金属原子で置換して(b)成分のカリウム塩等の金属塩を得る。これにより、後述の縮合反応において副反応を抑制しやすい。反応系の温度は、(b)成分の溶媒(水等)への溶解性に優れる観点から、好ましくは0℃以上、より好ましくは25℃以上である。反応系の温度は、副反応を抑制しやすい観点から、好ましくは80℃以下、より好ましくは70℃以下、更に好ましくは65℃以下である。反応時間は、例えば30分間である。
The synthesis reaction of the bisphenol-based resin is preferably performed in two steps as follows. In the first step reaction, for example, after charging the component (b), the solvent (such as water) and the basic compound, stirring is performed, and the hydrogen atom of the sulfo group in the component (b) is substituted with a metal atom such as potassium To obtain a metal salt such as potassium salt of component (b). This makes it easy to suppress side reactions in the condensation reaction described later. The temperature of the reaction system is preferably 0 ° C. or more, more preferably 25 ° C. or more from the viewpoint of excellent solubility of the component (b) in a solvent (such as water). The temperature of the reaction system is preferably 80 ° C. or less, more preferably 70 ° C. or less, and still more preferably 65 ° C. or less from the viewpoint of easily suppressing side reactions. The reaction time is, for example, 30 minutes.
第二段階の反応では、例えば、第一段階で得られた反応物に(a)成分及び(c)成分を加えて縮合反応させることによりビスフェノール系樹脂を得る。反応系の温度は、(a)成分、(b)成分及び(c)成分の反応性に優れる観点、及び、副反応生成物が低減される観点から、好ましくは75℃以上、より好ましくは85℃以上、更に好ましくは92℃以上である。反応系の温度は、副反応を抑制しやすい観点から、好ましくは100℃以下、より好ましくは98℃以下、更に好ましくは96℃以下である。反応時間は、例えば5~20時間である。
In the reaction of the second step, for example, the component (a) and the component (c) are added to the reaction product obtained in the first step to cause a condensation reaction to obtain a bisphenol resin. The temperature of the reaction system is preferably 75 ° C. or more, more preferably 85 ° C. or more, from the viewpoint of excellent reactivity of the components (a), (b) and (c) and from the viewpoint of reduction of side reaction products. C. or higher, more preferably 92.degree. C. or higher. The temperature of the reaction system is preferably 100 ° C. or less, more preferably 98 ° C. or less, still more preferably 96 ° C. or less, from the viewpoint of easily suppressing side reactions. The reaction time is, for example, 5 to 20 hours.
ビスフェノール系樹脂の含有量は、負極活物質の全質量を基準として、0.01質量%以上、0.05質量%以上又は0.1質量%以上であってよく、2質量%以下、1質量%以下又は0.5質量%以下であってよい。
The content of the bisphenol-based resin may be 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, 2% by mass or less, or 1% by mass, based on the total mass of the negative electrode active material. % Or less or 0.5 mass% or less.
リグニンスルホン酸(塩)は、リグニン分解物の一部がスルホン化されたリグニンスルホン酸又はその塩である。リグニンスルホン酸(塩)は、フェノール系化合物に由来する構造単位としてリグニンに由来する構造単位を有すると共に、スルホン酸基又はスルホン酸塩基を有している。リグニンスルホン酸(塩)は、例えば、フェニレン基に隣接したα位の炭素原子にスルホン酸基又はスルホン酸塩基が結合した構造を有している。リグニンスルホン酸の塩は、例えば、ナトリウム塩、カリウム塩、マグネシウム塩又はカルシウム塩であってよい。
Lignin sulfonic acid (salt) is lignin sulfonic acid or a salt thereof in which a part of lignin degradation product is sulfonated. Lignin sulfonic acid (salt) has a structural unit derived from lignin as a structural unit derived from a phenolic compound and also has a sulfonic acid group or a sulfonate group. The lignin sulfonic acid (salt) has, for example, a structure in which a sulfonic acid group or a sulfonate group is bonded to a carbon atom at the α position adjacent to a phenylene group. The salt of lignin sulfonic acid may be, for example, a sodium salt, a potassium salt, a magnesium salt or a calcium salt.
リグニンスルホン酸(塩)は、例えば、木材チップを蒸解してセルロースを取り出した後に残った黒液を水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等によって中和することにより得ることができる。
The lignin sulfonic acid (salt) is obtained, for example, by neutralizing the black liquor remaining after the wood chips are digested to take out the cellulose with sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, etc. Can.
リグニンスルホン酸(塩)の重量平均分子量は、鉛蓄電池において電極からリグニンスルホン酸(塩)が電解液に溶出することが抑制されて更に優れたサイクル特性が得られる観点から、好ましくは3000以上、より好ましくは7000以上、更に好ましくは8000以上である。リグニンスルホン酸(塩)の重量平均分子量は、電極活物質の分散性に優れる観点から、好ましくは70000以下、より好ましくは50000以下、更に好ましくは40000以下、特に好ましくは30000以下、極めて好ましくは20000以下である。これらの観点から、リグニンスルホン酸(塩)の重量平均分子量は、好ましくは3000~70000、より好ましくは3000~50000、更に好ましくは3000~40000、特に好ましくは7000~30000、極めて好ましくは8000~20000である。リグニンスルホン酸(塩)の重量平均分子量は、ビスフェノール系樹脂の重量平均分子量と同様の方法により測定することができる。
The weight average molecular weight of lignin sulfonic acid (salt) is preferably 3,000 or more, from the viewpoint of further suppressing the elution of lignin sulfonic acid (salt) from the electrode to the electrolytic solution in the lead storage battery and obtaining further excellent cycle characteristics. More preferably, it is 7,000 or more, more preferably 8,000 or more. The weight average molecular weight of lignin sulfonic acid (salt) is preferably 70000 or less, more preferably 50000 or less, still more preferably 40000 or less, particularly preferably 30000 or less, very preferably 20000, from the viewpoint of excellent dispersibility of the electrode active material. It is below. From these viewpoints, the weight average molecular weight of lignin sulfonic acid (salt) is preferably 3000 to 70000, more preferably 3000 to 50000, still more preferably 3000 to 40000, particularly preferably 7000 to 30000, and very preferably 8000 to 20000. It is. The weight average molecular weight of lignin sulfonic acid (salt) can be measured by the same method as the weight average molecular weight of bisphenol resin.
リグニンスルホン酸(塩)の含有量は、負極活物質の全質量を基準として、0.01質量%以上、0.05質量%以上又は0.1質量%以上であってよく、2質量%以下、1質量%以下又は0.5質量%以下であってよい。
The content of lignin sulfonic acid (salt) may be 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, and 2% by mass or less based on the total mass of the negative electrode active material It may be 1% by mass or less or 0.5% by mass or less.
負極活物質15は、添加剤として、炭素材料を更に含んでいてよい。すなわち、負極11は、負極活物質15中に炭素材料を更に含んでいてよい。炭素材料は、例えば、カーボンブラック、黒鉛等を含んでいてよく、減液を更に抑制できる観点から、好ましくはカーボンブラックを含む。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。
The negative electrode active material 15 may further contain a carbon material as an additive. That is, the negative electrode 11 may further contain a carbon material in the negative electrode active material 15. The carbon material may contain, for example, carbon black, graphite or the like, and preferably contains carbon black from the viewpoint of being able to further suppress liquid reduction. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.
炭素材料の含有量は、負極活物質の全質量を基準として、0.1質量%以上、0.5質量%以上、1.0質量%以上又は1.5質量%以上であってよく、3.5質量%以下、3.0質量%以下、2.5質量%以下又は2.0質量%以下であってよい。
The content of the carbon material may be 0.1% by mass or more, 0.5% by mass or more, 1.0% by mass or more, or 1.5% by mass or more, based on the total mass of the negative electrode active material, 3 .5 mass% or less, 3.0 mass% or less, 2.5 mass% or less, or 2.0 mass% or less.
負極活物質15は、添加剤として、硫酸バリウム、補強用短繊維等を更に含んでいてよい。すなわち、負極11は、負極活物質15中に硫酸バリウム、補強用短繊維等を更に含んでいてよい。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等が挙げられる。硫酸バリウムの含有量は、負極活物質の全質量を基準として、例えば、0.5質量%以上であってよく、3.0質量%以下であってよい。補強用短繊維の含有量は、負極活物質の全質量を基準として、例えば、0.05質量%以上であってよく、0.3質量%以下であってよい。
The negative electrode active material 15 may further contain barium sulfate, reinforcing short fibers and the like as an additive. That is, the negative electrode 11 may further contain barium sulfate, reinforcing short fibers and the like in the negative electrode active material 15. Examples of reinforcing staple fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers and the like. The content of barium sulfate may be, for example, 0.5% by mass or more and 3.0% by mass or less based on the total mass of the negative electrode active material. The content of reinforcing short fibers may be, for example, 0.05% by mass or more and 0.3% by mass or less based on the total mass of the negative electrode active material.
正極活物質17は、Pb成分として少なくともPbO2を含み、必要に応じて、PbO2以外のPb成分(例えばPbSO4)及び添加剤を更に含んでいてよい。
The positive electrode active material 17 contains at least PbO 2 as a Pb component, and may further contain a Pb component other than PbO 2 (for example, PbSO 4 ) and an additive, if necessary.
Pb成分の含有量は、正極活物質の全質量を基準として、90質量%以上又は95質量%以上であってよく、99質量%以下又は98質量%以下であってよい。
The content of the Pb component may be 90% by mass or more or 95% by mass or more, and may be 99% by mass or less or 98% by mass or less based on the total mass of the positive electrode active material.
添加剤としては、例えば、炭素材料(炭素繊維を除く)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。
Examples of the additive include carbon materials (excluding carbon fibers) and reinforcing staple fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, etc.). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black and ketjen black.
負極11同士を接続する負極側ストラップ18は、減液を抑制する観点から、Pb及びSnを含有する合金(以下「Pb-Sn系合金」という)で形成されている。Pbの含有量は、Pb-Sn系合金の全質量を基準として、85質量%以上、90質量%以上、92質量%以上、95質量%以上、98質量%以上、又は99質量%以上であってよい。
The negative electrode side strap 18 connecting the negative electrodes 11 to each other is formed of an alloy containing Pb and Sn (hereinafter referred to as “Pb—Sn-based alloy”) from the viewpoint of suppressing liquid reduction. The content of Pb is 85 mass% or more, 90 mass% or more, 92 mass% or more, 95 mass% or more, 98 mass% or more, or 99 mass% or more, based on the total mass of the Pb-Sn alloy. You may
Snの含有量は、合金の強度を向上させ、合金の腐食の抑制できる観点から、Pb-Sn系合金の全質量を基準として、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは5質量%以上である。Snの含有量は、減液を更に抑制できる観点から、Pb-Sn系合金の全質量を基準として、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。
The content of Sn is preferably 1% by mass or more, more preferably 2% by mass or more, based on the total mass of the Pb--Sn alloy from the viewpoint of improving the strength of the alloy and suppressing corrosion of the alloy. Preferably it is 5 mass% or more. The content of Sn is preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 8% by mass or less, based on the total mass of the Pb—Sn-based alloy, from the viewpoint of further suppressing liquid reduction. is there.
Pb-Sn系合金は、Pb及びSnに加えて、As、Se等のその他の成分を更に含んでいてよい。その他の成分の含有量(合計量)は、Pb-Sn系合金の全質量を基準として、0.1質量%以上であってよく、また、1質量%以下であってよい。
The Pb—Sn-based alloy may further contain other components such as As, Se, etc. in addition to Pb and Sn. The content (total amount) of the other components may be 0.1% by mass or more and 1% by mass or less based on the total mass of the Pb—Sn-based alloy.
正極12同士を接続する正極側ストラップ19は、負極側ストラップ18と同様にPb-Sn系合金で形成されていてよく、Pb-Sn系合金以外の鉛合金で形成されていてもよい。正極側ストラップ19は、好ましくは、負極側ストラップ18と同じ合金で形成されている。
Similarly to the negative electrode side strap 18, the positive electrode side strap 19 connecting the positive electrodes 12 may be formed of a Pb—Sn based alloy, or may be formed of a lead alloy other than the Pb—Sn based alloy. The positive side strap 19 is preferably made of the same alloy as the negative side strap 18.
以上説明した鉛蓄電池1は、アイドリングストップシステム車用、又は、マイクロハイブリッド車用の鉛蓄電池として好適に用いられる。すなわち、本発明の一実施形態は、上述した鉛蓄電池1のアイドリングストップシステム車への応用、又は、マイクロハイブリッド車への応用である。
The lead storage battery 1 described above is suitably used as a lead storage battery for an idling stop system car or for a micro hybrid car. That is, one embodiment of the present invention is an application of the above-described lead storage battery 1 to an idling stop system car or an application to a micro hybrid car.
以上説明した鉛蓄電池1は、例えば、電極(負極及び正極)を得る電極製造工程と、電極を含む構成部材を組み立てて鉛蓄電池1を得る組立工程とを備える製造方法により製造される。
The lead storage battery 1 described above is manufactured by, for example, a manufacturing method including an electrode manufacturing process for obtaining an electrode (a negative electrode and a positive electrode) and an assembly process for assembling a component including the electrode to obtain the lead storage battery 1.
電極製造工程では、例えば、負極集電体14に負極活物質ペーストを保持させた後に、熟成及び乾燥することにより未化成の負極11を得ると共に、正極集電体16に正極活物質ペーストを保持させた後に、上述した条件で熟成及び乾燥することにより未化成の正極12を得る。
In the electrode manufacturing process, for example, after holding the negative electrode active material paste on the negative electrode current collector 14, aging and drying are performed to obtain the unformed negative electrode 11, and the positive electrode current collector 16 holds the positive electrode active material paste. Then, the unformed positive electrode 12 is obtained by aging and drying under the conditions described above.
負極活物質ペーストは、例えば、鉛粉、添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。負極活物質ペーストは、例えば、鉛粉と添加剤とを混合することにより混合物を得た後に、この混合物に溶媒及び硫酸を加えて混練することにより得られる。
The negative electrode active material paste contains, for example, lead powder, an additive, a solvent (eg, water or an organic solvent) and sulfuric acid (eg, dilute sulfuric acid). The negative electrode active material paste is obtained, for example, by mixing lead powder and an additive to obtain a mixture, and then adding a solvent and sulfuric acid to the mixture and kneading.
正極活物質ペーストは、例えば、鉛粉、必要に応じて添加される添加剤、溶媒(例えば水又は有機溶媒)及び硫酸(例えば希硫酸)を含んでいる。正極活物質ペーストは、化成時間を短縮できる観点から、鉛丹(Pb3O4)を更に含んでいてもよい。
The positive electrode active material paste contains, for example, lead powder, optionally added additives, a solvent (for example, water or an organic solvent) and sulfuric acid (for example, dilute sulfuric acid). The positive electrode active material paste may further contain red lead (Pb 3 O 4 ) from the viewpoint of shortening the formation time.
鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。
The lead powder is, for example, a lead powder manufactured by a ball mill type lead powder manufacturing machine or a Burton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of a powder of main component PbO and scaly metallic lead Can be mentioned.
熟成は、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間行われてよい。乾燥は、温度45~80℃で15~30時間行われてよい。
Aging may be performed for 15 to 60 hours in an atmosphere at a temperature of 35 to 85 ° C. and a humidity of 50 to 98% RH. Drying may be performed at a temperature of 45-80 ° C. for 15-30 hours.
組立工程では、例えば、得られた負極板及び正極板を、セパレータ13を介して積層し、同極性の電極の集電部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の鉛蓄電池を作製する。次に、未化成の鉛蓄電池に希硫酸を入れて、直流電流を通電して電槽化成する。続いて、化成後の硫酸の比重(20℃)を適切な電解液の比重に調整することで、鉛蓄電池1が得られる。化成に用いる硫酸の比重(20℃)は、1.15~1.25であってよい。化成後の硫酸の比重(20℃)は、好ましくは1.25~1.33、より好ましくは1.26~1.30である。化成条件及び硫酸の比重は、電極の大きさに応じて調整することができる。化成処理は、組立工程において実施されてもよく、電極製造工程において実施されてもよい(タンク化成)。
In the assembly process, for example, the obtained negative electrode plate and positive electrode plate are stacked via the separator 13, and the current collecting portion of the electrode of the same polarity is welded with a strap to obtain an electrode group. This electrode group is disposed in a battery case to produce an unformed lead-acid battery. Next, dilute sulfuric acid is put into an unformed lead storage battery, and direct current is applied to form a battery. Subsequently, the lead storage battery 1 is obtained by adjusting the specific gravity (20 ° C.) of sulfuric acid after formation to an appropriate specific gravity of the electrolytic solution. The specific gravity (20 ° C.) of sulfuric acid used for formation may be 1.15 to 1.25. The specific gravity (20 ° C.) of sulfuric acid after formation is preferably 1.25 to 1.33, more preferably 1.26 to 1.30. The formation conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode. The chemical conversion treatment may be performed in the assembly process or may be performed in the electrode manufacturing process (tank formation).
以下、実施例により本発明を更に具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。
Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited to the following examples.
<実施例1>
(電槽の準備)
上面が開放された箱体からなり、内部が隔壁によって6つのセル室に区切られた電槽を準備した。 Example 1
(Preparation of battery case)
The battery case which consists of a box with an upper surface open | release, and the inside was divided into six cell rooms by the partition was prepared.
(電槽の準備)
上面が開放された箱体からなり、内部が隔壁によって6つのセル室に区切られた電槽を準備した。 Example 1
(Preparation of battery case)
The battery case which consists of a box with an upper surface open | release, and the inside was divided into six cell rooms by the partition was prepared.
(正極の作製)
鉛粉に対して、補強用短繊維としてアクリル繊維0.25質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、得られた鉛粉を含む混合物に対して、水3質量%及び希硫酸(比重1.55)30質量%を加えて1時間混練して正極活物質ペーストを作製した。正極活物質ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸(比重1.55)の添加は段階的に行った。なお、水及び希硫酸の配合量は、鉛粉及び補強用短繊維の全質量を基準とした配合量である。 (Production of positive electrode)
With respect to the lead powder, 0.25 mass% (based on the total mass of the lead powder) of acrylic fiber as a reinforcing staple fiber was added and dry mixed. Next, 3% by mass of water and 30% by mass of dilute sulfuric acid (specific gravity 1.55) were added to the obtained mixture containing lead powder, and the mixture was kneaded for 1 hour to prepare a positive electrode active material paste. In preparation of the positive electrode active material paste, addition of dilute sulfuric acid (specific gravity 1.55) was performed stepwise in order to avoid a rapid temperature rise. In addition, the compounding quantity of water and dilute sulfuric acid is a compounding quantity on the basis of the total mass of lead powder and a staple for reinforcement.
鉛粉に対して、補強用短繊維としてアクリル繊維0.25質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、得られた鉛粉を含む混合物に対して、水3質量%及び希硫酸(比重1.55)30質量%を加えて1時間混練して正極活物質ペーストを作製した。正極活物質ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸(比重1.55)の添加は段階的に行った。なお、水及び希硫酸の配合量は、鉛粉及び補強用短繊維の全質量を基準とした配合量である。 (Production of positive electrode)
With respect to the lead powder, 0.25 mass% (based on the total mass of the lead powder) of acrylic fiber as a reinforcing staple fiber was added and dry mixed. Next, 3% by mass of water and 30% by mass of dilute sulfuric acid (specific gravity 1.55) were added to the obtained mixture containing lead powder, and the mixture was kneaded for 1 hour to prepare a positive electrode active material paste. In preparation of the positive electrode active material paste, addition of dilute sulfuric acid (specific gravity 1.55) was performed stepwise in order to avoid a rapid temperature rise. In addition, the compounding quantity of water and dilute sulfuric acid is a compounding quantity on the basis of the total mass of lead powder and a staple for reinforcement.
鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、正極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極活物質を有する正極を作製した。
The positive electrode active material paste was filled in an expanded current collector produced by subjecting a rolled sheet made of a lead alloy to expand processing, and then it was aged for 24 hours in an atmosphere with a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode which has an unformed positive electrode active material.
(負極の作製)
負極活物質の原料として鉛粉を用いた。リグニンスルホン酸ナトリウム(日本製紙株式会社製、商品名:バニレックスN)と、ファーネスブラック(キャボット社製、商品名:バルカンXC)との混合物を鉛粉に添加した後に乾式混合した。次に、水を加えた後に混練した。続いて、比重1.280の希硫酸を少量ずつ添加しながら混練して、負極活物質ペーストを作製した。なお、リグニンスルホン酸ナトリウム及びファーネスブラックの含有量は、化成後の負極活物質の全質量を基準として、いずれも0.2質量%となるように配合した。 (Fabrication of negative electrode)
Lead powder was used as a raw material of the negative electrode active material. A mixture of sodium lignin sulfonate (trade name: Vanillex N, manufactured by Nippon Paper Industries Co., Ltd.) and furnace black (trade name: Vulcan XC, manufactured by Cabot Co., Ltd.) was added to lead powder and then dry mixed. Next, after adding water, it knead | mixed. Subsequently, while mixing little by little diluted sulfuric acid having a specific gravity of 1.280, the mixture was kneaded to prepare a negative electrode active material paste. In addition, content of lignin sulfonate sodium and a furnace black was mix | blended so that all might be 0.2 mass% on the basis of the total mass of the negative electrode active material after formation.
負極活物質の原料として鉛粉を用いた。リグニンスルホン酸ナトリウム(日本製紙株式会社製、商品名:バニレックスN)と、ファーネスブラック(キャボット社製、商品名:バルカンXC)との混合物を鉛粉に添加した後に乾式混合した。次に、水を加えた後に混練した。続いて、比重1.280の希硫酸を少量ずつ添加しながら混練して、負極活物質ペーストを作製した。なお、リグニンスルホン酸ナトリウム及びファーネスブラックの含有量は、化成後の負極活物質の全質量を基準として、いずれも0.2質量%となるように配合した。 (Fabrication of negative electrode)
Lead powder was used as a raw material of the negative electrode active material. A mixture of sodium lignin sulfonate (trade name: Vanillex N, manufactured by Nippon Paper Industries Co., Ltd.) and furnace black (trade name: Vulcan XC, manufactured by Cabot Co., Ltd.) was added to lead powder and then dry mixed. Next, after adding water, it knead | mixed. Subsequently, while mixing little by little diluted sulfuric acid having a specific gravity of 1.280, the mixture was kneaded to prepare a negative electrode active material paste. In addition, content of lignin sulfonate sodium and a furnace black was mix | blended so that all might be 0.2 mass% on the basis of the total mass of the negative electrode active material after formation.
鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体にこの負極活物質ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後乾燥して、未化成の負極活物質を有する負極を作製した。
The negative electrode active material paste was filled in an expanded current collector made by expanding a rolled sheet made of a lead alloy, and then aged for 24 hours in an atmosphere with a temperature of 50 ° C. and a humidity of 98%. Thereafter, the resultant was dried to prepare a negative electrode having an unformed negative electrode active material.
(電池の組み立て)
袋状に加工したポリエチレン製のセパレータに未化成の負極を挿入した。次に、未化成の正極5枚と、袋状セパレータに挿入された未化成の負極6枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極の耳部同士を溶接して極板群を作製した。負極側のストラップには、Pb-Sn系合金(Pb含有量:98質量%、Sn含有量:2質量%)を用いた。 (Assembly of battery)
An unformed negative electrode was inserted into a polyethylene separator processed into a bag shape. Next, five unformed positive electrodes and six unformed negative electrodes inserted in the bag-like separator were alternately laminated. Subsequently, the ear parts of the electrodes of the same polarity were welded to produce an electrode plate group by a cast-on-strap (COS) method. A Pb—Sn-based alloy (Pb content: 98 mass%, Sn content: 2 mass%) was used for the strap on the negative electrode side.
袋状に加工したポリエチレン製のセパレータに未化成の負極を挿入した。次に、未化成の正極5枚と、袋状セパレータに挿入された未化成の負極6枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極の耳部同士を溶接して極板群を作製した。負極側のストラップには、Pb-Sn系合金(Pb含有量:98質量%、Sn含有量:2質量%)を用いた。 (Assembly of battery)
An unformed negative electrode was inserted into a polyethylene separator processed into a bag shape. Next, five unformed positive electrodes and six unformed negative electrodes inserted in the bag-like separator were alternately laminated. Subsequently, the ear parts of the electrodes of the same polarity were welded to produce an electrode plate group by a cast-on-strap (COS) method. A Pb—Sn-based alloy (Pb content: 98 mass%, Sn content: 2 mass%) was used for the strap on the negative electrode side.
この極板群を6つ用意し、電槽に挿入してEN規格の12Vセル電池(ランク性能:370、サイズ:LN2)を組み立てた。この際、蓋としては、図3~図5に示す上述した実施形態の排気室を有する蓋を用いた。その後、比重1.230の硫酸溶液を注入し、10.4Aにて20時間の定電流で化成を行った。化成後の電解液(硫酸溶液)の比重を1.28(20℃)に調整した。
Six electrode plate groups were prepared, and inserted into the battery case to assemble an EN standard 12 V cell battery (rank performance: 370, size: LN2). At this time, as the lid, the lid having the exhaust chamber of the above-described embodiment shown in FIGS. 3 to 5 was used. Thereafter, a sulfuric acid solution with a specific gravity of 1.230 was injected, and formation was performed at a constant current of 10.4 A for 20 hours. The specific gravity of the electrolytic solution (sulfuric acid solution) after formation was adjusted to 1.28 (20 ° C.).
<実施例2>
負極の作製において、ファーネスブラックに代えて鱗片状黒鉛(日本黒鉛工業株式会社製、商品名:ACB)を用いた以外は、実施例1と同様にして鉛蓄電池を作製した。なお、鱗片状黒鉛の含有量は、化成後の負極活物質の全質量を基準として、1.5質量%となるように配合した。 Example 2
A lead-acid battery was manufactured in the same manner as Example 1, except that scale-like graphite (manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB) was used instead of the furnace black in the preparation of the negative electrode. In addition, content of scale-like graphite was mix | blended so that it might be 1.5 mass% on the basis of the total mass of the negative electrode active material after formation.
負極の作製において、ファーネスブラックに代えて鱗片状黒鉛(日本黒鉛工業株式会社製、商品名:ACB)を用いた以外は、実施例1と同様にして鉛蓄電池を作製した。なお、鱗片状黒鉛の含有量は、化成後の負極活物質の全質量を基準として、1.5質量%となるように配合した。 Example 2
A lead-acid battery was manufactured in the same manner as Example 1, except that scale-like graphite (manufactured by Nippon Graphite Industry Co., Ltd., trade name: ACB) was used instead of the furnace black in the preparation of the negative electrode. In addition, content of scale-like graphite was mix | blended so that it might be 1.5 mass% on the basis of the total mass of the negative electrode active material after formation.
<実施例3>
負極の作製において、リグニンスルホン酸ナトリウムに代えてビスフェノール系樹脂(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、日本製紙株式会社製、商品名:ビスパーズP215)を用いた以外は、実施例1と同様にして鉛蓄電池を作製した。なお、ビスフェノール系樹脂の含有量は、化成後の負極活物質の全質量を基準として、0.2質量%となるように配合した。 Example 3
In the preparation of the negative electrode, Example 1 was used except that bisphenol-based resin (condensate of bisphenol, aminobenzene sulfonic acid and formaldehyde, Nippon Paper Industries Co., Ltd., trade name: Bisparz P 215) was used instead of sodium lignin sulfonate. A lead storage battery was produced in the same manner as in. In addition, content of bisphenol-type resin was mix | blended so that it might be 0.2 mass% on the basis of the total mass of the negative electrode active material after formation.
負極の作製において、リグニンスルホン酸ナトリウムに代えてビスフェノール系樹脂(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、日本製紙株式会社製、商品名:ビスパーズP215)を用いた以外は、実施例1と同様にして鉛蓄電池を作製した。なお、ビスフェノール系樹脂の含有量は、化成後の負極活物質の全質量を基準として、0.2質量%となるように配合した。 Example 3
In the preparation of the negative electrode, Example 1 was used except that bisphenol-based resin (condensate of bisphenol, aminobenzene sulfonic acid and formaldehyde, Nippon Paper Industries Co., Ltd., trade name: Bisparz P 215) was used instead of sodium lignin sulfonate. A lead storage battery was produced in the same manner as in. In addition, content of bisphenol-type resin was mix | blended so that it might be 0.2 mass% on the basis of the total mass of the negative electrode active material after formation.
<実施例4>
負極の作製において、リグニンスルホン酸ナトリウムに代えて、実施例3と同じ種類及び量のビスフェノール系樹脂を用いた以外は、実施例2と同様にして鉛蓄電池を作製した。 Example 4
A lead-acid battery was produced in the same manner as in Example 2 except that, in the preparation of the negative electrode, a bisphenol resin having the same type and amount as in Example 3 was used instead of sodium lignin sulfonate.
負極の作製において、リグニンスルホン酸ナトリウムに代えて、実施例3と同じ種類及び量のビスフェノール系樹脂を用いた以外は、実施例2と同様にして鉛蓄電池を作製した。 Example 4
A lead-acid battery was produced in the same manner as in Example 2 except that, in the preparation of the negative electrode, a bisphenol resin having the same type and amount as in Example 3 was used instead of sodium lignin sulfonate.
<比較例1>
負極側ストラップに、Pb-Sn系合金に代えてPb-Sb系合金(Pb含有量:98質量%、Sb含有量::2質量%)を用いた以外は、実施例4と同様にして鉛蓄電池を作製した。 Comparative Example 1
Lead was prepared in the same manner as in Example 4 except that a Pb—Sb alloy (Pb content: 98 mass%, Sb content: 2 mass%) was used instead of the Pb—Sn alloy for the negative electrode side strap. A storage battery was made.
負極側ストラップに、Pb-Sn系合金に代えてPb-Sb系合金(Pb含有量:98質量%、Sb含有量::2質量%)を用いた以外は、実施例4と同様にして鉛蓄電池を作製した。 Comparative Example 1
Lead was prepared in the same manner as in Example 4 except that a Pb—Sb alloy (Pb content: 98 mass%, Sb content: 2 mass%) was used instead of the Pb—Sn alloy for the negative electrode side strap. A storage battery was made.
<特性評価>
以下では、実施例及び比較例の鉛蓄電池について、減液抑制及びDCA性能を評価した。結果を表1に示す。なお、各性能の評価は、比較例1の測定結果を100として相対評価することにより行った。 <Characteristics evaluation>
Below, liquid reduction suppression and DCA performance were evaluated about the lead storage battery of an Example and a comparative example. The results are shown in Table 1. In addition, evaluation of each performance was performed by relatively evaluating the measurement result of Comparative Example 1 as 100.
以下では、実施例及び比較例の鉛蓄電池について、減液抑制及びDCA性能を評価した。結果を表1に示す。なお、各性能の評価は、比較例1の測定結果を100として相対評価することにより行った。 <Characteristics evaluation>
Below, liquid reduction suppression and DCA performance were evaluated about the lead storage battery of an Example and a comparative example. The results are shown in Table 1. In addition, evaluation of each performance was performed by relatively evaluating the measurement result of Comparative Example 1 as 100.
(減液抑制)
雰囲気温度(水槽の温度)60℃において、14.4Vで42日間定電圧の過充電を行った。この充電の前後の鉛蓄電池の質量を測定し、質量差(過充電による減液の量(減液量))を比較することにより、減液抑制を評価した。減液量が小さいほど、減液抑制の点で優れるといえる。 (Reduction of liquid)
A constant voltage overcharge was performed at 14.4 V for 42 days at an ambient temperature (water bath temperature) of 60 ° C. The liquid reduction suppression was evaluated by measuring the mass of the lead storage battery before and after this charge, and comparing the mass difference (the amount of liquid reduction due to overcharge (the amount of liquid reduction)). It can be said that the smaller the amount of liquid reduction, the better in terms of liquid reduction suppression.
雰囲気温度(水槽の温度)60℃において、14.4Vで42日間定電圧の過充電を行った。この充電の前後の鉛蓄電池の質量を測定し、質量差(過充電による減液の量(減液量))を比較することにより、減液抑制を評価した。減液量が小さいほど、減液抑制の点で優れるといえる。 (Reduction of liquid)
A constant voltage overcharge was performed at 14.4 V for 42 days at an ambient temperature (water bath temperature) of 60 ° C. The liquid reduction suppression was evaluated by measuring the mass of the lead storage battery before and after this charge, and comparing the mass difference (the amount of liquid reduction due to overcharge (the amount of liquid reduction)). It can be said that the smaller the amount of liquid reduction, the better in terms of liquid reduction suppression.
(DCA性能)
EN規格であるBS EN50342-6:2015記載のDynamic Charge Acceptance(DCA) testに準じた評価方法でDCA性能評価を行った。換算式により規格化された充電中の平均電流値を比較し、該平均電流値が大きいほど、DCA性能に優れるといえる。 (DCA performance)
The DCA performance was evaluated by an evaluation method according to the Dynamic Charge Acceptance (DCA) test described in EN standard BS EN 50342-6: 2015. The average current values during charging standardized by the conversion equation are compared, and the larger the average current value, the better the DCA performance.
EN規格であるBS EN50342-6:2015記載のDynamic Charge Acceptance(DCA) testに準じた評価方法でDCA性能評価を行った。換算式により規格化された充電中の平均電流値を比較し、該平均電流値が大きいほど、DCA性能に優れるといえる。 (DCA performance)
The DCA performance was evaluated by an evaluation method according to the Dynamic Charge Acceptance (DCA) test described in EN standard BS EN 50342-6: 2015. The average current values during charging standardized by the conversion equation are compared, and the larger the average current value, the better the DCA performance.
1…鉛蓄電池、2…電槽、3…蓋、4…第1の蓋部、5…第2の蓋部、10…電極群、11…負極、12…正極、22…セル室、400…排気室構成部、D1,D2,D3,D4,D5,D6…排気室、h…還流孔。
DESCRIPTION OF SYMBOLS 1 ... Lead storage battery, 2 ... Battery case, 3 ... Lid, 4 ... 1st lid part, 5 ... 2nd lid part, 10 ... Electrode group, 11 ... Negative electrode, 12 ... Positive electrode, 22 ... Cell chamber, 400 ... Exhaust chamber components, D1, D2, D3, D4, D5, D6 ... exhaust chamber, h ... reflux hole.
Claims (7)
- セル室を有し、上面が開口している電槽と、
前記セル室に収容された電極群及び電解液と、
前記開口を閉じる蓋と、を備え、
前記電極群は、複数の負極及び複数の正極を有し、前記複数の負極同士は、Pb及びSnを含有する合金で形成されたストラップで接続されている、鉛蓄電池。 A battery case having a cell chamber and having an open upper surface,
An electrode group and an electrolytic solution accommodated in the cell chamber;
And a lid closing the opening.
The lead storage battery, wherein the electrode group includes a plurality of negative electrodes and a plurality of positive electrodes, and the plurality of negative electrodes are connected by a strap formed of an alloy containing Pb and Sn. - 前記蓋は、第1の蓋部と、前記第1の蓋部上に設けられた第2の蓋部と、前記第1の蓋部と前記第2の蓋部との間に形成された排気室と、を有し、
前記排気室と前記セル室との間を隔てる前記第1の蓋部の底壁には、前記電解液をセル室内に還流させる還流孔が設けられている、請求項1に記載の鉛蓄電池。 The lid is a first lid, a second lid provided on the first lid, and an exhaust formed between the first lid and the second lid. Have a room,
The lead storage battery according to claim 1, wherein a reflux hole for refluxing the electrolytic solution into the cell chamber is provided on a bottom wall of the first lid part separating the exhaust chamber and the cell chamber. - 前記負極が、フェノール系化合物に由来する構造単位を有する樹脂を含む、請求項1又は2に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the negative electrode contains a resin having a structural unit derived from a phenolic compound.
- 前記構造単位が、ビスフェノール系化合物に由来する構造単位を含む、請求項3に記載の鉛蓄電池。 The lead acid battery according to claim 3, wherein the structural unit comprises a structural unit derived from a bisphenol-based compound.
- 前記構造単位が、リグニンに由来する構造単位を含む、請求項3に記載の鉛蓄電池。 The lead acid battery according to claim 3, wherein the structural unit comprises a structural unit derived from lignin.
- 前記負極が炭素材料を含む、請求項1~5のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 5, wherein the negative electrode contains a carbon material.
- 前記炭素材料がカーボンブラックを含む、請求項6に記載の鉛蓄電池。 The lead acid battery according to claim 6, wherein the carbon material comprises carbon black.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019554069A JP7093788B2 (en) | 2017-11-14 | 2017-11-14 | Lead-acid battery |
PCT/JP2017/040943 WO2019097575A1 (en) | 2017-11-14 | 2017-11-14 | Lead storage battery |
JP2022098947A JP2022120197A (en) | 2017-11-14 | 2022-06-20 | Lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040943 WO2019097575A1 (en) | 2017-11-14 | 2017-11-14 | Lead storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019097575A1 true WO2019097575A1 (en) | 2019-05-23 |
Family
ID=66538566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040943 WO2019097575A1 (en) | 2017-11-14 | 2017-11-14 | Lead storage battery |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP7093788B2 (en) |
WO (1) | WO2019097575A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7533166B2 (en) | 2020-11-27 | 2024-08-14 | 株式会社Gsユアサ | Lead-acid battery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005166318A (en) * | 2003-11-28 | 2005-06-23 | Yuasa Corp | Lead-acid battery |
JP2009021017A (en) * | 2007-07-10 | 2009-01-29 | Furukawa Battery Co Ltd:The | Storage battery |
JP2010108682A (en) * | 2008-10-29 | 2010-05-13 | Panasonic Corp | Lead-acid battery |
JP2010272264A (en) * | 2009-05-20 | 2010-12-02 | Shin Kobe Electric Mach Co Ltd | Lead acid battery |
WO2012017702A1 (en) * | 2010-08-05 | 2012-02-09 | 新神戸電機株式会社 | Lead-acid battery |
WO2015079668A1 (en) * | 2013-11-29 | 2015-06-04 | 株式会社Gsユアサ | Lead-acid battery |
WO2016121510A1 (en) * | 2015-01-28 | 2016-08-04 | 日立化成株式会社 | Lead storage cell and automobile provided with same |
JP2017092038A (en) * | 2016-12-28 | 2017-05-25 | 株式会社Gsユアサ | Control valve type lead acid battery |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4492024B2 (en) * | 2002-05-21 | 2010-06-30 | パナソニック株式会社 | Lead acid battery |
JP4396527B2 (en) * | 2005-01-11 | 2010-01-13 | 新神戸電機株式会社 | Lead acid battery |
JP2008034167A (en) * | 2006-07-27 | 2008-02-14 | Matsushita Electric Ind Co Ltd | Lead acid storage battery |
JP5194729B2 (en) | 2007-04-06 | 2013-05-08 | 新神戸電機株式会社 | Lead acid battery |
JP2013065443A (en) * | 2011-09-16 | 2013-04-11 | Shin Kobe Electric Mach Co Ltd | Lead storage battery |
JP5884528B2 (en) * | 2012-02-03 | 2016-03-15 | 株式会社Gsユアサ | Liquid lead-acid battery |
JP6870207B2 (en) | 2016-03-08 | 2021-05-12 | 昭和電工マテリアルズ株式会社 | Lead-acid battery |
JP2017160304A (en) | 2016-03-08 | 2017-09-14 | 日立化成株式会社 | Bisphenol resin, electrode, lead storage battery and method of producing the same, and resin composition |
-
2017
- 2017-11-14 JP JP2019554069A patent/JP7093788B2/en active Active
- 2017-11-14 WO PCT/JP2017/040943 patent/WO2019097575A1/en active Application Filing
-
2022
- 2022-06-20 JP JP2022098947A patent/JP2022120197A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005166318A (en) * | 2003-11-28 | 2005-06-23 | Yuasa Corp | Lead-acid battery |
JP2009021017A (en) * | 2007-07-10 | 2009-01-29 | Furukawa Battery Co Ltd:The | Storage battery |
JP2010108682A (en) * | 2008-10-29 | 2010-05-13 | Panasonic Corp | Lead-acid battery |
JP2010272264A (en) * | 2009-05-20 | 2010-12-02 | Shin Kobe Electric Mach Co Ltd | Lead acid battery |
WO2012017702A1 (en) * | 2010-08-05 | 2012-02-09 | 新神戸電機株式会社 | Lead-acid battery |
WO2015079668A1 (en) * | 2013-11-29 | 2015-06-04 | 株式会社Gsユアサ | Lead-acid battery |
WO2016121510A1 (en) * | 2015-01-28 | 2016-08-04 | 日立化成株式会社 | Lead storage cell and automobile provided with same |
JP2017092038A (en) * | 2016-12-28 | 2017-05-25 | 株式会社Gsユアサ | Control valve type lead acid battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7533166B2 (en) | 2020-11-27 | 2024-08-14 | 株式会社Gsユアサ | Lead-acid battery |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019097575A1 (en) | 2020-11-19 |
JP7093788B2 (en) | 2022-06-30 |
JP2022120197A (en) | 2022-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017098665A1 (en) | Lead acid storage battery | |
JP6635189B2 (en) | Lead storage battery, micro hybrid vehicle and idling stop system vehicle | |
JP6432609B2 (en) | Lead acid battery, micro hybrid vehicle and idling stop system vehicle | |
JP2018125294A (en) | Lead storage cell and automobile provided with the same | |
JP6361513B2 (en) | Lead acid battery | |
WO2017149871A1 (en) | Resin for lead storage battery, electrode, lead storage battery, and motor vehicle | |
WO2015064445A1 (en) | Resin composition, electrode, lead acid storage battery, method for producing resin composition, method for producing electrode, and method for manufacturing lead acid storage battery | |
JP6724781B2 (en) | Lead acid battery | |
JP6515935B2 (en) | Lead storage battery, micro hybrid car and idling stop system car | |
JP6597994B2 (en) | Liquid lead-acid battery for idling stop vehicles | |
JP2022120197A (en) | Lead-acid battery | |
JP6638241B2 (en) | Lead storage battery | |
JP2019204702A (en) | Lead acid battery | |
JP6870207B2 (en) | Lead-acid battery | |
JP2015174872A (en) | Bisphenol resin, electrode, lead storage battery and method of producing them, and resin composition | |
JP6569823B1 (en) | Lead acid battery, idling stop car and micro hybrid car | |
JP6601536B2 (en) | Lead acid battery | |
JP2015137331A (en) | Bisphenolic resin, electrode, lead storage battery, method of producing these, and resin composition | |
JP7015613B2 (en) | Ear thinning inhibitor, method of suppressing ear thinning, and use as ear thinning inhibitor | |
JP2019046573A (en) | Negative electrode material paste, negative electrode and lead acid battery, and manufacturing method therefor | |
JP6950719B2 (en) | Liquid lead-acid batteries, idling stop vehicles and micro-hybrid vehicles | |
JP6856113B2 (en) | Lead-acid battery | |
JP6953874B2 (en) | Lead-acid battery | |
JP2015137330A (en) | Bisphenolic resin, electrode, lead storage battery, method of producing these, and resin composition | |
WO2018105005A1 (en) | Lead storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17932369 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019554069 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17932369 Country of ref document: EP Kind code of ref document: A1 |