WO2019096861A1 - Dispositif d'inertage d'une cuve de stockage de gaz liquefie pour un navire de transport de ce gaz - Google Patents

Dispositif d'inertage d'une cuve de stockage de gaz liquefie pour un navire de transport de ce gaz Download PDF

Info

Publication number
WO2019096861A1
WO2019096861A1 PCT/EP2018/081262 EP2018081262W WO2019096861A1 WO 2019096861 A1 WO2019096861 A1 WO 2019096861A1 EP 2018081262 W EP2018081262 W EP 2018081262W WO 2019096861 A1 WO2019096861 A1 WO 2019096861A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
nitrogen
space
vessel
line
Prior art date
Application number
PCT/EP2018/081262
Other languages
English (en)
Inventor
Fabrice Lombard
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to EP18799789.5A priority Critical patent/EP3710741B1/fr
Priority to KR1020187036557A priority patent/KR20200088525A/ko
Priority to SG11202004034YA priority patent/SG11202004034YA/en
Priority to RU2020114666A priority patent/RU2770334C2/ru
Priority to CN201880074322.7A priority patent/CN111356873B/zh
Publication of WO2019096861A1 publication Critical patent/WO2019096861A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/002Storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/002Details of vessels or of the filling or discharging of vessels for vessels under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0121Propulsion of the fluid by gravity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/044Methods for emptying or filling by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/037Handling leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to a device for inerting a liquefied gas storage tank for a vessel carrying this gas, and a vessel comprising at least one such device.
  • the invention may particularly apply to the inerting of a membrane tank which is used for the storage of liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • the state of the art comprises the documents FR-A1 -3 014 197 and FR-A1 -2 317 159.
  • a liquefied gas transport vessel comprises one or more sealed and thermally insulating vessels for the storage of liquefied natural gas.
  • Each tank comprises a tank wall having successively, in the direction of the thickness, from the inside to the outside of the tank, a primary sealing membrane intended to be in contact with the liquefied natural gas, a heat barrier primary insulation, a secondary waterproofing membrane, a secondary heat-insulating barrier and a supporting structure defining the general shape of the vessel.
  • the primary and secondary waterproofing membranes delimit between them a primary space which contains the primary insulating barrier and which is intended to be filled with an inert gas, in general nitrogen. Inert gas also supplies the secondary space defined by the secondary sealing membrane.
  • the carrying structure of the tank is formed on the one hand by watertight transverse bulkheads called “cofferdam" located on at least two opposite sides of the tank, and a bottom of tank which extends under the tank and defines with it a passage in which fluids such as condensation water or LNG may flow in case of leakage. These fluids usually flow by gravity into a drainage box before being evacuated.
  • the sealing membranes of such a tank may indeed have leaks causing the passage of liquefied natural gas from the inside of the tank to thermally insulating barriers, primary and secondary.
  • a combustible gas is in the presence of an oxidizing gas and the concentration of combustible gas is in a concentration range between its lower explosive limit (LEL) and its upper explosive limit (LSE) and that the oxidizing gas is in a suitable concentration range, the combustible gas is likely to ignite and explode.
  • each of the primary and secondary spaces is connected to a nitrogen line which supplies nitrogen to the space but also to evacuate nitrogen from this space. It is therefore a bi-directional line that is connected to a space at one or two fluid communication ports.
  • the tank can be completely "buried” and be covered by the double deck of the ship.
  • the inner and outer casing of the vessel protrudes from the double deck of the vessel to form vapor and liquid domes that are in the form of two turrets or chimneys for passing cargo handling equipment for handling a liquid phase and a vapor phase of the liquefied gas contained in the tank.
  • a tank is equipped with such valves to avoid overpressure in the primary and secondary spaces.
  • the valves In the first technology above, the valves must pass through the upper double deck to be connected to the spaces.
  • the present invention proposes an improvement allowing in particular in a simple, effective and economical way, to allow the inerting of a secondary space of any type of tank without dedicated crossing of its supporting structure.
  • the invention proposes a device for inerting a liquefied gas storage tank for a vessel carrying this gas, comprising:
  • a liquefied gas storage tank successively comprising, from the inside to the outside of the tank, a primary sealing membrane intended to be in contact with the liquefied gas, a primary heat-insulating barrier, a sealing membrane; secondary, a secondary thermally insulating barrier and a bearing structure defining the general shape of the vessel, said primary and secondary sealing membranes defining with said primary thermal insulation barrier a primary isolation space forming an inner envelope around the vessel, and said secondary waterproofing membrane defining with said secondary heat-insulating barrier and said supporting structure a secondary isolation space forming an outer envelope around the tank, each of the spaces comprising an insulator and being intended to be filled with an inert gas, and said tank being disposed between two walls ns sealed and above a bottom of tank, said bulkheads and said bottom of tank being part of said supporting structure,
  • a drainage box located under the tank, this box being connected to a passage extending between the bottom of the tank and the outer casing so that fluids can flow by gravity from the bottom of the tank to the box drainage, means for supplying the primary and secondary spaces with nitrogen and / or removing nitrogen from these spaces,
  • said drainage box is in fluid communication with said passage and said secondary space, and in that said supply and / or discharge means of said secondary space comprise a line of nitrogen which is connected to said box drainage so that nitrogen feeding this space and / or discharged from this space flows through the drainage box.
  • the invention thus proposes to connect the nitrogen line to the secondary space via the drainage box.
  • the drainage box is connected to the passage extending between the vessel bottom and the outer shell to be able to collect fluids that are likely to flow into this passage.
  • the drainage box is further connected to the secondary space to provide fluid communication between the nitrogen line and the secondary space.
  • the secondary space therefore no longer needs to be equipped with ports dedicated to the connection with the nitrogen line, which simplifies the design of the tank.
  • the nitrogen line can have a dual function namely to supply the secondary space with nitrogen for its inerting but also to supply nitrogen to the drainage box itself. This avoids accidental explosions in both the secondary space and the drainage box that is likely to receive LNG in case of leakage.
  • Nitrogen supply of the secondary space through the drainage box also facilitates the evacuation of gas, such as methane, secondary space. This gas is then removed from the secondary space by nitrogen which, because of its lightness relative to methane, will tend to drive the methane up the tank where is usually a fluid communication port.
  • gas such as methane
  • the device according to the invention may comprise one or more of the following features, taken separately from one another or in combination with each other:
  • the device further comprises at least one safety valve, preferably controlled, which is connected directly to said nitrogen line; it is thus understood that the safety valve or valves that secure the secondary space can be mounted directly on the nitrogen line and no longer on the tank; there are therefore fewer crossings of the tank, which is advantageous for the reasons explained in the foregoing; moreover, the displacement of the valve (s) on the nitrogen line has a clear advantage of reactivity compared to the prior art, which will be explained in more detail in the following,
  • said at least one safety valve comprises a main line comprising a main valve and a pilot line comprising a pilot valve, at least one of said main and pilot lines being connected directly to said nitrogen line,
  • the device comprises two pilot operated safety valves, at least one of said main and pilot lines of each of these valves being connected directly to said nitrogen line,
  • the device further comprises at least one safety valve, preferably controlled, which is directly connected to said secondary space; this safety valve confers additional safety by avoiding an excessive pressure increase in the secondary space,
  • the outer casing extends completely above the inner casing
  • the inner and outer shells are projecting on a double bridge covering the tank, to form domes.
  • the present invention also relates to a liquefied gas transport vessel, comprising at least one device as described above.
  • FIG. 1 is a very schematic view of a device for inerting a liquefied gas transport vessel
  • FIG. 2 is a schematic view of a drainage box and a bowl portion, and illustrates an embodiment of the invention
  • FIGS. 3 to 5 are very schematic views of alternative embodiments of the invention, for a type of tank,
  • FIGS. 6 and 7 are very schematic views of alternative embodiments of the invention for another type of tank
  • FIG. 8 is a schematic sectional view of a pilot-type safety valve
  • FIG. 9 and 10 are very schematic views of a tank equipped with a safety pilot valve.
  • Each wall of the vessel 1 comprises a multilayer structure comprising, from the outside towards the inside of the vessel 1, a carrier structure 2 defining the general shape of the vessel 1, a secondary thermally insulating barrier 3 comprising insulating elements against the carrier structure 2, a secondary sealing membrane 4, a primary thermally insulating barrier 5 comprising insulating elements resting against the secondary sealing membrane 4 and a primary sealing membrane 6 intended to be in contact with the liquefied fuel gas contained in the tank 1.
  • the primary space forms an inner envelope which is surrounded by the outer envelope formed by the secondary space, and which is itself surrounded by the supporting structure 2.
  • the supporting structure 2 may in particular be a self-supporting metal sheet and / or be formed by the hull or the double hull of a ship.
  • Thermally insulating barriers 3, 5 comprise insulating solids and a gas phase.
  • the thermally insulating barriers 3, 5 are formed of heat insulating boxes, not shown.
  • the boxes include a bottom panel and a cover panel, for example plywood, and a plurality of spacers interposed between the bottom and top panels. Compartments for housing a heat-insulating lining are provided between the spacers.
  • the heat insulating lining may be made of any material having appropriate thermal insulation properties.
  • the heat-insulating lining is chosen from materials such as perlite, glass wool, polyurethane foam, polyethylene foam, polyvinyl chloride foam, aerogels or others.
  • the secondary heat-insulating barrier 3 is arranged in a a sealed space which is isolated from the ambient pressure, on the one hand, by a first sealed barrier constituted by the secondary sealing membrane 4, on the other hand, by a second sealed barrier constituted by the supporting structure 2.
  • the liquefied gas comprises a chemical body or a mixture of chemical bodies which has been placed in a liquid phase at low temperature and which occurs in a vapor phase under normal temperature and pressure conditions.
  • the liquefied gas 3 can in particular be a liquefied natural gas (LNG), that is to say a gaseous mixture comprising mainly methane and one or more other hydrocarbons, such as ethane, propane, n- butane, ⁇ -butane, n-pentane, i-pentane, and nitrogen in a small proportion.
  • Liquefied natural gas is stored at atmospheric pressure at a temperature of about -162 ° C.
  • the liquefied gas may also be ethane or a liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons from petroleum refining comprising mainly propane and n-butane.
  • LPG liquefied petroleum gas
  • the fuel gas may also be ethylene.
  • the inerting device is more particularly intended to ensure the inerting of the secondary space.
  • the inerting device further comprises an inert gas injection equipment 11 for scanning the thermally insulating barrier 3 with an inert gas.
  • the injection equipment 11 comprises a pressurized inert gas generator 12 connected to an inert gas supply pipe 14 opening inside the secondary space.
  • the pressurized inert gas generator 12 is connected to the pipe 14 by a valve 16 making it possible to regulate the flow and / or the pressure of the injection of inert gas inside the thermally insulating barrier 3.
  • the inert gas is preferentially nitrogen and more precisely dinitrogen or a mixture containing this gas.
  • Line 14 may also be equipped with an optional additional pump 13 for injecting inert gas from an inert gas generator 12.
  • the invention proposes an improvement to this technology of supplying the secondary space of the tank with nitrogen through the drain box 20 of this tank (see Figure 2).
  • the drainage box 20 is located under the tank 1 and is connected to a passage 22 extending between the bottom of the tank 2a of the supporting structure 2 and the outer casing so that fluids can flow by gravity from the bottom. from tank to the drainage box.
  • the box 20 is thus connected to one end of a first pipe 24, the opposite end of which opens onto an upper surface of the bottom of the tank.
  • Box 20 is further connected to a end of a second pipe 26 for discharging collected fluids out of the box, this second pipe being able to be equipped with a valve 28.
  • the reference 23 designates a peripheral bead which is arranged in space and which guides the fluids to the drainage box 20.
  • the bead is for example made of polymerizable resin and can extend continuously all around tank bottom 2a so that the fluids flowing on the peripheral walls of the supporting structure 2 are then conveyed to the drainage box.
  • the cord could be made by metal profiles.
  • the reference 30 designates the nitrogen line of the secondary space, that is to say the line which allows both the nitrogen supply of the secondary space and the evacuation of nitrogen from this space that is to say in other words the circulation of nitrogen in the secondary space.
  • This nitrogen line 30 is thus bi directional and can therefore be considered as fulfilling the functions of the pipes 8 and 14 of FIG.
  • the nitrogen line 30 opens here directly into the drainage box 20 and its connecting pipe 24 to the passage 22 is further configured to be in fluid communication with the secondary space.
  • the end of the pipe 24 located at the passage 22 may be extended and have a first orifice opening into the passage 22 and a second orifice opening into the secondary space.
  • the secondary space could be in fluid communication with the passage 22 by at least one orifice provided in the outer casing and opening into the secondary space.
  • FIGS 3 to 7 illustrate alternative embodiments of the invention.
  • Figures 3 to 5 relate to a first type of tank known as "N096” and Figures 6 and 7 relate to a second type of tank known as "Mark”.
  • the upper double deck 2b of the vessel of the supporting structure 2 of a tank N096 covers the entire tank, which is further isolated from other tanks or the rest of the vessel by transverse bulkheads 2c called "cofferdam".
  • the secondary space of the tank 1 is equipped with two safety-controlled valves 32 which are intended to prevent an overpressure in this space.
  • the primary space of the tank 1 is also equipped with one or two safety pilot valves.
  • a problem of the prior art is related to the distance between the source of pressure (the nitrogen line 30) and the valves 32.
  • the sudden appearance of a high nitrogen flow could to induce a certain latency, because of the losses of loads, making that the valve has not yet detected the overpressure. In such a case, the valve would not open quickly enough and a rapid overpressure would occur in the secondary space near the nitrogen line.
  • one solution is to place at least one of the two valves 32 directly on the nitrogen line 30 which is identified as being the only source of pressure.
  • the valve or valves are arranged between the valve 34 and the drainage box 20.
  • a valve 32 is mounted on the line 30 and the other is mounted on the tank through the double bridge 2b.
  • the two valves 32 are mounted on the line 30.
  • the double upper deck 2b of the vessel of the bearing structure 2 of a tank Mark is traversed by portions of the inner and outer shell of the vessel which form domes 33a, 33b.
  • the double bridge 2b is interrupted in two locations where the tank forms a protruding structure in the form of turret or chimney.
  • the first turret is a liquid dome 33a which serves as a point of entry for various LNG handling equipment, for example a filling line, an emergency pumping line, unloading lines connected to unloading pumps, a line spray, a feed line connected to a spray pump, etc.
  • the second turret is a steam dome 33b which serves as a point of penetration for example for a steam collecting pipe. The operation of this equipment is known elsewhere.
  • the tank may be equipped with a dedicated line for evacuating the inert gas contained in the secondary space (represented by a dotted arrow 35).
  • This evacuation line could be connected to a degassing mast to evacuate the inert gas to the atmosphere.
  • Line 30 of this tank would then be an admission line and not bi-directional.
  • a similar technology can equip the tank of Figures 3 to 5.
  • the safety valves 34 are of the piloted type, that is to say that they comprise a main line 36 comprising a main valve and a pilot line 38 comprising a pilot valve (FIG. 8).
  • the main line 36 comprises an inlet and an outlet between which is disposed the main valve 36a.
  • the inlet and the outlet of the main line are connected to a circulation duct of a fluid such as the nitrogen line 30.
  • the pilot line 38 includes an inlet and an outlet between which is disposed the pilot valve 38a.
  • the input of the pilot line is connected to the aforementioned pipe and its output is connected to the main valve 36a.
  • the pilot valve 38a is actuated by the high pressure P1 and the back pressure P2.
  • the reference pressure PO in the pilot valve 38a is equal to the atmospheric pressure.
  • the main valve 26a is an opening valve.
  • the high pressure P1 is exerted on the lower face of a cone 42.
  • the pressure P1 also passes through a piston rod 43 to an upper chamber 44 of the valve, which exerts a pressure on the piston 45.
  • piston surface is larger than that of the valve seat which, with the action of a spring, keeps the valve closed.
  • the opening begins.
  • the pressure P2 increases in the pilot line and in the lower chamber 46 of the main valve.
  • the pressure of the chamber The flow through the pilot valve exceeds the capacity of the orifice, the pressure increases in the chamber 46, which causes the opening of the main valve.
  • the pilot valve closes, and the pressure P2 is equalized by the orifice 47. The spring then closes the main valve.
  • a safety valve 32 when a safety valve 32 is mounted on the line 30, its two main lines 36 and pilot 38 can be connected to the line 30 (FIG. 9) or only one of them. 'between them ( Figure 10).
  • the main line 36 is connected to the line 30 while the pilot line 38 is connected to the secondary space. This makes it possible not to undergo the effects of dynamic pressure, and measure only a static pressure of the volume.
  • the invention thus makes it possible to simplify the design of a liquefied gas transport tank by optimizing its inerting device or even the safety (valve) associated with this device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Dispositif d'inertage d'une cuve de stockage de gaz liquéfié pour un navire de transport de ce gaz, comportant : - une cuve (1) de stockage de gaz liquéfié isolée par un espace primaire d'isolation formant une enveloppe interne autour de la cuve, et un espace secondaire d'isolation formant une enveloppe externe autour de la cuve, chacun des espaces comportant un isolant et étant destiné à être rempli d'un gaz inerte, ladite cuve étant disposée entre deux cloisons étanches (2c) et au- dessus d'un fond de cuve (2a), - une boîte de drainage (20) située sous la cuve, cette boîte étant reliée à un passage (22) s'étendant entre le fond de cuve et l'enveloppe externe afin que des fluides puissent s'écouler par gravité depuis le fond de cuve jusqu'à la boîte de drainage, - des moyens d'alimentation en azote des espaces primaire et secondaire, et/ou d'évacuation d'azote de ces espaces, caractérisé en ce que ladite boîte de drainage est en communication fluidique avec ledit passage et ledit espace secondaire, et en ce que lesdits moyens d'alimentation et/ou d'évacuation dudit espace secondaire comportent une ligne d'azote (30) qui est reliée à ladite boîte de drainage afin que l'azote alimentant cet espace et/ou évacué de cet espace circule à travers la boîte de drainage.

Description

DISPOSITIF D’INERTAGE D’UNE CUVE DE STOCKAGE DE GAZ LIQUEFIE POUR UN NAVIRE DE TRANSPORT DE CE GAZ
DOMAINE TECHNIQUE
L’invention concerne un dispositif d’inertage d’une cuve de stockage de gaz liquéfié pour un navire de transport de ce gaz, ainsi qu’un navire comportant au moins un tel dispositif. L'invention peut notamment s'appliquer à l'inertage d’une cuve à membranes qui est employée pour le stockage de gaz naturel liquéfié (GNL).
ETAT DE L’ART
L’état de l’art comprend les documents FR-A1 -3 014 197 et FR-A1 -2 317 159.
Un navire de transport de gaz liquéfié comporte une ou plusieurs cuves étanches et thermiquement isolantes pour le stockage de gaz naturel liquéfié. Chaque cuve comporte une paroi de cuve présentant successivement, dans le sens de l'épaisseur, depuis l'intérieur vers l'extérieur de la cuve, une membrane d'étanchéité primaire destinée à être en contact avec le gaz naturel liquéfié, une barrière thermiquement isolante primaire, une membrane d'étanchéité secondaire, une barrière thermiquement isolante secondaire et une structure porteuse définissant la forme générale de la cuve.
Les membranes d’étanchéité primaire et secondaire délimitent entre elles un espace primaire qui contient la barrière isolante primaire et qui est destiné à être rempli d’un gaz inerte, en général de l’azote. Du gaz inerte alimente également l’espace secondaire défini par la membrane d’étanchéité secondaire.
La structure porteuse de la cuve est formée d’une part par des cloisons transversales étanches appelées « cofferdam » situées sur au moins deux côtés opposés de la cuve, et un fond de cuve qui s’étend sous la cuve et définit avec celle-ci un passage dans lequel peut s’écouler des fluides tels que de l’eau de condensation ou bien du GNL en cas de fuite. Ces fluides s’écoulent en général par gravité dans une boîte de drainage avant d’être évacués.
Les membranes d'étanchéité d'une telle cuve peuvent en effet présenter des fuites entraînant le passage de gaz naturel liquéfié de l'intérieur de la cuve vers les barrières thermiquement isolantes, primaire et secondaire. Or, lorsqu'un gaz combustible se trouve en présence d'un gaz comburant et que la concentration de gaz combustible se trouve dans une plage de concentration comprise entre sa limite inférieure d'explosivité (LIE) et sa limite supérieure d'explosivité (LSE) et que le gaz comburant se trouve dans une plage de concentration appropriée, le gaz combustible est susceptible de s'enflammer et d'exploser.
L’inertage des espaces primaire et secondaire, c'est-à-dire leur mise sous atmosphère inerte, permet d'éviter des accidents. Ainsi, les gaz combustibles et comburants, qui pourraient être présents dans les barrières thermiquement isolantes, sont dilués de telle sorte que les conditions d'explosivité ne sont pas atteintes.
Dans la technique actuelle, chacun des espaces primaire et secondaire est relié à une ligne d’azote qui permet d’alimenter en azote l’espace mais aussi d’évacuer l’azote de cet espace. Il s’agit donc d’une ligne bi-directionnelle qui est reliée à un espace au niveau d’un ou deux ports de communication fluidique.
Il existe plusieurs technologies de cuve. La cuve peut être entièrement « enterrée » et être recouverte par le double pont du navire. Dans une autre configuration, les enveloppes interne et externe de la cuve font saillie sur le double pont du navire pour former des dômes vapeur et liquide qui se présentent sous la forme de deux tourelles ou cheminées destinées à faire passer des équipements de manutention de cargaison pour manutentionner une phase liquide et une phase vapeur du gaz liquéfié contenu dans la cuve.
Avec cette dernière technologie, il est plus facile d’accéder aux espaces primaire et secondaire au niveau des dômes et de les relier aux lignes d’azote. Ceci n’est pas le cas avec la première technologie dans laquelle les lignes d’azote doivent traverser le double pont pour relier les espaces à inerter. Ce problème est le même pour les soupapes pilotées de sécurité qui équipent les cuves.
Une cuve est équipée de telles soupapes pour éviter une surpression dans les espaces primaire et secondaire. Dans la première technologie précitée, les soupapes doivent traverser le double pont supérieur pour être reliées aux espaces.
De manière générale, les traversées du double pont et de la structure porteuse de la cuve doivent être évitées car elles peuvent faciliter les fuites et entraînent un surcoût important de conception et de réalisation de la cuve.
La présente invention propose un perfectionnement permettant notamment de manière simple, efficace et économique, de permettre l’inertage d’un espace secondaire de tout type de cuve sans traversée dédiée de sa structure porteuse.
EXPOSE DE L'INVENTION
L’invention propose un dispositif d’inertage d’une cuve de stockage de gaz liquéfié pour un navire de transport de ce gaz, comportant :
- une cuve de stockage de gaz liquéfié comportant successivement, depuis l'intérieur vers l'extérieur de la cuve, une membrane d'étanchéité primaire destinée à être en contact avec le gaz liquéfié, une barrière thermiquement isolante primaire, une membrane d'étanchéité secondaire, une barrière thermiquement isolante secondaire et une structure porteuse définissant la forme générale de la cuve, lesdites membranes d’étanchéité primaire et secondaire définissant avec ladite barrière thermiquement isolante primaire un espace primaire d’isolation formant une enveloppe interne autour de la cuve, et ladite membrane d’étanchéité secondaire définissant avec ladite barrière thermiquement isolante secondaire et ladite structure porteuse un espace secondaire d’isolation formant une enveloppe externe autour de la cuve, chacun des espaces comportant un isolant et étant destiné à être rempli d’un gaz inerte, et ladite cuve étant disposée entre deux cloisons étanches et au- dessus d’un fond de cuve, lesdites cloisons étanches et ledit fond de cuve faisant partie de ladite structure porteuse,
- une boîte de drainage située sous la cuve, cette boîte étant reliée à un passage s’étendant entre le fond de cuve et l’enveloppe externe afin que des fluides puissent s’écouler par gravité depuis le fond de cuve jusqu’à la boîte de drainage, - des moyens d’alimentation en azote des espaces primaire et secondaire, et/ou d’évacuation d’azote de ces espaces,
caractérisé en ce que ladite boîte de drainage est en communication fluidique avec ledit passage et ledit espace secondaire, et en ce que lesdits moyens d’alimentation et/ou d’évacuation dudit espace secondaire comportent une ligne d’azote qui est reliée à ladite boîte de drainage afin que l’azote alimentant cet espace et/ou évacué de cet espace circule à travers la boîte de drainage.
L’invention propose ainsi de relier la ligne d’azote à l’espace secondaire par l’intermédiaire de la boîte de drainage. La boîte de drainage est reliée au passage s’étendant entre le fond de cuve et l’enveloppe externe pour être capable de collecter les fluides qui sont susceptibles de s’écouler dans ce passage. La boîte de drainage est en outre reliée à l’espace secondaire pour assurer une communication fluidique entre la ligne d’azote et l’espace secondaire. L’espace secondaire n’a donc plus besoin d’être équipé de ports dédiés à la liaison avec la ligne d’azote, ce qui simplifie la conception de la cuve. La ligne d’azote peut avoir une double fonction à savoir alimenter l’espace secondaire en azote en vue de son inertage mais aussi alimenter en azote la boîte de drainage elle-même. On évite ainsi des explosions accidentelles à la fois dans l’espace secondaire et la boîte de drainage qui est susceptible de recevoir du GNL en cas de fuite.
L’alimentation en azote de l’espace secondaire par la boîte de drainage permet en outre de faciliter l’évacuation de gaz, tel que du méthane, de l’espace secondaire. Ce gaz est alors chassé de l’espace secondaire par l’azote qui, du fait de sa légèreté par rapport au méthane, aura tendance à chasser le méthane vers le haut de la cuve où se situe en général un port de communication fluidique.
Le dispositif selon l’invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- ladite boîte de drainage est reliée à une conduite de drainage et de circulation d’azote qui débouche dans ledit passage et ledit espace secondaire, - le dispositif comprend en outre au moins une soupape de sécurité, de préférence pilotée, qui est reliée directement à ladite ligne d’azote ; on comprend ainsi que la ou les soupapes de sécurité qui sécurisent l’espace secondaire peuvent être montées directement sur la ligne d’azote et non plus sur la cuve ; il y a donc moins de traversées de la cuve, ce qui est avantageux pour les raisons expliquées dans ce qui précède ; par ailleurs, le déplacement de la ou des soupapes sur la ligne d’azote présente un net avantage de réactivité par rapport à la technique antérieure, ce qui sera expliqué plus en détail dans ce qui suit,
- ladite au moins une soupape de sécurité comprend une ligne principale comportant une vanne principale et une ligne pilote comportant une vanne pilote, au moins une desdites lignes principale et pilote étant reliée directement à ladite ligne d’azote,
- le dispositif comprend deux soupapes pilotées de sécurité, au moins une desdites lignes principale et pilote de chacune de ces soupapes étant reliée directement à ladite ligne d’azote,
- les lignes principale et pilote de la ou chaque soupape sont reliées directement à ladite ligne d’azote,
- le dispositif comprend en outre au moins une soupape de sécurité, de préférence pilotée, qui est reliée directement audit espace secondaire ; cette soupape de sécurité confère une sécurité additionnelle en évitant une augmentation de pression trop importante dans l’espace secondaire,
- à l’extrémité supérieure de la cuve, l’enveloppe externe s’étend intégralement au-dessus de l’enveloppe interne,
- en variante, à l’extrémité supérieure de la cuve, les enveloppes interne et externes sont en saillie sur un double pont recouvrant la cuve, pour former des dômes.
La présente invention concerne également un navire de transport de gaz liquéfié, comportant au moins un dispositif tel que décrit ci-dessus.
BREVE DESCRIPTION DES FIGURES
L’invention sera mieux comprise et d’autres détails, caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui suit, faite à titre d’exemple non limitatif et en référence aux dessins annexés, dans lesquels :
- la figure 1 est une vue très schématique d’un dispositif d’inertage d’une cuve de transport de gaz liquéfié,
- la figure 2 est une vue schématique d’une boîte de drainage et d’une portion de cuve, et illustre un mode de réalisation de l’invention,
- les figures 3 à 5 sont des vues très schématiques de variantes de réalisation de l’invention, pour un type de cuve,
- les figures 6 et 7 sont des vues très schématiques de variantes de réalisation de l’invention, pour un autre type de cuve,
- la figure 8 est une vue schématique en coupe d’une soupape de sécurité du type piloté, et
- les figures 9 et 10 sont des vues très schématiques d’une cuve équipée d’une soupape pilotée de sécurité.
DESCRIPTION DETAILLEE
En référence à la figure 1 , on a représenté schématiquement une cuve 1 destinée au stockage d'un gaz liquéfié. Chaque paroi de la cuve 1 comprend une structure multicouche comportant, depuis l'extérieur vers l'intérieur de la cuve 1 , une structure porteuse 2 définissant la forme générale de la cuve 1 , une barrière thermiquement isolante secondaire 3 comportant des éléments isolants reposant contre la structure porteuse 2, une membrane d'étanchéité secondaire 4, une barrière thermiquement isolante primaire 5 comportant des éléments isolants reposant contre la membrane d'étanchéité secondaire 4 et une membrane d'étanchéité primaire 6 destinée à être en contact avec le gaz combustible liquéfié contenu dans la cuve 1.
Dans la description qui suit, on appelle « espace primaire », l’espace contenant la barrière thermique isolante primaire 5, et « espace secondaire », l’espace contenant la barrière thermique isolante secondaire 3. Comme on le voit dans le dessin, l’espace primaire forme une enveloppe interne qui est entourée par l’enveloppe externe formée par l’espace secondaire, et qui est elle-même entourée par la structure porteuse 2. La structure porteuse 2 peut notamment être une tôle métallique autoporteuse et/ou être formée par la coque ou la double coque d'un navire.
Les barrières thermiquement isolantes 3, 5 comportent des matières solides isolantes et une phase gazeuse. Selon un mode de réalisation, les barrières thermiquement isolantes 3, 5 sont formées de caisses calorifuges, non illustrées. Les caisses comportent un panneau de fond et un panneau de couvercle, par exemple en contreplaqué, et une pluralité d'éléments d'espacement interposés entre les panneaux de fond et de couvercle. Des compartiments pour le logement d'une garniture calorifuge sont ménagés entre les éléments d'espacement. La garniture calorifuge peut être réalisée par tout matériau présentant des propriétés d'isolation thermique appropriées. A titre d'exemple, la garniture calorifuge est choisie parmi les matériaux tels que la perlite, la laine de verre, la mousse de polyuréthane, la mousse de polyéthylène, la mousse de polychlorure de vinyle, les aérogels ou autres.
Les membranes d'étanchéité primaire et secondaire 4, 6 sont étanches aux gaz et aux liquides. La structure porteuse 2 est également étanche. Dès lors, au sens de la présente description et des revendications, le terme de « barrière étanche » couvre à la fois les membranes d'étanchéité 4, 6 et la structure porteuse 2. Ainsi, la barrière thermiquement isolante secondaire 3 est agencée dans un espace étanche qui est isolé de la pression ambiante, d'une part, par une première barrière étanche constituée de la membrane d'étanchéité secondaire 4, d'autre part, par une seconde barrière étanche constituée par la structure porteuse 2.
Le gaz liquéfié comprend un corps chimique ou un mélange de corps chimiques qui a été placé dans une phase liquide à basse température et qui se présente dans une phase vapeur dans les conditions normales de température et de pression. Le gaz liquéfié 3 peut notamment être un gaz naturel liquéfié (GNL), c'est-à-dire un mélange gazeux comportant majoritairement du méthane ainsi qu'un ou plusieurs autres hydrocarbures, tels que l'éthane, le propane, le n-butane, le Ί-butane, le n-pentane le i-pentane et de l'azote en faible proportion. Le gaz naturel liquéfie est stocké à pression atmosphérique à une température d'environ -162°C. Le gaz liquéfié peut également être de l'éthane ou un gaz de pétrole liquéfié (GPL), c'est-à-dire un mélange d'hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du n-butane. Le gaz combustible peut également être de l'éthylène.
Afin d'éviter que, en raison de fuites de gaz naturel liquéfié au travers des membranes d'étanchéité 4, 6 et/ou d'air au travers de la structure porteuse 2, un mélange gazeux ne soit présent dans des proportions explosives dans les parois de la cuve 1 , celles-ci sont soumises à un procédé connu de l’homme du métier, et par exemple décrit dans la demande WO-A1 -2015/124536.
Dans l’exemple représenté, le dispositif d'inertage vise plus particulièrement à assurer l'inertage de l’espace secondaire. Le dispositif d'inertage comporte en outre un équipement d'injection de gaz inerte 11 permettant de balayer la barrière thermiquement isolante 3 avec un gaz inerte. L'équipement d'injection 11 comporte un générateur de gaz inerte sous pression 12 connecté, à une canalisation d'amenée de gaz inerte 14 débouchant à l'intérieur de l’espace secondaire. Le générateur de gaz inerte sous pression 12 est raccordé à la canalisation 14 par une vanne 16 permettant de réguler le débit et/ou la pression de l'injection de gaz inerte à l'intérieur de la barrière thermiquement isolante 3. Le gaz inerte est préférentiellement de l’azote et plus exactement du diazote ou un mélange contenant ce gaz.
La canalisation 14 peut également être équipée d'une pompe 13 complémentaire, optionnelle, pour assurer l'injection de gaz inerte depuis générateur de gaz inerte 12.
L’invention propose un perfectionnement à cette technologie consistant à alimenter l’espace secondaire de la cuve en diazote par l’intermédiaire de la boîte de drainage 20 de cette cuve (cf. figure 2).
La boîte de drainage 20 est située sous la cuve 1 et est reliée à un passage 22 s’étendant entre le fond de cuve 2a de la structure porteuse 2 et l’enveloppe externe afin que des fluides puissent s’écouler par gravité depuis le fond de cuve jusqu’à la boîte de drainage. La boîte 20 est ainsi reliée à une extrémité d’une première conduite 24 dont l’extrémité opposée débouche sur une surface supérieure du fond de cuve. La boîte 20 est en outre reliée à une extrémité d’une seconde conduite 26 pour l’évacuation des fluides récoltés vers l’extérieur de la boîte, cette seconde conduite pouvant être équipée d’une vanne 28.
La référence 23 désigne un cordon périphérique qui est disposé dans l’espace et qui permet de guider les fluides jusqu’à la boîte de drainage 20. Le cordon est par exemple réalisé en résine polymérisable et peut s’étendre en continu sur tout le pourtour du fond de cuve 2a pour que les fluides qui ruissellent sur les parois périphériques de la structure porteuse 2 soient ensuite acheminés jusqu’à la boîte de drainage. En variante, le cordon pourrait être réalisé par des profilés métalliques.
La référence 30 désigne la ligne d’azote de l’espace secondaire, c'est-à- dire la ligne qui permet à la fois l’alimentation en azote de l’espace secondaire et l’évacuation de l’azote de cet espace, c'est-à-dire autrement dit la circulation d’azote dans l’espace secondaire. Cette ligne d’azote 30 est ainsi bi directionnelle et peut donc être considérée comme remplissant les fonctions des canalisations 8 et 14 de la figure 1.
La ligne d’azote 30 débouche ici directement dans la boîte de drainage 20 et sa conduite 24 de liaison au passage 22 est en outre configurée pour être en communication fluidique avec l’espace secondaire. En pratique, l’extrémité de la conduite 24 située au niveau du passage 22 peut être rallongée et avoir un premier orifice débouchant dans le passage 22 et un second orifice débouchant dans l’espace secondaire. En variante, l’espace secondaire pourrait être en communication fluidique avec le passage 22 par au moins un orifice prévu dans l’enveloppe externe et débouchant dans l’espace secondaire.
Les figures 3 à 7 illustrent des variantes de réalisation de l’invention.
Les figures 3 à 5 concernent un premier type de cuve connu sous l’appellation « N096 » et les figures 6 et 7 concernent un second type de cuve connu sous l’appellation « Mark ».
Le double pont supérieur 2b du navire de la structure porteuse 2 d’une cuve N096 recouvre l’intégralité de la cuve, qui est en outre isolée d’autres cuves ou du reste du navire par des cloisons transversales étanches 2c appelées « cofferdam ». Dans le mode de réalisation de la figure 3, l’espace secondaire de la cuve 1 est équipé de deux soupapes pilotées de sécurité 32 qui ont pour but d’empêcher une surpression dans cet espace. Bien que cela ne soit pas représenté, l’espace primaire de la cuve 1 est également équipé d’une ou deux soupapes pilotées de sécurité.
D'un point de vue dimensionnement, il est clairement admis par les classes, chantiers et armateurs que la cause principale de surpression dans l’espace secondaire d’une cuve est le dysfonctionnement de la vanne de contrôle 34 qui équipe la ligne d’azote 30. Une autre cause de surpression possible est liée à la phase de réchauffage des espaces.
Un problème de la technique antérieure est lié à l'éloignement entre la source de surpression (la ligne d’azote 30) et les soupapes 32. L'apparition soudaine d'un fort débit d'azote (dysfonctionnement de la vanne 34) pourrait induire une certaine latence, à cause des pertes de charges, faisant que la soupape n’a pas encore détecté la surpression. Dans un tel cas, la soupape ne s’ouvrirait pas suffisamment vite et une surpression rapide se manifesterait dans l'espace secondaire près de la ligne d'azote.
Pour remédier à ce problème, une solution consiste à placer au moins une des deux soupapes 32 directement sur la ligne d'azote 30 qui est identifiée comme étant la seule source de surpression. Préférentiellement, la ou les soupapes sont disposées entre la vanne 34 et la boîte de drainage 20. Dans la variante de la figure 4, une soupape 32 est montée sur la ligne 30 et l’autre est montée sur la cuve en traversant le double pont 2b. Dans la variante de la figure 4, les deux soupapes 32 sont montées sur la ligne 30.
Le double pont supérieur 2b du navire de la structure porteuse 2 d’une cuve Mark est traversé par des portions des enveloppes interne et externe de la cuve qui forment des dômes 33a, 33b. Le double pont 2b est interrompu en deux emplacements où la cuve forme une structure saillante en forme de tourelle ou de cheminée. La première tourelle est un dôme liquide 33a qui sert de point de pénétration pour divers équipements de manutention du GNL, à savoir par exemple une ligne de remplissage, une ligne de pompage d'urgence, des lignes de déchargement liées à des pompes de déchargement, une ligne de pulvérisation, une ligne d'alimentation liée à une pompe de pulvérisation, etc. La deuxième tourelle est un dôme vapeur 33b qui sert de point de pénétration par exemple pour une conduite collectrice de vapeur. Le fonctionnement de ces équipements est connu par ailleurs.
Dans les figures 6 et 7, la cuve peut être équipée d’une ligne dédiée d’évacuation du gaz inerte contenu dans l’espace secondaire (représentée par une flèche en traits pointillés 35). Cette ligne d’évacuation pourrait être reliée à un mât de dégazage pour évacuer le gaz inerte à l’atmosphère. La ligne 30 de cette cuve serait alors une ligne d’admission et non pas bi-directionnelle. Une technologie similaire peut équiper la cuve des figures 3 à 5.
Dans le cadre de la présente invention, les soupapes de sécurité 34 sont du type piloté, c'est-à-dire qu’elles comprennent une ligne principale 36 comportant une vanne principale et une ligne pilote 38 comportant une vanne pilote (figure 8). Classiquement, la ligne principale 36 comprend une entrée et une sortie entre lesquelles est disposée la vanne principale 36a. L’entrée et la sortie de la ligne principale sont reliées à une conduite de circulation d’un fluide telle que la ligne d’azote 30.
La ligne pilote 38 comprend une entrée et une sortie entre lesquelles est disposée la vanne pilote 38a. L’entrée de la ligne pilote est reliée à la conduite précitée et sa sortie est reliée à la vanne principale 36a.
La vanne pilote 38a est actionnée par la haute pression P1 et la contre- pression P2. La pression de référence PO dans la vanne pilote 38a est égale à la pression atmosphérique.
La vanne principale 26a est une vanne d’ouverture. La haute pression P1 s’exerce sur la face inférieure d’un cône 42. La pression P1 passe également par une tige de piston 43 jusqu’à une chambre supérieure 44 de la vanne, ce qui exerce une pression sur le piston 45. La surface du piston est plus grande que celle du siège de la vanne ce qui, avec l’action d’un ressort, maintient la vanne fermée.
Lorsque la pression P1 atteint la pression de consigne de la vanne pilote, l’ouverture commence. La pression P2 augmente dans la ligne pilote et dans la chambre inférieure 46 de la vanne principale. La pression de la chambre inférieure est limitée par le débit à travers l’orifice 47. Lorsque le débit à travers la vanne pilote dépasse la capacité de l’orifice, la pression augmente dans la chambre 46, ce qui provoque l’ouverture de la vanne principale. Lorsque la pression P1 diminue, la vanne pilote se ferme, et la pression P2 est égalisée par l’orifice 47. Le ressort ferme alors la vanne principale.
Comme cela est visible aux figure 9 et 10, lorsqu’une soupape de sécurité 32 est montée sur la ligne 30, ses deux lignes principale 36 et pilote 38 peuvent être reliées à la ligne 30 (figure 9) ou bien seulement l’une d’entre elles (figure 10). Dans le cas de la figure 10, la ligne principale 36 est reliée à la ligne 30 tandis que la ligne pilote 38 est reliée à l’espace secondaire. Ceci permet de ne pas subir les effets de pression dynamique, et ne mesurer qu’une pression statique du volume.
L’invention permet donc de simplifier la conception d’une cuve de transport de gaz liquéfié en optimisant son dispositif d’inertage voire également la sécurité (soupape) associée à ce dispositif.

Claims

REVENDICATIONS
1. Dispositif d’inertage d’une cuve de stockage de gaz liquéfié pour un navire de transport de ce gaz, comportant :
- une cuve (1 ) de stockage de gaz liquéfié comportant successivement, depuis l'intérieur vers l'extérieur de la cuve, une membrane d'étanchéité primaire (6) destinée à être en contact avec le gaz liquéfié, une barrière thermiquement isolante primaire (5), une membrane d'étanchéité secondaire (4), une barrière thermiquement isolante secondaire (3) et une structure porteuse (2) définissant la forme générale de la cuve (1 ), lesdites membranes d’étanchéité primaire (6) et secondaire (4) définissant avec ladite barrière thermiquement isolante primaire (5) un espace primaire d’isolation formant une enveloppe interne autour de la cuve (1 ), et ladite membrane d’étanchéité secondaire (4) définissant avec ladite barrière thermiquement isolante secondaire (3) et ladite structure porteuse (2) un espace secondaire d’isolation formant une enveloppe externe autour de la cuve, chacun des espaces étant destiné à être rempli d’un gaz inerte, et ladite cuve (1 ) étant disposée entre deux cloisons étanches (2c) et au-dessus d’un fond de cuve (2a), lesdites cloisons étanches et ledit fond de cuve faisant partie de ladite structure porteuse,
- une boîte de drainage (20) située sous la cuve, cette boîte étant reliée à un passage (22) s’étendant entre le fond de cuve et l’enveloppe externe afin que des fluides puissent s’écouler par gravité depuis le fond de cuve jusqu’à la boîte de drainage,
- des moyens d’alimentation en azote des espaces primaire et secondaire, et/ou d’évacuation d’azote de ces espaces,
caractérisé en ce que ladite boîte de drainage est en communication fluidique avec ledit passage et ledit espace secondaire, et en ce que lesdits moyens d’alimentation et/ou d’évacuation dudit espace secondaire comportent une ligne d’azote (30) qui est reliée à ladite boîte de drainage afin que l’azote alimentant cet espace et/ou évacué de cet espace circule à travers la boîte de drainage.
2. Dispositif selon la revendication 1 , dans lequel ladite boîte de drainage (20) est reliée à une conduite (24) de drainage et de circulation d’azote qui débouche dans ledit passage (22) et ledit espace secondaire.
3. Dispositif selon la revendication 1 ou 2, dans lequel il comprend en outre au moins une soupape de sécurité (32), de préférence pilotée, qui est reliée directement à ladite ligne d’azote (30).
4. Dispositif selon la revendication précédente, dans lequel ladite au moins une soupape de sécurité (32) comprend une ligne principale (36) comportant une vanne principale (36a) et une ligne pilote (38) comportant une vanne pilote (38a), au moins une desdites lignes principale et pilote étant reliée directement à ladite ligne d’azote (30).
5. Dispositif selon la revendication précédente, dans lequel il comprend deux soupapes pilotées de sécurité (32), au moins une desdites lignes principale (36) et pilote (38) de chacune de ces soupapes étant reliée directement à ladite ligne d’azote (30).
6. Dispositif selon la revendication 4 ou 5, dans lequel les lignes principale (36) et pilote (38) de la ou chaque soupape (32) sont reliées directement à ladite ligne d’azote (30).
7. Dispositif selon l’une des revendications précédentes, dans lequel il comprend en outre au moins une soupape de sécurité (32), de préférence pilotée, qui est reliée directement audit espace secondaire.
8. Dispositif selon l’une des revendications précédentes, dans lequel, à l’extrémité supérieure de la cuve (1 ), l’enveloppe externe s’étend intégralement au-dessus de l’enveloppe interne.
9. Dispositif selon l’une des revendications 1 à 7, dans lequel, à l’extrémité supérieure de la cuve (1 ), les enveloppes interne et externe sont en saillie sur un double pont recouvrant la cuve, pour former des dômes (33a, 33b).
10. Navire de transport de gaz liquéfié, comportant au moins un dispositif selon l’une des revendications précédentes.
PCT/EP2018/081262 2017-11-16 2018-11-14 Dispositif d'inertage d'une cuve de stockage de gaz liquefie pour un navire de transport de ce gaz WO2019096861A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18799789.5A EP3710741B1 (fr) 2017-11-16 2018-11-14 Dispositif d'inertage d'une cuve de stockage de gaz liquefie pour un navire de transport de ce gaz
KR1020187036557A KR20200088525A (ko) 2017-11-16 2018-11-14 액화 가스 운반선용 액화 가스 저장 탱크용 불활성화 장치
SG11202004034YA SG11202004034YA (en) 2017-11-16 2018-11-14 Device for inerting a liquefied gas storage tank for a ship for transporting this gas
RU2020114666A RU2770334C2 (ru) 2017-11-16 2018-11-14 Устройство инертирования для резервуара для хранения сжиженного газа судна для перевозки сжиженного газа
CN201880074322.7A CN111356873B (zh) 2017-11-16 2018-11-14 用于使用于运输液化气体的船舶的液化气体存储罐惰性化的设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760828A FR3073601B1 (fr) 2017-11-16 2017-11-16 Dispositif d'inertage d'une cuve de stockage de gaz liquefie pour un navire de transport de ce gaz
FR1760828 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019096861A1 true WO2019096861A1 (fr) 2019-05-23

Family

ID=61187451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/081262 WO2019096861A1 (fr) 2017-11-16 2018-11-14 Dispositif d'inertage d'une cuve de stockage de gaz liquefie pour un navire de transport de ce gaz

Country Status (7)

Country Link
EP (1) EP3710741B1 (fr)
KR (1) KR20200088525A (fr)
CN (1) CN111356873B (fr)
FR (1) FR3073601B1 (fr)
RU (1) RU2770334C2 (fr)
SG (1) SG11202004034YA (fr)
WO (1) WO2019096861A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4215433A4 (fr) * 2020-11-12 2024-03-13 Mitsubishi Shipbuilding Co., Ltd. Corps flottant
EP4129815A4 (fr) * 2020-04-01 2024-04-10 Kawasaki Jukogyo Kabushiki Kaisha Navire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985883B (zh) * 2019-12-27 2022-03-01 安徽安凯汽车股份有限公司 一种避免积水的车用储气罐自动排水装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2317159A1 (fr) 1975-07-10 1977-02-04 Sener Tecnica Industrial Barriere secondaire partielle pour citerne autoporteuse a symetrie axiale installee a bord d'un bateau-citerne
FR2703338B1 (fr) * 1993-03-30 1995-05-12 Atochem Elf Sa Dispositif d'inertage d'un stockeur.
FR2754038A1 (fr) * 1996-10-02 1998-04-03 Reunionnaise Des Produits Petr Reservoir pour gaz de petrole liquefie
FR3014197A1 (fr) 2013-11-29 2015-06-05 Gaztransp Et Technigaz Surveillance d'une cuve etanche et thermiquement isolante
WO2015124536A2 (fr) 2014-02-21 2015-08-27 Gaztransport Et Technigaz Procede et systeme d'inertage d'une paroi d'une cuve de stockage d'un gaz combustible liquefie

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL250591A (fr) * 1959-04-17
GB1186060A (en) * 1967-10-31 1970-04-02 Conch Ocean Ltd Improvement in Container for Liquefied Gases
CN2212699Y (zh) * 1994-09-22 1995-11-15 叶永红 液化石油气残液抽吸装置
CN102261559A (zh) * 2011-06-23 2011-11-30 中国寰球工程公司 一种低温液态烃储罐的冷却系统和冷却方法
NO20120167A1 (no) * 2012-02-17 2012-10-08 Lng New Tech As Innretning for innesluttning av flytende naturgass(LNG)
RU2513152C2 (ru) * 2012-08-20 2014-04-20 Общество с ограниченной ответственностью проектно-конструкторское бюро "БАЛТМАРИН" Тепловая изоляция танка для перевозки спг
CN204300481U (zh) * 2014-11-05 2015-04-29 北京航天动力研究所 带独立气源控制的先导式安全阀
RU2600419C1 (ru) * 2015-08-13 2016-10-20 Общество с ограниченной ответственностью проектно-конструкторское бюро "БАЛТМАРИН" Мембранный танк для сжиженного природного газа (тип вм)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2317159A1 (fr) 1975-07-10 1977-02-04 Sener Tecnica Industrial Barriere secondaire partielle pour citerne autoporteuse a symetrie axiale installee a bord d'un bateau-citerne
FR2703338B1 (fr) * 1993-03-30 1995-05-12 Atochem Elf Sa Dispositif d'inertage d'un stockeur.
FR2754038A1 (fr) * 1996-10-02 1998-04-03 Reunionnaise Des Produits Petr Reservoir pour gaz de petrole liquefie
FR3014197A1 (fr) 2013-11-29 2015-06-05 Gaztransp Et Technigaz Surveillance d'une cuve etanche et thermiquement isolante
WO2015124536A2 (fr) 2014-02-21 2015-08-27 Gaztransport Et Technigaz Procede et systeme d'inertage d'une paroi d'une cuve de stockage d'un gaz combustible liquefie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129815A4 (fr) * 2020-04-01 2024-04-10 Kawasaki Jukogyo Kabushiki Kaisha Navire
EP4215433A4 (fr) * 2020-11-12 2024-03-13 Mitsubishi Shipbuilding Co., Ltd. Corps flottant

Also Published As

Publication number Publication date
KR20200088525A (ko) 2020-07-23
FR3073601A1 (fr) 2019-05-17
EP3710741A1 (fr) 2020-09-23
FR3073601B1 (fr) 2019-11-22
EP3710741B1 (fr) 2022-05-04
RU2020114666A3 (fr) 2022-01-11
CN111356873B (zh) 2022-06-21
RU2770334C2 (ru) 2022-04-15
CN111356873A (zh) 2020-06-30
SG11202004034YA (en) 2020-05-28
RU2020114666A (ru) 2021-12-16

Similar Documents

Publication Publication Date Title
EP3250849B1 (fr) Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire
EP3472509B1 (fr) Structure de dome gaz pour une cuve etanche et thermiquement isolante
EP2758302B1 (fr) Support installe en mer equipe de reservoirs externes
EP3710741B1 (fr) Dispositif d'inertage d'une cuve de stockage de gaz liquefie pour un navire de transport de ce gaz
EP3164636B1 (fr) Cuve etanche et isolante disposee dans une double coque flottante
EP2768592B1 (fr) Dispositif de collecte et de separation de liquides aqueux et/ou huileux et de liquide cryogenique
WO2015124536A2 (fr) Procede et systeme d'inertage d'une paroi d'une cuve de stockage d'un gaz combustible liquefie
EP3129700A1 (fr) Cuve etanche et thermiquement isolante logee dans un ouvrage flottant
EP3749889A1 (fr) Installation pour le stockage et le transport d'un gaz liquefie
EP2906866A2 (fr) Reservoir etanche et isolant pour contenir un fluide froid sous pression
WO2021053055A1 (fr) Cuve etanche et thermiquement isolante
WO2021140218A1 (fr) Installation de stockage pour gaz liquéfié
WO2015144897A1 (fr) Installation de stockage et de distribution d'un produit, procede de fabrication et utilisation d'une telle installation
EP3699475A1 (fr) Cuve étanche et thermiquement isolante
EP4098539B1 (fr) Navire pour le transport ou l'utilisation d'un fluide froid
WO2023198843A1 (fr) Cuve étanche et thermiquement isolante et procédé de mise sous vide associé
EP4198375A1 (fr) Installation de stockage d'un gaz liquefie comportant une cuve et une structure de dome
FR3130739A1 (fr) Navire comportant un château et une cuve pour le stockage de gaz liquéfié en arrière du château
FR3070673A1 (fr) Ouvrage flottant comprenant une cuve apte a contenir du gaz combustible liquefie
FR3145397A1 (fr) Installation de stockage de gaz liquéfié
FR3134615A1 (fr) Installation pour le stockage et/ou le transport de gaz liquéfié
FR3093786A1 (fr) Paroi de cuve comprenant une isolation améliorée autour d’une traversée
OA18014A (fr) Installation de stockage et de distribution d'un produit, procédé de fabrication et utilisation d'une telle installation.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018799789

Country of ref document: EP

Effective date: 20200616