WO2019096293A1 - 消息传输方法、用户设备、基站及计算机可读存储介质 - Google Patents

消息传输方法、用户设备、基站及计算机可读存储介质 Download PDF

Info

Publication number
WO2019096293A1
WO2019096293A1 PCT/CN2018/116116 CN2018116116W WO2019096293A1 WO 2019096293 A1 WO2019096293 A1 WO 2019096293A1 CN 2018116116 W CN2018116116 W CN 2018116116W WO 2019096293 A1 WO2019096293 A1 WO 2019096293A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
base station
carrier
uplink carrier
uplink
Prior art date
Application number
PCT/CN2018/116116
Other languages
English (en)
French (fr)
Inventor
张丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019096293A1 publication Critical patent/WO2019096293A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to the field of wireless communication technologies, for example, to a message transmission method, a user equipment, a base station, and a computer readable storage medium.
  • the 5th Generation Mobile Communication Technology (5G) New Radio (NR) is an ongoing research project of the 3rd Generation Partnership Project (3GPP), which is based on 5G NR.
  • 3GPP 3rd Generation Partnership Project
  • OFDM Orthogonal Frequency Division Multiplexing
  • MAC Medium Access Control
  • RAR Random Access Radio Network Temporary Identity
  • the UE may access one of the multiple uplink carriers in the common configuration message, but the carrier selected by the UE may be received with the target base station.
  • the carrier selected after the handover request message is inconsistent. In this case, the random access fails, which may cause the handover to fail.
  • the present disclosure provides a message transmission method, a user equipment, a base station, and a computer readable storage medium, which can improve the success rate of a random access procedure.
  • the present disclosure provides a message transmission method, including:
  • the user equipment selects one uplink carrier from at least two uplink carriers, and sends a random access preamble to the base station on the selected uplink carrier;
  • the user equipment receives the random access response message from the base station, where the random access response message includes the random access preamble identifier information corresponding to the random access response message, and is used to indicate that the random access response is carried
  • the uplink carrier identification information of the uplink carrier of the random access preamble corresponding to the message
  • the user equipment determines, according to the random access preamble identifier information and the uplink carrier identifier information, whether the random access response message is a random access response message corresponding to the random access preamble sent by the user equipment.
  • the present disclosure also provides a message transmission method, including:
  • the base station receives the random access preamble from the user equipment, and obtains the random access preamble identifier information corresponding to the random access preamble and the uplink carrier identifier information of the uplink carrier that carries the random access preamble;
  • the base station sends a random access response message to the user equipment, where the random access response message includes the random access preamble identification information and the uplink carrier identification information.
  • the present disclosure also provides a message transmission method, including:
  • the target base station sends the uplink carrier identification information of the selected uplink carrier and the dedicated random access channel resource to the original base station.
  • the present disclosure also provides a message transmission method, including:
  • the original base station sends a handover request message to the target base station;
  • the original base station receives uplink carrier identification information and dedicated random access channel resources from the target base station;
  • the original base station sends the received uplink carrier identification information and dedicated random access channel resources to the user equipment.
  • the present disclosure also provides a message transmission method, including:
  • the user equipment receives the uplink carrier identification information and the dedicated random access channel resource from the original base station to which the user equipment belongs, where the dedicated random access channel resource includes a dedicated random access preamble;
  • the user equipment sends a dedicated random access preamble to the target base station on the uplink carrier indicated by the uplink carrier identification information.
  • the present disclosure also provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement A message transmission method as described.
  • the present disclosure also provides a user equipment, including a first sending module, a first receiving module, and a determining module, where
  • the first sending module is configured to select one uplink carrier from the at least two uplink carriers, and send a random access preamble to the base station on the selected uplink carrier;
  • the first receiving module is configured to receive a random access response message from the base station, where the random access response message includes the random access preamble identifier information corresponding to the random access response message, and is used to indicate the bearer
  • the uplink carrier identification information of the uplink carrier of the random access preamble corresponding to the random access response message and outputting the random access preamble identifier information and the uplink carrier identifier information to the determining module;
  • the determining module is configured to receive the random access preamble identifier information and the uplink carrier identifier information output by the first receiving module, and determine, according to the random access preamble identifier information and the uplink carrier identifier information, whether the random access response is a random access response message corresponding to the random access preamble sent by the first sending module.
  • the present disclosure also provides a base station, including a second receiving module and a second sending module, where
  • the second receiving module is configured to receive a random access preamble from the user equipment, and obtain the random access preamble identifier information corresponding to the random access preamble and the uplink carrier identifier information of the uplink carrier that carries the random access preamble And outputting the random access preamble identification information and the uplink carrier identification information to the second sending module;
  • the second sending module is configured to receive the random access preamble identifier information and the uplink carrier identifier information output by the second receiving module, and send a random access response message to the user equipment, where the random access response message includes the Random access preamble identification information and the uplink carrier identification information.
  • the present disclosure further provides a base station, as a target base station for user equipment handover, including a third receiving module and a third sending module, where
  • the third receiving module is configured to receive a handover request message of the original base station to which the user equipment belongs, select one uplink carrier from the at least two uplink carriers, and select a dedicated random access channel resource on the selected uplink carrier, and select The uplink carrier identification information of the uplink carrier and the dedicated random access channel resource are output to the third sending module;
  • the third sending module is configured to receive the uplink carrier identification information and the dedicated random access channel resource output by the third receiving module, and send the uplink carrier identification information and the random access channel resource to the original base station to which the user equipment belongs.
  • the present disclosure also provides a base station, as an original base station of a user equipment, including a fourth sending module and a fourth receiving module, where
  • the fourth sending module is configured to: when it is determined that the user equipment needs to be handed over, send a handover request message to the target base station; receive uplink carrier identification information output by the fourth receiving module, and a dedicated random access channel resource, where the uplink carrier is used The identification information and the dedicated random access channel resource are sent to the user equipment;
  • the fourth receiving module is configured to receive the uplink carrier identification information and the dedicated random access channel resource from the target base station, and output the uplink carrier identification information and the dedicated random access channel resource to the fourth sending module.
  • the present disclosure also provides a user equipment, including a fifth receiving module and a fifth sending module, where
  • the fifth receiving module is configured to receive the uplink carrier identification information and the dedicated random access channel resource from the original base station to which the user equipment belongs, and send the uplink carrier identification information and the dedicated random access channel resource to the fifth sending module, where
  • the dedicated random access channel resource includes a dedicated random access preamble
  • the fifth sending module is configured to receive the uplink carrier identification information and the dedicated random access channel resource output by the fifth receiving module, and send the dedicated random access preamble to the target base station on the uplink carrier indicated by the uplink carrier identification information.
  • FIG. 1 is a schematic flowchart of a message transmission method according to an embodiment
  • FIG. 2 is a schematic diagram of a MAC RAR of adding a 1-bit carrier index number field according to an embodiment
  • FIG. 3 is a schematic diagram of a MAC RAR of adding a 2-bit carrier index number field according to an embodiment
  • FIG. 4 is a schematic flowchart of a message transmission method according to another embodiment
  • FIG. 5 is a schematic flowchart of a message transmission method according to another embodiment
  • FIG. 6 is a schematic flowchart of a message transmission method according to another embodiment
  • FIG. 7 is a schematic flowchart diagram of a message transmission method according to another embodiment.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment.
  • FIG. 10 is a schematic structural diagram of a base station according to another embodiment.
  • FIG. 11 is a schematic structural diagram of a base station according to another embodiment.
  • FIG. 12 is a schematic structural diagram of a user equipment according to another embodiment.
  • some uplink carriers have corresponding downlink carriers, and some uplink carriers do not have corresponding downlink carriers.
  • the network side is configured with two uplink carriers: F1 and F2, and one downlink carrier F3, where F2 and F3 are corresponding uplink carriers and downlink carriers, respectively, and F2 and F3 may be paired (Paired) carriers. It can also be an unpaired carrier.
  • F1 does not have a corresponding downlink carrier.
  • the uplink carriers F1 and F2 are configured with a random access channel (RACH) resource and a physical random access channel (Physical Random). Access Channel, PRACH) resources.
  • RACH random access channel
  • PRACH Physical Random
  • the carrier selection principle After the random access is triggered, according to the carrier selection principle, some UEs select the uplink carrier F1 to send the Preamble code, and some UEs select the uplink carrier F2 to send the Preamble code.
  • the calculated RA-RNTIs may be the same. For example, when two UEs select two different uplink carriers, but the selected time domain resources are the same, and the corresponding frequency domain resources selected on the two uplink carriers are also the same, the MAC RAR messages of the two UEs will use the same. RA-RNTI.
  • the MAC RAR message in the 5G NR or the subsequent network only includes the timing advance command (TAC), the uplink (UL) grant, and the Temporary cell radio network temporary identifier (Cell Radio Network Temporary Identifier) , C-RNTI), and the preambles sent by the two UEs are also the same, then the MAC RAR messages of the two UEs cannot be distinguished.
  • TAC timing advance command
  • UL uplink
  • C-RNTI Temporary cell radio network temporary identifier
  • the target base station may select a suitable carrier, and allocate dedicated RACH resources on the carrier, if according to the LTE system.
  • dedicated RACH resources contain dedicated Preamble codes and designated dedicated PRACH resources.
  • the target base station transmits the dedicated RACH resource to the original base station, and the original base station sends the dedicated RACH resource to the UE through a Radio Resource Control (RRC) message.
  • RRC Radio Resource Control
  • the UE selects one carrier access among the multiple uplink carriers in the common configuration message. Since the target base station does not indicate the carrier used by the dedicated RACH resource, the carrier selected by the UE may be inconsistent with the carrier selected by the target base station. At this time, random access may be caused to fail, which may cause the handover to fail.
  • FIG. 1 is a schematic flowchart of a message transmission method according to an embodiment. As shown in FIG. 1, a message transmission method provided in this embodiment includes the following steps.
  • Step 1010 The user equipment selects one uplink carrier from at least two uplink carriers, and sends a random access preamble to the base station on the selected uplink carrier.
  • the user equipment selects an uplink carrier according to a carrier selection threshold indicated by the base station.
  • the random access response message carries the uplink carrier identification information used to indicate the uplink carrier that carries the random access preamble corresponding to the random access response message, and how the user equipment selects the threshold according to the carrier or Other schemes to select the uplink carrier can be implemented by an algorithm in the related art, and the disclosure does not limit this.
  • Step 1020 The user equipment receives the random access response message from the base station, where the random access response message includes the random access preamble identifier information corresponding to the random access response message, and is used to indicate that the bearer random access response message is corresponding.
  • the uplink carrier identification information of the uplink carrier of the random access preamble is used to indicate that the bearer random access response message is corresponding.
  • the uplink carrier identification information is a carrier index number or a carrier name.
  • the uplink carrier identification information is a carrier index number, the number of occupied bits is shorter.
  • the length of the introduced Carrier Index may be 1 bit (bit).
  • the carrier index number of F1 is 0, and the carrier index number of F2 is 1.
  • the length of the introduced Carrier Index may be 2.
  • the carrier index number of the bit, such as F4, is 3, the carrier index number of F3 is 2, the carrier index number of F2 is 1, and the carrier index number of F1 is 0.
  • the reserved field (1 bit) in FIG. 2 or 3, or a new field may be added to indicate whether a carrier indication field exists in the random access response message, such as a reserved field or a newly added field.
  • a value of 0 means that there is no carrier indication field, and a reserved field or a newly added field of 1 means that there is a carrier indication field.
  • Some cells have only one uplink carrier, and some cells have multiple uplink carriers. The UE is not sure whether the random access response message sent by the base station carries the carrier indication field. Therefore, the reserved field or the newly added field indicates random access. Whether the carrier indication field is included in the response message helps the UE to parse the content of the received message more quickly.
  • the at least one uplink carrier is at least two uplink carriers, and the at least two uplink carriers include at least one auxiliary uplink (SUL) carrier and at least one non-assisted uplink (non-SUL) carrier. .
  • SUL auxiliary uplink
  • non-SUL non-assisted uplink
  • the carrier index number of the unassisted uplink carrier may be greater than the carrier index number of the auxiliary uplink carrier, or may be smaller than the carrier index number of the auxiliary uplink carrier. In an embodiment, the carrier index number of the non-assisted uplink carrier is smaller than the carrier index number of the auxiliary uplink carrier.
  • SUL carrier F1 if there are two uplink carriers in the cell where the user equipment is located: SUL carrier F1 and non-SUL carrier F2, when the MAC RAR message is generated, if the length of the introduced carrier index is 1 bit, the SUL carrier is used.
  • the carrier index number of F1 is 1, and the carrier index number of non-SUL carrier F2 is 0.
  • Step 1030 The user equipment determines, according to the random access preamble identifier information and the uplink carrier identifier information, whether the random access response is a random access response message corresponding to the random access preamble sent by itself.
  • the random access preamble identifier information corresponding to the random access preamble identifier information and the uplink carrier identifier information in the random access response message and the random access preamble code sent by the self-selected uplink preamble identifier and the uplink selected by the self-selected uplink When the uplink carrier identification information of the carrier is the same, the user equipment determines that the random access response is a random access response message corresponding to the random access preamble sent by itself, and sends a message 3 (Msg3) at the indicated resource location; The random access preamble identifier information in the access response message is inconsistent with the random access preamble identifier information corresponding to the random access preamble sent by itself, or the uplink carrier identifier information and the self selection in the random access response message. When the uplink carrier identification information of the uplink carrier is inconsistent, the user equipment determines that the random access response is not a random access response message corresponding to the random access preamble transmitted by itself.
  • Msg3 message 3
  • FIG. 4 is a schematic flowchart diagram of a message transmission method according to another embodiment. As shown in FIG. 4, the message transmission method provided in this embodiment includes the following steps.
  • Step 4010 The base station receives the random access preamble from the user equipment, and obtains the random access preamble identifier information corresponding to the random access preamble and the uplink carrier identifier information of the uplink carrier that carries the random access preamble.
  • the uplink carrier identification information is a carrier index or a carrier name.
  • the uplink carrier identification information is the Carrier Index, the number of occupied bits is shorter.
  • the length of the carrier index may be 1 bit, for example, the carrier index number of F1 is 0, F2.
  • the carrier index number is 1.
  • the length of the carrier index may be 2 bits, for example, the carrier index of the F4.
  • the number is 3, the carrier index number of F3 is 2, the carrier index number of F2 is 1, and the carrier index number of F1 is 0.
  • the uplink carrier includes an auxiliary uplink carrier and a non-assisted uplink carrier.
  • the carrier index number of the non-assisted uplink carrier is smaller than the carrier index number of the auxiliary uplink carrier.
  • SUL carrier F1 if there are two uplink carriers in the cell where the user equipment is located: SUL carrier F1 and non-SUL carrier F2, when the MAC RAR message is generated, if the length of the introduced carrier index is 1 bit, the SUL carrier is used.
  • the carrier index number of F1 is 1, and the carrier index number of non-SUL carrier F2 is 0.
  • Step 4020 The base station sends a random access response message to the user equipment, where the random access response message includes random access preamble identification information and the uplink carrier identification information.
  • the reserved field (1 bit) in FIG. 2 or 3, or a new field may be added to indicate whether the random access response message has a carrier indication field, such as a reserved field or a newly added field. 0 means there is no carrier indication field, and a reserved field or a newly added field of 1 means that there is a carrier indication field. Some cells have only one uplink carrier, and some cells have multiple uplink carriers. The UE is not sure whether the random access response message sent by the base station carries the carrier indication field. Therefore, the reserved field or the newly added field indicates random access. Whether the carrier indication field is included in the response message helps the UE to parse the content of the received message more quickly.
  • a carrier indication field such as a reserved field or a newly added field.
  • the user equipment determines, according to the random access preamble identification information and the uplink carrier identification information in the random access response message, whether the random access response is a random transmission Accessing a random access response message corresponding to the preamble.
  • FIG. 5 is a schematic flowchart of a message transmission method according to another embodiment. As shown in FIG. 5, the message transmission method provided in this embodiment includes the following steps.
  • Step 5010 The target base station receives a handover request message of the original base station to which the user equipment belongs, selects an uplink carrier from at least two uplink carriers, and selects a dedicated RACH resource on the uplink carrier.
  • the original base station to which the user equipment belongs selects the target base station according to the downlink measurement result of the neighboring area, and after selecting the target base station, transmits the handover request message to the target base station. If there are multiple uplink carriers in the target base station, the uplink carrier needs to be selected after receiving the handover request message.
  • the target base station selects the uplink carrier, it may be selected by comparing the downlink measurement result transmitted by the original base station with the preset threshold value, or may be selected according to the access reliability of the carrier; or may be measured according to the target base station.
  • the uplink signal of the original base station is used to select an appropriate uplink carrier.
  • Step 5020 The target base station sends the uplink carrier identification information of the selected uplink carrier and the dedicated RACH resource to the original base station.
  • the target base station sends the uplink carrier identification information of the selected uplink carrier and the dedicated RACH resource to the original base station through the X2, eX2 or Xn interface.
  • the uplink carrier identification information is a carrier index or a carrier name.
  • the uplink carrier identification information is the Carrier Index, the number of occupied bits is shorter.
  • the length of the imported carrier index may be 1 bit when the handover confirmation message is generated, for example, the carrier index number of F1 is 0.
  • the carrier index number of F2 is 1.
  • the length of the introduced carrier index may be 2 bits, for example, the carrier of the F4.
  • the index number is 3, the carrier index number of F3 is 2, the carrier index number of F2 is 1, and the carrier index number of F1 is 0.
  • the MAC RAR message has a specific format, and as shown in FIG. 2 and FIG. 3, there is one reserved field in the RAR message, and the reserved field indicates whether the carrier indication field exists in the MAC RAR message. .
  • the field of the carrier carrier index is added in the handover confirmation message, which is defined as Optional.
  • the uplink carrier comprises a SUL carrier and a non-SUL carrier.
  • the carrier index number of the non-SUL carrier is less than the carrier index number of the SUL carrier.
  • SUL carrier F1 if there are two uplink carriers in the cell where the user equipment is located: SUL carrier F1 and non-SUL carrier F2, when the handover confirmation message is generated, if the length of the introduced carrier index is 1 bit, the SUL carrier is used.
  • the carrier index number of F1 is 1, and the carrier index number of non-SUL carrier F2 is 0.
  • FIG. 6 is a schematic flowchart diagram of a message transmission method according to another embodiment. As shown in FIG. 6, the message transmission method provided in this embodiment includes the following steps.
  • Step 6010 The original base station sends a handover request message to the target base station.
  • the original base station to which the user equipment belongs selects the target base station according to the downlink measurement result of the neighboring cell, and after selecting the target base station, transmits the handover request message to the target base station.
  • Step 6020 The original base station receives uplink carrier identification information and a dedicated RACH resource from the target base station.
  • the original base station receives uplink carrier identification information and dedicated RACH resources from the target base station through the X2, eX2 or Xn interfaces.
  • the uplink carrier identification information is a carrier index or a carrier name.
  • the uplink carrier identification information is the Carrier Index, the number of occupied bits is shorter.
  • the length of the introduced Carrier Index may be 1 bit, such as F1.
  • the carrier index number is 0, and the carrier index number of F2 is 1.
  • the length of the introduced Carrier Index may be 2 bits, such as the carrier of F4, when the handover confirmation message is generated.
  • the index number is 3, the carrier index number of F3 is 2, the carrier index number of F2 is 1, and the carrier index number of F1 is 0.
  • the uplink carrier comprises a SUL carrier and a non-SUL carrier.
  • the carrier index number of the non-SUL carrier is less than the carrier index number of the SUL carrier.
  • SUL carrier F1 if there are two uplink carriers in the cell where the user equipment is located: SUL carrier F1 and non-SUL carrier F2, when the handover confirmation message is generated, if the length of the introduced carrier index is 1 bit, the SUL carrier is used.
  • the carrier index number of F1 is 1, and the carrier index number of non-SUL carrier F2 is 0.
  • Step 6030 The original base station sends the received uplink carrier identification information and the dedicated RACH resource to the user equipment.
  • the user equipment after receiving the uplink carrier identification information and the dedicated RACH resource, the user equipment sends the dedicated Preamble code included in the dedicated RACH resource to the target base station on the selected uplink carrier.
  • the original base station sends the received uplink carrier identification information and the dedicated RACH resource to the user equipment by using a radio resource control message.
  • FIG. 7 is a schematic flowchart diagram of a message transmission method according to another embodiment. As shown in FIG. 7, the message transmission method provided in this embodiment includes the following steps.
  • Step 7010 The user equipment receives uplink carrier identification information and a dedicated RACH resource from the original base station to which the user equipment belongs, where the dedicated RACH resource includes a dedicated random access preamble.
  • the uplink carrier identification information of the original base station and the dedicated RACH resource are carried in the radio resource control message.
  • the uplink carrier identification information is a carrier index or a carrier name.
  • the uplink carrier identification information is the Carrier Index, the number of occupied bits is shorter.
  • the length of the carrier index introduced in the RRC message may be 1 bit.
  • the carrier index number of F1 is 0, F2.
  • the carrier index number is 1.
  • the length of the carrier index introduced in the RRC message may be 2 bits, such as the carrier index of F4.
  • the number is 3, the carrier index number of F3 is 2, the carrier index number of F2 is 1, and the carrier index number of F1 is 0.
  • the uplink carrier comprises a SUL carrier and a non-SUL carrier.
  • the carrier index number of the non-SUL carrier is less than the carrier index number of the SUL carrier.
  • the F1 carrier of the SUL carrier is used.
  • the index number is 1, and the F2 carrier index number of non-SUL is 0.
  • Step 7020 The user equipment sends a dedicated random access preamble to the target base station on the uplink carrier indicated by the uplink carrier identification information.
  • the target base station after receiving the dedicated random access preamble, the target base station generates a MAC RAR message and sends the message to the user equipment.
  • the embodiment further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement the above A message transmission method as claimed in any of the preceding claims.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment. As shown in FIG. 8, the user equipment provided in this embodiment includes a first sending module 801, a first receiving module 802, and a determining module 803.
  • the first sending module 801 is configured to select one uplink carrier from at least two uplink carriers, and send a random access preamble to the base station on the selected uplink carrier, and send the random access preamble.
  • the corresponding random access preamble identification information and the uplink carrier identification information corresponding to the selected uplink carrier are output to the determining module 803.
  • the first receiving module 802 is configured to receive a random access response message from the base station, where the random access
  • the incoming response message includes the random access preamble identifier information corresponding to the random access response message and the uplink carrier identifier information used to indicate the uplink carrier of the random access preamble corresponding to the random access response message, and the received random identifier is received.
  • the access preamble identification information and the uplink carrier identification information are output to the determining module 803.
  • the determining module 803 is configured to receive the random access preamble identification information and the uplink carrier identification information output by the first sending module 801 and the first receiving module 802. Random access preamble identification information and uplink carrier identification information, according to the received The device accesses the preamble identification information and the uplink carrier identification information, and determines whether the random access response is a random access response message corresponding to the random access preamble sent by the first sending module 801.
  • the first sending module 801 is configured to select an uplink carrier according to a carrier selection threshold indicated by the base station.
  • the random access response message carries the uplink carrier identification information used to indicate the uplink carrier that carries the random access preamble corresponding to the random access response message
  • the first sending module 801 is configured to How to select an uplink carrier according to a carrier selection threshold or other scheme may be implemented by an algorithm in the related art, which is not limited in this disclosure.
  • the uplink carrier identification information is a carrier index number or a carrier name.
  • the uplink carrier identification information is the Carrier Index, the number of occupied bits is shorter.
  • the at least two uplink carriers comprise at least one Supplementary Uplink (SUL) carrier and at least one non-SUL carrier.
  • SUL Supplementary Uplink
  • the carrier index number of each of the non-assisted uplink carriers is smaller than the carrier index number of each of the auxiliary uplink carriers.
  • the SUL carrier F1 if there are two uplink carriers in the cell where the user equipment is located: the SUL carrier F1 and the non-SUL carrier F2, when the MAC RAR message is generated, it is assumed that the length of the introduced Carrier Index is 1 bit, then the F1 is The carrier index number is 1, and the carrier index number of F2 is 0.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment. As shown in FIG. 9, the base station provided in this embodiment includes a second receiving module 901 and a second sending module 902.
  • the second receiving module 901 is configured to receive a random access preamble from the user equipment, and obtain the random access preamble identifier information corresponding to the random access preamble and the uplink carrier that carries the random access preamble.
  • the uplink carrier identification information is output, and the random access preamble identification information and the uplink carrier identification information are output to the second sending module 902.
  • the second sending module 902 is configured to receive the random access preamble identifier output by the second receiving module 901.
  • the information and the uplink carrier identification information are sent to the user equipment, where the random access response message includes the random access preamble identification information and the uplink carrier identification information.
  • the uplink carrier identification information is a carrier index or a carrier name.
  • the uplink carrier identification information is Carrier Index, the number of occupied bits is shorter.
  • the uplink carrier includes an auxiliary uplink carrier and a non-assisted uplink carrier.
  • the carrier index number of the non-assisted uplink carrier is smaller than the carrier index number of the auxiliary uplink carrier.
  • FIG. 10 is a schematic structural diagram of a base station according to another embodiment.
  • the base station provided in this embodiment is a target base station that performs terminal handover.
  • the base station provided in this embodiment includes a third receiving module 1001 and a third sending module 1002.
  • the third receiving module 1001 is configured to receive a handover request message of the original base station to which the user equipment belongs, select one uplink carrier from the at least two uplink carriers, and select a dedicated RACH on the selected uplink carrier.
  • the third transmission module 1002 is configured to receive the uplink carrier identification information and the dedicated RACH resource output by the third receiving module 1001, and output the uplink carrier identification information and the dedicated RACH resource of the selected uplink carrier to the third sending module 1002.
  • the uplink carrier identification information and the dedicated RACH resource are sent to the original base station to which the user equipment belongs.
  • the original base station to which the user equipment belongs selects the target base station according to the downlink measurement result of the neighboring cell, and after selecting the target base station, transmits the handover request message to the target base station. If there are multiple uplink carriers in the target base station, the uplink carrier needs to be selected after receiving the handover request message.
  • the target base station selects the uplink carrier, it may select according to comparing the downlink measurement result and the preset threshold value transmitted by the original base station, or may select according to the access reliability of the carrier; or, according to the target base station, The uplink signal of the original base station is used to select an appropriate uplink carrier.
  • the target base station sends the uplink carrier identification information of the selected uplink carrier and the dedicated RACH resource to the original base station through the X2, eX2 or Xn interface.
  • the uplink carrier identification information is a carrier index or a carrier name.
  • the uplink carrier identification information is the Carrier Index, the number of occupied bits is shorter.
  • the at least two uplink carriers comprise at least one SUL carrier and at least one non-SUL carrier.
  • the carrier index number of each non-SUL carrier is less than the carrier index number of each SUL carrier.
  • FIG. 11 is a schematic structural diagram of a base station according to another embodiment. As shown in FIG. 11, the base station provided in this embodiment is used as the original base station for performing terminal handover.
  • the base station provided in this embodiment includes a fourth sending module 1101 and a fourth receiving module 1102.
  • the fourth sending module 1101 is configured to: when it is determined that the user equipment needs to be handed over, send a handover request message to the target base station; receive the uplink carrier identification information and the dedicated RACH resource output by the fourth receiving module 1102, The uplink carrier identification information and the dedicated RACH resource are sent to the user equipment, and the fourth receiving module 1102 is configured to receive the uplink carrier identification information and the dedicated RACH resource from the target base station, and output the uplink carrier identification information and the dedicated RACH resource. Up to the fourth transmitting module 1101.
  • the fourth sending module 1101 is configured to select a target base station according to the downlink measurement result of the neighboring cell, and after the target base station is selected, transmit the handover request message to the target base station.
  • the fourth receiving module 1102 is configured to receive uplink carrier identification information and a dedicated RACH resource from the target base station through the X2, eX2 or Xn interface.
  • the uplink carrier identification information is a carrier index or a carrier name.
  • the uplink carrier identification information is the Carrier Index, the number of occupied bits is shorter.
  • the uplink carrier comprises a SUL carrier and a non-SUL carrier.
  • the carrier index number of the non-SUL carrier is less than the carrier index number of the SUL carrier.
  • the fourth sending module 1101 is configured to send the received uplink carrier identification information and the dedicated RACH resource to the user equipment by using a radio resource control message.
  • FIG. 12 is a schematic structural diagram of a user equipment according to another embodiment. As shown in FIG. 12, the user equipment provided in this embodiment includes a fifth receiving module 1201 and a fifth sending module 1202.
  • the fifth receiving module 1201 is configured to receive uplink carrier identification information and a dedicated RACH resource from the original base station to which the user equipment belongs, where the dedicated RACH resource includes a dedicated random access preamble, and the The uplink carrier identification information and the dedicated RACH resource are sent to the fifth sending module 1202.
  • the fifth sending module 1202 is configured to receive the uplink carrier identification information and the dedicated RACH resource output by the fifth receiving module 1201, and the uplink carrier indicated by the uplink carrier identification information. Sending a dedicated random access preamble to the target base station.
  • the uplink carrier identification information of the original base station and the dedicated RACH resource are carried in the radio resource control message.
  • the uplink carrier identification information is a carrier index or a carrier name.
  • the uplink carrier identification information is the Carrier Index, the number of occupied bits is shorter.
  • the uplink carrier comprises a SUL carrier and a non-SUL carrier.
  • the carrier index number of the non-SUL carrier is less than the carrier index number of the SUL carrier.
  • the content of the MAC RAR message includes only the TAC, the UL Grant, and the Temporary C-RNTI, when the same cell selects different UEs.
  • the UE cannot distinguish the MAC RAR, and the random access fails.
  • it may be considered to add a carrier index in the MAC RAR message to distinguish different carriers.
  • the target base station For the handover, there are multiple uplink carriers in the target cell. Since the target base station only indicates the dedicated RACH resources, the carrier selected by the UE may be inconsistent with the carrier selected by the target base station, causing random access failure, that is, handover failure. In order to solve this problem, it may be considered that the target base station needs to indicate the carrier index in addition to indicating the dedicated RACH resource.
  • the base station may configure multiple uplink carriers for the UE by using a system message or a common configuration message in the RRC message, and each uplink carrier has its own corresponding uplink configuration, such as RACH Common Configuration, and PRACH Resource Configuration. And UL Power Control (Common Control) common configuration. If the base station configures 2 uplink carriers F1 and F2, one downlink carrier F3, where F2 and F3 are paired or unpaired carriers. UE1 selects uplink carrier F1 according to a carrier selection threshold or other scheme; UE2 selects uplink carrier F2 according to a carrier selection threshold or other scheme.
  • UE1 selects the same time domain location as UE2, and selects the corresponding frequency domain resource location, and transmits the same Preamble code.
  • the base station receives the Preamble code of the UE1 and the Preamble code of the UE2, if the calculation scheme of the RA-RNTI in the LTE system is adopted, the RA-RNTI calculation result of the two UEs is the same, and the MAC RAR is generated, except for the TAC, the UL Grant, and the The Temporary C-RNTI also needs to include a field, such as a carrier index, for distinguishing the MAC RARs of different carriers.
  • the MAC RARs of the two UEs are multiplexed together and sent to the UE through the same downlink resource.
  • the added field Carrier Index is used to indicate the MAC RAR of the carrier, such as the uplink carrier F1 used by the UE1, the base station may add the Carrier Index of the F1 in the MAC RAR, and the uplink carrier F2 used by the UE2, and the base station is in the MAC. Add the carrier index of F2 to the RAR.
  • the UE1 After receiving the MAC RAR, the UE1 first parses the Random Access Preamble IDentitfier (RAPID). Since the RAPID of the UE1 is the same as the RAPID of the UE2, it is not yet determined whether it belongs to the MAC RAR of the UE1. The UE1 continues to parse the MAC RAR. If the MAC RAR is found to contain the carrier indication field and the carrier F1 is indicated, the UE1 considers that the MAC RAR reception is successful. UE1 can send Msg3 at the indicated resource location; for UE2, parse the RAPID, and similarly, continue to parse the MAC RAR. If there is a carrier indication field in the MAC RAR, and the carrier indication field indicates the carrier F2, the MAC RAR reception is considered successful. Send Msg3 on the indicated resource location.
  • RAPID Random Access Preamble IDentitfier
  • the UE can determine whether the MAC RAR belongs to the local device according to the carrier in the MAC RAR if the RAPID is the same. If the MAC RAR of the UE is determined to be the MAC RAR of the UE, the Msg3 is sent on the indicated carrier, which can improve the random access success rate.
  • the original base station selects the target base station according to the downlink measurement result of the neighboring cell. After the target base station is selected, the handover request message is delivered to the target base station. If there are multiple uplink carriers in the target base station, after receiving the handover request, the uplink transmission carrier needs to be selected.
  • the uplink carrier selection scheme may be selected according to the comparison result of the downlink measurement result and the threshold value transmitted by the original base station, or may be selected according to the access reliability of the carrier; or may be measured according to the target base station.
  • the uplink signal of the original base station is used to select an appropriate access carrier.
  • the dedicated RACH resource is selected on the access carrier. After the selection, the dedicated RACH resource is transmitted together with the selected carrier to the original base station, and the original base station passes the dedicated RACH resource and the selected carrier.
  • the RRC message is configured to the UE.
  • the UE After receiving the UE, the UE sends a dedicated Preamble code on the indicated carrier according to the configuration of the original base station.
  • the handover success rate is also increased.
  • Embodiment 1 One cell has two uplink carriers F1 and F2, one downlink carrier F3, F2 and F3 are paired or unpaired carriers; UE supports 2 carriers; initial access and reconstruction)
  • the base station broadcasts two uplink carriers F1 and F2 through system messages, and one downlink carrier F3, F2 and F3 are paired or unpaired carriers.
  • different uplink resources are broadcast, such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control common configuration.
  • Step 1 The UE selects an uplink carrier access according to a carrier selection principle, and sends a Preamble code on the selected uplink carrier.
  • Step 2 After receiving the Peamble code, the base station has two uplink carriers. Therefore, when generating a MAC RAR message, you need to import a carrier index. For example, the carrier index of F1 is 1, and the F2Carrier index is 0. You need to add a bit. The indication is as shown in Figure 2.
  • the carrier index number field in FIG. 2 is used to indicate an uplink carrier index number (CI), and the Padding field does not represent any useful information, and is only padded.
  • Step 3 The UE receives the MAC RAR message from the base station, and may parse according to the format in FIG. 2. If the calculated carrier index is consistent with the carrier index of the uplink carrier that sends the Preamble code, then the received MAC RAR is considered to be sent. The MAC RAR message to the UE, that is, the MAC RAR reception is successful.
  • Embodiment 2 One cell has multiple uplink carriers F1, F2, and F3, and some uplink carriers have corresponding downlink carriers, and some uplink carriers do not have corresponding downlink carriers; the UE supports all uplink carriers or more than two. Uplink carrier; initial access and reconstruction)
  • the base station broadcasts multiple uplink carriers through system messages, and broadcasts different uplink resources, such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control Common Configuration, for each uplink carrier.
  • uplink resources such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control Common Configuration
  • Step 1 The UE selects an uplink carrier according to a carrier selection principle on the supported uplink carrier, and sends a Preamble code on the selected uplink carrier.
  • Step 2 After receiving the Preamble code, the base station needs to introduce a carrier index when generating a MAC RAR message. For example, if the current base station is configured with 4 uplink carriers, then 2 bits can be added to indicate the Carrier Index. As shown in FIG. 3, taking a 2-bit field as an example, a structure diagram of a MAC RAR is given.
  • the carrier index number field is used to indicate an uplink carrier index number (CI), and the Padding field does not represent any useful information, and is only padded.
  • Step 3 The UE receives the MAC RAR message from the base station, and may perform parsing according to the MAC RAR format of FIG. 3. If the parsed carrier index is consistent with the carrier index of the uplink carrier transmitting the Preamble code, the MAC RAR reception is considered successful.
  • Embodiment 3 (2 cells have 2 uplink carriers F1 and F2, 1 downlink carrier F3, F2 and F3 are paired or unpaired carriers; UE supports 2 carriers; random access procedure in connected state)
  • the base station is configured with two uplink carriers F1 and F2, one downlink carrier F3, and F2 and F3 are paired or unpaired carriers.
  • the two uplink carriers F1 and F2 have their own common configurations, such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control Common Configuration.
  • Step 1 If the UE uses two uplink carriers for uplink transmission before random access, then before performing random access, it is necessary to select an uplink carrier access according to the carrier selection principle, and send the Preamble code on the selected uplink carrier. . If the UE uses only one uplink carrier for uplink transmission before the random access trigger, the UE may select to transmit the Preamble code on the uplink carrier. Or for the handover process, the UE needs to perform carrier selection according to a commonly configured carrier.
  • Step 2 After receiving the Preamble code, the base station needs to introduce a carrier index when generating a MAC RAR message.
  • the MAC RAR format in FIG. 2 can be used.
  • the base station After generating the MAC RAR message, the base station sends the message to the UE.
  • Step 3 The UE receives the MAC RAR message from the base station, and may parse according to the MAC RAR format in FIG. 2. If the carrier index parsed according to the format in FIG. 2 is consistent with the carrier index of the uplink carrier transmitting the Preamble code, the MAC RAR reception is considered successful.
  • Embodiment 4 One cell has multiple uplink carriers F1, F2, and F3, and some uplink carriers have corresponding downlink carriers, and some row carriers do not have corresponding downlink carriers; UE supports all uplink carriers or more than two. Uplink carrier)
  • the base station is configured with multiple uplink carriers, and each uplink carrier has different common configurations, such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control Common Configuration.
  • RACH Common Configuration RACH Common Configuration
  • PRACH Resource Configuration PRACH Resource Configuration
  • UL Power Control Common Configuration RACH Common Configuration
  • the random access procedure is triggered. Or a random access procedure triggered when there is no dedicated Preamble code when switching.
  • Step 1 If the UE uses multiple uplink carriers for uplink transmission before random access, it is necessary to select one uplink carrier access according to the carrier selection principle and send the Preamble code on the selected uplink carrier before performing random access. If the UE uses only one uplink carrier for uplink transmission before the random access trigger, the UE may select to transmit the Preamble code on the uplink carrier. Or for the handover process, the UE needs to perform carrier selection according to a commonly configured carrier.
  • Step 2 After receiving the Preamble code, the base station needs to introduce a carrier index when generating a MAC RAR message. For example, there are 4 uplink carriers, and the MAC RAR format in FIG. 3 can be used. After generating the MAC RAR message, the base station sends the message to the UE.
  • Step 3 The UE receives the MAC RAR message from the base station, and may perform parsing according to the MAC RAR format in FIG. 3. If the calculated Carrier Index matches the carrier index of the uplink carrier that transmits the Preamble code, the MAC RAR reception is considered successful.
  • Embodiment 5 (2 uplink carriers exist in one cell: such as SUL carrier and non-SUL carrier)
  • the base station is configured with two uplink carriers: a SUL carrier and a non-SUL carrier, and both uplink carriers have their own common configurations, such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control Common Configuration.
  • the UE supports the characteristics of the SUL carrier and supports the Band Combination of the SUL carrier and the Normal carrier.
  • Step 1 The UE performs carrier selection according to a carrier selection threshold, and sends a Preamble code on the selected uplink carrier.
  • Step 2 After the base station receives the Preamble code, the SUL carrier and the non-SUL carrier are present in the current cell. Therefore, when generating the MAC RAR message, the carrier index needs to be introduced. For example, 0 indicates a non-SUL carrier, and 1 indicates a SUL carrier. For example, the MAC RAR format in FIG. 2 can be used. After generating the MAC RAR message, the base station sends the message to the UE.
  • Step 3 The UE receives the MAC RAR message from the base station, and may parse according to the MAC RAR format in FIG. 2. If the carrier index parsed according to the format in FIG. 2 is consistent with the carrier index of the uplink carrier transmitting the Preamble code, the MAC RAR reception is considered successful.
  • Embodiment 6 (a plurality of uplink carriers exist in one cell, such as multiple SUL carriers and multiple non-SUL carriers)
  • the base station is configured with multiple uplink carriers, for example, multiple SUL carriers and multiple non-SUL carriers are configured, and multiple uplink carriers have different common configurations, such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control Common Configuration.
  • the UE supports the characteristics of the SUL and supports the Band Combination of the SUL carrier and the Normal carrier.
  • Step 1 The UE performs carrier selection according to a carrier selection threshold, and sends a Preamble code on the selected uplink carrier.
  • Step 2 After receiving the Preamble code, the base station has multiple uplink carriers. Therefore, when generating a MAC RAR message, a carrier index needs to be introduced. For example, the carrier index of multiple non-SUL carriers is sorted from 0, and finally SUL. Carrier index. In addition, you need a field that indicates whether the Carrier Index exists. For example, when there are 4 uplink carriers, the MAC RAR format in FIG. 3 can be used. After generating the MAC RAR message, the base station sends the message to the UE.
  • Step 3 The UE receives the MAC RAR message from the base station, and may perform parsing according to the MAC RAR format in FIG. 3. If the carrier index parsed according to the format in FIG. 3 is consistent with the carrier index of the uplink carrier transmitting the Preamble code, the MAC RAR reception is considered successful.
  • Embodiment 7 (2 uplink carriers exist in one cell: for example, SUL carrier and non-SUL carrier; UE supports 2 carriers; random access procedure in connected state)
  • the base station is configured with two uplink carriers: a SUL carrier and a non-SUL carrier, and both uplink carriers have their own common configurations, such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control Common Configuration.
  • the UE supports the characteristics of the SUL carrier and supports the Band Combination of the SUL carrier and the Normal carrier.
  • Step 1 If the UE uses two uplink carriers for uplink transmission before random access, before performing random access, it is necessary to select an uplink carrier access according to the carrier selection principle, and send the Preamble code on the selected carrier. If the UE uses only one carrier for uplink transmission before the random access trigger, the UE may select to transmit the Preamble code on the uplink carrier. For the handover procedure, the UE needs to perform carrier selection according to a commonly configured carrier and transmit a Preamble code on the selected carrier.
  • Step 2 After the base station receives the Preamble code, the SUL carrier and the non-SUL carrier are present in the current cell. Therefore, when generating the MAC RAR message, the carrier index needs to be introduced. For example, 0 indicates a non-SUL carrier, and 1 indicates a SUL carrier. For example, the MAC RAR format of FIG. 2 can be used. After generating the MAC RAR message, the base station sends the message to the UE.
  • Step 3 The UE receives the MAC RAR message from the base station, and may parse according to the MAC RAR format in FIG. 2. If the carrier index parsed according to the format in FIG. 2 is consistent with the carrier index of the carrier transmitting the Preamble code, the MAC RAR reception is considered successful.
  • Embodiment 8 (a plurality of uplink carriers exist in one cell, such as 1 SUL carrier and multiple non-SUL carriers or multiple SUL carriers and multiple non-SUL carriers)
  • the base station is configured with multiple uplink carriers, for example, one SUL carrier and multiple non-SUL carriers are configured, and multiple uplink carriers have different common configurations, such as RACH Common Configuration, PRACH Resource Configuration, and UL Power Control Common Configuration.
  • the UE supports the characteristics of the SUL carrier and supports the Band Combination of the SUL carrier and the Normal carrier.
  • Step 1 If the UE uses multiple uplink carriers for uplink transmission before random access, before performing random access, it is necessary to select an uplink carrier access according to the carrier selection principle, and send a Preamble code on the selected carrier. If the UE uses only one carrier for uplink transmission before the random access trigger, the UE may choose to transmit the Preamble code on the uplink carrier. Or for the handover process, the UE needs to perform carrier selection according to a commonly configured carrier.
  • Step 2 After receiving the Preamble code, the base station has multiple uplink carriers. Therefore, when generating a MAC RAR message, a carrier index needs to be introduced. For example, the carrier index of multiple non-SUL carriers is sorted from 0, and finally SUL. Carrier index of the carrier. For example, when there are 4 uplink carriers, the MAC RAR format of FIG. 3 can be used. After generating the MAC RAR message, the base station sends the message to the UE.
  • Step 3 The UE receives the MAC RAR message from the base station, and may perform parsing according to the MAC RAR format in FIG. 3. If the calculated Carrier Index matches the carrier index of the uplink carrier that transmits the Preamble code, the MAC RAR reception is considered successful.
  • Embodiment 9 (there is 2 uplink carriers in the target cell, the handover process)
  • the original base station selects the target base station according to the downlink measurement result, and sends the handover request to the target base station. If the target base station has two uplink carriers, such as a SUL carrier and a non-SUL carrier, and according to the capability of the UE, the UE supports the characteristics of the SUL carrier of the target base station, and supports the Band combination of the SUL carrier and the Normal carrier, then the target base station according to the certain These principles are used to select the appropriate carrier and select a dedicated Preamble code and dedicated PRACH resources on that carrier.
  • uplink carriers such as a SUL carrier and a non-SUL carrier
  • the target base station transmits the selected carrier and the selected dedicated RACH resource on the carrier to the original base station through the X2/eX2/Xn interface. After receiving the original base station, the carrier selected by the target base station and the dedicated RACH resource are sent to the UE.
  • the UE After receiving the UE, the UE transmits a dedicated Preamble code to the target base station on the selected carrier.
  • the target base station After receiving the Preamble code, the target base station has a SUL carrier and a non-SUL carrier. Therefore, when generating a MAC RAR message, a carrier index needs to be introduced. For example, 0 indicates a non-SUL carrier, and 1 indicates a SUL carrier. For example, the MAC RAR format of FIG. 2 can be used. After generating the MAC RAR message, the target base station sends to the UE.
  • the UE receives the MAC RAR message from the target base station, and can parse according to the MAC RAR format in FIG. 2. If the carrier index analyzed according to FIG. 2 is consistent with the carrier index of the carrier transmitting the Preamble code, the MAC RAR reception is considered successful.
  • Embodiment 10 multiple uplink carriers exist in a target cell
  • the original base station selects the target base station according to the downlink measurement result, and sends the handover request to the target base station.
  • the target base station has multiple uplink carriers, such as multiple SUL carriers and multiple non-SUL carriers, and according to the capabilities of the UE, the UE supports the characteristics of the partial SUL carrier, and supports the Band Combination of the part of the SUL carrier and the Normal carrier; Or the UE supports the characteristics of all SUL carriers, and supports Band Combination of all SUL carriers and Normal carriers.
  • the base station selects a suitable carrier according to certain principles in the supported carriers, and selects a dedicated Preamble code and a dedicated PRACH resource on the carrier.
  • the target base station transmits the selected carrier and the selected dedicated RACH resource on the carrier to the original base station through the X2/eX2/Xn interface. After receiving the original base station, the carrier selected by the target base station and the dedicated RACH resource are sent to the UE.
  • the UE After receiving the UE, the UE transmits a dedicated Preamble code to the target base station on the selected carrier.
  • the target base station After receiving the Preamble code, the target base station has multiple uplink carriers. Therefore, when generating a MAC RAR message, a carrier index needs to be introduced. For example, multiple non-SUL carrier indices are sorted from 0, and finally the carrier of the SUL carrier. Index. In addition, you need a field that indicates whether the Carrier Index exists. For example, when there are 4 uplink carriers, the MAC RAR format of FIG. 3 can be used. After generating the MAC RAR message, the base station sends the message to the UE.
  • the UE receives the MAC RAR message from the target base station, and can perform parsing according to the MAC RAR format in FIG. If the carrier index parsed according to the format in FIG. 3 is consistent with the carrier index of the carrier transmitting the Preamble code, the MAC RAR reception is considered successful.

Abstract

一种消息传输方法、用户设备、基站及计算机可读存储介质。消息传输方法包括用户设备选择上行载波,并在选择的上行载波上发送随机接入前导码至基站;用户设备接收来自基站的随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入响应消息对应的随机接入前导码标识信息以及用于指示承载所述随机接入响应消息对应的随机接入前导码的上行载波的上行载波标识信息;用户设备根据所述随机接入前导码标识信息和上行载波标识信息,判断所述随机接入响应消息是否为自身发送的随机接入前导码对应的随机接入响应消息。

Description

消息传输方法、用户设备、基站及计算机可读存储介质
本公开要求申请日为2017年11月17日、申请号为201711148128.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及无线通信技术领域,例如涉及一种消息传输方法、用户设备、基站及计算机可读存储介质。
背景技术
第五代移动通信技术(the 5th Generation Mobile Communication Technology,5G)新无线(New Radio,NR)是正在进行的第三代合作伙伴(3rd Generation Partnership Project,3GPP)的研究项目,5G NR确定了基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的新无线空口标准,并将成为下一代移动网络的基础。在5G标准讨论过程中,主要考虑的是小区只有一个上行载波和一个下行载波的场景,对于该场景下的小区随机接入过程,由于只有一个上行载波和一个下行载波,因此不存在载波选择的过程,也就不会因为载波选择失败造成随机接入失败的问题。
但是,当小区存在多个上行载波时,在触发随机接入后,不同的用户设备(User Equipment,UE)可能选择不同的上行载波发送前导(Preamble)码。然而,当两个UE分别在两个不同的上行载波上发送Preamble码时,两个UE的介质访问控制(Medium Access Control,MAC)层随机接入响应(Random Access Response,RAR)消息(消息2(Message 2,Msg2))可能使用相同的随机接入无线网络临时标识(Random Access Radio Network Temporary Identity,RA-RNTI),那么两个UE的MAC RAR消息将无法区分。如果一个UE使用了另外一个UE的MAC RAR消息,很可能会导致消息3(Message 3,Msg3)发送失败。
此外,在切换场景中,在目标小区存在多个上行载波的情况下,UE会在公共配置消息中的多个上行载波中的一个载波接入,但是UE选择的载波可能与目标基站在接收到切换请求消息后选择的载波不一致,这种情况下,很可能会导致随机接入失败,进而导致切换失败。
发明内容
本公开提供了一种消息传输方法、用户设备、基站及计算机可读存储介质,能够提高随机接入过程的成功率。
本公开提供了一种消息传输方法,包括:
用户设备从至少两个上行载波中选择一个上行载波,并在选择的上行载波上发送随机接入前导码至基站;
用户设备接收来自基站的随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入响应消息对应的随机接入前导码标识信息以及用于指示承载所述随机接入响应消息对应的随机接入前导码的上行载波的上行载波标识信息;
用户设备根据所述随机接入前导码标识信息和上行载波标识信息,判断所述随机接入响应消息是否为用户设备自身发送的随机接入前导码对应的随机接入响应消息。
本公开还提供了一种消息传输方法,包括:
基站接收来自用户设备的随机接入前导码,获取随机接入前导码对应的随机接入前导码标识信息和承载所述随机接入前导码的上行载波的上行载波标识信息;
基站向用户设备发送随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入前导码标识信息以及所述上行载波标识信息。
本公开还提供了一种消息传输方法,包括:
目标基站接收用户设备所属的原基站的切换请求消息,从至少两个上行载波中选择上行载波,并在选择的所述上行载波上选择专用随机接入信道资源;
目标基站将选择的上行载波的上行载波标识信息及专用随机接入信道资源发送至原基站。
本公开还提供了一种消息传输方法,包括:
原基站发送切换请求消息至目标基站;
原基站接收来自目标基站的上行载波标识信息及专用随机接入信道资源;
原基站将接收的上行载波标识信息及专用随机接入信道资源发送至用户设备。
本公开还提供了一种消息传输方法,包括:
用户设备接收来自用户设备所属的原基站的上行载波标识信息及专用随机 接入信道资源,其中,所述专用随机接入信道资源包含专用随机接入前导码;
用户设备在所述上行载波标识信息指示的上行载波上,发送专用随机接入前导码至目标基站。
本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的消息传输方法。
本公开还提供了一种用户设备,包括第一发送模块、第一接收模块和判断模块,其中,
第一发送模块,设置为从至少两个上行载波中选择一个上行载波,并在选择的上行载波上发送随机接入前导码至基站;
第一接收模块,设置为接收来自基站的随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入响应消息对应的随机接入前导码标识信息以及用于指示承载所述随机接入响应消息对应的随机接入前导码的上行载波的上行载波标识信息,将所述随机接入前导码标识信息和上行载波标识信息输出至判断模块;
判断模块,设置为接收第一接收模块输出的随机接入前导码标识信息和上行载波标识信息,根据所述随机接入前导码标识信息和上行载波标识信息,判断所述随机接入响应是否为所述第一发送模块发送的随机接入前导码对应的随机接入响应消息。
本公开还提供了一种基站,包括第二接收模块和第二发送模块,其中,
第二接收模块,设置为接收来自用户设备的随机接入前导码,获取随机接入前导码对应的随机接入前导码标识信息和承载所述随机接入前导码的上行载波的上行载波标识信息,并将所述随机接入前导码标识信息和上行载波标识信息输出至第二发送模块;
第二发送模块,设置为接收第二接收模块输出的随机接入前导码标识信息和上行载波标识信息,向用户设备发送随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入前导码标识信息以及所述上行载波标识信息。
本公开还提供了一种基站,作为用户设备切换的目标基站,包括第三接收模块和第三发送模块,其中,
第三接收模块,设置为接收用户设备所属的原基站的切换请求消息,从至少两个上行载波中选择一个上行载波,并在选择的所述上行载波上选择专用随 机接入信道资源,将选择的上行载波的上行载波标识信息及专用随机接入信道资源输出至第三发送模块;
第三发送模块,设置为接收第三接收模块输出的上行载波标识信息及专用随机接入信道资源,将所述上行载波标识信息及随机接入信道资源发送至用户设备所属的原基站。
本公开还提供了一种基站,作为用户设备的原基站,包括第四发送模块和第四接收模块,其中,
第四发送模块,设置为当判断出所述用户设备需要切换时,发送切换请求消息至目标基站;接收第四接收模块输出的上行载波标识信息及专用随机接入信道资源,将所述上行载波标识信息及专用随机接入信道资源发送至用户设备;
第四接收模块,设置为接收来自目标基站的上行载波标识信息及专用随机接入信道资源,将所述上行载波标识信息及专用随机接入信道资源输出至第四发送模块。
本公开还提供了一种用户设备,包括第五接收模块和第五发送模块,其中,
第五接收模块,设置为接收来自用户设备所属的原基站的上行载波标识信息及专用随机接入信道资源,将所述上行载波标识信息及专用随机接入信道资源发送至第五发送模块,其中,所述专用随机接入信道资源包含专用随机接入前导码;
第五发送模块,设置为接收第五接收模块输出的上行载波标识信息及专用随机接入信道资源,在所述上行载波标识信息指示的上行载波上发送专用随机接入前导码至目标基站。
附图说明
图1为一实施例提供的一种消息传输方法的流程示意图;
图2为一实施例提供的添加1比特载波索引号字段的MAC RAR示意图;
图3为一实施例提供的添加2比特载波索引号字段的MAC RAR示意图;
图4为另一实施例提供的一种消息传输方法的流程示意图;
图5为另一实施例提供的一种消息传输方法的流程示意图;
图6为另一实施例提供的一种消息传输方法的流程示意图;
图7为另一实施例提供的一种消息传输方法的流程示意图;
图8为一实施例提供的一种用户设备的结构示意图;
图9为一实施例提供的一种基站的结构示意图;
图10为另一实施例提供的一种基站的结构示意图;
图11为另一实施例提供的一种基站的结构示意图;
图12为另一实施例提供的一种用户设备的结构示意图。
具体实施方式
下文中将结合附图对本公开的实施例进行说明。
当小区存在多个上行载波时,有的上行载波存在对应的下行载波,有的上行载波不存在对应的下行载波。例如,假设网络侧配置了2个上行载波:F1和F2,1个下行载波F3,其中,F2和F3分别为对应的上行载波和下行载波,且F2和F3可以为成对(Paired)的载波,也可以为非成对(Unpaired)的载波,F1不存在对应的下行载波,上行载波F1和F2均配置了随机接入信道(Random Access Channel,RACH)资源和物理随机接入信道(Physical Random Access Channel,PRACH)资源。在触发随机接入后,根据载波选择原则,有的UE选择上行载波F1发送Preamble码,有的UE选择上行载波F2发送Preamble码。根据长期演进(Long Term Evolution,LTE)系统中RA-RNTI仅考虑时频资源的计算方法,当两个上行载波上发送不同UE的Preamble码时,计算出的RA-RNTI可能相同。例如,当两个UE选择两个不同的上行载波,但选择的时域资源相同,且在两个上行载波上选择的对应的频域资源也相同时,两个UE的MAC RAR消息将使用相同的RA-RNTI。如果5G NR或后续的网络中MAC RAR消息仅包含定时提前命令(timing advance command,TAC)、上行(Uplink,UL)授权(grant)和临时(Temporary)小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),且两个UE发送的前导码也相同,那么两个UE的MAC RAR消息将无法区分。此时,如果一个UE使用了另外一个UE的MAC RAR消息,很可能会导致Msg3发送失败。因此,对于这种多上行载波的场景,存在如何区分RAR消息(即Msg2)是否是发送给本UE的问题。
在切换场景中,如果目标小区存在多个上行载波,当目标基站收到原基站的切换请求消息后,目标基站可以选择合适的载波,并且在该载波上分配专用的RACH资源,如果按照LTE系统的设计,专用的RACH资源包含专用Preamble码和指定的专用PRACH资源。目标基站将专用RACH资源传递给原基站,原基站通过无线资源控制(Radio Resource Control,RRC)消息将专用RACH资 源发送给UE。UE收到RRC消息后,在公共配置消息中的多个上行载波中选择一个载波接入,由于目标基站没有指示专用RACH资源使用的载波,UE选择的载波有可能与目标基站选择的载波不一致,此时,很可能会导致随机接入失败,进而导致切换失败。
图1为一实施例提供的一种消息传输方法的流程示意图。如图1所示,本实施例提供的一种消息传输方法包括如下步骤。
步骤1010:用户设备从至少两个上行载波中选择一个上行载波,并在选择的上行载波上发送随机接入前导码至基站。
在一实施例中,用户设备根据基站指示的载波选择门限来选择上行载波。
在一实施例中,在随机接入响应消息中携带用于指示承载所述随机接入响应消息对应的随机接入前导码的上行载波的上行载波标识信息,至于用户设备如何根据载波选择门限或其他方案来选择上行载波,可以通过相关技术中的算法实现,本公开对此并不做限制。
步骤1020:用户设备接收来自基站的随机接入响应消息,其中,随机接入响应消息中包括随机接入响应消息对应的随机接入前导码标识信息以及用于指示承载随机接入响应消息对应的随机接入前导码的上行载波的上行载波标识信息。
在一实施例中,上行载波标识信息为载波索引号(Carrier Index)或载波名称。上行载波标识信息为载波索引号时,占用的比特数更短。
在一实施例中,假设用户设备所在的小区存在2个上行载波:F1和F2,则如图2所示,在生成MAC RAR消息时,引入的Carrier Index的长度可以为1比特(bit),比如F1的载波索引号为0,F2的载波索引号为1。
在另一实施例中,假设用户设备所在的小区存在4个上行载波:F1、F2、F3以及F4,则如图3所示,在生成MAC RAR消息时,引入的Carrier Index的长度可以为2比特,比如F4的载波索引号为3,F3的载波索引号为2,F2的载波索引号为1,F1的载波索引号为0。
在一实施例中,可以通过图2或3中的预留字段(1比特),或者新增加一个字段来指示随机接入响应消息中是否存在载波指示域,比如预留字段或新增加的字段为0意味着没有载波指示域,预留字段或新增加的字段为1意味着有载波指示域。有的小区只有一个上行载波,有的小区存在多个上行载波,UE不确定基站发送的随机接入响应消息中是否携带载波指示域,因此,通过预留字 段或新增加一个字段指示随机接入响应消息中是否包括载波指示域,有助于UE更快地解析接收的消息的内容。
在一实施例中,所述至少一个上行载波为至少两个上行载波,至少两个上行载波包括至少一个辅助的上行(Supplementary Uplink,SUL)载波和至少一个非辅助的上行(non-SUL)载波。
在一实施例中,非辅助的上行载波的载波索引号可以大于辅助的上行载波的载波索引号,也可以小于辅助的上行载波的载波索引号。在一实施例中,非辅助的上行载波的载波索引号小于辅助的上行载波的载波索引号。
在一实施例中,假设用户设备所在的小区存在2个上行载波:SUL载波F1和non-SUL载波F2,则在生成MAC RAR消息时,假设引入的Carrier Index的长度为1比特,则SUL载波F1的载波索引号为1,non-SUL载波F2的载波索引号为0。
步骤1030:用户设备根据所述随机接入前导码标识信息和上行载波标识信息,判断随机接入响应是否为自身发送的随机接入前导码对应的随机接入响应消息。
在一实施例中,当随机接入响应消息中的随机接入前导码标识信息和上行载波标识信息与自身发送的随机接入前导码所对应的随机接入前导码标识信息和自身选择的上行载波的上行载波标识信息均相同时,用户设备判定随机接入响应为自身发送的随机接入前导码对应的随机接入响应消息,并在指示的资源位置上发送消息3(Msg3);当随机接入响应消息中的随机接入前导码标识信息与自身发送的随机接入前导码所对应的随机接入前导码标识信息不一致,或者当随机接入响应消息中的上行载波标识信息与自身选择的上行载波的上行载波标识信息不一致时,用户设备判定所述随机接入响应不是自身发送的随机接入前导码对应的随机接入响应消息。
图4为另一实施例提供的一种消息传输方法的流程示意图。如图4所示,本实施例提供的消息传输方法包括如下步骤。
步骤4010:基站接收来自用户设备的随机接入前导码,获取随机接入前导码对应的随机接入前导码标识信息和承载所述随机接入前导码的上行载波的上行载波标识信息。
在一实施例中,上行载波标识信息为Carrier Index或载波名称。上行载波标识信息为Carrier Index时,占用的比特数更短。
在一实施例中,假设用户设备所在的小区存在2个上行载波:F1和F2,则如图2所示,所述Carrier Index的长度可以为1比特,比如F1的载波索引号为0,F2的载波索引号为1。
在另一实施例中,假设用户设备所在的小区存在4个上行载波:F1、F2、F3和F4,则如图3所示,所述Carrier Index的长度可以为2比特,比如F4的载波索引号为3,F3的载波索引号为2,F2的载波索引号为1,F1的载波索引号为0。
在一实施例中,上行载波包括辅助的上行载波和非辅助的上行载波。
在一实施例中,非辅助的上行载波的载波索引号小于辅助的上行载波的载波索引号。
在一实施例中,假设用户设备所在的小区存在2个上行载波:SUL载波F1和non-SUL载波F2,则在生成MAC RAR消息时,假设引入的Carrier Index的长度为1比特,则SUL载波F1的载波索引号为1,non-SUL载波F2的载波索引号为0。
步骤4020:基站向用户设备发送随机接入响应消息,其中,随机接入响应消息中包括随机接入前导码标识信息以及所述上行载波标识信息。
在一实施例中,可以通过图2或3中的预留字段(1比特),或者新增加一个字段来指示随机接入响应消息是否存在载波指示域,比如预留字段或新增加的字段为0意味着没有载波指示域,预留字段或新增加的字段为1意味着有载波指示域。有的小区只有一个上行载波,有的小区存在多个上行载波,UE不确定基站发送的随机接入响应消息中是否携带载波指示域,因此,通过预留字段或新增加一个字段指示随机接入响应消息中是否包括载波指示域,有助于UE更快地解析接收的消息的内容。
在一实施例中,当用户设备接收到随机接入响应消息后,根据随机接入响应消息中的随机接入前导码标识信息和上行载波标识信息,判断随机接入响应是否为自身发送的随机接入前导码对应的随机接入响应消息。
图5为另一实施例提供的一种消息传输方法的流程示意图。如图5所示,本实施例提供的消息传输方法包括如下步骤。
步骤5010:目标基站接收用户设备所属的原基站的切换请求消息,从至少两个上行载波中选择上行载波,并在所述上行载波上选择专用RACH资源。
用户设备所属的原基站根据邻区的下行测量结果选择目标基站,在选择好 目标基站之后,将切换请求消息传递给目标基站。如果目标基站存在多个上行载波,那么在收到切换请求消息后,需要选择上行载波。目标基站选择上行载波时,可以通过比较原基站传递过来的下行测量结果和预设的门限值的大小来选择,也可以根据载波的接入可靠性来选择;另外,也可以根据目标基站测量的原基站的上行信号来选择合适的上行载波。
步骤5020:目标基站将选择的上行载波的上行载波标识信息及专用RACH资源发送至原基站。
在一实施例中,目标基站通过X2、eX2或Xn接口,将选择的上行载波的上行载波标识信息及专用RACH资源发送至原基站。
在一实施例中,上行载波标识信息为Carrier Index或载波名称。上行载波标识信息为Carrier Index时,占用的比特数更短。
在一实施例中,假设用户设备所在的小区存在2个上行载波:F1和F2,则在生成切换确认消息时,引入的Carrier Index的长度可以为1比特,比如F1的载波索引号为0,F2的载波索引号为1。
在另一实施例中,假设用户设备所在的小区存在4个上行载波:F1、F2、F3以及F4,则在生成切换确认消息时,引入的Carrier Index的长度可以为2比特,比如F4的载波索引号为3,F3的载波索引号为2,F2的载波索引号为1,F1的载波索引号为0。
在一实施例中,由于MAC RAR消息有具体的格式,且如图2和图3所示,RAR消息中存在1个预留字段,可以通过预留字段指示MAC RAR消息中是否存在载波指示域。对于切换过程,在切换确认消息添加载波carrier索引的字段,定义为可选的(Optional)的即可。
在一实施例中,上行载波包括SUL载波和non-SUL载波。
在一实施例中,non-SUL载波的载波索引号小于SUL载波的载波索引号。
在一实施例中,假设用户设备所在的小区存在2个上行载波:SUL载波F1和non-SUL载波F2,则在生成切换确认消息时,假设引入的Carrier Index的长度为1比特,则SUL载波F1的载波索引号为1,non-SUL载波F2的载波索引号为0。
图6为另一实施例提供的一种消息传输方法的流程示意图。如图6所示,本实施例提供的消息传输方法包括如下步骤。
步骤6010:原基站发送切换请求消息至目标基站。
在一实施例中,用户设备所属的原基站根据邻区的下行测量结果选择目标基站,在选择好目标基站之后,将切换请求消息传递给目标基站。
步骤6020:原基站接收来自目标基站的上行载波标识信息及专用RACH资源。
在一实施例中,原基站通过X2、eX2或Xn接口,接收来自目标基站的上行载波标识信息及专用RACH资源。
在一实施例中,上行载波标识信息为Carrier Index或载波名称。上行载波标识信息为Carrier Index时,占用的比特数更短。
在一实施例中,假设用户设备所在的小区存在2个上行载波:F1和F2,则如图2所示,在生成切换确认消息时,引入的Carrier Index的长度可以为1比特,比如F1的载波索引号为0,F2的载波索引号为1。
在另一实施例中,假设用户设备所在的小区存在4个上行载波:F1、F2、F3和F4,则在生成切换确认消息时,引入的Carrier Index的长度可以为2比特,比如F4的载波索引号为3,F3的载波索引号为2,F2的载波索引号为1,F1的载波索引号为0。
在一实施例中,上行载波包括SUL载波和non-SUL载波。
在一实施例中,non-SUL载波的载波索引号小于SUL载波的载波索引号。
在一实施例中,假设用户设备所在的小区存在2个上行载波:SUL载波F1和non-SUL载波F2,则在生成切换确认消息时,假设引入的Carrier Index的长度为1比特,则SUL载波F1的载波索引号为1,non-SUL载波F2的载波索引号为0。
步骤6030:原基站将接收的上行载波标识信息及专用RACH资源发送至用户设备。
在一实施例中,用户设备接收到上行载波标识信息及专用RACH资源后,在选择的上行载波上发送专用RACH资源中包含的专用Preamble码至目标基站。
在一实施例中,原基站通过无线资源控制消息将接收的上行载波标识信息及专用RACH资源发送至所述用户设备。
图7为另一实施例提供的一种消息传输方法的流程示意图。如图7所示,本实施例提供的消息传输方法包括以下步骤。
步骤7010:用户设备接收来自用户设备所属的原基站的上行载波标识信息及专用RACH资源,其中,所述专用RACH资源包含专用随机接入前导码。
在一实施例中,原基站的上行载波标识信息及专用RACH资源承载在无线资源控制消息中。
在一实施例中,上行载波标识信息为Carrier Index或载波名称。上行载波标识信息为Carrier Index时,占用的比特数更短。
在一实施例中,假设用户设备所在的小区存在2个上行载波:F1和F2,则在无线资源控制消息中引入的Carrier Index的长度可以为1比特,比如F1的载波索引号为0,F2的载波索引号为1。
在另一实施例中,假设用户设备所在的小区存在4个上行载波:F1、F2、F3以及F4,则在无线资源控制消息中引入的Carrier Index的长度可以为2比特,比如F4的载波索引号为3,F3的载波索引号为2,F2的载波索引号为1,F1的载波索引号为0。
在一实施例中,上行载波包括SUL载波和non-SUL载波。
在一实施例中,non-SUL载波的载波索引号小于SUL载波的载波索引号。
在一实施例中,假设用户设备所在的小区存在2个上行载波:SUL载波F1和non-SUL载波F2,在切换确认消息中假设引入的Carrier Index的长度为1比特,则SUL载波的F1载波索引号为1,non-SUL的F2载波索引号为0。
步骤7020:用户设备在上行载波标识信息指示的上行载波上发送专用随机接入前导码至目标基站。
在一实施例中,目标基站收到专用随机接入前导码后,生成MAC RAR消息,并发送给用户设备。
本实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的消息传输方法。
图8为一实施例提供的一种用户设备的结构示意图。如图8所示,本实施例提供的用户设备,包括第一发送模块801、第一接收模块802和判断模块803。
在一实施例中:第一发送模块801,设置为从至少两个上行载波中选择一个上行载波,并在选择的上行载波上发送随机接入前导码至基站,将发送的随机接入前导码对应的随机接入前导码标识信息和选择的上行载波对应的上行载波标识信息输出至判断模块803;第一接收模块802,设置为接收来自基站的随机接入响应消息,其中,所述随机接入响应消息中包括随机接入响应消息对应的随机接入前导码标识信息以及用于指示承载随机接入响应消息对应的随机接入 前导码的上行载波的上行载波标识信息,将接收到的随机接入前导码标识信息和上行载波标识信息输出至判断模块803;判断模块803,设置为接收第一发送模块801输出的随机接入前导码标识信息和上行载波标识信息和第一接收模块802输出的随机接入前导码标识信息和上行载波标识信息,根据接收到的随机接入前导码标识信息和上行载波标识信息,判断随机接入响应是否为第一发送模块801发送的随机接入前导码对应的随机接入响应消息。
在一实施例中,第一发送模块801是设置为根据基站指示的载波选择门限来选择上行载波。
在一实施例中,在随机接入响应消息中携带用于指示承载所述随机接入响应消息对应的随机接入前导码的上行载波的上行载波标识信息,至于第一发送模块801是设置为如何根据载波选择门限或其他方案来选择上行载波,可以通过相关技术中的算法实现,本公开对此并不做限制。
在一实施例中,上行载波标识信息为载波索引号(Carrier Index)或载波名称。上行载波标识信息为Carrier Index时,占用的比特数更短。
在一实施例中,至少两个上行载波包括至少一个辅助的上行(Supplementary Uplink,SUL)载波和至少一个非辅助的上行(non-SUL)载波。
在一实施例中,每个非辅助的上行载波的载波索引号小于每个辅助的上行载波的载波索引号。
在一实施例中,假设用户设备所在的小区存在2个上行载波:SUL载波F1和non-SUL载波F2,则在生成MAC RAR消息时,假设引入的Carrier Index的长度为1比特,则F1的载波索引号为1,F2的载波索引号为0。
图9为一实施例提供的一种基站的结构示意图。如图9所示,本实施例提供的基站包括第二接收模块901和第二发送模块902。
在一实施例中,第二接收模块901,设置为接收来自用户设备的随机接入前导码,获取随机接入前导码对应的随机接入前导码标识信息和承载随机接入前导码的上行载波的上行载波标识信息,并将随机接入前导码标识信息和上行载波标识信息输出至第二发送模块902;第二发送模块902,设置为接收第二接收模块901输出的随机接入前导码标识信息和上行载波标识信息,向用户设备发送随机接入响应消息,其中,随机接入响应消息中包括所述随机接入前导码标识信息以及所述上行载波标识信息。
在一实施例中,上行载波标识信息为Carrier Index或载波名称。上行载波标 识信息为Carrier Index时,占用的比特数更短。
在一实施例中,上行载波包括辅助的上行载波和非辅助的上行载波。
在一实施例中,非辅助的上行载波的载波索引号小于辅助的上行载波的载波索引号。
图10为另一实施例提供的一种基站的结构示意图。如图10所示,本实施例提供的基站,作为执行终端切换的目标基站,本实施例提供的基站包括第三接收模块1001和第三发送模块1002。
在一实施例中,第三接收模块1001,设置为接收用户设备所属的原基站的切换请求消息,从至少两个上行载波中选择一个上行载波,并在选择的所述上行载波上选择专用RACH资源,将选择的上行载波的上行载波标识信息及专用RACH资源输出至第三发送模块1002;第三发送模块1002,设置为接收第三接收模块1001输出的上行载波标识信息及专用RACH资源,将所述上行载波标识信息及专用RACH资源发送至用户设备所属的原基站。
在一实施例中,用户设备所属的原基站根据邻区的下行测量结果选择目标基站,在选择好目标基站之后,将切换请求消息传递给目标基站。如果目标基站存在多个上行载波,那么在收到切换请求消息后,需要选择上行载波。目标基站选择上行载波时,可以根据比较原基站传递过来的下行测量结果和预设的门限值的大小来选择,也可以根据载波的接入可靠性来选择;另外,也可以根据目标基站测量的原基站的上行信号来选择合适的上行载波。
在一实施例中,目标基站通过X2、eX2或Xn接口,将选择的上行载波的上行载波标识信息及专用RACH资源发送至原基站。
在一实施例中,上行载波标识信息为Carrier Index或载波名称。上行载波标识信息为Carrier Index时,占用的比特数更短。
在一实施例中,至少两个上行载波包括至少一个SUL载波和至少一个non-SUL载波。
在一实施例中,每个non-SUL载波的载波索引号小于每个SUL载波的载波索引号。
图11为另一实施例提供的一种基站的结构示意图。如图11所示,本实施例提供的基站,作为执行终端切换的原基站,本实施例提供的基站包括第四发送模块1101和第四接收模块1102。
在一实施例中,第四发送模块1101,设置为当判断出所述用户设备需要切 换时,发送切换请求消息至目标基站;接收第四接收模块1102输出的上行载波标识信息及专用RACH资源,将所述上行载波标识信息及专用RACH资源发送至用户设备;第四接收模块1102,设置为接收来自目标基站的上行载波标识信息及专用RACH资源,将所述上行载波标识信息及专用RACH资源输出至第四发送模块1101。
在一实施例中,第四发送模块1101是设置为根据邻区的下行测量结果选择目标基站,在选择好目标基站之后,将切换请求消息传递给目标基站。
在一实施例中,第四接收模块1102是设置为通过X2、eX2或Xn接口,接收来自目标基站的上行载波标识信息及专用RACH资源。
在一实施例中,上行载波标识信息为Carrier Index或载波名称。上行载波标识信息为Carrier Index时,占用的比特数更短。
在一实施例中,上行载波包括SUL载波和non-SUL载波。
在一实施例中,non-SUL载波的载波索引号小于SUL载波的载波索引号。
在一实施例中,第四发送模块1101是设置为通过无线资源控制消息将接收的上行载波标识信息及专用RACH资源发送至所述用户设备。
图12为另一实施例提供的一种用户设备的结构示意图。如图12所示,本实施例提供的用户设备包括第五接收模块1201和第五发送模块1202。
在一实施例中,第五接收模块1201,设置为接收来自用户设备所属的原基站的上行载波标识信息及专用RACH资源,其中,所述专用RACH资源包含专用随机接入前导码,将所述上行载波标识信息及专用RACH资源发送至第五发送模块1202;第五发送模块1202,设置为接收第五接收模块1201输出的上行载波标识信息及专用RACH资源,在上行载波标识信息指示的上行载波上发送专用随机接入前导码至目标基站。
在一实施例中,原基站的上行载波标识信息及专用RACH资源承载在无线资源控制消息中。
在一实施例中,上行载波标识信息为Carrier Index或载波名称。上行载波标识信息为Carrier Index时,占用的比特数更短。
在一实施例中,上行载波包括SUL载波和non-SUL载波。
在一实施例中,non-SUL载波的载波索引号小于SUL载波的载波索引号。
本公开还提供了以下几个实施例对本公开进行进一步解释,以下实施例只是为了更好的描述本发明,并不构成对本公开不当的限定。
对于存在多个上行载波的场景的随机接入过程,根据LTE系统中RA-RNTI的计算方案,并且MAC RAR消息内容仅包含TAC、UL Grant和Temporary C-RNTI,当同一个小区不同UE选择的不同载波在相同的时域位置,选择的不同载波相对应的频域位置也相同,并发送的Preamble码也相同时,UE无法区分MAC RAR,而会导致随机接入失败。为了解决这个问题,可以考虑在MAC RAR消息添加Carrier Index来区分不同载波。
对于切换,目标小区存在多个上行载波的场景,由于目标基站仅指示专用RACH资源,这样UE选择的载波可能与目标基站选择的载波不一致而造成随机接入失败,也就是切换失败。为了解决这个问题,可以考虑目标基站除了指示专用RACH资源,还需要指示Carrier Index。
基站可以通过系统消息或者RRC消息中的公共配置消息来给UE配置多个上行载波,并且每个上行载波有自己对应的上行配置,比如RACH公共配置(Common Configuration)、PRACH资源配置(Resource Configuration)和UL功率控制(Power Control)公共配置等。假如基站配置2个上行载波F1和F2,一个下行载波F3,其中F2和F3为成对或非成对载波。UE1根据载波选择门限或其他方案选择上行载波F1;UE2根据载波选择门限或其他方案选择上行载波F2。
这里,UE1选择的时域位置与UE2相同,并且选择了相对应的频域资源位置,发送了相同的Preamble码。基站收到UE1的Preamble码和UE2的Preamble码后,如果按照LTE系统中RA-RNTI的计算方案,那么2个UE的RA-RNTI计算结果是相同,在生成MAC RAR,除了TAC、UL Grant和Temporary C-RNTI,还需要包含一个字段,比如Carrier Index,用于区分不同载波的MAC RAR,两个UE的MAC RAR复用在一起,通过同一个下行资源发给UE。
在一实施例中,增加的字段Carrier Index用来指示哪个载波的MAC RAR,比如UE1使用的上行载波F1,基站在MAC RAR中可以添加F1的Carrier Index;UE2使用的上行载波F2,基站在MAC RAR中添加F2的Carrier Index。
当UE1收到MAC RAR后,首先解析随机接入前导码标识(Random Access Preamble IDentitfier,RAPID),由于UE1的RAPID和UE2的RAPID相同,因此,还不能判断是不是属于本UE1的MAC RAR。UE1继续解析MAC RAR,如果发现MAC RAR中包含载波指示字段,并且指示了载波F1,那么UE1认为MAC RAR接收成功。UE1在指示的资源位置上发送Msg3即可;对于UE2,解 析RAPID,同样,继续解析MAC RAR,如果MAC RAR中有载波指示域,并且载波指示域指示载波F2,则认为MAC RAR接收成功,在指示的资源位置上发送Msg3。
对于存在多个上行载波的随机接入过程,如果在MAC RAR消息中指示载波,那么UE在接收到后,在RAPID相同的情况下,能根据MAC RAR中的载波来判断MAC RAR是否是属于本UE的MAC RAR,如果判定MAC RAR是属于本UE的MAC RAR,则在指示的载波上发送Msg3,能够提高随机接入成功率。
对于切换过程,原基站根据邻区的下行测量结果选择目标基站。在选择好目标基站之后,将切换请求消息传递给目标基站。如果目标基站存在多个上行载波,那么在收到切换请求后,需要选择上行传输载波。
在一实施例中,上行载波选择方案可以根据原基站传递过来的下行测量结果和门限值的比较结果来选择,也可以根据载波的接入可靠性来选择;另外,也可以根据目标基站测量的原基站的上行信号来选择合适的接入载波。
在目标基站选择好接入载波后,在接入载波上选择专用RACH资源,选择好后,将专用RACH资源和选择的载波一起传递给原基站,原基站再将专用RACH资源和选择的载波通过RRC消息配置给UE。
UE接收到后,根据原基站的配置,在指示的载波上发送专用的Preamble码。
对于切换目标小区存在多个上行载波的情况,如果指示发送专用preamble码的载波,那么也会提高切换成功率。
实施例1(一个小区存在2个上行载波F1和F2,1个下行载波F3,F2和F3为成对或非成对载波;UE支持2个载波;初始接入和重建)
基站通过系统消息广播2个上行载波F1和F2,一个下行载波F3,F2和F3为成对或非成对载波。对于2个上行载波F1和F2,广播不同的上行资源,比如RACH公共配置(Common Configuration)、PRACH资源配置(Resource Configuration)和UL功率控制(Power Control)公共配置等。
当触发了初始接入或由于重建而触发的随机接入过程时,需要进行以下的处理步骤。
步骤1,UE根据载波选择原则来选择一个上行载波接入,并在选择的上行载波上发送Preamble码。
步骤2,基站收到Peamble码后,由于本小区存在2个上行载波,因此在生成MAC RAR消息时,需要引入Carrier Index,比如F1的Carrier index为1,F2Carrier index为0,需要增加一个bit来指示,如附图2所示。附图2中载波索引号字段用于指示上行载波索引号(Carrier Index,CI),填充(Padding)字段不代表任何有用信息,仅作填充。
步骤3,UE收到来自基站的MAC RAR消息,可以按照附图2中的格式来解析,如果解析出来的Carrier Index与发送Preamble码的上行载波的Carrier Index一致,那么认为接收的MAC RAR是发送给该UE的MAC RAR消息,即MAC RAR接收成功。
实施例2(一个小区存在多个上行载波F1、F2和F3等,有的上行载波存在对应的下行载波,有的上行载波不存在对应的下行载波;UE支持所有的上行载波或2个以上的上行载波;初始接入和重建)
基站通过系统消息广播多个上行载波,对于每个上行载波,广播不同的上行资源,比如RACH Common Configuration、PRACH Resource Configuration和UL Power Control Common Configuration等。当触发了初始接入或由于重建而触发的随机接入过程时,需要进行以下的处理步骤。
步骤1,UE在支持的上行载波上,根据载波选择原则选择上行载波,在选择的上行载波上发送Preamble码。
步骤2,基站收到Preamble码后,由于本小区存在多个上行载波,所以在生成MAC RAR消息时,需要引入Carrier Index。比如,当前基站配置4个上行载波,那么可以增加2bit来指示Carrier Index。如附图3所示,以增加2bit字段为例,给出一个MAC RAR的结构示意图。在一实施例中,载波索引号字段用于指示上行载波索引号(Carrier Index,CI),填充(Padding)字段不代表任何有用信息,仅作填充。
步骤3,UE收到来自基站的MAC RAR消息,可以按照附图3的MAC RAR格式来进行解析。如果解析的Carrier Index与发送Preamble码的上行载波的Carrier Index一致,那么认为MAC RAR接收成功。
实施例3(一个小区存在2个上行载波F1和F2,1个下行载波F3,F2和F3为成对或非成对载波;UE支持2个载波;连接状态下的随机接入过程)
基站配置了2个上行载波F1和F2,一个下行载波F3,F2和F3为成对或非成对载波。2个上行载波F1和F2,都有各自的公共配置,比如RACH Common  Configuration、PRACH Resource Configuration和UL Power Control Common Configuration等。当发生了上行失步,有上行或下行数据需要发送时,会触发随机接入过程;或者,当进行切换时,由于没有专用Preamble码而触发竞争的随机接入过程。
对于触发的随机接入过程,进行以下的处理步骤。
步骤1,如果随机接入之前,UE使用2个上行载波进行上行传输,那么在进行随机接入之前,需要根据载波选择原则来选择一个上行载波接入,并在选择的上行载波上发送Preamble码。如果随机接入触发之前,UE仅使用一个上行载波进行上行传输,那么UE可以选择在该上行载波发送Preamble码。或者对于切换过程,UE需要根据公共配置的载波来进行载波选择。
步骤2,基站收到Preamble码后,由于本小区存在2个上行载波,所以在生成MAC RAR消息时,需要引入Carrier Index。比如可以采用附图2中的MAC RAR格式。在生成MAC RAR消息后,基站发送给UE。
步骤3,UE收到来自基站的MAC RAR消息,可以按照附图2中的MAC RAR格式进行解析。如果按照附图2中的格式来解析出来的Carrier Index与发送Preamble码的上行载波的Carrier Index一致,那么认为MAC RAR接收成功。
实施例4(一个小区存在多个上行载波F1、F2和F3等,有的上行载波存在对应的下行载波,有的行载波不存在对应的下行载波;UE支持支持所有的上行载波或2个以上的上行载波)
基站配置了多个上行载波,每个上行载波都有不同的公共配置,比如RACH Common Configuration、PRACH Resource Configuration和UL Power Control Common Configuration等。当发生了上行失步,有上行或下行数据需要发送时,会触发随机接入过程。或者当进行切换时,由于没有专用Preamble码而触发的随机接入过程。
对于触发的随机接入过程,进行以下的处理步骤。
步骤1,如果随机接入之前,UE使用多个上行载波进行上行传输,那么在进行随机接入之前,需要根据载波选择原则来选择一个上行载波接入,并在选择的上行载波发送Preamble码。如果随机接入触发之前,UE仅使用一个上行载波进行上行传输,那么UE可以选择在该上行载波发送Preamble码。或者对于切换过程,UE需要根据公共配置的载波来进行载波选择。
步骤2,基站收到Preamble码后,由于本小区存在多个上行载波,所以在 生成MAC RAR消息时,需要引入Carrier Index。比如存在4个上行载波,可以采用附图3中的MAC RAR格式。在生成MAC RAR消息后,基站发送给UE。
步骤3,UE收到来自基站的MAC RAR消息,可以按照附图3中的MAC RAR格式来进行解析。如果解析出来的Carrier Index与发送Preamble码的上行载波的Carrier Index一致,那么认为MAC RAR接收成功。
实施例5(一个小区存在2个上行载波:如SUL载波和non-SUL载波)
基站配置了2个上行载波:SUL载波和non-SUL载波,2个上行载波都有各自的公共配置,比如RACH Common Configuration、PRACH Resource Configuration和UL Power Control Common Configuration等。UE支持SUL载波的特性,并且支持SUL载波和普通(Normal)载波的波段组合(Band Combination)。
当触发初始接入或由于重建而触发的随机接入过程时,进行以下处理步骤。
步骤1,UE根据载波选择门限来进行载波选择,并在选择的上行载波上发送Preamble码。
步骤2,基站收到Preamble码后,由于本小区存在SUL载波和non-SUL载波,所以在生成MAC RAR消息时,需要引入Carrier Index,比如0指示为non-SUL载波,1指示为SUL载波。比如可以采用附图2中的MAC RAR格式。在生成MAC RAR消息后,基站发送给UE。
步骤3,UE收到来自基站的MAC RAR消息,可以按照附图2中的MAC RAR格式进行解析。如果按照附图2中的格式来解析的Carrier Index与发送Preamble码的上行载波的Carrier Index一致,那么认为MAC RAR接收成功。
实施例6(一个小区存在多个上行载波,比如多个SUL载波和多个non-SUL载波)
基站配置了多个上行载波,比如配置了多个SUL载波和多个non-SUL载波,多个上行载波都有不同的公共配置,比如RACH Common Configuration、PRACH Resource Configuration和UL Power Control Common Configuration等。UE支持SUL的特性,并且支持SUL载波和Normal载波的Band Combination。当触发初始接入或由于重建而触发的随机接入过程时,进行以下处理步骤。
步骤1,UE根据载波选择门限来进行载波选择,并在选择的上行载波上发送Preamble码。
步骤2,基站收到Preamble码后,由于本小区存在多个上行载波,所以在生成MAC RAR消息时,需要引入Carrier Index,比如多个non-SUL载波的Carrier  index从0进行排序,最后为SUL的Carrier index。另外,还需要一个指示Carrier Index是否存在的字段。比如存在4个上行载波时,可以采用附图3中的MAC RAR格式。在生成MAC RAR消息后,基站发送给UE。
步骤3,UE收到来自基站的MAC RAR消息,可以按照附图3中的MAC RAR格式来进行解析。如果按照附图3中的格式解析的Carrier Index与发送Preamble码的上行载波的Carrier Index一致,那么认为MAC RAR接收成功。
实施例7(一个小区存在2个上行载波:例如SUL载波和non-SUL载波;UE支持2个载波;连接状态下的随机接入过程)
基站配置了2个上行载波:SUL载波和non-SUL载波,2个上行载波都有各自的公共配置,比如RACH Common Configuration、PRACH Resource Configuration和UL Power Control Common Configuration等。UE支持SUL载波的特性,并且支持SUL载波和Normal载波的Band Combination。当发生了上行失步,有上行或下行数据需要发送时,会触发随机接入过程,或者,当进行切换时,由于没有专用Preamble码而触发的随机接入过程。
对于触发的随机接入过程,进行以下的处理步骤。
步骤1,如果随机接入之前,UE使用2个上行载波进行上行传输,那么在进行随机接入之前,需要根据载波选择原则来选择一个上行载波接入,并在选择的载波上发送Preamble码。如果随机接入触发之前,UE仅使用一个载波进行上行传输,那么UE可以选择在该上行载波发送Preamble码。对于切换过程,UE需要根据公共配置的载波来进行载波选择,并在选择的载波上发送Preamble码。
步骤2,基站收到Preamble码后,由于本小区存在SUL载波和non-SUL载波,所以在生成MAC RAR消息时,需要引入Carrier Index,比如0指示为non-SUL载波,1指示为SUL载波。比如可以采用附图2的MAC RAR格式。在生成MAC RAR消息后,基站发送给UE。
步骤3,UE收到来自基站的MAC RAR消息,可以按照附图2中的MAC RAR格式进行解析。如果按照附图2中的格式来解析的Carrier Index与发送Preamble码的载波的Carrier Index一致,那么认为MAC RAR接收成功。
实施例8(一个小区存在多个上行载波,比如1个SUL载波和多个non-SUL载波或者多个SUL载波和多个non-SUL载波)
基站配置了多个上行载波,比如配置了1个SUL载波和多个non-SUL载波, 多个上行载波都有不同的公共配置,比如RACH Common Configuration、PRACH Resource Configuration和UL Power Control Common Configuration等。UE支持SUL载波的特性,并且支持SUL载波和Normal载波的Band Combination。当发生了上行失步,有上行或下行数据需要发送时,会触发随机接入过程。或者当进行切换时,由于没有专用Preamble码而触发的随机接入过程。
对于触发的随机接入过程,进行以下的处理步骤。
步骤1,如果随机接入之前,UE使用多个上行载波进行上行传输,那么在进行随机接入之前,需要根据载波选择原则来选择一个上行载波接入,并在选择的载波上发送Preamble码。如果随机接入触发之前,UE仅使用一个载波进行上行传输,那么UE可以选择在该上行载波上发送Preamble码。或者对于切换过程,UE需要根据公共配置的载波来进行载波选择。
步骤2,基站收到Preamble码后,由于本小区存在多个上行载波,所以在生成MAC RAR消息时,需要引入Carrier Index,比如多个non-SUL载波的Carrier Index从0进行排序,最后为SUL载波的Carrier index。比如存在4个上行载波时,可以采用附图3的MAC RAR格式。在生成MAC RAR消息后,基站发送给UE。
步骤3,UE收到来自基站的MAC RAR消息,可以按照附图3中的MAC RAR格式来进行解析。如果解析出来的Carrier Index与发送Preamble码的上行载波的Carrier Index一致,那么认为MAC RAR接收成功。
实施例9(目标小区存在2个上行载波,切换过程)
原基站根据下行测量结果选择目标基站,并且将切换请求发送给目标基站。如果目标基站存在2个上行载波,比如SUL载波和non-SUL载波,并且根据UE的能力,该UE支持目标基站的SUL载波的特性,支持SUL载波和Normal载波的Band Combination,那么目标基站根据某些原则来选择合适的载波,并在该载波上选择专用Preamble码和专用PRACH资源。
目标基站将选择的载波和选择的载波上专用RACH资源通过X2/eX2/Xn接口传递给原基站。原基站接收到后,将目标基站选择的载波和专用RACH资源发送给UE。
UE接收到后在选择的载波上发送专用Preamble码至目标基站。
目标基站收到Preamble码后,由于本小区存在SUL载波和non-SUL载波,所以在生成MAC RAR消息时,需要引入Carrier Index,比如0指示为non-SUL载波,1指示为SUL载波。比如可以采用附图2的MAC RAR格式。在生成MAC  RAR消息后,目标基站发送给UE。
UE收到来自目标基站的MAC RAR消息,可以按照附图2中的MAC RAR格式进行解析。如果按照附图2解析的Carrier Index与发送Preamble码的载波的Carrier Index一致,那么认为MAC RAR接收成功。
实施例10(目标小区存在多个上行载波)
原基站根据下行测量结果选择目标基站,并且将切换请求发送给目标基站。如果目标基站存在多个上行载波,比如多个SUL载波和多个non-SUL载波,并且根据UE的能力,该UE支持部分SUL载波的特性,并且支持这部分SUL载波和Normal载波的Band Combination;或者UE支持全部的SUL载波的特性,并且支持所有SUL载波和Normal载波的Band Combination。那么基站在支持的载波里根据某些原则来选择合适的载波,并在该载波上选择专用Preamble码和专用PRACH资源。
目标基站将选择的载波和选择的载波上专用RACH资源通过X2/eX2/Xn接口传递给原基站。原基站接收到后,将目标基站选择的载波和专用RACH资源发送给UE。
UE接收到后在选择的载波上发送专用Preamble码至目标基站。
目标基站收到Preamble码后,由于本小区存在多个上行载波,所以在生成MAC RAR消息时,需要引入Carrier Index,比如多个non-SUL的Carrier Index从0进行排序,最后为SUL载波的Carrier index。另外,还需要一个指示Carrier Index是否存在的字段。比如存在4个上行载波时,可以采用附图3的MAC RAR格式。在生成MAC RAR消息后,基站发送给UE。
UE收到来自目标基站的MAC RAR消息,可以按照附图3中的MAC RAR格式来进行解析。如果按照附图3中的格式解析的Carrier Index与发送Preamble码的载波的Carrier Index一致,那么认为MAC RAR接收成功。
每个实施例仅仅是本公开的实施方式,并不用于限定本公开的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。在一实施例中,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现,上述实施例中的多个模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本公开不限制于任何特定形式的硬件和软件的结合。

Claims (15)

  1. 一种消息传输方法,包括:
    用户设备从至少两个上行载波中选择一个上行载波,并在选择的所述上行载波上发送随机接入前导码至基站;
    所述用户设备接收来自所述基站的随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入响应消息对应的随机接入前导码标识信息以及用于指示承载所述随机接入响应消息对应的随机接入前导码的上行载波的上行载波标识信息;
    所述用户设备根据所述随机接入前导码标识信息和所述上行载波标识信息,判断所述随机接入响应消息是否为所述用户设备自身发送的所述随机接入前导码对应的随机接入响应消息。
  2. 根据权利要求1所述的消息传输方法,其中,所述上行载波标识信息为载波索引号或载波名称。
  3. 根据权利要求2所述的消息传输方法,其中,所述至少两个上行载波包括至少一个辅助的上行载波和至少一个非辅助的上行载波。
  4. 根据权利要求3所述的消息传输方法,其中,每个所述非辅助的上行载波的载波索引号小于每个所述辅助的上行载波的载波索引号。
  5. 根据权利要求1-4任一项所述的消息传输方法,其中,所述用户设备从至少两个上行载波中选择一个上行载波包括:
    所述用户设备根据所述基站指示的载波选择门限从至少两个上行载波中选择一个上行载波。
  6. 一种消息传输方法,包括:
    基站接收来自用户设备的随机接入前导码,获取所述随机接入前导码对应的随机接入前导码标识信息和承载所述随机接入前导码的上行载波的上行载波标识信息;
    所述基站向所述用户设备发送随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入前导码标识信息以及所述上行载波标识信息。
  7. 一种消息传输方法,包括:
    目标基站接收用户设备所属的原基站的切换请求消息,从至少两个上行载波中选择一个上行载波,并在选择的所述上行载波上选择专用随机接入信道资源;
    所述目标基站将选择的所述上行载波的上行载波标识信息及所述专用随机 接入信道资源发送至所述原基站。
  8. 一种消息传输方法,包括:
    原基站发送切换请求消息至目标基站;
    所述原基站接收来自所述目标基站的上行载波标识信息及专用随机接入信道资源;
    所述原基站将接收的所述上行载波标识信息及所述专用随机接入信道资源发送至用户设备。
  9. 一种消息传输方法,包括:
    用户设备接收来自所述用户设备所属的原基站的上行载波标识信息及专用随机接入信道资源,其中,所述专用随机接入信道资源包含专用随机接入前导码;
    所述用户设备在所述上行载波标识信息指示的上行载波上发送所述专用随机接入前导码至所述目标基站。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1至9中任一项所述的消息传输方法。
  11. 一种用户设备,包括发送模块、接收模块和判断模块,其中,
    所述发送模块,设置为从至少两个上行载波中选择一个上行载波,并在选择的所述上行载波上发送随机接入前导码至基站;
    所述接收模块,设置为接收来自所述基站的随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入响应消息对应的随机接入前导码标识信息以及用于指示承载所述随机接入响应消息对应的随机接入前导码的上行载波的上行载波标识信息,将接收到的所述随机接入前导码标识信息和上行载波标识信息输出至所述判断模块;
    所述判断模块,设置为接收所述接收模块输出的所述随机接入前导码标识信息和所述上行载波标识信息,根据所述随机接入前导码标识信息和所述上行载波标识信息,判断所述随机接入响应是否为所述发送模块发送的所述随机接入前导码对应的随机接入响应消息。
  12. 一种基站,包括接收模块和发送模块,其中,
    所述接收模块,设置为接收来自用户设备的随机接入前导码,获取所述随机接入前导码对应的随机接入前导码标识信息和承载所述随机接入前导码的上 行载波的上行载波标识信息,并将所述随机接入前导码标识信息和所述上行载波标识信息输出至所述发送模块;
    所述发送模块,设置为接收所述接收模块输出的所述随机接入前导码标识信息和所述上行载波标识信息,向所述用户设备发送随机接入响应消息,其中,所述随机接入响应消息中包括所述随机接入前导码标识信息以及所述上行载波标识信息。
  13. 一种基站,作为用户设备切换的目标基站,包括接收模块和发送模块,其中,
    所述接收模块,设置为接收用户设备所属的原基站的切换请求消息,从至少两个上行载波中选择一个上行载波,并在选择的所述上行载波上选择专用随机接入信道资源,将选择的所述上行载波的上行载波标识信息及所述专用随机接入信道资源输出至所述发送模块;
    所述发送模块,设置为接收所述接收模块输出的所述上行载波标识信息及所述专用随机接入信道资源,并将所述上行载波标识信息及所述专用随机接入信道资源发送至所述用户设备所属的原基站。
  14. 一种基站,作为用户设备的原基站,包括发送模块和接收模块,其中,
    所述发送模块,设置为当判断出所述用户设备需要切换时,发送切换请求消息至目标基站;接收所述接收模块输出的上行载波标识信息及专用随机接入信道资源,将所述上行载波标识信息及所述专用随机接入信道资源发送至所述用户设备;
    所述接收模块,设置为接收来自所述目标基站的所述上行载波标识信息及所述专用随机接入信道资源,并将所述上行载波标识信息及所述专用随机接入信道资源输出至所述发送模块。
  15. 一种用户设备,包括接收模块和发送模块,其中,
    所述接收模块,设置为接收来自用户设备所属的原基站的上行载波标识信息及专用随机接入信道资源,将所述上行载波标识信息及所述专用随机接入信道资源发送至所述发送模块,其中,所述专用随机接入信道资源包含专用随机接入前导码;
    所述发送模块,设置为接收所述接收模块输出的所述上行载波标识信息及所述专用随机接入信道资源,在所述上行载波标识信息指示的上行载波上,发送所述专用随机接入前导码至目标基站。
PCT/CN2018/116116 2017-11-17 2018-11-19 消息传输方法、用户设备、基站及计算机可读存储介质 WO2019096293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148128.2A CN109803340B (zh) 2017-11-17 2017-11-17 消息传输方法、用户设备、基站及计算机可读存储介质
CN201711148128.2 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019096293A1 true WO2019096293A1 (zh) 2019-05-23

Family

ID=66538920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116116 WO2019096293A1 (zh) 2017-11-17 2018-11-19 消息传输方法、用户设备、基站及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN109803340B (zh)
WO (1) WO2019096293A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886918B (zh) * 2018-03-19 2023-03-24 华为技术有限公司 一种随机接入方法及装置
WO2021068172A1 (zh) * 2019-10-10 2021-04-15 Oppo广东移动通信有限公司 一种随机接入方法、电子设备及存储介质
CN113973372A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 一种信息发送和接收方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883398A (zh) * 2009-05-07 2010-11-10 大唐移动通信设备有限公司 一种确定上行载波资源的方法、装置和系统
CN101998577A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 随机接入前导码的发送方法、系统及设备
CN102006633A (zh) * 2009-09-02 2011-04-06 大唐移动通信设备有限公司 一种信息指示方法、系统及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969697B (zh) * 2009-07-28 2013-08-07 华为技术有限公司 用户设备上行随机接入基站的方法及系统、基站和用户设备
CN104486826B (zh) * 2010-08-13 2018-12-04 索尼公司 关于激活和去激活终端的副小区的通信方法及电子装置
US20130259008A1 (en) * 2012-04-01 2013-10-03 Esmael Hejazi Dinan Random Access Response Process in a Wireless Communications
KR20170084026A (ko) * 2014-11-06 2017-07-19 가부시키가이샤 엔티티 도코모 유저단말, 무선기지국 및 무선통신방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883398A (zh) * 2009-05-07 2010-11-10 大唐移动通信设备有限公司 一种确定上行载波资源的方法、装置和系统
CN101998577A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 随机接入前导码的发送方法、系统及设备
CN102006633A (zh) * 2009-09-02 2011-04-06 大唐移动通信设备有限公司 一种信息指示方法、系统及装置

Also Published As

Publication number Publication date
CN109803340A (zh) 2019-05-24
CN109803340B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
US11818080B2 (en) Random access with bandwidth part switch
US11452139B2 (en) Random access procedure for latency reduction
US10015833B2 (en) Device of radio network temporary identifier allocation in dual connectivity
US10779329B2 (en) Random access response transmission method and device
AU2012252368B2 (en) Cross-scheduling for random access response
US11800557B2 (en) Transport block size for contention free random access in random access procedure
WO2019096293A1 (zh) 消息传输方法、用户设备、基站及计算机可读存储介质
JP7325577B2 (ja) 通信制御方法
US11140716B2 (en) Network node and methods for determining success of a random access procedure
US20220070926A1 (en) Communication control method and user equipment
WO2023153383A1 (ja) 通信装置及び通信方法
WO2022027557A1 (en) Mbms feedback processing method, base station, and user equipment
JP2023134787A (ja) 帯域幅部切替えによるランダムアクセス
BR112020009624B1 (pt) Método e aparelho

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18879080

Country of ref document: EP

Kind code of ref document: A1