WO2019096280A1 - 资源指示方法及装置、存储介质和处理器 - Google Patents

资源指示方法及装置、存储介质和处理器 Download PDF

Info

Publication number
WO2019096280A1
WO2019096280A1 PCT/CN2018/116047 CN2018116047W WO2019096280A1 WO 2019096280 A1 WO2019096280 A1 WO 2019096280A1 CN 2018116047 W CN2018116047 W CN 2018116047W WO 2019096280 A1 WO2019096280 A1 WO 2019096280A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
blocks
granularity
sub
symbols
Prior art date
Application number
PCT/CN2018/116047
Other languages
English (en)
French (fr)
Inventor
石靖
夏树强
韩祥辉
任敏
林伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020207017497A priority Critical patent/KR102507308B1/ko
Priority to US16/764,570 priority patent/US11375502B2/en
Priority to EP18878452.4A priority patent/EP3713344A4/en
Priority to JP2020526507A priority patent/JP7040865B2/ja
Priority to MX2020005159A priority patent/MX2020005159A/es
Publication of WO2019096280A1 publication Critical patent/WO2019096280A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present invention relates to the field of communications, and in particular to a resource indication method and apparatus, a storage medium, and a processor.
  • the 5th Generation mobile communication technology (5G) is facing more and more demand. From the current development trend, both 4G and 5G systems are studying the characteristics of supporting enhanced mobile broadband, ultra-high reliability, ultra-low latency transmission, and massive connectivity.
  • the embodiment of the invention provides a resource indication method and device, a computer storage medium and a processor, so as to at least solve the problem that the preemption resource cannot be effectively indicated when the service preempting resource transmission in the related art.
  • a resource indication method including: configuring a reference resource for preemptive transmission, dividing M parts in the reference resource in the time domain, and using the reference resource in the frequency domain Dividing N parts; indicating, by the indication information, the preempted resources in the M time domain parts and/or N frequency domain parts, where M ⁇ 1, N ⁇ 1; wherein the time domain area of the reference resource
  • the number of downlink symbols included includes at least one of: less than 14; greater than 14.
  • a resource indication method including: a period in which the user equipment UE is configured to monitor indication information is one micro-slot, and the reference resource is at least one of the following: one micro-slot; All 14 symbols in a time slot; 1 time slot and no uplink symbol; including the micro-slot where the current indication information is located and the previous continuous U-1 micro-slots, totaling 14 symbols; not including the current indication information a microslot but containing immediately preceding consecutive U microslots, for a total of 14 symbols, U being a positive integer, wherein the indication information is used to indicate the preempted resources in the M time domain portions and/or the N frequency domain portions And the M time domain parts are obtained by dividing M parts into the reference resources in the time domain, and the N frequency domains are obtained by dividing N parts of the reference resources in the frequency domain.
  • a resource indication method including:
  • the user equipment UE After receiving the indication information, the user equipment UE refreshes the cache.
  • the refresh cache includes at least one of the following ways:
  • the refresh cache is performed according to the specified information indication
  • the cache When receiving the indication information and the specified information, when the specified information indicates that the cache is not to be refreshed, the cache is refreshed according to the resource indicated by the PI; when the specified information indicates that the cache is refreshed, the refresh cache is performed according to the specified information indication;
  • the cache When the indication information and the specified information are received, when the specified information indicates that the cache is not to be refreshed, the cache is not refreshed; when the specified information indicates that the cache is refreshed, the cache is refreshed according to the resource indicated by the indication information, and the specified information is used to indicate whether Performing a refresh buffer on all resources corresponding to the CBG, wherein the indication information is used to indicate the preempted resources in the M time domain parts and/or the N frequency domain parts, where the M time domain parts are referenced in the time domain
  • the M parts are divided into the resources, and the N frequency domains are obtained by dividing N parts of the reference resources in the frequency domain.
  • a resource indication apparatus including: a configuration module, configured to: configure a reference resource for preemptive transmission, and divide M parts in the reference resource in the time domain, at a frequency All the reference resources are divided into N parts, and the indication module is configured to: indicate, by using the indication information, the preempted resources in the M time domain parts and/or the N frequency domain parts, where M ⁇ 1, N ⁇ 1, wherein the time domain region of the reference resource includes a downlink symbol number including at least one of: less than 14; greater than 14.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the embodiment of the present invention solves the problem that the number of downlink symbols included in the time domain region of the reference resource is not 14, which solves the problem that the preemption resource cannot be effectively indicated when the service preempts the resource transmission in the related art, and improves the service performance of the communication system. And resource utilization.
  • FIG. 1 is a flowchart of a resource indication method according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of a resource indication apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of dividing resource sub-blocks when there are less than 14 symbols in the embodiment
  • FIG. 5 is a schematic diagram of resource sub-block partitioning in the embodiment
  • FIG. 6 is a schematic diagram 1 of resource sub-block partitioning when the downlink reference resource is 2slot in the embodiment
  • FIG. 7 is a schematic diagram 2 of resource sub-block partitioning when the downlink reference resource is 2slot in the embodiment
  • FIG. 8 is a schematic diagram 3 of resource sub-block partitioning when the downlink reference resource is 2slot in the embodiment.
  • FIG. 1 is a flowchart of a resource indication method according to an embodiment of the present invention. As shown in FIG. 1 , the process includes the following steps:
  • Step S102 configuring a pre-emptive transmission reference resource, and dividing M parts in the reference resource in the time domain, and dividing N parts in the frequency domain by the reference resource;
  • Step S104 indicating, by using the indication information, the preempted resource in the M time domain part and/or the N frequency domain parts, where M ⁇ 1, N ⁇ 1, wherein the time domain area of the reference resource includes the number of downlink symbols Including at least one of: less than 14; greater than 14.
  • the case where the number of downlink symbols included in the time domain region of the reference resource is not 14 (less than 14 and/or greater than 14) is configured to solve the problem that the preemption resource cannot be effectively indicated when the service preempting resource transmission in the related art is used.
  • the problem is to improve the business performance and resource utilization of the traffic system.
  • the execution body of the foregoing steps may be a network side, such as a base station, etc., but is not limited thereto.
  • the reference resource may be a downlink reference resource, but is not limited thereto, and may also be an uplink reference resource.
  • This embodiment describes the following reference resources as an example. It should be further noted that the reference resource corresponds to a time-frequency domain resource, that is, the reference resource is defined by a time domain resource and a frequency domain resource.
  • the time domain area in the reference resource is at least one of: 1 slot and includes an uplink symbol; 1 slot and does not include an uplink symbol; 1 minislot (mini-slot or Non-slot), where 1 ⁇ reference resource contains the number of symbols x ⁇ 13.
  • the reference resource is divided into not less than one time domain granularity and not less than one frequency domain granularity to obtain Y resource sub-blocks, where the divided resource sub-blocks do not have the same resource size.
  • Y is a positive integer.
  • the time domain granularity and a frequency domain granularity are fixed values or may be indicated by signaling, where Y is a positive integer.
  • dividing the reference resource by using a time domain granularity and a frequency domain granularity at least one of the following: dividing the reference resource according to the reference resource containing the number of symbols as an even number or an odd number using different candidate granularity sets; Deriving the reference resource according to whether the reference resource includes a number of symbols greater than 7 or different candidate granularity sets; and according to the reference resource, the number of symbols includes an even number or an odd number, and whether the value is greater than 7, and the reference resource is divided by using different candidate granularity sets.
  • the candidate granularity set includes at least one of the following: ⁇ 1OS, 1BW ⁇ , ⁇ 2OS, 1/2BW ⁇ , ⁇ 1OS, 1/2BW ⁇ .
  • the reference resource includes the number of symbols x is greater than P, determining to use the different candidate granularity to divide the reference resource to obtain a resource sub-block, where P is a positive integer.
  • ⁇ x ⁇ 7 when 0 ⁇ x ⁇ 7, using a granularity ⁇ 1OS, 1/2BW ⁇ partition, obtaining less than or equal to Y resource sub-blocks, wherein the divided resource sub-blocks contain the same resource size;
  • ⁇ x ⁇ 14 for (14-x) symbols use granularity ⁇ 1OS, 1/2BW ⁇ partition, for (2x-14) symbols use granularity ⁇ 1OS, 1BW ⁇ partition, get Y resource sub-blocks , wherein the divided resource sub-blocks contain different resource sizes, where Y is a positive integer.
  • the time domain area in the reference resource is at least one of: 2 time slots and includes an uplink symbol; 2 time slots and does not include an uplink symbol.
  • the manner in which the reference resources are divided includes at least one of the following:
  • the manner in which the reference resources are divided includes at least one of the following:
  • the reference resource is divided into Y resource sub-blocks and each time slot includes 7 resource sub-blocks;
  • the reference resource is divided into Y resource sub-blocks, and the number of resource sub-blocks included in each time slot is different but not more than two;
  • the two time slots divide the reference resources according to the partitioning granularity ⁇ 1OS, 1BW ⁇ and/or ⁇ 2OS, 1BW ⁇ to obtain less than or equal to Y resources.
  • the reference resources are divided into 28 symbols of two time slots including the uplink symbol to obtain Y resource sub-blocks, in the resource sub-block.
  • the resource is completely an uplink resource, it indicates that the bit of the resource sub-block is not used or reserved, where Y is a positive integer.
  • the manner of dividing the reference resource includes at least one of the following:
  • At least one time-frequency domain partitioning granularity is used in one of the reference resources to allocate the two time slots according to the ratio of N1 and N2. Number of resource sub-blocks, resulting in Y resource sub-blocks;
  • the resource sub-block is divided into one time-frequency domain granularity according to the ratio of N1 and N2 in each of the reference resources.
  • the number of resource sub-blocks is less than or equal to Y resource sub-blocks;
  • the Y resource sub-blocks are divided into 28 symbols of the two time slots including the uplink symbol, and the resources in the resource sub-block are completely When it is an uplink resource, it indicates that the bit of the resource sub-block is not used or reserved;
  • the reference resource has N1 and N2 symbols in two time slots, respectively, where Y is a positive integer.
  • the time domain area in the reference resource is at least one of: more than 2 time slots and including uplink symbols; greater than 2 time slots and no uplink symbols.
  • the dividing manner of the reference resource includes: dividing the reference resource partition into less than or equal to Y resource sub-blocks, where Y is a positive integer.
  • the method further includes at least one of: when the resource sub-block is less than 14, indicating that the bits of the remaining resource sub-block are not used or reserved; when the resource sub-block is less than or equal to 14; when the resources in the resource sub-block When it is completely an uplink resource, it indicates that the bit of the resource sub-block is not used or reserved.
  • the method further includes: determining a first monitoring period of the preemption indication information; determining a time domain area of the reference resource as a time domain area of the first monitoring period.
  • the first monitoring period of the preemption indication information is determined by one of the following manners: configured by using high layer signaling or physical layer signaling, and is independent of the second monitoring period of carrying the slot format information SFI; Signaling or physical layer signaling configuration, and the first monitoring period is less than or equal to the second monitoring period; configured by high layer signaling or physical layer signaling, and the first monitoring period is the second monitoring period Subset.
  • This embodiment further provides another resource indication method, including:
  • the period in which the user equipment UE is configured to monitor the indication information is one micro-slot, and the reference resource is at least one of the following:
  • the micro-slot including the current indication information and the previous consecutive U-1 mini-slots, for a total of 14 symbols;
  • U is a positive integer
  • the indication information is used in M time domain parts and/or N frequency domains
  • the preempted resources are indicated, and the M time domain parts are obtained by dividing M parts into the reference resources in the time domain, and the N frequency domains are divided into N parts by using the reference resources in the frequency domain.
  • the embodiment further provides another resource indication method, including:
  • the user equipment UE After receiving the indication information, the user equipment UE refreshes the cache.
  • the refresh cache includes at least one of the following ways:
  • the refresh cache is performed according to the specified information indication
  • the cache When receiving the indication information and the specified information, when the specified information indicates that the cache is not to be refreshed, the cache is refreshed according to the resource indicated by the PI; when the specified information indicates that the cache is refreshed, the refresh cache is performed according to the specified information indication;
  • the cache When the indication information and the specified information are received, when the specified information indicates that the cache is not to be refreshed, the cache is not refreshed; when the specified information indicates that the cache is refreshed, the cache is refreshed according to the resource indicated by the indication information, and the specified information is used to indicate whether Performing a refresh buffer on all resources corresponding to the CBG, wherein the indication information is used to indicate the preempted resources in the M time domain parts and/or the N frequency domain parts, where the M time domain parts are referenced in the time domain
  • the M parts are divided into the resources, and the N frequency domains are obtained by dividing N parts of the reference resources in the frequency domain.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a resource indicating device is further provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of a resource indication apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes:
  • the configuration module 20 is configured to: configure a reference resource for preemptive transmission, divide M parts in the reference resource in the time domain, and divide N parts in the frequency domain by reference resources;
  • the indicating module 22 is configured to: indicate, by using the indication information, the preempted resource in the M time domain part and/or the N frequency domain parts, where M ⁇ 1, N ⁇ 1, wherein the time domain of the reference resource
  • the number of downlink symbols included in the region includes at least one of: less than 14; greater than 14.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present application, and is used to describe the application in detail according to an implementation manner in different scenarios:
  • the resource Sub-blocks are divided into at least one of the following:
  • Method 1 Still divided into 14 resource sub-blocks. Specifically, when dividing in a downlink reference resource region, no less than one time domain granularity and no less than one frequency domain granularity are used.
  • the divided resource sub-blocks contain different resources.
  • Method 2 Divide 14 resource sub-blocks less than or equal to 14. Specifically, a time domain granularity and a frequency domain granularity are used in dividing a downlink reference resource region. The divided resource sub-blocks contain the same resource size. Method 2 further includes at least one of the following:
  • Method 2-1 The resource sub-block is divided according to the downlink reference resource including the number of symbols being even or odd.
  • Method 2-2 The resource sub-block is divided according to whether the number of symbols included in the downlink reference resource is greater than 7 and different candidate granularity sets are used.
  • Method 2-3 First, according to the downlink reference resource, the number of symbols includes an even number or an odd number, and the resource sub-blocks are selected by using different candidate granularity sets. Secondly, when the downlink reference resource includes an odd number of symbols, the candidate candidate granularity set is selected according to whether it is greater than 7. The division of resource sub-blocks is performed.
  • the time domain area corresponding to the downlink reference resource area is two slots, and the resource sub-block is divided into at least one of the following:
  • Manner 1 There is no uplink symbol in the slot.
  • Manner 2 The slot contains the uplink symbol, and the format of the two slots is the same.
  • the DL reference resource has N symbols in each slot.
  • Method 1 dividing into 14 resource sub-blocks and each slot includes 7 resource sub-blocks.
  • Method 2 Divide into 14 resource sub-blocks and the number of resource sub-blocks included in each slot differs by no more than two.
  • Method 3 Divided into less than or equal to 14 resource sub-blocks, two slots are only divided according to granularity ⁇ 1OS, 1BW ⁇ and/or ⁇ 2OS, 1BW ⁇ , and less than 14sub-blocks (resource sub-blocks) remaining preemption indication/play
  • the Pre-emption Indication (PI) indicates that the bit is reserved.
  • Mode 3 The slot contains the uplink symbol, and the format of the two slots is different.
  • the DL reference resource has N1 and N2 symbols in two slots, respectively.
  • Method 1 Dividing into 14 resource sub-blocks. The number of resource sub-blocks contained in the two slots is allocated according to the ratio of N1 and N2. At least one time-frequency domain granularity is used when dividing resource sub-blocks in one downlink reference resource.
  • Method 2 Divide less than or equal to 14 resource sub-blocks. That is, the number of sub-blocks in the respective slots is divided according to the ratio of N1 and N2, and the sum of the two does not exceed 14.
  • the time domain area corresponding to the downlink reference resource area is greater than 2 slots, and the principle is that the number of resource sub-blocks divided is not more than 14 when dividing resource sub-blocks. For less than 14, the remaining indicator bits are not used or reserved. At this time, it can be divided by a larger granularity.
  • the resources used by the base station to transmit ultra-reliable, ultra-low latency communication (URLLC) services with short durations are to preempt resources that have been allocated to enhanced mobile broadband (eMBB) services. And, by sending the preemption indication information, which resources are preempted in the configured downlink reference resource region by the terminal that is preempted by the resource.
  • URLLC ultra-reliable, ultra-low latency communication
  • eMBB enhanced mobile broadband
  • the frequency domain region corresponding to the downlink reference resource region is a Downlink (DL) part bandwidth (BWP) of the terminal, and the corresponding time domain region is configurable, and may be an integer multiple of the slot slot or may be several OFDM symbol.
  • DL Downlink
  • BWP part bandwidth
  • the time domain region corresponding to the downlink reference resource region is one slot, it may be divided into M time domain portions and N frequency domain portions, and the candidate ⁇ M, N ⁇ is ⁇ 14, 1 ⁇ or ⁇ 7, 2 ⁇ and configure one by high layer signaling.
  • the granularity is ⁇ 2OS, 1/2BW ⁇ , and the fourth of the 14 resource sub-blocks (assuming 14 resource sub-blocks according to the pre-frequency domain post-time domain number) is preempted, that is, indicated as 00010000000000.
  • OS represents OFDM symbol (OFDM symbol)
  • BW represents bandwidth.
  • BW is preferably activated DL BWP (downstream part bandwidth).
  • Solution 1 Still divided into 14 resource sub-blocks. Specifically, when dividing in a downlink reference resource region, no less than one time domain granularity and no less than one frequency domain granularity are used. The divided resource sub-blocks contain different resources.
  • FIG. 4 is a schematic diagram of dividing resource sub-blocks when there are less than 14 symbols in the embodiment, including 4(A) and 4(B).
  • the downlink reference resource region includes 8 symbols as shown in 4(A) of FIG.
  • the downlink reference resource region includes 6 symbols as shown in 4(B) of FIG. 4, 14 resource sub-blocks are divided by using ⁇ 1OS, 1/2BW ⁇ and ⁇ 1OS, 1/4BW ⁇ granularity.
  • Solution 2 Divide 14 resource sub-blocks less than or equal to 14. Specifically, a time domain granularity and a frequency domain granularity are used in dividing a downlink reference resource region. The divided resource sub-blocks contain the same resource size.
  • Method 2-1 The resource sub-block is divided according to the downlink reference resource including the number of symbols being even or odd.
  • the granularity used when dividing the resource sub-blocks is one of ⁇ 1OS, 1BW ⁇ and ⁇ 2OS, 1/2BW ⁇ ; for the DL reference resource, the time domain contains odd symbols.
  • the time domain contains odd symbols.
  • the downlink reference resource includes seven resource sub-blocks
  • the granularity of ⁇ 1OS, 1BW ⁇ is used.
  • ⁇ M, N ⁇ ⁇ 7, 1 ⁇
  • 7 bits are used to indicate whether each resource sub-block is It can be preempted, and it can be reserved for unused unused bits. Assuming that the preemption indication is fixed using 14 bits, then the remaining 7 bits are reserved.
  • Method 2-2 The resource sub-block is divided according to whether the number of symbols included in the downlink reference resource is greater than 7 and different candidate granularity sets are used. At this time, when the DL reference resource includes x symbols in the time domain, when 0 ⁇ x ⁇ 7, use ⁇ 1OS, 1BW ⁇ or ⁇ 1OS, 1/2BW ⁇ to divide; when 7 ⁇ x ⁇ 14, use ⁇ 1OS, 1BW ⁇ division.
  • the downlink reference resource includes five resource sub-blocks
  • Method 2-3 First, according to the downlink reference resource, the number of symbols includes an even number or an odd number, and the resource sub-blocks are selected by using different candidate granularity sets. Secondly, when the downlink reference resource includes an odd number of symbols, the candidate candidate granularity set is selected according to whether it is greater than 7. The division of resource sub-blocks is performed. In this case, when the DL reference resource includes even symbols in the time domain, the granularity used when dividing the resource sub-blocks is one of ⁇ 1OS, 1BW ⁇ and ⁇ 2OS, 1/2BW ⁇ ; for the DL reference resource, the time domain contains odd symbols. When 0 ⁇ x ⁇ 7, ⁇ 1OS, 1BW ⁇ , ⁇ 1OS, 1/2BW ⁇ is used; when 7 ⁇ x ⁇ 14, ⁇ 1OS, 1BW ⁇ is used.
  • the downlink reference resource contains 9 resource sub-blocks
  • the granularity of ⁇ 1OS, 1BW ⁇ is used.
  • the downlink reference resource includes five resource sub-blocks
  • FIG. 5 is a schematic diagram of resource sub-block partitioning in the embodiment, including 5(A) and 5(B). As shown in FIG.
  • the resource sub-blocks are as shown in 5(B), and the two resource sub-blocks corresponding to the last two symbols need not be indicated.
  • Solution 3 According to whether the number of symbols in the downlink reference resource is greater than 7, the partitioning of the resource sub-blocks is performed using different candidate granularities.
  • the DL reference resource time field contains x symbols:
  • resource sub-blocks are divided using a granularity ⁇ 1OS, 1/2BW ⁇ ; when 7 ⁇ x ⁇ 14, ⁇ 1OS, 1BW ⁇ and or ⁇ 1OS, 1/2BW ⁇ divides 14 resource sub-blocks.
  • a resource sub-block is less than or equal to 14 using a granularity ⁇ 1OS, 1/2BW ⁇ ; when 7 ⁇ x ⁇ 14, ⁇ 1OS, 1BW ⁇ and/or ⁇ 1OS, 1/2BW ⁇ divides 14 resource sub-blocks.
  • the downlink reference resource includes 13 symbols, and when the resource sub-block is divided, one of the symbols (preferably the first of the 13 symbols) is used with the granularity ⁇ 1OS, 1/2BW ⁇ , and the remaining symbols use the granularity ⁇ 1OS, 1BW ⁇ .
  • the partitioning resource sub-block is divided by using one time domain granularity and two kinds of frequency domain granularity. At this time, 14 bits are used to indicate whether each resource sub-block is preempted.
  • the downlink reference resource contains 12 symbols, and when the resource sub-block is divided, two of them (preferably the first two of the 13 symbols) are used with the granularity ⁇ 1OS, 1/2BW ⁇ , and the remaining symbols use the granularity ⁇ 1OS, 1BW ⁇ .
  • a granularity (preferably ⁇ 1OS, 1/2BW ⁇ ) is used to obtain less than or equal to 14 resource sub-blocks, wherein the divided resource sub-blocks contain the same resource size; when 7 ⁇ When x ⁇ 14, a granularity (preferably ⁇ 1OS, 1/2BW ⁇ ) is used for (14-x) symbols, and another granularity is used for (2x-14) symbols (preferably ⁇ 1OS, 1BW) ⁇ ) Division, get Y resource sub-blocks.
  • the method is preferably applicable to a scenario in which the time domain configuration of the downlink reference resource region is a mini-slot or non-slot level granularity or a plurality of OFDM symbol level granularities, but is not limited thereto.
  • x the number of symbols included in a mini-slot or non-slot or a number of OFDM symbols.
  • x the number of symbols included in a mini-slot or non-slot or a number of OFDM symbols.
  • x the possible values of x may be integer values in the range of 1 to 13.
  • the downlink reference resource region corresponding to the preempted resource indicated by the preemption indication information is still 14 OFDM symbols.
  • Method 4-1 These 14 symbols are 14 symbols within 1 slot.
  • the resource in the resource sub-block is completely an uplink resource, it indicates that the bit of the resource sub-block is not used or reserved.
  • the method is characterized in that the preemption indication information received in one slot is the same, and all the non-slots are preempted by the resource indication in the previous slot, and the same preemption indication information is received multiple times to improve the preemption indication information. reliability.
  • the resource in the resource sub-block is completely an uplink resource, it indicates that the bit of the resource sub-block is not used or reserved.
  • the method is characterized in that the preemption indication information received in each non-slot is the most timely, and is a preempted resource indication including the current non-slot and the previous six not-slots, or does not include the current non-
  • the slot list contains the preempted resource indications for the previous 7 non-slots.
  • the preemption indication information received at the same time may be partially correct in the preemption indication information received before the backward inspection.
  • the downlink reference resource region corresponding to the preempted resource indicated by the preemption indication information is 2 OFDM symbols.
  • Method 4-3 In the 2 OFDM symbols, the time domain 1 symbol granularity and the frequency domain 1/7 bandwidth granularity are divided to obtain 14 resource sub-blocks. Whether a resource sub-block is preempted is indicated by a 14-bit bitmap.
  • Method 4-4 Four resource sub-blocks are obtained by dividing the granularity of the frequency domain by 1/2 bandwidth in two OFDM symbols.
  • a 14-bit bitmap indicates whether each resource sub-block is preempted, and 10 bits are reserved or not used.
  • Method 4-5 In 2 OFDM symbols, the time domain 1 symbol granularity and the frequency domain 1/P bandwidth granularity are divided to obtain 2P resource sub-blocks.
  • a 14-bit bitmap indicates whether each resource sub-block is preempted, and (14-2P) bits are reserved or not used.
  • P is at least one of the set ⁇ 1, 2, 3, 4, 5, 6, 7 ⁇ .
  • the remaining bits no use may be made, or it may be used to further indicate whether resources divided into more frequency domain parts are preempted.
  • the number of remaining bits is x
  • only a part of the bits may be used to indicate a specific frequency domain division, for example, for 1BW: only 2 or 4 or 8 bits of the remaining bits are used to indicate a frequency of 1/2 or 1/4 or 1/8 granularity. Whether the domain resource is preempted; for 1/2BW: only 4 or 8 bits of the remaining bits are used to indicate whether the frequency domain resources of 1/4 or 1/8 granularity are preempted.
  • the resource indication method in the present embodiment can be applied to the resource indication when the downlink reference resource is less than 14 symbols in the case of the fixed indication overhead, so that the preempted transmission data can know the location of the punched resource, and avoid a large number of The retransmission data and the error data accumulate and spread, and only the preempted resources are transmitted, thereby improving the spectrum efficiency of the system.
  • the resource used by the URLLC service with a short duration is used to preempt the resources that have been allocated to the eMBB service. And, by sending the preemption indication information, which resources are preempted in the configured downlink reference resource region by the terminal that is preempted by the resource.
  • the frequency domain region corresponding to the downlink reference resource region is an active DL BWP of the terminal, and the corresponding time domain region is configurable, and may be an integer multiple of the slot slot or may be several OFDM symbols.
  • the time domain area corresponding to the downlink reference resource region in this embodiment is two slots.
  • FIG. 6 is a schematic diagram of resource sub-block partitioning when the downlink reference resource is 2slot in the embodiment, and as shown in FIG. 6, the first slot uses the granularity ⁇ 5-5-4OS, 1/2BW ⁇ to divide 6 resources. The sub-block, the second slot uses the granularity ⁇ 4-3-4-3OS, 1/2BW ⁇ to divide 8 resource sub-blocks.
  • Scenario 2 The slot contains the uplink symbol, and the formats of the two slots are the same. That is, the number of upstream symbols included in each slot is the same at this time. After the UL symbols are removed from the two slots, the DL reference resource has 2N symbols, that is, each slot has N symbols. When dividing resource sub-blocks at this time, you can use one of the following methods:
  • Method 1 Divide into 14 resource sub-blocks and each slot contains 7 resource sub-blocks.
  • the N symbols of each slot can be divided into 7 parts, and the frequency domain adopts 1BW granularity, that is, 1 part; or the time domain is divided into 1 part, the frequency domain is divided into 7 parts; or the time domain is divided into 2 parts;
  • the first intermediate frequency domain is divided into three, and the second intermediate frequency domain is divided into four;
  • the granularity is not unique.
  • Method 2 Divide into 14 resource sub-blocks and the number of resource sub-blocks included in each slot differs by no more than two.
  • the N symbols respectively of the two slots can be divided into 7 parts and 7 parts, or 6 parts and 8 parts.
  • the first slot time domain is divided into 8 copies using 1OS granularity
  • the frequency domain is divided into 1 part using 1BW granularity
  • the second slot is divided into 6 parts using 1OS and 2OS mixed granularity.
  • the frequency domain is divided into 1 part using a granularity of 1 BW.
  • Method 3 Divided into less than or equal to 14 resource sub-blocks, the two slots are only divided according to the granularity ⁇ 1OS, 1BW ⁇ and/or ⁇ 2OS, 1BW ⁇ .
  • the remaining PI indicates that the bit is reserved.
  • FIG. 7 is a schematic diagram of resource sub-block partitioning when the downlink reference resource is 2slot in the present embodiment. As shown in FIG. 7, when the number of UL symbols is smaller than When the number of the UL symbols is greater than or equal to 7, the granularity of the 1OS is used, and FIG. 8 is a schematic diagram of the resource sub-block partitioning when the downlink reference resource is 2slot in the present embodiment. 8 is shown.
  • the division method at this time is the same as the method in scene one.
  • Scene 3 The slot contains the uplink symbol, and the format of the two slots is different. That is, the number of uplink symbols included in each slot is different at this time. After the UL symbols are removed from the two slots, the DL reference resource has N1 and N2 symbols in the two slots. When dividing resource sub-blocks at this time, you can use one of the following methods:
  • Method 1 Divide into 14 resource sub-blocks.
  • the number of resource sub-blocks contained in the two slots is allocated according to the ratio of N1 and N2. That is, the number of sub-blocks in each slot is divided according to the ratio of N1 and N2, and the sum of the two is 14.
  • Alt.1 When the ratio satisfies 3:4, it can be divided according to ⁇ 14,1 ⁇ or ⁇ 7,2 ⁇ ; when alt.2 does not satisfy 3:4, it is only divided according to ⁇ 14,1 ⁇ .
  • At least one time-frequency domain granularity is used when dividing resource sub-blocks in one downlink reference resource.
  • Method 2 Divide less than or equal to 14 resource sub-blocks. That is, the number of sub-blocks in the respective slots is divided according to the ratio of N1 and N2, and the sum of the two does not exceed 14. Only one type of time-frequency domain granularity is used when dividing resource sub-blocks in one downlink reference resource.
  • the division method at this time is the same as the method in scene one.
  • the resource indication method of the present embodiment can be applied to the resource indication when the downlink reference resource is greater than one slot in the case of the fixed indication overhead, so that the preempted transmission data can know the location of the punch resource. Avoid the massive spread of retransmitted data and erroneous data, and only transmit the preempted resources to improve the system spectrum efficiency.
  • the resource used by the URLLC service with a short duration is used to preempt the resources that have been allocated to the eMBB service. And, by sending the preemption indication information, which resources are preempted in the configured downlink reference resource region by the terminal that is preempted by the resource.
  • the frequency domain region corresponding to the downlink reference resource region is an active DL BWP of the terminal, and the corresponding time domain region is configurable, and may be an integer multiple of the slot slot or may be several OFDM symbols.
  • the time domain area corresponding to the downlink reference resource area in this embodiment is a scenario when the time is greater than 2 slots, for example, 5 or 10 or 20 slots.
  • the principle to be used when dividing resource sub-blocks is that the number of resource sub-blocks divided is no more than 14. For less than 14, the remaining indicator bits are not used or reserved. At this point, you can divide it with a larger granularity, for example:
  • each slot is divided into 2 sub-blocks for a total of 10 sub-blocks.
  • the time domain is half-divided into two parts in each slot, or the frequency domain is half-divided into two parts.
  • each slot is treated as 1 sub-block for a total of 10 sub-blocks.
  • every 2 slots are treated as 1 sub-block, for a total of 10 sub-blocks.
  • the resource indication method of the present embodiment can be applied to the resource indication when the downlink reference resource is greater than one slot in the case of the fixed indication overhead, so that the preempted transmission data can know the location of the punch resource. Avoid the massive spread of retransmitted data and erroneous data, and only transmit the preempted resources to improve the system spectrum efficiency.
  • the time domain area determining manner of the downlink reference resource is a monitoring period equal to the downlink control information of the bearer preemption indication, and the monitoring period of the downlink control information that carries the preemption indication is determined to include At least one of the following:
  • Manner 1 The configuration is performed by the high layer signaling or the physical layer signaling, and is independent of the monitoring period of the downlink control information carrying the slot format information SFI.
  • Manner 2 The configuration of the downlink control information carrying the preemption indication is less than or equal to the monitoring period of the downlink control information carrying the slot format information SFI.
  • the monitoring period of the downlink control information carrying the slot format information SFI is 2slot, and the monitoring period of the downlink control information carrying the preemption indication may be 1slot or 2slot.
  • Manner 3 The high-level signaling or the physical layer signaling configuration, and the monitoring period of the downlink control information carrying the preemption indication is a subset of the monitoring period of the downlink control information carrying the slot format information SFI.
  • the monitoring period of the downlink control information carrying the slot format information SFI is 1, 2, 5, 10, and 20 slots, and the monitoring period of the downlink control information carrying the preemption indication may be 1, 2, or 5 slots.
  • the frequency domain area resource configuration method in the present embodiment can implement the same format for each slot when the downlink reference resource includes multiple slots, avoiding unequal downlink symbol division, and using uniform downlink reference resources for preemptive transmission, and reducing The processing complexity of the base station or terminal.
  • Mode 4 At the same time, the PI and the CBGFI are received, and the cache is refreshed according to the CBGFI indication. Perform refresh flushing on all resources corresponding to CBG
  • Manner 5 The PI and the CBGFI are received at the same time.
  • the buffer is refreshed according to the resource indicated by the PI.
  • the preferred manner of refreshing the cache is one or two but not limited to this; when the CBGFI indicates to refresh the cache, The cache is refreshed according to the CBGFI indication, and the resources corresponding to all CBGs are preferably refreshed and cached.
  • the above methods 3, 4, 5, and 6 are also applicable to the scenario where the PI receives the CBGFI first, or receives the PI after receiving the CBGFI.
  • the refresh cache method described in this embodiment can solve how the terminal refreshes the cache according to the PI, or how to refresh the cache according to the PI and the CBGFI.
  • Embodiments of the present invention also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the pre-emptive transmission reference resource is configured, and M parts are divided into the reference resources in the time domain, and N parts are divided into the reference resources in the frequency domain.
  • the quantity includes at least one of: less than 14; greater than 14.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present invention also provide a processor for running a program, wherein the program is operative to perform the steps of any of the above methods.
  • the foregoing program is used to perform the following steps:
  • the pre-emptive transmission reference resource is configured, and M parts are divided into the reference resources in the time domain, and N parts are divided into the reference resources in the frequency domain.
  • the quantity includes at least one of: less than 14; greater than 14.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the pre-emptive transmission reference resource is configured, and M parts are divided into the reference resources in the time domain, and N parts are divided into the reference resources in the frequency domain;
  • the pre-empted resources are indicated in the M time domain parts and/or the N frequency domain parts, wherein the time domain area of the reference resource includes a downlink symbol number including at least one of: less than 14; greater than 14.
  • the problem that the number of downlink symbols included in the time domain area of the reference resource is not 14 (less than 14 and/or greater than 14) is solved, and the problem that the preemption resource cannot be effectively indicated when the service preempting resource transmission in the related art is solved, and the problem is improved.
  • Business performance and resource utilization of the transit system are configured, and M parts are divided into the reference resources in the time domain, and N parts are divided into the reference resources in the frequency domain;
  • the pre-empted resources are indicated in the M time domain parts and/or the N frequency domain parts, wherein the time domain area of the reference resource includes a downlink symbol number including at least

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明实施例公开了一种资源指示方法及装置,其中,该方法包括:配置抢占传输的参考资源,在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;通过指示信息在所述M个时域部分和/或N个频域部分中指出被抢占资源,其中M≥1,N≥1;其中,所述参考资源的时域区域包含的下行符号数量包括以下至少之一:小于14;大于14。还公开了一种计算机存储介质和处理器。

Description

资源指示方法及装置、存储介质和处理器
相关申请的交叉引用
本申请基于申请号为201711148877.5、申请日为2017年11月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的内容在此以引入方式并入本申请。
技术领域
本发明涉及通信领域,具体而言,涉及一种资源指示方法及装置、存储介质和处理器。
背景技术
相关技术中的第四代移动通信技术(4G,the 4th Generation mobile communication technology)长期演进(LTE,Long-Term Evolution)/高级长期演进(LTE-Advance/LTE-A,Long-Term Evolution Advance)和第五代移动通信技术(5G,the 5th Generation mobile communication technology)所面临的需求越来越多。从目前发展趋势来看,4G和5G系统都在研究支持增强移动宽带、超高可靠性、超低时延传输、海量连接的特征。
相关技术中,为了支持超高可靠性和超低时延传输的特性,需要以较短传输时间传输低时延高可靠性业务,同时在其他具有较长传输时间的业务传输的过程中,可以抢占部分资源进程传输。为了尽可能的降低对具有较长传输时间的业务的性能影响,需要指示给接收侧被抢占的资源,此时接收测在接收解调具有较长传输时间的业务时就可以去除掉错误数据,进而避免大量重传数据和错误数据累积蔓延,仅传输被抢占的资源。
相关技术中,对于配置的下行参考资源中仅含有14个符号的场景,以{M,N}={14,1}或{7,2}划分出14个分块的方式已经确定,其中M表示下行 参考资源在时域划分的分块数,N表示下行参考资源在频域划分出的分块数,两者相乘为14。通过对14个分块指示是否被抢占告知UE抢占资源信息。但是对于下行参考资源中包含不足14符号,以及包含大于14符号数的场景,尚没有较好的配置方法,导致无法及时指示给终端。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种资源指示方法及装置、计算机存储介质和处理器,以至少解决相关技术中业务抢占资源传输时不能有效指示抢占资源的问题。
根据本发明的一个实施例,提供了一种资源指示方法,包括:配置抢占传输的参考资源,在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;通过指示信息在所述M个时域部分和/或N个频域部分中指出被抢占资源,其中M≥1,N≥1;其中,所述参考资源的时域区域包含的下行符号数量包括以下至少之一:小于14;大于14。
根据本发明的一个实施例,提供了一种资源指示方法,包括:用户设备UE被配置监控指示信息的周期为1个微时隙,参考资源为以下至少之一:1个微时隙;1个时隙中所有14个符号;1个时隙中且不包含上行符号;包含当前指示信息所在微时隙及之前连续U-1个微时隙,共计14个符号;不包含当前指示信息所在微时隙但包含紧邻的之前连续U个微时隙,共计14个符号,U为正整数,其中,指示信息用于在M个时域部分和/或N个频域部分中指示被抢占资源,所述M个时域部分是在时域上对参考资源中划分出M个部分得到,N个频域是在频域上对所述参考资源划分出N个部分得到。
根据本发明的一个实施例,提供了一种资源指示方法,包括:
用户设备UE收到指示信息后,刷新缓存;
其中刷新缓存包括以下方式至少之一:
在收到指示信息和指定信息时,按照指示信息指示的资源进行刷新缓存;
在收到指示信息和指定信息时,按照指定信息指示进行刷新缓存;
在收到指示信息和指定信息时,当指定信息指示不刷新缓存时,按照PI指示的资源进行刷新缓存;当指定信息指示刷新缓存时,按照指定信息指示进行刷新缓存;
在收到指示信息和指定信息时,当指定信息指示不刷新缓存时,则不刷新缓存;当指定信息指示刷新缓存时,按照指示信息指示的资源进行刷新缓存,所述指定信息用于指示是否将所有CBG对应的资源执行刷新缓存,其中,指示信息用于在M个时域部分和/或N个频域部分中指示被抢占资源,所述M个时域部分是在时域上对参考资源中划分出M个部分得到,N个频域是在频域上对所述参考资源划分出N个部分得到。
根据本发明的另一个实施例,提供了一种资源指示装置,包括:配置模块,配置为:配置抢占传输的参考资源,在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;指示模块,配置为:通过指示信息在所述M个时域部分和/或N个频域部分中指示被抢占资源,其中M≥1,N≥1,其中,所述参考资源的时域区域包含的下行符号数量包括以下至少之一:小于14;大于14。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本发明实施例,通过配置参考资源的时域区域包含的下行符号数为非14的情况,解决了相关技术中业务抢占资源传输时不能有效指示抢占 资源的问题,提高了通信系统的业务性能和资源利用率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的资源指示方法的流程图;
图2是根据本发明实施例的资源指示装置的结构框图;
图3是本实施方式的抢占传输示意图;
图4是本实施方式中不足14符号时划分资源子块示意图;
图5是本实施方式中资源子块划分示意图;
图6是本实施方式中下行参考资源为2slot时资源子块划分示意图一;
图7是本实施方式中下行参考资源为2slot时资源子块划分示意图二;
图8是本实施方式中下行参考资源为2slot时资源子块划分示意图三。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种资源指示方法,图1是根据本发明实施例的资源指示方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,配置抢占传输的参考资源,在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;
步骤S104,通过指示信息在所述M个时域部分和/或N个频域部分中指出被抢占资源,其中M≥1,N≥1,其中,参考资源的时域区域包含的下行符号数包括以下至少之一:小于14;大于14。
通过上述步骤,通过配置参考资源的时域区域包含的下行符号数为非14的情况(小于14和/或大于14的情形),解决了相关技术中业务抢占资源传输时不能有效指示抢占资源的问题,提高了通行系统的业务性能和资源利用率。
可选地,上述步骤的执行主体可以为网络侧,如基站等,但不限于此。
在本实施例中,参考资源可以为下行参考资源,但不仅限于此,也可以为上行参考资源。本实施例以下行参考资源为例进行描述。这里还要补充说明的是,所述参考资源对应的是时频域资源,即通过时域资源和频域资源定义出所述参考资源。
可选的,所述参考资源中的时域区域为以下至少之一:1个时隙(slot)且包含上行符号;1个slot且不包含上行符号;1个微时隙(mini-slot或non-slot),其中1≤参考资源包含符号数x≤13。
可选地,采用不少于一种时域粒度和不少于一种频域粒度划分所述参考资源,得到Y个资源子块,其中,划分出的资源子块包含的资源大小不全相同,其中,Y为正整数。
可选地,采用一种时域粒度和一种频域粒度划分所述参考资源,得到小于或等于Y个资源子块,其中,划分出的资源子块包含的资源大小相同,所述一种时域粒度和一种频域粒度为固定取值或可通过信令指示的,其中,Y为正整数。
可选地,采用一种时域粒度和一种频域粒度划分所述参考资源包括以下至少之一:根据所述参考资源包含符号数为偶数或奇数选用不同候选粒度集合划分所述参考资源;根据所述参考资源包含符号数是否大于7选用 不同候选粒度集合划分所述参考资源;根据所述参考资源包含符号数为偶数或奇数,以及是否大于7,选用不同候选粒度集合划分所述参考资源;对所述参考资源包含上行符号在内的14个符号进行划分,当划分出的资源子块中的资源完全为上行资源时,指示该资源子块的比特(bit)不使用或保留。可选地,所述候选粒度集合包括以下至少之一:{1OS,1BW},{2OS,1/2BW},{1OS,1/2BW}。
可选地,根据所述参考资源包含符号数x是否大于P,确定使用不同候选粒度划分所述参考资源得到资源子块,其中P为正整数。
可选地,在0<x≤7时,使用一种粒度{1OS,1/2BW}划分,得到小于或等于Y个资源子块,其中划分出的资源子块包含的资源大小相同;当7<x<14时,对于其中(14-x)个符号使用粒度{1OS,1/2BW}划分,对于其中(2x-14)个符号使用粒度{1OS,1BW}划分,得到Y个资源子块,其中划分出的资源子块包含的资源大小不完全相同,其中,Y为正整数。
可选地,所述参考资源中的时域区域为以下至少之一:2个时隙且包含上行符号;2个时隙且不包含上行符号。
可选地,所述参考资源的划分方式包括以下至少之一:
在时隙中没有上行符号,当划分出的资源子块允许跨越时隙边界时,通过配置{M,N}={14,1}或{7,2}划分所述参考资源得到14个资源子块,其中,{M,N}={14,1}和{M,N}={7,2}对应的划分粒度为{2OS,1BW}和{4OS,1/2BW};
在时隙中没有上行符号,当划分出的资源子块不允许跨越时隙边界时,通过配置{M,N}={14,1}使用划分粒度{2OS,1BW}划分所述参考资源得到14个资源子块;
在时隙中没有上行符号,当划分出的资源子块不允许跨越时隙边界时,通过配置{M,N}={14,1}和{7,2}划分所述参考资源得到14个资源子块,其 中{M,N}={7,2}在两个时隙中分别划分出不同数量的资源子块。
可选地,所述参考资源的划分方式包括以下至少之一:
在时隙中包含上行符号,且两个时隙的格式相同时,将所述参考资源划分为Y个资源子块且每个时隙均包含7个资源子块;
在时隙中包含上行符号,且两个时隙的格式相同时,将所述参考资源划分为Y个资源子块且每个时隙均包含的资源子块数量不同但相差不超过2个;
在时隙中包含上行符号,且两个时隙的格式相同时,两个时隙按照划分粒度{1OS,1BW}和/或{2OS,1BW}划分所述参考资源得到小于或等于Y个资源子块;
在时隙中包含上行符号,且两个时隙的格式相同时,对包含上行符号在内的两个时隙的28个符号划分所述参考资源得到Y个资源子块,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留,其中,Y为正整数。
可选地,对所述参考资源的划分方式包括以下至少之一:
在时隙中包含上行符号,且两个时隙的格式不相同时,在一个所述参考资源中使用至少1种时频域划分粒度按照N1和N2的比例分配出两个时隙中包含的资源子块数目,得到Y个资源子块;
在时隙中包含上行符号,且两个时隙的格式不相同时,在一个所述参考资源中划分资源子块时仅使用1种时频域粒度按照N1和N2的比例划分各自时隙中的资源子块数目,得到小于或等于Y个资源子块;
在时隙中包含上行符号,且两个时隙的格式不相同时,对包含上行符号在内的两个时隙的28个符号划分出Y个资源子块,当资源子块中的资源完全为上行资源时,指示该资源子块的bit不使用或保留;
其中,所述参考资源在两个时隙中分别具有N1和N2个符号,其中, Y为正整数。
可选地,所述参考资源中的时域区域为以下至少之一:大于2个时隙且包含上行符号;大于2个时隙且不包含上行符号。
可选地,所述参考资源的划分方式包括:将所述参考资源划分划分为小于或等于Y个资源子块,其中,Y为正整数。
可选地,还包括以下至少之一:在资源子块不足14个时,指示剩余资源子块的bit不使用或保留;在资源子块小于或等于14个时;当资源子块中的资源完全为上行资源时,指示该资源子块的bit不使用或保留。
上述方案中,Y=14。
可选地,所述方法还包括:确定所述抢占指示信息的第一监控周期;将所述参考资源的时域区域确定为所述第一监控周期的时域区域。
可选地,所述抢占指示信息的第一监控周期通过以下方式之一进行确定:通过高层信令或物理层信令配置,且与承载时隙格式信息SFI的第二监控周期无关;通过高层信令或物理层信令配置,且所述第一监控周期小于或等于第二监控周期;通过高层信令或物理层信令配置,且所述第一监控周期为所述第二监控周期的子集。
本实施例还提供了另一种资源指示方法,包括:
用户设备UE被配置监控指示信息的周期为1个微时隙,参考资源为以下至少之一:
1个微时隙;
1个时隙中所有14个符号;
1个时隙中且不包含上行符号;
包含当前指示信息所在微时隙及之前连续U-1个微时隙,共计14个符号;
不包含当前指示信息所在微时隙但包含紧邻的之前连续U个微时隙, 共计14个符号,U为正整数,其中,指示信息用于在M个时域部分和/或N个频域部分中指示被抢占资源,所述M个时域部分是在时域上对参考资源中划分出M个部分得到,N个频域是在频域上对所述参考资源划分出N个部分得到。
本实施例还提供了又一种资源指示方法,包括:
用户设备UE收到指示信息后,刷新缓存;
其中刷新缓存包括以下方式至少之一:
在收到指示信息和指定信息时,按照指示信息指示的资源进行刷新缓存;
在收到指示信息和指定信息时,按照指定信息指示进行刷新缓存;
在收到指示信息和指定信息时,当指定信息指示不刷新缓存时,按照PI指示的资源进行刷新缓存;当指定信息指示刷新缓存时,按照指定信息指示进行刷新缓存;
在收到指示信息和指定信息时,当指定信息指示不刷新缓存时,则不刷新缓存;当指定信息指示刷新缓存时,按照指示信息指示的资源进行刷新缓存,所述指定信息用于指示是否将所有CBG对应的资源执行刷新缓存,其中,指示信息用于在M个时域部分和/或N个频域部分中指示被抢占资源,所述M个时域部分是在时域上对参考资源中划分出M个部分得到,N个频域是在频域上对所述参考资源划分出N个部分得到。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以 是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种资源指示装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的资源指示装置的结构框图,如图2所示,该装置包括:
配置模块20,配置为:配置抢占传输的参考资源,在时域上对参考资源中划分出M个部分,在频域上对参考资源划分出N个部分;
指示模块22,配置为:通过指示信息在所述M个时域部分和/或N个频域部分中指示被抢占资源,其中M≥1,N≥1,其中,所述参考资源的时域区域包含的下行符号数量包括以下至少之一:小于14;大于14。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本申请的可选实施例,用于结合不同场景下的实施方式对本申请进行详细说明:
下行参考资源区域对应的时域区域为1个slot时且包含上行符号时,或者下行参考资源区域对应的时域区域为若干正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号时,资源子块的划分方式包括以下至少之一:
方法1:仍然划分为14个资源子块。具体为在一个下行参考资源区域中划分时采用不少于一种时域粒度和不少于一种频域粒度。划分出的资源子块包含的资源大小不全相同。
方法2:划分出小于等于14个资源子块。具体为在一个下行参考资源区域划分时采用一种时域粒度和一种频域粒度。划分出的资源子块包含的资源大小相同。方法2进一步包括以下至少之一:
方法2-1:根据下行参考资源包含符号数为偶数或奇数选用不同候选粒度集合进行资源子块的划分。
方法2-2:根据下行参考资源包含符号数是否大于7选用不同候选粒度集合进行资源子块的划分。
方法2-3:首先根据下行参考资源包含符号数为偶数或奇数选用不同候选粒度集合进行资源子块的划分,其次在下行参考资源包含符号数为奇数时再根据是否大于7选用不同候选粒度集合进行资源子块的划分。
方法2-4:对包含上行符号在内的共计14个符号一起以{M,N}={14,1}或{7,2}划分出14个资源子块,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留即可。
所述下行参考资源区域对应的时域区域为2个slot,资源子块的划分方式包括以下至少之一:
方式一:slot中没有上行符号,当划分出的资源子块允许跨域slot边界时,通过{M,N}={14,1}或{7,2}划分后可以得到14个资源子块,此时分别使用的划分粒度为{2OS,1BW}或{4OS,1/2BW};当划分出的资源子块不允许跨域slot边界时,只配置{M,N}={14,1},即采用划分粒度为{2OS,1BW},或者{M,N}={14,1}和{7,2}均可配置,其中{M,N}={7,2}在两个slot中分别划分出不同数量的资源子块。
方式二:slot中包含上行符号,且两个slot的格式相同。下行参考资源 (DL reference resource)在每个slot具有N个符号。此时划分资源子块时,可以采用如下方法之一:方法1:划分为14个资源子块且每个slot均包含7个资源子块。方法2:划分为14个资源子块且每个slot均包含的资源子块数量相差不超过2个。方法3:划分为小于或等于14个资源子块,两个slot仅按照粒度{1OS,1BW}和/或{2OS,1BW}划分,不足14sub-blocks(资源子块)时剩余抢占指示/打孔指示(Pre-emption Indication,PI)指示bit保留不用即可。方法4:对包含上行符号在内的两个slot共计28个符号一起以{M,N}={14,1}或{7,2}划分出14个资源子块,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留即可。此时划分方法同方式一中的方法。
方式三:slot中包含上行符号,且两个slot的格式不同。下行参考资源(DL reference resource)在两个slot中分别具有N1和N2个符号。此时划分资源子块时,可以采用如下方法之一:方法1:划分为14个资源子块。按照N1和N2的比例分配出两个slot中包含的资源子块数目。在一个下行参考资源中划分资源子块时使用至少1种时频域粒度。方法2:划分出小于或等于14个资源子块。即按照N1和N2的比例划分各自slot中的sub-block数量,两个之和不超过14。在一个下行参考资源中划分资源子块时仅使用1种时频域粒度。方法3:对包含上行符号在内的两个slot共计28个符号一起以{M,N}={14,1}或{7,2}划分出14个资源子块,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留即可。此时划分方法同方式一中的方法。
所述下行参考资源区域对应的时域区域为大于2个slot,在划分资源子块时原则是划分出的资源子块数量不大于14个。对于不足14个时,剩余指示bit不使用或保留即可。此时以更大粒度的划分即可。
本实施例还包括以下多个实施方式:
实施方式1
基站发送时长较短的超高可靠、超低时延通信(URLLC)业务使用的资源为抢占已经分配给增强移动宽带(eMBB)业务的资源。并通过发送抢占指示信息通过被抢占资源的终端在配置的下行参考资源区域中哪些资源被抢占了。
其中下行参考资源区域对应的频域区域为终端的激活下行(Down Link,DL)部分带宽(Bandwidth part,BWP),对应的时域区域可配置,可以是时隙slot的整数倍或者可以是若干OFDM符号。
所述下行参考资源区域对应的时域区域为1个slot时,可以划分为M个时域部分和N个频域部分,候选的{M,N}为{14,1}或{7,2}且通过高层信令配置其一。
当1个slot的14个OFDM符号全都为下行符号,或下行符号和unknown符号时,此时下行参考资源区域在时域上为14个OFDM符号,通过{M,N}={14,1}或{7,2}划分后可以得到14个资源子块,每个资源子块通过1bit指示是否被抢占。图3是本实施方式的抢占传输示意图,包括3(A)和3(B)两个部分,如图3中3(A)按照{M,N}={7,2}划分,使用的划分粒度为{2OS,1/2BW},14个资源子块中第4个(假设按照先频域后时域编号14个资源子块)被抢占,即指示为00010000000000。如图3中3(B)按照{M,N}={14,1}划分,使用的划分粒度为{1OS,1BW},14个资源子块中第3,4,5个(假设按照先频域后时域编号14个资源子块)被抢占,即指示为00111000000000。其中假定‘0’表示没有被抢占,‘1’表示被抢占。说明:划分粒度{2OS,1/2BW}中OS表示OFDM symbol(OFDM符号),BW表示带宽(bandwidth),此时BW优选为激活DL BWP(下行部分带宽)。
当1个slot的14个OFDM符号中存在上行OFDM符号时,此时下行参考资源区域在时域上不足14个OFDM符号,又由于在划分资源子块时, 时域粒度最小是1个OFDM符号,所以不足14个OFDM符号时,存在难以通过{M,N}={14,1}或{7,2}划分后得到14个资源子块的情况。因此对于下行参考资源区域不足14个OFDM符号时,划分资源子块的方法如下所述。注意,下述方法同样适用于下行参考资源区域的时域配置为mini-slot或若干OFDM符号的场景。
解决方法1:仍然划分为14个资源子块。具体为在一个下行参考资源区域中划分时采用不少于一种时域粒度和不少于一种频域粒度。划分出的资源子块包含的资源大小不全相同。
例如:图4是本实施方式中不足14符号时划分资源子块示意图,包括4(A)和4(B),如图4中4(A)所示下行参考资源区域包含8个符号时,此时使用{1OS,1/2BW}和{2OS,1/2BW}粒度划分出14个资源子块,此时M=7,N=2。即划分时使用2种的时域粒度和1种频域粒度进行划分资源子块。
例如:如图4中4(B)所示下行参考资源区域包含6个符号时,此时使用{1OS,1/2BW}和{1OS,1/4BW}粒度划分出14个资源子块,此时M=7,N=2或4。即划分时使用1种时域粒度和2种频域粒度进行划分资源子块。
解决方法2:划分出小于等于14个资源子块。具体为在一个下行参考资源区域划分时采用一种时域粒度和一种频域粒度。划分出的资源子块包含的资源大小相同。
方法2-1:根据下行参考资源包含符号数为偶数或奇数选用不同候选粒度集合进行资源子块的划分。此时对于DL reference resource时域上包含偶数symbols时,划分资源子块时使用的粒度选择{1OS,1BW}和{2OS,1/2BW}其中之一;对于DL reference resource时域上包含奇数symbols时,仅配置{1OS,1BW}。
例如下行参考资源中包含8个符号,划分资源子块时使用粒度 {1OS,1BW}和{2OS,1/2BW}中之一,得到8个资源子块,此时{M,N}={8,1}和{4,2}中之一,此时使用8个bit指示每个资源子块是否被抢占即可,对于未使用的剩余比特保留即可。假设抢占指示固定使用14bit,则此时剩余6bit保留即可。
例如下行参考资源中包含7个资源子块时,使用{1OS,1BW}的粒度划分,此时{M,N}={7,1},此时使用7个bit指示每个资源子块是否被抢占即可,对于未使用的剩余比特保留即可。假设抢占指示固定使用14bit,则此时剩余7bit保留即可。
方法2-2:根据下行参考资源包含符号数是否大于7选用不同候选粒度集合进行资源子块的划分。此时DL reference resource时域上包含x个符号时,当0<x≤7时,使用{1OS,1BW}或{1OS,1/2BW}划分;当7<x<14时,使用{1OS,1BW}划分。
例如下行参考资源中包含8个符号,划分资源子块时使用粒度{1OS,1BW},得到8个资源子块,此时{M,N}={8,1},此时使用8个bit指示每个资源子块是否被抢占即可,对于未使用的剩余比特保留即可。假设抢占指示固定使用14bit,则此时剩余6bit保留即可。再
例如下行参考资源中包含5个资源子块时,使用{1OS,1BW}和{1OS,1/2BW}中之一的粒度划分,此时{M,N}={5,1}和{10,1}中之一,此时使用5个bit或10个bit指示每个资源子块是否被抢占即可,对于未使用的剩余比特保留即可。假设抢占指示固定使用14bit,则此时剩余9bit或4bit保留即可。
方法2-3:首先根据下行参考资源包含符号数为偶数或奇数选用不同候选粒度集合进行资源子块的划分,其次在下行参考资源包含符号数为奇数时再根据是否大于7选用不同候选粒度集合进行资源子块的划分。此时对于DL reference resource时域上包含偶数symbols时,划分资源子块时使用 的粒度选择{1OS,1BW}和{2OS,1/2BW}其中之一;对于DL reference resource时域上包含奇数symbols时,当0<x≤7时,使用{1OS,1BW},{1OS,1/2BW}划分;当7<x<14时,使用{1OS,1BW}划分。
例如下行参考资源中包含8个符号,划分资源子块时使用粒度{1OS,1BW}和{2OS,1/2BW}中之一,得到8个资源子块,此时{M,N}={8,1}和{4,2}中之一,此时使用8个bit指示每个资源子块是否被抢占即可,对于未使用的剩余比特保留即可。假设抢占指示固定使用14bit,则此时剩余6bit保留即可。
例如下行参考资源中包含9个资源子块时,使用{1OS,1BW}的粒度划分,此时{M,N}={9,1},此时使用9个bit指示每个资源子块是否被抢占即可,对于未使用的剩余比特保留即可。假设抢占指示固定使用14bit,则此时剩余5bit保留即可。
例如下行参考资源中包含5个资源子块时,使用{1OS,1BW}和{1OS,1/2BW}中之一的粒度划分,此时{M,N}={5,1}和{10,1}中之一,此时使用5个bit或10个bit指示每个资源子块是否被抢占即可,对于未使用的剩余比特保留即可。假设抢占指示固定使用14bit,则此时剩余9bit或4bit保留即可。
方法2-4:对包含上行符号在内的共计14个符号一起以{M,N}={14,1}或{7,2}划分出14个资源子块,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留即可。图5是本实施方式中资源子块划分示意图,包括5(A)和5(B),如图5所示,slot总上行符号数为2个,此时以{M,N}={7,2}划分出14个资源子块如5(A)所示,最后两个符号对应的两个资源子块无需指示;此时以{M,N}={14,1}划分出14个资源子块如5(B)所示,最后两个符号对应的两个资源子块无需指示。
解决方法3:根据下行参考资源包含符号数是否大于7使用不同候选粒 度进行资源子块的划分。此时DL reference resource时域上包含x个符号时:
优选的,当0<x<7时,使用一种粒度{1OS,1/2BW}划分出小于14个资源子块;当7≤x<14时,使用{1OS,1BW}和或{1OS,1/2BW}划分出14个资源子块。
优选的,当0<x≤7时,使用一种粒度{1OS,1/2BW})划分出小于或等于14个资源子块;当7<x<14时,使用{1OS,1BW}和或{1OS,1/2BW}划分出14个资源子块。
例如下行参考资源中包含13个符号,划分资源子块时使用其中1个(优选13个符号中的第1个)符号使用粒度{1OS,1/2BW},其余符号使用粒度{1OS,1BW},得到14个资源子块,此时M=13,N=1或2。即划分时使用1种时域粒度和2种频域粒度进行划分资源子块。此时使用14个bit指示每个资源子块是否被抢占。
例如下行参考资源中包含12个符号,划分资源子块时使用其中2个(优选13个符号中的前2个)符号使用粒度{1OS,1/2BW},其余符号使用粒度{1OS,1BW},得到14个资源子块,此时M=12,N=1或2。即划分时使用1种时域粒度和2种频域粒度进行划分资源子块。此时使用14个bit指示每个资源子块是否被抢占。
例如下行参考资源中包含5个符号,划分资源子块时使用粒度{1OS,1/2BW},得到10个资源子块,此时M=5,N=2。时使用10个bit指示每个资源子块是否被抢占即可,对于未使用的剩余比特保留即可。假设抢占指示固定使用14bit,则此时剩余4bit保留即可。
当0<x<7时,使用一种粒度(优选{1OS,1/2BW})划分,得到小于或等于14个资源子块,其中划分出的资源子块包含的资源大小相同;当7≤x<14时,对于其中(14-x)个符号使用一种粒度(优选{1OS,1/2BW})划分,对于其中(2x-14)个符号使用另一种粒度(优选{1OS,1BW})划分, 得到Y个资源子块。或者,当0<x≤7时,使用一种粒度(优选{1OS,1/2BW})划分,得到小于或等于14个资源子块,其中划分出的资源子块包含的资源大小相同;当7<x<14时,对于其中(14-x)个符号使用一种粒度(优先{1OS,1/2BW})划分,对于其中(2x-14)个符号使用另一种粒度(优选{1OS,1BW})划分,得到Y个资源子块,其中划分出的资源子块包含的资源大小不全相同。
解决方法4:
本方法优选适用于下行参考资源区域的时域配置为mini-slot或non-slot level粒度或若干OFDM符号level粒度的场景,但不仅限于此。
假设mini-slot或non-slot或若干OFDM符号包含的符号数目为x,x的可能取值为1至13中整数取值。下面以x=2为例进行说明,其余取值方法类似,不再赘述。
UE被配置监控抢占指示信息的周期为1个non-slot,即x=2个OFDM符号。此时抢占指示信息所指示的被抢占资源所对应的下行参考资源区域仍然为14个OFDM符号。
方法4-1:这14个符号为1个slot内的14个符号。此时划分资源子块仍然按照{M,N}={14,1}或{7,2}划分出14个资源子块。优选的,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留即可。该方法特点是在1个slot内收到的抢占指示信息是相同的,都是上一个slot中所有non-slot被抢占资源指示,并且多次收到相同的抢占指示信息可以提升抢占指示信息的可靠性。
方法4-2:这14个符号为包含当前抢占指示PI所在non-slot及之前的6个non-slot在内的共计14个符号,或者不包含当前抢占指示PI所在non-slot但包含紧邻的之前的7个non-slot在内的共计14个符号,其中每个non-slot包含x=2个符号。此时划分资源子块仍然按照{M,N}={14,1}或{7,2} 划分出14个资源子块。优选的,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留即可。该方法特点是在每个non-slot收到的抢占指示信息是最及时的,都是包含当前non-slot及之前6个not-slot在内的被抢占资源指示,或者是不包含当前non-slot单包含之前7个non-slot在内的被抢占资源指示。同时后收到的抢占指示信息可以后向检验之前收到的抢占指示信息中部分指示信息是否正确。
或者,UE被配置监控抢占指示信息的周期为1个non-slot,即x=2个OFDM符号。此时抢占指示信息所指示的被抢占资源所对应的下行参考资源区域为2个OFDM符号。
方法4-3:在2个OFDM符号中以时域1个符号粒度,频域1/7带宽的粒度划分,得到14个资源子块。通过14-bit的bitmap指示各个资源子块是否被抢占。
方法4-4:在2个OFDM符号中以时域1个符号粒度,频域1/2带宽的粒度划分,得到4个资源子块。通过14-bit的bitmap,指示各个资源子块是否被抢占,其中10bit保留或不使用即可。
方法4-5:在2个OFDM符号中以时域1个符号粒度,频域1/P带宽的粒度划分,得到2P个资源子块。通过14-bit的bitmap,指示各个资源子块是否被抢占,其中(14-2P)bit保留或不使用即可。P取值为集合{1,2,3,4,5,6,7}中至少之一。
更进一步的,对于剩余bit(或称为保留bit),可以不做任何使用,或者可以用来进一步指示划分为更为频域部分的资源是否被抢占。假定剩余bit数目为x,可以仅使用部分bit指示特定的频域划分部分,例如对于1BW:仅使用剩余bit中的2或4或8bit指示1/2或1/4或1/8粒度的频域资源是否被抢占;对于1/2BW:仅使用剩余bit中4或8bit指示1/4或1/8粒度的频域资源是否被抢占。也可以使用所有的xbit指示所能划分的频域部分, 例如对于1BW:使用x bit指示1/x粒度的频域资源是否被抢占。
通过本实施方式所述的一种资源指示方法,可以实现在固定指示开销的情况下适用于下行参考资源不足14符号时的资源指示,使得被抢占传输的数据可以获知打孔资源位置,避免大量重传数据和错误数据累积蔓延,仅传输被抢占的资源,提升系统频谱效率。
实施方式2
基站发送时长较短的URLLC业务使用的资源为抢占已经分配给eMBB业务的资源。并通过发送抢占指示信息通过被抢占资源的终端在配置的下行参考资源区域中哪些资源被抢占了。
其中下行参考资源区域对应的频域区域为终端的激活DL BWP,对应的时域区域可配置,可以是时隙slot的整数倍或者可以是若干OFDM符号。
本实施方式所述下行参考资源区域对应的时域区域为2个slot。
场景一:当每个slot的14个OFDM符号全都为下行符号,或下行符号和unknown符号时,此时下行参考资源区域在时域上为28个OFDM符号,通过{M,N}={14,1}或{7,2}划分后可以得到14个资源子块,此时分别使用的划分粒度为{2OS,1BW}或{4OS,1/2BW},每个资源子块通过1bit指示是否被抢占。注意,此时划分出的资源子块允许跨域slot边界。
当不允许划分出的资源子块跨越slot边界时,可以采用如下方法之一:
方法1:只配置{M,N}={14,1},即采用划分粒度为{2OS,1BW};
方法2:{M,N}={14,1}和{7,2}均可配置,其中{M,N}={7,2}在两个slot中分别划分出不同数量的资源子块。例如:图6是本实施方式中下行参考资源为2slot时资源子块划分示意图一,如图6所示,第一个slot使用粒度{5-5-4OS,1/2BW}划分出6个资源子块,第二个slot使用粒度{4-3-4-3OS,1/2BW}划分出8个资源子块。
场景二:slot中包含上行符号,且两个slot的格式相同。即此时每个slot 中包含的上行符号数量是相同的。此时两个slot中除掉UL symbols之后,DL reference resource具有2N个符号,即每个slot具有N个符号。此时划分资源子块时,可以采用如下方法之一:
方法1:划分为14个资源子块且每个slot均包含7个资源子块。此时可以对每个slot具有的N个符号划分为7份,频域采用1BW的粒度即划分为1份;或者时域划分为1份,频域划分为7份;或者时域划分为2份,第一份中频域划分为3份,第二份中频域划分为4份;等等。此时采用粒度不唯一。
方法2:划分为14个资源子块且每个slot均包含的资源子块数量相差不超过2个。此时可以对两个slot分别具有的N个符号划分为7份和7份,或者6份和8份。例如:N=8时,第一个slot时域划分为8份采用1OS的粒度,频域划分为1份采用1BW的粒度,第二个slot时域划分为6份采用1OS、2OS混合粒度,频域划分为1份采用1BW的粒度。
方法3:划分为小于或等于14个资源子块,两个slot仅按照粒度{1OS,1BW}和/或{2OS,1BW}划分,不足14sub-blocks时剩余PI指示bit保留不用即可。例如:当UL symbols数目小于7时且为偶数时,使用2OS的粒度,图7是本实施方式中下行参考资源为2slot时资源子块划分示意图二,如图7所示,当UL symbols数目小于7时且为奇数时,使用2OS和1OS的混合粒度;当UL symbols数目大于等于7时,使用1OS的粒度,图8是本实施方式中下行参考资源为2slot时资源子块划分示意图三,图8所示。
方法4:对包含上行符号在内的两个slot共计28个符号一起以{M,N}={14,1}或{7,2}划分出14个资源子块,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留即可。此时划分方法同场景一中的方法。
场景三:slot中包含上行符号,且两个slot的格式不同。即此时每个slot中包含的上行符号数量是不同的。此时两个slot中除掉UL symbols之后,DL reference resource在两个slot中分别具有N1和N2个符号。此时划分资源子块时,可以采用如下方法之一:
方法1:划分为14个资源子块。按照N1和N2的比例分配出两个slot中包含的资源子块数目。即按照N1和N2的比例划分各自slot中的sub-block数量,两个之和为14。alt.1当比例满足3:4时,可以按照{14,1}或{7,2}划分;alt.2当比例不满足3:4时,仅按照{14,1}划分。在一个下行参考资源中划分资源子块时使用至少1种时频域粒度。
方法2:划分出小于或等于14个资源子块。即按照N1和N2的比例划分各自slot中的sub-block数量,两个之和不超过14。在一个下行参考资源中划分资源子块时仅使用1种时频域粒度。
方法3:对包含上行符号在内的两个slot共计28个符号一起以{M,N}={14,1}或{7,2}划分出14个资源子块,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留即可。此时划分方法同场景一中的方法。
通过本实施方式所述的一种资源指示方法,可以实现在固定指示开销的情况下适用于下行参考资源为大于1个slot时的资源指示,使得被抢占传输的数据可以获知打孔资源位置,避免大量重传数据和错误数据累积蔓延,仅传输被抢占的资源,提升系统频谱效率。
实施方式3
基站发送时长较短的URLLC业务使用的资源为抢占已经分配给eMBB业务的资源。并通过发送抢占指示信息通过被抢占资源的终端在配置的下行参考资源区域中哪些资源被抢占了。
其中下行参考资源区域对应的频域区域为终端的激活DL BWP,对应 的时域区域可配置,可以是时隙slot的整数倍或者可以是若干OFDM符号。
本实施方式所述下行参考资源区域对应的时域区域为大于2个slot时的场景,例如5或10或20个slot。
对于大于2个slot时的场景,在划分资源子块时遵循的原则是划分出的资源子块数量不大于14个。对于不足14个时,剩余指示bit不使用或保留即可。此时以更大粒度的划分即可,例如:
对于DL reference resource=5slots,每个slot分为2个sub-blocks,共计10个sub-blocks。优选的,每个slot中时域对半分为两个部分,或频域对半分份为两个部分即可。
对于DL reference resource=10slots,每个slot看作1个sub-block,共计10个sub-block。
对于DL reference resource=20slots,每2个slot看作1个sub-block,共计10个sub-block。
通过本实施方式所述的一种资源指示方法,可以实现在固定指示开销的情况下适用于下行参考资源为大于1个slot时的资源指示,使得被抢占传输的数据可以获知打孔资源位置,避免大量重传数据和错误数据累积蔓延,仅传输被抢占的资源,提升系统频谱效率。
基于上述实施方式1、2、3中任意一个,所述下行参考资源的时域区域确定方式为等于承载抢占指示的下行控制信息的监控周期,对于承载抢占指示的下行控制信息的监控周期确定包括以下至少之一:
方式一:通过高层信令或物理层信令配置,且与承载时隙格式信息SFI的下行控制信息的监控周期无关。
方式二:通过高层信令或物理层信令配置,且承载抢占指示的下行控制信息的监控周期小于或等于承载时隙格式信息SFI的下行控制信息的监控周期。例如承载时隙格式信息SFI的下行控制信息的监控周期为2slot, 则承载抢占指示的下行控制信息的监控周期可以是1slot或2slot。
方式三:通过高层信令或物理层信令配置,且承载抢占指示的下行控制信息的监控周期为承载时隙格式信息SFI的下行控制信息的监控周期的子集。例如承载时隙格式信息SFI的下行控制信息的监控周期为1,2,5,10,20个slot,则承载抢占指示的下行控制信息的监控周期可以是1,2,5个slot。
通过本实施方式所述的频域区域资源配置方法,可以实现下行参考资源内包含多个slot时每个slot格式相同,避免不均等下行符号划分,实现抢占传输时使用均匀的下行参考资源,降低基站或终端的处理复杂度。
通过本实施方式,通信系统中具有不同传输时间的业务在传输时,具有较长传输时间的业务被具有较短传输时间业务抢占资源传输,解决如何确定该抢占资源指示的问题。
实施例4
终端收到抢占指示信息后,如何执行刷新缓存(flush buffer),包括以下方式至少之一
方式一:在仅收到抢占指示PI(Preemption Indication)的情况下,按照PI指示的资源进行刷新缓存。
方式二:在仅收到抢占指示PI的情况下,按照PI指示的资源对应的CBG进行刷新缓存。其中优选包含被抢占指示资源的编码块组(CBG,Code Block Group)都需要刷新缓存。
方式三:在同时收到PI和CBGFI(CBG Flush Indication,指示是否将所有CBG对应的资源执行刷新缓存),按照PI指示的资源进行刷新缓存。具体刷新缓存的方式优选方式一或二但不仅限于此。
方式四:在同时收到PI和CBGFI,按照CBGFI指示进行刷新缓存。将所有CBG对应的资源执行刷新缓存
方式五:在同时收到PI和CBGFI,当CBGFI指示不刷新缓存时,按 照PI指示的资源进行刷新缓存,具体刷新缓存的方式优选方式一或二但不仅限于此;当CBGFI指示刷新缓存时,按照CBGFI指示进行刷新缓存,优选将所有CBG对应的资源执行刷新缓存。
方式六:在同时收到PI和CBGFI,当CBGFI指示不刷新缓存时,则不刷新缓存;当CBGFI指示刷新缓存时,按照PI指示的资源进行刷新缓存,具体刷新缓存的方式优选方式一或二但不仅限于此。
上述方式三、四、五、六同样适用于先收到PI收到CBGFI的场景,或先收到CBGFI后收到PI的场景。
通过本实施例所述的刷新缓存方法,可以解决终端如何根据PI刷新缓存,或者如何同时根据PI和CBGFI刷新缓存。
实施例5
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,配置抢占传输的参考资源,在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;
S2,通过指示信息在所述M个时域部分和/或N个频域部分中指出被抢占资源,其中M≥1,N≥1;其中,所述参考资源的时域区域包含的下行符号数量包括以下至少之一:小于14;大于14。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的实施例还提供了一种处理器,该处理器用于运行程序,其中, 该程序运行时执行上述任一项方法中的步骤。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,配置抢占传输的参考资源,在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;
S2,通过指示信息在所述M个时域部分和/或N个频域部分中指出被抢占资源,其中M≥1,N≥1;其中,所述参考资源的时域区域包含的下行符号数量包括以下至少之一:小于14;大于14。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中,配置抢占传输的参考资源,并在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;通过 指示信息在所述M个时域部分和/或N个频域部分中指出被抢占资源,其中,参考资源的时域区域包含的下行符号数包括以下至少之一:小于14;大于14。通过配置参考资源的时域区域包含的下行符号数为非14的情况(小于14和/或大于14的情形),解决了相关技术中业务抢占资源传输时不能有效指示抢占资源的问题,提高了通行系统的业务性能和资源利用率。

Claims (23)

  1. 一种资源指示方法,包括:
    配置抢占传输的参考资源,在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;
    通过指示信息在所述M个时域部分和/或N个频域部分中指出被抢占资源,其中M≥1,N≥1;
    其中,所述参考资源的时域区域包含的下行符号数量包括以下至少之一:小于14;大于14。
  2. 根据权利要求1所述的方法,其中,所述参考资源中的时域区域为以下至少之一:
    1个时隙且包含上行符号;
    1个时隙且不包含上行符号;
    1个微时隙,且包含符号数为x,其中1≤x≤13。
  3. 根据权利要求2所述的方法,其中,采用不少于一种时域粒度和不少于一种频域粒度划分所述参考资源,得到Y个资源子块,其中,划分出的资源子块包含的资源大小不全相同,其中,Y为正整数。
  4. 根据权利要求2所述的方法,其中,采用一种时域粒度和一种频域粒度划分所述参考资源,得到小于或等于Y个资源子块,其中,划分出的资源子块包含的资源大小相同,所述一种时域粒度和一种频域粒度为固定取值或可通过信令指示的,其中,Y为正整数。
  5. 根据权利要求4所述的方法,其中,采用一种时域粒度和一种频域粒度划分所述参考资源包括以下至少之一:
    根据所述参考资源包含符号数为偶数或奇数选用不同候选粒度集合划分所述参考资源;
    根据所述参考资源包含符号数是否大于7选用不同候选粒度集合划分 所述参考资源;
    根据所述参考资源包含符号数为偶数或奇数,以及是否大于7,选用不同候选粒度集合划分所述参考资源;
    对所述参考资源包含上行符号在内的14个符号进行划分,当划分出的资源子块中的资源完全为上行资源时,指示该资源子块的bit不使用或保留。
  6. 根据权利要求5所述的方法,其中,所述候选粒度集合包括以下至少之一:{1OS,1BW},{2OS,1/2BW},{1OS,1/2BW};其中,OS表示正交频分复用符号;BW表示激活部分带宽BWP。
  7. 根据权利要求2所述的方法,其中,根据所述参考资源包含符号数x是否大于P,确定使用不同候选粒度划分所述参考资源得到资源子块,其中P为正整数;其中,1/P带宽为频域的划分粒度。
  8. 根据权利要求7所述的方法,其中,在0<x≤7时,使用一种粒度以时域1个符号粒度、频域1/2 BWP的粒度{1 OS,1/2 BW}划分,得到小于或等于Y个资源子块,其中划分出的资源子块包含的资源大小相同;当7<x<14时,对于其中(14-x)个符号使用粒度{1OS,1/2 BW}划分,对于其中(2x-14)个符号使用以时域1个符号粒度、频域1 BWP的粒度{1OS,1BW}划分,得到Y个资源子块,其中划分出的资源子块包含的资源大小不完全相同,其中,Y为正整数。
  9. 根据权利要求1所述的方法,其中,所述参考资源中的时域区域为以下至少之一:
    2个时隙且包含上行符号;
    2个时隙且不包含上行符号。
  10. 根据权利要求9所述的方法,其中,所述参考资源的划分方式包括以下至少之一:
    在时隙中没有上行符号,当划分出的资源子块允许跨越时隙边界时, 通过配置{M,N}={14,1}或{7,2}划分所述参考资源得到14个资源子块,其中,{M,N}={14,1}和{M,N}={7,2}对应的划分粒度为{2OS,1BW}和{4OS,1/2BW};其中,{2OS,1BW}为时域2个符号、频域1 BWP的粒度;{4OS,1/2BW}为时域4个符号、频域1/2 BWP的粒度;
    在时隙中没有上行符号,当划分出的资源子块不允许跨越时隙边界时,通过配置{M,N}={14,1}使用划分粒度{2OS,1BW}划分所述参考资源得到14个资源子块;
    在时隙中没有上行符号,当划分出的资源子块不允许跨越时隙边界时,通过配置{M,N}={14,1}和{7,2}划分所述参考资源得到14个资源子块,其中{M,N}={7,2}在两个时隙中分别划分出不同数量的资源子块。
  11. 根据权利要求9所述的方法,其中,所述参考资源的划分方式包括以下至少之一:
    在时隙中包含上行符号,且两个时隙的格式相同时,将所述参考资源划分为Y个资源子块且每个时隙均包含7个资源子块;
    在时隙中包含上行符号,且两个时隙的格式相同时,将所述参考资源划分为Y个资源子块且每个时隙均包含的资源子块数量不同但相差不超过2个;
    在时隙中包含上行符号,且两个时隙的格式相同时,两个时隙按照划分粒度{1OS,1BW}和/或{2OS,1BW}划分所述参考资源得到小于或等于Y个资源子块;
    在时隙中包含上行符号,且两个时隙的格式相同时,对包含上行符号在内的两个时隙的28个符号划分所述参考资源得到Y个资源子块,当资源子块中的资源完全为上行资源时,则指示该资源子块的bit不使用或保留,其中,Y为正整数。
  12. 根据权利要求9所述的方法,其中,对所述参考资源的划分方式 包括以下至少之一:
    在时隙中包含上行符号,且两个时隙的格式不相同时,在一个所述参考资源中使用至少1种时频域划分粒度按照N1和N2的比例分配出两个时隙中包含的资源子块数目,得到Y个资源子块;
    在时隙中包含上行符号,且两个时隙的格式不相同时,在一个所述参考资源中划分资源子块时仅使用1种时频域粒度按照N1和N2的比例划分各自时隙中的资源子块数目,得到小于或等于Y个资源子块;
    在时隙中包含上行符号,且两个时隙的格式不相同时,对包含上行符号在内的两个时隙的28个符号划分出Y个资源子块,当资源子块中的资源完全为上行资源时,指示该资源子块的比特不使用或保留;
    其中,所述参考资源在两个时隙中分别具有N1和N2个符号,其中,Y为正整数。
  13. 根据权利要求1所述的方法,其中,所述参考资源中的时域区域为以下至少之一:
    大于2个时隙且包含上行符号;
    大于2个时隙且不包含上行符号。
  14. 根据权利要求13所述的方法,其中,所述参考资源的划分方式包括:
    将所述参考资源划分划分为小于或等于Y个资源子块,其中,Y为正整数。
  15. 根据权利要求14所述的方法,其中,还包括以下至少之一:
    在资源子块不足14个时,指示剩余资源子块的比特不使用或保留;在资源子块小于或等于14个时;
    当资源子块中的资源完全为上行资源时,指示该资源子块的比特不使用或保留。
  16. 根据权利要求3、4、8、11、12或14所述的方法,其中,Y=14。
  17. 根据权利要求1所述的方法,其中,所述方法还包括:
    确定所述抢占指示信息的第一监控周期;
    将所述参考资源的时域区域确定为所述第一监控周期的时域区域。
  18. 根据权利要求17所述的方法,所述抢占指示信息的第一监控周期通过以下方式之一进行确定:
    通过高层信令或物理层信令配置,且与承载时隙格式信息SFI的第二监控周期无关;
    通过高层信令或物理层信令配置,且所述第一监控周期小于或等于第二监控周期;
    通过高层信令或物理层信令配置,且所述第一监控周期为所述第二监控周期的子集。
  19. 一种资源指示方法,包括:
    用户设备UE被配置监控指示信息的周期为1个微时隙,参考资源为以下至少之一:
    1个微时隙;
    1个时隙中所有14个符号;
    1个时隙中且不包含上行符号;
    包含当前指示信息所在微时隙及之前连续U-1个微时隙,共计14个符号;
    不包含当前指示信息所在微时隙但包含紧邻的之前连续U个微时隙,共计14个符号,U为正整数,其中,指示信息用于在M个时域部分和/或N个频域部分中指示被抢占资源,所述M个时域部分是在时域上对参考资源中划分出M个部分得到,N个频域是在频域上对所述参考资源划分出N个部分得到。
  20. 一种资源指示方法,包括:
    用户设备UE收到指示信息后,刷新缓存;
    其中刷新缓存包括以下方式至少之一:
    在收到指示信息和指定信息时,按照指示信息指示的资源进行刷新缓存;
    在收到指示信息和指定信息时,按照指定信息指示进行刷新缓存;
    在收到指示信息和指定信息时,当指定信息指示不刷新缓存时,按照指示信息PI指示的资源进行刷新缓存;当指定信息指示刷新缓存时,按照指定信息指示进行刷新缓存;
    在收到指示信息和指定信息时,当指定信息指示不刷新缓存时,则不刷新缓存;当指定信息指示刷新缓存时,按照指示信息指示的资源进行刷新缓存,所述指定信息用于指示是否将所有编码块组CBG对应的资源执行刷新缓存,其中,指示信息用于在M个时域部分和/或N个频域部分中指示被抢占资源,所述M个时域部分是在时域上对参考资源中划分出M个部分得到,N个频域是在频域上对所述参考资源划分出N个部分得到。
  21. 一种资源指示装置,包括:
    配置模块,配置为:配置抢占传输的参考资源,在时域上对所述参考资源中划分出M个部分,在频域上对所述参考资源划分出N个部分;
    指示模块,配置为:通过指示信息在所述M个时域部分和/或N个频域部分中指示被抢占资源,其中M≥1,N≥1,其中,所述参考资源的时域区域包含的下行符号数量包括以下至少之一:小于14;大于14。
  22. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至18任一项所述的方法、执行权利要求19所述的方法和/或执行权利要求20所述的方法。
  23. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时 执行权利要求1至18任一项所述的方法、执行权利要求19所述的方法和/或执行权利要求20所述的方法。
PCT/CN2018/116047 2017-11-17 2018-11-16 资源指示方法及装置、存储介质和处理器 WO2019096280A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207017497A KR102507308B1 (ko) 2017-11-17 2018-11-16 자원 지시 방법 및 장치, 기억매체와 프로세서
US16/764,570 US11375502B2 (en) 2017-11-17 2018-11-16 Resource indication method and device, storage medium, and processor
EP18878452.4A EP3713344A4 (en) 2017-11-17 2018-11-16 METHOD AND DEVICE FOR RESOURCE DISPLAY, STORAGE MEDIUM AND PROCESSOR
JP2020526507A JP7040865B2 (ja) 2017-11-17 2018-11-16 リソース指示方法、装置、記憶媒体およびプロセッサ
MX2020005159A MX2020005159A (es) 2017-11-17 2018-11-16 Metodo y dispositivo de indicacion de recursos, medio de almacenamiento y procesador.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148877.5A CN109803410B (zh) 2017-11-17 2017-11-17 资源指示方法及装置
CN201711148877.5 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019096280A1 true WO2019096280A1 (zh) 2019-05-23

Family

ID=66540031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116047 WO2019096280A1 (zh) 2017-11-17 2018-11-16 资源指示方法及装置、存储介质和处理器

Country Status (7)

Country Link
US (1) US11375502B2 (zh)
EP (1) EP3713344A4 (zh)
JP (1) JP7040865B2 (zh)
KR (1) KR102507308B1 (zh)
CN (1) CN109803410B (zh)
MX (1) MX2020005159A (zh)
WO (1) WO2019096280A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996341B (zh) * 2017-12-29 2023-03-24 华为技术有限公司 控制信息的传输方法
JP7119097B6 (ja) * 2018-01-09 2022-10-03 オッポ広東移動通信有限公司 Bwpの周波数ホッピング設定方法及びネットワーク装置、端末
WO2020163986A1 (zh) * 2019-02-11 2020-08-20 Oppo广东移动通信有限公司 一种资源指示方法、终端设备及网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888079A (zh) * 2017-02-09 2017-06-23 北京小米移动软件有限公司 资源分配方法及装置
US20170311337A1 (en) * 2014-08-22 2017-10-26 Zte Corporation Data Processing Implementation Method, Base Station and User Equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634700A (zh) 2014-11-07 2016-06-01 中兴通讯股份有限公司 非授权载波中信道的设计方法及装置
US10225847B2 (en) 2015-04-10 2019-03-05 Lg Electronics Inc. Method and device for transmitting/receiving D2D signal considering priority in wireless communication system
US10425193B2 (en) * 2015-12-23 2019-09-24 Qualcomm Incorporated Resource requirement signaling and rate setting
CN107295646B (zh) * 2016-03-31 2021-08-31 华为技术有限公司 一种资源分配方法及网络设备
GB2562120A (en) * 2017-05-05 2018-11-07 Tcl Communication Ltd Preemption indication details for eMBB-URLLC multiplexing in wireless communication systems
EP3684131A1 (en) * 2017-06-16 2020-07-22 Telefonaktiebolaget LM Ericsson (publ) Pre-emption indication message
CN107241288B (zh) * 2017-06-19 2020-10-16 宇龙计算机通信科技(深圳)有限公司 业务复用场景下指示被占用的资源的方法及装置
KR102365147B1 (ko) * 2017-08-10 2022-02-18 애플 인크. 뉴 라디오에 대한 선점 지시들

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170311337A1 (en) * 2014-08-22 2017-10-26 Zte Corporation Data Processing Implementation Method, Base Station and User Equipment
CN106888079A (zh) * 2017-02-09 2017-06-23 北京小米移动软件有限公司 资源分配方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "On pre-emption indication for DL multiplexing of URLLC and eMBB", 3GPP TSG RAN WG1 MEETING #90BIS R1-1717081, 13 October 2017 (2017-10-13), XP051340272 *
See also references of EP3713344A4 *
ZTE: "On pre-emption indication", 3GPP TSG RAN WG1 MEETING 90BIS R1-1717043, 13 October 2017 (2017-10-13), XP051340235 *

Also Published As

Publication number Publication date
JP7040865B2 (ja) 2022-03-23
EP3713344A4 (en) 2021-12-22
KR20200088426A (ko) 2020-07-22
KR102507308B1 (ko) 2023-03-08
CN109803410A (zh) 2019-05-24
EP3713344A1 (en) 2020-09-23
MX2020005159A (es) 2020-11-06
JP2021503228A (ja) 2021-02-04
CN109803410B (zh) 2024-06-07
US11375502B2 (en) 2022-06-28
US20200389895A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US10172154B2 (en) Method and device for sending control information and method and device for receiving control information
US20210099987A1 (en) Allocating transmission resources in communication networks that provide low latency services
WO2019096280A1 (zh) 资源指示方法及装置、存储介质和处理器
CN109495223B (zh) 资源指示方法及装置、存储介质
CN110830194A (zh) 上行信道资源的指示及确定方法、基站、终端、介质
MX2011013688A (es) Metodo y dispositivo para transmitir informacion de posicionamiento.
WO2019062748A1 (zh) 确定资源分配、指示资源分配的方法、终端及网络侧设备
US20130188564A1 (en) Resource allocation in an orthogonal frequency division multiplexing system
US20200403753A1 (en) Wireless communication method, enhanced node b and user equipment
CN108811115A (zh) eMBB业务数据的抢占处理方法、装置、基站及用户设备
US8627173B2 (en) Method, apparatus, and user equipment for checking false alarm
WO2018126845A1 (zh) 资源指示方法、装置、基站及终端
WO2017121413A1 (zh) 资源的使用方法及装置
WO2017031643A1 (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置
EP4013151A1 (en) Resource indication method and apparatus, and service node and storage medium
WO2020125708A1 (zh) 上行控制信息的上报方法及装置、存储介质、用户终端
WO2020125289A1 (zh) 占有时隙的确定方法及装置、存储介质、用户终端
CN109586859B (zh) 一种资源复用方法及装置、存储介质、终端、基站
CN111741533A (zh) 资源调度的指示消息的处理方法及装置
WO2022012640A1 (zh) 用于频谱共享的信道资源分配方法、装置、基站及介质
CN107370703B (zh) 信息的收发方法、装置及系统
CN112312564B (zh) 通信业务的调度方法及其装置、存储介质
JP6956202B2 (ja) ダウンリンクチャネル伝送および受信方法、装置、基地局および端末
CN103299693B (zh) 正交频分多址接入方法、装置和系统
CN106656439B (zh) 共享频段下行多子带资源分配方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207017497

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018878452

Country of ref document: EP

Effective date: 20200617