WO2019096036A1 - Improvements in or relating to reducing random access for paged user equipment (ue) in new radio (nr) - Google Patents

Improvements in or relating to reducing random access for paged user equipment (ue) in new radio (nr) Download PDF

Info

Publication number
WO2019096036A1
WO2019096036A1 PCT/CN2018/114260 CN2018114260W WO2019096036A1 WO 2019096036 A1 WO2019096036 A1 WO 2019096036A1 CN 2018114260 W CN2018114260 W CN 2018114260W WO 2019096036 A1 WO2019096036 A1 WO 2019096036A1
Authority
WO
WIPO (PCT)
Prior art keywords
paging
preamble
index
allocation
paged
Prior art date
Application number
PCT/CN2018/114260
Other languages
French (fr)
Inventor
Michal PALGY
Original Assignee
Jrd Communication (Shenzhen) Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jrd Communication (Shenzhen) Ltd filed Critical Jrd Communication (Shenzhen) Ltd
Priority to CN201880072320.4A priority Critical patent/CN111316748B/en
Publication of WO2019096036A1 publication Critical patent/WO2019096036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • Embodiments of the present invention generally relate to wireless communication systems and in particular to devices and methods for enabling a wireless communication device, such as a User Equipment (UE) or mobile device to access a Radio Access Technology (RAT) or Radio Access Network (RAN) .
  • UE User Equipment
  • RAT Radio Access Technology
  • RAN Radio Access Network
  • the invention relates, particularly but nor exclusively to improvementsin or relating to reducing random access latency and overhead for paged User Equipment (UE) in New Radio (NR) without introducing additional overhead to the paging related message.
  • Wireless communication systems such as the third-generation (3G) of mobile telephone standards and technology are well known.
  • 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • the 3 rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications.
  • Communication systems and networks have developed towards a broadband and mobile system.
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • NR new radio
  • EP3085189A1 discloses a contention free RA after paging, and the explicit allocation of a dedicated RA preamble over the Paging Message (PM) and/or Paging Indication (PI) and/or Radio Resource Control (RRC) configuration.
  • PM Paging Message
  • PI Paging Indication
  • RRC Radio Resource Control
  • the mainway to maintain NR PRACH spectral efficiency at least as high as in LTE is to increase the sequence pool size. This may be at the cost of a small increase of cross-correlation among sequences and Peak-to-Average Power Ratio (PAPR) . Nevertheless, sequences with low correlation properties can be selected to be primarily deployed in the same cells as it is done currently in LTE. Finally, if new sequences are also of constant envelop, the PAPR can be kept reasonable.
  • PAPR increases compared to pure ZC but only slightly as the additional sequences are also of constant envelop. It has beenshown that the resulting PAPR is even less than for Physical Uplink Shared Channel (PUSCH) with Discrete Fourier Transform (DFT) -s-Orthogonal Frequency Division Multiplexing (OFDM) with 4-Quadrature Amplitude Modulation (QAM) constellation, and thus much less than for PUSCH with OFDM which will be supported in NR.
  • DFT Discrete Fourier Transform
  • OFDM Orthogonal Frequency Division Multiplexing
  • QAM 4-Quadrature Amplitude Modulation
  • a simplified 2-step RACH aims to carry the content of legacy Msg3 in Msg1, and thus the round trip time of Msg3 and Msg4 could be saved.
  • 2-step RACH saves the latency of the SR procedure to get uplink (UL) grant for transmitting RRC message.
  • the simplified 2-step RACH can reduce C-plane latency more effectively and hence maybe considered in Rel-16 when discussing C-plane latency reduction.
  • an RA preamble is not allocatedto a UE, moreover it introduces about the same PHY allocation overhead as the 4-step RACH (since unified Msg1+Msg3 and unified Msg2+Msg4 are still four messages) .
  • the present invention is seeking to solveat least some of the outstanding problems in this domain.
  • a method for enabling a wireless communication device to access services provided by a Radio Access Network comprising paging one or more UEs, wherein a predetermined assigned RA preamble is communicated to the or each UE, at least partially in an implicit signalling over a paging related message.
  • the paging related message includes one or more of a paging indicator (PI) and a paging message (PM) .
  • PI paging indicator
  • PM paging message
  • the predetermined assigned RA is according to a paging related message physical allocation.
  • the physical allocation is at leastone of frequency and time based.
  • the communication of the predetermined assigned RA preamble is partially made semi-statically by an RRC configuration process.
  • a contention-free RA comprising dynamically enabling or disabling a contention-free RA, by at least one of a single bit added to a paging payload and according to a comparison of at least two predefined entries in the list of the or each paged UE given by a PM.
  • the RRC configuration includes system information.
  • the assigned RA preamble for each UE may involve one or more of: a dedicated logical ZC root index; a cyclic shift of a ZC root index; time allocation; frequency allocation; Orthogonal Cover Code (OCC) index across multiple/repeated PRACH preamble; M-sequence cover code index; configuration of different ZC sequences across multiple PRACH preambles; and configuration of sinusoidal modulation.
  • CFRA contention-free RA
  • the physical resource allocation of at least the PI on PDCCH comprises at least one of a start CCE index and a start OFDM index of the DCI.
  • the physical resource allocation of at least the PM on PDSCH comprises at least one of a start PRB index and a start OFDM index.
  • the physical resource allocation is based on at least one of a dedicated frequency allocation and a dedicated time allocation.
  • the Radio Access Network is a New Radio/5G network.
  • a base station According to a second aspect of the present invention there is provided a base station.
  • a non-transitory computer readable medium having computer readable instructions stored thereon for execution by a processor to perform the method of another aspect of the present invention.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • Figure 1a is a diagram showing paging followed by RA in a contention based RA procedure, in accordance with an embodiment of the present invention
  • Figure 1b is a diagram showing paging followed by RA in an assigned RA preamble that is implicitly signalled over Paging Indication (PI) according to its start n_Control Channel Element (CCE) or CCE index, in accordance with an embodiment of the present invention
  • Figure 1c is a diagram showing paging followed by RA in an assigned RA preamble that is implicitly signalled over the Paging Message (PM) , according to its start Physical Resource Block (PRB) or PRB index, in accordance with an embodiment of the present invention.
  • PM Paging Message
  • PRB Physical Resource Block
  • the present invention relates to a wireless communication system with a paging mechanism followedby a Random Access (RA) response.
  • RA Random Access
  • the present invention provides a method and systems to reduce the RA overhead when a UE is paged. This occurs without introducing additional overhead to the Paging Indication (PI) or to the Paging Message (PM) .
  • PI Paging Indication
  • PM Paging Message
  • the term “paging related message” is intended to include both a PI and a PM and any combination or equivalent thereof.
  • the signalling of the RA preamble assignment is generally implicit and has a negligible impact on the PI and/or the PM length (if any) .
  • the need for a 4-step contention based RA procedure is obviated and instead a 2-step contention free RA procedure is used. As a consequence, the average RA latency for a paged UE is reduced.
  • the presentinvention also allows further network (NW) optimization.
  • NW network
  • the probability for a successful RA can be kept close to one. This is equivalent to a process without collisions. It is still possible that channel and interference such as overlapping PUSCH transmissions may still cause RA failure.
  • NW optimization results in a lower chance for another paging iteration and thus reduces further the paging overhead.
  • an implicit signalling of the assigned RA preamble over the PI and/or the PM, and explicit and/or implicit indication of this assignment (i.e. enable/disable of the contention-free RA) dynamically over the PI and/or the PM or semi-statically by a RRC configuration process is proposed.
  • an efficient signalling for a group of paged UEs that are listed within the same PM is also implemented.
  • the present invention provides a number of improvements since it reduces both the amount of PRACH collisions and the amount of Physical layer (PHY) allocation, for example only Msg1 and Msg2.
  • PHY Physical layer
  • the presentinvention utilizes PI and/or PM to signal the paged UE a predetermined assigned RA preamble as a part of a contention-free RA procedure with a negligible increase (if any) in the PI/PM payload length.
  • Asingle bit is added to PI/PM payload or implicitly signalled according to, for example, the ascending/descending list order of the paged UEs in case this feature of reduced RA is dynamically enabled/disabled; for the later, at least two entries in the list arecompared to determine this indication, thus the list does not need to be fully sorted.
  • Other method may be used instead of or in conjunction with the addition of a single bit. In an alternative, it may instead be semi-statically controlled by RRC configuration.
  • One is a dynamic indication within the PI/PM payload or according to the ascending/descending list order of the paged UEs. It is generally sufficient to compare at least two entries in the list.
  • Another is semi-statically by RRC configuration, such as for examplesystem info) .
  • An option for hard-coded contention-free RA (CFRA) to paging is not precluded.
  • CFRA contention-free RA
  • this configuration gives the flexibility to have some paged UE groups with CFRA and some paged UE groups with contention-based RA (CBRA) . This particularly thecase if there are not enough reserved RA preambles for CFRA.
  • An assigned RA preamble for each UE may involve one or more of:
  • OCC Orthogonal Cover Code
  • the later four may be useful for RACH capacity enhancement, to allow more UEs simultaneously transmitting the same PRACH preamble index (i.e., a ZC root index and a cyclic shift) at overlapping time/frequency. This is hereafter referred to as a cover extension to the ZC sequences.
  • PRACH preamble index i.e., a ZC root index and a cyclic shift
  • LTE RA preambles In general the number of LTE RA preambles is 64, although in some cases 256 preambles are being suggested. The use of cover extension is discussed and may further multiply the amount of RA preambles as required in NR.
  • the gNB is not expected to reserve a very big pool of RA preambles for CFRA.
  • the proposed joint-procedure for paging and related RA would thus allow contention-free RA procedure, which has substantially reduced latency and overhead in comparison with contention-based RA procedures. This is achieved without introducing a paging overhead. Moreover, this feature can be dynamically enabled/disabled or semi-statically controlled by RRC configuration.
  • the detector may need to perform more correlations due to the cover extension, but only to the assigned RA preambles. Thus there would not be significant disadvantages, if any.
  • the gNB may preliminarily allocate Non-Contention-Based (NCB) and Contention-Based (CB) PRACH preambles, in order to avoid collisions. This may be similar to the processes in LTE for RRC_CONNECTED UEs to allow the contention-free RA.
  • the assigned RA preamble for a paged UE may be selected from the NCB set.
  • the gNB can assign any PRACH preamble (i.e., not restricted to the NCB set) for the paged-UEs.
  • PRACH preamble i.e., not restricted to the NCB set
  • the gNB may assign PRACH preamble indices from a pre-allocated NCB set for the paged UEs.
  • the signalling of the contention-free RA indication may be either explicit (e.g. 1-bit) or implicit. Anexplicit way maybe within either the PI payload or the PM payload. Such signalling has a negligible impact on the PI and/or PM lengths. Another implicit way would be according to the ascending/descending list order of the paged UEs given in the PM; at least two entries in the list are compared to determine this indication, thus the list does not need to be fully sorted. For a single paged UE it may be fixed (i.e. always contention free or always contention based RA is used) or semi statically configured by RRC. Another explicit way isby RRC configuration (e.g., through system information) , to all UEs or foreach UE group paging.
  • RRC configuration e.g., through system information
  • the signalling of the RA preamble assignment is intended to be implicit.
  • the physical resource allocation of either the PI on Physical Dedicated Control Channel (PDCCH) (e.g., the start Control Channel Element (CCE) index of the Downlink Control Information (DCI) ) or the PM on PDSCH (e.g., the start Physical Resource Block (PRB) index) or acombination of both would imply the assigned RA preamble.
  • PDCCH Physical Dedicated Control Channel
  • CCE Start Control Channel Element
  • PRB Physical Resource Block
  • RA preamble e.g., ZC root sequence index and cyclic shift index
  • its complementary part e.g., the cover extension
  • multiple UEs In the situation wheremultiple UEs are paged together, they may belisted in the PM consecutively (e.g., a list of UE IDs is provided within the PM payload) .
  • the order of the listed UEs may be used to derive a different assigned RA preamble foreach of the listed UEs according to their location in the list, starting from the signalled assigned RA preamble for the first listed UE and incremented for each additional listed UE in the same PM. For example, if cover extension is used then the cover extension index may be incremented foreach listed UE to derive a different RA preamble.
  • the method of the present invention would have a greater impact for UEs in RRC_INACTIVE state. Since for inactive UEs, the tracking process starts from the most probable cell (s) for the UE to be in (called RAN notification area) and only if not succeeding, the UE is then paged in all of its tracking area (or in a gradual manner) . Therefore for UEs in RRC_INACTIVE state, the assignment of such RA preamble is potentially less wasteful.
  • Another effect relates to beam swept paging transmissions, where the assigned RA preamble can be reused in different spatial locations. For example, this may allow a relatively small NCB set, if such a set is needed as aforementioned.
  • the method and system of the present invention obviate the need for Msg3 and Msg4 in the RA procedure for paged UEs, without introducing an overhead in the paging procedure.
  • both RA latency and overhead are reduced for paged UEs.
  • the present invention reduces the PRACH collisions of paged UEs among themselves and with other UEs that perform contention-based RA procedure, and hence improves the overall PRACH capacity. Avoiding the PRACH collisions for the paged UEs would also reduce the probability for another paging iteration; as a consequence, the paging overhead can be somewhat reduced.
  • the present invention can be combined with such advanced paging strategic to further reduce the overall latency and signalling overhead in the Mobile Terminated communication establishment case.
  • mapping functions between PI/PM’s physical allocation and the assigned RA preamble will now be described.
  • the signalling of the RA preamble assignment, or a part of it, is intended to be implicit.
  • the physical resource allocation of either the PI on PDCCH (e.g., the start CCE index and/or the start OFDM index of the DCI) or the PM on PDSCH (e.g., the start PRB index and/or the start OFDM index) or the combination of both would imply the implicit part of the assigned RA preamble.
  • the physical resource allocation may involve dedicated frequency allocation and/or time allocation. For simplicity, the examples below are given for the case of dedicated frequency allocation.
  • a PDCCH candidate consists of a set of CCEs, according to the Aggregation Level (AL) .
  • a CCE consists of a set of Resource Element Groups (REGs) within a COntrol REsource SET (CORESET) (e.g., REG bundle size of 6 is supported) .
  • REG is one Resource Block (RB) during one OFDM symbol, and a CORESET is defined with start OFDM symbol and time duration (1 to 3 OFDM symbols) .
  • the start CCE index of the PI resource allocation can be sued to extract an associated RA preamble, or a part of it.
  • a PDSCH allocation consists of a set of PRBs and thus the start PRB index of the PM resource allocation can be used to extract an associated RA preamble, or a part of it.
  • the PI and PM allocation would be possible in the active Bandwidth Part (BWP) that needs to becommon to the UE group paged UE.
  • BWP Bandwidth Part
  • NCCE Number of CCEs in PI’s CORSET.
  • n start_PI Start CCE index of the PI.
  • start_CORESET Start CCE index of the PI’s CORSET.
  • NPRB Number of PRBs in PM’s BWP.
  • n start_PM Start PRB index of the PM.
  • n start_BWP Start PRB index of the PM’s BWP.
  • n implicit The implicit part of the RA preamble (according to PI and/or PM allocation) .
  • n Explicit The explicit part of the RA preamble (in PI/PM payload or by RRC configuration) , can be zeroed.
  • n Preamble The signalled RA preamble to the group of paged UE.
  • n uE_sreamble The assigned RA preamble per UE.
  • n PI function (n start_PI , n start_CORESET , NCCE)
  • n PM function (n start_PM , n start_ ⁇ WP , NPRB)
  • n Preamble n Explicit + n implicit
  • n Implicit function (n PI ) .
  • n Implicit function (n PM ) .
  • n Implicit function (n PI , n PM ) .
  • n uE_Preamble X + n Preamble .
  • the n Preamble may represent the RA Preamble without the cover extension
  • X may represent the cover extension index excluding the cover extension index that does not change the original sequence. If the cover extension index is wrapped around, since the list of paged UEs is longer than the number of different covers, the RA Preamble without the cover extension is incremented. This would result in a dedicated RA preamble per each paged UE.
  • cover extension is supported by CFRA, obviating the need to reserve dedicated preambles for CFRA (just excluding the cover extension index that does not change the original ZC sequence) .
  • 3GPP would adopt cover extension only to CFRA, since the gNB would need to perform more correlations but only for the assigned RA preambles. For this case there is no fallback to CBRA (and no need to add 1-bit for the CFRA/CBRA configuration) .
  • the Man Skilled in the Art MSA would pre-configure extended RA preambles (e.g., ZC sequence index with cover extension index) for all UEs.
  • the MSA would come to the conclusion that it cannot simultaneously page several groups of UEs which contain at least two UEs with the same pre-allocated preamble; which may results in an inherent paging latency. Then the MSA would choose CFRA with either explicit or semi static indication. RACH capacity enhancement is achieved and the MSA would not seek in enhancing the solution further.
  • the present invention takes a further step than the MSA in not increasing the Paging/RRC overhead by implicit indication of the RA preamble.
  • the invention effectively compresses the assigned RA preamble info for several UEs that are paged together since it exploits the order of the UE list given by the PM.
  • An advantage of this invention is the reduction of the RA procedure overhead and latency by using a 2-step RA procedure instead of 4-step RA procedure. Meaning contention-free instead of contention-based, for paged UEs, while not increasing the paging overhead due to an implicit indication.
  • a single bit is added to PI/PM payload or it may be implicitly indicated if the feature of reduced RA is dynamically enabled/disabled. In an alternative, it may be semi-statically controlled by RRC configuration. In some configurations, this invention gives even more RACH capacity enhancement by allowing more UEs to be paged simultaneously.
  • the invention allows further NW optimization.
  • the probability for a successful RA i.e. without collisions
  • the probability for a successful RA can increase, resulting in a lower chance for another paging iteration and thus reducing also the paging overhead.
  • the present invention thus provides, for paged UEs, a contention free RA without increasing the Paging overhead.
  • any of the devices or apparatus that form part of the network may include at least a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method of any aspect of the present invention. Further options and choices are described below.
  • the signal processing functionality of the embodiments of the invention especially the gNB and the UE may be achieved using computing systems or architectures known to those who are skilled in the relevant art.
  • Computing systems such as, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc. ) , mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment can be used.
  • the computing system can include one or more processors which can be implemented using a general or special-purpose processing engine such as, for example, a microprocessor, microcontroller or other control module.
  • the computing system can also include a main memory, such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by a processor. Such a main memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor.
  • the computing system may likewise include a read only memory (ROM) or other static storage device for storing static information and instructions for a processor.
  • ROM read only memory
  • the computing system may also include an information storage system which may include, for example, a media drive and a removable storage interface.
  • the media drive may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a compact disc (CD) or digital video drive (DVD) read or write drive (R or RW) , or other removable or fixed media drive.
  • Storage media may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive.
  • the storage media may include a computer-readable storage medium having particular computer software or data stored therein.
  • an information storage system may include other similar components for allowing computer programs or other instructions or data to be loaded into the computing system.
  • Such components may include, for example, a removable storage unit and an interface , such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units and interfaces that allow software and data to be transferred from the removable storage unit to computing system.
  • the computing system can also include a communications interface.
  • a communications interface can be used to allow software and data to be transferred between a computing system and external devices.
  • Examples of communications interfaces can include a modem, a network interface (such as an Ethernet or other NIC card) , a communications port (such as for example, a universal serial bus (USB) port) , a PCMCIA slot and card, etc.
  • Software and data transferred via a communications interface are in the form of signals which can be electronic, electromagnetic, and optical or other signals capable of being received by a communications interface medium.
  • computer program product may be used generally to refer to tangible media such as, for example, a memory, storage device, or storage unit.
  • These and other forms of computer-readable media may store one or more instructions for use by the processor comprising the computer system to cause the processor to perform specified operations.
  • Such instructions generally referred to as ‘computer program code’ (which may be grouped in the form of computer programs or other groupings) , when executed, enable the computing systemto perform functions of embodiments of the present invention.
  • the code may directly cause a processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory
  • the software may be stored in a computer-readable medium and loaded into computing system using, for example, removable storage drive.
  • a control module in this example, software instructions or executable computer program code
  • the processor in the computer system when executed by the processor in the computer system, causes a processorto perform the functions of the invention as described herein.
  • inventive concept can be applied to any circuit for performing signal processing functionality within a network element. It is further envisaged that, for example, a semiconductor manufacturer may employ the inventive concept in a design of a stand-alone device, such as a microcontroller of a digital signal processor (DSP) , or application-specific integrated circuit (ASIC) and/or any other sub-system element.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • aspects of the invention may be implemented in any suitable form including hardware, software, firmware or any combination of these.
  • the invention may optionally be implemented, at least partly, as computer software running on one or more data processors and/or digital signal processors or configurable module components such as FPGA devices.
  • the elements and components of an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for enabling a wireless communication device to access services provided by a Radio Access Network, the method comprising paging one or more UEs, wherein a predetermined assigned RA preamble is communicated to the or each UE, at least partially in an implicit signalling over a paging related message

Description

Improvements in or relating to reducing random access for paged User Equipment (UE) in New Radio (NR) Technical Field
Embodiments of the present invention generally relate to wireless communication systems and in particular to devices and methods for enabling a wireless communication device, such as a User Equipment (UE) or mobile device to access a Radio Access Technology (RAT) or Radio Access Network (RAN) . The invention relates, particularly but nor exclusively to improvementsin or relating to reducing random access latency and overhead for paged User Equipment (UE) in New Radio (NR) without introducing additional overhead to the paging related message.
Background
Wireless communication systems, such as the third-generation (3G) of mobile telephone standards and technology are well known. Such 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) . The 3 rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications. Communication systems and networks have developed towards a broadband and mobile system.
The 3rd Generation Partnership Project has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or moremacro-cells aresupported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (new radio) systems where one or more cells aresupported by a base station known as a gNB.
One area of NR, which is of interest, is the reduction of RandomAccess (RA) for paging functionality in new radio (NR) .
Paging should ideally be implemented with a minimal paging overhead. However, so far the effort for minimizing the paging overhead is not considered this in all cases. Similarly, for Random Access Channel (RACH) minimal latency is sought. The need for RACH capacity enhancements has been considered and a number of solutions have been proposed. Synchronization signal (SS) Block (SSB) to Physical Random  Access Channel (PRACH) transmission time/frequency and preamble index mapping has also been considered and suggestions have been made.
EP3085189A1 discloses a contention free RA after paging, and the explicit allocation of a dedicated RA preamble over the Paging Message (PM) and/or Paging Indication (PI) and/or Radio Resource Control (RRC) configuration.
The mainway to maintain NR PRACH spectral efficiency at least as high as in LTE is to increase the sequence pool size. This may be at the cost of a small increase of cross-correlation among sequences and Peak-to-Average Power Ratio (PAPR) . Nevertheless, sequences with low correlation properties can be selected to be primarily deployed in the same cells as it is done currently in LTE. Finally, if new sequences are also of constant envelop, the PAPR can be kept reasonable.
Zadoff-Chu (ZC) with m-sequence covers does not increase the intra-cell cross-correlation. Only the inter-cell cross-correlation is increased (at worst case about twice i.e. equal to 0.22 for a sequence of length L=127) , however, this is better than aggressive preamble reuse among neighboring cells and complex root sequence planning.
PAPR increases compared to pure ZC but only slightly as the additional sequences are also of constant envelop. It has beenshown that the resulting PAPR is even less than for Physical Uplink Shared Channel (PUSCH) with Discrete Fourier Transform (DFT) -s-Orthogonal Frequency Division Multiplexing (OFDM) with 4-Quadrature Amplitude Modulation (QAM) constellation, and thus much less than for PUSCH with OFDM which will be supported in NR. This is a very relevant comparison since a UE uses the same power amplifier for PRACH and PUSCH and the UE will have to transmit Msg3 using PUSCH in order to complete the 4-step RACH procedure.
This does not solve the potential collision of RA preamble, although the use of M-sequence cover decreases the risk of collision.
A simplified 2-step RACH aims to carry the content of legacy Msg3 in Msg1, and thus the round trip time of Msg3 and Msg4 could be saved. In addition, 2-step RACH saves the latency of the SR procedure to get uplink (UL) grant for transmitting RRC message. The simplified 2-step RACH can reduce C-plane latency more effectively and hence maybe considered in Rel-16 when discussing C-plane latency reduction.
In this reference an RA preamble is not allocatedto a UE, moreover it introduces about the same PHY allocation overhead as the 4-step RACH (since unified Msg1+Msg3 and unified Msg2+Msg4 are still four messages) .
The present invention is seeking to solveat least some of the outstanding problems in this domain.
Summary
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. According to a first aspect of the present invention there is provided a method for enabling a wireless communication device to access services provided by a Radio Access Network, the method comprising paging one or more UEs, wherein a predetermined assigned RA preamble is communicated to the or each UE, at least partially in an implicit signalling over a paging related message.
Preferably, the paging related message includes one or more of a paging indicator (PI) and a paging message (PM) .
Preferably, the predetermined assigned RA is according to a paging related message physical allocation.
Preferably, the physical allocation is at leastone of frequency and time based.
Preferably, comprising signalling a group of paged UEs that are listed within a same PM.
Preferably, comprising communicating the predetermined assigned RA preamble according to a list order of the or each paged UE given by the PM.
Preferably, the communication of the predetermined assigned RA preamble is partially made semi-statically by an RRC configuration process.
Preferably, comprising dynamically enabling or disabling a contention-free RA, by at least one of a single bit added to a paging payload and according to a comparison of at least two predefined entries in the list of the or each paged UE given by a PM.
Preferably, comprising semi-statically enabling or disabling a contention-free RA, by RRC configuration.
Preferably, the RRC configuration includes system information.
Preferably, comprising including hard-coded contention-free RA (CFRA) to paging. Preferably, the assigned RA preamble for each UE may involve one or more of: a dedicated logical ZC root index; a cyclic shift of a ZC root index; time allocation; frequency allocation; Orthogonal Cover Code (OCC) index across multiple/repeated PRACH preamble; M-sequence cover code index; configuration of different ZC sequences across multiple PRACH preambles; and configuration of sinusoidal modulation.
Preferably, comprising a physical resource allocation of at least one of a PI on PDCCH and a PM on PDSCH.
Preferably, the physical resource allocation of at least the PI on PDCCH comprises at least one of a start CCE index and a start OFDM index of the DCI.
Preferably, the physical resource allocation of at least the PM on PDSCH comprises at least one of a start PRB index and a start OFDM index.
Preferably, the physical resource allocation is based on at least one of a dedicated frequency allocation and a dedicated time allocation.
Preferably, the Radio Access Network is a New Radio/5G network.
According to a second aspect of the present invention there is provided a base station.
According to a second aspect of the present invention there is provided a non-transitory computer readable medium having computer readable instructions stored thereon for execution by a processor to perform the method of another aspect of the present invention.
The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
Brief description of the drawings
Further details, aspects and embodiments of the invention will be described, by way of example only, with reference to the drawings. Elements in the figures are illustrated for  simplicity and clarity and have not necessarily been drawn to scale. Like reference numerals have been included in the respective drawings to ease understanding.
Figure 1a is a diagram showing paging followed by RA in a contention based RA procedure, in accordance with an embodiment of the present invention;
Figure 1b is a diagram showing paging followed by RA in an assigned RA preamble that is implicitly signalled over Paging Indication (PI) according to its start n_Control Channel Element (CCE) or CCE index, in accordance with an embodiment of the present invention;
Figure 1c is a diagram showing paging followed by RA in an assigned RA preamble that is implicitly signalled over the Paging Message (PM) , according to its start Physical Resource Block (PRB) or PRB index, in accordance with an embodiment of the present invention.
Detailed description of the preferred embodiments
Those skilled in the art will recognise and appreciate that the specifics of the examples described are merely illustrative of some embodiments and that the teachings set forth herein are applicable in a variety of alternative settings.
The present invention relates to a wireless communication system with a paging mechanism followedby a Random Access (RA) response.
The present invention provides a method and systems to reduce the RA overhead when a UE is paged. This occurs without introducing additional overhead to the Paging Indication (PI) or to the Paging Message (PM) . For the purposes of the present invention the term “paging related message” is intended to include both a PI and a PM and any combination or equivalent thereof. The signalling of the RA preamble assignment is generally implicit and has a negligible impact on the PI and/or the PM length (if any) . The need for a 4-step contention based RA procedure is obviated and instead a 2-step contention free RA procedure is used. As a consequence, the average RA latency for a paged UE is reduced.
The presentinvention also allows further network (NW) optimization. With a properly assigned RA preamble, and the configuration for reserved RA preambles if needed, the probability for a successful RA can be kept close to one. This is equivalent to a process without collisions. It is still possible that channel and interference such as overlapping PUSCH transmissions may still cause RA failure. Such a NW optimization  results in a lower chance for another paging iteration and thus reduces further the paging overhead.
Unlike the prior art, in the present inventionan implicit signalling of the assigned RA preamble over the PI and/or the PM, and explicit and/or implicit indication of this assignment (i.e. enable/disable of the contention-free RA) dynamically over the PI and/or the PM or semi-statically by a RRC configuration process is proposed. Moreover, an efficient signalling for a group of paged UEs that are listed within the same PMis also implemented.
As a result the present invention provides a number of improvements since it reduces both the amount of PRACH collisions and the amount of Physical layer (PHY) allocation, for example only Msg1 and Msg2.
The presentinvention utilizes PI and/or PM to signal the paged UE a predetermined assigned RA preamble as a part of a contention-free RA procedure with a negligible increase (if any) in the PI/PM payload length. Asingle bit is added to PI/PM payload or implicitly signalled according to, for example, the ascending/descending list order of the paged UEs in case this feature of reduced RA is dynamically enabled/disabled; for the later, at least two entries in the list arecompared to determine this indication, thus the list does not need to be fully sorted. Other method may be used instead of or in conjunction with the addition of a single bit. In an alternative, it may instead be semi-statically controlled by RRC configuration.
In the following, two options for configuration are proposed. One is a dynamic indication within the PI/PM payload or according to the ascending/descending list order of the paged UEs. It is generally sufficient to compare at least two entries in the list. Another is semi-statically by RRC configuration, such as for examplesystem info) . An option for hard-coded contention-free RA (CFRA) to paging is not precluded. However, in order avoidrestrictingthe gNB to simultaneously page a limited group (s) of UEs this configuration gives the flexibility to have some paged UE groups with CFRA and some paged UE groups with contention-based RA (CBRA) . This particularly thecase if there are not enough reserved RA preambles for CFRA.
An assigned RA preamble for each UE may involve one or more of:
· a dedicated logical ZC root index;
· a cyclic shift of a ZC root index;
· time allocation;
· frequency allocation;
· Orthogonal Cover Code (OCC) index across multiple/repeated PRACH preamble;
· M-sequence cover code index;
· configuration of different ZC sequencesacross multiple PRACH preambles; and
· configuration of sinusoidal modulation.
The later four may be useful for RACH capacity enhancement, to allow more UEs simultaneously transmitting the same PRACH preamble index (i.e., a ZC root index and a cyclic shift) at overlapping time/frequency. This is hereafter referred to as a cover extension to the ZC sequences.
In general the number of LTE RA preambles is 64, although in some cases 256 preambles are being suggested. The use of cover extension is discussed and may further multiply the amount of RA preambles as required in NR.
In a worst-case of 64 preambles for NR-PRACH, then the gNB is not expected to reserve a very big pool of RA preambles for CFRA. As an example there may be between about 0 and 15 reserved preamble indices, which means about 4 bits per UE, and for 256 preambles maybe more bits to reserve even more preambles. However, using cover extension according to the present invention, there are many more available preambles. For example, aZC sequence with M-sequences cover increases the PRACH capacity by (L+1) = 140 times for the short preamble formats with L=139 as agreed by 3GPP.
The proposed joint-procedure for paging and related RA would thus allow contention-free RA procedure, which has substantially reduced latency and overhead in comparison with contention-based RA procedures. This is achieved without introducing a paging overhead. Moreover, this feature can be dynamically enabled/disabled or semi-statically controlled by RRC configuration.
With ZC sequences with cover extension for contention-free RA, although the PAPR of the PRACH transmission is slightly increased at the UE side the proposed assigned RA preamble obviates the need to transmit Msg3 and thus the UE’s overall power consumption is at least not increased when compared with M-sequence cover  extension in the prior-art. This is further so with ZC sequences with cover extension for paged UEs. The PAPR with cover extension increases since pure ZC sequences have a constant envelop whereas ZC sequences with cover extension might not have a constant envelop.
Also in terms of complexity, at the gNB side the detector may need to perform more correlations due to the cover extension, but only to the assigned RA preambles. Thus there would not be significant disadvantages, if any.
In the case of cover extension for contention-based and contention-free RA, the gNB may preliminarily allocate Non-Contention-Based (NCB) and Contention-Based (CB) PRACH preambles, in order to avoid collisions. This may be similar to the processes in LTE for RRC_CONNECTED UEs to allow the contention-free RA. The assigned RA preamble for a paged UE may be selected from the NCB set.
In case of cover extension for contention-free RA or at least for paged UEs, the gNB can assign any PRACH preamble (i.e., not restricted to the NCB set) for the paged-UEs. However, it needs to exclude the cover extension index that does not change the original sequence, in order to avoid collisions with un-paged UEs.
Without the cover extension, the gNB may assign PRACH preamble indices from a pre-allocated NCB set for the paged UEs.
The signalling of the contention-free RA indication may be either explicit (e.g. 1-bit) or implicit. Anexplicit way maybe within either the PI payload or the PM payload. Such signalling has a negligible impact on the PI and/or PM lengths. Another implicit way would be according to the ascending/descending list order of the paged UEs given in the PM; at least two entries in the list are compared to determine this indication, thus the list does not need to be fully sorted. For a single paged UE it may be fixed (i.e. always contention free or always contention based RA is used) or semi statically configured by RRC. Another explicit way isby RRC configuration (e.g., through system information) , to all UEs or foreach UE group paging.
The signalling of the RA preamble assignment, or a part of it, is intended to be implicit. The physical resource allocation of either the PI on Physical Dedicated Control Channel (PDCCH) (e.g., the start Control Channel Element (CCE) index of the Downlink Control Information (DCI) ) or the PM on PDSCH (e.g., the start Physical Resource Block (PRB) index) or acombination of both would imply the assigned RA preamble.
Further combinations of implicit and explicit indication of the contention-free RA indication and the assigned RA preamble over the PI and/or the PM and/or by RRC configuration should not be precluded. In a specific example, a part of the RA preamble (e.g., ZC root sequence index and cyclic shift index) is assigned dedicatedly by RRC configuration per each UE group paging, and its complementary part (e.g., the cover extension) is implicitly signalled over PI and/or PM.
In the situation wheremultiple UEs are paged together, they may belisted in the PM consecutively (e.g., a list of UE IDs is provided within the PM payload) . The order of the listed UEs may be used to derive a different assigned RA preamble foreach of the listed UEs according to their location in the list, starting from the signalled assigned RA preamble for the first listed UE and incremented for each additional listed UE in the same PM. For example, if cover extension is used then the cover extension index may be incremented foreach listed UE to derive a different RA preamble.
Currently a 4-step contention-based RA procedure follows the paging. With the aforementioned assignment of RA preamble during the paging procedure, only a 2-step contention-free RA is needed, as illustrated in figure1. As a consequence, the average Paging/RACH latency for a paged UE is much reduced.
The method of the present invention would have a greater impact for UEs in RRC_INACTIVE state. Since for inactive UEs, the tracking process starts from the most probable cell (s) for the UE to be in (called RAN notification area) and only if not succeeding, the UE is then paged in all of its tracking area (or in a gradual manner) . Therefore for UEs in RRC_INACTIVE state, the assignment of such RA preamble is potentially less wasteful.
Another effect relates to beam swept paging transmissions, where the assigned RA preamble can be reused in different spatial locations. For example, this may allow a relatively small NCB set, if such a set is needed as aforementioned.
The method and system of the present invention obviate the need for Msg3 and Msg4 in the RA procedure for paged UEs, without introducing an overhead in the paging procedure. Thus both RA latency and overhead are reduced for paged UEs. Moreover, the present invention reduces the PRACH collisions of paged UEs among themselves and with other UEs that perform contention-based RA procedure, and hence improves the overall PRACH capacity. Avoiding the PRACH collisions for the  paged UEs would also reduce the probability for another paging iteration; as a consequence, the paging overhead can be somewhat reduced.
Where advanced strategies for gradual paging are implemented, e.g. starting from paging only on the cell where the UE was last seen, the present invention can be combined with such advanced paging strategic to further reduce the overall latency and signalling overhead in the Mobile Terminated communication establishment case.
Examples of mapping functions between PI/PM’s physical allocation and the assigned RA preamble will now be described. The signalling of the RA preamble assignment, or a part of it, is intended to be implicit. The physical resource allocation of either the PI on PDCCH (e.g., the start CCE index and/or the start OFDM index of the DCI) or the PM on PDSCH (e.g., the start PRB index and/or the start OFDM index) or the combination of both would imply the implicit part of the assigned RA preamble. The physical resource allocation may involve dedicated frequency allocation and/or time allocation. For simplicity, the examples below are given for the case of dedicated frequency allocation.
For the PI: A PDCCH candidate consists of a set of CCEs, according to the Aggregation Level (AL) . A CCE consists of a set of Resource Element Groups (REGs) within a COntrol REsource SET (CORESET) (e.g., REG bundle size of 6 is supported) . A REG is one Resource Block (RB) during one OFDM symbol, and a CORESET is defined with start OFDM symbol and time duration (1 to 3 OFDM symbols) .
For example, with 100 PRBs (e.g., bandwidth of 20MHz) there areup to 300 REGs and 50 CCEs. Therefore the start CCE index of the PI resource allocation can be sued to extract an associated RA preamble, or a part of it.
For the PM: Similar to PDCCH, a PDSCH allocation consists of a set of PRBs and thus the start PRB index of the PM resource allocation can be used to extract an associated RA preamble, or a part of it.
The PI and PM allocation would be possible in the active Bandwidth Part (BWP) that needs to becommon to the UE group paged UE.
Notations:
NCCE: Number of CCEs in PI’s CORSET.
n start_PI: Start CCE index of the PI.
n start_CORESET: Start CCE index of the PI’s CORSET.
NPRB: Number of PRBs in PM’s BWP.
n start_PM: Start PRB index of the PM.
n start_BWP: Start PRB index of the PM’s BWP.
n implicit: The implicit part of the RA preamble (according to PI and/or PM allocation) .
n Explicit: The explicit part of the RA preamble (in PI/PM payload or by RRC configuration) , can be zeroed.
n Preamble: The signalled RA preamble to the group of paged UE.
n uE_sreamble: The assigned RA preamble per UE.
y = function (x) : To represent that “y” is a function of “x”
The following formulation is proposed:
n PI = function (n start_PI, n start_CORESET, NCCE)
n PM = function (n start_PM, n start_āWP, NPRB)
n Preamble = n Explicit+ n implicit
Where the assigned RA preamble is derived from the physical resource allocation of the PI, then n Implicit= function (n PI) . Wherethe assigned RA preamble is derived from the physical resource allocation of the PM, then n Implicit= function (n PM) . Where the assigned RA preamble is derived from the physical resource allocation of both PI and PM, then n Implicit= function (n PI, n PM) .
For each listed UE in the PM, its assigned RA preamble is derived from the signalled assigned RA preamble and its location within the list. For the paged UE which is located X UEs from the start of the list: n uE_Preamble= X + n Preamble.
In the specific example that ZC sequences with cover extension is used only for contention-free RA (or at least for the paged UEs) , the n Preamblemay represent the RA Preamble without the cover extension, and X may represent the cover extension index excluding the cover extension index that does not change the original sequence. If the cover extension index is wrapped around, since the list of paged UEs is longer than the number of different covers, the RA Preamble without the cover extension is incremented. This would result in a dedicated RA preamble per each paged UE.
As previously mentioned above, there is provided an example that cover extension is supported by CFRA, obviating the need to reserve dedicated preambles for CFRA (just excluding the cover extension index that does not change the original ZC sequence) . In terms of detection complexity, it is possible that 3GPP would adopt cover extension only to CFRA, since the gNB would need to perform more correlations but only for the assigned RA preambles. For this case there is no fallback to CBRA (and no need to add 1-bit for the CFRA/CBRA configuration) . As a consequence, the Man Skilled in the Art (MSA) would pre-configure extended RA preambles (e.g., ZC sequence index with cover extension index) for all UEs. However the MSA would come to the conclusion that it cannot simultaneously page several groups of UEs which contain at least two UEs with the same pre-allocated preamble; which may results in an inherent paging latency. Then the MSA would choose CFRA with either explicit or semi static indication. RACH capacity enhancement is achieved and the MSA would not seek in enhancing the solution further. However, the present invention takes a further step than the MSA in not increasing the Paging/RRC overhead by implicit indication of the RA preamble. Moreover, the invention effectively compresses the assigned RA preamble info for several UEs that are paged together since it exploits the order of the UE list given by the PM.
An advantage of this invention is the reduction of the RA procedure overhead and latency by using a 2-step RA procedure instead of 4-step RA procedure. Meaning contention-free instead of contention-based, for paged UEs, while not increasing the paging overhead due to an implicit indication. A single bit is added to PI/PM payload or it may be implicitly indicated if the feature of reduced RA is dynamically enabled/disabled. In an alternative, it may be semi-statically controlled by RRC configuration. In some configurations, this invention gives even more RACH capacity enhancement by allowing more UEs to be paged simultaneously.
The invention allows further NW optimization. With a properly assigned RA preamble, and the configuration for reserved RA preambles if needed, the probability for a successful RA (i.e. without collisions) can increase, resulting in a lower chance for another paging iteration and thus reducing also the paging overhead.
The present invention thus provides, for paged UEs, a contention free RA without increasing the Paging overhead.
The invention has been described with respect to the examples and scenarios mentioned above. However, the invention may also apply to other situations and scenarios, such as for example early data transmission (eMTC/NB-IoT) .
Although not shown in detail any of the devices or apparatus that form part of the network may include at least a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method of any aspect of the present invention. Further options and choices are described below.
The signal processing functionality of the embodiments of the invention especially the gNB and the UE may be achieved using computing systems or architectures known to those who are skilled in the relevant art. Computing systems such as, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc. ) , mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment can be used. The computing system can include one or more processors which can be implemented using a general or special-purpose processing engine such as, for example, a microprocessor, microcontroller or other control module.
The computing system can also include a main memory, such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by a processor. Such a main memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor. The computing system may likewise include a read only memory (ROM) or other static storage device for storing static information and instructions for a processor.
The computing system may also include an information storage system which may include, for example, a media drive and a removable storage interface. The media drive may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a compact disc (CD) or digital video drive (DVD) read or write drive (R or RW) , or other removable or fixed media drive. Storage media may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive. The storage  media may include a computer-readable storage medium having particular computer software or data stored therein.
In alternative embodiments, an information storage system may include other similar components for allowing computer programs or other instructions or data to be loaded into the computing system. Such components may include, for example, a removable storage unit and an interface , such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units and interfaces that allow software and data to be transferred from the removable storage unit to computing system.
The computing system can also include a communications interface. Such a communications interface can be used to allow software and data to be transferred between a computing system and external devices. Examples of communications interfaces can include a modem, a network interface (such as an Ethernet or other NIC card) , a communications port (such as for example, a universal serial bus (USB) port) , a PCMCIA slot and card, etc. Software and data transferred via a communications interface are in the form of signals which can be electronic, electromagnetic, and optical or other signals capable of being received by a communications interface medium.
In this document, the terms ‘computer program product’ , ‘computer-readable medium’ and the like may be used generally to refer to tangible media such as, for example, a memory, storage device, or storage unit. These and other forms of computer-readable media may store one or more instructions for use by the processor comprising the computer system to cause the processor to perform specified operations. Such instructions, generally referred to as ‘computer program code’ (which may be grouped in the form of computer programs or other groupings) , when executed, enable the computing systemto perform functions of embodiments of the present invention. Note that the code may directly cause a processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable  Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory
In an embodiment where the elements are implemented using software, the software may be stored in a computer-readable medium and loaded into computing system using, for example, removable storage drive. A control module (in this example, software instructions or executable computer program code) , when executed by the processor in the computer system, causes a processorto perform the functions of the invention as described herein.
Furthermore, the inventive concept can be applied to any circuit for performing signal processing functionality within a network element. It is further envisaged that, for example, a semiconductor manufacturer may employ the inventive concept in a design of a stand-alone device, such as a microcontroller of a digital signal processor (DSP) , or application-specific integrated circuit (ASIC) and/or any other sub-system element. It will be appreciated that, for clarity purposes, the above description has described embodiments of the invention with reference to a single processing logic. However, the inventive concept may equally be implemented by way of a plurality of different functional units and processors to provide the signal processing functionality. Thus, references to specific functional units are only to be seen as references to suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organisation.
Aspects of the invention may be implemented in any suitable form including hardware, software, firmware or any combination of these. The invention may optionally be implemented, at least partly, as computer software running on one or more data processors and/or digital signal processors or configurable module components such as FPGA devices. Thus, the elements and components of an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units.
Although the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. Additionally, although a feature may appear to be described in connection with particular embodiments, one skilled in the art would recognize that various features of  the described embodiments may be combined in accordance with the invention. In the claims, the term ‘comprising’ does not exclude the presence of other elements or steps. Furthermore, although individually listed, a plurality of means, elements or method steps may be implemented by, for example, a single unit or processor. Additionally, although individual features may be included in different claims, these may possibly be advantageously combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. Also, the inclusion of a feature in one category of claims does not imply a limitation to this category, but rather indicates that the feature is equally applicable to other claim categories, as appropriate.
Furthermore, the order of features in the claims does not imply any specific order in which the features must be performed and in particular the order of individual steps in a method claim does not imply that the steps must be performed in this order. Rather, the steps may be performed in any suitable order. In addition, singular references do not exclude a plurality. Thus, references to ‘a’ , ‘an’ , ‘first’ , ‘second’ , etc. do not preclude a plurality.
Although the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. Additionally, although a feature may appear to be described in connection with particular embodiments, one skilled in the art would recognise that various features of the described embodiments may be combined in accordance with the invention. In the claims, the term ‘comprising’ or “including” does not exclude the presence of other elements.

Claims (20)

  1. A method for enabling a wireless communication device to access services provided by a Radio Access Network, the method comprising paging one or more UEs, wherein a predetermined assigned RA preamble is communicated to the or each UE, at least partially in an implicit signalling over a paging related message.
  2. The method of claim 1, wherein the paging related message includes one or more of a paging indicator (PI) and a paging message (PM) .
  3. The method of any one of the preceding claims, wherein the predetermined assigned RA is according to a paging related message physical allocation.
  4. The method of claim 3, wherein the physical allocation is at least one of frequency and time based.
  5. The method of any one of the preceding claims, further comprising signalling a group of paged UEs that are listed within a same PM.
  6. The method of claim 5, further comprising communicating the predetermined assigned RA preamble according to a list order of the or each paged UE given by the PM.
  7. The method of any one of the preceding claims, wherein the communication of the predetermined assigned RA preamble is partially made semi-statically by an RRC configuration process.
  8. The method of claim 1 or claim 2, further comprising dynamically enabling or disabling a contention-free RA, by at least one of a single bit added to a paging payload and according to a comparison of at least two predefined entries in the list of the or each paged UE given by a PM.
  9. The method of claim 1 or claim 2, further comprising semi-statically enabling or disabling a contention-free RA, by RRC configuration to all UEs or for each UE group paging.
  10. The method of claim 9, wherein the RRC configuration includes system information.
  11. The method of any one of the preceding claims, further comprising including hard-coded contention-free RA (CFRA) to paging.
  12. The method of any one of the preceding claims, wherein the assigned RA preamble for each UE may involve one or more of: a dedicated logical ZC root index; a cyclic shift of a ZC root index; time allocation; frequency allocation; Orthogonal Cover Code (OCC) index across multiple/repeated PRACH preamble; M-sequence cover code index; configuration of different ZC sequences across multiple PRACH preambles; and configuration of sinusoidal modulation.
  13. The method of any one of the preceding claim further comprising a physical resource allocation of at least one of a PI on PDCCH and a PM on PDSCH.
  14. The method of claim 13, wherein the physical resource allocation of at least the PI on PDCCH comprises at least one of a start CCE index and a start OFDM index of the DCI.
  15. The method of claim 13 or claim 14, wherein the physical resource allocation of at least the PM on PDSCH comprises at least one of a start PRB index and a start OFDM index.
  16. The method of any of claims 13 to 15, wherein the physical resource allocation is based on at least one of a dedicated frequency allocation and a dedicated time allocation.
  17. The method of any one of the preceding claim wherein the Radio Access Network is a New Radio/5G network.
  18. A user equipment, UE, apparatus comprising a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method as claimed in any one of claims 1-17.
  19. A base station, BS, apparatus comprising a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method as claimed in any one of claims 1-17.
  20. A non-transitory computer readable medium having computer readable instructions stored thereon for execution by a processor to perform the method according to any of claims 1-17.
PCT/CN2018/114260 2017-11-15 2018-11-07 Improvements in or relating to reducing random access for paged user equipment (ue) in new radio (nr) WO2019096036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880072320.4A CN111316748B (en) 2017-11-15 2018-11-07 Improvements in or relating to reducing random access to paged user equipments in new radios

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1718873.1A GB2568662B (en) 2017-11-15 2017-11-15 Improvements in or relating to reducing random access for paged User equipment (UE) in New Radio (NR)
GB1718873.1 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019096036A1 true WO2019096036A1 (en) 2019-05-23

Family

ID=60788486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114260 WO2019096036A1 (en) 2017-11-15 2018-11-07 Improvements in or relating to reducing random access for paged user equipment (ue) in new radio (nr)

Country Status (3)

Country Link
CN (1) CN111316748B (en)
GB (1) GB2568662B (en)
WO (1) WO2019096036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021143763A1 (en) * 2020-01-16 2021-07-22 FG Innovation Company Limited Method of random access procedure and related device
CN113965905A (en) * 2020-07-03 2022-01-21 大唐高鸿智联科技(重庆)有限公司 Access method, device, terminal node and management node

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110072291B (en) * 2018-01-23 2023-04-18 北京三星通信技术研究有限公司 Method and equipment for communication in random access process
US11553529B2 (en) 2018-01-11 2023-01-10 Samsung Electronics Co., Ltd. Methods and apparatuses for determining and configuring a time-frequency resource, in the random access process
WO2019139976A1 (en) * 2018-01-11 2019-07-18 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US10721712B2 (en) * 2018-01-12 2020-07-21 Qualcomm Incorporated Monitoring occasion for paging determination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150304799A1 (en) * 2013-03-29 2015-10-22 Lg Electronics Inc. Method for informing identification of a ue and device therefor
US20170135134A1 (en) * 2014-06-10 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for random access

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8600413B2 (en) * 2007-10-30 2013-12-03 Qualcomm Incorporated Control arrangement and method for communicating paging messages in a wireless communication system
US9253798B2 (en) * 2010-02-12 2016-02-02 Interdigital Patent Holdings, Inc. Method and apparatus for optimizing uplink random access channel transmission
CN103120002B (en) * 2010-10-01 2018-05-15 三菱电机株式会社 Communication system
US20130121275A1 (en) * 2011-11-16 2013-05-16 Lg Electronics Inc. Method and apparatus for allocating random access identifier for fixed m2m device in wireless communication system
WO2014161194A1 (en) * 2013-04-03 2014-10-09 Broadcom Corporation Method and apparatus for managing wireless connection switching
WO2016048422A1 (en) * 2014-09-25 2016-03-31 Intel IP Corporation Transmission of common control messages for machine-type communication (mtc) user equipments with reduced bandwidth
MX368808B (en) * 2014-11-04 2019-10-17 Ericsson Telefon Ab L M A wireless communication device, a network node and methods therein for improved random access transmissions.
US11140662B2 (en) * 2016-08-11 2021-10-05 Sony Corporation Infrastructure equipment for determining whether a communications device is within a radio coverage area

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150304799A1 (en) * 2013-03-29 2015-10-22 Lg Electronics Inc. Method for informing identification of a ue and device therefor
US20170135134A1 (en) * 2014-06-10 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for random access

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "3GPP TSG-RAN WG2 #99bis, R2-1710107", RANDOM ACCESS PROCEDURE FOR RRC INACTIVE STATE, 13 October 2017 (2017-10-13), XP051342176 *
ZTE ET AL.: "3GPP TSG-RAN WG2 #97, R2-1701929", CONSIDERATION ON DL DATA TRANSMISSION IN RRC_INACTIVE STATE, 17 February 2017 (2017-02-17), XP051212463 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021143763A1 (en) * 2020-01-16 2021-07-22 FG Innovation Company Limited Method of random access procedure and related device
CN113965905A (en) * 2020-07-03 2022-01-21 大唐高鸿智联科技(重庆)有限公司 Access method, device, terminal node and management node
CN113965905B (en) * 2020-07-03 2024-03-26 中信科智联科技有限公司 Access method, device, terminal node and management node

Also Published As

Publication number Publication date
CN111316748B (en) 2024-03-19
GB2568662B (en) 2020-10-14
GB2568662A (en) 2019-05-29
GB201718873D0 (en) 2017-12-27
CN111316748A (en) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2019096036A1 (en) Improvements in or relating to reducing random access for paged user equipment (ue) in new radio (nr)
US11229065B2 (en) Network access of a wireless device to a communications network
US11653362B2 (en) Resource allocation for user equipment
JP2022541756A (en) Method and apparatus for broadband PRACH configuration for NR Unlicensed
US20180310329A1 (en) Apparatus and Method for Random Access and Data Transmission and Communication System
WO2018085205A1 (en) Two-element random access channel (prach) transmission
US10425966B2 (en) Method and apparatus for improving a time granularity when deploying a wireless system
GB2562111A (en) Methods and devices associated with a wake up signal in a radio access network
US11910437B2 (en) Conflict avoidance in a cellular network
WO2020063577A1 (en) Transmission medium sharing in a wireless communications network
US20200162215A1 (en) Pilot signals
WO2019154106A1 (en) Grant-based uplink transmission
WO2020119628A1 (en) Management of pre-allocated resources
CN112602363B (en) Method for dynamically allocating paging and/or RACH resources and related equipment
WO2020029924A1 (en) Transmission resource sharing
KR20170089353A (en) Methods for performing narrow band machine type communication, apparatuses and systems for performing the same
WO2020025032A1 (en) Uplink transmission resource sharing
GB2578623A (en) Frequency hopping in grant-free systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879557

Country of ref document: EP

Kind code of ref document: A1