WO2020119628A1 - Management of pre-allocated resources - Google Patents

Management of pre-allocated resources Download PDF

Info

Publication number
WO2020119628A1
WO2020119628A1 PCT/CN2019/123990 CN2019123990W WO2020119628A1 WO 2020119628 A1 WO2020119628 A1 WO 2020119628A1 CN 2019123990 W CN2019123990 W CN 2019123990W WO 2020119628 A1 WO2020119628 A1 WO 2020119628A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
indication
uplink transmission
preamble
allocated
Prior art date
Application number
PCT/CN2019/123990
Other languages
French (fr)
Inventor
Ronen Cohen
Roy Ron
Benny Assouline
Olivier Marco
Original Assignee
JRD Communication (Shenzhen) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JRD Communication (Shenzhen) Ltd. filed Critical JRD Communication (Shenzhen) Ltd.
Priority to CN201980082539.7A priority Critical patent/CN113261359B/en
Publication of WO2020119628A1 publication Critical patent/WO2020119628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following disclosure relates to uplink transmission resources in cellular communications systems, and in particular to the management of pre-allocated resources.
  • Wireless communication systems such as the third-generation (3G) of mobile telephone standards and technology are well known.
  • 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • the 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications.
  • Communication systems and networks have developed towards a broadband and mobile system.
  • UE User Equipment
  • RAN Radio Access Network
  • CN Core Network
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • NR is proposed to utilise an Orthogonal Frequency Division Multiplexed (OFDM) physical transmission format.
  • OFDM Orthogonal Frequency Division Multiplexed
  • NB-IoT Near Band Internet of Things
  • eMTC enhanced Machine Type Communications
  • NB-IoT is particularly focussed on devices with low complexity and energy consumption which provide a low data throughput.
  • Machine type communications are often characterised by small infrequent data transmissions, but with a requirement to support longer ranges than convention cellular communications.
  • CE Coverage Enhancement
  • NB-IoT provides enhanced and extreme coverage modes and eMTC provides CE Modes A & B.
  • NB-IoT up to 128 repetitions may be utilised for low SNR channels, as shown in Figure 1.
  • a system of Preconfigured Uplink Resources may be utilised.
  • the network allocates uplink resources (in time and frequency) with a specific periodicity which a UE may utilise for its uplink transmissions. This avoids the need for the transmission of a grant request and subsequent control communications.
  • additional resources in each period may be needed for the repeat transmissions, but other UEs may have nothing to transmit and hence do not require their allocated resources. If allocated resources are not utilised they are wasted as they are preconfigured for a specific UE (or group of UEs) .
  • the minimum time/frequency allocation for UL transmissions in NB-IoT is known as a Resource Unit (RU) , as defined in TS 36.211.
  • the size of an RU depends on the Narrow Band Physical Uplink Shared Channel (NB-PUSCH) format and the subcarrier format.
  • NPUSCH format 1 is used for UL data transmission and format 2 for HARQ ACK/NACK messages.
  • NB-IoT and eMTC services are intended for low-cost devices in which frequency/time synchronisation degradation is likely to occur over long transmission times. It has therefore been proposed that after a transmission of 256 ms a gap of 40 ms is provided to allow for receiver frequency/time resynchronisation.
  • Figure 3 shows the UL transmission and resynchronisation timelines for NB-IoT, at RU-level and for transmission/synchronisation blocks.
  • uplink transmissions are defined in the same way as legacy LTE with the addition of repetitions.
  • Figure 4 shows the maximum number of repetitions.
  • PRB Physical Resource Block
  • the transmission of a Physical Resource Block (PRB) takes 0.5 ms and the minimum allocation of 2 sequential PRBs in the time domain per transmission, the total transmission time could take up to 2048 ms for 2048 repetitions.
  • a transmission can take up to 2368ms thanks to the resynchronization time.
  • a UE In order for a UE to retain its PUR allocation it must utilise the resources at least once after several skips otherwise they may be terminated. However, if there is currently no data to transmit then such transmissions must be dummy transmissions. This increases power consumption and wastes transmission resources, particularly in enhanced coverage where the allocated resources include capacity for all repetitions. In addition, in case the UE skips the transmission, the network has no knowledge of the skip and therefore is unable to utilize these resources.
  • a method of uplink resource allocation in a cellular communication system comprising the steps of allocating uplink transmission resources for transmissions from a UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; transmitting an indication of the allocated resources to the UE; and if an occurrence of the allocated resources is not required transmitting from the UE to the base station, in that occurrence of the allocated resources, an indication that that occurrence of the resources is not required.
  • the uplink transmission resources may comprise resources for N repetitions of an uplink transmission.
  • the indication may occupy the resources for up to one of the N repetitions.
  • the preamble may be selected to have a high detection rate.
  • the indication may be a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or any other high-detectable transmission which may or may not be compromised as a mix of the above.
  • the indication may be an indication to suspend the allocated resources for the UE.
  • the indication may be an indication to terminate the allocated resources for the UE.
  • a method of uplink resource allocation in a cellular communication system comprising the steps of receiving an indication of allocated uplink transmission resources for transmissions from the UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; and if an occurrence of the allocated resources is not required transmitting from the UE to the base station, in that occurrence of the allocated resources, an indication that that occurrence of the resources is not required.
  • the uplink transmission resources may comprise resources for N repetitions of an uplink transmission.
  • the indication may occupy the resources for up to one of the N repetitions.
  • the indication may be a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or any other high-detectable transmission which may or may not be compromised as a mix of the above.
  • the indication may be an indication to suspend the allocated resources for the UE.
  • the indication may be an indication to terminate the allocated resources for the UE.
  • a UE configured to perform the methods described herein.
  • a method of uplink resource allocation in a cellular communication system comprising the steps of allocating uplink transmission resources for transmissions from a UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; transmitting an indication of the allocated resources to the UE; and at the start of an occurrence in which the UE intends to make a transmission, transmitting a preamble from the UE to the base station, wherein the preamble indicates there is a transmission from the UE in the resources.
  • the uplink transmission resources may comprise resources for N repetitions of an uplink transmission.
  • the preamble may be selected to have a high detection rate.
  • the preamble may be a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or any other high-detectable transmission which may or may not be compromised as a mix of the above.
  • a method of uplink resource allocation in a cellular communication system comprising the steps of receiving an indication of allocated uplink transmission resources for transmissions from the UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; and if an occurrence of the allocated resources is required, transmitting at the start of the occurrence a preamble from the UE to the base station, wherein the preamble indicates there will be a transmission from the UE in the resources.
  • the uplink transmission resources may comprise resources for N repetitions of an uplink transmission.
  • the preamble may be selected to have a high detection rate.
  • the indication may be a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or any other high-detectable transmission which may or may not be compromised as a mix of the above.
  • a UE configured to perform the methods described herein.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • Figure 1 shows possible repetitions in NB-IoT
  • FIG. 2 shows NPUSCH formats
  • Figure 3 shows uplink transmission and resynchronisation timelines for NB-IoT
  • Figure 5 shows a schematic diagram of elements of a cellular communications network
  • Figure 6 shows a communication protocol relating to uplink resource management
  • Figure 7 shows a processing scheme for uplink physical channels
  • Figure 8 shows simulation results for detection probability for different sequences
  • Figure 9 shows relative detection probabilities for different sequences.
  • FIG. 5 shows a schematic diagram of three base stations (for example, eNB or gNBs depending on the particular cellular standard and terminology) forming a cellular network.
  • each of the base stations will be deployed by one cellular network operator to provide geographic coverage for UEs in the area.
  • the base stations form a Radio Area Network (RAN) .
  • RAN Radio Area Network
  • Each base station provides wireless coverage for UEs in its area or cell.
  • the base stations are interconnected via the X2 interface and are connected to the core network via the S1 interface.
  • the base stations each comprise hardware and software to implement the RAN’s functionality, including communications with the core network and other base stations, carriage of control and data signals between the core network and UEs, and maintaining wireless communications with UEs associated with each base station.
  • the core network comprises hardware and software to implement the network functionality, such as overall network management and control, and routing of calls and data.
  • UEs (not shown) for connecting to the cellular network comprise hardware and software to provide the functionality described herein and to provide the normal operating capabilities associated with a UE.
  • Figure 6 shows a transmission diagram between a cellular network and a UE connected to a base station of that network.
  • the UE transmits a request to the network for uplink resources to be preconfigured for use by the UE.
  • the network allocates appropriate resources and transmits (from the relevant base station) an indication to the UE of the allocated resources.
  • the details may include time and frequency allocations, periodicity (P) , the number of repetitions per transmission in each period (N reps ) , and the starting transmission time (T start ) . Each of these may be explicitly or implicitly signalled, or in some circumstances may not be required.
  • the UE then has the resources available for transmission and at steps 602 and 603 the UE utilises the allocated resources to transmit data to the cellular network. However, at the next available occurrence of the resources, 604, the UE does not have data to transmit and hence does not require the resources. In the prior art systems discussed above the UE had the possibility of transmitting nothing, and losing the resources, or making a dummy transmission and hence consuming power despite having not data to transmit.
  • the UE in place of a regular transmission (or no transmission) the UE transmits an indication, which may be known as a preamble, in the first resources of the next repetition at 604.
  • the preamble is received by the network and decoded as an indication that the UE does not have any data to transmit but does not wish to terminate the resource allocation.
  • the cellular network thus knows not to expect any further transmission in this occurrence of the resources but does not cancel the allocation.
  • the cellular network can re-allocate the resources that will not be used to other UEs.
  • the effect of transmitting the preamble when the resources are not required is to reduce the UE power consumption compared to transmitting dummy data. Without the disclosed technique to preserve the resources using dummy data the UE would have to transmit N reps . Assuming the transmission power of the preamble is the same as one data transmission, then the saved power (P conserved ) is given by : -
  • the preamble may be any signal that the cellular network can receive and recognise as an indication that the resources allocated to the UE should be suspended.
  • the signal must thus convey the identity of the UE (implicitly or explicitly) , but no other data may be required.
  • the preamble may be selected to have a high detection rate.
  • the preamble may be a Zadoff-Chu sequence (ZC-sequence) .
  • ZC-sequence Zadoff-Chu sequence
  • Such sequences have a high detection rate and enable the signal to be transmitted at a high power due to good PAPR properties.
  • a fixed root, defined length, 12 ⁇ nRB sequence may be used.
  • nRB is defined as the bandwidth in resource blocks for the predefined UL transmission.
  • the sequence is repeated over all 14 OFDM symbols in the transmission subframe.
  • a potential drawback of such a sequence is that such sequences are not conventionally used in uplink transmissions and accordingly may lead to additional complexity for the UE and cellular network.
  • a UL-DMRS (Demodulation Reference Signal) may be utilised as the preamble.
  • Such signals also have good detection probability and PAPR properties and have the benefit that they are already utilised for uplink transmissions so additional complexity should be minimised.
  • the same DMRS may be used for each transmission in all 14 OFDM symbols in the subframe, or alternatively different DMRSs may be utilised in each or some of the OFDM symbols.
  • a longer DMRS may be selected which can fill all or some of the OFDM symbols and thus avoid repetition of the sequence.
  • sequences may be utilised as the preamble which is transmitted in the same way as a conventional transmission on NPUSCH.
  • the sequence may be transmitted as a low data rate subframe.
  • the sequence may be [0 1 0 1 0 1 0 1] .
  • Such sequences may have a lower detection probability and a varying PAPR, although the latter may be reduced by selection of a sequence having a low PAPR.
  • the decoded sequence is a real data string leading to erroneous decoding. With the assumption that the data string is evenly distributed, the chance of such a data string naturally arriving at the transmitter is 1 in 2 in the power of the sequence length.
  • FIG. 8 shows simulation results of detection failure against SNR for different preambles.
  • An SNR of -19dB is equivalent to MCL of -164dBm which is extreme coverage.
  • each transmission takes 1 subframe in the time domain and 1 or 2 RBs of bandwidth (as shown in the key) .
  • Figure 8 shows an advantage for Error! Reference source not found.
  • the Zadoff-Chu sequences, followed by DMRS while lower bitrate sequences have the worst detection probability.
  • a preamble could be repeated several times to improve detection probability, but power savings would be reduced.
  • Figure 9 shows the effect of the different types of preamble on various factors that are relevant to the choice of preamble.
  • a preamble has been transmitted to indicate that allocated resources are not required and can be suspended.
  • the preamble may indicate that the resources can be terminated.
  • the preamble is an indication that data is being transmitted in the allocated resources. That is the preamble is transmitted prior to each UL transmission and used by the cellular network as an indication that data is expected. If the UE doesn’t have anything to transmit the allocated resources can be skipped.
  • Such a system increases the overhead for each transmission, but conserves the power used by the UE when there is no data to send as the device can stay in IDLE without having to make dummy transmission. Since there is no positive indication that the UE is not making a transmission the network cannot know whether a missed reception is due to a lost connection or a deliberate non-transmission. A longer reservation for a PUR may thus be needed.
  • the proposed preambles are selected to be easy to detect and hence improves the chances of the receiving base station detecting the transmission, including in bad channel conditions. Failure to detect the preamble at the start of the resources is therefore an early indication that the UE does not intend to use the resources. The base station is thus aware, before the actual data transmission starts, that the UE is not going to use the resources.
  • the cellular network can thus reallocate the resources as soon as the preamble period ends without receipt.
  • the selected preamble may be utilised to transmit additional information from the UE. For example, several roots for the ZC-sequence, or several sequences, can form a set of possible preambles. A selected root or sequence can then be selected corresponding to the information required. For example, one sequence may indicate a request to suspend resources and another sequence may indicate a request to terminate the allocation.
  • the same principles may be applied to the use of DMRS but may be more difficult due to the risk of interface with neighbouring cells.
  • the data carried could be an indication of how long the UE intends to suspend transmission for. Predefined periods may be defined and each period indicated by a selected preamble. Such a system may provide further savings as the UE only needs to transmit one preamble per suspension, rather than one per occurrence of the resources.
  • any of the devices or apparatus that form part of the network may include at least a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method of any aspect of the present invention. Further options and choices are described below.
  • the signal processing functionality of the embodiments of the invention especially the gNB and the UE may be achieved using computing systems or architectures known to those who are skilled in the relevant art.
  • Computing systems such as, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc. ) , mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment can be used.
  • the computing system can include one or more processors which can be implemented using a general or special-purpose processing engine such as, for example, a microprocessor, microcontroller or other control module.
  • the computing system can also include a main memory, such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by a processor. Such a main memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor.
  • the computing system may likewise include a read only memory (ROM) or other static storage device for storing static information and instructions for a processor.
  • ROM read only memory
  • the computing system may also include an information storage system which may include, for example, a media drive and a removable storage interface.
  • the media drive may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a compact disc (CD) or digital video drive (DVD) read or write drive (R or RW) , or other removable or fixed media drive.
  • Storage media may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive.
  • the storage media may include a computer-readable storage medium having particular computer software or data stored therein.
  • an information storage system may include other similar components for allowing computer programs or other instructions or data to be loaded into the computing system.
  • Such components may include, for example, a removable storage unit and an interface , such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units and interfaces that allow software and data to be transferred from the removable storage unit to computing system.
  • the computing system can also include a communications interface.
  • a communications interface can be used to allow software and data to be transferred between a computing system and external devices.
  • Examples of communications interfaces can include a modem, a network interface (such as an Ethernet or other NIC card) , a communications port (such as for example, a universal serial bus (USB) port) , a PCMCIA slot and card, etc.
  • Software and data transferred via a communications interface are in the form of signals which can be electronic, electromagnetic, and optical or other signals capable of being received by a communications interface medium.
  • computer program product may be used generally to refer to tangible media such as, for example, a memory, storage device, or storage unit.
  • These and other forms of computer-readable media may store one or more instructions for use by the processor comprising the computer system to cause the processor to perform specified operations.
  • Such instructions generally 45 referred to as ‘computer program code’ (which may be grouped in the form of computer programs or other groupings) , when executed, enable the computing system to perform functions of embodiments of the present invention.
  • the code may directly cause a processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
  • the non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
  • the software may be stored in a computer-readable medium and loaded into computing system using, for example, removable storage drive.
  • a control module (in this example, software instructions or executable computer program code) , when executed by the processor in the computer system, causes a processor to perform the functions of the invention as described herein.
  • inventive concept can be applied to any circuit for performing signal processing functionality within a network element. It is further envisaged that, for example, a semiconductor manufacturer may employ the inventive concept in a design of a stand-alone device, such as a microcontroller of a digital signal processor (DSP) , or application-specific integrated circuit (ASIC) and/or any other sub-system element.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • aspects of the invention may be implemented in any suitable form including hardware, software, firmware or any combination of these.
  • the invention may optionally be implemented, at least partly, as computer software running on one or more data processors and/or digital signal processors or configurable module components such as FPGA devices.
  • an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units.
  • the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. Additionally, although a feature may appear to be described in connection with particular embodiments, one skilled in the art would recognise that various features of the described embodiments may be combined in accordance with the invention. In the claims, the term ‘comprising’ does not exclude the presence of other elements or steps.

Abstract

Methods and systems for the management of pre-allocated uplink resources. Uplink resources are allocated by a cellular network for a UE to utilise. The UE may transmit an indication that the UE intends to, or does not intend, use allocated resources for a transmission. In an example the UE transmits a highly detectable signal to indicate that the resources are not going to be utilised.

Description

Management of Pre-Allocated Resources Technical Field
The following disclosure relates to uplink transmission resources in cellular communications systems, and in particular to the management of pre-allocated resources.
Background
Wireless communication systems, such as the third-generation (3G) of mobile telephone standards and technology are well known. Such 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) . The 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications. Communication systems and networks have developed towards a broadband and mobile system.
In cellular wireless communication systems User Equipment (UE) is connected by a wireless link to a Radio Access Network (RAN) . The RAN comprises a set of base stations which provide wireless links to the UEs located in cells covered by the base station, and an interface to a Core Network (CN) which provides overall network control. As will be appreciated the RAN and CN each conduct respective functions in relation to the overall network. For convenience the term cellular network will be used to refer to the combined RAN & CN, and it will be understood that the term is used to refer to the respective system for performing the disclosed function.
The 3rd Generation Partnership Project has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or more macro-cells are supported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (new radio) systems where one or more cells are supported by a base station known as a gNB. NR is proposed to utilise an Orthogonal Frequency Division Multiplexed (OFDM) physical transmission format.
NB-IoT (Narrow Band Internet of Things) and eMTC (enhanced Machine Type Communications) are 3GPP technologies for supporting machine type communications. NB-IoT is particularly focussed on devices with low complexity and energy consumption which provide a low data throughput. Machine type communications are often characterised by small infrequent data transmissions, but with a requirement to support longer ranges than convention cellular communications. To support longer ranges Coverage Enhancement (CE) modes are provided which enable repetition of transmissions to improve link quality. NB-IoT provides enhanced and extreme coverage modes and eMTC provides CE Modes A & B.
For example, in NB-IoT up to 128 repetitions may be utilised for low SNR channels, as shown in Figure 1.
To reduce the control overhead, and improve latency, a system of Preconfigured Uplink Resources (PUR) may be utilised. In such a system the network allocates uplink resources (in time and frequency) with a specific periodicity which a UE may utilise for its uplink transmissions. This avoids the need for the transmission of a grant request and subsequent control communications. When a UE is in enhanced coverage additional resources in each period may be needed for the repeat transmissions, but other UEs may have nothing to transmit and hence do not require their allocated resources. If allocated resources are not utilised they are wasted as they are preconfigured for a specific UE (or group of UEs) .
The minimum time/frequency allocation for UL transmissions in NB-IoT is known as a Resource Unit (RU) , as defined in TS 36.211. The size of an RU depends on the Narrow Band Physical Uplink Shared Channel (NB-PUSCH) format and the subcarrier format. Figure 2 shows the available formats. A maximum of 16 slots is used. The slot timing information is dependent on subcarrier spacing. For Δf = 3.75kHz each slow requires 2 ms, and for Δf = 15kHz each slot requires 0.5 ms. NPUSCH format 1 is used for UL data transmission and format 2 for HARQ ACK/NACK messages.
NB-IoT and eMTC services are intended for low-cost devices in which frequency/time synchronisation degradation is likely to occur over long transmission times. It has therefore been proposed that after a transmission of 256 ms a gap of 40 ms is provided to allow for receiver frequency/time resynchronisation. Figure 3 shows the UL transmission and resynchronisation timelines for NB-IoT, at RU-level and for transmission/synchronisation blocks.
For eMTC, uplink transmissions are defined in the same way as legacy LTE with the addition of repetitions. Figure 4 shows the maximum number of repetitions. In eMTC the transmission of a Physical Resource Block (PRB) takes 0.5 ms and the minimum allocation of 2 sequential PRBs in the time domain per transmission, the total transmission time could take up to 2048 ms for 2048 repetitions. For HD-FDD eMTC devices a transmission can take up to 2368ms thanks to the resynchronization time.
In order for a UE to retain its PUR allocation it must utilise the resources at least once after several skips otherwise they may be terminated. However, if there is currently no data to transmit then such transmissions must be dummy transmissions. This increases power consumption and wastes transmission resources, particularly in enhanced coverage where the allocated resources include capacity for all repetitions. In addition, in case the UE skips the transmission, the network has no knowledge of the skip and therefore is unable to utilize these resources.
There is therefore a requirement for more efficient use of resources in a system using PURs.
Summary
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
There is provided a method of uplink resource allocation in a cellular communication system, the method comprising the steps of allocating uplink transmission resources for transmissions from a UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; transmitting an indication of the allocated resources to the UE; and if an occurrence of the allocated resources is not required transmitting from the UE to the base station, in that occurrence of the allocated resources, an indication that that occurrence of the resources is not required.
The uplink transmission resources may comprise resources for N repetitions of an uplink transmission.
The indication may occupy the resources for up to one of the N repetitions.
The preamble may be selected to have a high detection rate.
The indication may be a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or any other high-detectable transmission which may or may not be compromised as a mix of the above.
The indication may be an indication to suspend the allocated resources for the UE.
The indication may be an indication to terminate the allocated resources for the UE.
There is also provided a method of uplink resource allocation in a cellular communication system, the method performed by a UE and comprising the steps of receiving an indication of allocated uplink transmission resources for transmissions from the UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; and if an occurrence of the allocated resources is not required transmitting from the UE to the base station, in that occurrence of the allocated resources, an indication that that occurrence of the resources is not required.
The uplink transmission resources may comprise resources for N repetitions of an uplink transmission.
The indication may occupy the resources for up to one of the N repetitions.
The indication may be a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or any other high-detectable transmission which may or may not be compromised as a mix of the above.
The indication may be an indication to suspend the allocated resources for the UE.
The indication may be an indication to terminate the allocated resources for the UE.
There is also provided a UE configured to perform the methods described herein.
There is also provided a method of uplink resource allocation in a cellular communication system, the method comprising the steps of allocating uplink transmission resources for transmissions from a UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; transmitting an indication of the allocated resources to the UE; and at the start of an occurrence in which the UE intends to make a transmission, transmitting a preamble from the UE to the base station, wherein the preamble indicates there is a transmission from the UE in the resources.
The uplink transmission resources may comprise resources for N repetitions of an uplink transmission.
The preamble may be selected to have a high detection rate.
The preamble may be a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or any other high-detectable transmission which may or may not be compromised as a mix of the above.
There is also provided a method of uplink resource allocation in a cellular communication system, the method performed by a UE and comprising the steps of receiving an indication of allocated uplink transmission resources for transmissions from the UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; and if an occurrence of the allocated resources is required, transmitting at the start of the occurrence a preamble from the UE to the base station, wherein the preamble indicates there will be a transmission from the UE in the resources.
The uplink transmission resources may comprise resources for N repetitions of an uplink transmission.
The preamble may be selected to have a high detection rate.
The indication may be a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or any other high-detectable transmission which may or may not be compromised as a mix of the above.
There is also provided a UE configured to perform the methods described herein.
The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory.
Brief description of the drawings
Further details, aspects and embodiments of the invention will be described, by way of example only, with reference to the drawings. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. Like reference numerals have been included in the respective drawings to ease understanding.
Figure 1 shows possible repetitions in NB-IoT;
Figure 2 shows NPUSCH formats;
Figure 3 shows uplink transmission and resynchronisation timelines for NB-IoT;
Figure 4 shows maximum numbers of repetitions;
Figure 5 shows a schematic diagram of elements of a cellular communications network;
Figure 6 shows a communication protocol relating to uplink resource management;
Figure 7 shows a processing scheme for uplink physical channels;
Figure 8 shows simulation results for detection probability for different sequences; and
Figure 9 shows relative detection probabilities for different sequences.
Detailed description of the preferred embodiments
Those skilled in the art will recognise and appreciate that the specifics of the examples described are merely illustrative of some embodiments and that the teachings set forth herein are applicable in a variety of alternative settings.
Figure 5 shows a schematic diagram of three base stations (for example, eNB or gNBs depending on the particular cellular standard and terminology) forming a cellular network. Typically, each of the base stations will be deployed by one cellular network operator to provide geographic coverage for UEs in the area. The base stations form a Radio Area Network (RAN) . Each base station provides wireless coverage for UEs in its area or cell. The base stations are interconnected via the X2 interface and are connected to the core network via the S1 interface. As will be appreciated only basic details are shown for the purposes of exemplifying the key features of a cellular network.
The base stations each comprise hardware and software to implement the RAN’s functionality, including communications with the core network and other base stations, carriage of control and data signals between the core network and UEs, and maintaining wireless communications with UEs associated with each base station. The core network comprises hardware and software to implement the network functionality, such as overall network  management and control, and routing of calls and data. UEs (not shown) for connecting to the cellular network comprise hardware and software to provide the functionality described herein and to provide the normal operating capabilities associated with a UE.
Figure 6 shows a transmission diagram between a cellular network and a UE connected to a base station of that network. At step 600 the UE transmits a request to the network for uplink resources to be preconfigured for use by the UE. At step 601 the network allocates appropriate resources and transmits (from the relevant base station) an indication to the UE of the allocated resources. The details may include time and frequency allocations, periodicity (P) , the number of repetitions per transmission in each period (N reps) , and the starting transmission time (T start) . Each of these may be explicitly or implicitly signalled, or in some circumstances may not be required.
The UE then has the resources available for transmission and at  steps  602 and 603 the UE utilises the allocated resources to transmit data to the cellular network. However, at the next available occurrence of the resources, 604, the UE does not have data to transmit and hence does not require the resources. In the prior art systems discussed above the UE had the possibility of transmitting nothing, and losing the resources, or making a dummy transmission and hence consuming power despite having not data to transmit.
According to the method of Figure 6, in place of a regular transmission (or no transmission) the UE transmits an indication, which may be known as a preamble, in the first resources of the next repetition at 604. The preamble is received by the network and decoded as an indication that the UE does not have any data to transmit but does not wish to terminate the resource allocation. The cellular network thus knows not to expect any further transmission in this occurrence of the resources but does not cancel the allocation. The cellular network can re-allocate the resources that will not be used to other UEs.
The effect of transmitting the preamble when the resources are not required is to reduce the UE power consumption compared to transmitting dummy data. Without the disclosed technique to preserve the resources using dummy data the UE would have to transmit N reps. Assuming the transmission power of the preamble is the same as one data transmission, then the saved power (P conserved) is given by : -
P conserved = (N reps –1) *P Tx
Where P Tx is the power of one repetition. As the number configured repetitions increases the power saving also increases. Where N reps = 1 there is no power saving as the preamble takes the place of the only dummy transmission that would be required. The method may therefore only be applied when N reps > 1, and if N reps = 1 a dummy transmission can be made.
The preamble may be any signal that the cellular network can receive and recognise as an indication that the resources allocated to the UE should be suspended. The signal must thus convey the identity of the UE (implicitly or explicitly) , but no other data may be required. However, it is also possible to use the preamble to transmit control data or user data if required. The preamble may be selected to have a high detection rate.
In an example the preamble may be a Zadoff-Chu sequence (ZC-sequence) . Such sequences have a high detection rate and enable the signal to be transmitted at a high power due to good PAPR properties. A fixed root, defined length, 12·nRB sequence may be used. nRB is defined as the bandwidth in resource blocks for the predefined UL transmission. The sequence is repeated over all 14 OFDM symbols in the transmission subframe. A potential drawback of such a sequence is that such sequences are not conventionally used in uplink transmissions and accordingly may lead to additional complexity for the UE and cellular network.
In a further example a UL-DMRS (Demodulation Reference Signal) may be utilised as the preamble. Such signals also have good detection probability and PAPR properties and have the benefit that they are already utilised for uplink transmissions so additional complexity should be minimised. The same DMRS may be used for each transmission in all 14 OFDM symbols in the subframe, or alternatively different DMRSs may be utilised in each or some of the OFDM symbols. In further examples a longer DMRS may be selected which can fill all or some of the OFDM symbols and thus avoid repetition of the sequence.
In a further example known sequence may be utilised as the preamble which is transmitted in the same way as a conventional transmission on NPUSCH. The sequence may be transmitted as a low data rate subframe. Figure 7, derived from Figure 5.3-1 of TS 36-211, shows the uplink physical channel processing process. In an example the sequence may be [0 1 0 1 0 1 0 1] . Compared to the earlier-described examples such sequences may have a lower detection probability and a varying PAPR, although the latter may be reduced by selection of a sequence having a low PAPR. There is a risk, if the normal transmission chain is utilised, that the decoded sequence is a real data string leading to erroneous decoding. With the assumption that the data string is evenly distributed, the chance of such a data string naturally arriving at the transmitter is 1 in 2 in the power of the sequence length.
An important factor in the selection of the preamble is the detection probability as the signal affects uplink transmission for a number of subsequent subframes. Figure 8 shows simulation results of detection failure against SNR for different preambles. An SNR of -19dB is equivalent to MCL of -164dBm which is extreme coverage. In the simulation, each transmission takes 1 subframe in the time domain and 1 or 2 RBs of bandwidth (as shown in the key) .
Figure 8 shows an advantage for Error! Reference source not found. the Zadoff-Chu sequences, followed by DMRS, while lower bitrate sequences have the worst detection probability. A preamble could be repeated several times to improve detection probability, but power savings would be reduced.
Figure 9 shows the effect of the different types of preamble on various factors that are relevant to the choice of preamble.
In the foregoing description a preamble has been transmitted to indicate that allocated resources are not required and can be suspended. In an alternative arrangement the preamble may indicate that the resources can be terminated.
In a further alternative, the preamble is an indication that data is being transmitted in the allocated resources. That is the preamble is transmitted prior to each UL transmission and used by the cellular network as an indication that data is expected. If the UE doesn’t have anything to transmit the allocated resources can be skipped. Such a system increases the overhead for each transmission, but conserves the power used by the UE when there is no data to send as the device can stay in IDLE without having to make dummy transmission. Since there is no positive indication that the UE is not making a transmission the network cannot know whether a missed reception is due to a lost connection or a deliberate non-transmission. A longer reservation for a PUR may thus be needed.
The proposed preambles are selected to be easy to detect and hence improves the chances of the receiving base station detecting the transmission, including in bad channel conditions. Failure to detect the preamble at the start of the resources is therefore an early indication that the UE does not intend to use the resources. The base station is thus aware, before the actual data transmission starts, that the UE is not going to use the resources.
The cellular network can thus reallocate the resources as soon as the preamble period ends without receipt.
The selected preamble may be utilised to transmit additional information from the UE. For example, several roots for the ZC-sequence, or several sequences, can form a set of possible preambles. A selected root or sequence can then be selected corresponding to the information required. For example, one sequence may indicate a request to suspend resources and another sequence may indicate a request to terminate the allocation. The same principles may be applied to the use of DMRS but may be more difficult due to the risk of interface with neighbouring cells. In an example, the data carried could be an indication of how long the UE intends to suspend transmission for. Predefined periods may be defined and each period indicated by a selected preamble. Such a system may provide further savings as the UE only needs to transmit one preamble per suspension, rather than one per occurrence of the resources.
Such a system, however, increases the complexity of the receive chain as blind decoding must be performed over multiple sequences.
Although not shown in detail any of the devices or apparatus that form part of the network may include at least a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method of any aspect of the present invention. Further options and choices are described below.
The signal processing functionality of the embodiments of the invention especially the gNB and the UE may be achieved using computing systems or architectures known to those who are skilled in the relevant art. Computing systems such as, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc. ) , mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a given application or environment can be used. The computing system can include one or more processors which can be implemented using a general or special-purpose processing engine such as, for example, a microprocessor, microcontroller or other control module.
The computing system can also include a main memory, such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by a processor. Such a main memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor. The computing system may likewise include a read only memory (ROM) or other static storage device for storing static information and instructions for a processor.
The computing system may also include an information storage system which may include, for example, a media drive and a removable storage interface. The media drive may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a compact disc (CD) or digital video drive (DVD) read or write drive (R or RW) , or other removable or fixed media drive. Storage media may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and written to by media drive. The storage media may include a computer-readable storage medium having particular computer software or data stored therein.
In alternative embodiments, an information storage system may include other similar components for allowing computer programs or other instructions or data to be loaded into the computing system. Such components may include, for example, a removable storage unit and an interface , such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other  removable storage units and interfaces that allow software and data to be transferred from the removable storage unit to computing system.
The computing system can also include a communications interface. Such a communications interface can be used to allow software and data to be transferred between a computing system and external devices. Examples of communications interfaces can include a modem, a network interface (such as an Ethernet or other NIC card) , a communications port (such as for example, a universal serial bus (USB) port) , a PCMCIA slot and card, etc. Software and data transferred via a communications interface are in the form of signals which can be electronic, electromagnetic, and optical or other signals capable of being received by a communications interface medium.
In this document, the terms ‘computer program product’ , ‘computer-readable medium’ and the like may be used generally to refer to tangible media such as, for example, a memory, storage device, or storage unit. These and other forms of computer-readable media may store one or more instructions for use by the processor comprising the computer system to cause the processor to perform specified operations. Such instructions, generally 45 referred to as ‘computer program code’ (which may be grouped in the form of computer programs or other groupings) , when executed, enable the computing system to perform functions of embodiments of the present invention. Note that the code may directly cause a processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing standard functions) to do so.
The non-transitory computer readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash memory. In an embodiment where the elements are implemented using software, the software may be stored in a computer-readable medium and loaded into computing system using, for example, removable storage drive. A control module (in this example, software instructions or executable computer program code) , when executed by the processor in the computer system, causes a processor to perform the functions of the invention as described herein.
Furthermore, the inventive concept can be applied to any circuit for performing signal processing functionality within a network element. It is further envisaged that, for example, a semiconductor manufacturer may employ the inventive concept in a design of a stand-alone device, such as a microcontroller of a digital signal processor (DSP) , or application-specific integrated circuit (ASIC) and/or any other sub-system element.
It will be appreciated that, for clarity purposes, the above description has described embodiments of the invention with reference to a single processing logic. However, the inventive concept may equally be implemented by way of a plurality of different functional units and processors to provide the signal processing functionality. Thus, references to specific functional units are only to be seen as references to suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organisation.
Aspects of the invention may be implemented in any suitable form including hardware, software, firmware or any combination of these. The invention may optionally be implemented, at least partly, as computer software running on one or more data processors and/or digital signal processors or configurable module components such as FPGA devices.
Thus, the elements and components of an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units. Although  the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. Additionally, although a feature may appear to be described in connection with particular embodiments, one skilled in the art would recognise that various features of the described embodiments may be combined in accordance with the invention. In the claims, the term ‘comprising’ does not exclude the presence of other elements or steps.
Furthermore, although individually listed, a plurality of means, elements or method steps may be implemented by, for example, a single unit or processor. Additionally, although individual features may be included in different claims, these may possibly be advantageously combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. Also, the inclusion of a feature in one category of claims does not imply a limitation to this category, but rather indicates that the feature is equally applicable to other claim categories, as appropriate.
Furthermore, the order of features in the claims does not imply any specific order in which the features must be performed and in particular the order of individual steps in a method claim does not imply that the steps must be performed in this order. Rather, the steps may be performed in any suitable order. In addition, singular references do not exclude a plurality. Thus, references to ‘a’ , ‘an’ , ‘first’ , ‘second’ , etc. do not preclude a plurality.
Although the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the accompanying claims. Additionally, although a feature may appear to be described in connection with particular embodiments, one skilled in the art would recognise that various features of the described embodiments may be combined in accordance with the invention. In the claims, the term ‘comprising’ or “including” does not exclude the presence of other elements.

Claims (23)

  1. A method of uplink resource allocation in a cellular communication system, the method comprising the steps of
    allocating uplink transmission resources for transmissions from a UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity;
    transmitting an indication of the allocated resources to the UE; and
    if an occurrence of the allocated resources is not required transmitting from the UE to the base station, in that occurrence of the allocated resources, an indication that that occurrence of the resources is not required.
  2. A method according to claim 1, wherein the uplink transmission resources comprise resources for N repetitions of an uplink transmission.
  3. A method according to claim 2, wherein the indication occupies the resources for up to one of the N repetitions.
  4. A method according to claim 1 or claim 2, wherein the preamble is selected to have a high detection rate.
  5. A method according to any preceding claim, wherein the indication is a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or a combination thereof.
  6. A method according to any preceding claim, wherein the indication is an indication to suspend the allocated resources for the UE.
  7. A method according to any of claims 1 to 5, wherein the indication is an indication to terminate the allocated resources for the UE.
  8. A method of uplink resource allocation in a cellular communication system, the method performed by a UE and comprising the steps of
    receiving an indication of allocated uplink transmission resources for transmissions from the UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; and
    if an occurrence of the allocated resources is not required transmitting from the UE to the base station, in that occurrence of the allocated resources, an indication that that occurrence of the resources is not required.
  9. A method according to claim 8, wherein the uplink transmission resources comprise resources for N repetitions of an uplink transmission.
  10. A method according to claim 8, wherein the indication occupies the resources for up to one of the N repetitions.
  11. A method according to any of claims 8 to 10, wherein the indication is a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or a combination thereof.
  12. A method according to any of claims 8 to 11, wherein the indication is an indication to suspend the allocated resources for the UE.
  13. A method according to any of claims 8 to 11, wherein the indication is an indication to terminate the allocated resources for the UE.
  14. A UE configured to perform the method of any of claims 8 to 13.
  15. A method of uplink resource allocation in a cellular communication system, the method comprising the steps of
    allocating uplink transmission resources for transmissions from a UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity;
    transmitting an indication of the allocated resources to the UE; and
    at the start of an occurrence in which the UE intends to make a transmission, transmitting a preamble from the UE to the base station, wherein the preamble indicates there is a transmission from the UE in the resources.
  16. A method according to claim 15, wherein the uplink transmission resources comprise resources for N repetitions of an uplink transmission.
  17. A method according to claim 14 or 15, wherein the preamble is selected to have a high detection rate.
  18. A method according to any of claims 15 to 17, wherein the preamble is a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or a combination thereof.
  19. A method of uplink resource allocation in a cellular communication system, the method performed by a UE and comprising the steps of
    receiving an indication of allocated uplink transmission resources for transmissions from the UE to a base station, wherein the uplink transmission resources repeat with a predefined periodicity; and
    if an occurrence of the allocated resources is required, transmitting at the start of the occurrence a preamble from the UE to the base station, wherein the preamble indicates there will be a transmission from the UE in the resources.
  20. A method according to claim 19, wherein the uplink transmission resources comprise resources for N repetitions of an uplink transmission.
  21. A method according to claim 19 or 20, wherein the preamble is selected to have a high detection rate.
  22. A method according to any of claims 19 to 21, wherein the indication is a Zadoff-Chu sequence, a DMRS, or a low data rate subframe, or a combination thereof.
  23. A UE configured to perform the method of any of claims 21 to 24.
PCT/CN2019/123990 2018-12-13 2019-12-09 Management of pre-allocated resources WO2020119628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980082539.7A CN113261359B (en) 2018-12-13 2019-12-09 Management of pre-allocated resources

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1820352.1A GB2579792B (en) 2018-12-13 2018-12-13 Management of pre-allocated resources
GB1820352.1 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020119628A1 true WO2020119628A1 (en) 2020-06-18

Family

ID=65147094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123990 WO2020119628A1 (en) 2018-12-13 2019-12-09 Management of pre-allocated resources

Country Status (3)

Country Link
CN (1) CN113261359B (en)
GB (1) GB2579792B (en)
WO (1) WO2020119628A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020168576A1 (en) * 2019-02-22 2020-08-27 Nokia Shanghai Bell Co., Ltd. Resource configuration for nb-iot
WO2023206447A1 (en) * 2022-04-29 2023-11-02 Oppo广东移动通信有限公司 Data transmission method and apparatus, computer device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137182A (en) * 2006-09-01 2008-03-05 华为技术有限公司 Resource allocation method and system for wireless communication system
WO2011009333A1 (en) * 2009-07-22 2011-01-27 中兴通讯股份有限公司 Method and device for sending data based on persistent resources
US20140204835A1 (en) * 2011-08-19 2014-07-24 Sca Ipla Holdings Inc Wireless communications system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572652B (en) * 2008-04-28 2012-01-11 中兴通讯股份有限公司 Triggering method for semipersistent resource release
CN102026410A (en) * 2010-12-21 2011-04-20 中兴通讯股份有限公司 Method and system for releasing semi-persistent scheduling (SPS) service resources
CN104185306B (en) * 2013-05-28 2017-09-01 普天信息技术研究院有限公司 A kind of implicit method for releasing of semi-persistent resource distribution
RU2672186C2 (en) * 2014-03-19 2018-11-12 Хуавей Текнолоджиз Ко., Лтд. Method and device for semi-persistent sps scheduling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137182A (en) * 2006-09-01 2008-03-05 华为技术有限公司 Resource allocation method and system for wireless communication system
WO2011009333A1 (en) * 2009-07-22 2011-01-27 中兴通讯股份有限公司 Method and device for sending data based on persistent resources
US20140204835A1 (en) * 2011-08-19 2014-07-24 Sca Ipla Holdings Inc Wireless communications system and method

Also Published As

Publication number Publication date
GB201820352D0 (en) 2019-01-30
GB2579792A (en) 2020-07-08
GB2579792B (en) 2021-01-20
CN113261359B (en) 2023-05-23
CN113261359A (en) 2021-08-13

Similar Documents

Publication Publication Date Title
US10674501B2 (en) Low latency physical downlink control channel and physical downlink shared channel
US11653362B2 (en) Resource allocation for user equipment
GB2558564A (en) Methods and devices for downlink resource sharing between URLLC and eMBB transmissions in wireless communication systems
WO2016070552A1 (en) Function indication method, device and system
WO2020259329A1 (en) Sidelink resource allocation
US11363631B2 (en) Dynamic start for transmission on unlicensed spectrum
WO2019096037A1 (en) Improvements in or relating to rate de-matching around resources used by control signaling
WO2021023081A1 (en) Sidelink feedback resource allocation
US20210345409A1 (en) Conflict avoidance in a cellular network
US11297635B2 (en) Slot bundling
WO2019029591A1 (en) A method and devices to support new radio (nr) transmission without grant
WO2020119628A1 (en) Management of pre-allocated resources
WO2019154106A1 (en) Grant-based uplink transmission
WO2020030029A1 (en) Enhancements of Automatic Repetition in a Wireless Communication Network
WO2019192411A1 (en) Control and data transmission
WO2022017477A1 (en) Periodic reservations for sidelink communications in cellular networks
CN112602363B (en) Method for dynamically allocating paging and/or RACH resources and related equipment
WO2019154105A1 (en) Control Information Transmission
WO2019214686A1 (en) Multiple access techniques in a cellular network
GB2578623A (en) Frequency hopping in grant-free systems
GB2576034A (en) Uplink transmission resource sharing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894438

Country of ref document: EP

Kind code of ref document: A1