WO2019095939A1 - 无线链路的测量方法及装置、终端、基站、存储介质 - Google Patents

无线链路的测量方法及装置、终端、基站、存储介质 Download PDF

Info

Publication number
WO2019095939A1
WO2019095939A1 PCT/CN2018/111297 CN2018111297W WO2019095939A1 WO 2019095939 A1 WO2019095939 A1 WO 2019095939A1 CN 2018111297 W CN2018111297 W CN 2018111297W WO 2019095939 A1 WO2019095939 A1 WO 2019095939A1
Authority
WO
WIPO (PCT)
Prior art keywords
oos
reference signal
downlink reference
terminal
timer
Prior art date
Application number
PCT/CN2018/111297
Other languages
English (en)
French (fr)
Inventor
寇帅华
郝鹏
毕峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019095939A1 publication Critical patent/WO2019095939A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, but is not limited to the field of communications, and in particular, to a method and apparatus for measuring a wireless link, a terminal, a base station, and a storage medium.
  • the base station configures one or more better quality beams for communication. And because the signal quality of the beam will always change, the configured beam will also be constantly changing, so that the beam signal quality used by the terminal can always meet the communication requirements.
  • the user equipment In order to ensure normal communication, the user equipment (UE) needs to periodically check the quality of the current link, and periodically sends an indication to the upper layer according to the measurement result, so that the upper layer knows the current state of the terminal. For example, when the quality of the signal is greater than a certain threshold, the physical layer of the terminal reports synchronization (in sync, referred to as IS) to the upper layer; when the quality of the signal is less than a certain threshold, the terminal reports the out of sync to the upper layer (out of sync, Referred to as OOS). Since there are multiple available beams in the terminal and the base station, the base station configures multiple reference signal resources for the terminal to detect the link quality. When the number of resources of the configured reference signal is increasing, the more signals the terminal needs to detect each time, the more the complexity and power consumption of the measurement wireless link will increase.
  • the embodiments of the present application provide a method and device for measuring a wireless link, a terminal, a base station, and a storage medium.
  • a method for measuring a wireless link includes: receiving, by a terminal, configuration information of a downlink reference signal, where the configuration information includes at least one of: configuration parameter information, between different configuration parameters The coupling relationship; the terminal performs measurement of the wireless link according to the configuration information.
  • a measurement apparatus for a wireless link which is applied to a terminal, and includes: a receiving module configured to receive configuration information of a downlink reference signal, where the configuration information includes at least one of the following The information of the configuration parameter and the coupling relationship between different configuration parameters; the measurement module is configured to perform measurement of the wireless link according to the configuration information.
  • a measurement apparatus for a wireless link which is applied to a base station, and includes: a sending module, configured to send configuration information of a downlink reference signal, where the configuration information includes at least one of the following And a coupling relationship between the information of the configuration parameter and the different configuration parameters, where the configuration information is used to instruct the terminal to perform measurement of the wireless link.
  • a terminal comprising: a processor; a memory for storing instructions executable by the processor; the processor for executing the terminal according to an instruction stored in the memory The measurement method of the side wireless link.
  • a base station comprising: a processor; a memory for storing instructions executable by the processor; the processor configured to perform the base station according to an instruction stored in the memory The measurement method of the side wireless link.
  • a storage medium comprising a stored program, wherein the program is executed while performing the measurement method of the wireless link described above.
  • the terminal performs the measurement of the radio link according to the information about the downlink reference signal configured by the base station, where the configuration information includes at least one of the following: configuration parameter information, coupling relationship between different configuration parameters, after one configuration
  • the terminal may directly obtain the value change of other configuration parameters according to the corresponding coupling relationship, and perform measurement of the wireless link.
  • the base station configures multiple reference signal resources for the terminal to detect the link quality
  • the terminal measures the complexity and power consumption of the wireless link.
  • the above solution effectively reduces the complexity and power consumption of the terminal to measure the wireless link, and does not increase the delay of the terminal to announce the failure of the wireless link, and improves the measurement efficiency of the terminal to the wireless link.
  • FIG. 1 is a flowchart of a method for measuring an optional wireless link according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for measuring an optional wireless link according to an embodiment of the present application
  • FIG. 3 is a block diagram showing the structure of an optional wireless link measuring apparatus according to an embodiment of the present application.
  • FIG. 4 is a structural block diagram of an optional wireless link measurement apparatus according to an embodiment of the present application.
  • FIG. 5 is a structural block diagram of an optional terminal according to an embodiment of the present application.
  • FIG. 6 is a structural block diagram of an optional base station according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • a method for measuring a wireless link is provided.
  • 1 is a flow chart of an alternative method of measuring a wireless link in accordance with an embodiment of the present application. As shown in FIG. 1, an optional process of the measurement method of the wireless link includes:
  • Step S101 The terminal receives the configuration information of the downlink reference signal, where the configuration information includes at least one of the following: information of the configuration parameter, and a coupling relationship between different configuration parameters;
  • Step S103 The terminal performs measurement of the wireless link according to the configuration information.
  • the terminal receives the configuration information of the downlink reference signal, where the configuration information includes at least one of the following: configuration parameter information, a coupling relationship between different configuration parameters, and then the terminal performs radio link measurement according to the configuration information.
  • the terminal since the base station configures multiple reference signal resources for the terminal to detect the link quality, the terminal measures the complexity of the wireless link and the power consumption increases. The above solution effectively reduces the complexity and power consumption of the terminal to measure the wireless link, and does not increase the delay of the terminal to announce the failure of the wireless link, and improves the measurement efficiency of the terminal to the wireless link.
  • the coupling relationship between the configuration parameters and the base station can be pre-agreed by the protocol.
  • the base station sends the configuration information to the terminal, only the downlink reference signal needs to be sent in one case. At least one configuration parameter information, and configuration parameter information in other cases, the terminal can acquire itself according to the coupling relationship.
  • the different situations here can be understood as the case where the base station sends different downlink reference signal resources.
  • the foregoing step S103 may be implemented by: the terminal detecting the downlink reference signal on the first wireless link according to the configuration information; and determining, by the high layer of the terminal, whether to announce the first wireless link according to the detection result. failure.
  • the upper layer of the terminal is a logical entity, and generally refers to a network protocol layer located above the physical layer, including, for example, Medium Access Control (MAC) layer, data link layer, and radio resource control (Radio). Resource Control, referred to as the RRC layer, etc., is provided by the physical layer.
  • MAC Medium Access Control
  • Radio radio resource control
  • the high layer of the terminal determines whether to announce the failure of the first radio link according to the detection result, and may be implemented by: the physical layer of the terminal sends the detection result of the downlink reference signal to the upper layer of the terminal according to the detection result of the downlink reference signal.
  • the IS indication is sent, and all the signal quality in the detected downlink reference signal is less than the preset
  • the threshold is high
  • the OOS indication is sent;
  • the timer is started;
  • the number of IS indications received within the preset time of the timer reaches a second preset number (N2), and the timer is stopped; if the upper layer of the terminal receives the number of IS indications within the preset time of the timer If the second preset number is not reached, the first radio link fails.
  • the configuration parameter includes at least one of the following: the measurement period TM of the terminal measurement downlink reference signal, the evaluation period Tin indicated by the IS, the evaluation period Toos indicated by the OOS, and the OOS for starting the timer
  • the second preset number N2 of the IS indication of the stop timer is the transmission period T of the downlink reference signal.
  • the coupling relationship includes: when the number N of resources of the downlink reference signal is larger, the measurement period TM of the terminal measurement downlink reference signal is larger, and the evaluation period of the IS indication is determined by the evaluation period Tin and OOS.
  • the larger the period Toos the smaller the first preset number N1 of the OOS indication used to start the timer and the second preset number N2 of the IS indication for stopping the timer, and the transmission period T of the downlink reference signal is larger.
  • the measurement period TM of the terminal measurement downlink reference signal is smaller, and the evaluation period Tin of the IS indication and the evaluation period Toos indicated by the OOS are smaller, and the OOS indication for starting the timer is The larger the first preset number N1 and the second preset number N2 of the IS indication for stopping the timer, the smaller the transmission period T of the downlink reference signal.
  • the coupling relationship satisfies the following conditions: N and TM are proportional to each other, Tin and TM are proportional to each other, Toos and TM are proportional to each other, and N1 and TM are inversely proportional, N2 and TM are Inverse relationship, T and TM are proportional.
  • the terminal when the number N of resources of the downlink reference signal changes during the detection of the first radio link, the terminal may re-determine the number of resources N with the downlink reference signal according to the change of N.
  • the value of other configuration parameters that have a coupling relationship is not limited to:
  • the terminal re-determines the value of other configuration parameters that have a coupling relationship with the resource number N of the downlink reference signal according to the change of N, and may be implemented by the following steps: The relationship re-determines a first preset number N1 of the OOS indication for starting the timer and a second preset number N2 of the IS indication for stopping the timer, and automatically changes the number of OOS indications that have been received according to the coupling relationship Or the number of IS indications that have been received. Specific examples are given in the following preferred embodiments.
  • FIG. 2 is a flow chart of an alternative method of measuring a wireless link in accordance with an embodiment of the present application. As shown in FIG. 2, an optional process of the measurement method of the wireless link includes:
  • step S201 the base station sends the configuration information of the downlink reference signal, where the configuration information includes at least one of the following: information of the configuration parameter, a coupling relationship between different configuration parameters, and the configuration information is used to indicate that the terminal performs the measurement of the wireless link. .
  • the above method solves the problem in the related art that the base station configures multiple reference signal resources for the terminal to detect the link quality, and the terminal measures the complexity and power consumption of the wireless link.
  • the above solution effectively reduces the complexity and power consumption of the terminal to measure the wireless link, and does not increase the delay of the terminal to announce the failure of the wireless link, and improves the measurement efficiency of the terminal to the wireless link.
  • the configuration parameter includes at least one of the following: the measurement period TM of the terminal measurement downlink reference signal, the evaluation period Tin indicated by the IS, the evaluation period Toos indicated by the OOS, and the OOS for starting the timer
  • the second preset number N2 indicated by the IS of the device is the transmission period T of the downlink reference signal.
  • the coupling relationship includes: when the number N of resources of the downlink reference signal is larger, the measurement period TM of the terminal measurement downlink reference signal is larger, and the evaluation period of the IS indication is determined by the evaluation period Tin and OOS.
  • the larger the period Toos the smaller the first preset number N1 of the OOS indication used to start the timer and the second preset number N2 of the IS indication for stopping the timer, and the transmission period T of the downlink reference signal is larger.
  • the coupling relationship satisfies the following conditions: N and TM are proportional to each other, Tin and TM are proportional to each other, Toos and TM are proportional to each other, and N1 and TM are inversely proportional, N2 and TM are Inverse relationship, T and TM are proportional.
  • a storage medium comprising a stored program, wherein the program executes the above method and its preferred embodiment while the program is running.
  • radio link measurement device is also provided in the embodiment of the present application.
  • the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of an optional wireless link measurement apparatus according to an embodiment of the present application. As shown in Figure 3, the device comprises:
  • the receiving module 30 is configured to receive configuration information of the downlink reference signal, where the configuration information includes at least one of the following: information of the configuration parameter, and a coupling relationship between the different configuration parameters;
  • the measurement module 32 is configured to perform measurement of the wireless link according to the configuration information.
  • the related art is solved in that the base station configures multiple reference signal resources for the terminal to detect the link quality, which causes the terminal to measure the complexity and power consumption of the wireless link.
  • the above solution effectively reduces the complexity and power consumption of the terminal to measure the wireless link, and does not increase the delay of the terminal to announce the failure of the wireless link, and improves the measurement efficiency of the terminal to the wireless link.
  • the configuration parameter includes at least one of the following: the measurement period TM of the terminal measurement downlink reference signal, the evaluation period Tin indicated by the IS, the evaluation period Toos indicated by the OOS, and the OOS for starting the timer
  • the coupling relationship includes: when the number N of resources of the downlink reference signal is larger, the measurement period TM of the terminal measurement downlink reference signal is larger, and the evaluation period of the IS indication is determined by the evaluation period Tin and OOS.
  • the larger the period Toos the smaller the first preset number N1 of the OOS indication used to start the timer and the second preset number N2 of the IS indication for stopping the timer, and the transmission period T of the downlink reference signal is larger.
  • the coupling relationship satisfies the following conditions: N and TM are proportional to each other, Tin and TM are proportional to each other, Toos and TM are proportional to each other, and N1 and TM are inversely proportional, N2 and TM are Inverse relationship, T and TM are proportional.
  • a measurement apparatus for implementing the foregoing wireless link is also provided, which is applied to a base station, and a description corresponding to the wireless measurement method is not described herein again.
  • 4 is a structural block diagram of an optional wireless link measurement apparatus according to an embodiment of the present application. As shown in Figure 4, the device comprises:
  • the sending module 40 is configured to send configuration information of the downlink reference signal, where the configuration information includes at least one of the following: information of the configuration parameter, a coupling relationship between different configuration parameters, and the configuration information is used to indicate that the terminal performs the measurement of the wireless link. .
  • the related art is solved in that the base station configures multiple reference signal resources for the terminal to detect the link quality, which causes the terminal to measure the complexity and power consumption of the wireless link.
  • the above solution effectively reduces the complexity and power consumption of the terminal to measure the wireless link, and does not increase the delay of the terminal to announce the failure of the wireless link, and improves the measurement efficiency of the terminal to the wireless link.
  • the configuration parameter includes at least one of the following: the measurement period TM of the terminal measurement downlink reference signal, the evaluation period Tin indicated by the IS, the evaluation period Toos indicated by the OOS, and the OOS for starting the timer
  • the first preset number N1 of the indication is used to stop the second preset number N2 of the IS indication of the timer, and the number of resources N of the downlink reference signal and the transmission period T of the downlink reference signal, where the number of resources of the downlink reference signal N has a coupling relationship with at least one of the following: the terminal measures the measurement period TM of the downlink reference signal, the evaluation period Tin indicated by the IS, the evaluation period Toos indicated by the OOS, and the first preset number of the OOS indication used to start the timer N1, a second preset number N2 for stopping the IS indication of the timer, and a transmission period T of the downlink reference signal.
  • the coupling relationship includes: when the number N of resources of the downlink reference signal is larger, the measurement period TM of the terminal measuring the downlink reference signal is larger, and the evaluation period Tin and OOS indications indicated by the IS are larger.
  • the larger the evaluation period Toos the smaller the first preset number N1 of the OOS indication for starting the timer and the second preset number N2 of the IS indication for stopping the timer, the larger the transmission period T of the downlink reference signal is. .
  • the coupling relationship satisfies the following conditions: N and TM are proportional to each other, Tin and TM are proportional to each other, Toos and TM are proportional to each other, and N1 and TM are inversely proportional, N2 and TM are Inverse relationship, T and TM are proportional.
  • FIG. 5 is a structural block diagram of an optional terminal according to an embodiment of the present application.
  • the embodiment of the present application further provides a terminal, including: a processor 50; a memory 52 configured to store instructions executable by the processor 50; and a processor 50 configured to execute according to instructions stored in the memory 52. A method of measuring a wireless link on the terminal side.
  • the terminal since the base station configures multiple reference signal resources for the terminal to detect the link quality, the terminal measures the complexity of the wireless link and the power consumption increases.
  • the above solution effectively reduces the complexity and power consumption of the terminal to measure the wireless link, and does not increase the delay of the terminal to announce the failure of the wireless link, and improves the measurement efficiency of the terminal to the wireless link.
  • the embodiment of the present application further provides a base station, which is used to implement the measurement method of the radio link on the base station side, and also serves as a bearer body of the measurement device of the base station side radio link.
  • 6 is a block diagram of an alternative base station in accordance with an embodiment of the present application. As shown in FIG. 6, the embodiment of the present application further provides a terminal, including: a processor 60; a memory 62 for storing instructions executable by the processor 60; and a processor 60 for executing according to instructions stored in the memory 62. A method of measuring a radio link on the base station side.
  • the above-mentioned base station solves the problem in the related art that the base station configures multiple reference signal resources for the terminal to detect the link quality, and the terminal measures the complexity and power consumption of the wireless link.
  • the above solution effectively reduces the complexity and power consumption of the terminal to measure the wireless link, and does not increase the delay of the terminal to announce the failure of the wireless link, and improves the measurement efficiency of the terminal to the wireless link.
  • a UE In a mobile communication system, a UE needs to periodically measure a downlink reference signal and evaluate the current link quality based on the measurement result. Generally, after the UE obtains a measurement result, the measurement result needs to be filtered before the link quality evaluation is performed, and then the filtered measurement result is used for the link quality evaluation. It is assumed that the measurement results of the UE in chronological order are M0, M1, M2, ..., a possible filtering method is
  • Mn is the latest measurement result
  • Fn is the filtered result
  • Fn is used for wireless link quality evaluation
  • Fn-1 is the result of the previous filtering, that is, the filtering result of Mn-1
  • the downlink reference signal detected by the UE is a periodically transmitted signal, such as a periodically transmitted synchronization signal block (SS block) or a channel state information reference signal (CSI-RS).
  • the downlink reference signals are collectively referred to as a radio link monitoring reference signal (RLM-RS).
  • the network side may configure one or more RLM-RS resources for UE detection, and then, at one measurement moment, the UE may obtain one or more measurement results Mn (a measurement result is obtained for each RLM-RS resource), and the foregoing filtering is performed. Formula, you can get one or more filtered results Fn.
  • the signal quality of one RLM-RS resource is greater than the threshold Q_in, that is, the value of one Fn is greater than Q_in, and the physical layer of the UE reports the IS indication to the upper layer.
  • the signal quality of all RLM-RS resources is less than Q_out, that is, the value of all Fn is smaller than Q_in, the UE physical layer reports the OOS indication to the upper layer.
  • the time length of the UE for the IS evaluation is Tin. It should be noted that the evaluation time length of the IS here can be understood as the same configuration parameter as the foregoing IS evaluation period.
  • the UE evaluates the signal quality in the Tin time period, and each RLM-RS resource obtains an Fn. If the value of one Fn is greater than the threshold Q_in, the physical layer of the UE reports the IS indication to the upper layer.
  • the length of time for the OOS evaluation is Toos. It should be noted that the evaluation time length of the OOS here can be understood as the same configuration parameter as the foregoing OOS evaluation period.
  • the UE evaluates the signal quality in the Toos time period, and each RLM-RS resource obtains an Fn.
  • the UE physical layer reports the OOS indication to the upper layer.
  • the measuring period is TM, indicating that the UE detects the configured RLM-RS resource every time of the TM; the IS or OOS indicates that the reporting period is TI, indicating that the UE physical layer reports the IS or OOS indication to the upper layer every time of the TI, and
  • the IS or OOS indicates that the minimum value of the reporting period TI is the measurement period TM of the UE, the maximum value of the reporting period TI indicated by the IS is the IS evaluation time length Tin of the UE, and the maximum value of the reporting period indicated by the OOS is the OOS evaluation time length of the UE. TOOS.
  • FIG. 7 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • the timer T1 is started.
  • the timer T1 is stopped. If the timer T1 is exhausted, the UE still does not receive N2 ISs, and the upper layer announces that the radio link fails.
  • the parameters N1, N2, the measurement period TM, the IS evaluation time length Tin, and the OOS evaluation time length Toos in the UE radio link failure process have a certain coupling relationship with the configured resource number N of the RLM-RS.
  • the coupling relationship is such that when the number of RLM-RS resources configured by the UE is larger, the values of N1 and N2 are smaller, the value of the measurement period TM is larger, the length of the IS evaluation time Tin is larger, and the evaluation period Toos of the OOS is larger;
  • the number of RLM-RS resources N configured by the UE is small, the value of N1 and N2 is larger, the smaller the value of the measurement period TM is, the smaller the IS evaluation time length Tin is, and the smaller the evaluation time length Toos of the OOS is.
  • the maximum value of the reporting period indicated by the IS is that the evaluation time length of the UE is Tin, and the minimum value is the measurement period TM; the maximum reporting period indicated by the OOS is the OOS evaluation time length TOOS of the UE, and the minimum value is the measurement period TM.
  • the base station only needs to configure N1, N2, measurement period TM, IS evaluation time length Tin, OOS evaluation time length TOOS parameter value, and other RLM-RS resource number parameters in the case of one RLM-RS resource number.
  • the value UE is available according to this coupling relationship.
  • the parameters of the parameters N1, N2, the measurement period TM, the IS evaluation time length Tin, the OOS evaluation time length Toos and the configured RLM-RS resource number N in the UE radio link failure process are as follows.
  • the ratio of the measurement period TM to the number of RLM-RS resources N is a fixed value (proportional); the number of measurement results in the IS/OOS evaluation time length is a fixed value, that is, the ratio of Tin and Toos to N is one. Fixed value (proportional); the product of N1 and N2 and N is a fixed value (in inverse proportion).
  • FIG. 8 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • the UE can obtain a measurement period of 20 ms according to the coupling relationship, an IS evaluation time length of 160 ms, an OOS evaluation time length of 320 ms, and a value of N1 of 4 and N2. Is 8.
  • the UE can obtain a measurement period of 40 ms, an IS evaluation period length of 320 ms, an OOS evaluation time length of 640 ms, and an N1 value of 2, N2 according to the coupling relationship. Is 4.
  • the process of the UE's radio link failure is as shown in FIG. 8.
  • the parameters configured by the base station are: N1, N2, the measurement period TM, the IS evaluation time length Tin, the OOS evaluation time length TOOS, and the number of resources of the RLM-RS configured by the base station to the UE is N, then According to the coupling relationship, the UE can obtain the parameters used in the radio link failure process: the IS evaluation time length is T in *N, the OOS evaluation time length is T oos *N, and the measurement period is T M *N, and the UE continuously receives or OOS starts timer T1, if the timer T1 is in the running state, the UE receives or IS, stop timer T1.
  • the parameters used by the UE in the announcement process of the radio link failure are: the IS evaluation time length is T in /N, the OOS evaluation time length T oos /N, the measurement period is T M /N, and the UE continuously receives N1*N The OOS starts the timer T1. If the timer T1 is in the running state, the UE receives N2*N ISs and stops the timer T1.
  • FIG. 9 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • the indications received by the UE upper layer in the T2 time period are all OOS, and the timer T1 is started. If the timer T1 is in the running state, the upper layer receives N2 IS indications and stops the timer T1. When the timer T1 is exhausted, a radio link failure is declared to occur.
  • the parameter N2 in the UE radio link failure process, the measurement period TM, the IS evaluation time length Tin, and the OOS evaluation time length Toos have a certain coupling relationship with the configured resource number N of the RLM-RS.
  • the coupling relationship is such that when the number of resources N of the RLM-RS configured by the UE is larger, the value of N2 is smaller, the value of the measurement period TM is larger, the length of the IS evaluation time Tin is larger, and the evaluation period Toos of the OOS is larger;
  • the maximum value of the reporting period indicated by the IS is that the evaluation time length of the UE is Tin, and the minimum value is the measurement period TM; the maximum reporting period indicated by the OOS is the OOS evaluation period length TOOS of the UE, and the minimum value is the measurement period TM.
  • the base station only needs to configure N2 in the case of the number of RLM-RS resources, the measurement period TM, the IS evaluation time length Tin, the OOS evaluation time length TOOS parameter value, and the parameter value UE in the case of other RLM-RS resources. According to this coupling relationship can be obtained.
  • the coupling relationship between the parameter N2, the measurement period TM, the IS evaluation time length Tin, the OOS evaluation time length Toos and the configured resource number N of the RLM-RS is:
  • the ratio of the measurement period TM to the number of RLM-RS resources N is a fixed value (proportional);
  • the number of measurement results in the IS/OOS evaluation time length is a fixed value, that is, the ratio of Tin and Toos to N is a fixed value. (proportional);
  • the product of N2 and N is a fixed value (in inverse proportion).
  • FIG. 10 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application. As shown in FIG.
  • the parameters when the number of RLM-RS resources is set to 1 by the base station are: the value of N2 is 16, the measurement period is 10 ms, the length of the IS evaluation time is 80 ms, and the length of the OOS evaluation time is 160 ms. Then, when the number of resources allocated by the base station to the UE for the RLM-RS is 2, the UE can obtain a measurement period of 20 ms according to the coupling relationship, an IS evaluation time length of 160 ms, an OOS evaluation time length of 320 ms, and an N2 value of 8.
  • the UE can obtain a measurement period of 40 ms according to the coupling relationship, an IS evaluation period length of 320 ms, an OOS evaluation time length of 640 ms, and a value of N2 of 4.
  • the process of the UE's radio link failure is as shown in FIG.
  • the number of RLM-RS resources configured by the UE at a certain time is changed from N to M.
  • the parameters of the UE during the failure of the radio link change N1 and N2, and the value is changed from N11 to N12.
  • N21 becomes N22.
  • the upper layer has received X OOS indications.
  • the upper layer thinks that the number of OOS received before is or At this time, if the upper level receives continuously or An OOS indication starts the timer T1. If the high-level has received Y IS instructions, the high-level thinks that the number of ISs received before is or At this time, if the upper level receives continuously or IS indicates, then stop timer T1.
  • FIG. 11 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • the number of RLM-RS resources configured by the UE is 1, and the value of N1 is 8.
  • the number of RLM-RS resources configured by the UE is 2, and the value of N1 is 4.
  • the upper layer has received four OOS indications.
  • the upper layer considers that the number of OOS indications received before is 2, and if the upper layer receives two consecutive OOS indications, the timer is started. T1.
  • FIG. 12 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • the timer T1 in the initial stage, the timer T1 is in the running state. Before the time t2, the number of RLM-RS resources configured by the UE is 2, and the value of N2 is 8. At time t2, the RLM-RS resources configured by the UE are The number is 1, and the value of N2 is 16. After the upper layer has received three IS indications, the upper layer determines the number of IS indications received before the time t2 according to the change relationship of the N2 value. The 10 IS indications are continuously received, and the timer T1 is stopped.
  • the parameters N1, N2, the measurement period TM, the IS evaluation time length Tin, the OOS evaluation time length Toos, and the transmission period of the RLM-RS have a certain coupling with the configured resource number N of the RLM-RS. relationship.
  • the coupling relationship is such that when the number of RLM-RS resources configured by the UE is larger, the values of N1 and N2 are smaller, the value of the measurement period TM is larger, the length of the IS evaluation time Tin is larger, and the evaluation period Toos of the OOS is larger.
  • the maximum value of the reporting period indicated by the IS is that the evaluation time length of the UE is Tin, and the minimum value is the measurement period TM; the maximum reporting period indicated by the OOS is the OOS evaluation time length TOOS of the UE, and the minimum value is the measurement period TM.
  • the base station only needs to configure one RLM-RS resource number, N1, N2, measurement period TM, IS evaluation time length Tin, OOS evaluation time length TOOS parameter value, RLM-RS transmission period, and other RLM-RS.
  • the parameter value UE in the case of number can be obtained according to this coupling relationship.
  • the coupling relationship of the number of resources N is: the ratio of the measurement period TM to the number of RLM-RS resources N is a fixed value (proportional); the number of measurement results in the IS/OOS evaluation time length is a fixed value, that is, Tin and The ratio of Toos to N is a fixed value (proportional); the product of N1 and N2 and the number of resources N is a fixed value (in inverse proportion), and the ratio of the transmission period of the RLM-RS to the number of resources N is a fixed value.
  • FIG. 13 is a schematic diagram of an optional high-level terminal announcement of a radio link failure according to an embodiment of the present application.
  • the parameters of the base station when the number of RLM-RS resources is set to 1 the value of N1 is 8, the value of N2 is 16, the measurement period is 10 ms, the RLM-RS transmission period is 10 ms, and the IS evaluation time length is as follows. For 80ms, the OOS evaluation time is 160ms.
  • the UE can obtain a measurement period of 20 ms according to the coupling relationship, a RLM-RS transmission period of 20 ms, an IS evaluation time length of 160 ms, and an OOS evaluation time length of 320 ms, N1.
  • the value is 4 and the value of N2 is 8.
  • the UE can obtain a measurement period of 40 ms according to the coupling relationship, a RLM-RS transmission period of 40 ms, an IS evaluation period length of 320 ms, and an OOS evaluation time length of 640 ms, N1.
  • the value is 2 and the value of N2 is 4.
  • the process of the UE's radio link failure is as shown in FIG.
  • Embodiments of the present application also provide a storage medium.
  • the foregoing storage medium may be used to save the program code executed by the determining method of the sending power provided in the first embodiment.
  • the foregoing storage medium may be located in any one of the computer terminal groups in the computer network, or in any one of the mobile terminal groups.
  • the storage medium is arranged to store program code for performing the following steps:
  • the configuration information of the downlink reference signal is received, where the configuration information includes at least one of the following: a configuration parameter information and a coupling relationship between different configuration parameters;
  • S2 Perform measurement of the wireless link according to the configuration information.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application may be embodied in the form of a software product in the form of a software product, or a part of the technical solution, which is stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线链路的测量方法及装置、终端、基站、存储介质,其中方法包括:终端接收下行参考信号的配置信息,其中,配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系;终端根据配置信息进行无线链路的测量。

Description

无线链路的测量方法及装置、终端、基站、存储介质
相关申请的交叉引用
本申请基于申请号为201711148886.4、申请日为2017年11月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域但不限于通信领域,尤其涉及一种无线链路的测量方法及装置、终端、基站、存储介质。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,传统的商业通信主要使用的300MHz-3GHz之间频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。
在未来无线通信中,将会扩展支持比第四代(4G)通信系统所采用的载波频率更高的载波频率进行通信,比如28GHz、45GHz等等,系统潜在工作频段达到100GHz。在高频段(大于6GHz),由于电磁波的衰减很大,通常需要波束赋形的方法来抵抗信号的衰减,提升信号的传输距离。因此,信号通常以波束的形式进行发送或接收。通常情况下,基站会为终端配置一个或者多个质量较好的波束来进行通信。并且由于波束的信号质量会一直发生变化,因此配置的波束也要不断变化,使得终端所使用波束信号质量一直能够满足通信需求。
为了保证正常的通信,终端(user equipment,简称UE)需要周期性的 检测当前链路的质量,根据测量结果周期性地向高层发送指示,以便高层知道当前终端所处的状态。比如,当信号的质量大于某一个阈值时,终端的物理层向高层上报同步(in sync,简称为IS);当信号的质量小于某一个阈值时,终端向高层上报失步(out of sync,简称为OOS)。由于终端与基站存在多种可用的波束,因此基站会配置多个参考信号资源用于终端检测其链路质量。当配置的参考信号的资源数越来越多时,终端每次需要检测的信号越多,从而导致其测量无线链路的复杂度和功耗也会随之增加。
发明内容
本申请实施例提供了一种无线链路的测量方法及装置、终端、基站、存储介质。
根据本申请的一个方面,提供了一种无线链路的测量方法,包括终端接收下行参考信号的配置信息,其中,所述配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系;所述终端根据所述配置信息进行无线链路的测量。
根据本申请的另一个方面,还提供了一种无线链路的测量装置,应用于终端,包括:接收模块,配置为接收下行参考信号的配置信息,其中,所述配置信息包括以下至少之一:配置参数的信息和不同配置参数之间的耦合关系;测量模块,配置为根据所述配置信息进行无线链路的测量。
根据本申请的另一个方面,还提供了一种无线链路的测量装置,应用于基站,包括:发送模块,用于发送下行参考信号的配置信息,其中,所述配置信息包括以下至少之一:配置参数的信息和不同配置参数之间的耦合关系,所述配置信息用于指示所述终端进行无线链路的测量。
根据本申请的另一个方面,还提供了一种终端,包括:处理器;存储器,用于存储所述处理器可执行的指令;所述处理器用于根据所述存储器中存储的指令执行上述终端侧的无线链路的测量方法。
根据本申请的另一个方面,还提供了一种基站,包括:处理器;存储器,用于存储所述处理器可执行的指令;所述处理器用于根据所述存储器中存储的指令执行上述基站侧的无线链路的测量方法。
根据本申请的另一个方面,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述无线链路的测量方法。
通过上述方案,终端根据基站配置的下行参考信号的相关信息来执行无线链路的测量,其中,配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系,一次配置后,后续基站配置的下行参考信号的资源数发生变化时,终端可以直接根据相应的耦合关系获取其他配置参数的数值变化,并执行无线链路的测量。解决了相关技术中,由于基站配置多个参考信号资源用于终端检测其链路质量,导致终端测量无线链路的复杂度和功耗随之增加的问题。上述方案有效降低了终端测量无线链路的复杂度和功耗,同时不会增加终端宣告无线链路失败的延迟,提高了终端对无线链路的测量效率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种可选的无线链路的测量方法的流程图;
图2是根据本申请实施例的一种可选的无线链路的测量方法的流程图;
图3是根据本申请实施例的一种可选的无线链路的测量装置的结构框 图;
图4是根据本申请实施例的一种可选的无线链路的测量装置的结构框图;
图5是根据本申请实施例的一种可选的终端的结构框图;
图6是根据本申请实施例的一种可选的基站的结构框图;
图7是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图;
图8是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图;
图9是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图;
图10是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图;
图11是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图;
图12是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图;
图13是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第 一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请实施例中,提供了一种无线链路的测量方法。图1是根据本申请实施例的一种可选的无线链路的测量方法的流程图。如图1所示,无线链路的测量方法的一种可选流程包括:
步骤S101,终端接收下行参考信号的配置信息,其中,配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系;
步骤S103,终端根据配置信息进行无线链路的测量。
通过上述方案,终端接收下行参考信号的配置信息,其中,配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系,然后终端根据配置信息进行无线链路的测量,解决了相关技术中,由于基站配置多个参考信号资源用于终端检测其链路质量,导致终端测量无线链路的复杂度和功耗随之增加的问题。上述方案有效降低了终端测量无线链路的复杂度和功耗,同时不会增加终端宣告无线链路失败的延迟,提高了终端对无线链路的测量效率。
需要说明的是,终端和基站之间还可以通过协议预先约定好配置参数之间的耦合关系是怎样的,基站向终端发送配置信息的时候,只需要下发下行参考信号在一种情况下的至少一个配置参数信息,其他情况下的配置参数信息,终端可以根据耦合关系自行获取。此处的不同情况可以理解为基站下发不同的下行参考信号资源数的情况。
在本申请实施例的一个优选方案中,上述步骤S103可以通过以下步骤实现:终端根据配置信息在第一无线链路上检测下行参考信号;终端的高层根据检测结果确定是否宣告第一无线链路失败。
需要说明的是,终端的高层为逻辑实体,泛指位于物理层之上网络协议层,包括比如媒体接入控制(Medium Access Control,简称为MAC)层,数据链路层,无线资源控制(Radio Resource Control,简称为RRC)层等,由物理层向其提供服务。
在本申请实施例的一个优选方案中,上述终端的高层根据检测结果确定是否宣告第一无线链路失败,可以通过以下步骤实现:终端的物理层根据下行参考信号的检测结果向终端的高层发送同步IS指示或失步OOS指示,其中,当检测到的下行参考信号中至少有一个信号质量大于预设阈值时,发送IS指示,当检测到的下行参考信号中全部的信号质量均小于预设阈值时,发送OOS指示;当终端的高层接收到第一预设数量(N1)的OOS指示或在第一预设时间内接收到的全部都是OOS指示时,启动定时器;若终端的高层在定时器预设的时间内接收到的IS指示的数量达到第二预设数量(N2),停止定时器的计时;若终端的高层在定时器预设的时间内接收到的IS指示的数量未达到第二预设数量,宣告第一无线链路失败。
在本申请实施例的一个优选方案中,配置参数至少包括以下之一:终端测量下行参考信号的测量周期TM,IS指示的评估周期Tin,OOS指示的评估周期Toos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,下行参考信号的发送周期T以及下行参考信号的资源数N,其中,下行参考信号的资源数N与以下至少之一具有耦合关系:终端测量下行参考信号的测量周期TM,IS指示的评估周期Tin,OOS指示的评估周期Toos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,下行参考信号 的发送周期T。在本申请实施例的一个优选方案中,耦合关系包括:当下行参考信号的资源数N越大时,终端测量下行参考信号的测量周期TM越大,IS指示的评估周期Tin和OOS指示的评估周期Toos越大,用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2越小,下行参考信号的发送周期T越大。反之,当下行参考信号的资源数N越小时,终端测量下行参考信号的测量周期TM越小,IS指示的评估周期Tin和OOS指示的评估周期Toos越小,用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2越大,下行参考信号的发送周期T越小。
在本申请实施例的一个优选方案中,耦合关系同时满足以下条件:N和TM成正比关系,Tin和TM成正比关系,Toos和TM成正比关系,N1和TM成反比关系,N2和TM成反比关系,T和TM成正比关系。
在本申请实施例的一个优选方案中,在第一无线链路的检测过程中,当下行参考信号的资源数N发生变化时,终端可以根据N的变化重新确定与下行参考信号的资源数N具有耦合关系的其他配置参数的数值。
在本申请实施例的一个优选方案中,上述终端根据N的变化重新确定与所述下行参考信号的资源数N具有耦合关系的其他配置参数的数值,可以通过以下步骤实现:终端的高层根据耦合关系重新确定用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2,并根据耦合关系自动更改已经收到的OOS指示的个数或已经收到的IS指示的个数。具体的举例说明见后续的优选实施例。
图2是根据本申请实施例的一种可选的无线链路的测量方法的流程图。如图2所示,无线链路的测量方法的一种可选流程包括:
步骤S201,基站发送下行参考信号的配置信息,其中,所述配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系,配 置信息用于指示终端进行无线链路的测量。
通过上述方法,解决了相关技术中,由于基站配置多个参考信号资源用于终端检测其链路质量,导致终端测量无线链路的复杂度和功耗随之增加的问题。上述方案有效降低了终端测量无线链路的复杂度和功耗,同时不会增加终端宣告无线链路失败的延迟,提高了终端对无线链路的测量效率。
在本申请实施例的一个优选方案中,配置参数至少包括以下之一:终端测量下行参考信号的测量周期TM,IS指示的评估周期Tin,OOS指示的评估周期Toos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,以及下行参考信号的资源数N和发送周期T,其中,下行参考信号的资源数N与以下至少之一具有耦合关系:终端测量下行参考信号的测量周期TM,IS指示的评估周期Tin,OOS指示的评估周期Toos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,下行参考信号的发送周期T。
在本申请实施例的一个优选方案中,耦合关系包括:当下行参考信号的资源数N越大时,终端测量下行参考信号的测量周期TM越大,IS指示的评估周期Tin和OOS指示的评估周期Toos越大,用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2越小,下行参考信号的发送周期T越大。
在本申请实施例的一个优选方案中,耦合关系同时满足以下条件:N和TM成正比关系,Tin和TM成正比关系,Toos和TM成正比关系,N1和TM成反比关系,N2和TM成反比关系,T和TM成正比关系。
根据本申请实施例的另一个方面,还提供了一种存储介质,存储介质包括存储的程序,其中,程序运行时执行上述方法及其优选实施方案。
在本申请实施例中还提供了一种可选的无线链路的测量装置,该装置 用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
根据本申请实施例,还提供了一种用于实施上述无线链路的测量装置,应用于终端,与无线测量方法对应的描述此处不再赘述。图3是根据本申请实施例的一种可选的无线链路的测量装置的结构框图。如图3所示,该装置包括:
接收模块30,配置为接收下行参考信号的配置信息,其中,配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系;
测量模块32,配置为根据配置信息进行无线链路的测量。
通过上述装置,解决了相关技术中,由于基站配置多个参考信号资源用于终端检测其链路质量,导致终端测量无线链路的复杂度和功耗随之增加的问题。上述方案有效降低了终端测量无线链路的复杂度和功耗,同时不会增加终端宣告无线链路失败的延迟,提高了终端对无线链路的测量效率。
在本申请实施例的一个优选方案中,配置参数至少包括以下之一:终端测量下行参考信号的测量周期TM,IS指示的评估周期Tin,OOS指示的评估周期Toos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,以及下行参考信号的资源数N和发送周期T,其中,下行参考信号的资源数N与以下至少之一具有耦合关系:终端测量所述下行参考信号的测量周期TM,IS指示的评估周期Tin,OOS指示的评估周期Toos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,下行参考信号的发送周期T。
在本申请实施例的一个优选方案中,耦合关系包括:当下行参考信号的资源数N越大时,终端测量下行参考信号的测量周期TM越大,IS指示的评估周期Tin和OOS指示的评估周期Toos越大,用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2越小,下行参考信号的发送周期T越大。
在本申请实施例的一个优选方案中,耦合关系同时满足以下条件:N和TM成正比关系,Tin和TM成正比关系,Toos和TM成正比关系,N1和TM成反比关系,N2和TM成反比关系,T和TM成正比关系。
根据本申请实施例,还提供了一种用于实施上述无线链路的测量装置,应用于基站,与无线测量方法对应的描述此处不再赘述。图4是根据本申请实施例的一种可选的无线链路的测量装置的结构框图。如图4所示,该装置包括:
发送模块40,配置为发送下行参考信号的配置信息,其中,配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系,配置信息用于指示终端进行无线链路的测量。
通过上述装置,解决了相关技术中,由于基站配置多个参考信号资源用于终端检测其链路质量,导致终端测量无线链路的复杂度和功耗随之增加的问题。上述方案有效降低了终端测量无线链路的复杂度和功耗,同时不会增加终端宣告无线链路失败的延迟,提高了终端对无线链路的测量效率。
在本申请实施例的一个优选方案中,配置参数至少包括以下之一:终端测量下行参考信号的测量周期TM,IS指示的评估周期Tin,OOS指示的评估周期Toos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,以及下行参考信号的资源数N和下行参考信号的发送周期T,其中,下行参考信号的资源数N与以下至少 之一具有耦合关系:终端测量所述下行参考信号的测量周期TM,IS指示的评估周期Tin,OOS指示的评估周期Toos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,下行参考信号的发送周期T。
在本申请实施例的一个优选方案中,耦合关系包括:当下行参考信号的资源数N越大时,终端测量所述下行参考信号的测量周期TM越大,IS指示的评估周期Tin和OOS指示的评估周期Toos越大,用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2越小,下行参考信号的发送周期T越大。
在本申请实施例的一个优选方案中,耦合关系同时满足以下条件:N和TM成正比关系,Tin和TM成正比关系,Toos和TM成正比关系,N1和TM成反比关系,N2和TM成反比关系,T和TM成正比关系。
为了更好地理解上述技术方案,本申请实施例还提供了一种终端,用于实现上述终端侧的无线链路的测量方法,也可作为上述终端侧无线链路的测量装置的承载主体。图5是根据本申请实施例的一种可选的终端的结构框图。如图5所示,本申请实施例还提供了一种终端,包括:处理器50;存储器52,配置为存储处理器50可执行的指令;处理器50用于根据存储器52中存储的指令执行上述终端侧的无线链路的测量方法。
通过上述终端,由于基站配置多个参考信号资源用于终端检测其链路质量,导致终端测量无线链路的复杂度和功耗随之增加的问题。上述方案有效降低了终端测量无线链路的复杂度和功耗,同时不会增加终端宣告无线链路失败的延迟,提高了终端对无线链路的测量效率。
为了更好地理解上述技术方案,本申请实施例还提供了一种基站,用于实现上述基站侧的无线链路的测量方法,也可作为上述基站侧无线链路的测量装置的承载主体。图6是根据本申请实施例的一种可选的基站的结 构框图。如图6所示,本申请实施例还提供了一种终端,包括:处理器60;存储器62,用于存储处理器60可执行的指令;处理器60用于根据存储器62中存储的指令执行上述基站侧的无线链路的测量方法。
通过上述基站,解决了相关技术中,由于基站配置多个参考信号资源用于终端检测其链路质量,导致终端测量无线链路的复杂度和功耗随之增加的问题。上述方案有效降低了终端测量无线链路的复杂度和功耗,同时不会增加终端宣告无线链路失败的延迟,提高了终端对无线链路的测量效率。
为了更好地理解本申请的技术方案,本申请实施例通过以下具体实施方式来进行进一步的说明。
在移动通信系统中,UE需要周期性地测量下行参考信号,并根据测量结果对当前的链路质量作评估。通常情况下,UE获得一个测量结果之后,在作链路质量评估之前,需要对测量结果作过滤(filtering),然后将过滤后的测量结果用于链路质量评估。假设UE按照时间顺序的测量结果依次为M0,M1,M2,...,一种可能的过滤的方法为
F n=(1-a)·F n-1+a·M n
其中,Mn为最新的测量结果,Fn为滤波后的结果,Fn用于无线链路质量评估,Fn-1为前一次滤波的结果,也就是Mn-1的滤波结果,并且F0=M0,a为过滤系数,是一个配置的常数。
UE检测的下行参考信号为周期性发送的信号,比如周期性发送的同步信号块(Synchronization signal block,简称为SS block)或者信道状态信息参考信号(Channel state information reference signal,简称为CSI-RS),在本申请实施例中该下行参考信号统称为无线链路检测参数信号(Radio link monitoring reference signal,简称为RLM-RS)。网络侧可以配置一个或者多个RLM-RS资源用于UE检测,那么在一个测量时刻,UE可以获得一个或者多个测量结果Mn(每个RLM-RS资源得到一个测量结果),通过上 述的过滤公式,可以得到一个或多个过滤后的结果Fn。在UE检测的RLM-RS资源中,有一个RLM-RS资源的信号质量大于阈值Q_in,也就是有一个Fn的值大于Q_in,UE物理层向高层上报IS指示。当所有RLM-RS资源的信号质量都小于Q_out,也就是所有的Fn的值都小于Q_in,UE物理层向高层上报OOS指示。
UE的用于IS评估的时间长度为Tin,需要说明的是,此处的IS的评估时间长度与前述的IS评估周期可以理解为同一个配置参数。UE评估Tin时间段内的信号质量,每个RLM-RS资源分别得到一个Fn,如果有一个Fn的值大于阈值Q_in,UE物理层向高层上报IS指示。用于OOS评估的时间长度为Toos,需要说明的是,此处的OOS的评估时间长度与前述的OOS评估周期可以理解为同一个配置参数。UE评估Toos时间段内的信号质量,每个RLM-RS资源分别得到一个Fn,如果所有的Fn的值都小于阈值Q_out,UE物理层向高层上报OOS指示。测量周期为TM,表示每隔TM的时间,UE检测配置的RLM-RS资源;IS或者OOS指示上报周期为TI,表示UE每隔TI的时间,UE物理层向高层上报IS或者OOS指示,并且IS或OOS指示上报周期TI的最小值为UE的测量周期TM,IS指示的上报周期TI的最大值为UE的IS评估时间长度Tin,OOS指示的上报周期的最大值为UE的OOS评估时间长度TOOS。图7是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图。如图7中,通常情况下UE高层连续收到N1个OOS指示之后,启动定时器T1。当定时器T1处于运行状态,在T1时间内,如果UE收到了N2个IS,那么停止计时器T1。如果定时器T1耗尽时,UE仍然没有收到N2个IS,高层宣告发生无线链路失败。
在一些实施例中,UE无线链路失败过程中的参数N1、N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度Toos与配置的RLM-RS的资源数N具有一定的耦合关系。该耦合关系使得当UE配置的RLM-RS资 源数N越大时,N1和N2的值越小,测量周期TM的值越大,IS评估时间长度Tin越大,OOS的评估周期Toos越大;当UE配置的RLM-RS资源数N越小时,N1和N2的值越大,测量周期TM的值越小,IS评估时间长度Tin越小,OOS的评估时间长度Toos越小。此时IS指示的上报周期的最大值为UE的评估时间长度为Tin,最小值为测量周期TM;OOS指示的上报周期最大值为UE的OOS评估时间长度TOOS,最小值为测量周期TM。此时,基站只需要配置一种RLM-RS资源数情况下的N1,N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度TOOS的参数值,其他RLM-RS资源数情况下的参数值UE根据这种耦合关系可以得到。
下面以具体的例子进行详细说明,UE无线链路失败过程中的参数N1、N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度Toos与配置的RLM-RS资源数N的耦合关系为:测量周期TM与RLM-RS资源数N的比值为一个定值(成正比);IS/OOS评估时间长度内的测量结果个数是一个定值,也就是Tin和Toos与N的比值是一个定值(成正比);N1和N2与N的乘积是一个定值(成反比)。图8是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图。假设基站配置RLM-RS资源数为1时的参数为,N1的值为8,N2的值为16,测量周期为10ms,IS评估时间长度为80ms,OOS评估时间长度为160ms。那么当基站给UE配置RLM-RS的资源数为2时,UE根据耦合关系可以得到测量周期为20ms,IS评估时间长度为160ms,OOS评估时间长度为320ms,N1的值为4,N2的值为8。当基站给UE配置的RLM-RS的资源数为4时,UE根据耦合关系可以得到测量周期为40ms,IS评估周期长度为320ms,OOS评估时间长度为640ms,N1的值为2,N2的值为4。此时,不同RLM-RS资源数情况下,UE的无线链路失败的过程如图8中。
另一种可能的实现方式,基站配置的参数为:N1、N2,测量周期TM, IS评估时间长度Tin,OOS评估时间长度TOOS,并且基站给UE配置的RLM-RS的资源数为N,那么UE根据耦合关系可以得到无线链路失败过程中使用的参数为:IS评估时间长度为T in*N,OOS评估时间长度为T oos*N,测量周期为T M*N,UE连续收到
Figure PCTCN2018111297-appb-000001
Figure PCTCN2018111297-appb-000002
个OOS启动定时器T1,如果定时器T1处于运行状态,UE收到
Figure PCTCN2018111297-appb-000003
Figure PCTCN2018111297-appb-000004
个IS,停止定时器T1。或者UE在无线链路失败的宣告过程中使用的参数为:IS评估时间长度为T in/N,OOS评估时间长度T oos/N,测量周期为T M/N,UE连续收到N1*N个OOS启动定时器T1,如果定时器T1处于运行状态,UE收到N2*N个IS,停止定时器T1。具体地,基站配置的参数为:N1=8,N2=16,测量周期TM=10ms,IS评估时间长度Tin=80ms,OOS评估时间长度TOOS=160ms,如果基站配置了1个RLM-RS资源,那么UE在无线链路失败过程使用的参数为:IS的评估时间长度为80*1=80ms,OOS评估时间长度为160*1=160ms,测量周期为10*1=10ms,UE连续收到
Figure PCTCN2018111297-appb-000005
个OOS启动定时器T1,如果定时器T1处于运行状态,UE收到
Figure PCTCN2018111297-appb-000006
个IS,停止定时器T1。如果基站配置了2个RLM-RS资源,那么UE在无线链路失败过程使用的参数为:IS的评估时间长度为80*2=160ms,OOS评估时间长度为160*2=320ms,测量周期为10*2=20ms,UE连续收到
Figure PCTCN2018111297-appb-000007
个OOS启动定时器T1,如果定时器T1处于运行状态,UE收到
Figure PCTCN2018111297-appb-000008
个IS,停止定时器T1。如果基站配置了4个RLM-RS资源,那么UE在无线链路失败过程使用的参数为:IS的评估时间长度为80*4=320ms,OOS评估时间长度为160*4=640ms,测量周期为10*4=40ms,UE连续收到
Figure PCTCN2018111297-appb-000009
个OOS启动定时器T1,如果定时器T1处于运行状态,UE收到
Figure PCTCN2018111297-appb-000010
个IS,停止定时器T1。
图9是根据本申请实施例的一种可选的终端高层宣告发生无线链路失 败的示意图。如图9所示,UE高层在T2时间段内收到的指示全部为OOS,启动定时器T1。如果定时器T1处于运行状态,高层收到了N2个IS指示,停止定时器T1。当定时器T1耗尽时,宣告发生无线链路失败。
UE无线链路失败过程中的参数N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度Toos与配置的RLM-RS的资源数N具有一定的耦合关系。该耦合关系使得当UE配置的RLM-RS的资源数N越大时,N2的值越小,测量周期TM的值越大,IS评估时间长度Tin越大,OOS的评估周期Toos越大;当UE配置的RLM-RS个数N越小时,N2的值越大,测量周期TM的值越小,IS评估时间长度Tin越小,OOS的评估时间长度Toos越小。此时IS指示的上报周期的最大值为UE的评估时间长度为Tin,最小值为测量周期TM;OOS指示的上报周期最大值为UE的OOS评估周期长度TOOS,最小值为测量周期TM。此时,基站只需要配置一种RLM-RS资源数情况下的N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度TOOS的参数值,其他RLM-RS资源数情况下的参数值UE根据这种耦合关系可以得到。
下面以具体的例子进行详细说明,UE无线链路失败过程中的参数N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度Toos与配置的RLM-RS的资源数N的耦合关系为:测量周期TM与RLM-RS资源数N的比值为一个定值(成正比);IS/OOS评估时间长度内的测量结果数是一个定值,也就是Tin和Toos与N的比值是一个定值(成正比);N2与N的乘积是一个定值(成反比)。图10是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图。如图10所示,基站配置RLM-RS资源数为1时的参数为:N2的值为16,测量周期为10ms,IS评估时间长度为80ms,OOS评估时间长度为160ms。那么当基站给UE配置RLM-RS的资源数为2时,UE根据耦合关系可以得到测量周期为20ms,IS评估时间长 度为160ms,OOS评估时间长度为320ms,N2的值为8。当基站给UE配置的RLM-RS的资源数为4时,UE根据耦合关系可以得到测量周期为40ms,IS评估周期长度为320ms,OOS评估时间长度为640ms,N2的值为4。此时,不同RLM-RS资源数情况下,UE的无线链路失败的过程如图10中。
在前述实施例的基础上描述在无线链路失败过程中RLM-RS资源数发生变化的时候,高层如何处理已收到IS/OOS指示个数。
UE在某一时刻配置的RLM-RS资源数由N变成了M,根据优选实施例一,UE在无线链路失败过程中的参数N1和N2发生变化,假设其数值由N11变成了N12,N21变成了N22,在此之前高层已经收到了X个OOS指示,那么当RLM-RS资源数由N变成M之后,高层认为此前收到OOS的个数为
Figure PCTCN2018111297-appb-000011
或者
Figure PCTCN2018111297-appb-000012
此时如果高层再连续收到
Figure PCTCN2018111297-appb-000013
或者
Figure PCTCN2018111297-appb-000014
个OOS指示,启动定时器T1。如果高层已经收到了Y个IS指示,那么高层认为此前收到IS的个数为
Figure PCTCN2018111297-appb-000015
或者
Figure PCTCN2018111297-appb-000016
此时如果高层再连续收到
Figure PCTCN2018111297-appb-000017
或者
Figure PCTCN2018111297-appb-000018
个IS指示,那么停止定时器T1。
下面以具体的例子进行详细说明,图11是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图。如图11所示,在t1时刻之前,UE配置的RLM-RS资源数为1,N1的值为8,在t1时刻,UE配置的RLM-RS资源数为2,N1的值为4,此前高层已经收到了4个OOS指示,那么高层根据N1的值的前后变化关系,在t1时刻之后,认为此前收到OOS指示个数为2,如果高层再连续收到2个OOS指示,启动定时器T1。
图12是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图。如图12所示,在开始阶段,定时器T1处于运行状态,在t2 时刻之前,UE配置的RLM-RS资源数为2,N2的值为8,在t2时刻,UE配置的RLM-RS资源数为1,N2的值为16,此前高层已经收到了3个IS指示,那么高层根据N2值的前后变化关系,在t2时刻之后,认为此前收到的IS指示个数为6,如果高层再连续收到10个IS指示,停止定时器T1。
UE无线链路失败过程中的参数N1、N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度Toos,以及RLM-RS的发送周期与配置的RLM-RS的资源数目N具有一定的耦合关系。该耦合关系使得当UE配置的RLM-RS资源数N越大时,N1和N2的值越小,测量周期TM的值越大,IS评估时间长度Tin越大,OOS的评估周期Toos越大,RLM-RS的发送周期越大;当UE配置的RLM-RS资源数N越小时,N1和N2的值越大,测量周期TM的值越小,IS评估时间长度Tin越小,OOS的评估时间长度Toos越小,RLM-RS的发送周期越小。此时IS指示的上报周期的最大值为UE的评估时间长度为Tin,最小值为测量周期TM;OOS指示的上报周期最大值为UE的OOS评估时间长度TOOS,最小值为测量周期TM。此时,基站只需要配置一种RLM-RS资源数情况下N1,N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度TOOS的参数值,RLM-RS的发送周期,其他RLM-RS数目情况下的参数值UE根据这种耦合关系可以得到。
下面以具体的例子进行详细说明,UE无线链路失败过程中的参数N1、N2,测量周期TM,IS评估时间长度Tin,OOS评估时间长度Toos,RLM-RS的发送周期与配置的RLM-RS资源数N的耦合关系为:测量周期TM与RLM-RS资源数N的比值为一个定值(成正比);IS/OOS评估时间长度内的测量结果个数是一个定值,也就是Tin和Toos与N的比值是一个定值(成正比);N1和N2与资源数N的乘积是一个定值(成反比),RLM-RS的发送周期与资源数N的比值为一个定值(成正比)。图13是根据本申请实施例的一种可选的终端高层宣告发生无线链路失败的示意图。如图13所示, 假设基站配置RLM-RS资源数为1时的参数为,N1的值为8,N2的值为16,测量周期为10ms,RLM-RS发送周期为10ms,IS评估时间长度为80ms,OOS评估时间长度为160ms。那么当基站给UE配置RLM-RS的资源数为2时,UE根据耦合关系可以得到测量周期为20ms,RLM-RS发送周期为20ms,IS评估时间长度为160ms,OOS评估时间长度为320ms,N1的值为4,N2的值为8。当基站给UE配置的RLM-RS的资源数为4时,UE根据耦合关系可以得到测量周期为40ms,RLM-RS发送周期为40ms,IS评估周期长度为320ms,OOS评估时间长度为640ms,N1的值为2,N2的值为4。UE的无线链路失败的过程如图13中。
本申请的实施例还提供了一种存储介质。在一些实施例中,在本申请实施例中,上述存储介质可以用于保存上述实施例一所提供的发送功率的确定方法所执行的程序代码。
在一些实施例中,在本申请实施例中,上述存储介质可以位于计算机网络中计算机终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中。
在一些实施例中,在本申请实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:
S1,接收下行参考信号的配置信息,其中,配置信息包括以下至少之一:配置参数的信息和不同配置参数之间的耦合关系;
S2,根据配置信息进行无线链路的测量。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的, 例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请 的保护范围之内。

Claims (19)

  1. 一种无线链路的测量方法,包括:
    终端接收下行参考信号的配置信息,其中,所述配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系;
    所述终端根据所述配置信息进行无线链路的测量。
  2. 根据权利要求1所述的方法,其中,所述终端根据所述配置信息进行无线链路的测量,包括:
    所述终端根据所述配置信息在第一无线链路上检测所述下行参考信号;
    所述终端的高层根据检测结果确定是否宣告所述第一无线链路失败。
  3. 根据权利要求2所述的方法,其中,所述终端的高层根据检测结果确定是否宣告所述第一无线链路失败,包括:
    所述终端的物理层根据所述下行参考信号的检测结果向所述终端的高层发送同步IS指示或失步OOS指示,其中,当检测到的下行参考信号中至少有一个信号质量大于预设阈值时,发送IS指示,当检测到的下行参考信号中全部的信号质量均小于预设阈值时,发送OOS指示;
    当所述终端的高层接收到第一预设数量的OOS指示或在第一预设时间内接收到的全部都是OOS指示时,启动定时器;
    当所述终端的高层在所述定时器预设的时间内接收到的IS指示的数量达到第二预设数量时,停止所述定时器的计时;
    若所述终端的高层在所述定时器预设的时间内接收到的IS指示的数量未达到第二预设数量,宣告所述第一无线链路失败。
  4. 根据权利要求2或3所述的方法,其中,所述配置参数至少包括以下之一:终端测量所述下行参考信号的测量周期T M,IS指示的评估周期T in,OOS指示的评估周期T oos,用于启动定时器的OOS指示的第一预设数 量N1,用于停止定时器的IS指示的第二预设数量N2,所述下行参考信号的发送周期T以及所述下行参考信号的资源数N,其中,所述下行参考信号的资源数N与以下至少之一具有耦合关系:
    终端测量所述下行参考信号的测量周期T M,IS指示的评估周期T in,OOS指示的评估周期T oos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,所述下行参考信号的发送周期T。
  5. 根据权利要求4所述的方法,其中,所述耦合关系包括:
    当所述下行参考信号的资源数N越大时,终端测量所述下行参考信号的测量周期T M越大,IS指示的评估周期T in和OOS指示的评估周期T oos越大,用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2越小,所述下行参考信号的发送周期T越大。
  6. 根据权利要求5所述的方法,其中,所述耦合关系同时满足以下条件:
    N和T M成正比关系,T in和T M成正比关系,T oos和T M成正比关系,N1和T M成反比关系,N2和T M成反比关系,T和T M成正比关系。
  7. 根据权利要求5所述的方法,其中,
    在所述第一无线链路的检测过程中,当所述下行参考信号的资源数N发生变化时,所述终端根据N的变化重新确定与所述下行参考信号的资源数N具有耦合关系的其他配置参数的数值。
  8. 根据权利要求7所述的方法,其中,所述终端根据N的变化重新确定与所述下行参考信号的资源数N具有耦合关系的其他配置参数的数值,包括:
    所述终端的高层根据所述耦合关系重新确定用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2,并 根据所述耦合关系自动更改已经收到的OOS指示的个数或已经收到的IS指示的个数。
  9. 一种无线链路的测量方法,其中,包括:
    基站发送下行参考信号的配置信息,其中,所述配置信息包括以下至少之一:配置参数的信息和不同配置参数之间的耦合关系,所述配置信息用于指示终端进行无线链路的测量。
  10. 根据权利要求9所述的方法,其中,所述配置参数至少包括以下之一:终端测量所述下行参考信号的测量周期T M,IS指示的评估周期T in,OOS指示的评估周期T oos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,以及所述下行参考信号的资源数N和所述下行参考信号的发送周期T,其中,所述下行参考信号的资源数N与以下至少之一具有耦合关系:
    终端测量所述下行参考信号的测量周期T M,IS指示的评估周期T in,OOS指示的评估周期T oos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,所述下行参考信号的发送周期T。
  11. 根据权利要求10所述的方法,其中,所述耦合关系包括:
    当所述下行参考信号的资源数N越大时,终端测量所述下行参考信号的测量周期T M越大,IS指示的评估周期T in和OOS指示的评估周期T oos越大,用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2越小,所述下行参考信号的发送周期T越大。
  12. 根据权利要求11所述的方法,其中,所述耦合关系同时满足以下条件:
    N和T M成正比关系,T in和T M成正比关系,T oos和T M成正比关系,N1和T M成反比关系,N2和T M成反比关系,T和T M成正比关系。
  13. 一种无线链路的测量装置,应用于终端,包括:
    接收模块,配置为接收下行参考信号的配置信息,其中,所述配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系;
    测量模块,配置为根据所述配置信息进行无线链路的测量。
  14. 根据权利要求13所述的装置,其中,所述配置参数至少包括以下之一:终端测量所述下行参考信号的测量周期T M,IS指示的评估周期T in,OOS指示的评估周期T oos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,以及所述下行参考信号的资源数N和所述下行参考信号发送周期T,其中,所述下行参考信号的资源数N与以下至少之一具有耦合关系:
    终端测量所述下行参考信号的测量周期T M,IS指示的评估周期T in,OOS指示的评估周期T oos,用于启动定时器的OOS指示的第一预设数量N1,用于停止定时器的IS指示的第二预设数量N2,所述下行参考信号的发送周期T。
  15. 根据权利要求13所述的装置,其中,所述耦合关系包括:
    当所述下行参考信号的资源数N越大时,终端测量所述下行参考信号的测量周期T M越大,IS指示的评估周期T in和OOS指示的评估周期T oos越大,用于启动定时器的OOS指示的第一预设数量N1和用于停止定时器的IS指示的第二预设数量N2越小,所述下行参考信号的发送周期T越大。
  16. 一种无线链路的测量装置,应用于基站,其中,包括:
    发送模块,配置为发送下行参考信号的配置信息,其中,所述配置信息包括以下至少之一:配置参数的信息,不同配置参数之间的耦合关系,所述配置信息用于指示终端进行无线链路的测量。
  17. 一种终端,其中,包括:
    处理器;
    存储器,配置为存储所述处理器可执行的指令;
    所述处理器配置为根据所述存储器中存储的指令执行权利要求1至8中任一项所述的方法。
  18. 一种基站,其中,包括:
    处理器;
    存储器,配置为存储所述处理器可执行的指令;
    所述处理器用于根据所述存储器中存储的指令执行权利要求9至12中任一项所述的方法。
  19. 一种存储介质,其中,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至8,或权利要求9至12中任一项所述的方法。
PCT/CN2018/111297 2017-11-17 2018-10-22 无线链路的测量方法及装置、终端、基站、存储介质 WO2019095939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148886.4A CN109802735B (zh) 2017-11-17 2017-11-17 无线链路的测量方法及装置、终端、基站、存储介质
CN201711148886.4 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019095939A1 true WO2019095939A1 (zh) 2019-05-23

Family

ID=66539320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111297 WO2019095939A1 (zh) 2017-11-17 2018-10-22 无线链路的测量方法及装置、终端、基站、存储介质

Country Status (2)

Country Link
CN (1) CN109802735B (zh)
WO (1) WO2019095939A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115299090A (zh) * 2020-04-23 2022-11-04 Oppo广东移动通信有限公司 一种无线链路监测模式转换方法及终端设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114402650A (zh) * 2019-09-29 2022-04-26 华为技术有限公司 链路状态的处理方法和装置
CN112702755A (zh) * 2019-10-23 2021-04-23 维沃移动通信有限公司 一种测量处理方法和终端
CN114449556A (zh) * 2020-10-30 2022-05-06 维沃移动通信有限公司 测量调整方法和终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885511A (zh) * 2012-11-02 2015-09-02 瑞典爱立信有限公司 涉及干扰减轻有效测量的方法和设备
US20160278103A1 (en) * 2014-01-27 2016-09-22 Telefonaktiebolaget L M Ericsson (Publ) Methods, network nodes, user equipment, and computer program products for adaptive radio link monitoring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100568795C (zh) * 2004-11-08 2009-12-09 大唐移动通信设备有限公司 无线通信系统中无线链路同步/失步的控制方法
CN101917765B (zh) * 2010-08-13 2015-09-16 中兴通讯股份有限公司 一种测量参考信号的配置方法及系统
US10027396B2 (en) * 2015-11-04 2018-07-17 Lg Electronics Inc. Method of measuring CSI in wireless communication system supporting unlicensed bands and apparatus supporting the same
CN106998248B (zh) * 2016-01-26 2020-09-15 中兴通讯股份有限公司 一种信号发送方法和用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885511A (zh) * 2012-11-02 2015-09-02 瑞典爱立信有限公司 涉及干扰减轻有效测量的方法和设备
US20160278103A1 (en) * 2014-01-27 2016-09-22 Telefonaktiebolaget L M Ericsson (Publ) Methods, network nodes, user equipment, and computer program products for adaptive radio link monitoring

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Details on Radio Link Monitoring in NR", 3GPP TSG RAN WGI MEETING #90BIY, RL-1717055, 13 October 2017 (2017-10-13), XP051340246 *
SAMSUNG: "Radio Link Monitoring", 3GPP TSG RAN WG1 MEETING NR#3, RL-1715916, 21 September 2017 (2017-09-21), XP051329594 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115299090A (zh) * 2020-04-23 2022-11-04 Oppo广东移动通信有限公司 一种无线链路监测模式转换方法及终端设备

Also Published As

Publication number Publication date
CN109802735A (zh) 2019-05-24
CN109802735B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
US11031964B2 (en) Method for transmitting reference signal in cell that uses unlicensed frequency band and device
WO2019095939A1 (zh) 无线链路的测量方法及装置、终端、基站、存储介质
US10764806B2 (en) Method and apparatus for assisting terminal in measuring
US11178561B2 (en) Method for radio link monitoring and corresponding user equipment
WO2019214665A1 (zh) 资源的选择方法及装置
EP3065443A1 (en) Measurement configuration method, identification and measurement methods, macro base station and ue
WO2015184583A1 (en) An access node,a communication device,respective method performed thereby for carrier hopping
US20220330339A1 (en) Systems and methods for ue operation in presence of cca
CN110249705A (zh) 以减小的信令开销接入无线通信网络
US10708108B2 (en) Electronic device and method for synchronous detection between time division duplex wireless communication cells
RU2660463C1 (ru) Система беспроводной связи, базовая станция, терминал и способ обработки
EP3524032B1 (en) Method and apparatus for cell detection in unlicensed communication systems
JP2022527170A (ja) ダウンリンククリアチャネル評価障害の指示
WO2022089402A1 (zh) 测量调整方法和终端
CN110603868A (zh) 用于随机接入传输的方法和装置
WO2018126456A1 (zh) 一种测量方法、基站及终端
WO2021031980A1 (zh) 无线链路监测方法及相关装置
US20230262509A1 (en) Resource measurement adjustment method and apparatus, terminal, and readable storage medium
JP6116753B2 (ja) スモールセルのバックグラウンドサーチ
WO2022143537A1 (zh) 监测行为的调整方法、装置及终端
CN109362088B (zh) Gsm的从模信息的测量方法和装置
JP6782811B2 (ja) 免許不要の周波数帯域を使用するセル内で基準信号を送信するための方法およびデバイス
CN111193580A (zh) 下行控制与业务同帧传输方法和装置
RU2776679C1 (ru) Пользовательское устройство
WO2023011535A1 (zh) 低移动性状态的确定方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18880004

Country of ref document: EP

Kind code of ref document: A1