WO2019095727A1 - 八电极线性离子阱质量分析器 - Google Patents

八电极线性离子阱质量分析器 Download PDF

Info

Publication number
WO2019095727A1
WO2019095727A1 PCT/CN2018/098477 CN2018098477W WO2019095727A1 WO 2019095727 A1 WO2019095727 A1 WO 2019095727A1 CN 2018098477 W CN2018098477 W CN 2018098477W WO 2019095727 A1 WO2019095727 A1 WO 2019095727A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ion trap
electrodes
linear ion
mass analyzer
Prior art date
Application number
PCT/CN2018/098477
Other languages
English (en)
French (fr)
Inventor
肖育
姚如娇
齐晓军
姜健
朱勇勇
Original Assignee
上海裕达实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海裕达实业有限公司 filed Critical 上海裕达实业有限公司
Priority to US16/765,481 priority Critical patent/US11075069B2/en
Publication of WO2019095727A1 publication Critical patent/WO2019095727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/063Multipole ion guides, e.g. quadrupoles, hexapoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • H01J49/4225Multipole linear ion traps, e.g. quadrupoles, hexapoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • H01J49/423Two-dimensional RF ion traps with radial ejection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/4255Device types with particular constructional features

Definitions

  • the present invention relates to a mass analyzer, and in particular to an eight-electrode linear ion trap mass analyzer.
  • mass spectrometer is a high-sensitivity, high-resolution instrument for detecting the chemical composition of substances. It is widely used in the amino acid sequence of protein molecules, the metabolic process of drug molecules in living organisms, It is one of the main analytical tools in the fields of chemical analysis, food safety, pharmaceuticals, environmental monitoring, and explosives monitoring, as well as protein-protein interaction and protein molecular folding dynamics.
  • the mass analyzer is the core component of the mass spectrometer and determines the analytical performance of the mass spectrometer. Different types of mass spectrometers use different mass analyzers, and these mass analyzers achieve different ways of ion mass-to-charge ratio separation. Currently, commonly used mass analyzers include a sector magnetic sector, a time-of-flight mass spectrometer (TOF), a quadrupole mass analyzer (QMF), an ion trap mass analyzer (Ion Trap), and Fourier. Transform mass analyzer (FT-ICR) and orbital ion trap mass analyzer (Orbitrap).
  • TOF time-of-flight mass spectrometer
  • QMF quadrupole mass analyzer
  • Ion Trap ion trap mass analyzer
  • the ion trap mass analyzer has the advantages of simple structure, low vacuum requirement, and multi-stage tandem mass spectrometry, showing unique development advantages.
  • the traditional mass analyzer is divided into three-dimensional ion trap and linear ion trap.
  • the linear ion trap (LIT) has high ion trapping efficiency and ion storage efficiency, which can largely avoid the space charge effect.
  • linear ion traps have become a hot topic in the research field.
  • a conventional linear ion trap consists of six electrodes, including two planar end cap electrodes and four double curved columnar electrodes.
  • the hypersonic structure requires extremely high machining accuracy and assembly precision. Generally, the mechanical error is required to be within a few micrometers, and the cost is high. This causes the current ion trap mass spectrometer to be expensive and difficult to popularize and popularize.
  • the rectangular ion trap (RIT) proposed by Cooks et al.
  • CIT cylindrical ion trap
  • LIT linear ion trap
  • the structure, its processing and assembly are relatively simple.
  • the simple structure and superior analytical performance of the rectangular ion trap make it the first choice for mass spectrometers in miniaturized mass spectrometers and have been successfully used to make small benchtop mass spectrometers and portable mass spectrometers.
  • a printed circuit board rectangular ion trap with a composite electrode structure reported by Ding et al., consisting of two planar end cap electrodes and four special PCB boards, achieves high mass resolution and Larger mass range, simple structure, low price, mature processing technology and method.
  • Li et al. reported on the PCB ion trap based on the PCB array ion trap, which contains multiple ion mass analysis channels, and each mass analysis channel has functions such as ion storage and mass analysis, which meets the current analytical field for high-throughput mass spectrometry. Instrument requirements. Xiao et al. reported a novel triangular trap electrode structure linear ion trap consisting of four triangular column electrodes and two planar electrodes, all of which are planar electrodes with good ion storage and mass analysis capabilities. When the scanning speed is 1307Th/s, the ion mass resolution of m/z 609Th can reach 1500.
  • the above new linear ion trap simplifies the electrode structure, the high-order field components introduced by the simplification of the electrode have a large influence on the performance of the mass analyzer.
  • another important factor affecting the performance of linear ion traps is that the ion exit slots are inevitably required on the electrodes in the exit direction, destroying the integrity of the entire electrode and introducing nonlinear high-order field components into the internal electric field. , causing distortion of the quadrupole field in the well, thereby reducing the analytical performance of the linear ion trap.
  • the traditional structure of the four electrodes limits the flexibility and diversity of the RF voltage application method, and it is difficult to optimize the analytical performance of the linear ion trap by optimizing the application of the RF voltage.
  • an object of the present invention is to provide an eight-electrode linear ion trap mass analyzer.
  • an eight-electrode linear ion trap mass analyzer characterized in that the eight-electrode linear ion trap mass analyzer is surrounded by eight columnar electrodes and at least two end cap electrodes:
  • the inner surface of the eight columnar electrodes is arbitrary in shape, and the material of the eight-electrode linear ion trap mass analyzer is a conductive metal material or an insulating material coated with a conductive coating, and each of the two columnar electrodes is a group of four groups.
  • the columnar electrodes are placed in parallel in two; the center of the end cap electrode is provided with at least one through hole, and the two end cap electrodes are respectively arranged at both ends of the columnar electrode.
  • the eight-electrode linear ion trap mass analyzer is adjusted by changing the length, width, height of the eight columnar electrodes, the shape of the inner surface of the eight columnar electrodes, the relative position between the four sets of columnar electrodes, and the voltage application mode.
  • the four sets of columnar electrodes share at least one slit, and the slit width between each set of two columnar electrodes is arbitrarily adjustable.
  • a DC signal is applied to the end cap electrode to form an axial bound field
  • a radio frequency voltage is applied to the columnar electrode to form a radial bound field
  • the number of the end cap electrodes is two or more, one of them is located at one end of the linear ion trap ion injection, and the others are sequentially arranged at the other end of the linear ion trap.
  • the present invention has the following beneficial effects: First, the eight electrode structures are replaced by the conventional four electrode structures, so that the application mode of the working voltage is more flexible and diverse, and more new functions can be realized. Second, changing a whole electrode into two discrete electrodes can weaken the adverse effects caused by the ion exit slot. By adjusting the distance between each set of electrodes and optimizing the voltage application mode, the purpose of optimizing the electric field distribution in the well can be achieved. .
  • FIG. 1 is a schematic structural view of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the simulated mass spectrum peak obtained when the eight-electrode triangular linear ion trap of the first embodiment is subjected to ion unidirectional emission.
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a third embodiment of the present invention.
  • the eight-electrode linear ion trap mass analyzer of the present invention is surrounded by eight columnar electrodes and at least two end cap electrodes: the inner surface of the eight columnar electrodes is arbitrary in shape, and may be a circular arc, a triangle, a hyperboloid or the like;
  • the material may be a conductive metal material or an insulating material coated with a conductive coating;
  • the eight columnar electrodes may be the same or different; each of the two columnar electrodes is a group of four groups, two or two in parallel; at least
  • the shape of the two end cap electrodes is not limited, and may be any polygonal shape such as a circle, a square, or a hexagon; at least one through hole is provided in the center of at least one end cap electrode, and the size and shape of the through hole are not limited, and Circular, square, hexagonal, etc.;
  • the surface of the end cap electrode may be a planar structure, or may be a conical surface, a circular arc surface
  • the length, width and height of the eight columnar electrodes are adjustable, that is, by changing the length, width and height of the eight columnar electrodes, the shape of the inner surface of the eight columnar electrodes, the relative position between the four columnar electrodes and the voltage application.
  • the way to adjust the electric field distribution in the space enclosed by the eight columnar electrodes is to obtain good ion storage and mass analysis performance.
  • the four sets of columnar electrodes share at least one slit, and the slit width between each set of two columnar electrodes is arbitrarily adjustable, and the slit widths may be the same or different.
  • the relative positions of the four sets of columnar electrodes are independently adjustable.
  • a DC signal is applied to the end cap electrode to form an axial binding field, and a radio frequency voltage RF is applied to the column electrode to form a radial bound field.
  • the RF signals applied to each of the two column electrodes may be the same or different, according to actual conditions. The effect is set. The RF voltage is applied in any way.
  • the RF signals applied to each of the two column electrodes may be the same or different.
  • the RF signals applied to the four groups of electrodes may be the same or different.
  • end cap electrodes When the number of end cap electrodes is two or more, one of them is located at one end of the linear ion trap ion injection, and the others are sequentially arranged at the other end of the linear ion trap.
  • the structure of the eight-electrode linear ion trap mass analyzer of the present invention is shown in FIG.
  • the first electrode 101, the second electrode 102, the third electrode 103, the fourth electrode 104, the fifth electrode 105, the sixth electrode 106, the seventh electrode 107, and the eighth electrode 108 are triangular electrodes, and the entire linear ion trap is eight A triangular electrode is enclosed, and the RF voltage RF is applied in the same manner as shown in FIG. Specifically, the RF voltage is applied to the third electrode 103, the fourth electrode 104, the seventh electrode 107, and the eighth electrode 108, and the first positive RF signal + RF1 is applied, and the fifth electrode 105 and the sixth electrode 106 are applied with the same amplitude.
  • the first negative RF signal -RF1 is opposite in phase, and the first electrode 101 and the second electrode 102 apply a second negative RF signal -RF2.
  • the electric field distribution inside the ion trap can be changed, thereby affecting the trajectory and exit direction of the ion.
  • an unidirectional exit of ions will be achieved using an eight-electrode triangular linear ion trap mass analyzer to improve the efficiency of ion detection of the linear ion trap in a single detection mode.
  • -RF2 (1- ⁇ ) RF1, where the parameter ⁇ has a value range of [0, 1].
  • the ratio of the RF voltage applied to the first electrode 101 and the second electrode 102 changes, while the magnitude of the RF voltage applied to the other three sets of electrodes remains unchanged, and the quadrupole field in the internal electric field at this time
  • the proportion of multipole field components such as the hexapole field changes, and the center of the quadrupole field inside the ion trap shifts.
  • the center of the movement is offset, eventually achieving a one-way exit of the ions.
  • the unidirectional emission function of the ion trap is realized by an eight-electrode triangular linear ion trap mass analyzer by theoretical simulation, and the performance of the simulated mass spectrum peak is analyzed.
  • 100 kinds of three ions having a mass-to-charge ratio (m/z) of 609, 610, and 611, respectively, are placed at the center of the ion trap region, and the RF RF voltage is applied in the above manner, and is applied to the first electrode 101.
  • a dipole excitation signal AC is applied to the second electrode 102, the fifth electrode 105, and the sixth electrode 106 for ion excitation and emission.
  • the center of motion of the ions is biased toward the side of the first electrode 101 and the second electrode 102, and ions having m/z of 609 have been ejected outside the well.
  • the resulting simulated mass spectrum peak is shown in Figure 2. There are three peaks corresponding to the ion peaks of m/z 609, 610 and 611. The peaks of the mass spectrum are high and thin, and the half-width (FWHM) is only 0.235. Under the condition of unidirectional emission of ions, the eight-electrode triangular linear ion trap mass analyzer achieves high mass resolution and good quality analysis performance.
  • the eighteen electrodes 508 are arc-shaped electrodes, and the entire linear ion trap is surrounded by eight arc-shaped electrodes.
  • the RF voltage RF is applied in the same manner as shown in FIG.
  • the RF voltage is applied as follows:
  • the first positive radio frequency signal +RF1 is applied to the electrode 505 and the sixteenth electrode 506, and the first negative radio frequency signal -RF1 with the same amplitude and opposite phase is applied to the fourteenth electrode 504 and the seventeenth electrode 507, and the eleventh electrode 501, the twelfth electrode 502 applies a second positive radio frequency signal + RF2, and the thirteenth electrode 503, the eighteenth electrode 508 applies a second negative radio frequency signal - RF2.
  • the purpose of this embodiment is also to change the internal electric field distribution of the linear ion trap by changing the application mode of the radio frequency voltage to realize the one-way ion discharge.
  • the difference between this embodiment and the first embodiment is that the unbalanced RF voltage is applied in different ways, and the voltage amplitude applied to the electrodes of four of the eight electrodes is different from the other four, and the electric field of the left half of the linear ion trap is different. It is weaker than the right half, and the center of the electric field is shifted to the weaker side of the electric field.
  • the unidirectional emission of ions under boundary excitation conditions can be realized, and the amplitude of the RF voltage RF is simply scanned so that the ion eliminates the AC voltage portion, which reduces the volume and power consumption of the RF power source.
  • the miniaturization of the instrument is of great significance
  • the twenty-seven electrodes 707 and the twenty-eighth electrodes 708 are all planar electrodes, and the entire linear ion trap is surrounded by eight planar electrodes.
  • the RF voltage RF is applied in the same manner as shown in FIG. 4, and the RF voltage is applied as follows: A first positive radio frequency signal +RF1 is applied to the eleventh electrode 701, a second positive radio frequency signal +RF2 is applied to the twenty-second electrode 702, and a third negative radio frequency signal -RF3 is applied to the twenty-third electrode 703.
  • a fourth negative radio frequency signal -RF4 is applied to the electrode 704, a fifth positive radio frequency signal +RF5 is applied to the twenty-fifth electrode 705, and a sixth positive radio frequency signal +RF6 is applied to the twenty-sixth electrode 706.
  • the twenty-seventh electrode 707 A seventh negative RF signal -RF7 is applied thereto, and an eighth negative RF signal -RF8 is applied to the twenty-eighth electrode 708.
  • the RF signal in this embodiment can be applied with any voltage value, and the applied RF voltage value is optimized by the electric field calculation software to finally obtain a perfect quadrupole field, and the voltage combination of different values can also be adopted according to the requirements in different situations.
  • the advantage of this embodiment is that the RF voltage applied on each electrode is arbitrarily adjustable, and the RF voltage application mode is flexible and convenient, and the adjustability is strong.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明提供了一种八电极线性离子阱质量分析器,其由八个柱状电极围成和至少两个端盖电极围成:八个柱状电极的内侧表面形状任意,所述八电极线性离子阱质量分析器的材料为导电的金属材料或为镀有导电涂层的绝缘材料,每两个柱状电极为一组,共四组柱状电极,两两平行放置;端盖电极的中央设有至少一个通孔,两个端盖电极分别列于柱状电极的两端。本发明将八个电极结构代替传统的四个电极结构,使得工作电压的施加方式更加灵活多样,同时也可以实现更多新功能。

Description

八电极线性离子阱质量分析器 技术领域
本发明涉及一种质量分析器,具体地,涉及一种八电极线性离子阱质量分析器。
背景技术
质谱仪作为现代分析系统的重要代表之一,是一种用于检测物质化学成分的高灵敏度、高分辨率的仪器,被广泛应用于蛋白质分子的氨基酸序列、药物分子在生物体内的代谢过程、蛋白质-蛋白质互相作用以及蛋白质分子折叠动力学过程等众多方面的测定,同时也是化学分析、食品安全、制药、环境监测、爆炸物监测等领域的主要分析工具之一。
质量分析器是质谱仪的核心部件,决定质谱仪的分析性能。不同种类的质谱仪使用不同的质量分析器,这些质量分析器实现离子质荷比分离的方式也不相同。目前,常用的质量分析器有扇形磁质量分析器(magnetic sector)、飞行时间质量分析器(TOF)、四极杆质量分析器(QMF)、离子阱质量分析器(Ion Trap)、傅里叶变换质量分析器(FT-ICR)和轨道离子阱质量分析器(Orbitrap)等。在众多质量分析器中,离子阱质量分析器具有结构简单、对真空度要求低、能进行多级串联质谱分析等优点,展现出独特的发展优势。传统的质量分析器分为三维离子阱和线性离子阱两种,其中线性离子阱(LIT)具有较高的离子捕获效率和离子存储效率,可在很大程度上避免空间电荷效应。鉴于目前质谱仪器研发的方向以及对于小型化、便携化、高通量分析方法和自主知识产权的需求,线性离子阱成为研究领域的热点。
传统线性离子阱由六个电极组成,包括两个平面端盖电极和四个双曲面柱状电极。双曲面结构要求的机械加工精度和装配精度极高,一般要求机械误差在几个微米以内,同时成本较高,这就造成了目前离子阱质谱仪的价格昂贵,难以推广和普及。近年来,研制小型化、价格低廉化的小型离子阱质谱仪成为质谱领域的热点,也因此产生了较多简化电极结构的线性离子阱。Cooks等提出的矩形离子阱(RIT)结合了圆柱形离子阱(CIT)的简单结构与线性离子阱(LIT)储存能力强的优点,仅由六个平面电极围成,取代了传统的双曲面结构,其加工和装配都较为简便。矩形离 子阱的简单结构和较优的分析性能使其成为小型化质谱仪中质量分析器的首选,已经被成功应用于制作小型台式质谱仪和便携式质谱仪。Ding等报道的具有复合电极结构的印刷电路板矩形离子阱质量分析器(PCB ion trap),由两个平面端盖电极和四个特制的PCB板围成,获得了较高的质量分辨率和较大的质量范围,且其结构简单,价格低廉,加工技术和方法较为成熟。Li等在PCB离子阱的基础上报道了PCB阵列离子阱,包含多个离子质量分析通道,且每个质量分析通道都具有离子储存和质量分析等功能,满足了目前分析领域对高通量质谱仪的要求。Xiao等报道了一种新型三角阱电极结构线性离子阱,由四个三角柱状电极和两个平面电极组成,所有电极均为平面电极,具有良好的离子存储和质量分析能力。当扫描速度为1307Th/s时,m/z为609Th的离子质量分辨率可达1500。
以上新型线性离子阱虽然简化了电极结构,但是由电极简化而引入的高阶场成分会对质量分析器性能造成较大的影响。此外,另一个影响线性离子阱分析性能的重要因素在于,出射方向的电极上不可避免地需要开设的离子出射槽,破坏了整个电极的完整性,在内部电场中引入非线性的高阶场成分,导致阱内的四极场发生畸变,从而降低线性离子阱的分析性能。同时,四个电极的传统结构限制了射频电压施加方式的灵活性和多样性,很难通过优化射频电压的施加方式来优化线性离子阱的分析性能。
发明内容
为了解决上述技术问题,本发明的目的是提供一种八电极线性离子阱质量分析器。
根据本发明的一个方面,提供一种八电极线性离子阱质量分析器,其特征在于,所述八电极线性离子阱质量分析器由八个柱状电极围成和至少两个端盖电极围成:八个柱状电极的内侧表面形状任意,所述八电极线性离子阱质量分析器的材料为导电的金属材料或为镀有导电涂层的绝缘材料,每两个柱状电极为一组,共四组柱状电极,两两平行放置;端盖电极的中央设有至少一个通孔,两个端盖电极分别列于柱状电极的两端。
优选地,所述八电极线性离子阱质量分析器通过改变八个柱状电极的长、宽、高,八个柱状电极的内侧表面形状,四组柱状电极之间的相对位置和电压施加方式来调整八个柱状电极围成的空间内的电场分布。
优选地,所述四组柱状电极共有至少一条狭缝,每组两个柱状电极之间的狭缝宽度任意可调。
优选地,所述端盖电极上施加直流信号形成轴向束缚场,柱状电极上施加射频电压形成径向束缚场。
优选地,所述端盖电极的数量为两个以上时,其中一个位于线性离子阱离子进样的一端,其余依次排列于线性离子阱的另一端。
与现有技术相比,本发明具有如下的有益效果:一,将八个电极结构代替传统的四个电极结构,使得工作电压的施加方式更加灵活多样,同时也可以实现更多新功能。二,将一整块电极改成两块离散电极的形式,可以弱化离子出射槽带来的不良影响,通过调整每组电极之间的距离以及优化电压施加方式,达到优化阱内电场分布的目的。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例一的结构示意图。
图2为实施例一中八电极三角形线性离子阱在进行离子单向出射时所得模拟质谱峰的示意图。
图3为本发明实施例二的结构示意图。
图4为本发明实施例三的结构示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明八电极线性离子阱质量分析器由八个柱状电极围成和至少两个端盖电极围成:八个柱状电极的内侧表面形状任意,可以为圆弧、三角、双曲面等形状;其材料可为导电的金属材料,也可以为镀有导电涂层的绝缘材料;八个柱状电极可以相同、也可以不同;每两个柱状电极为一组,共四组,两两平行放置;至少两个端盖电极的形状大 小不限,可为圆形,正方形,六边形等任意多边形状;至少一个端盖电极的中央设有至少一个通孔,通孔大小与形状不限,可为圆形,正方形,六边形等任意多边形状;端盖电极的表面可为平面结构,也可以为圆锥面、圆弧面和双曲面等形状;两个端盖电极分别列于柱状电极的两端。
其中,八个柱状电极的长、宽、高可调,即通过改变八个柱状电极的长、宽、高,八个柱状电极的内侧表面形状,四组柱状电极之间的相对位置和电压施加方式来调整八个柱状电极围成的空间内的电场分布,以获得良好的离子存储和质量分析性能。
四组柱状电极共有至少一条狭缝,每组两个柱状电极之间的狭缝宽度任意可调,狭缝宽度可以相同,也可以不同。四组柱状电极的相对位置独立可调。
端盖电极上施加直流信号形成轴向束缚场,柱状电极上施加射频电压RF形成径向束缚场,每组两个柱状电极上施加的RF信号可以一样,也可以不一样,根据实际所要达到的效果进行设置。射频电压施加方式任意,每组两个柱状电极上施加的RF信号可以一样,也可以不一样,四组电极上施加的RF信号可以一样,也可以不一样。
端盖电极的数量为两个以上时,其中一个位于线性离子阱离子进样的一端,其余依次排列于线性离子阱的另一端。
实施例一
本发明八电极线性离子阱质量分析器的结构如图1所示。其中第一电极101、第二电极102、第三电极103、第四电极104、第五电极105、第六电极106、第七电极107、第八电极108为三角形电极,整个线性离子阱由八个三角形电极围成,其射频电压RF施加方式同如图1所示。射频电压施加方式具体为:第三电极103、第四电极104、第七电极107、第八电极108上施加第一正射频信号+RF1,第五电极105、第六电极106上施加幅值相等,相位相反的第一负射频信号-RF1,第一电极101、第二电极102施加第二负射频信号-RF2。实验过程中,通过改变第二负射频信号-RF2的幅值,可以改变离子阱内部电场分布,从而影响离子的运动轨迹和出射方向。在本实施例中,将利用八电极三角形线性离子阱质量分析器实现离子的单向出射,以提高线性离子阱在单检测模式下离子检测的效率。设-RF2=(1-ɑ)RF1,其中参数α的取值范围为[0,1]。随着α值的变化,第一电极101、第二电极102上施加的射频电压比例发生变化,而其他三组电极上施加的射频电压的大小保持不变,此时内部电场中的四极场、六极场等多极场成分所占比例发生变化,同时离子阱内部四极场中心发生偏移。离子在阱内运动过程中,在电场力的作用下,会往电场中心偏移的方向运动,最终实现单 向出射。
在本实施例中,设定α值为30%,即-RF2=70%RF1,电场中心会偏向被施加较小电压的电极方向,即靠近第一电极101、第二电极102的方向,离子的运动中心发生偏移,最终实现离子的单向出射。
本实施例中通过理论模拟的方式,利用八电极三角形线性离子阱质量分析器实现离子阱单向出射功能,并研究其产生的模拟质谱峰分析其性能。将质荷比(m/z)分别为609、610和611的三种离子各100个,一共300,放置于离子阱区域的中心位置,按上述方式施加射频RF电压,并在第一电极101、第二电极102、第五电极105、第六电极106上施加偶极激发信号AC,用于离子激发出射。此时离子的运动中心偏向第一电极101、第二电极102一侧,此时m/z为609的离子已经被弹出阱外。最终所得的模拟质谱峰如图2所示,共有三个峰,分别对应m/z为609,610和611的离子峰,质谱峰峰高且细,半峰宽(FWHM)仅为0.235,证明了在离子单向出射的条件下,八电极三角形线性离子阱质量分析器获得了较高的质量分辨率,具有良好的质量分析性能。
实施例二
如图3所示,其中第十一电极501、第十二电极502、第十三电极503、第十四电极504、第十五电极505、第十六电极506、第十七电极507、第十八电极508为圆弧形电极,整个线性离子阱由八个圆弧形电极围成,其射频电压RF施加方式同如图3所示,图中所示射频电压施加方式为:第十五电极505、第十六电极506上施加第一正射频信号+RF1,第十四电极504、第十七电极507上施加幅值相等,相位相反的第一负射频信号-RF1,第十一电极501、第十二电极502施加第二正射频信号+RF2,第十三电极503、第十八电极508施加第二负射频信号-RF2。实验过程中,通过调整第二正射频信号RF2的幅值,可以改变离子阱内部电场分布,改变离子的运动轨迹和出射方向,同样设RF2=(1-ɑ)RF1。本实施例的目的同样是通过改变射频电压的施加方式,改变线性离子阱内部电场分布,实现离子单向出射。
本实施例与实施例一的不同之处在于,不平衡的射频电压的施加方式不同,八个电极中有四个的电极上施加的电压幅值不同于另外四个,线性离子阱左半边电场与右半边相比较弱,电场中心发生偏移,偏向电场较弱的一方。利用此种电压施加方式,可实现边界激发条件下的离子单向出射,单纯扫描射频电压RF的幅度使得离子省去了激发电压AC部分,这将减小射频电源的体积和功耗,对质谱仪的小型 化发展具有极其重要的意义
实施例三
如图4所示,其中第二十一电极701、第二十二电极702、第二十三电极703、第二十四电极704、第二十五电极705、第二十六电极706、第二十七电极707、第二十八电极708都为平面电极,整个线性离子阱由八个平面电极围成,其射频电压RF施加方式同如图4所示,射频电压施加方式为:第二十一电极701上施加第一正射频信号+RF1,第二十二电极702上施加第二正射频信号+RF2,第二十三电极703上施加第三负射频信号-RF3,第二十四电极704上施加第四负射频信号-RF4,第二十五电极705上施加第五正射频信号+RF5,第二十六电极706上施加第六正射频信号+RF6,第二十七电极707上施加第七负射频信号-RF7,第二十八电极708上施加第八负射频信号-RF8。
本实施例中的射频信号可施加任意电压值,通过电场计算软件优化施加的射频电压值,最终得到较为完美的四极场,同时也可以根据不同情况下的需求,采用不同数值的电压组合,实现某些特定功能。本实施例的优点在于,每个电极上施加的射频电压都是任意可调的,射频电压施加方式灵活方便,可调节性强。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (5)

  1. 一种八电极线性离子阱质量分析器,其特征在于,所述八电极线性离子阱质量分析器由八个柱状电极围成和至少两个端盖电极围成:八个柱状电极的内侧表面形状任意,所述八电极线性离子阱质量分析器的材料为导电的金属材料或为镀有导电涂层的绝缘材料,每两个柱状电极为一组,共四组柱状电极,两两平行放置;端盖电极的中央设有至少一个通孔,两个端盖电极分别列于柱状电极的两端。
  2. 根据权利要求1所述的八电极线性离子阱质量分析器,其特征在于,所述八电极线性离子阱质量分析器通过改变八个柱状电极的长、宽、高,八个柱状电极的内侧表面形状,四组柱状电极之间的相对位置和电压施加方式来调整八个柱状电极围成的空间内的电场分布。
  3. 根据权利要求1所述的八电极线性离子阱质量分析器,其特征在于,所述四组柱状电极共有至少一条狭缝,每组两个柱状电极之间的狭缝宽度任意可调。
  4. 根据权利要求1所述的八电极线性离子阱质量分析器,其特征在于,所述端盖电极上施加直流信号形成轴向束缚场,柱状电极上施加射频电压形成径向束缚场。
  5. 根据权利要求1所述的八电极线性离子阱质量分析器,其特征在于,所述端盖电极的数量为两个以上时,其中一个位于线性离子阱离子进样的一端,其余依次排列于线性离子阱的另一端。
PCT/CN2018/098477 2017-11-20 2018-08-03 八电极线性离子阱质量分析器 WO2019095727A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/765,481 US11075069B2 (en) 2017-11-20 2018-08-03 OCTA-electrode linear ion trap mass analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711157892.6 2017-11-20
CN201711157892.6A CN108183061A (zh) 2017-11-20 2017-11-20 八电极线性离子阱质量分析器

Publications (1)

Publication Number Publication Date
WO2019095727A1 true WO2019095727A1 (zh) 2019-05-23

Family

ID=62545062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098477 WO2019095727A1 (zh) 2017-11-20 2018-08-03 八电极线性离子阱质量分析器

Country Status (3)

Country Link
US (1) US11075069B2 (zh)
CN (1) CN108183061A (zh)
WO (1) WO2019095727A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183061A (zh) * 2017-11-20 2018-06-19 上海裕达实业有限公司 八电极线性离子阱质量分析器
CN109360782A (zh) * 2018-09-21 2019-02-19 上海卫星装备研究所 六电极线性离子阱质量分析器及射频施加方法
CN110164749B (zh) * 2019-04-30 2024-06-07 宁波大学 一种非对称三角形电极结构离子阱
CN110783165A (zh) * 2019-11-01 2020-02-11 上海裕达实业有限公司 线性离子阱离子引入侧的端盖电极结构
CN112233963B (zh) * 2020-10-29 2023-12-05 上海裕达实业有限公司 高碰撞能量交变电压离子解离装置及质谱分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788327A (zh) * 2003-01-10 2006-06-14 珀杜研究基金会 直线式离子阱及质量分析器系统和方法
US20120248307A1 (en) * 2011-04-04 2012-10-04 Shimadzu Corporation Linear Ion Trap Analyzer
CN103166330A (zh) * 2013-03-06 2013-06-19 苏州大学 一种产生多极场的可调式射频电源
CN105428201A (zh) * 2015-12-25 2016-03-23 复旦大学 一种阶梯电极离子阱质量分析器
CN108183061A (zh) * 2017-11-20 2018-06-19 上海裕达实业有限公司 八电极线性离子阱质量分析器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627883B2 (en) * 2001-03-02 2003-09-30 Bruker Daltonics Inc. Apparatus and method for analyzing samples in a dual ion trap mass spectrometer
US7019290B2 (en) * 2003-05-30 2006-03-28 Applera Corporation System and method for modifying the fringing fields of a radio frequency multipole
EP1749307A4 (en) * 2004-05-24 2010-09-22 Mds Inc Dba Mds Sciex SYSTEM AND METHOD FOR MOUNTING IONS
JP2009506506A (ja) * 2005-08-30 2009-02-12 方向 マススペクトル解析用のイオントラップ、多重電極システム及び電極
US7989765B2 (en) * 2007-11-30 2011-08-02 Agilent Technologies, Inc. Method and apparatus for trapping ions
CN102231356B (zh) * 2009-12-01 2015-03-11 株式会社岛津制作所 线形离子阱分析器
GB2479190B (en) * 2010-04-01 2014-03-19 Microsaic Systems Plc Microengineered multipole rod assembly
DE102010022184B4 (de) * 2010-05-21 2013-04-04 Bruker Daltonik Gmbh Mischfrequenz-Stabsystem als Ionenreaktor
DE102011115195B4 (de) * 2011-09-28 2016-03-10 Bruker Daltonik Gmbh Massenspektrometrischer Ionenspeicher für extrem verschiedene Massenbereiche
EP3005401B1 (en) * 2013-06-03 2022-04-06 PerkinElmer Health Sciences, Inc. Ion guide or filters with selected gas conductance
US9805923B2 (en) * 2014-05-16 2017-10-31 Flir Detection, Inc. Mass separators, mass selective detectors, and methods for optimizing mass separation within mass selective detectors
CN104681392A (zh) * 2015-01-11 2015-06-03 复旦大学 一种折线形杆状电极线形离子阱
CN205140928U (zh) * 2015-11-06 2016-04-06 北京普析通用仪器有限责任公司 一种微波等离子体三重四极质谱仪
CN105609400B (zh) * 2016-01-22 2018-01-12 复旦大学 含有高阶场成分的离子阱质谱系统
CN105957798A (zh) * 2016-06-08 2016-09-21 中国科学院合肥物质科学研究院 一种基于离子阱质量分析器的红外光解离光谱仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788327A (zh) * 2003-01-10 2006-06-14 珀杜研究基金会 直线式离子阱及质量分析器系统和方法
US20120248307A1 (en) * 2011-04-04 2012-10-04 Shimadzu Corporation Linear Ion Trap Analyzer
CN103166330A (zh) * 2013-03-06 2013-06-19 苏州大学 一种产生多极场的可调式射频电源
CN105428201A (zh) * 2015-12-25 2016-03-23 复旦大学 一种阶梯电极离子阱质量分析器
CN108183061A (zh) * 2017-11-20 2018-06-19 上海裕达实业有限公司 八电极线性离子阱质量分析器

Also Published As

Publication number Publication date
US11075069B2 (en) 2021-07-27
CN108183061A (zh) 2018-06-19
US20200294783A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2019095727A1 (zh) 八电极线性离子阱质量分析器
US8395114B2 (en) Ion trap, multiple electrode system and electrode for mass spectrometric analysis
US20030183759A1 (en) Two-dimensional quadrupole ion trap operated as a mass spectrometer
WO2007107106A1 (fr) Système de piège à ions linéaire multipolaire et procédé de fabrication associé avec des électrodes d'un seul tenant
US9406495B2 (en) Linear ion beam bonding apparatus and array structure thereof
CA2513067A1 (en) Rectilinear ion trap and mass analyzer system and method
US7858930B2 (en) Ion-trapping devices providing shaped radial electric field
CN1925102A (zh) 优化场形线性离子阱及其质量分析器
CN203055856U (zh) 一种阵列离子阱质谱系统
US7655903B2 (en) Measuring cell for ion cyclotron resonance mass spectrometer
Wang et al. Mass-selective ion accumulation and fragmentation in a linear octopole ion trap external to a Fourier transform ion cyclotron resonance mass spectrometer
CN107104032B (zh) 基于非对称三角形电极的线性离子阱、质谱仪及方法
JPS60257055A (ja) 質量分析計
CN201514925U (zh) 四极杆质谱仪及质谱仪极杆
CN104681392A (zh) 一种折线形杆状电极线形离子阱
CN105470096A (zh) 一种离子漏斗和质谱检测系统
CN105609400A (zh) 含有高阶场成分的离子阱质谱系统
CN110571128A (zh) 一种多段式四极杆电极系统及其串联方法
CN109346396A (zh) 可提高离子探测效率的质谱系统
CN209981165U (zh) 一种非对称三角形电极结构离子阱
CN205595304U (zh) 一种可提高离子探测效率的质谱分析系统
CN209981166U (zh) 一种非对称三角形电极结构离子阱
CN112951702B (zh) 一种用于质谱仪的离子操控及传输装置
CN210668276U (zh) 一种多段式四极杆电极系统
CN210182330U (zh) 直线形质量分析器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879265

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18879265

Country of ref document: EP

Kind code of ref document: A1