WO2019095236A1 - 传输数据的方法、终端设备和网络设备 - Google Patents

传输数据的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019095236A1
WO2019095236A1 PCT/CN2017/111463 CN2017111463W WO2019095236A1 WO 2019095236 A1 WO2019095236 A1 WO 2019095236A1 CN 2017111463 W CN2017111463 W CN 2017111463W WO 2019095236 A1 WO2019095236 A1 WO 2019095236A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
duration
priority
terminal device
timer
Prior art date
Application number
PCT/CN2017/111463
Other languages
English (en)
French (fr)
Inventor
林亚男
沈嘉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2020524828A priority Critical patent/JP2021510463A/ja
Priority to CN201780096892.1A priority patent/CN111357311B/zh
Priority to PCT/CN2017/111463 priority patent/WO2019095236A1/zh
Priority to US16/761,580 priority patent/US20200274678A1/en
Publication of WO2019095236A1 publication Critical patent/WO2019095236A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method, a terminal device, and a network device for transmitting data.
  • the concept of Bandwidth Part (BWP) is introduced in the NR system.
  • the network device can configure one or more BWPs for the terminal device, and the bandwidth of each BWP is less than or equal to the maximum system. bandwidth.
  • the network device can activate or deactivate the configuration of the BWP by using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the network device can also configure the BWP timer. When the BWP timer expires, the network device falls back to the default BWP. .
  • the embodiment of the present application provides a method for transmitting data, a terminal device, and a network device, which solves the problem of switching when multiple BWPs coexist.
  • a method of transmitting data comprising:
  • the terminal device determines the target BWP according to at least one of the bandwidth part BWP indication information, the BWP timer and the BWP priority level;
  • the terminal device transmits data on the target BWP.
  • the BWP timer in the embodiment of the present application may be determined by setting an initial effective time and an effective duration of the BWP, or may also be determined by setting an initial effective time and an expiration time.
  • the terminal device determines, according to the bandwidth part BWP indication, at least one of a BWP timer and a BWP priority Standard BWP, including:
  • the terminal device determines that the BWP with a high priority is the target BWP.
  • the terminal device may select a BWP with a higher priority for data transmission, which is beneficial to avoid that the terminal device does not know which BWP is used for data transmission.
  • the BWP priority is determined by at least one of a signaling configuration and a receiving sequence of the BWP indication information and a priority configuration of a channel where the BWP indication information is located. of.
  • the default BWP has the lowest priority.
  • the configuration of the BWP timer includes at least one of a specific time length, a specific time pattern, a data transmission duration, and an infinite duration. Therefore, the terminal device can set the duration of different BWP timers according to the requirements of different scenarios, so as to meet the transmission requirements of different scenarios.
  • the data transmission duration is a duration of data transmission, or a duration of semi-persistent scheduling.
  • the data transmission duration may be the duration of the semi-persistent scheduling
  • the duration of the semi-persistent scheduling may be the duration from the start time to the end time of the semi-persistent scheduling, or may be the start of the semi-persistent scheduling.
  • the duration of the BWP can be the duration of the dynamically scheduled data transmission.
  • the BWP timer is BWP-specific or independently configured.
  • the BWP timer is determined by at least one of a state of a BWP configuration and a scheduling type.
  • the duration of the BWP timer can be equal to the duration of the semi-persistent scheduling.
  • the duration of the BWP timer may be the data transmission duration, or may be the effective period of the semi-statically configured BWP.
  • the state of the BWP configuration is used to indicate the number of BWPs that are simultaneously active.
  • the method further includes:
  • the terminal device receives the bandwidth part BWP indication information, a BWP timer and a BWP At least one of the configuration information in the priority.
  • a method of transmitting data including:
  • the network device determines the target BWP according to at least one of the bandwidth part BWP indication information, the BWP timer and the BWP priority;
  • the network device receives data on the target BWP.
  • the determining, by the network device, the target BWP according to the bandwidth part BWP indication, the BWP timer, and the BWP priority including:
  • the network device determines that the BWP with a high priority is the target BWP.
  • the BWP priority is determined by at least one of a signaling configuration and a receiving configuration of the BWP indication information and a priority configuration of a channel where the BWP indication information is located.
  • the default BWP has the lowest priority.
  • the configuration of the BWP timer includes at least one of a specific time length, a specific time pattern, a data transmission duration, and an infinite duration.
  • the data transmission duration is a duration of data transmission, or a duration of semi-persistent scheduling.
  • the BWP timer is BWP-specific or independently configured.
  • the BWP timer is determined by at least one of a state and a scheduling type of the BWP configuration.
  • the state of the BWP configuration is used to indicate the number of BWPs that are simultaneously active.
  • the method further includes:
  • the network device sends at least one configuration information of the bandwidth part BWP indication information, the BWP timer and the BWP priority to the terminal device.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the first aspect or the first aspect of the first aspect described above.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises means for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • a network device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the possible implementations of the second aspect or the second aspect above.
  • a computer storage medium for storing computer software instructions for performing the method of any of the above first aspect or any of the possible implementations of the first aspect, comprising program.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the above-described first aspect or any of the alternative implementations of the first aspect.
  • a ninth aspect a computer storage medium for storing computer software instructions for performing the method of any of the above second aspect or any of the possible implementations of the second aspect, comprising program.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the alternative aspects of the second aspect or the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for transmitting data according to an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a method for determining the duration of a BWP timer.
  • FIG. 4 is a schematic diagram showing the manner in which the duration of another BWP timer is determined.
  • FIG. 5 is a schematic diagram showing the manner of determining the duration of another BWP timer.
  • FIG. 6 is a schematic diagram showing the manner of determining the duration of another BWP timer.
  • FIG. 7 is a schematic diagram showing the manner of determining the duration of another BWP timer.
  • FIG. 8 is a schematic diagram showing the manner of determining the duration of another BWP timer.
  • FIG. 9 is a schematic flowchart of a method for transmitting data according to another embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a network device of another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 13 shows a schematic block diagram of a network device of another embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future 5G network.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
  • Terminal device 120 can be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the BWP configured by the network device to the terminal device may include at least one of the following parameters:
  • the terminal device can support an activated BWP at a point in time, that is, the terminal device expects to transmit data on the bandwidth specified by the activated BWP, for example, the transmission control signal. Order, uplink and downlink data or receiving system messages.
  • the network device can activate or deactivate the BWP through the DCI, and can also configure the BWP timer. If the BWP timer corresponding to the BWP expires after the BWP configuration is activated, the network device is rolled back to the default BWP for data transmission. .
  • the terminal device or the network device does not know which BWP to receive data on.
  • the embodiment of the present application provides a method for transmitting data, so that the terminal device or the network device can know which BWP to receive data on.
  • FIG. 2 is a schematic flowchart of a method 200 for transmitting data according to an embodiment of the present application.
  • the method 200 may be performed by a terminal device in the communication system 100 shown in FIG. 1. As shown in FIG. 2, the method 200 may be performed. Includes the following:
  • the terminal device determines the target BWP according to at least one of a bandwidth part BWP indication information, a BWP timer, and a BWP priority.
  • the terminal device transmits data on the target BWP.
  • the BWP timer in the embodiment of the present application may be determined by setting an initial effective time and an effective duration of the BWP, or may also be determined by setting an initial effective time and an expiration time.
  • the BWP timer expires, the BWP corresponding to the BWP timer is in the effective period, that is, the data can be transmitted on the BWP.
  • the BWP timer expires, the BWP corresponding to the BWP timer fails. Data transmission is performed on the BWP.
  • the terminal device may receive downlink control information (Grant) according to the received BWP indication.
  • Grant downlink control information
  • One of the BWP timer and the BWP priority One or more types, determining which BWP is currently transmitting data, that is, determining a target BWP for data transmission, and then transmitting data on the target BWP.
  • the terminal device may determine that the second BWP is the target BWP, in the second BWP. Data transfer is performed. Or if the first BWP and the second BWP are currently in an active state, if the priority of the second BWP is higher than the priority of the first BWP, the terminal device may determine that the second BWP is the target BWP And then preferentially performing data transmission on the second BWP.
  • the terminal device may switch back to the The first BWP continues to perform data transmission on the first BWP, or if the BWP timer of the first BWP has timed out, and no other BWP is in an active state, the terminal device may switch to the Default BWP. data transmission.
  • the terminal device preferentially determines which BWP to perform data transmission according to the BWP priority, and after the data on the BWP with the higher priority is received, the priority is compared. The data is received on the low BWP.
  • the terminal device falls back to the default BWP for data. Transmission, the default BWP has the lowest priority.
  • the target BWP is determined by at least one of the BWP timer and the BWP priority according to the BWP indication information, and the embodiment of the present application may also be based on other information.
  • the information of the service type of the service to be transmitted, and the like, the target BWP is determined, which is not limited by the embodiment of the present application.
  • one or more BWPs in the effective period means that one or more activated BWPs are in the effective period, and the default BWP is not included.
  • the BWP priority is determined by at least one of a signaling configuration and a receiving sequence of the BWP indication information and a priority configuration of a channel where the BWP indication information is located.
  • the BWP priority may be configured by the network device by using signaling (for example, Radio Resource Control (RRC) signaling). If the priority of the network device configuration BWP2 is higher than the priority of the BWP1, then the BWP1 is used. And BWP2 are both in the effective period, The terminal device can preferentially perform data transmission on the BWP2.
  • RRC Radio Resource Control
  • the BWP priority may also be determined according to the receiving order of the BWP indication information (ie, Grant). For example, the terminal device may determine that the BWP included in the latest received Grant has the highest priority.
  • the terminal device may also determine a BWP priority according to a priority configuration of a channel used for transmitting the BWP indication information, for example, the terminal device may be configured according to a search space for transmitting the BWP indication information ( At least one of a search space), a Physical Downlink Control CHannel (PDCCH) format, a Control Resource Set (CORESET), and a scheduling type (semi-persistent scheduling, dynamic scheduling) determines BWP priority
  • the level, or the terminal device may determine the BWP priority according to other information, for example, according to the service type of the service to be transmitted, and the like.
  • the terminal device may select a BWP with a higher priority for data transmission, which is beneficial to avoid that the terminal device does not know which BWP is used for data transmission.
  • the configuration of the BWP timer includes at least one of a specific time length, a specific time pattern, a data transmission duration, and an infinite duration.
  • the terminal device can set different BWP timer durations according to requirements of different scenarios, so as to meet the transmission requirements of different scenarios.
  • the duration of the BWP timer may be a specific length of time.
  • the duration of the BWP timer is infinite, so that the BWP failure signaling may be avoided.
  • the duration of the BWP timer may be the duration of the data transmission, that is, the length of time actually used for data transmission.
  • the information included in the configuration of the BWP timer described above is only an example and is not limited.
  • the configuration of the BWP timer in the embodiment of the present application may also include other information, which is not limited in this embodiment of the present application.
  • the BWP timer may be BWP-specific or may be independently configured.
  • a dedicated BWP timer can be configured for each BWP, so that no additional signaling is required to configure the duration of the BWP timer corresponding to each BWP.
  • the BWP timer corresponding to the BWP is activated.
  • the BWP timer is also configured for each BWP by signaling, and the signaling may be displayed or implicit.
  • the duration of the BWP timer corresponding to each BWP may be the same or different.
  • the duration of each BWP timer may be a specific time length, a specific time pattern, a data transmission duration, and an infinite duration.
  • Embodiment 1 Determine the duration of the BWP timer according to the scheduling type.
  • Embodiment 1.1 Determine the duration of the BWP timer according to the data transmission duration.
  • the duration of the BWP timer may be the data transmission duration.
  • the data transmission duration may be the duration of the semi-persistent scheduling
  • the duration of the semi-persistent scheduling may be the duration from the start time to the end time of the semi-persistent scheduling, or may be the start of the semi-persistent scheduling.
  • the duration of the BWP can be the duration of the dynamically scheduled data transmission. Therefore, the BWP timer of the embodiment of the present application can be determined according to the scheduling type and the data transmission duration, so that the BWP configuration can more closely match the data transmission requirement.
  • FIG. 3 shows a semi-persistent scheduling scenario.
  • the terminal device receives the downlink control information (indicated as Grant1) including the BWP1 indication, where the Grant1 is used to instruct the terminal device to perform data transmission on the BWP1.
  • the scheduling mode is semi-persistent scheduling
  • the duration of the BWP timer corresponding to the BWP1 is the duration of the semi-persistent scheduling, that is, the effective period of the BWP1 is the duration of the semi-persistent scheduling.
  • the terminal device can use the BWP1 for data transmission.
  • the start time of the semi-persistent scheduling is 0 ms
  • the end time is 30 ms
  • the scheduling period is 10 ms
  • the duration for semi-persistent scheduling in each scheduling period is 5 ms
  • the duration of one data transmission may also be 5 ms.
  • the duration of semi-persistent scheduling can be 30ms, or 15ms.
  • the dynamic scheduling scenario is performed.
  • the terminal device receives the downlink control information (indicated as Grant1), which is used to indicate that the terminal device performs data transmission on the BWP1.
  • the duration of the BWP timer corresponding to the BWP1 may be the length of the dynamic scheduling, that is, the duration of data transmission on the BWP1.
  • the BWP timer corresponding to BWP1 is invalid.
  • the terminal device receives the downlink control information (indicated as Grant2) including the BWP2 indication
  • the Grant2 is used to instruct the terminal device to perform data transmission on the BWP2
  • the scheduling mode is dynamic scheduling
  • the BWP timing corresponding to the BWP2 is The duration of the device is the length of time for transmitting data on BWP2.
  • the BWP timer corresponding to BWP2 is invalid.
  • Embodiment 1.2 Determine the duration of the BWP timer according to the duration of the data transmission duration and the length of the BWP timer configured semi-statically.
  • the terminal device comprehensively considers the duration of the data transmission and the duration of the semi-statically configured BWP timer (or the effective period of the semi-statically configured BWP), and determines the duration of the BWP timer, thereby making the granularity of the BWP configuration more precise. In turn, it can improve system efficiency. For example, the terminal device may determine that the duration of the BWP timer is a smaller value of the data transmission duration and the duration of the semi-statically configured BWP timer.
  • the time domain length of resources for semi-persistent scheduling is usually long (for example, may be the time domain length of the entire connected state), and the duration of the semi-statically configured BWP timer is usually less than semi-persistent scheduling.
  • the time domain length of the resource In this case, the duration of the BWP timer can be the duration of the semi-statically configured BWP timer.
  • the terminal device receives the downlink control information (indicated as Grant1) including the BWP1 indication, and the Grant1 is used to instruct the terminal device to perform data transmission on the BWP1.
  • the duration of the BWP timer of the BWP1 may be the duration of the semi-statically configured BWP timer.
  • the terminal device switches to the default BWP, and performs data transmission on the default BWP.
  • the duration of the BWP timer of the default BWP may not be limited.
  • the terminal device performs data transmission on the BWP2 according to the instruction of the Grant2.
  • the duration of the timer corresponding to the BWP2 may be the duration of the semi-statically configured BWP timer. That is, multiple independent BWP timers can be included in the semi-persistent scheduling.
  • the time domain length of the dynamic scheduling is usually smaller than the duration of the semi-statically configured BWP timer, that is, the time length of the dynamically scheduled time domain and the duration of the semi-statically configured BWP timer are the time domain of the dynamic scheduling.
  • the length therefore, the terminal device may determine that the duration of the BWP timer may be a dynamically scheduled time domain length, that is, in dynamic scheduling, each dynamic scheduling may correspond to an independent BWP timer.
  • the terminal device receives the downlink control information (indicated as Grant1) including the BWP1 indication, and the Grant1 is used to instruct the terminal device to perform data transmission on the BWP1.
  • the duration of the BWP timer corresponding to the BWP1 may be the duration of data transmission on the BWP1.
  • the terminal device receives the downlink control information (indicated as Grant2) including the BWP2 indication, the Grant2 is used to indicate that the terminal device performs data transmission on the BWP2, and the duration of the BWP timer corresponding to the BWP2 is on the BWP2. Number of transmissions According to the duration.
  • the terminal device may determine the duration of the BWP timer corresponding to the BWP according to the scheduling type. For example, for semi-persistent scheduling, the duration of the BWP timer can be equal to the duration of the semi-persistent scheduling. Alternatively, for dynamic scheduling, the duration of the BWP timer may be the data transmission duration, or may be the effective period of the semi-statically configured BWP.
  • Embodiment 2 Determine the duration of the BWP timer according to the state of the BWP configuration.
  • the status of the BWP configuration may be used to indicate the number of BWPs that are simultaneously active, and the number of BWPs that are simultaneously active only includes the activated BWP, and does not include the default BWP.
  • the duration of the BWP timer of the BWP can be determined according to the manner described in Embodiment 1, and details are not described herein again.
  • the terminal device may determine the duration of the BWP timer corresponding to each BWP according to the BWP priority.
  • the terminal device may determine that the duration of the BWP timer corresponding to the BWP with a higher priority is the data transmission duration, and determine the duration of the BWP with the lower priority as the effective period of the semi-statically configured BWP. In this way, the terminal device can preferentially perform data transmission on the BWP with high priority. After the transmission is completed, if the effective period of the BWP with low priority has not ended, the data transmission is performed on the BWP with lower priority. Otherwise, Roll back to the default BWP for data transfer. Therefore, in the case that multiple BWPs are simultaneously effective, flexible switching of the BWP can be implemented, and system efficiency is improved.
  • the terminal device receives downlink control information (indicated as Grant1) including the BWP1 indication, where the Grant1 is used to instruct the terminal device to perform data transmission on the BWP1.
  • Grant1 downlink control information
  • the duration of the BWP timer corresponding to the BWP1 may be the effective period of the semi-statically configured BWP1, or may be the data transmission duration, in the active state (regardless of the default BWP) (corresponding to the state 1 described above).
  • the terminal device receives the downlink control information (indicated as Grant2) including the BWP2 indication, and the Grant2 is used to instruct the terminal device to perform data transmission on the BWP2.
  • the terminal device determines that the priority of the BWP2 is higher than the priority of the BWP1 according to the BWP priority, and the terminal device switches to the BWP2 for data transmission, where the BWP2 corresponds to
  • the duration of the BWP timer can be the duration of the data transmitted on BWP2 (i.e., the duration of the shaded portion shown in Figure 7).
  • the terminal device After the transmission on BWP2 is completed, if the BWP timer corresponding to BWP1 has not expired, the terminal device switches back to BWP1 for data transmission, or if the BWP timer of BWP1 has timed out, and there is no For other BWPs that are in an active state, the terminal device switches back to the default BWP for data transmission.
  • the duration of the BWP timer corresponding to the BWP1 may be configured to be a specific length of time.
  • the duration of the corresponding BWP timer may be determined according to the type of service transmitted by the BWP1. It is assumed that the duration of the BWP timer corresponding to BWP1 is 20 ms, and the duration of the BWP timer corresponding to BWP2 is the duration of one data transmission. Then, when the terminal device receives the downlink control information including the BWP1 indication, the terminal device may receive the data within the duration of the BWP timer corresponding to the BWP1.
  • the terminal device determines that the priority of the BWP2 is higher than the priority of the BWP1 according to the BWP priority, and the terminal device Switch to receive data on BWP2 for the duration of data received on BWP2. After receiving the data on the BWP2, the terminal device switches back to the BWP1 to continue data transmission on the BWP1 (provided that the BWP timer corresponding to the BWP1 does not time out, and if it times out, it switches back to the default BWP).
  • FIG 7 shows the scenario of dynamic scheduling.
  • the following describes the data transmission in the case where multiple BWPs take effect simultaneously with the semi-persistent scheduling scenario shown in Figure 8.
  • the terminal device receives downlink control information (indicated as Grant1) including the BWP1 indication, where the Grant1 is used to instruct the terminal device to perform data transmission on the BWP1, and the scheduling mode of the BWP1 is For semi-persistent scheduling, the timer duration corresponding to BWP1 is the data transmission duration, the time interval from the start time to the end time of the semi-persistent scheduling, or all the semi-persistent scheduling resources from the start time to the end time of the semi-persistent scheduling, Or the time interval of semi-persistent scheduling resources from the start time to the end time of the semi-persistent scheduling.
  • Grant1 downlink control information
  • Grant1 the Grant1 indication
  • the Grant1 is used to instruct the terminal device to perform data transmission on the BWP1
  • the scheduling mode of the BWP1 is For semi-persistent scheduling, the timer duration corresponding to BWP1 is the data transmission duration, the time interval from the start time to the end time of the semi-persistent scheduling, or all
  • the terminal device receives the downlink control information (indicated as Grant2), which is used to indicate that the terminal device performs data transmission on the BWP2, and the scheduling is dynamic scheduling, and the timer duration corresponding to the BWP2 is The length of one data transfer.
  • the terminal device determines that the priority of the BWP2 is higher than the priority of the BWP1 according to the BWP priority, and the terminal device switches to the BWP2 for data transmission. After receiving the data on the BWP2, the terminal switches back to the BWP1 and continues to receive data on the BWP1.
  • the signaling overhead caused by the BWP handover using signaling is avoided.
  • the method 200 may further include:
  • the terminal device receives at least one of the bandwidth part BWP indication information, the BWP timer and the BWP priority.
  • the network device may configure the BWP indication information to the terminal device, and configure at least one of a BWP timer and a BWP priority.
  • the network device may use dynamic signaling or Semi-static signaling configures at least one of the above information.
  • the terminal device may also receive other configuration information for determining the target BWP, which is not limited in this embodiment of the present application.
  • a method for transmitting data according to an embodiment of the present application is described in detail from the perspective of a terminal device.
  • a transmission data according to another embodiment of the present application is described in detail from the perspective of a network device with reference to FIG. 9 .
  • Methods It should be understood that the action on the network device side is similar to the action on the terminal device side. For a similar description, refer to the above. To avoid repetition, details are not described herein again.
  • FIG. 9 is a schematic flowchart of a method 300 for transmitting data according to another embodiment of the present application.
  • the method 300 may be performed by a terminal device in the communication system shown in FIG. 1. As shown in FIG. 9, the method 300 includes The following content:
  • the network device determines the target BWP according to at least one of the bandwidth part BWP indication information, the BWP timer and the BWP priority level;
  • the network device receives data on the target BWP.
  • the determining, by the network device, the target BWP according to the bandwidth part BWP indication, the BWP timer, and the BWP priority including:
  • the network device determines that the BWP with a high priority is the target BWP.
  • the BWP priority is determined by at least one of a signaling configuration and a receiving order of the BWP indication information and a priority configuration of a channel where the BWP indication information is located.
  • the default BWP has the lowest priority.
  • the configuration of the BWP timer includes at least one of a specific time length, a specific time pattern, a data transmission duration, and an infinite duration.
  • the data transmission duration is a duration of one data transmission, or a duration of semi-persistent scheduling.
  • the BWP timer is BWP-specific or independently configured.
  • the BWP timer is determined by at least one of a status and a scheduling type of the BWP configuration.
  • the state of the BWP configuration is used to indicate the number of BWPs that are simultaneously active.
  • the method further includes:
  • the network device sends a bandwidth part BWP indication information, and the BWP timer and the BWP priority At least one configuration information of the levels is provided to the terminal device.
  • the embodiment of the method of the present application is described in detail with reference to FIG. 2 to FIG. 9 .
  • the device embodiment of the present application is described in detail below with reference to FIG. 10 to FIG. 13 . It should be understood that the device embodiment and the method embodiment correspond to each other. The description of the method can be referred to the method embodiment.
  • FIG. 10 shows a schematic block diagram of a terminal device 400 in accordance with an embodiment of the present application.
  • the terminal device 400 includes:
  • the determining module 410 is configured to determine the target BWP according to at least one of the bandwidth part BWP indication information, the BWP timer and the BWP priority level;
  • the communication module 420 is configured to transmit data on the target BWP.
  • the determining module 410 is specifically configured to:
  • Determining a BWP with a high priority is the target BWP.
  • the BWP priority is determined by at least one of a signaling configuration and a receiving order of the BWP indication information and a priority configuration of a channel where the BWP indication information is located.
  • the default BWP has the lowest priority.
  • the configuration of the BWP timer includes at least one of a specific time length, a specific time pattern, a data transmission duration, and an infinite duration.
  • the data transmission duration is a duration of one data transmission, or a duration of semi-persistent scheduling.
  • the BWP timer is BWP-specific or independently configured.
  • the BWP timer is determined by at least one of a status and a scheduling type of the BWP configuration.
  • the state of the BWP configuration is used to indicate the number of BWPs that are simultaneously active.
  • the communication module 420 is further configured to:
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 400 respectively implement the method shown in FIG. 2 .
  • the corresponding process of the terminal device in 200, for the sake of brevity, here is not Let me repeat.
  • the network device 500 of Figure 11 includes:
  • the determining module 510 is configured to determine the target BWP according to at least one of the bandwidth part BWP indication information, the BWP timer and the BWP priority level;
  • the communication module 520 is configured to receive data on the target BWP.
  • the determining module is specifically configured to:
  • Determining a BWP with a high priority is the target BWP.
  • the BWP priority is determined by at least one of a signaling configuration and a receiving order of the BWP indication information and a priority configuration of a channel where the BWP indication information is located.
  • the default BWP has the lowest priority.
  • the configuration of the BWP timer includes at least one of a specific time length, a specific time pattern, a data transmission duration, and an infinite duration.
  • the data transmission duration is a duration of one data transmission, or a duration of semi-persistent scheduling.
  • the BWP timer is BWP-specific or independently configured.
  • the BWP timer is determined by at least one of a status and a scheduling type of the BWP configuration.
  • the state of the BWP configuration is used to indicate the number of BWPs that are simultaneously active.
  • the communication module 520 is further configured to:
  • the network device 500 may correspond to (for example, may be configured or be itself) the network device described in the foregoing method 300, and each module or unit in the network device 500 is used to perform the network in the foregoing method 300, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the embodiment of the present application further provides a terminal device 600, which may be the terminal device 400 in FIG. 10, which can be used to perform the method corresponding to the method 200 in FIG.
  • the content of the terminal device includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected through a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 630 may be a central processing unit (“CPU"), and the processor 630 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the communication module 420 included in the terminal device 400 in FIG. 10 can be implemented by using the input interface 610 and the output interface 620 of FIG. 12, and the determining module 410 included in the terminal device 400 in FIG.
  • the processor 630 of 12 is implemented.
  • the embodiment of the present application further provides a network device 700, which may be the network device 500 in FIG. 11 , which can be used to execute a network device corresponding to the method 300 in FIG. 9 .
  • the network device 700 includes an input interface 710, an output interface 720, a processor 730, and a memory 740.
  • the input interface 710, the output interface 720, the processor 730, and the memory 740 can be connected by a bus system.
  • the memory 740 is configured to store programs, instructions or code.
  • the processor 730 is configured to execute a program, an instruction, or The code controls the input interface 710 to receive signals, controls the output interface 720 to transmit signals, and performs the operations in the foregoing method embodiments.
  • the processor 730 may be a central processing unit (“CPU"), and the processor 730 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the communication module 520 included in the network device 500 in FIG. 11 can be implemented by using the input interface 710 and the output interface 720 of FIG. 13, and the determining module 510 included in the network device 500 in FIG.
  • the processor 730 of 13 is implemented.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in Figures 2 and 9.
  • the embodiment of the present application also proposes a computer program comprising instructions which, when executed by a computer, cause the computer to perform the corresponding flow of the method of the embodiment shown in Figures 2 and 9.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本申请实施例公开了一种传输数据的方法、终端设备和网络设备,该方法包括:终端设备根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;所述终端设备在所述目标BWP上传输数据。

Description

传输数据的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种传输数据的方法、终端设备和网络设备。
背景技术
在5G新无线(New Radio,NR)系统讨论中,确定NR系统支持的系统带宽远大于长期演进(Long Term Evolution,LTE)系统的系统带宽,但是对于某些终端设备,由于其能力有限,并不能支持全部的系统带宽,因此,在NR系统中引入了带宽部分(Bandwidth Part,BWP)的概念,网络设备可以给终端设备配置一个或多个BWP,每个BWP的带宽小于或等于最大的系统带宽。
网络设备可以通过下行控制信息(Downlink Control Information,DCI),激活或去激活BWP的配置,所述网络设备也可以配置BWP定时器,当BWP定时器超时,则回退到缺省(default)BWP。
但是,当多个BWP都在定时器超时之前,如何确定BWP配置以进行数据传输是一项亟需解决的问题。
发明内容
本申请实施例提供了一种传输数据的方法、终端设备和网络设备,解决多个BWP共存时的切换问题。
第一方面,提供了一种传输数据的方法,包括:
终端设备根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;
所述终端设备在所述目标BWP上传输数据。
可选地,在本申请实施例中的BWP定时器可以通过设置起始生效时间和BWP的生效时长确定,或者也可以通过设置起始生效时间和失效时间确定。
结合第一方面,在第一方面的某些可能的实现方式中,所述终端设备根据带宽部分BWP指示,BWP定时器和BWP优先级中的至少一种,确定目 标BWP,包括:
所述终端设备确定优先级高的BWP为所述目标BWP。
因此,本申请实施例的传输数据的方法,当多个BWP同时生效时,所述终端设备可以选择优先级高的BWP进行数据传输,有利于避免终端设备不知道在哪个BWP上进行数据传输,导致传输效率低的问题。
结合第一方面,在第一方面的某些可能的实现方式中,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
结合第一方面,在第一方面的某些可能的实现方式中,缺省BWP的优先级最低。
结合第一方面,在第一方面的某些可能的实现方式中,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。因此,所述终端设备可以根据不同场景的需求,设置不同的BWP定时器的时长,从而能够满足不同场景的传输需求。
结合第一方面,在第一方面的某些可能的实现方式中,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
例如,对于半持续调度,数据传输时长可以为半持续调度的时长,该半持续调度的时长可以为从半持续调度的起始时刻到结束时刻的时长,也可以为从半持续调度的起始时刻到结束时刻中用于半持续调度传输的时长。对于动态调度,BWP的时长可以为动态调度的数据传输时长。
结合第一方面,在第一方面的某些可能的实现方式中,所述BWP定时器是BWP专属的,或者是独立配置的。
结合第一方面,在第一方面的某些可能的实现方式中,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
例如,对于半持续调度,BWP定时器的时长可以等于半持续调度的时长。或者,对于动态调度,BWP定时器的时长可以为数据传输时长,或者也可以为半静态配置的BWP的生效期。
结合第一方面,在第一方面的某些可能的实现方式中,所述BWP配置的状态用于指示同时生效的BWP的数目。
结合第一方面,在第一方面的某些可能的实现方式中,所述方法还包括:
所述终端设备接收所述带宽部分BWP指示信息,BWP定时器和BWP 优先级中的至少一种配置信息。
第二方面,提供了一种传输数据的方法,包括:
网络设备根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;
所述网络设备在所述目标BWP上接收数据。
结合第二方面,在第二方面的一些可能的实现方式中,所述网络设备根据带宽部分BWP指示,BWP定时器和BWP优先级中的至少一种,确定目标BWP,包括:
网络设备确定优先级高的BWP为所述目标BWP。
结合第二方面,在第二方面的一些可能的实现方式中,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
结合第二方面,在第二方面的一些可能的实现方式中,缺省BWP的优先级最低。
结合第二方面,在第二方面的一些可能的实现方式中,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
结合第二方面,在第二方面的一些可能的实现方式中,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
结合第二方面,在第二方面的一些可能的实现方式中,所述BWP定时器是BWP专属的,或者是独立配置的。
结合第二方面,在第二方面的一些可能的实现方式中,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
结合第二方面,在第二方面的一些可能的实现方式中,所述BWP配置的状态用于指示同时生效的BWP的数目。
结合第二方面,在第二方面的一些可能的实现方式中,所述方法还包括:
所述网络设备发送带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种配置信息给终端设备。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第四方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。
第五方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任一可能的实现方式中的方法的单元。
第六方面,提供了一种网络设备,该网络设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法。
第九方面,提供了一种计算机存储介质,用于储存为执行上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任一可选的实现方式中的方法。
附图说明
图1示出了本申请实施例一个应用场景的示意图。
图2示出了本申请实施例的传输数据的方法的示意性流程图。
图3示出了一种BWP定时器时长的确定方式的示意图。
图4示出了另一种BWP定时器时长的确定方式的示意图。
图5示出了再一种BWP定时器时长的确定方式的示意图。
图6示出了再一种BWP定时器时长的确定方式的示意图。
图7示出了再一种BWP定时器时长的确定方式的示意图。
图8示出了再一种BWP定时器时长的确定方式的示意图。
图9示出了本申请另一实施例的传输数据的方法的示意性流程图。
图10示出了本申请实施例的终端设备的示意性框图。
图11示出了本申请另一实施例的网络设备的示意性框图。
图12示出了本申请实施例的终端设备的示意性框图。
图13示出了本申请另一实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的 PLMN中的终端设备等。
在本申请实施例中,网络设备给终端设备配置的BWP可以包括如下参数中的至少一个:
1、基础参数集,用于标识载波间隔;
2、中心频点;
3、带宽,小于或等于最大系统带宽。
由此可见,BWP为频域维度的概念,终端设备在一个时间点上,可以支持一个激活的BWP,也就是说,终端设备期望在激活的BWP规定的带宽上传输数据,例如,传输控制信令、上下行数据或接收系统消息等。
如上文所述,网络设备可以通过DCI激活或去激活BWP,也可以配置BWP定时器,当该BWP配置激活后若该BWP对应的BWP定时器超时,则回退到缺省BWP上进行数据传输。
但是,在某些场景下,如果多个BWP的BWP定时器都未超时,即该多个BWP都处于生效期内,则终端设备或网络设备不知道在哪个BWP上接收数据。
有鉴于此,本申请实施例提供了一种传输数据的方法,使得终端设备或网络设备能够获知在哪个BWP上进行数据的接收。
图2是根据本申请一实施例的传输数据的方法200的示意性流程图,该方法200可以由图1所示的通信系统100中的终端设备执行,如图2所示,该方法200可以包括如下内容:
S210,终端设备根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP。
S220,所述终端设备在所述目标BWP上传输数据。
应理解,在本申请实施例中的BWP定时器可以通过设置起始生效时间和BWP的生效时长确定,或者也可以通过设置起始生效时间和失效时间确定。在BWP定时器未超时时,则该BWP定时器对应的BWP处于生效期内,即可以在该BWP上进行数据传输,在BWP定时器超时时,该BWP定时器对应的BWP失效,则不能在该BWP上进行数据传输。
具体而言,当前时刻,若至少一个BWP处于激活状态,也就是说,至少一个BWP处于生效期内,此情况下,所述终端设备可以根据接收到的包括BWP指示的下行控制信息(Grant)、BWP定时器和BWP优先级中的一 种或多种,确定当前在哪个BWP进行数据传输,即确定进行数据传输的目标BWP,然后在该目标BWP上进行数据的传输。
例如,若当前第一BWP处于激活状态,之后终端设备接收到用于激活第二BWP的指示信息,那么所述终端设备可以确定所述第二BWP为所述目标BWP,在所述第二BWP上进行数据传输。或若第一BWP和第二BWP当前都处于激活状态,若第二BWP的优先级高于所述第一BWP的优先级,那么所述终端设备可以确定所述第二BWP为所述目标BWP,然后优先在所述第二BWP上进行数据传输,当在第二BWP上数据传输完毕后,若所述第一BWP对应的BWP定时器还未超时,则所述终端设备可以切换回所述第一BWP,继续在所述第一BWP上进行数据传输,或者若所述第一BWP的BWP定时器已超时,并且也没有其他BWP处于激活状态,那么所述终端设备可以切换至Default BWP进行数据传输。
也就是说,当多个BWP都处于生效期内时,所述终端设备优先根据BWP优先级确定在哪个BWP进行数据传输,在优先级高的BWP上的数据接收完毕后,再在优先级较低的BWP上进行数据的接收,当在缺省BWP以外的其他BWP上的数据都传输完毕后,或者对应的BWP定时器都超时时,所述终端设备则回退到缺省BWP上进行数据传输,即缺省BWP的优先级最低。
应理解,以上仅示例了根据BWP指示信息,BWP定时器和BWP优先级中至少一种确定目标BWP的方式,而不应对本申请实施例构成任何限定,本申请实施例也可以根据其他信息,例如待传输业务的业务类型等信息确定目标BWP,本申请实施例对此不作限定。
需要说明的是,本申请实施例中,为便于描述和区分具体场景,一个或多个BWP处于生效期内指的是激活的一个或多个BWP处于生效期内,不包括缺省BWP。
可选地,在本申请实施例中,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
例如,BWP优先级可以是由网络设备通过信令(例如,无线资源控制(Radio Resource Control,RRC)信令)配置的,若网络设备配置BWP2的优先级高于BWP1的优先级,那么当BWP1和BWP2都在生效期内时,所 述终端设备可以优先在所述BWP2上进行数据传输。
或者,BWP优先级也可以是根据BWP指示信息(即Grant)的接收顺序确定,例如,所述终端设备可以确定最新接收的Grant中包括的BWP的优先级最高。可选地,所述终端设备也可以根据用于传输所述BWP指示信息的信道的优先级配置确定BWP优先级,例如,所述终端设备可以根据用于传输所述BWP指示信息的搜索空间(search space)、物理下行控制信道(Physical Downlink Control CHannel,PDCCH)格式(format)、控制资源集(Control Resource Set,CORESET)和调度类型(半持续调度,动态调度)中的至少一项确定BWP优先级,或者所述终端设备也可以根据其他信息例如,可以根据待传输业务的业务类型等信息确定BWP优先级,本申请实施例对此不作限定。
因此,本申请实施例的传输数据的方法,当多个BWP同时生效时,所述终端设备可以选择优先级高的BWP进行数据传输,有利于避免终端设备不知道在哪个BWP上进行数据传输,导致传输效率低的问题。
可选地,在本申请实施例中,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
具体地,所述终端设备可以根据不同场景的需求,设置不同的BWP定时器时长,从而能够满足不同场景的传输需求。例如,对于不频繁切换BWP的场景,BWP定时器的时长可以为特定时间长度,对于只有不变更BWP配置的场景,BWP定时器的时长为无限时长,从而可以免于接收BWP失效信令,或者对于动态业务在多个BWP上传输的场景,BWP定时器的时长可以为数据传输时长,即实际用于数据传输的时长等。
应理解,以上所述的BWP定时器的配置所包括的信息仅为示例而非限定,本申请实施例中的BWP定时器的配置也可以包括其他信息,本申请实施例对此不作限定。
可选地,在一些实施例中,所述BWP定时器可以是BWP专属的,或者也可以是独立配置的。
也就是说,可以为每个BWP配置一个专属的BWP定时器,这样,不需要额外信令配置每个BWP对应的BWP定时器的时长,当某个BWP激活后,该BWP对应的BWP定时器也开启;或者,也可以通过信令为每个BWP配置对应的BWP定时器,该信令可以为显示的,或者也可以为隐式的。在 本申请实施例中,每个BWP对应的BWP定时器的时长可以相同,也可以不同,具体的,每个BWP定时器的时长可以为特定时间长度、特定时间图样、数据传输时长和无限时长中的一种。
以下,结合实施例1和实施例2,详细说明BWP定时器的确定方法。
实施例1:根据调度类型确定BWP定时器的时长。
实施例1.1:根据数据传输时长确定BWP定时器的时长。
在该实施例中,BWP定时器的时长可以为数据传输时长。例如,对于半持续调度,数据传输时长可以为半持续调度的时长,该半持续调度的时长可以为从半持续调度的起始时刻到结束时刻的时长,也可以为从半持续调度的起始时刻到结束时刻中用于半持续调度传输的时长。对于动态调度,BWP的时长可以为动态调度的数据传输时长。因此,本申请实施例的BWP定时器可以根据调度类型和数据传输时长确定,从而使得BWP配置能够更加匹配数据传输需求。
例如,图3所示为半持续调度场景,在某个时刻,终端设备接收到包括BWP1指示的下行控制信息(记为Grant1),该Grant1用于指示所述终端设备在BWP1上进行数据传输,该调度方式为半持续调度,那么BWP1对应的BWP定时器的时长为半持续调度的时长,即BWP1的生效期为半持续调度的时长。在半持续调度的时长范围,即在BWP1的生效期内,所述终端设备可用在BWP1上进行数据传输。例如,半持续调度的起始时刻为0ms,结束时刻为30ms,调度周期为10ms,每个调度周期内用于半持续调度的时长为5ms,那么一次数据传输的时长也可以为5ms,所述半持续调度的时长可以为30ms,或者也可以为15ms。
如图4所示为动态调度场景,在某个时刻,终端设备接收到包含BWP1指示的下行控制信息(记为Grant1),该Grant1用于指示所述终端设备在BWP1上进行数据传输,该调度方式为动态调度,则该BWP1对应的BWP定时器的时长可以为动态调度的时间长度,即在BWP1上传输数据的时长。在BWP1上传输数据完毕之后,BWP1对应的BWP定时器失效。之后,若终端设备接收到包括BWP2指示的下行控制信息(记为Grant2),该Grant2用于指示所述终端设备在BWP2上进行数据传输,该调度方式为动态调度,则该BWP2对应的BWP定时器的时长为在BWP2上传输数据的时长,在BWP2上传输数据完毕之后,BWP2对应的BWP定时器失效。
实施例1.2:根据数据传输时长和半静态配置的BWP定时器的时长确定BWP定时器的时长。
所述终端设备综合考虑数据传输时长和半静态配置的BWP定时器的时长(或者说,半静态配置的BWP的生效期),确定BWP定时器的时长,从而使得BWP配置的颗粒度更加精细,进而能够提升系统效率。例如,所述终端设备可以确定BWP定时器的时长为数据传输时长和半静态配置的BWP定时器的时长中较小值。
具体地,对于半持续调度,用于半持续调度的资源的时域长度通常较长(例如,可能为整个连接态的时域长度),半静态配置的BWP定时器的时长通常小于半持续调度的资源的时域长度,这种情况下,所述BWP定时器的时长可以为半静态配置的BWP定时器的时长。
例如,对于图5所示的半持续调度场景,在某个时刻,终端设备接收到包括BWP1指示的下行控制信息(记为Grant1),该Grant1用于指示所述终端设备在BWP1上进行数据传输,BWP1的BWP定时器的时长可以为半静态配置的BWP定时器的时长。在该BWP1对应的BWP定时器超时后,终端设备切换至缺省BWP,在缺省BWP上进行数据传输,缺省BWP的BWP定时器的时长可以不限制。直到终端设备接收到新的Grant2,进一步地,所述终端设备根据Grant2的指示,在BWP2上进行数据传输,BWP2对应的定时器的时长可以为半静态配置的BWP定时器的时长。也就是说,在半持续调度中可以包括多个独立的BWP定时器。
对于动态调度,动态调度的时域长度通常小于半静态配置的BWP定时器的时长,即动态调度的时域长度和半静态配置的BWP定时器的时长中的较小值为动态调度的时域长度,因此,所述终端设备可以确定所述BWP定时器的时长可以为动态调度的时域长度,也就是说,在动态调度中,每次动态调度可以对应独立的BWP定时器。
例如,对于图6所示为动态调度场景,在某个时刻,终端设备接收到包括BWP1指示的下行控制信息(记为Grant1),该Grant1用于指示所述终端设备在BWP1上进行数据传输,该BWP1对应的BWP定时器的时长可以为在BWP1上传输数据的时长。之后,若终端设备接收到包括BWP2指示的下行控制信息(记为Grant2),该Grant2用于指示所述终端设备在BWP2上进行数据传输,则该BWP2对应的BWP定时器的时长为在BWP2上传输数 据的时长。
综合该实施例1,所述终端设备可以根据调度类型,确定BWP对应的BWP定时器的时长。例如,对于半持续调度,BWP定时器的时长可以等于半持续调度的时长。或者,对于动态调度,BWP定时器的时长可以为数据传输时长,或者也可以为半静态配置的BWP的生效期。
实施例2:根据BWP配置的状态确定BWP定时器的时长。
具体而言,BWP配置的状态可以用于指示同时生效的BWP的数目,这里同时生效的BWP的数目只包括激活的BWP,不包括缺省BWP。例如,若当前仅有一个BWP处于生效状态(记为状态1),该BWP的BWP定时器的时长可以根据实施例1中所描述的方式确定,这里不再赘述。或者若当前有多个BWP处于生效状态(记为状态2),那么所述终端设备可以根据BWP优先级确定每个BWP对应的BWP定时器的时长。例如,所述终端设备可以确定优先级高的BWP对应的BWP定时器的时长为数据传输时长,确定优先级低的BWP的时长为半静态配置的BWP的生效期。这样,所述终端设备可以在优先级高的BWP上优先进行数据传输,传输完毕之后,若优先级低的BWP的生效期还没结束,则在优先级低的BWP上进行数据传输,否则,回退到缺省BWP上进行数据传输。从而,在多个BWP同时生效的情况下,可以实现BWP的灵活切换,提升系统效率。
例如,在图7中,在某个时刻,终端设备接收到包括BWP1指示的下行控制信息(记为Grant1),该Grant1用于指示所述终端设备在BWP1上进行数据传输,此时,只有BWP1处于生效状态(不考虑缺省BWP)(对应上文中所述的状态1),该BWP1对应的BWP定时器的时长可以为半静态配置的BWP1的生效期,或者也可以为数据传输时长。之后,终端设备又接收到包括BWP2指示的下行控制信息(记为Grant2),该Grant2用于指示所述终端设备在BWP2上进行数据传输,此时,由于BWP1的生效期还未结束,即BWP1和BWP2都处于生效状态(对应前文所述的状态2),所述终端设备根据BWP优先级确定BWP2的优先级高于BWP1的优先级,则终端设备切换至BWP2上进行数据传输,该BWP2对应的BWP定时器的时长可以为在BWP2上传输数据的时长(即图7所示的阴影部分的时长)。在BWP2上传输完毕之后,若BWP1对应的BWP定时器还未超时,所述终端设备则切换回BWP1进行数据传输,或者若BWP1的BWP定时器已经超时,并且没有 其他处于激活状态的BWP,所述终端设备则切换回缺省BWP进行数据传输。
在图7所示的示例中,BWP1对应的BWP定时器的时长可以配置为特定时间长度,例如,可以根据BWP1传输的业务类型确定对应的BWP定时器的时长。假设BWP1对应的BWP定时器的时长为20ms,BWP2对应的BWP定时器的时长为一次数据传输的时长。那么在终端设备接收到包括BWP1指示的下行控制信息时,所述终端设备可以在BWP1对应的BWP定时器的时长范围内接收数据。若在BWP1对应的BWP定时器的时长范围内,终端设备又接收到包括BWP2指示的下行控制信息,根据BWP优先级,所述终端设备确定BWP2的优先级高于BWP1的优先级,则终端设备切换至BWP2上接收数据,时长为在BWP2上接收数据的时长。当在BWP2上接收完数据后,所述终端设备切换回BWP1继续在BWP1上进行数据传输(前提是BWP1对应的BWP定时器未超时,若超时,则切换回缺省BWP)。
图7所示为动态调度的场景,以下结合图8所示的半持续调度场景,介绍多个BWP同时生效的情况下,如何进行数据传输。
在图8中,在某个时刻,所述终端设备接收到包括BWP1指示的下行控制信息(记为Grant1),该Grant1用于指示所述终端设备在BWP1上进行数据传输,BWP1的调度方式为半持续调度,则BWP1对应的定时器时长为数据传输时长,从半持续调度的起始时刻到结束时刻,或者从半持续调度的起始时刻到结束时刻的所有半持续调度资源的时间间隔,或者从半持续调度的起始时刻到结束时刻的发生传输的半持续调度资源的时间间隔。之后,终端设备又接收到包括BWP2指示的下行控制信息(记为Grant2),该Grant2用于指示所述终端设备在BWP2上进行数据传输,该调度为动态调度,则BWP2对应的定时器时长为一次数据传输时长。所述终端设备根据BWP优先级确定BWP2的优先级高于BWP1的优先级,则终端设备切换至BWP2上进行数据传输,在BWP2上接收数据完毕后,则切换回BWP1,继续在BWP1上接收数据,避免了采用信令进行BWP切换导致的信令开销。
可选地,在一些实施例中,所述方法200还可以包括:
所述终端设备接收所述带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种配置信息。
即网络设备可以给所述终端设备配置BWP指示信息,配置BWP定时器和BWP优先级中的至少一种,例如,所述网络设备可以通过动态信令或 半静态信令配置上述信息中至少一项。可选地,所述终端设备也可以接收用于确定目标BWP的其他配置信息,本申请实施例对此不作限定。
上文结合图2至图8,从终端设备的角度详细描述了根据本申请实施例的传输数据的方法,下文结合图9,从网络设备的角度详细描述根据本申请另一实施例的传输数据的方法。应理解,网络设备侧的动作与终端设备侧的动作类似,相似的描述可以参见上文,为避免重复,此处不再赘述。
图9是根据本申请另一实施例的传输数据的方法300的示意性流程图,该方法300可以由图1所示的通信系统中的终端设备执行,如图9所示,该方法300包括如下内容:
S310,网络设备根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;
S320,所述网络设备在所述目标BWP上接收数据。
可选地,在一些实施例中,所述网络设备根据带宽部分BWP指示,BWP定时器和BWP优先级中的至少一种,确定目标BWP,包括:
网络设备确定优先级高的BWP为所述目标BWP。
可选地,在一些实施例中,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
可选地,在一些实施例中,缺省BWP的优先级最低。
可选地,在一些实施例中,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
可选地,在一些实施例中,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
可选地,在一些实施例中,所述BWP定时器是BWP专属的,或者是独立配置的。
可选地,在一些实施例中,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
可选地,在一些实施例中,所述BWP配置的状态用于指示同时生效的BWP的数目。
可选地,在一些实施例中,所述方法还包括:
所述网络设备发送带宽部分BWP指示信息,BWP定时器和BWP优先 级中的至少一种配置信息给终端设备。
上文结合图2至图9,详细描述了本申请的方法实施例,下文结合图10至图13,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10示出了根据本申请实施例的终端设备400的示意性框图。如图10所示,该终端设备400包括:
确定模块410,用于根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;
通信模块420,用于在所述目标BWP上传输数据。
可选地,在一些实施例中,所述确定模块410具体用于:
确定优先级高的BWP为所述目标BWP。
可选地,在一些实施例中,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
可选地,在一些实施例中,缺省BWP的优先级最低。
可选地,在一些实施例中,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
可选地,在一些实施例中,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
可选地,在一些实施例中,所述BWP定时器是BWP专属的,或者是独立配置的。
可选地,在一些实施例中,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
可选地,在一些实施例中,所述BWP配置的状态用于指示同时生效的BWP的数目。
可选地,在一些实施例中,所述通信模块420还用于:
接收所述带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种配置信息。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不 再赘述。
图11是根据本申请实施例的网络设备的示意性框图。图11的网络设备500包括:
确定模块510,用于根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;
通信模块520,用于在所述目标BWP上接收数据。
可选地,在一些实施例中,所述确定模块具体用于:
确定优先级高的BWP为所述目标BWP。
可选地,在一些实施例中,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
可选地,在一些实施例中,缺省BWP的优先级最低。
可选地,在一些实施例中,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
可选地,在一些实施例中,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
可选地,在一些实施例中,所述BWP定时器是BWP专属的,或者是独立配置的。
可选地,在一些实施例中,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
可选地,在一些实施例中,所述BWP配置的状态用于指示同时生效的BWP的数目。
可选地,在一些实施例中,所述通信模块520还用于:
发送带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种配置信息给终端设备。
具体地,该网络设备500可以对应(例如,可以配置于或本身即为)上述方法300中描述的网络设备,并且,该网络设备500中的各模块或单元分别用于执行上述方法300中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
如图12所示,本申请实施例还提供了一种终端设备600,所述终端设备600可以为图10中的终端设备400,其能够用于执行与图2中方法200对应 的终端设备的内容。所述终端设备600包括:输入接口610、输出接口620、处理器630以及存储器640,所述输入接口610、输出接口620、处理器630和存储器640可以通过总线系统相连。所述存储器640用于存储包括程序、指令或代码。所述处理器630,用于执行所述存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器630可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器630还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图10中终端设备400包括的通信模块420可以用图12的所述输入接口610和所述输出接口620实现,图10中终端设备400包括的确定模块410可以用图12的所述处理器630实现。
如图13所示,本申请实施例还提供了一种网络设备700,所述网络设备700可以为图11中的网络设备500,其能够用于执行与图9中方法300对应的网络设备的内容。所述网络设备700包括:输入接口710、输出接口720、处理器730以及存储器740,所述输入接口710、输出接口720、处理器730和存储器740可以通过总线系统相连。所述存储器740用于存储包括程序、指令或代码。所述处理器730,用于执行所述存储器740中的程序、指令或 代码,以控制输入接口710接收信号、控制输出接口720发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器730可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图11中网络设备500包括的通信模块520可以用图13的所述输入接口710和所述输出接口720实现,图11中网络设备500包括的确定模块510可以用图13中的所述处理器730实现。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图2和图9所示实施例的方法。
本申请实施例还提出了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行图2和图9所示实施例的方法的相应流程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特 定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护 范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种传输数据的方法,其特征在于,包括:
    终端设备根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;
    所述终端设备在所述目标BWP上传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据带宽部分BWP指示,BWP定时器和BWP优先级中的至少一种,确定目标BWP,包括:
    所述终端设备确定优先级高的BWP为所述目标BWP。
  3. 根据权利要求1或2所述的方法,其特征在于,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,缺省BWP的优先级最低。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述BWP定时器的的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
  6. 根据权利要求5所述的方法,其特征在于,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述BWP定时器是BWP专属的,或者是独立配置的。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
  9. 根据权利要求8所述的方法,其特征在于,所述BWP配置的状态用于指示同时生效的BWP的数目。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种配置信息。
  11. 一种传输数据的方法,其特征在于,包括:
    网络设备根据带宽部分BWP指示信息,BWP定时器和BWP优先级中 的至少一种,确定目标BWP;
    所述网络设备在所述目标BWP上接收数据。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备根据带宽部分BWP指示,BWP定时器和BWP优先级中的至少一种,确定目标BWP,包括:
    网络设备确定优先级高的BWP为所述目标BWP。
  13. 根据权利要求11或12所述的方法,其特征在于,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,缺省BWP的优先级最低。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
  16. 根据权利要求15所述的方法,其特征在于,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述BWP定时器是BWP专属的,或者是独立配置的。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
  19. 根据权利要求18所述的方法,其特征在于,所述BWP配置的状态用于指示同时生效的BWP的数目。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种配置信息给终端设备。
  21. 一种终端设备,其特征在于,包括:
    确定模块,用于根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;
    通信模块,用于在所述目标BWP上传输数据。
  22. 根据权利要求21所述的终端设备,其特征在于,所述确定模块具 体用于:
    确定优先级高的BWP为所述目标BWP。
  23. 根据权利要求21或22所述的终端设备,其特征在于,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信道的优先级配置中至少一种确定的。
  24. 根据权利要求21至23中任一项所述的终端设备,其特征在于,缺省BWP的优先级最低。
  25. 根据权利要求21至24中任一项所述的终端设备,其特征在于,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
  26. 根据权利要求25所述的终端设备,其特征在于,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
  27. 根据权利要求21至26中任一项所述的终端设备,其特征在于,所述BWP定时器是BWP专属的,或者是独立配置的。
  28. 根据权利要求21至27中任一项所述的终端设备,其特征在于,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
  29. 根据权利要求28所述的终端设备,其特征在于,所述BWP配置的状态用于指示同时生效的BWP的数目。
  30. 根据权利要求21至29中任一项所述的终端设备,其特征在于,所述通信模块还用于:
    接收所述带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种配置信息。
  31. 一种网络设备,其特征在于,包括:
    确定模块,用于根据带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种,确定目标BWP;
    通信模块,用于在所述目标BWP上接收数据。
  32. 根据权利要求31所述的网络设备,其特征在于,所述确定模块具体用于:
    确定优先级高的BWP为所述目标BWP。
  33. 根据权利要求31或32所述的网络设备,其特征在于,所述BWP优先级是由信令配置和BWP指示信息的接收顺序和BWP指示信息所在信 道的优先级配置中至少一种确定的。
  34. 根据权利要求31至33中任一项所述的网络设备,其特征在于,缺省BWP的优先级最低。
  35. 根据权利要求31至34中任一项所述的网络设备,其特征在于,所述BWP定时器的配置包括特定时间长度、特定时间图样、数据传输时长和无限时长中的至少一种。
  36. 根据权利要求35所述的网络设备,其特征在于,所述数据传输时长是一次数据传输的时长,或半持续调度的时长。
  37. 根据权利要求31至36中任一项所述的网络设备,其特征在于,所述BWP定时器是BWP专属的,或者是独立配置的。
  38. 根据权利要求31至37中任一项所述的网络设备,其特征在于,所述BWP定时器由BWP配置的状态和调度类型中的至少一种确定。
  39. 根据权利要求38所述的网络设备,其特征在于,所述BWP配置的状态用于指示同时生效的BWP的数目。
  40. 根据权利要求31至39中任一项所述的网络设备,其特征在于,所述通信模块还用于:
    发送带宽部分BWP指示信息,BWP定时器和BWP优先级中的至少一种配置信息给终端设备。
PCT/CN2017/111463 2017-11-16 2017-11-16 传输数据的方法、终端设备和网络设备 WO2019095236A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020524828A JP2021510463A (ja) 2017-11-16 2017-11-16 データ伝送方法、端末装置及びネットワーク装置
CN201780096892.1A CN111357311B (zh) 2017-11-16 2017-11-16 传输数据的方法、终端设备和网络设备
PCT/CN2017/111463 WO2019095236A1 (zh) 2017-11-16 2017-11-16 传输数据的方法、终端设备和网络设备
US16/761,580 US20200274678A1 (en) 2017-11-16 2017-11-16 Data Transmission Method, Terminal Device, and Network Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111463 WO2019095236A1 (zh) 2017-11-16 2017-11-16 传输数据的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2019095236A1 true WO2019095236A1 (zh) 2019-05-23

Family

ID=66539304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111463 WO2019095236A1 (zh) 2017-11-16 2017-11-16 传输数据的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20200274678A1 (zh)
JP (1) JP2021510463A (zh)
CN (1) CN111357311B (zh)
WO (1) WO2019095236A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802732B (zh) * 2017-11-17 2021-02-12 华为技术有限公司 下行控制信道的监测方法和相关装置
PL3866376T3 (pl) * 2018-01-09 2023-02-20 Beijing Xiaomi Mobile Software Co., Ltd. Procesy warstwy fizycznej i mac w urządzeniu bezprzewodowym
US11197179B2 (en) * 2018-03-26 2021-12-07 Acer Incorporated Device and method for handling radio link monitoring and bandwidth part switching
CN110324884B (zh) * 2018-03-30 2021-04-06 维沃移动通信有限公司 传输模式确定方法及设备
CN112236968B (zh) * 2018-05-09 2024-04-23 联想(新加坡)私人有限公司 用于多个活动带宽部分的过程
US11838903B2 (en) * 2018-08-24 2023-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Method, network device and terminal device for managing a resource in a wireless communication system
CN111885729B (zh) * 2020-07-29 2022-09-09 中国联合网络通信集团有限公司 部分宽带的确定方法及通信装置
US11924658B2 (en) * 2020-07-30 2024-03-05 Lg Electronics Inc. Method and apparatus for radio link monitoring for multiple active bandwidth parts in a wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374284A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 一种基站为中继站分配带宽的方法
CN102148666A (zh) * 2010-02-09 2011-08-10 华为技术有限公司 信道信息反馈方法、终端及基站
CN102255685A (zh) * 2010-05-17 2011-11-23 华为技术有限公司 反馈和获取csi的方法、ue及基站
CN102291731A (zh) * 2010-06-18 2011-12-21 电信科学技术研究院 一种应用于分层网络的测量方法及其装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2347747B1 (es) * 2008-08-06 2011-09-07 Vodafone España, S.A Procedimiento y sistema para acceder a capacidad de transporte en redes de acceso de radio compartidas.
US8923228B2 (en) * 2009-10-30 2014-12-30 Nokia Corporation Idle mode camping priority

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374284A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 一种基站为中继站分配带宽的方法
CN102148666A (zh) * 2010-02-09 2011-08-10 华为技术有限公司 信道信息反馈方法、终端及基站
CN102255685A (zh) * 2010-05-17 2011-11-23 华为技术有限公司 反馈和获取csi的方法、ue及基站
CN102291731A (zh) * 2010-06-18 2011-12-21 电信科学技术研究院 一种应用于分层网络的测量方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation; (Release 15)", 3GPP TS 38.211 V1.0.0., 30 September 2017 (2017-09-30), XP051336892 *

Also Published As

Publication number Publication date
CN111357311A (zh) 2020-06-30
US20200274678A1 (en) 2020-08-27
CN111357311B (zh) 2022-12-30
JP2021510463A (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2019095236A1 (zh) 传输数据的方法、终端设备和网络设备
KR102078372B1 (ko) 무선 통신 시스템에서의 BWP (Bandwidth Part) 동작을 처리하는 방법 및 그 장치
WO2019137378A1 (zh) 通信方法、通信设备和网络设备
CN109792792B (zh) 在drx配置或者重新配置之后的pdcch监测
JP7238095B2 (ja) 不連続伝送の方法とデバイス
WO2019051806A1 (zh) 传输数据的方法、终端设备和网络设备
US10349464B2 (en) User equipment, and method in the user equipment, for monitoring a downlink control channel
US20200252936A1 (en) Bandwidth Part Switching Method and Terminal Device
CN108418661B (zh) 数据传输方法及装置
KR102367005B1 (ko) 비연속 수신 방법, 단말기 디바이스 및 네트워크 디바이스
WO2018126364A1 (zh) 通信方法、终端设备和网络设备
WO2019140663A1 (zh) 基于定时器切换带宽部分的方法、终端设备和网络设备
TWI762678B (zh) 傳輸資料的方法、終端設備和網路設備
CN113574952A (zh) 无线通信的方法、终端设备和网络设备
KR102438917B1 (ko) 중계 네트워크의 이중 조정 방법, 중계 노드 디바이스 및 컴퓨터 판독 가능한 매체
JP2020504947A (ja) 通信方法、端末装置及びネットワーク装置
CN111869288B (zh) 一种启动定时器的方法及装置、终端
WO2019153266A1 (zh) 用于传输数据的方法和设备
WO2019090720A1 (zh) 传输数据的方法和设备
WO2019153353A1 (zh) 传输数据的方法和设备
JP2022504026A (ja) リソース指示方法、デバイス及び記憶媒体
US10588082B2 (en) Wireless communication system, wireless communication network, wireless terminal, and wireless communication method
WO2019015157A1 (zh) 数据传输的方法和装置
WO2022011588A1 (en) Methods and apparatuses for a sidelink transmission in a drx mechanism
CN113497698A (zh) 通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524828

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931963

Country of ref document: EP

Kind code of ref document: A1