WO2019093863A2 - Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery - Google Patents

Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery Download PDF

Info

Publication number
WO2019093863A2
WO2019093863A2 PCT/KR2018/013819 KR2018013819W WO2019093863A2 WO 2019093863 A2 WO2019093863 A2 WO 2019093863A2 KR 2018013819 W KR2018013819 W KR 2018013819W WO 2019093863 A2 WO2019093863 A2 WO 2019093863A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
cobalt
positive electrode
cathode active
Prior art date
Application number
PCT/KR2018/013819
Other languages
French (fr)
Korean (ko)
Other versions
WO2019093863A3 (en
Inventor
조치호
유민규
박성빈
허혁
황진태
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880067456.6A priority Critical patent/CN111225879B/en
Priority to US16/758,314 priority patent/US11837719B2/en
Priority to JP2020520813A priority patent/JP7076878B2/en
Priority to EP18875086.3A priority patent/EP3686160A4/en
Priority claimed from KR1020180138704A external-priority patent/KR102270117B1/en
Publication of WO2019093863A2 publication Critical patent/WO2019093863A2/en
Publication of WO2019093863A3 publication Critical patent/WO2019093863A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium cobalt-based positive electrode active material, a method for producing the same, and a positive electrode and a secondary battery comprising the same. More particularly, the present invention relates to a lithium cobalt- A positive electrode active material, a production method thereof, and a positive electrode and a secondary battery comprising the same.
  • lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
  • LiCoO 2 is a layered LiCoO 2 .
  • LiCoO 2 is most widely used because it is easy to synthesize and has excellent electrochemical performance including life characteristics, but its structural stability is low and thus it is limited to be applied to high capacity battery technology.
  • a technique has been proposed in which the surface of lithium cobalt oxide particles is coated with an oxide of a metal such as Al, Zr or the like to improve the structural stability of the lithium cobalt oxide.
  • the lithium-cobalt oxide coated with the metal oxide showed excellent electrochemical performance in a battery having a driving voltage of less than 4.45V.
  • the gas and cobalt elution occurs rapidly, and the lifetime characteristics and high- Respectively.
  • lithium reacts with the metal oxide on the surface of the lithium cobalt oxide, thereby forming a lithium-deficient layer in which the molar ratio of Li / Co is less than 1 at the surface of the lithium cobalt oxide.
  • a lithium- Lifetime characteristics and output characteristics are improved, but gas generation and cobalt elution occur at high voltage driving due to increase in reactivity with an electrolyte, and high temperature stability is lowered.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a lithium cobalt-based cathode active material capable of effectively suppressing cobalt dissolution even when driven at a high voltage of 4.45 V or higher.
  • the present invention provides a method for producing a lithium-cobalt-based cathode active material, comprising dry-mixing lithium-cobalt oxide particles represented by the following formula (1) and lithium metal oxide particles and heat-
  • M is at least one selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb.
  • the lithium metal oxide particles may be at least one selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide.
  • the heat treatment is performed at 300 ° C to 800 ° C.
  • the lithium metal oxide particles may be mixed in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the total weight of the lithium cobalt oxide particles and the lithium metal oxide particles.
  • the present invention provides a lithium cobalt-based oxide particle represented by Formula 1 below; And a coating layer formed on the lithium cobalt oxide particle and including a lithium metal oxide,
  • lithium cobalt based cathode active material having an atomic ratio of Li / Co of 1 or more at an interface between the lithium cobalt oxide particle and the coating layer and in the coating layer.
  • M is at least one selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb.
  • the cobalt leaching amount measured after charging the secondary battery to which the cathode active material is applied at 4.5 V and stored at 60 ° C. for 2 weeks may be 700 ppm or less.
  • the lithium metal oxide may be included in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the total cathode active material.
  • the cathode active material according to the present invention may be manufactured according to the cathode active material manufacturing method of the present invention.
  • the present invention provides a lithium secondary battery including the positive electrode and the positive electrode including the positive electrode active material according to the present invention.
  • the manufacturing method of the present invention by using the lithium metal oxide as the coating raw material, it is possible to prevent lithium in the lithium cobalt oxide from being consumed by the reaction with the coating raw material during coating, The formation of a defect layer can be prevented. Therefore, gas generation and cobalt leaching caused by the presence of the lithium-deficient layer can be effectively suppressed when operating at a high voltage of 4.45 V or higher.
  • the cathode active material of the present invention exhibits excellent electrochemical characteristics due to a small amount of cobalt elution even after storage at high temperature after high voltage charging.
  • the present inventors have conducted intensive research to develop a lithium cobalt-based cathode active material capable of effectively suppressing gas generation and cobalt dissolution even when driven at a high voltage of 4.45 V or more, and as a result, it has been found that lithium metal oxides It is possible to realize excellent electrochemical characteristics and high temperature storability even in a battery having a driving voltage of at least 4.45 V by suppressing the formation of a lithium defect layer, thereby completing the present invention.
  • the method for producing a lithium-cobalt-based cathode active material according to the present invention includes a step of dry-mixing lithium cobalt oxide particles and lithium metal oxide particles and subjecting the mixture to heat treatment.
  • the lithium cobalt oxide particles may be represented by the following formula (1).
  • M is a doping element and may be at least one element selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb, , Ti, or a combination thereof.
  • X represents the atomic ratio of the doping element in the lithium cobalt oxide particle, and may be 0? X? 0.2, preferably 0? X? 0.1.
  • the lithium cobalt oxide particles represented by Formula 1 may be prepared by using commercially available lithium cobalt oxide particles or by a method for producing lithium cobalt oxide well known in the art.
  • the lithium cobalt oxide particles represented by Formula 1 are prepared by mixing a cobalt raw material, a lithium raw material, and optionally a doping raw material in an amount satisfying a stoichiometric ratio and then firing .
  • the cobalt raw material may be, for example, a cobalt-containing oxide, hydroxide, oxyhydroxide, halide, nitrate, carbonate, acetate, oxalate, citrate or sulfate, 2 , CO 2 O 4 , CoOOH, Co (OCOCH 3 ) 2 ⁇ 4H 2 O, Co (NO 3 ) 2 ⁇ 6H 2 O, or Co (SO 4 ) 2 ⁇ 7H 2 O, Two or more mixtures may be used.
  • the lithium source material may be, for example, a lithium-containing oxide, a hydroxide, an oxyhydroxide, a halogenated salt, a nitrate, a carbonate, an acetate, a oxalate, a citrate or a sulfate, and more specifically, Li 2 CO 3 , LiNO 3, LiNO 2, LiOH, LiOH ⁇ H 2 O, LiH, LiF, LiCl, LiBr, LiI, Li 2 O, Li 2 SO 4, CH 3 COOLi, or Li 3 C 6 H 6 O 7 and the like, Any one or a mixture of two or more of them may be used.
  • the doping element raw material is at least one metal selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca, and Nb or oxides, hydroxides, Halide, nitrate, carbonate acetate, oxalate, citrate or sulfate, and any one or a mixture of two or more thereof may be used.
  • the firing may be performed at a temperature ranging from 500 to 1100 ° C, preferably from 700 to 900 ° C, and may be carried out in the air or in an oxygen atmosphere.
  • the firing time is preferably 6 hours to 18 hours, and more preferably 8 hours to 12 hours.
  • the lithium metal oxide particles are used for forming a coating layer on the lithium cobalt oxide particles to prevent direct contact between the electrolyte and the lithium cobalt oxide particles.
  • metal oxide particles have been mainly used for forming a coating layer of lithium cobalt oxide.
  • lithium in the lithium cobalt oxide reacts with the metal oxide and is consumed in the process of forming the coating layer, so that a lithium defect layer is formed on the surface of the lithium cobalt oxide.
  • the lithium-cobalt-based cathode active material having the lithium-deficient layer as described above did not cause a serious problem when applied to a battery having a driving voltage of less than 4.45 V, but when applied to a battery having a driving voltage of 4.45 V or more, gas generation and cobalt- There is a problem that the battery performance is remarkably deteriorated.
  • lithium metal oxide when used as a coating raw material as in the present invention, since lithium is contained in the coating material itself, lithium in the lithium cobalt oxide is not consumed at the time of forming the coating layer, so that a lithium-defect layer is not formed. Therefore, even when applied to a battery having a driving voltage of 4.45 V or more, gas generation and cobalt leaching can be suppressed, and excellent battery performance can be realized.
  • the lithium metal oxide particles may be mixed in an amount of 0.01 to 0.5 parts by weight, preferably 0.04 to 0.2 parts by weight based on 100 parts by weight of the total weight of the lithium cobalt oxide particles and the lithium metal oxide particles.
  • the mixing amount of the lithium metal oxide particles satisfies the above range, the reaction with the electrolytic solution can be suppressed and the effect of reducing the amount of cobalt dissolution can be sufficiently obtained.
  • the content of the lithium metal oxide is less than the above range, the cobalt dissolution reduction effect is not sufficient. If the content exceeds the above range, the capacity decrease and the surface resistance may increase.
  • the lithium cobalt oxide particles and the lithium metal oxide particles are mixed by a dry mixing method without using a solvent.
  • the wet process for dispersing the lithium metal oxide used as the coating material of the present invention in a solvent is used, the lithium metal oxide particles are agglomerated to form a uniform coating layer, and the effect of inhibiting cobalt dissolution is inferior .
  • the heat treatment is preferably performed at a temperature of 300 ° C to 800 ° C, preferably 500 ° C to 800 ° C, and more preferably 600 ° C to 800 ° C.
  • the heat treatment temperature is within the above range, the lithium metal oxide does not react with lithium in the lithium cobalt oxide and lithium can be prevented from being lost by the heat treatment, thereby effectively preventing formation of the lithium defect layer .
  • the heat treatment is preferably performed for 1 to 10 hours, preferably 1 to 8 hours, more preferably 2 to 5 hours.
  • the heat treatment time satisfies the above range, the lithium metal oxide does not react with lithium in the lithium cobalt oxide and lithium can be prevented from being lost by the heat treatment, thereby effectively preventing formation of the lithium defect layer .
  • the cathode active material according to the present invention produced by the above method has no lithium-defect layer on the surface of lithium cobalt oxide particles, and therefore, when applied to a battery having a driving voltage of 4.45 V or more, gas generation and cobalt elution are suppressed .
  • the lithium cobalt-based positive electrode active material prepared according to the present invention comprises lithium cobalt-based oxide particles represented by the following formula (1); And a coating layer formed on the lithium cobalt oxide particle and including lithium metal oxide.
  • M is a doping element and may be at least one element selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb, , Ti, or a combination thereof.
  • X represents the molar ratio of the doping element in the lithium cobalt oxide particle, and may be 0? X? 0.2, preferably 0? X? 0.1.
  • the coating layer is formed by dry mixing lithium metal oxide particles and lithium cobalt oxide particles and then heat-treating the lithium metal cobalt oxide particles.
  • the coating layer is formed on the surface of the lithium cobalt oxide particles and includes a lithium metal oxide.
  • the lithium metal oxide may be at least one selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide, for example.
  • the lithium metal oxide may be included in an amount of 0.01 to 0.5 parts by weight, preferably 0.04 to 0.2 parts by weight based on 100 parts by weight of the entire cathode active material.
  • the content of the lithium metal oxide satisfies the above range, the reaction with the electrolytic solution is suppressed, and the effect of reducing the amount of cobalt dissolution can be sufficiently obtained.
  • the content of the lithium metal oxide is less than the above range, the cobalt dissolution reduction effect is not sufficient. If the content exceeds the above range, the capacity decrease and the surface resistance may increase.
  • the cathode active material according to the present invention is prepared by using lithium metal oxide as a coating material and performing heat treatment at a relatively low temperature, lithium in the lithium cobalt oxide does not react with the coating material during formation of the coating layer , And therefore does not include a lithium-defect layer having an atomic ratio of lithium Li / Co of less than 1. That is, in the positive electrode active material according to the present invention, the atomic ratio of Li / Co in the surface portion is 1 or more.
  • the surface portion refers to a region adjacent to the surface of the cathode active material particle, and is a region including the interface between the lithium cobalt oxide particle and the coating layer and the coating layer.
  • the Li / Co atomic ratio of the cathode active material particles can be measured by various component analysis methods known in the art such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) ), Energy Dispersive X-ray spectroscopy (EDS), Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS).
  • XPS X-ray photoelectron spectroscopy
  • TEM transmission electron microscopy
  • EDS Energy Dispersive X-ray spectroscopy
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometer
  • ToF-SIMS Time of Flight Secondary Ion Mass Spectrometry
  • the positive electrode active material of the present invention has excellent structural stability due to the absence of a lithium-deficient layer. Even when applied to a battery having a driving voltage of 4.45 V or more, gas generation and cobalt elution are suppressed, The cobalt dissolution inhibiting effect is excellent. Specifically, the amount of cobalt eluted after charging the battery with the cathode active material of the present invention at 4.5 V and stored at 60 ° C for 2 weeks is 700 ppm or less, preferably 600 ppm or less, and more preferably 500 ppm or less.
  • the cathode active material according to the present invention may contain lithium at a constant concentration irrespective of the positions inside the particles, and may have a concentration gradient in which the concentration of lithium gradually increases from the surface to the center of the active material particle.
  • the concentration gradient may be in the form of a linear function or a quadratic function which varies depending on the thickness of the particles from the center of the active material particle to the surface direction.
  • the concentration of the cathode active material can be measured by various component analysis methods known in the art such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy analysis Dispersion x-ray spectroscopy (EDS), Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), Time-Flight Secondary Ion Mass Spectrometry (ToF- SIMS) or the like.
  • XPS X-ray photoelectron spectroscopy
  • TEM transmission electron microscopy
  • EDS energy analysis Dispersion x-ray spectroscopy
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometer
  • ToF- SIMS Time-Flight Secondary Ion Mass Spectrometry
  • the cathode active material according to the present invention may have an average particle diameter (D 50 ) of 3 to 50 ⁇ , preferably 10 to 50 ⁇ .
  • D 50 average particle diameter of the cathode active material
  • Specific surface area and anodic cohesion density can be realized.
  • the average particle diameter (D 50 ) of the cathode active material means a particle diameter at 50% of the volume cumulative distribution. For example, it can be measured using a laser diffraction method.
  • an ultrasonic wave of about 28 Hz is irradiated at an output of 60 W, Can be measured by a method of calculating the particle size at 50%.
  • the cathode active material for a secondary battery according to the present invention can be usefully used for manufacturing a cathode for a secondary battery.
  • the cathode for a secondary battery according to the present invention includes a cathode current collector and a cathode active material layer formed on the cathode current collector, wherein the cathode active material layer includes the cathode active material according to the present invention.
  • the positive electrode may be produced according to a conventional positive electrode manufacturing method, except that the positive electrode active material according to the present invention is used.
  • the positive electrode may be prepared by dissolving or dispersing the components constituting the positive electrode active material layer, that is, the positive electrode active material, the conductive material and / or the binder, in a solvent to prepare a positive electrode composite material, Or by a method in which the film is coated on at least one side and then dried and rolled or by casting the positive electrode material on a separate support and then peeling off the support from the support to laminate the positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be made of a metal such as stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel, , Titanium, silver, or the like may be used.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the current collector includes the cathode active material according to the present invention on at least one surface thereof and optionally includes at least one of a conductive material and a binder.
  • the cathode active material may include the cathode active material according to the present invention, and the cathode active material may be contained in an amount of 80 to 99% by weight, more specifically 85 to 98% by weight based on the total weight of the cathode active material layer. When included in the above content range, excellent capacity characteristics can be exhibited.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbonaceous materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may be included in an amount of 1% by weight to 30% by weight based on the total weight of the cathode active material layer.
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof.
  • the binder may be included in an amount of 1% by weight to 30% by weight based on the total weight of the cathode active material layer.
  • the solvent used in the preparation of the positive electrode material may be a solvent commonly used in the art, for example, dimethyl sulfoxide (DMSO), isopropyl alcohol, (NMP), acetone or water may be used alone or in combination.
  • DMSO dimethyl sulfoxide
  • NMP isopropyl alcohol
  • acetone or water may be used alone or in combination.
  • the amount of the solvent to be used can be appropriately adjusted in consideration of the application thickness of the slurry, the production yield, the viscosity, and the like.
  • the secondary battery according to the present invention includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the positive electrode is the positive electrode according to the present invention.
  • the secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector.
  • the negative electrode may be manufactured according to a conventional negative electrode manufacturing method generally known in the art.
  • the negative electrode may be produced by dissolving or dispersing the components constituting the negative electrode active material layer, that is, the negative electrode active material, the conductive material and / or the binder in a solvent to form a negative electrode mixture, Or a method in which the negative electrode material is coated on at least one surface and then dried or rolled or casting the negative electrode material onto a separate support and then peeling the support from the support to laminate the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon;
  • Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • Metal oxides such as SiO v (0 ⁇ v ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide, which can dope and dedoped lithium;
  • a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material may be both low-crystalline carbon and high-crystallinity carbon.
  • Examples of the low-crystalline carbon include soft carbon and hard carbon.
  • Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
  • binder and the conductive material may be the same as those described above for the anode.
  • the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ion.
  • the separator can be used without any particular limitation as long as it is used as a separator in a secondary battery. Particularly, It is preferable that it is a resistance and excellent in an ability to impregnate the electrolyte.
  • porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may be an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, a melt-type inorganic electrolyte, and the like, which are usable in the production of a secondary battery.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Ra-CN (Ra is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohex
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethylene carbonate or propylene carbonate
  • ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2.
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably within the range of 0.1M to 2.0M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
  • the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like for the purpose of improving the lifetime characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery.
  • a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like for the purpose of improving the lifetime characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery.
  • N, N < RTI ID 0.0 > (N, < / RTI > N, N'-tetramethyluronium hexafluorophosphate), pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, And at least one additive such as substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included.
  • the additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
  • the secondary battery including the cathode active material according to the present invention has excellent electrical characteristics and high temperature storability, and can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles (HEV) Electric vehicles, and the like.
  • the secondary battery according to the present invention can be usefully used as a high-voltage battery having a high voltage of 4.45 V or higher.
  • the secondary battery according to the present invention can be used as a unit cell of a battery module, and the battery module can be applied to a battery pack.
  • the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • LiAlO 2 powder 0.07 parts by weight of LiAlO 2 powder was mixed in a solid phase with 100 parts by weight of LiCoO 2 powder and then heat-treated at 700 ° C for 4 hours to form LiAlO 2 on LiCoO 2 To prepare a coated lithium cobalt based cathode active material.
  • Li 2 ZrO 3 powder 0.05 parts by weight was mixed with 100 parts by weight of LiCoO 2 powder in a solid phase and then heat-treated at 750 ° C for 5 hours to prepare a lithium cobalt-based cathode active material coated with Li 2 ZrO 3 on LiCoO 2 .
  • Li 2 TiO 3 powder 0.05 parts by weight was mixed in a solid phase with 100 parts by weight of LiCoO 2 powder and then heat-treated at 750 ° C for 5 hours to prepare a lithium cobalt-based cathode active material coated with Li 2 TiO 3 on LiCoO 2 .
  • a lithium cobalt-based cathode active material was prepared in the same manner as in Example 1, except that Al 2 O 3 powder was used instead of LiAlO 2 powder.
  • a lithium cobalt-based cathode active material was prepared in the same manner as in Example 2, except that ZrO 2 powder was used instead of Li 2 ZrO 3 powder.
  • a lithium cobalt-based cathode active material was prepared in the same manner as in Example 3, except that TiO 2 powder was used instead of Li 2 TiO 3 powder.
  • LiCoO 2 powder 100 parts by weight of LiCoO 2 powder and 0.07 parts by weight of LiAlO 2 powder were added to an ethanol solvent and mixed and then heat-treated at 650 ° C for 5 hours to prepare a lithium cobalt-based cathode active material.
  • Lithium secondary batteries were prepared using the cathode active materials prepared in Examples 1 to 3 and Comparative Examples 1 to 4, respectively.
  • the cathode active material, the carbon black conductive material, and the PVdF binder prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were mixed in the N-methylpyrrolidone solvent in a weight ratio of 90: 5: 5, (Viscosity: 5000 mPa.s) was prepared, applied to an aluminum current collector, dried and rolled to prepare a positive electrode.
  • mesocarbon microbeads (MCMB), carbon black conductive material and PVdF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 as an anode active material to prepare a negative electrode mixture, And then dried and rolled to prepare a negative electrode.
  • MCMB mesocarbon microbeads
  • PVdF binder a weight ratio of 85: 10: 5 as an anode active material
  • the electrode assembly was fabricated with the porous polyethylene separator interposed between the anode and the cathode fabricated as described above, and the electrode assembly was placed inside the battery case, and then an electrolytic solution was injected into the case to manufacture a coin cell.
  • the electrolyte solution was prepared by dissolving lithium hexafluorophosphate at a concentration of 1.15 M in an organic solvent prepared by mixing ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate at a volume ratio of 3: 4: 3.
  • the thus prepared coin cells were charged to 4.5V. After charging, the positive electrode was separated, washed with a dichloromethane (DCM) solution, and then the washed positive electrode was placed in a Nilgen bottle together with 4 mL of electrolyte. To prevent the electrolyte from evaporating, the Nalen Bottle is completely sealed with a Parafilm and an aluminum pouch, and then the sealed bottle is kept in a 60 ° C chamber for two weeks.
  • DCM dichloromethane
  • the cathode active material which could be a float in the electrolyte solution, was completely removed using a sealing paper filter to extract the electrolyte solution, and the cobalt content (i.e., cobalt leaching amount) present in the electrolyte solution was measured by ICP analysis by evaporating the electrolyte solution.
  • ICP analysis was carried out using an inductively coupled plasma emission spectrometer (ICP-OES; Optima 7300DV, PerkinElmer).
  • ICP-OES inductively coupled plasma emission spectrometer

Abstract

The present invention relates to a method for preparing a lithium cobalt-based positive electrode active material and a positive electrode active material prepared thereby, the method comprising a step for dry-mixing particles of lithium cobalt oxide represented by chemical formula 1 and lithium metal oxide particles of at least one selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide, followed by thermal treatment.

Description

리튬 코발트계 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 이차 전지Lithium cobalt-based cathode active material, its production method, anode and secondary battery containing same
[관련출원과의 상호 인용][Mutual quotation with related application]
본 출원은 2017년 11월 13일에 출원된 한국특허출원 제10-2017-0150922호 및 2018년 11월 13일에 출원된 한국특허출원 제10-2018-0138704호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims priority from Korean Patent Application No. 10-2017-0150922 filed on November 13, 2017, and Korean Patent Application No. 10-2018-0138704 filed November 13, 2018 , The contents of which are incorporated herein by reference.
[기술분야][TECHNICAL FIELD]
본 발명은 리튬 코발트계 양극 활물질, 그 제조방법 및 이를 포함하는 양극 및 이차 전지에 관한 것으로, 보다 상세하게는 4.45V 이상의 고전압 구동 시에도 코발트 용출이 억제되어 우수한 고온 저장성을 구현할 수 있는 리튬 코발트계 양극 활물질과, 그 제조방법 및 이를 포함하는 양극 및 이차전지에 관한 것이다. The present invention relates to a lithium cobalt-based positive electrode active material, a method for producing the same, and a positive electrode and a secondary battery comprising the same. More particularly, the present invention relates to a lithium cobalt- A positive electrode active material, a production method thereof, and a positive electrode and a secondary battery comprising the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Among such secondary batteries, lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
현재 활발하게 연구 개발되어 사용되고 있는 리튬 이차전지용 양극활물질 중 하나로 층상구조의 LiCoO2를 들 수 있다. LiCoO2는 합성이 용이하고, 수명 특성을 비롯한 전기 화학적 성능이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 낮아 전지의 고용량화 기술에 적용되기에는 한계가 있다. One of the cathode active materials for lithium secondary batteries, which has been actively researched and used at present, is a layered LiCoO 2 . LiCoO 2 is most widely used because it is easy to synthesize and has excellent electrochemical performance including life characteristics, but its structural stability is low and thus it is limited to be applied to high capacity battery technology.
이에 리튬 코발트 산화물 입자 표면에 Al, Zr 등과 같은 금속의 산화물을 코팅하여 리튬 코발트 산화물의 구조 안정성을 향상시키는 기술이 제안되었다. 이와 같이 금속 산화물로 코팅된 리튬-코발트 산화물은 4.45V 미만의 구동전압을 갖는 전지에서는 우수한 전기화학 성능을 나타내었다. 그러나, 본 발명자들의 연구에 따르면, 금속 산화물로 코팅된 리튬 코발트 산화물을 4.45V 이상의 구동전압을 갖는 전지에 적용할 경우, 가스 및 코발트 용출이 급격히 발생하고, 이로 인해 수명 특성 및 고온 저장성이 현저하게 저하되는 것으로 나타났다. A technique has been proposed in which the surface of lithium cobalt oxide particles is coated with an oxide of a metal such as Al, Zr or the like to improve the structural stability of the lithium cobalt oxide. The lithium-cobalt oxide coated with the metal oxide showed excellent electrochemical performance in a battery having a driving voltage of less than 4.45V. However, according to the studies of the present inventors, when lithium cobalt oxide coated with a metal oxide is applied to a battery having a driving voltage of 4.45 V or more, the gas and cobalt elution occurs rapidly, and the lifetime characteristics and high- Respectively.
금속 산화물 코팅 시 금속 산화물과 리튬 코발트 산화물 표면에서 리튬이 반응하게 되고, 이로 인해 리튬 코발트 산화물의 표면에서 Li/Co의 몰비가 1 미만이 되는 리튬 결함층이 형성되는데, 이러한 리튬 결함층이 존재할 경우, 수명 특성 및 출력 특성이 향상되나, 전해액과의 반응성 증가로 인해 고전압 구동 시에 가스 발생 및 코발트 용출이 발생하고, 고온 안정성이 떨어지게 된다. During the metal oxide coating, lithium reacts with the metal oxide on the surface of the lithium cobalt oxide, thereby forming a lithium-deficient layer in which the molar ratio of Li / Co is less than 1 at the surface of the lithium cobalt oxide. When such a lithium- , Lifetime characteristics and output characteristics are improved, but gas generation and cobalt elution occur at high voltage driving due to increase in reactivity with an electrolyte, and high temperature stability is lowered.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 4.45V 이상의 고전압에서 구동되는 경우에도 코발트 용출이 효과적으로 억제될 수 있는 리튬 코발트계 양극 활물질을 제공하고자 한다. Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a lithium cobalt-based cathode active material capable of effectively suppressing cobalt dissolution even when driven at a high voltage of 4.45 V or higher.
일 측면에서, 본 발명은, 하기 화학식 1로 표시되는 리튬 코발트 산화물 입자와 리튬 금속 산화물 입자를 건식 혼합하여 열처리하는 단계를 포함하는 리튬 코발트계 양극 활물질의 제조 방법을 제공한다. In one aspect, the present invention provides a method for producing a lithium-cobalt-based cathode active material, comprising dry-mixing lithium-cobalt oxide particles represented by the following formula (1) and lithium metal oxide particles and heat-
[화학식 1][Chemical Formula 1]
LiCo1-xMxO2 LiCo 1-x M x O 2
상기 화학식 1에서, M은 Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca 및 Nb로 이루어진 군으로부터 선택되는 1종 이상이며, 0≤x≤0.2임.M is at least one selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb.
이때, 상기 리튬 금속 산화물 입자는 산화리튬알루미늄, 산화리튬지르코늄, 및 산화리튬티타늄로 이루어진 군으로부터 선택된 1종 이상일 수 있다. At this time, the lithium metal oxide particles may be at least one selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide.
상기 열처리는 300℃ 내지 800℃로 수행되는 것이 바람직하다. Preferably, the heat treatment is performed at 300 ° C to 800 ° C.
상기 리튬 금속 산화물 입자는 상기 리튬 코발트 산화물 입자와 리튬금속 산화물 입자를 합한 총 중량 100중량부에 대하여 0.01 내지 0.5중량부로 혼합되는 것이 바람직하다. The lithium metal oxide particles may be mixed in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the total weight of the lithium cobalt oxide particles and the lithium metal oxide particles.
다른 측면에서, 본 발명은 하기 화학식 1로 표시되는 리튬 코발트계 산화물 입자; 및 상기 리튬 코발트계 산화물 입자 상에 형성되며 리튬 금속 산화물을 포함하는 코팅층을 포함하고, In another aspect, the present invention provides a lithium cobalt-based oxide particle represented by Formula 1 below; And a coating layer formed on the lithium cobalt oxide particle and including a lithium metal oxide,
상기 리튬 코발트계 산화물 입자와 코팅층의 계면 및 상기 코팅층에서 Li/Co의 원자 비가 1 이상인 리튬 코발트계 양극 활물질을 제공한다. And a lithium cobalt based cathode active material having an atomic ratio of Li / Co of 1 or more at an interface between the lithium cobalt oxide particle and the coating layer and in the coating layer.
[화학식 1][Chemical Formula 1]
LiCo1-xMxO2 LiCo 1-x M x O 2
상기 화학식 1에서, M은 Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca 및 Nb로 이루어진 군으로부터 선택되는 1종 이상이며, 0≤x≤0.2임.M is at least one selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb.
한편, 상기 양극 활물질을 적용한 이차 전지를 4.5V로 충전한 후 60℃에서 2주간 보관한 후 측정한 코발트 용출량이 700ppm 이하일 수 있다.Meanwhile, the cobalt leaching amount measured after charging the secondary battery to which the cathode active material is applied at 4.5 V and stored at 60 ° C. for 2 weeks may be 700 ppm or less.
또한, 상기 리튬 금속 산화물은 전체 양극 활물질 100중량부에 대하여, 0.01 내지 0.5중량부로 포함될 수 있다. The lithium metal oxide may be included in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the total cathode active material.
한편, 상기 본 발명에 따른 양극 활물질은 상기한 본 발명의 양극 활물질 제조 방법에 따라 제조된 것일 수 있다. Meanwhile, the cathode active material according to the present invention may be manufactured according to the cathode active material manufacturing method of the present invention.
또 다른 측면에서, 본 발명은, 상기 본 발명에 따른 양극 활물질을 포함하는 양극 및 상기 양극을 포함하는 리튬 이차 전지를 제공한다. In another aspect, the present invention provides a lithium secondary battery including the positive electrode and the positive electrode including the positive electrode active material according to the present invention.
본 발명의 제조 방법에 따르면, 코팅원료물질로 리튬 금속 산화물을 사용함으로써, 코팅 시에 리튬 코발트 산화물 내의 리튬이 코팅원료물질과의 반응에 의해 소모되는 것을 방지할 수 있어, 리튬 코발트 산화물 표면에 리튬 결함층이 형성되는 것을 방지할 수 있다. 따라서, 4.45V 이상의 고전압 구동 시에 리튬 결함층의 존재에 의해 야기되는 가스 발생 및 코발트 용출을 효과적으로 억제할 수 있다.According to the manufacturing method of the present invention, by using the lithium metal oxide as the coating raw material, it is possible to prevent lithium in the lithium cobalt oxide from being consumed by the reaction with the coating raw material during coating, The formation of a defect layer can be prevented. Therefore, gas generation and cobalt leaching caused by the presence of the lithium-deficient layer can be effectively suppressed when operating at a high voltage of 4.45 V or higher.
또한, 본 발명의 양극 활물질은 고전압 충전 후 고온 보관 시에도 코발트 용출량이 적어 우수한 전기화학적 특성을 나타낸다. In addition, the cathode active material of the present invention exhibits excellent electrochemical characteristics due to a small amount of cobalt elution even after storage at high temperature after high voltage charging.
이하, 본 발명에 대해 구체적으로 설명한다. Hereinafter, the present invention will be described in detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.
본 발명자들은 4.45V 이상의 고전압에서 구동되는 경우에도 가스 발생 및 코발트 용출이 효과적으로 억제될 수 있는 리튬 코발트계 양극 활물질을 개발하기 위해 부단한 연구를 거듭한 결과, 리튬 코발트 산화물의 코팅 원료 물질로 리튬 금속 산화물을 사용하여 리튬 코발트계 양극 활물질을 제조할 경우, 리튬 결함층 형성이 억제되어 4.45V 이상의 구동 전압을 갖는 전지에서도 우수한 전기화학적 특성 및 고온 저장성을 구현할 수 있음을 알아내고, 본 발명을 완성하였다. The present inventors have conducted intensive research to develop a lithium cobalt-based cathode active material capable of effectively suppressing gas generation and cobalt dissolution even when driven at a high voltage of 4.45 V or more, and as a result, it has been found that lithium metal oxides It is possible to realize excellent electrochemical characteristics and high temperature storability even in a battery having a driving voltage of at least 4.45 V by suppressing the formation of a lithium defect layer, thereby completing the present invention.
리튬 코발트계 양극 활물질의 제조 방법Method for producing lithium cobalt-based cathode active material
먼저, 본 발명에 따른 리튬 코발트계 양극 활물질의 제조 방법에 대해 설명한다. First, a method for producing a lithium cobalt-based cathode active material according to the present invention will be described.
본 발명에 따른 리튬 코발트계 양극 활물질의 제조방법은, 리튬 코발트 산화물 입자와 리튬 금속 산화물 입자를 건식 혼합하여 열처리하는 단계를 포함한다. The method for producing a lithium-cobalt-based cathode active material according to the present invention includes a step of dry-mixing lithium cobalt oxide particles and lithium metal oxide particles and subjecting the mixture to heat treatment.
본 발명에 있어서, 상기 리튬 코발트 산화물 입자는 하기 화학식 1로 표시되는 것일 수 있다. In the present invention, the lithium cobalt oxide particles may be represented by the following formula (1).
[화학식 1][Chemical Formula 1]
LiCo1 - xMxO2 LiCo 1 - x M x O 2
상기 화학식 1에서, M은 도핑원소로, Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca 및 Nb로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 Mg, Ti 또는 이들의 조합일 수 있다. M is a doping element and may be at least one element selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb, , Ti, or a combination thereof.
상기 x는 리튬 코발트 산화물 입자 내에서 도핑원소의 원자 비를 나타내는 것으로, 0≤x≤0.2일 수 있으며, 바람직하게는 0≤x≤0.1일 수 있다. X represents the atomic ratio of the doping element in the lithium cobalt oxide particle, and may be 0? X? 0.2, preferably 0? X? 0.1.
상기 화학식 1로 표시되는 리튬 코발트 산화물 입자는 시판되는 리튬 코발트 산화물 입자를 구입하여 사용하거나, 당해 기술 분야에 잘 알려진 리튬 코발트 산화물의 제조 방법을 통해 제조된 것일 수 있다. 예를 들면, 상기 화학식 1로 표시되는 리튬 코발트 산화물 입자는, 코발트 원료물질, 리튬 원료물질, 및 선택적으로 도핑원소 원료 물질을 화학양론비를 만족하는 양으로 혼합한 후, 소성하는 방법으로 제조될 수 있다. The lithium cobalt oxide particles represented by Formula 1 may be prepared by using commercially available lithium cobalt oxide particles or by a method for producing lithium cobalt oxide well known in the art. For example, the lithium cobalt oxide particles represented by Formula 1 are prepared by mixing a cobalt raw material, a lithium raw material, and optionally a doping raw material in an amount satisfying a stoichiometric ratio and then firing .
이때, 상기 코발트 원료물질은, 예를 들면, 코발트 함유 산화물, 수산화물, 옥시수산화물, 할로겐화물, 질산염, 탄산염, 아세트산염, 옥살산염, 시트르산염 또는 황산염 등일 수 있으며, 보다 구체적으로는 Co(OH)2, Co2O4, CoOOH, Co(OCOCH3)2·4H2O, Co(NO3)2·6H2O 또는 Co(SO4)2·7H2O 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. The cobalt raw material may be, for example, a cobalt-containing oxide, hydroxide, oxyhydroxide, halide, nitrate, carbonate, acetate, oxalate, citrate or sulfate, 2 , CO 2 O 4 , CoOOH, Co (OCOCH 3 ) 2揃 4H 2 O, Co (NO 3 ) 2揃 6H 2 O, or Co (SO 4 ) 2揃 7H 2 O, Two or more mixtures may be used.
상기 리튬 원료물질은, 예를 들면, 리튬 함유 산화물, 수산화물, 옥시수산화물, 할로겐화염, 질산염, 탄산염, 아세트산염, 옥살산염, 시트르산염 또는 황산염 등일 수 있고, 보다 구체적으로는, Li2CO3, LiNO3, LiNO2, LiOH, LiOH·H2O, LiH, LiF, LiCl, LiBr, LiI, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H6O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. The lithium source material may be, for example, a lithium-containing oxide, a hydroxide, an oxyhydroxide, a halogenated salt, a nitrate, a carbonate, an acetate, a oxalate, a citrate or a sulfate, and more specifically, Li 2 CO 3 , LiNO 3, LiNO 2, LiOH, LiOH · H 2 O, LiH, LiF, LiCl, LiBr, LiI, Li 2 O, Li 2 SO 4, CH 3 COOLi, or Li 3 C 6 H 6 O 7 and the like, Any one or a mixture of two or more of them may be used.
상기 도핑원소 원료물질은 Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca 및 Nb로 이루어진 군으로부터 선택되는 1종 이상의 금속 또는 이를 포함하는 산화물, 수산화물, 옥시수산화물, 할로겐화물, 질산염, 탄산염 아세트산염, 옥살산염, 시트르산염 또는 황산염 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. Wherein the doping element raw material is at least one metal selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca, and Nb or oxides, hydroxides, Halide, nitrate, carbonate acetate, oxalate, citrate or sulfate, and any one or a mixture of two or more thereof may be used.
한편, 상기 소성은 500 내지 1100℃, 바람직하게는 700 내지 900℃의 온도범위로 수행될 수 있으며, 대기 중에서 또는 산소 분위기에서 실시될 수 있다. 상기 소성 시간은 6시간 내지 18시간, 바람직하게는 8시간 내지 12시간인 것이 바람직하다. On the other hand, the firing may be performed at a temperature ranging from 500 to 1100 ° C, preferably from 700 to 900 ° C, and may be carried out in the air or in an oxygen atmosphere. The firing time is preferably 6 hours to 18 hours, and more preferably 8 hours to 12 hours.
다음으로, 상기 리튬 금속 산화물 입자는 리튬 코발트 산화물 입자에 코팅층을 형성하여 전해액과 리튬 코발트 산화물 입자가 직접 접촉하는 것을 방지하기 위한 것으로, 예를 들면, 산화리튬알루미늄, 산화리튬지르코늄, 및 산화리튬티타늄로 이루어진 군으로부터 선택된 1종 이상일 수 있다. Next, the lithium metal oxide particles are used for forming a coating layer on the lithium cobalt oxide particles to prevent direct contact between the electrolyte and the lithium cobalt oxide particles. For example, lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide And the like.
종래에는 리튬 코발트 산화물의 코팅층 형성을 위해 금속 산화물 입자가 주로 사용되어 왔다. 그러나, 금속 산화물 입자를 이용하여 코팅층을 형성할 경우, 코팅층 형성 과정에서 리튬 코발트 산화물 내의 리튬이 금속 산화물과 반응하여 소모되기 때문에 리튬 코발트 산화물 표면에 리튬 결함층이 형성되게 된다. 이와 같이 리튬 결함층이 존재하는 리튬 코발트계 양극 활물질은 4.45V 미만의 구동 전압을 갖는 전지에 적용될 경우에는 큰 문제가 없었으나, 구동전압이 4.45V 이상인 전지에 적용될 경우, 가스 발생 및 코발트 용출이 급격하게 증가하여 전지 성능이 현저하게 떨어진다는 문제점이 있었다.Conventionally, metal oxide particles have been mainly used for forming a coating layer of lithium cobalt oxide. However, when a coating layer is formed using metal oxide particles, lithium in the lithium cobalt oxide reacts with the metal oxide and is consumed in the process of forming the coating layer, so that a lithium defect layer is formed on the surface of the lithium cobalt oxide. The lithium-cobalt-based cathode active material having the lithium-deficient layer as described above did not cause a serious problem when applied to a battery having a driving voltage of less than 4.45 V, but when applied to a battery having a driving voltage of 4.45 V or more, gas generation and cobalt- There is a problem that the battery performance is remarkably deteriorated.
그러나, 본 발명과 같이 리튬 금속 산화물을 코팅원료물질로 사용할 경우, 코팅원료 자체에 리튬이 포함되어 있기 때문에, 코팅층 형성 시에 리튬 코발트 산화물 내의 리튬이 소모되지 않아 리튬 결함층이 형성되지 않는다. 따라서, 구동전압이 4.45V 이상인 전지에 적용되는 경우에도 가스 발생 및 코발트 용출이 억제되어 우수한 전지 성능을 구현할 수 있다. However, when lithium metal oxide is used as a coating raw material as in the present invention, since lithium is contained in the coating material itself, lithium in the lithium cobalt oxide is not consumed at the time of forming the coating layer, so that a lithium-defect layer is not formed. Therefore, even when applied to a battery having a driving voltage of 4.45 V or more, gas generation and cobalt leaching can be suppressed, and excellent battery performance can be realized.
한편, 상기 리튬 금속 산화물 입자는 상기 리튬 코발트 산화물 입자와 리튬 금속 산화물 입자를 합한 총 중량 100중량부에 대하여 0.01 내지 0.5중량부, 바람직하게는 0.04 내지 0.2중량부로 혼합되는 것이 바람직하다. 리튬 금속산화물 입자의 혼합량이 상기 범위를 만족할 경우, 전해액과의 반응을 억제하여 코발트 용출 저감 효과를 충분히 얻을 수 있다. 구체적으로는, 리튬 금속 산화물의 함량이 상기 범위 미만인 경우에는 코발트 용출 저감 효과가 충분하지 않고, 상기 범위를 초과할 경우에는 용량 저하 및 표면 저항이 증가하는 문제점이 발생할 수 있다. The lithium metal oxide particles may be mixed in an amount of 0.01 to 0.5 parts by weight, preferably 0.04 to 0.2 parts by weight based on 100 parts by weight of the total weight of the lithium cobalt oxide particles and the lithium metal oxide particles. When the mixing amount of the lithium metal oxide particles satisfies the above range, the reaction with the electrolytic solution can be suppressed and the effect of reducing the amount of cobalt dissolution can be sufficiently obtained. Specifically, when the content of the lithium metal oxide is less than the above range, the cobalt dissolution reduction effect is not sufficient. If the content exceeds the above range, the capacity decrease and the surface resistance may increase.
한편, 본 발명에 있어서, 상기 리튬 코발트 산화물 입자와 리튬 금속 산화물 입자는 용매를 사용하지 않는 건식 혼합 방법으로 혼합되는 것이 바람직하다. 본 발명의 코팅원료물질로 사용되는 리튬 금속 산화물을 용매에 분산시키는 습식 공정을 사용할 경우, 리튬 금속 산화물 입자들끼리 응집이 발생하여 균일한 코팅층을 형성할 수 없으며, 이에 따라 코발트 용출 억제 효과가 떨어진다. In the present invention, it is preferable that the lithium cobalt oxide particles and the lithium metal oxide particles are mixed by a dry mixing method without using a solvent. When the wet process for dispersing the lithium metal oxide used as the coating material of the present invention in a solvent is used, the lithium metal oxide particles are agglomerated to form a uniform coating layer, and the effect of inhibiting cobalt dissolution is inferior .
한편, 상기 열처리는 300℃ 내지 800℃, 바람직하게는 500℃ 내지 800℃, 더 바람직하게는 600℃ 내지 800℃로 수행되는 것이 바람직하다. 열처리 온도가 상기 범위를 만족하는 경우, 리튬 금속 산화물이 리튬 코발트 산화물 내의 리튬과 반응하지 않으며, 열처리에 의해 리튬이 손실되는 것을 방지할 수 있으며, 이에 따라, 리튬 결함층 형성을 효과적으로 방지할 수 있다.Meanwhile, the heat treatment is preferably performed at a temperature of 300 ° C to 800 ° C, preferably 500 ° C to 800 ° C, and more preferably 600 ° C to 800 ° C. When the heat treatment temperature is within the above range, the lithium metal oxide does not react with lithium in the lithium cobalt oxide and lithium can be prevented from being lost by the heat treatment, thereby effectively preventing formation of the lithium defect layer .
또한, 상기 열처리는 1 내지 10시간, 바람직하게는 1 내지 8시간, 더 바람직하게는 2 내지 5시간 동안 수행되는 것이 바람직하다. 열처리 시간이 상기 범위를 만족하는 경우, 리튬 금속 산화물이 리튬 코발트 산화물 내의 리튬과 반응하지 않으며, 열처리에 의해 리튬이 손실되는 것을 방지할 수 있으며, 이에 따라, 리튬 결함층 형성을 효과적으로 방지할 수 있다.In addition, the heat treatment is preferably performed for 1 to 10 hours, preferably 1 to 8 hours, more preferably 2 to 5 hours. When the heat treatment time satisfies the above range, the lithium metal oxide does not react with lithium in the lithium cobalt oxide and lithium can be prevented from being lost by the heat treatment, thereby effectively preventing formation of the lithium defect layer .
상기와 같은 방법으로 제조된 본 발명에 따른 양극활물질은 리튬 코발트 산화물 입자 표면에 리튬 결함층이 존재하지 않으며, 따라서, 구동전압이 4.45V 이상인 전지에 적용되었을 때, 가스 발생 및 코발트 용출이 억제된다. The cathode active material according to the present invention produced by the above method has no lithium-defect layer on the surface of lithium cobalt oxide particles, and therefore, when applied to a battery having a driving voltage of 4.45 V or more, gas generation and cobalt elution are suppressed .
리튬 코발트계 양극 활물질Lithium cobalt-based cathode active material
다음으로, 본 발명에 따른 리튬 코발트계 양극 활물질에 대해 설명한다.Next, the lithium cobalt based positive electrode active material according to the present invention will be described.
상기 본 발명에 따라 제조된 리튬 코발트계 양극 활물질은, 하기 화학식 1로 표시되는 리튬 코발트계 산화물 입자; 및 상기 리튬 코발트계 산화물 입자 상에 형성되며 리튬 금속 산화물을 포함하는 코팅층을 포함한다.The lithium cobalt-based positive electrode active material prepared according to the present invention comprises lithium cobalt-based oxide particles represented by the following formula (1); And a coating layer formed on the lithium cobalt oxide particle and including lithium metal oxide.
[화학식 1][Chemical Formula 1]
LiCo1 - xMxO2 LiCo 1 - x M x O 2
상기 화학식 1에서, M은 도핑원소로, Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca 및 Nb로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 Mg, Ti 또는 이들의 조합일 수 있다. M is a doping element and may be at least one element selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb, , Ti, or a combination thereof.
상기 x는 리튬 코발트 산화물 입자 내에서 도핑원소의 몰비를 나타내는 것으로, 0≤x≤0.2일 수 있으며, 바람직하게는 0≤x≤0.1일 수 있다. X represents the molar ratio of the doping element in the lithium cobalt oxide particle, and may be 0? X? 0.2, preferably 0? X? 0.1.
상기 코팅층은 리튬 금속 산화물 입자와 리튬 코발트 산화물 입자를 건식 혼합한 후 열처리하여 형성되는 것으로, 리튬 코발트계 산화물 입자의 표면 상에 형성되며, 리튬 금속 산화물을 포함한다. 상기 리튬 금속 산화물은 예를 들면, 산화리튬알루미늄, 산화리튬지르코늄, 및 산화리튬티타늄으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. The coating layer is formed by dry mixing lithium metal oxide particles and lithium cobalt oxide particles and then heat-treating the lithium metal cobalt oxide particles. The coating layer is formed on the surface of the lithium cobalt oxide particles and includes a lithium metal oxide. The lithium metal oxide may be at least one selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide, for example.
한편, 상기 리튬 금속 산화물은 전체 양극 활물질 100중량부에 대하여, 0.01 내지 0.5중량부, 바람직하게는 0.04 내지 0.2중량부로 포함될 수 있다. 리튬 금속 산화물의 함량이 상기 범위를 만족하는 경우, 전해액과의 반응을 억제하여 코발트 용출 저감 효과를 충분히 얻을 수 있다. 구체적으로는, 리튬 금속 산화물의 함량이 상기 범위 미만인 경우에는 코발트 용출 저감 효과가 충분하지 않고, 상기 범위를 초과할 경우에는 용량 저하 및 표면 저항이 증가하는 문제점이 발생할 수 있다.Meanwhile, the lithium metal oxide may be included in an amount of 0.01 to 0.5 parts by weight, preferably 0.04 to 0.2 parts by weight based on 100 parts by weight of the entire cathode active material. When the content of the lithium metal oxide satisfies the above range, the reaction with the electrolytic solution is suppressed, and the effect of reducing the amount of cobalt dissolution can be sufficiently obtained. Specifically, when the content of the lithium metal oxide is less than the above range, the cobalt dissolution reduction effect is not sufficient. If the content exceeds the above range, the capacity decrease and the surface resistance may increase.
한편, 본 발명에 따른 양극 활물질은, 리튬 금속 산화물을 코팅원료물질로 사용하고, 비교적 낮은 온도에서 열처리를 수행하여 제조되기 때문에, 코팅층 형성 시에 리튬 코발트 산화물 내의 리튬과 코팅원료물질이 반응하지 않으며, 따라서, 리튬 Li/Co의 원자 비가 1 미만인 리튬 결함층을 포함하지 않는다. 즉, 본 발명에 따른 양극 활물질은 표면부에서 Li/Co의 원자 비가 1 이상이다. 이때, 상기 표면부는 양극 활물질 입자의 표면에 인접한 영역을 의미하는 것으로, 리튬 코발트계 산화물 입자와 코팅층의 계면과 코팅층을 포함하는 영역이다. 이로써 한정되는 것은 아니나, 예를 들면, 상기 양극 활물질 입자의 최외각 표면으로부터 중심방향으로 1 내지 100nm, 바람직하게는 1 내지 50nm의 두께를 갖는 영역을 의미하는 것일 수 있다. 상기 양극 활물질 입자의 Li/Co 원자 비는, 당해 기술분야에 알려진 다양한 성분 분석 방법들, 예를 들면, X선 광전자 분석법(X-ray photoelectron Spectroscopy, XPS), 투과전자현미경(Transmission Electron Microscopy, TEM), 에탁스(Energy Disperive x-ray spectroscopy, EDS), 유도결합 플라즈마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 비행 시간형 2차 이온 질량 분석기((Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 등을 이용하여 측정할 수 있다. Meanwhile, since the cathode active material according to the present invention is prepared by using lithium metal oxide as a coating material and performing heat treatment at a relatively low temperature, lithium in the lithium cobalt oxide does not react with the coating material during formation of the coating layer , And therefore does not include a lithium-defect layer having an atomic ratio of lithium Li / Co of less than 1. That is, in the positive electrode active material according to the present invention, the atomic ratio of Li / Co in the surface portion is 1 or more. Here, the surface portion refers to a region adjacent to the surface of the cathode active material particle, and is a region including the interface between the lithium cobalt oxide particle and the coating layer and the coating layer. But is not limited to, for example, a region having a thickness of 1 to 100 nm, preferably 1 to 50 nm in the center direction from the outermost surface of the cathode active material particle. The Li / Co atomic ratio of the cathode active material particles can be measured by various component analysis methods known in the art such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) ), Energy Dispersive X-ray spectroscopy (EDS), Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS).
상기와 같이 본 발명의 양극 활물질은 리튬 결함층이 존재하지 않아 구조 안정성이 우수하며, 구동전압이 4.45V 이상인 전지에 적용하였을 때에도 가스 발생 및 코발트 용출이 억제되며, 특히, 고전압 충전 후 고온에서 저장한 경우에도 코발트 용출 억제 효과가 뛰어나다. 구체적으로는, 본 발명의 양극 활물질을 적용한 이차전지를 4.5V로 충전한 후 60℃에서 2주간 보관한 후 측정한 코발트 용출량이 700ppm 이하, 바람직하게는 600ppm 이하, 더 바람직하게는 500ppm 이하이다.As described above, the positive electrode active material of the present invention has excellent structural stability due to the absence of a lithium-deficient layer. Even when applied to a battery having a driving voltage of 4.45 V or more, gas generation and cobalt elution are suppressed, The cobalt dissolution inhibiting effect is excellent. Specifically, the amount of cobalt eluted after charging the battery with the cathode active material of the present invention at 4.5 V and stored at 60 ° C for 2 weeks is 700 ppm or less, preferably 600 ppm or less, and more preferably 500 ppm or less.
한편, 본 발명에 따른 양극 활물질은 입자 내부의 위치에 관계없이 일정한 농도로 리튬을 포함할 수도 있고, 활물질 입자의 표면에서부터 중심으로 갈수록 리튬의 농도가 점진적으로 증가하는 농도구배를 가질 수도 있다. 양극 활물질 내에서 리튬이 농도 구배를 갖도록 분포되는 경우, 상기 농도구배는 활물질 입자 중심에서부터 표면 방향으로 입자의 두께에 따라 변화하는 1차 함수 또는 2차 함수의 형태일 수 있다. Meanwhile, the cathode active material according to the present invention may contain lithium at a constant concentration irrespective of the positions inside the particles, and may have a concentration gradient in which the concentration of lithium gradually increases from the surface to the center of the active material particle. In the case where lithium is distributed so as to have a concentration gradient in the cathode active material, the concentration gradient may be in the form of a linear function or a quadratic function which varies depending on the thickness of the particles from the center of the active material particle to the surface direction.
상기 양극 활물질의 농도는 당해 기술분야에 알려진 다양한 성분 분석 방법들, 예를 들면, X선 광전자 분석법(X-ray photoelectron Spectroscopy, XPS), 투과전자현미경(Transmission Electron Microscopy, TEM), 에탁스(Energy Disperive x-ray spectroscopy, EDS), 유도결합 플라즈마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 비행 시간형 2차 이온 질량 분석기((Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 등을 이용하여 측정할 수 있다. The concentration of the cathode active material can be measured by various component analysis methods known in the art such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy analysis Dispersion x-ray spectroscopy (EDS), Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), Time-Flight Secondary Ion Mass Spectrometry (ToF- SIMS) or the like.
상기 본 발명에 따른 양극 활물질은 평균 입경(D50)이 3㎛ 내지 50㎛, 바람직하게는 10㎛ 내지 50㎛일 수 있다, 양극 활물질의 평균 입경(D50)이 상기 범위를 만족할 때, 적절한 비표면적 및 양극 합체 밀도를 구현할 수 있다. 이때, 상기 양극활물질의 평균 입경(D50)은 체적 누적 분포의 50%가 되는 지점에서의 입경을 의미하는 것으로, 예를 들면, 레이저 회절법(laser diffraction method)를 이용하여 측정할 수 있다. 구체적으로는, 양극 활물질 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들면, Microtra MT 3000)에 도입하고, 약 28Hz의 초음파를 출력 60W로 조사한 후, 체적 누적 입경 분포의 50%에서의 입경을 산출하는 방법으로 측정될 수 있다.The cathode active material according to the present invention may have an average particle diameter (D 50 ) of 3 to 50 탆, preferably 10 to 50 탆. When the average particle diameter (D 50 ) of the cathode active material satisfies the above range, Specific surface area and anodic cohesion density can be realized. Herein, the average particle diameter (D 50 ) of the cathode active material means a particle diameter at 50% of the volume cumulative distribution. For example, it can be measured using a laser diffraction method. Specifically, after the cathode active material particles are dispersed in a dispersion medium and introduced into a commercially available laser diffraction particle size analyzer (for example, Microtra MT 3000), an ultrasonic wave of about 28 Hz is irradiated at an output of 60 W, Can be measured by a method of calculating the particle size at 50%.
양극 및 리튬 이차전지Anode and lithium secondary battery
다음으로, 본 발명에 따른 양극에 대해 설명한다. Next, the anode according to the present invention will be described.
본 발명에 따른 이차 전지용 양극 활물질은 이차 전지용 양극 제조에 유용하게 사용될 수 있다. The cathode active material for a secondary battery according to the present invention can be usefully used for manufacturing a cathode for a secondary battery.
구체적으로는, 본 발명에 따른 이차 전지용 양극은 양극집전체 및 상기 양극집전체 위에 형성되는 양극활물질층을 포함하며, 이때, 상기 양극활물질층은 본 발명에 따른 양극활물질을 포함한다.Specifically, the cathode for a secondary battery according to the present invention includes a cathode current collector and a cathode active material layer formed on the cathode current collector, wherein the cathode active material layer includes the cathode active material according to the present invention.
상기 양극은 본 발명에 따른 양극활물질을 사용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 예를 들면, 상기 양극은 양극활물질층을 구성하는 성분들, 즉, 양극활물질과, 도전재 및/또는 바인더 등을 용매에 용해 또는 분산시켜 양극 합재를 제조하고, 상기 양극 합재를 양극집전체의 적어도 일면에 도포한 후, 건조, 압연시키는 방법으로 제조하거나, 또는 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극집전체 상에 라미네이션함으로써 제조될 수 있다.The positive electrode may be produced according to a conventional positive electrode manufacturing method, except that the positive electrode active material according to the present invention is used. For example, the positive electrode may be prepared by dissolving or dispersing the components constituting the positive electrode active material layer, that is, the positive electrode active material, the conductive material and / or the binder, in a solvent to prepare a positive electrode composite material, Or by a method in which the film is coated on at least one side and then dried and rolled or by casting the positive electrode material on a separate support and then peeling off the support from the support to laminate the positive electrode current collector.
이때, 상기 양극집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery. For example, the positive electrode current collector may be made of a metal such as stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel, , Titanium, silver, or the like may be used. In addition, the cathode current collector may have a thickness of 3 to 500 탆, and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 집전체의 적어도 일면에 본 발명에 따른 양극활물질을 포함하며, 필요에 따라 도전재 및 바인더 중 적어도 1종을 선택적으로 더 포함하는 양극활물질층이 위치한다.The current collector includes the cathode active material according to the present invention on at least one surface thereof and optionally includes at least one of a conductive material and a binder.
상기 양극 활물질은, 상기 본 발명에 따른 양극 활물질을 포함하며, 상기 양극활물질은 양극활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98중량%의 함량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.The cathode active material may include the cathode active material according to the present invention, and the cathode active material may be contained in an amount of 80 to 99% by weight, more specifically 85 to 98% by weight based on the total weight of the cathode active material layer. When included in the above content range, excellent capacity characteristics can be exhibited.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극활물질층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.The conductive material is used for imparting conductivity to the electrode. The conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbonaceous materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more. The conductive material may be included in an amount of 1% by weight to 30% by weight based on the total weight of the cathode active material layer.
또, 상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.In addition, the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof. One kind or a mixture of two or more kinds of them may be used. The binder may be included in an amount of 1% by weight to 30% by weight based on the total weight of the cathode active material layer.
한편, 양극 합재 제조에 사용되는 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 예를 들면, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 단독 또는 이들을 혼합하여 사용할 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율, 점도 등을 고려하여 적절하게 조절될 수 있다.On the other hand, the solvent used in the preparation of the positive electrode material may be a solvent commonly used in the art, for example, dimethyl sulfoxide (DMSO), isopropyl alcohol, (NMP), acetone or water may be used alone or in combination. The amount of the solvent to be used can be appropriately adjusted in consideration of the application thickness of the slurry, the production yield, the viscosity, and the like.
다음으로, 본 발명에 따른 이차 전지에 대해 설명한다. Next, a secondary battery according to the present invention will be described.
본 발명에 따른 이차 전지는 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 이때, 상기 양극은 상술한 본 발명에 따른 양극이다. The secondary battery according to the present invention includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the positive electrode is the positive electrode according to the present invention.
한편, 상기 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다. The secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
상기 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체의 적어도 일면에 위치하는 음극활물질층을 포함한다.In the secondary battery, the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector.
상기 음극은 당해 기술 분야에 일반적으로 알려져 있는 통상의 음극 제조방법에 따라 제조될 수 있다. 예를 들면, 상기 음극은 음극활물질층을 구성하는 성분들, 즉, 음극활물질과, 도전재 및/또는 바인더 등을 용매에 용해 또는 분산시켜 음극 합재를 제조하고, 상기 음극 합재를 음극집전체의 적어도 일면에 도포한 후, 건조, 압연시키는 방법으로 제조하거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수 있다.The negative electrode may be manufactured according to a conventional negative electrode manufacturing method generally known in the art. For example, the negative electrode may be produced by dissolving or dispersing the components constituting the negative electrode active material layer, that is, the negative electrode active material, the conductive material and / or the binder in a solvent to form a negative electrode mixture, Or a method in which the negative electrode material is coated on at least one surface and then dried or rolled or casting the negative electrode material onto a separate support and then peeling the support from the support to laminate the negative electrode current collector.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used. In addition, the negative electrode collector may have a thickness of 3 to 500 탆, and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOv(0<v<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the negative electrode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides such as SiO v (0 <v <2), SnO 2 , vanadium oxide, and lithium vanadium oxide, which can dope and dedoped lithium; Or a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used. Also, a metal lithium thin film may be used as the negative electrode active material. The carbon material may be both low-crystalline carbon and high-crystallinity carbon. Examples of the low-crystalline carbon include soft carbon and hard carbon. Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.In addition, the binder and the conductive material may be the same as those described above for the anode.
한편, 상기 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.Meanwhile, in the secondary battery, the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ion. The separator can be used without any particular limitation as long as it is used as a separator in a secondary battery. Particularly, It is preferable that it is a resistance and excellent in an ability to impregnate the electrolyte. Specifically, porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used. Further, a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used. In order to secure heat resistance or mechanical strength, a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
한편, 상기 전해질로는 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 사용될 수 있으나, 이들로 한정되는 것은 아니다. The electrolyte may be an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, a melt-type inorganic electrolyte, and the like, which are usable in the production of a secondary battery.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; Ra-CN(Ra는 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1 : 1 내지 9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and? -Caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Ra-CN (Ra is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used. Among these, a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable. In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1: 1 to 9, the performance of the electrolytic solution may be excellent.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt, LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2. LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used. The concentration of the lithium salt is preferably within the range of 0.1M to 2.0M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로에틸렌 카보네이트 등과 같은 할로알킬렌 카보네이트계 화합물; 또는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬에테르, 암모늄염, 피롤, 2-메톡시에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량%로 포함될 수 있다. The electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like for the purpose of improving the lifetime characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery. N, N &lt; RTI ID = 0.0 &gt; (N, &lt; / RTI &gt; N, N'-tetramethyluronium hexafluorophosphate), pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, And at least one additive such as substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. The additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 이차전지는 우수한 전기적 특성 및 고온 저장성을 가져, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 적용될 수 있다. 특히, 본 발명에 따른 이차 전지는 4.45V 이상으로 높은 고전압 전지로 유용하게 사용될 수 있다. As described above, the secondary battery including the cathode active material according to the present invention has excellent electrical characteristics and high temperature storability, and can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles (HEV) Electric vehicles, and the like. In particular, the secondary battery according to the present invention can be usefully used as a high-voltage battery having a high voltage of 4.45 V or higher.
또한, 본 발명에 따른 이차전지는 전지모듈의 단위셀로 사용될 수 있으며, 상기 전지모듈은 전지팩에 적용될 수 있다. 상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.In addition, the secondary battery according to the present invention can be used as a unit cell of a battery module, and the battery module can be applied to a battery pack. The battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
실시예 1Example 1
LiCoO2 분말 100중량부에 LiAlO2 분말 0.07중량부를 고상 혼합한 후, 700℃에서 4시간 동안 열처리하여 LiCoO2 상에 LiAlO2 코팅된 리튬 코발트계 양극 활물질을 제조하였다.0.07 parts by weight of LiAlO 2 powder was mixed in a solid phase with 100 parts by weight of LiCoO 2 powder and then heat-treated at 700 ° C for 4 hours to form LiAlO 2 on LiCoO 2 To prepare a coated lithium cobalt based cathode active material.
실시예 2Example 2
LiCoO2 분말 100중량부에 Li2ZrO3 분말 0.05중량부를 고상 혼합한 후, 750℃에서 5시간 동안 열처리하여 LiCoO2 상에 Li2ZrO3이 코팅된 리튬 코발트계 양극 활물질을 제조하였다.0.05 parts by weight of Li 2 ZrO 3 powder was mixed with 100 parts by weight of LiCoO 2 powder in a solid phase and then heat-treated at 750 ° C for 5 hours to prepare a lithium cobalt-based cathode active material coated with Li 2 ZrO 3 on LiCoO 2 .
실시예 3Example 3
LiCoO2 분말 100중량부에 Li2TiO3 분말 0.05중량부를 고상 혼합한 후, 750℃에서 5시간 동안 열처리하여 LiCoO2 상에 Li2TiO3이 코팅된 리튬 코발트계 양극 활물질을 제조하였다.0.05 parts by weight of Li 2 TiO 3 powder was mixed in a solid phase with 100 parts by weight of LiCoO 2 powder and then heat-treated at 750 ° C for 5 hours to prepare a lithium cobalt-based cathode active material coated with Li 2 TiO 3 on LiCoO 2 .
비교예 1 Comparative Example 1
LiAlO2 분말 대신 Al2O3 분말을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 리튬 코발트계 양극 활물질을 제조하였다.A lithium cobalt-based cathode active material was prepared in the same manner as in Example 1, except that Al 2 O 3 powder was used instead of LiAlO 2 powder.
비교예 2Comparative Example 2
Li2ZrO3 분말 대신 ZrO2 분말을 사용한 점을 제외하고는 실시예 2와 동일한 방법으로 리튬 코발트계 양극 활물질을 제조하였다.A lithium cobalt-based cathode active material was prepared in the same manner as in Example 2, except that ZrO 2 powder was used instead of Li 2 ZrO 3 powder.
비교예 3 Comparative Example 3
Li2TiO3 분말 대신 TiO2 분말을 사용한 점을 제외하고는 실시예 3과 동일한 방법으로 리튬 코발트계 양극 활물질을 제조하였다.A lithium cobalt-based cathode active material was prepared in the same manner as in Example 3, except that TiO 2 powder was used instead of Li 2 TiO 3 powder.
비교예 4 Comparative Example 4
LiCoO2 분말 100중량부와 LiAlO2 분말 0.07중량부를 에탄올 용매에 첨가하여 혼합한 후, 650℃에서 5시간 동안 열처리하여 리튬 코발트계 양극 활물질을 제조하였다.100 parts by weight of LiCoO 2 powder and 0.07 parts by weight of LiAlO 2 powder were added to an ethanol solvent and mixed and then heat-treated at 650 ° C for 5 hours to prepare a lithium cobalt-based cathode active material.
실험예 1 Experimental Example 1
실시예 1 ~ 3 및 비교예 1 ~ 4에 의해 제조된 양극 활물질을 각각 이용하여 리튬 이차전지를 제조하였다.Lithium secondary batteries were prepared using the cathode active materials prepared in Examples 1 to 3 and Comparative Examples 1 to 4, respectively.
상세하게는, 상기 실시예 1 ~ 3 및 비교예 1 ~ 4에 의해 제조된 양극 활물질, 카본 블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에 90:5:5의 중량비로 혼합하여 양극 합재(점도:5000mPa·s)를 제조하고, 이를 알루미늄 집전체에 도포한 후, 건조 및 압연하여 양극을 제조하였다.Specifically, the cathode active material, the carbon black conductive material, and the PVdF binder prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were mixed in the N-methylpyrrolidone solvent in a weight ratio of 90: 5: 5, (Viscosity: 5000 mPa.s) was prepared, applied to an aluminum current collector, dried and rolled to prepare a positive electrode.
또, 음극활물질로 인조흑연인 MCMB(mesocarbon microbead), 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에 85:10:5의 중량비로 혼합하여 음극 합재를 제조하고, 이를 구리 집전체에 도포한 후, 건조 및 압연하여 음극을 제조하였다.Further, mesocarbon microbeads (MCMB), carbon black conductive material and PVdF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 as an anode active material to prepare a negative electrode mixture, And then dried and rolled to prepare a negative electrode.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 케이스 내부에 위치시킨 후, 케이스 내부에 전해액을 주입하여 코인셀을 제조하였다. 이때, 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트를 3:4:3의 부피비로 혼합한 유기 용매에 1.15M 농도의 리튬헥사플루오로포스페이트를 용해시켜 제조하였다.The electrode assembly was fabricated with the porous polyethylene separator interposed between the anode and the cathode fabricated as described above, and the electrode assembly was placed inside the battery case, and then an electrolytic solution was injected into the case to manufacture a coin cell. The electrolyte solution was prepared by dissolving lithium hexafluorophosphate at a concentration of 1.15 M in an organic solvent prepared by mixing ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate at a volume ratio of 3: 4: 3.
상기와 같이 제조된 코인셀들을 4.5V로 충전하였다. 충전 후 양극을 분리하고, 디클로로메탄(DCM) 용액으로 세척한 후, 세척된 양극을 4mL의 전해액과 함께 날젠 보틀(bottle)에 넣었다. 전해액이 증발되는 것을 방지하기 위해 파라필름과 알루미늄 파우치로 날젠 보틀을 완전 실링한 후, 실링된 보틀을 60 ℃ 챔버에 2주일 보관한다. 2주일 후 전해액만 추출하기 위해 실링지 필터를 이용해 전해액 내에 부유물로 존재할 수 있는 양극 활물질을 완전히 제거하고, 전해액을 증발시켜 ICP 분석를 통해 전해액 내 존재하는 코발트 함량(즉, 코발트 용출량)을 측정하였다. ICP 분석은 유도 결합 플라즈마 발광 분광분석기(ICP-OES; Optima 7300DV, PerkinElmer社)를 이용하여 진행하였다. 한편, 셀(Cell)간 편차를 줄이기 위해 각각의 실시예 및 비교예에 대해 4개의 코인셀을 제조하였으며, 4개의 코인셀에서의 코발트 용출량을 측정하여 평균값을 측정하였다. 측정 결과는 하기 표 1에 나타내었다. The thus prepared coin cells were charged to 4.5V. After charging, the positive electrode was separated, washed with a dichloromethane (DCM) solution, and then the washed positive electrode was placed in a Nilgen bottle together with 4 mL of electrolyte. To prevent the electrolyte from evaporating, the Nalen Bottle is completely sealed with a Parafilm and an aluminum pouch, and then the sealed bottle is kept in a 60 ° C chamber for two weeks. After 2 weeks, the cathode active material, which could be a float in the electrolyte solution, was completely removed using a sealing paper filter to extract the electrolyte solution, and the cobalt content (i.e., cobalt leaching amount) present in the electrolyte solution was measured by ICP analysis by evaporating the electrolyte solution. ICP analysis was carried out using an inductively coupled plasma emission spectrometer (ICP-OES; Optima 7300DV, PerkinElmer). Four coin cells were prepared for each of the examples and comparative examples to reduce the deviation between the cells, and the amount of cobalt eluted from the four coin cells was measured and the average value was measured. The measurement results are shown in Table 1 below.
코발트 용출량(ppm)Cobalt dissolution (ppm)
실시예 1Example 1 496496
실시예 2Example 2 591591
실시예 3Example 3 559559
비교예 1Comparative Example 1 857857
비교예 2Comparative Example 2 828828
비교예 3Comparative Example 3 10571057
비교예 4Comparative Example 4 842842
표 1에 나타난 바와 같이, 리튬 금속 산화물 입자를 이용하여 코팅층을 형성한 양극활물질을 이용한 실시예 1 ~ 3의 코인셀에서의 코발트 용출량이 비교예 1 ~ 4의 코인셀에서의 코발트 용출량보다 현저하게 적음을 확인할 수 있다. As shown in Table 1, the amounts of cobalt elution in the coin cells of Examples 1 to 3 using the cathode active material in which the coating layer was formed using the lithium metal oxide particles were significantly higher than those of the coin cells of the coin cells of Comparative Examples 1 to 4 Can be confirmed.

Claims (9)

  1. 하기 화학식 1로 표시되는 리튬 코발트 산화물 입자와, 산화리튬알루미늄, 산화리튬지르코늄, 및 산화리튬티타늄으로 이루어진 군으로부터 선택된 1종 이상의 리튬 금속 산화물 입자를 건식 혼합하여 열처리하는 단계를 포함하는 리튬 코발트계 양극 활물질의 제조 방법.A process for producing a lithium-cobalt-based anode comprising the steps of dry-mixing and heat-treating at least one lithium metal oxide particle selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide, A method for producing an active material.
    [화학식 1][Chemical Formula 1]
    LiCo1 - xMxO2 LiCo 1 - x M x O 2
    상기 화학식 1에서, M은 Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca 및 Nb로 이루어진 군으로부터 선택되는 1종 이상이며, 0≤x≤0.2임.M is at least one selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb.
  2. 제1항에 있어서,The method according to claim 1,
    상기 열처리는 300℃ 내지 800℃로 수행되는 것인 리튬 코발트계 양극 활물질의 제조 방법.Wherein the heat treatment is performed at a temperature ranging from 300 ° C to 800 ° C.
  3. 제1항에 있어서,The method according to claim 1,
    상기 리튬 금속 산화물 입자는 상기 리튬 코발트 산화물 입자와 리튬 금속 산화물 입자를 합한 총 중량 100중량부에 대하여 0.01 내지 0.5중량부로 혼합되는 것인 리튬 코발트계 양극 활물질의 제조 방법. Wherein the lithium metal oxide particles are mixed in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the total weight of the lithium cobalt oxide particles and the lithium metal oxide particles.
  4. 하기 화학식 1로 표시되는 리튬 코발트계 산화물 입자; 및A lithium cobalt oxide particle represented by the following formula (1); And
    상기 리튬 코발트계 산화물 입자 상에 형성되며 산화리튬알루미늄, 산화리튬지르코늄, 및 산화리튬티타늄으로 이루어진 군으로부터 선택된 1종 이상의 리튬 금속 산화물을 포함하는 코팅층을 포함하고,And a coating layer formed on the lithium cobalt oxide particle and containing at least one lithium metal oxide selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide,
    상기 리튬 코발트계 산화물 입자와 코팅층의 계면 및 상기 코팅층에서 Li/Co의 원자 비가 1 이상인 리튬 코발트계 양극 활물질:A lithium cobalt-based cathode active material having an atomic ratio of Li / Co of 1 or more at an interface between the lithium cobalt oxide particle and the coating layer and in the coating layer;
    [화학식 1][Chemical Formula 1]
    LiCo1 - xMxO2 LiCo 1 - x M x O 2
    상기 화학식 1에서, M은 Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca 및 Nb로 이루어진 군으로부터 선택되는 1종 이상이며, 0≤x≤0.2임.M is at least one selected from the group consisting of Al, Mg, W, Mo, Zr, Ti, Fe, V, Cr, Ba, Ca and Nb.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 양극 활물질을 적용한 이차 전지를 4.5V로 충전한 후 60℃에서 2주간 보관한 후 측정한 코발트 용출량이 700ppm 이하인 리튬 코발트계 양극 활물질.The lithium cobalt-based cathode active material having a cobalt elution amount of 700 ppm or less measured after charging the secondary battery to which the cathode active material is applied at 4.5 V and stored at 60 ° C for 2 weeks.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 리튬 금속 산화물은 전체 양극 활물질 100중량부에 대하여, 0.01 내지 0.5 중량부로 포함되는 것인 리튬 코발트계 양극 활물질.Wherein the lithium metal oxide is contained in an amount of 0.01 to 0.5 parts by weight based on 100 parts by weight of the total positive electrode active material.
  7. 청구항 4 내지 6 중 어느 한 항에 따른 양극 활물질을 포함하는 양극.An anode comprising the cathode active material according to any one of claims 4 to 6.
  8. 청구항 7의 양극을 포함하는 리튬 이차 전지.A lithium secondary battery comprising the positive electrode of claim 7.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 리튬 이차 전지는 구동 전압이 4.45V 이상인 리튬 이차 전지.Wherein the lithium secondary battery has a driving voltage of 4.45 V or higher.
PCT/KR2018/013819 2017-11-13 2018-11-13 Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery WO2019093863A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880067456.6A CN111225879B (en) 2017-11-13 2018-11-13 Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery comprising same
US16/758,314 US11837719B2 (en) 2017-11-13 2018-11-13 Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode including same, and secondary battery including positive electrode
JP2020520813A JP7076878B2 (en) 2017-11-13 2018-11-13 Lithium cobalt-based positive electrode active material, its manufacturing method, positive electrode including this, and secondary battery
EP18875086.3A EP3686160A4 (en) 2017-11-13 2018-11-13 Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0150922 2017-11-13
KR20170150922 2017-11-13
KR10-2018-0138704 2018-11-13
KR1020180138704A KR102270117B1 (en) 2017-11-13 2018-11-13 Lithium cobalt based positive electrode active material, producing method thereof, positive electrode and secondary battery comprising the same

Publications (2)

Publication Number Publication Date
WO2019093863A2 true WO2019093863A2 (en) 2019-05-16
WO2019093863A3 WO2019093863A3 (en) 2019-06-27

Family

ID=66438398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013819 WO2019093863A2 (en) 2017-11-13 2018-11-13 Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery

Country Status (1)

Country Link
WO (1) WO2019093863A2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712397B1 (en) * 2004-11-05 2007-05-02 한규승 Method for preparing metal oxide-coated composite metal oxide using eutectic self-mixing and self-coating method
US9543581B2 (en) * 2010-08-17 2017-01-10 Umicore Alumina dry-coated cathode material precursors

Also Published As

Publication number Publication date
WO2019093863A3 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2019022422A1 (en) Secondary battery cathode and lithium secondary battery comprising same
WO2019050282A1 (en) Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019059552A2 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019168301A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2019083221A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2016053051A1 (en) Positive electrode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2021153936A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2021145647A1 (en) Method for preparing cathode active material for secondary battery
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2021112607A1 (en) Method for producing positive electrode material for secondary battery
WO2016053054A1 (en) Positive electrode active material for lithium secondary battery, preparation method for same, and lithium secondary battery comprising same
WO2021025464A1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery
WO2021225396A1 (en) Cathode for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same
WO2019093864A2 (en) Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery
WO2019093869A2 (en) Method for manufacturing positive electrode active material for secondary battery
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875086

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020520813

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018875086

Country of ref document: EP

Effective date: 20200420

NENP Non-entry into the national phase

Ref country code: DE