WO2019093576A1 - Impeller having primary blades and secondary blades - Google Patents

Impeller having primary blades and secondary blades Download PDF

Info

Publication number
WO2019093576A1
WO2019093576A1 PCT/KR2017/014809 KR2017014809W WO2019093576A1 WO 2019093576 A1 WO2019093576 A1 WO 2019093576A1 KR 2017014809 W KR2017014809 W KR 2017014809W WO 2019093576 A1 WO2019093576 A1 WO 2019093576A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary
hub
main
wing
blades
Prior art date
Application number
PCT/KR2017/014809
Other languages
French (fr)
Korean (ko)
Inventor
이승배
Original Assignee
주식회사 에어로네트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에어로네트 filed Critical 주식회사 에어로네트
Priority to US16/761,530 priority Critical patent/US20200370562A1/en
Publication of WO2019093576A1 publication Critical patent/WO2019093576A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • F04D29/386Skewed blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes

Definitions

  • the present invention relates to an impeller, and more particularly, to an impeller in which a plurality of secondary blades are disposed between a plurality of primary blades to perform blade flow control.
  • the aspect ratio that is, the wing code
  • the deviation angle decreases and the performance increases.
  • ⁇ 0 is the airfoil shape
  • m 0 is the stiffness ratio
  • b is a constant determined by the inlet flow angle ⁇ 1 .
  • the prior art has focused on increasing the camber angle without increasing the flow separation, causing a large pressure rise through lift, increasing the cord length or reducing the blade pitch by reducing the blade pitch to reduce the exit angle .
  • the impeller becomes higher in the direction of the rotating shaft, and the camber angle for increasing the pressure is limited by the flow separation at the negative pressure surface.
  • U.S. Patent Publication No. US 2014/0233178 A1 discloses an example in which the auxiliary wing is started near the rear end (T.E.) of the main wing, thereby increasing the aspect ratio by increasing the wing length and increasing the performance by reducing the deviation angle of the wing exit.
  • such an invention has a limitation in that the height of the impeller is increased and the length of the main wing is made longer as the length of the main wing and the auxiliary wing are overlapped.
  • Korean Patent No. 10-1342746 discloses a conventional impeller in which a plurality of auxiliary blades are installed between a plurality of main blades to reduce the blade pitch to increase the aspect ratio.
  • Such an impeller has a disadvantage in that the overlapping portion of the main wing is broken due to the difficulty of the injection mold, thereby reducing lift and increasing noise.
  • ⁇ R is the efficiency of the impeller as a percentage of the actual transfer energy excluding the flow losses at the theoretical rise in voltage due to the internal flow versus the theoretical transfer energy.
  • N B is the number of wings
  • ⁇ 2 is the exit flow angle
  • U 2 and C m2 are the radial components of the wing tip rotation velocity and the absolute velocity of the exit flow, respectively.
  • US Patent Application US 2009/0155048 A1 discloses an example in which a split vane, which is an auxiliary wing that rotates coaxially with main wings in a centrifugal pump impeller, is installed between main wings to increase the number of wings.
  • a split vane which is an auxiliary wing that rotates coaxially with main wings in a centrifugal pump impeller
  • the height-to-diameter ratio of the impeller is much larger than the pump, so that the upper portion of the impeller blade is covered with a normal shroud plate, And the outlet had to be covered with a thin band-like disk to reinforce the strength. In this case, however, injection molding was difficult.
  • the centrifugal type it is possible to reduce the flow separation of the negative pressure side, thereby improving the blade slip coefficient and reducing the flow separation noise by reducing the size of the wing wake flow.
  • a wireless communication device including a first portion having a first hub and a plurality of main blades extending at equal intervals along an outer periphery of the first hub; And a second portion having a plurality of auxiliary blades extending at an interval along an outer periphery of the second hub, wherein the second portion includes a first hub
  • the projecting angle between LE and TE is ⁇ 1 and the projection angle between the front and rear ends of the plurality of auxiliary blades is ⁇ 1
  • the sizes of the first blades ⁇ 1u and ⁇ 1d may be angles that overlap the main blades so that the channel near the downstream side of the main blades is guided.
  • first hub is formed with a plurality of first engaging projections spaced apart from each other on a bottom surface thereof and a plurality of first engaging grooves provided by the plurality of engaging projections, A plurality of second engagement grooves formed by the plurality of engagement protrusions are formed in the first engagement protrusions and the plurality of second engagement protrusions are coupled to the plurality of second engagement recesses, And may be coupled to the plurality of first coupling grooves.
  • the plurality of first engaging projections and the plurality of second engaging grooves are press-engaged and the plurality of second engaging projections are press-engaged with the plurality of first engaging grooves.
  • the plurality of first coupling protrusions may be adhesively coupled to the plurality of second coupling grooves by an adhesive, and the plurality of second coupling protrusions may be adhesively coupled to the plurality of first coupling grooves by an adhesive.
  • the first hub and the second hub may be formed in a strip shape.
  • the first and second hubs may have a single conical shape when coupled to each other.
  • a circular bottom plate comprising: a circular bottom plate; a hub protruding from the center of the upper surface of the circular bottom plate; and a plurality of main blades circumferentially formed around the hub, part; And a second portion having a strip-shaped shroud and a plurality of auxiliary blades integrally formed at intervals along the bottom surface of the shroud, wherein an inlet area between the main vane negative pressure surface and the auxiliary vane pressure surface is defined as Ssu , The inlet area between the main wing pressure side and the auxiliary wing negative pressure surface is Spu and the area downstream of the negative pressure side channel of the main wing, which is the area downstream of each channel, is Ssd and the area downstream of the pressure side channel of the main wing is Spd
  • the inlet angle of each auxiliary wing is the same as the angle of each main wing outlet, the inlet of the auxiliary wing is located at a position where an S-shaped curvature occurs, and
  • the auxiliary blade front end (L.E.) may be located between the inlet and equal radius channels such that Ssu and Spu are the same.
  • the exit angle and the exit position between the channels can be set by rotating the auxiliary blade front end (T.E.) by rotating the auxiliary blade front end (L.E.) as a pivot point so that Ssu and Ssd are kept similar.
  • the shroud may have a strip shape.
  • the base plate has a plurality of first coupling grooves on the upper surface thereof for receiving the lower ends of the plurality of auxiliary blades, and a plurality of second coupling grooves for inserting the upper ends of the plurality of main blades are formed on the bottom surface of the shroud. have.
  • the lower ends of the plurality of auxiliary vanes may be pushed into the plurality of first coupling grooves and the lower ends of the plurality of main vanes may be pushed into the plurality of second coupling grooves.
  • the lower ends of the plurality of auxiliary wings are adhesively bonded to the plurality of first coupling grooves by an adhesive, and the lower ends of the plurality of main wings may be adhesively bonded to the plurality of second coupling grooves by an adhesive.
  • a plurality of auxiliary blades arranged one by one between the main blades can be arranged at different intervals along the rotational direction of the impeller.
  • the circular bottom plate and the shroud may be inclined in the downstream direction of the flow or parallel to the direction of the rotation axis.
  • the outer diameter of the circular bottom plate may be smaller than the inner diameter of the shroud.
  • the plurality of main blades and the plurality of auxiliary blades may be integrally coupled to the circular bottom plate and the shroud.
  • the impeller in which the auxiliary vanes are arranged in the channels between the main wings according to the present invention has the following advantages with respect to the axial flow type and the centrifugal type as described below.
  • the secondary flow at the negative pressure side of the main blade can be reduced and the angle of departure at the rear end of the blade can be reduced to obtain pressure increase and noise reduction effect.
  • a plurality of auxiliary blades are arranged between a plurality of main blades so as not to increase the height of the impeller, a plurality of auxiliary blades, each of which includes a first part composed of an upper hub to which a plurality of main blades are connected, The upper hub and the lower hub are formed into a strip shape having a circumferential radial thickness so that the wings are overlapped in the injection molding process so that the upper and lower hubs Can fundamentally solve difficult problems.
  • the secondary flow at the negative pressure side of the hybrid S-type main wing combined with the backward wing and the forward wing or the radial is reduced and the increase of energy transfer and noise reduction Effect can be obtained.
  • a second part made of a shroud having a plurality of auxiliary blades attached thereto is injection molded as a separate component, and a plurality of main blades are coupled to the shroud concavely and convexly So that the problem caused by the injection molding can be solved.
  • FIG. 1 is a view for explaining flow-related design variables and blade-related design parameters between general axial flow impeller blades.
  • FIG. 2 is a view for explaining design variables related to a blade and a flow angle of a conventional backward centrifugal impeller.
  • FIG. 3 is an assembled perspective view illustrating an axial flow impeller according to an embodiment of the present invention.
  • Fig. 4 is an exploded perspective view showing the bottom surface of the first portion of the axial-flow impeller shown in Fig. 3 and the top surface of the second portion at the same time.
  • FIG. 5 is a schematic view of a flow around a wing of an axial flow impeller according to an embodiment of the present invention and a conventional impeller together with a wired line.
  • FIG. 6 is a view showing a structure between a main blade and an auxiliary blade of an axial flow impeller according to an embodiment of the present invention.
  • FIG. 7 is an assembled perspective view illustrating a centrifugal impeller according to another embodiment of the present invention.
  • FIG. 8 is an exploded perspective view showing the bottom surface of the first part of the centrifugal impeller shown in FIG. 7 and the top surface of the second part at the same time.
  • FIG. 9 is a view showing an example in which the flow shape of the main wing of the centrifugal impeller according to another embodiment of the present invention is a reverse wing (indicated by a solid line) and having an auxiliary wing in the form of a split vane, (Indicated by a dotted line).
  • FIG. 10 is a cross-sectional view showing a main blade and an auxiliary blade of a centrifugal impeller according to another embodiment of the present invention.
  • FIG. 11 is a view showing an example in which the positions of the channels of the auxiliary vanes of the centrifugal impeller according to another embodiment of the present invention are randomly arranged without being equally arranged in the rotating direction.
  • FIG. 11 is a view showing an example in which the positions of the channels of the auxiliary vanes of the centrifugal impeller according to another embodiment of the present invention are randomly arranged without being equally arranged in the rotating direction.
  • FIG. 12 is a perspective view showing an impeller having a main wing and a secondary wing according to another embodiment of the present invention.
  • FIG. 13 is a plan view showing an impeller according to another embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the line A-A shown in Fig.
  • FIG. 3 is an assembled perspective view illustrating an axial flow impeller according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view illustrating a bottom surface of the first portion of the axial flow impeller shown in FIG. 3 and an upper surface of the second portion at the same time .
  • the axial flow impeller 100 includes a first part 110 and a second part 130 which are separate parts.
  • the separately manufactured first part 110 and the second part 130 are used as an impeller in a mutually coupled state.
  • the first portion 110 includes a first hub 111 having a substantially ring shape, a plurality of primary blades 120 (not shown) formed at equal intervals on the outer circumferential surface of the first hub 111, ).
  • the first hub 111 may be formed with a hole 113 at the center so as to be connected to a predetermined driving member such as a rotating shaft (not shown) for rotationally driving the axial flow impeller 100.
  • a predetermined driving member such as a rotating shaft (not shown) for rotationally driving the axial flow impeller 100.
  • the first hub 111 has a plurality of first coupling protrusions 115 protruding at equal intervals along the bottom surface thereof.
  • a plurality of first coupling grooves 117 into which a plurality of second coupling protrusions 135 to be described later are inserted are provided between the respective first coupling protrusions 115.
  • a plurality of main blades 120 are integrally connected to the outer circumferential surface of one end of the hub 111 and bent at a predetermined curvature toward the other end.
  • each main wing 120 includes a negative pressure surface 121, a pressure surface 123 located on the opposite side of the negative pressure surface, a wing hub surface 125 adjacent to the first hub 111, And a wing tip surface 127 at the end of the wing tip 120.
  • the upper end of each main wing 120 is defined as a front end (L.E.) and the lower end is defined as a rear end (T.E.).
  • the second portion 130 includes a second hub 131 formed in a substantially ring shape and a plurality of primary blades 140 formed at equal intervals on the outer circumferential surface of the second hub 131.
  • the second hub 131 may have a hole 133 formed at the center thereof, like the first hub 111.
  • the outer diameter of the second hub 131 may be the same as the outer diameter of the first hub 111, and the inner diameter of the second hub 131 may be equal to or smaller than the inner diameter of the first hub 111 which is a structure that can be considered for securing the impeller 100 to a rotating driving member corresponding to the rotating shaft or the rotating shaft.
  • the second hub 131 has a plurality of second coupling protrusions 135 formed at equal intervals along the upper surface thereof.
  • a plurality of second coupling grooves 137 are formed between the second coupling protrusions 135, into which a plurality of first coupling protrusions 115 are inserted.
  • the first and second hubs 111 and 131 are configured such that a plurality of first coupling protrusions 115 are inserted into the plurality of second coupling grooves 137, and at the same time, a plurality of second coupling protrusions 135 And are coupled to each other as they are respectively inserted into the first coupling grooves 117 of the main body 110.
  • the first and second hubs 111 and 131 may be coupled to each other in a compressed state or may be bonded to each other using a separate adhesive.
  • the plurality of auxiliary vanes 140 are integrally connected to the outer circumferential surface of the second hub 131 at one end and curved at a predetermined curvature toward the other end.
  • the plurality of auxiliary blades 140 may be disposed below the plurality of main blades 120, respectively.
  • each of the auxiliary vanes 140 includes a negative pressure surface 141, a pressure surface 143 located on the opposite side of the negative pressure surface, a vane hub surface 145 adjacent to the second hub 131, And a wing tip surface 147 at the end of the wing tip 140.
  • each of the auxiliary vanes 140 defines the upper end thereof as a tip end (L.E.) and the lower end thereof as a rear end (T.E.).
  • FIG. 5 is a schematic view of a flow around a wing of an axial flow impeller according to an embodiment of the present invention and a conventional impeller together with a wired line.
  • an auxiliary blade 140 is disposed between two main blades 120. Accordingly, unlike the inlet area A flow is decelerated from the entrance area A 1 between 5 main blade as shown in (a) creating a channel flow of 2 and A 3 occurs the flow separation, in the inlet area A 2 near rather accelerates The flow separation is eliminated at the downstream side of the negative pressure surface 121 of the main wing 120. In addition, due to the small amount of flow separation at the negative pressure surface 141 of the auxiliary vane 140, a narrow wake thickness? 'Is generated and the deviation angle? Between the channels is also reduced to cause an increase in pressure by the vane camber, A larger camber angle can be applied.
  • FIG. 6 is a view showing a relationship between a main blade and an auxiliary blade of an axial flow impeller according to an embodiment of the present invention.
  • the first cylinder head angle? 1 is composed of an upstream angle? 1u overlapping with the auxiliary vane 140, a downstream angle? 1d, and? 1m which does not overlap with the auxiliary vane 140.
  • ⁇ 1u ⁇ 1d
  • ⁇ 1d ⁇ 1u
  • the first hub 111 and the second hub 131 are formed by the first and second coupling protrusions 115 and 135 and the first and second coupling grooves 117 and 137 as shown in FIG. 3 They are mutually coupled.
  • the rear end portion of the main wing 120 corresponding to the downstream angle ⁇ 1d of the main wing 120 is not attached to the first hub 111 but is tightly coupled to the second hub 131.
  • first and second hubs 111 and 131 may be formed in a conical shape instead of a cylindrical shape.
  • a single conical shape may be formed as a whole. If the first and second hubs are formed in the shape of a cone, they can also be used as a saddle type impeller.
  • FIG. 7 is an assembled perspective view illustrating a centrifugal impeller according to another embodiment of the present invention
  • FIG. 8 is an exploded perspective view illustrating a bottom surface of the first part of the centrifugal impeller shown in FIG. 7 and an upper surface of the second part at the same time .
  • the first portion 210 and the second portion 230 are used as an impeller in a state of mutual engagement.
  • the first portion 210 includes a hub 211, a base plate 225 formed of a circular plate, and a plurality of main blades 220 formed at regular intervals.
  • the hub 211 may be formed with a hole 213 at the center so as to be connected to a predetermined driving member such as a rotating shaft (not shown) for rotating the centrifugal impeller 200.
  • the hub 211 may have a substantially conical shape.
  • the lower plate 215 is integrally formed with the lower end of the hub 211 integrally formed at the center of the upper surface.
  • a plurality of main blades 220 are arranged at equal intervals along the circumferential direction of the base plate 215 and the lower ends of the plurality of main blades 220 are integrally connected to the upper surface of the base plate 215.
  • the base plate 215 is formed with a plurality of first coupling grooves 217 between which the lower ends of a plurality of auxiliary vanes 240 described later are inserted between the main blades 220 adjacent to each other on the upper surface.
  • a plurality of main blades 220 are arranged such that a front end (L.E.) is disposed adjacent to the outer circumferential surface of the first hub 211 and is bent at a predetermined curvature from the front end to the rear end (T.E.).
  • Each main wing 220 has a negative pressure surface 221, a pressure surface 223 located on the opposite side of the negative pressure surface, a wing undersurface 225 adjacent to the bottom plate 215 and a shroud And a wing top surface (227) adjacent to the wing surface (231).
  • the inner end of each main wing 220 is defined as a front end (L.E.), and the outer end is defined as a rear end (T.E.).
  • the second portion 230 includes a shroud 231 having a generally ring shape and a plurality of auxiliary blades 240 formed at equal intervals along the bottom surface of the shroud 231.
  • the plurality of auxiliary blades 240 may be formed in an arc shape or an S shape.
  • the outer diameter of the shroud 231 may be approximately the same as the outer diameter of the bottom plate 215.
  • a plurality of second coupling grooves 233 are formed in the bottom surface of the shroud 231 to insert a plurality of main blades 220 between the plurality of auxiliary blades 240. And a plurality of upper ends of the plurality of main blades 220 may be respectively inserted into the plurality of second coupling grooves 233.
  • each of the engaging portions may be bonded to each other in a state of being pressed together or may be bonded to each other by using a separate adhesive.
  • the plurality of auxiliary vanes 240 each include a negative pressure surface 241 and a pressure surface 243 located on the opposite side of the negative pressure surface and a wing lower surface 245 and a wing top surface 247 adjacent to the shroud 231 .
  • the inner end of each auxiliary wing 240 is defined as a tip end (L.E.), and the outer end is defined as a rear end (T.E.).
  • FIG. 9 is a view showing an example in which the flow shape of the main wing of the centrifugal impeller according to another embodiment of the present invention is a reverse wing (indicated by a solid line) and having an auxiliary wing in the form of a split vane
  • FIG. 10 is a cross-sectional view showing a main blade and an auxiliary blade of a centrifugal impeller according to another embodiment of the present invention.
  • a dotted line indicates that the flow shape of the main wing of the centrifugal impeller is indicated by a solid line, and a dotted line indicates that the wake flow shape of the centrifugal impeller is the forward flow.
  • the hybrid wing of the S shape is shown in FIG. 10, but in order to overcome the large flow separation of the forward wing-
  • the auxiliary wing called the split vane, is installed between the main wings.
  • reference numerals U 2 and C m2 denote radial components of the blade tip rotational speed and the absolute velocity of the exit flow, respectively, C ⁇ 2 is the rotational component of the exit absolute velocity, C 2 and W 2 are the exit absolute velocity The magnitude of the vector and the magnitude of the exit relative velocity vector.
  • the channel in the hybrid wing for providing the auxiliary wing has an inlet area Ssu between the main wing negative pressure face and the auxiliary wing pressure face, where u is an index indicative of the upstream side, between the main wing pressure face and the auxiliary wing negative pressure face
  • u is an index indicative of the upstream side, between the main wing pressure face and the auxiliary wing negative pressure face
  • the inlet area Spu of each channel, and the area Ssd and Spd downstream of each channel is almost the same as the height of the outlet. Therefore, And flow separation due to pressure increase.
  • the outlet angle of the auxiliary vanes is kept close to the main vane outlet angle ( ⁇ 2b in FIG. 2) so that the inlet area Ssu and the outlet area Ssd of the main vane negative pressure side channel do not greatly vary, And the inlet angle of the auxiliary vane is such that the flow angle tangent coincides with the main stream line between the channels.
  • the auxiliary wing shear (LE) is moved between the same radius channels so that Ssu is smaller than Spu, so that the two areas are equal.
  • the position of the outlet between the exit angle and the channel can be determined by moving the auxiliary blade front end (LE) at the obtained position to the pivot point and the auxiliary blade rear end (TE) between the outlet and the same radius channel.
  • FIG. 11 is a view showing an example in which the positions of the channels of the auxiliary vanes of the centrifugal impeller according to another embodiment of the present invention are randomly arranged without being equally arranged in the rotating direction.
  • the position of the auxiliary vanes of the centrifugal impeller is not randomly arranged in the direction of rotation but is randomly arranged as shown in Fig. 11, and the flow separation vortex and the channel passing vortex In this case, it is possible to arrange the thrust and thrust balance by an axial vertical surface by the lift distribution.
  • the centrifugal impeller 200 shown in FIG. 7 is a type of impeller coupling the first part 210 and the second part 230, and the first and second parts 210 and 230 are separately manufactured.
  • the present invention is not limited to this, and an impeller constituting a single body can be provided. A detailed description will be given with reference to Figs. 12 to 14. Fig.
  • FIG. 12 is a perspective view showing an impeller having a main wing and a secondary wing according to still another embodiment of the present invention
  • FIG. 13 is a plan view showing an impeller according to another embodiment of the present invention
  • FIG. 13 is a cross-sectional view along the line AA shown in Fig.
  • the outer diameter of the circular bottom plate 315 may be formed to be slightly smaller than the inner diameter of the shroud 331 in order to inject the impeller 300 into a single body according to another embodiment of the present invention .
  • the circular bottom plate 315 and the shroud 331 are all inclined in the flow downstream direction as shown in FIG. 14, but they are not limited thereto and may be formed in a horizontal direction so as to be perpendicular to the direction of the rotation axis.
  • the plurality of main blades 320 and the plurality of auxiliary blades 330 provided on the impeller 300 are integrally formed with the shroud 331 and the circular bottom plate 315 or the hub 317 Can be combined. That is, the plurality of main blades 320 are connected to the shroud 331 at the upper end and connected to the circular bottom plate 315 or the hub 317 at the lower end. Also, a plurality of auxiliary vanes 330 are connected to the shroud 331 at the upper end and connected to the circular bottom plate 315 or the hub 317 at the lower end.
  • the plurality of main blades 320 and the plurality of auxiliary blades 330 may be formed alternately along the circumferential direction.
  • the axial flow impeller 200 shown in FIG. 7 is discharged after the flow is introduced in the direction of the rotation axis, and then the pressure is raised in the radial direction perpendicular to the direction of the rotation axis.
  • the flow is introduced in the direction of the rotation axis, and the pressure is increased with a predetermined inclination relative to the direction of the rotation axis similarly to the axial flow type.
  • the flow-type impeller 300 may have the same flow path as the flow direction of the wire shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention comprises: a first portion having a first hub, and a plurality of primary blades extendedly formed at equal intervals along the outer periphery of the first hub; and a second portion having a second hub coupled to the lower side of the first hub in an uneven form, and a plurality of secondary blades extendedly formed at intervals along the outer periphery of the second hub, wherein, when a projection angle between a leading edge (L.E.) and a trailing edge (T.E.) of each primary blade is Φ1, and a projection angle between a leading edge (L.E.) and a trailing edge (T.E.) of each of the plurality of secondary blades is θ1, each angle comprises upstream angles Φ1u and θ1u and downstream angles Φ1d and θ1d at which the primary blades and the secondary blades are respectively overlapped, and angles Φ1m and θ1m at which theprimary blades and the secondary blades are not respectively overlapped, and θ1 is less thanΦ1 such that the radii of the primary blade and the secondary blade satisfy 0 < θ1 <Φ1 from each hub to the tip thereof.

Description

주 날개 및 보조 날개를 구비한 임펠러Impeller with main wing and auxiliary wing
본 발명은 임펠러에 관한 것으로, 특히 다수의 주 날개(primary blades) 사이에 다수의 보조 날개(secondary blades)를 배치하여 날개 유동제어를 행하는 임펠러에 관한 것이다.The present invention relates to an impeller, and more particularly, to an impeller in which a plurality of secondary blades are disposed between a plurality of primary blades to perform blade flow control.
공지의 팬(fan), 송풍기 및 펌프와 같은 유체기계의 설계에 관한 연구는 과거 수십 년간 지속되어 설계기법에 있어 많은 발전이 이루어졌다. 그러나 최근에는 성능뿐만 아니라 소음에 대한 요구수준이 높아지고 제품의 크기가 줄어들면서 보다 수준 높은 설계수단의 개발을 필요로 하게 되었다. Studies on the design of fluid machines such as known fans, blowers and pumps have been in the past decades and many advances in design techniques have been made. In recent years, however, as the demand for noise as well as performance has increased, and the size of the product has decreased, it has become necessary to develop more advanced design means.
유체기계에 적용되는 통상의 축류형 임펠러는 압력과 유량으로 그 성능을 나타낸다. 구체적으로, 입구와 출구에서의 압력차이(Δp)는, 도 1과 같이, 유체가 날개(1) 사이로 지나가면서 날개 곡률을 따라서 유선이 휘어지면서 날개 양력에 의해 압력이 증가하게 된다. 따라서 날개 캠버선(3)을 따라 유선이 많이 휘어질수록 회전속도성분이 발생하여 압력증가에 유리하다. Conventional axial impellers applied to fluid machinery exhibit their performance at pressure and flow rates. Specifically, as shown in FIG. 1, the pressure difference? P at the inlet and the outlet increases as the fluid flows between the blades 1, and the pressure is increased by the lift of the blades as the streamlines are bent along the curvature of the blades. Therefore, as the wire is bent along the wing camber wire 3, a rotational speed component is generated, which is advantageous for increasing the pressure.
하지만 유선(stream line)이 너무 많이 휘게 되면 날개 부압면에서 유동박리도 날개 후단 (T.E.) 각도인 α2‘과 달리 α2의 각도로 나가면서 α22‘ (=δ) 차이만큼의 이탈각이 발생한다. 이때, 이탈각 δ는 하기 수학식 1과 같이 날개가 휘어진 캠버각(Φc)과, 날개코드(C)와 날개 사이의 피치(s)와의 비인 현절비(σ=C/s)의 함수이다. 즉, 캠버각(Φc)이 증가하면 이탈각이 커지며, 현절비 즉 날개코드가 증가하면 이탈각이 감소하여 성능이 증가한다.However, wired (stream line) corresponding to this if too much bend "As you at an angle of α 2, unlike the α 2 2 'in the wing negative pressure side flow separation also α 2 of the rear end (TE) blade angle (= δ) difference A deviation angle is generated. The deviation angle δ is a function of the aspect ratio (σ = C / s), which is the ratio of the camber angle (Φ c ) of the wing to the wing code (C) and the pitch (s) . That is, as the camber angle? C increases, the deviation angle increases. When the aspect ratio, that is, the wing code, increases, the deviation angle decreases and the performance increases.
Figure PCTKR2017014809-appb-M000001
Figure PCTKR2017014809-appb-M000001
여기서, δ0 은 에어포일 형상이고, m0 은 현절비이고, b 는 입구유동각(α1)에 따라 정해지는 상수이다.Where δ 0 is the airfoil shape, m 0 is the stiffness ratio, and b is a constant determined by the inlet flow angle α 1 .
종래기술은 유동박리가 일어나지 않으면서도 가능한 캠버각을 크게 하여 양력증가를 통해 큰 압력 상승을 일으키며 코드를 길게 하거나 날개수를 증가시켜 날개피치를 줄여 현절비 증가로 출구 이탈각을 줄이는 것에 집중하여 왔다. 그러나 코드를 길게 하면 회전축방향으로 임펠러가 높아지며, 압력을 높이기 위한 캠버각은 부압면에서의 유동박리로 인한 한계가 있다. The prior art has focused on increasing the camber angle without increasing the flow separation, causing a large pressure rise through lift, increasing the cord length or reducing the blade pitch by reducing the blade pitch to reduce the exit angle . However, if the cord is lengthened, the impeller becomes higher in the direction of the rotating shaft, and the camber angle for increasing the pressure is limited by the flow separation at the negative pressure surface.
미국 공개특허 US 2014/0233178 A1에는 보조 날개를 주 날개의 후단 (T.E.)근처에서 시작하도록 하여 날개가 길어진 효과로 현절비를 증가시켜 날개 출구의 이탈각을 줄여 성능을 증가시킨 예가 개시되어 있다. 그러나 이와 같은 발명은 임펠러의 높이가 증가하고, 주 날개의 길이를 주날개와 보조날개가 겹쳐진 길이만큼 길게 하는 것과 큰 성능의 차이를 보이지 않는 한계가 있다. U.S. Patent Publication No. US 2014/0233178 A1 discloses an example in which the auxiliary wing is started near the rear end (T.E.) of the main wing, thereby increasing the aspect ratio by increasing the wing length and increasing the performance by reducing the deviation angle of the wing exit. However, such an invention has a limitation in that the height of the impeller is increased and the length of the main wing is made longer as the length of the main wing and the auxiliary wing are overlapped.
한국 등록특허 제10-1342746호에는 다수의 보조날개를 다수의 주 날개들 사이에 설치하여 날개피치를 줄여 현절비를 증가시킨 종래의 임펠러가 개시되어 있다. 이와 같은 임펠러는 사출금형의 어려움으로 인해 주 날개의 겹쳐진 부분을 파내어 이로 인한 양력의 감소 및 소음의 증가가 불가피한 단점이 있다.Korean Patent No. 10-1342746 discloses a conventional impeller in which a plurality of auxiliary blades are installed between a plurality of main blades to reduce the blade pitch to increase the aspect ratio. Such an impeller has a disadvantage in that the overlapping portion of the main wing is broken due to the difficulty of the injection mold, thereby reducing lift and increasing noise.
도 2에는 후향익 원심형 임펠러(20)의 날개와 유동각이 나타나 있다. 임펠러의 압력상승과 오일러(Euler) 방정식에 의한 일은 하기 수학식 2와 같은 관계를 갖는다.2, the wings and the flow angle of the backward-arc centrifugal impeller 20 are shown. The pressure rise of the impeller and the work by the Euler equation have the relationship as shown in the following equation (2).
Figure PCTKR2017014809-appb-M000002
Figure PCTKR2017014809-appb-M000002
여기서, ηR은 임펠러의 효율로서 이론적인 전달 에너지 대비 내부 유동에 의한 이론적인 전압 상승에서 유동손실을 제외한 실제 전달에너지에 대한 퍼센트(%)이다. Where η R is the efficiency of the impeller as a percentage of the actual transfer energy excluding the flow losses at the theoretical rise in voltage due to the internal flow versus the theoretical transfer energy.
도 2에 도시된 임펠러(에서 나오는 유동은 출구날개를 따라서 흐르지 않으며 미끄러짐(slip)이 발생하며, 날개 각도가 β2b일 때 미끄러짐 계수를 μ라고 하면
Figure PCTKR2017014809-appb-I000001
이 되며, 미끄러짐 계수(μE)는 스토돌라(Stodola) 식을 사용하면 하기 수학식 3과 같이 표현된다.
The flow from the impeller shown in Fig. 2 does not flow along the outlet wing and a slip occurs, and when the blade angle is? 2b , the slip coefficient is?
Figure PCTKR2017014809-appb-I000001
, And the slip coefficient ( E ) is expressed by the following equation (3) using the Stodola equation.
Figure PCTKR2017014809-appb-M000003
Figure PCTKR2017014809-appb-M000003
여기서, NB는 날개수이며, β2는 출구유동각, U2와 Cm2 는 각각 날개끝단 회전속도와 출구유동의 절대속도의 반경방향 성분이다. 수학식 2와 수학식 3으로부터 압력전달을 높이려면 출구 절대속도의 회전성분 Cθ2를 증가시켜야 하며, 이를 위해서는 가능한 날개수를 증가시켜 슬립계수를 크게 하여야 한다.Where N B is the number of wings, β 2 is the exit flow angle, and U 2 and C m2 are the radial components of the wing tip rotation velocity and the absolute velocity of the exit flow, respectively. From the equations (2) and (3), in order to increase the pressure transmission, it is necessary to increase the rotation component Cθ2 of the absolute velocity of the exit, and to increase the slip coefficient by increasing the number of vanes possible.
미국 공개특허 US 2009/0155048 A1에는 원심형 펌프 임펠러에서 주 날개들과 동축으로 같이 회전하는 보조 날개인 스플릿 베인을 주날개 사이에 설치하여 날개수를 증가시킨 효과를 내는 예가 개시되어 있다. 그런데 큰 정압을 내는 원심형 펌프와는 달리 압력의 증가보다는 유량의 증가가 필요한 팬이나 송풍기에서는 임펠러의 직경 대비 높이 비가 펌프보다 훨씬 커서 임펠러 날개의 윗부분을 통상의 슈라우드 판으로 덮든지 아니면 날개 윗면의 출구부를 얇은 띠 형상의 원판으로 덮어 강도를 보강해야 했다. 하지만 이 경우 사출성형의 어려움이 있었다.US Patent Application US 2009/0155048 A1 discloses an example in which a split vane, which is an auxiliary wing that rotates coaxially with main wings in a centrifugal pump impeller, is installed between main wings to increase the number of wings. However, unlike a centrifugal pump that produces a large static pressure, in a fan or blower that requires an increase in flow rate rather than an increase in pressure, the height-to-diameter ratio of the impeller is much larger than the pump, so that the upper portion of the impeller blade is covered with a normal shroud plate, And the outlet had to be covered with a thin band-like disk to reinforce the strength. In this case, however, injection molding was difficult.
본 발명의 목적은 회전하는 축류형 및 원심형 임펠러의 성능 증가와 동시에 소음이 저감되도록 회전하는 다수의 보조 날개를 임펠러 높이의 증가 없이 주 날개 사이에 설치하여, 축류형의 경우에는 날개이탈각을 줄여 성능을 증가시키며 동시에 날개 후류 유동의 크기를 줄여 소음을 줄이며, 원심형의 경우에는 부압면 유동박리가 줄어들게 하여 날개 슬립계수의 개선을 통한 성능의 증가와 유동박리소음이 줄어들게 하는 임펠러를 제공하는 데 있다.It is an object of the present invention to provide a method of installing a plurality of auxiliary blades rotating between axial blades and centrifugal impellers to reduce noise while reducing the height of the blades, In the centrifugal type, it is possible to reduce the flow separation of the negative pressure side, thereby improving the blade slip coefficient and reducing the flow separation noise by reducing the size of the wing wake flow. have.
상기 목적을 달성하기 위해, 본 발명은 제1 허브와, 상기 제1 허브의 외주를 따라 동일한 간격을 두고 연장 형성된 다수의 주 날개를 구비하는 제1 부분; 및 상기 제1 허브의 하측에 요철 결합되는 제2 허브와, 상기 제2 허브의 외주를 따라 간격을 두고 연장 형성된 다수의 보조 날개를 구비하는 제2 부분;을 포함하며, 각 주 날개의 전단(L.E.)과 후단(T.E.) 사이의 투영 각도를 Φ1, 다수의 보조날개의 각 전단(L.E.)과 후단(T.E.) 사이의 투영 각도를 θ1 라고 할 때, 각 주 날개와 보조 날개가 겹치는 상류 각도 Φ1u, θ1u 및 하류 각도 Φ1d, θ1d 와, 각 주 날개와 보조 날개가 겹치지 않는 Φ1m, θ1m 으로 구성되며, 상기 Φ1 및 θ1 는 주 날개 및 보조 날개의 반경이 각 허브부터 끝단으로 가면서 0 < θ1 < Φ1를 만족하도록, 상기 θ1 이 상기 Φ1 보다 작은 것을 특징으로 하는 임펠러를 제공한다.According to an aspect of the present invention, there is provided a wireless communication device including a first portion having a first hub and a plurality of main blades extending at equal intervals along an outer periphery of the first hub; And a second portion having a plurality of auxiliary blades extending at an interval along an outer periphery of the second hub, wherein the second portion includes a first hub The projecting angle between LE and TE is Φ 1 and the projection angle between the front and rear ends of the plurality of auxiliary blades is θ 1 , And the angle Φ 1u , θ 1u, and the downstream angle Φ 1d , θ 1d, and Φ 1m , θ 1m in which each main wing and the auxiliary wing do not overlap, and φ 1 and θ 1 are the angles of the main wing and the auxiliary wing, From the hub to the end, 0 <θ 1 < So as to satisfy the Φ 1, wherein θ 1 is provided with an impeller which is smaller than the Φ 1.
상기 보조 날개의 θ1u와 θ1d 의 크기는 상기 주 날개 부압면 하류 부근의 채널이 가이드 되도록 상기 주 날개와의 겹쳐지는 각도들일 수 있다.The sizes of the first blades 慮 1u and 慮1d may be angles that overlap the main blades so that the channel near the downstream side of the main blades is guided.
상기 제1 허브는 저면에 간격을 두고 다수의 제1 결합돌기와, 상기 다수의 결합돌기에 의해 마련되는 다수의 제1 결합홈이 형성되고, 상기 제2 허브는 상면에 간격을 두고 다수의 제2 결합돌기와, 상기 다수의 결합돌기에 의해 마련되는 다수의 제2 결합홈이 형성되며, 상기 다수의 제1 결합돌기는 상기 다수의 제2 결합홈에 결합되고, 상기 다수의 제2 결합돌기는 상기 다수의 제1 결합홈에 결합될 수 있다.Wherein the first hub is formed with a plurality of first engaging projections spaced apart from each other on a bottom surface thereof and a plurality of first engaging grooves provided by the plurality of engaging projections, A plurality of second engagement grooves formed by the plurality of engagement protrusions are formed in the first engagement protrusions and the plurality of second engagement protrusions are coupled to the plurality of second engagement recesses, And may be coupled to the plurality of first coupling grooves.
상기 다수의 제1 결합돌기와 상기 다수의 제2 결합홈에 압박 결합되고, 상기 다수의 제2 결합돌기는 상기 다수의 제1 결합홈에 압박 결합될 수 있다.The plurality of first engaging projections and the plurality of second engaging grooves are press-engaged and the plurality of second engaging projections are press-engaged with the plurality of first engaging grooves.
상기 다수의 제1 결합돌기는 접착제에 의해 상기 다수의 제2 결합홈에 접착 결합되고, 상기 다수의 제2 결합돌기는 접착제에 의해 상기 다수의 제1 결합홈에 접착 결합될 수 있다.The plurality of first coupling protrusions may be adhesively coupled to the plurality of second coupling grooves by an adhesive, and the plurality of second coupling protrusions may be adhesively coupled to the plurality of first coupling grooves by an adhesive.
상기 제1 허브 및 상기 제2 허브는 띠 형상으로 이루어질 수 있다.The first hub and the second hub may be formed in a strip shape.
상기 제1 및 제2 허브는 상호 결합 시 단일 원추 형상으로 이루어질 수 있다.The first and second hubs may have a single conical shape when coupled to each other.
또한, 본 발명은, 원형 밑판과, 상기 원형 밑판의 상면 중앙에 돌출 형성된 허브와, 상기 원형 밑판의 상면에 동일한 간격을 두고 상기 허브를 중심으로 원주 방향으로 형성된 다수의 주 날개를 구비하는 제1 부분; 및 띠 형상의 슈라우드와, 상기 슈라우드의 저면을 따라 간격을 두고 일체로 형성된 다수의 보조 날개를 구비하는 제2 부분을 포함하며, 주 날개 부압면과 보조날개 압력면 사이의 입구면적을 Ssu 라 하고, 주 날개 압력면과 보조날개 부압면 사이의 입구면적을 Spu 라 하고, 각 채널 하류에서의 면적인 주 날개의 부압면 채널 하류면적을 Ssd라 하고, 주 날개의 압력면 채널 하류면적을 Spd라 할 때, 각 보조 날개의 출구각은 각 주 날개 출구각과 동일하고, 상기 보조 날개의 입구는 S 형태의 변곡이 생기는 곳에 위치하고, 상기 보조 날개의 입구각도는 채널의 주 유선에 유동각 접선이 일치하는 각도인 것을 특징으로 하는 임펠러를 제공함으로써, 상기 목적을 달성할 수도 있다.According to another aspect of the present invention, there is provided a circular bottom plate, comprising: a circular bottom plate; a hub protruding from the center of the upper surface of the circular bottom plate; and a plurality of main blades circumferentially formed around the hub, part; And a second portion having a strip-shaped shroud and a plurality of auxiliary blades integrally formed at intervals along the bottom surface of the shroud, wherein an inlet area between the main vane negative pressure surface and the auxiliary vane pressure surface is defined as Ssu , The inlet area between the main wing pressure side and the auxiliary wing negative pressure surface is Spu and the area downstream of the negative pressure side channel of the main wing, which is the area downstream of each channel, is Ssd and the area downstream of the pressure side channel of the main wing is Spd The inlet angle of each auxiliary wing is the same as the angle of each main wing outlet, the inlet of the auxiliary wing is located at a position where an S-shaped curvature occurs, and the inlet angle of the auxiliary wing is equal to the flow angle tangent The above object can also be achieved by providing an impeller which is characterized in that the angle is an angle that makes it possible to achieve the above object.
상기 Ssu와 상기 Spu가 동일하게 되도록 상기 보조 날개 전단(L.E.)을 입구 동일 반경 채널 사이로 위치할 수 있다.The auxiliary blade front end (L.E.) may be located between the inlet and equal radius channels such that Ssu and Spu are the same.
상기 Ssu와 Ssd가 유사하게 유지되도록 상기 보조 날개 전단(L.E.)을 피봇점으로 하여 상기 보조 날개 후단(T.E.)을 출구 동일 반경 채널 사이로 회전 이동하여 출구각과 채널 사이 출구위치를 설정할 수 있다.The exit angle and the exit position between the channels can be set by rotating the auxiliary blade front end (T.E.) by rotating the auxiliary blade front end (L.E.) as a pivot point so that Ssu and Ssd are kept similar.
상기 슈라우드는 띠 형상으로 이루어질 수 있다.The shroud may have a strip shape.
상기 밑판은 상면에 상기 다수의 보조 날개의 하단이 삽입되는 다수의 제1 결합홈이 형성되고, 상기 슈라우드는 저면에 상기 다수의 주 날개의 상단이 삽입되는 다수의 제2 결합홈이 형성될 수 있다.The base plate has a plurality of first coupling grooves on the upper surface thereof for receiving the lower ends of the plurality of auxiliary blades, and a plurality of second coupling grooves for inserting the upper ends of the plurality of main blades are formed on the bottom surface of the shroud. have.
상기 다수의 보조 날개의 하단은 상기 다수의 제1 결합홈에 압박 결합되고, 상기 다수의 주 날개의 하단은 상기 다수의 제2 결합홈에 압박 결합될 수 있다.The lower ends of the plurality of auxiliary vanes may be pushed into the plurality of first coupling grooves and the lower ends of the plurality of main vanes may be pushed into the plurality of second coupling grooves.
상기 다수의 보조 날개의 하단은 접착제에 의해 상기 다수의 제1 결합홈에 접착 결합되고, 상기 다수의 주 날개의 하단은 접착제에 의해 상기 다수의 제2 결합홈에 접착 결합될 수 있다.The lower ends of the plurality of auxiliary wings are adhesively bonded to the plurality of first coupling grooves by an adhesive, and the lower ends of the plurality of main wings may be adhesively bonded to the plurality of second coupling grooves by an adhesive.
각 주 날개 사이에 1개씩 배치된 다수의 보조 날개는 임펠러의 회전 방향을 따라 서로 상이한 간격으로 배치될 수 있다.A plurality of auxiliary blades arranged one by one between the main blades can be arranged at different intervals along the rotational direction of the impeller.
상기 원형 밑판과 상기 슈라우드는 유동 하류방향으로 경사지거나 회전축 방향에 평행하게 형성될 수 있다.The circular bottom plate and the shroud may be inclined in the downstream direction of the flow or parallel to the direction of the rotation axis.
상기 원형 밑판의 외경이 상기 슈라우드의 내경보다 작게 형성될 수 있다.The outer diameter of the circular bottom plate may be smaller than the inner diameter of the shroud.
상기 다수의 주 날개와 상기 다수의 보조 날개는 상기 원형 밑판과 상기 슈라우드에 일체로 결합될 수 있다.The plurality of main blades and the plurality of auxiliary blades may be integrally coupled to the circular bottom plate and the shroud.
이상에서 설명한 바와 같이 본 발명에 따른 주 날개사이의 채널에 보조날개를 배치한 임펠러는 하기와 같이 축류형과 원심형에 대하여 각각 하기와 같은 이점이 있다.As described above, the impeller in which the auxiliary vanes are arranged in the channels between the main wings according to the present invention has the following advantages with respect to the axial flow type and the centrifugal type as described below.
본 발명에 따른 축류형 임펠러의 경우, 주 날개의 부압면에서의 2차 유동을 줄이며 날개 후단의 이탈각을 줄여 압력증가와 소음감소 효과를 얻을 수 있다. 또한, 임펠러 높이를 증가시키지 않도록 다수의 주 날개 사이에 각각 다수의 보조 날개를 배치하는 경우, 다수의 주 날개가 연결된 상부 허브로 이루어진 제1 부품과, 다수의 보조날개가 연결된 하부 허브로 이루어진 제2 부분을 서로 별개의 부분으로서 사출 형성하고, 상부 허브 및 하부 허브를 원주상 반경 두께를 갖는 띠 형상으로 형성하고 상호 요철 결합 가능한 구조를 가짐에 따라, 사출성형 과정에서 날개가 중첩되어 금형 상하 빼기가 어려운 문제를 근본적으로 해결할 수 있다.In the case of the axial flow impeller according to the present invention, the secondary flow at the negative pressure side of the main blade can be reduced and the angle of departure at the rear end of the blade can be reduced to obtain pressure increase and noise reduction effect. In addition, when a plurality of auxiliary blades are arranged between a plurality of main blades so as not to increase the height of the impeller, a plurality of auxiliary blades, each of which includes a first part composed of an upper hub to which a plurality of main blades are connected, The upper hub and the lower hub are formed into a strip shape having a circumferential radial thickness so that the wings are overlapped in the injection molding process so that the upper and lower hubs Can fundamentally solve difficult problems.
본 발명에 따른 원심형 임펠러의 경우, 후향익과 전향익 또는 레이디얼이 조합된 하이브리드 S 형태의 주 날개의 부압면에서의 2차 유동을 줄이며 날개슬립의 감소를 통해 에너지전달의 증가와 소음감소의 효과를 얻을 수 있다. 또한, 다수의 주 날개가 붙은 밑판으로 이루어진 제1 부분과 다수의 보조날개가 붙은 띠 형태의 슈라우드로 이루어진 제2 부분을 별개의 부품으로서 사출 성형하고, 다수의 주 날개가 슈라우드에 요철 결합하고 다수의 보조날개가 밑판에 요철 결합하도록 형성함으로써, 사출성형 시 발생하는 문제를 해결할 수 있다.In the case of the centrifugal impeller according to the present invention, the secondary flow at the negative pressure side of the hybrid S-type main wing combined with the backward wing and the forward wing or the radial is reduced and the increase of energy transfer and noise reduction Effect can be obtained. A second part made of a shroud having a plurality of auxiliary blades attached thereto is injection molded as a separate component, and a plurality of main blades are coupled to the shroud concavely and convexly So that the problem caused by the injection molding can be solved.
도 1은 일반적인 축류형 임펠러 날개 사이의 유동 관련 설계 변수 및 날개 관련 설계변수들을 설명하기 위한 도면이다.FIG. 1 is a view for explaining flow-related design variables and blade-related design parameters between general axial flow impeller blades.
도 2는 종래의 후향익 원심형 임펠러의 날개와 유동각 관련 설계변수들을 설명하기 위한 도면이다.2 is a view for explaining design variables related to a blade and a flow angle of a conventional backward centrifugal impeller.
도 3은 본 발명의 일 실시예에 따른 축류형 임펠러를 나타내는 조립 사시도이다.3 is an assembled perspective view illustrating an axial flow impeller according to an embodiment of the present invention.
도 4는 도 3에 도시된 축류형 임펠러의 제1 부분의 저면과 제2 부분의 상면을 동시에 도시한 분해 사시도이다.Fig. 4 is an exploded perspective view showing the bottom surface of the first portion of the axial-flow impeller shown in Fig. 3 and the top surface of the second portion at the same time.
도 5는 본 발명의 일 실시예에 따른 축류형 임펠러와 종래의 임펠러의 날개 주위의 유동이 개략적으로 유선과 함께 보여주는 도면이다.FIG. 5 is a schematic view of a flow around a wing of an axial flow impeller according to an embodiment of the present invention and a conventional impeller together with a wired line.
도 6은 본 발명의 일 실시예에 따른 축류형 임펠러의 주 날개 및 보조 날개 간의 구조를 보여주는 도면이다.6 is a view showing a structure between a main blade and an auxiliary blade of an axial flow impeller according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 원심형 임펠러를 나타내는 조립 사시도이다.7 is an assembled perspective view illustrating a centrifugal impeller according to another embodiment of the present invention.
도 8은 도 7에 도시된 원심형 임펠러의 제1 부분의 저면과 제2 부분의 상면을 동시에 도시한 분해 사시도이다.8 is an exploded perspective view showing the bottom surface of the first part of the centrifugal impeller shown in FIG. 7 and the top surface of the second part at the same time.
도 9는 본 발명의 다른 실시예에 따른 원심형 임펠러의 주 날개 후류 유동형태가 후향익(실선으로 표시)이고 스플릿 베인 형태의 보조 날개를 구비한 예와, 원심형 임펠러의 주 날개 후류 유동형태가 전향익(점선으로 표시)인 것을 함께 도시한 도면이다. FIG. 9 is a view showing an example in which the flow shape of the main wing of the centrifugal impeller according to another embodiment of the present invention is a reverse wing (indicated by a solid line) and having an auxiliary wing in the form of a split vane, (Indicated by a dotted line).
도 10은 본 발명의 다른 실시예에 따른 원심형 임펠러의 주 날개와 보조 날개를 함께 보여주는 단면도이다.10 is a cross-sectional view showing a main blade and an auxiliary blade of a centrifugal impeller according to another embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 원심형 임펠러의 보조 날개의 채널 사이의 위치를 회전방향으로 동일하게 배치하지 않고 랜덤하게 배치한 예를 나타낸 도면이다.11 is a view showing an example in which the positions of the channels of the auxiliary vanes of the centrifugal impeller according to another embodiment of the present invention are randomly arranged without being equally arranged in the rotating direction.
도 11은 본 발명의 다른 실시예에 따른 원심형 임펠러의 보조 날개의 채널 사이의 위치를 회전방향으로 동일하게 배치하지 않고 랜덤하게 배치한 예를 나타낸 도면이다.11 is a view showing an example in which the positions of the channels of the auxiliary vanes of the centrifugal impeller according to another embodiment of the present invention are randomly arranged without being equally arranged in the rotating direction.
도 12는 본 발명의 또 다른 실시예에 따른 사류형 주 날개와 보조 날개를 구비한 임펠러를 나타내는 사시도이다.12 is a perspective view showing an impeller having a main wing and a secondary wing according to another embodiment of the present invention.
도 13은 본 발명의 또 다른 실시예에 따른 임펠러를 나타내는 평면도이다.13 is a plan view showing an impeller according to another embodiment of the present invention.
도 14는 도 13에 표시된 A-A선을 따라 나타낸 단면도이다.14 is a cross-sectional view taken along the line A-A shown in Fig.
[도면의 부호의 설명][Description of reference numerals]
110: 제1 부분 110: first part
111: 제1 허브111: First hub
115: 제1 결합돌기 115: first engaging projection
117: 제1 결합홈117: first coupling groove
120: 주 날개 120: Main wing
130: 제2 부분130: Second part
131: 제2 허브 131: second hub
135: 제2 결합돌기135: second engaging projection
137: 제2 결합홈 137: second engaging groove
140: 보조 날개140: Auxiliary wing
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 축류형 임펠러와 다른 실시예에 따른 원심형 임펠러에 대하여 순차적으로 설명한다.Hereinafter, an axial flow type impeller according to an embodiment of the present invention and a centrifugal type impeller according to another embodiment will be sequentially described with reference to the drawings.
도 3은 본 발명의 일 실시예에 따른 축류형 임펠러를 나타내는 조립 사시도이고, 도 4는 도 3에 도시된 축류형 임펠러의 제1 부분의 저면과 제2 부분의 상면을 동시에 도시한 분해 사시도이다.FIG. 3 is an assembled perspective view illustrating an axial flow impeller according to an embodiment of the present invention, and FIG. 4 is an exploded perspective view illustrating a bottom surface of the first portion of the axial flow impeller shown in FIG. 3 and an upper surface of the second portion at the same time .
도 3을 참조하면, 본 발명의 일 실시예에 따른 축류형 임펠러(100)는 별개의 부품으로 이루어지는 제1 부분(110)과 제2 부분(130)을 포함한다. 별도로 제작된 제1 부분(110) 및 제2 부분(130)은 상호 결합한 상태로 임펠러로서 사용된다.Referring to FIG. 3, the axial flow impeller 100 according to an embodiment of the present invention includes a first part 110 and a second part 130 which are separate parts. The separately manufactured first part 110 and the second part 130 are used as an impeller in a mutually coupled state.
도 4를 참조하면, 제1 부분(110)은 대략 링 형상으로 이루어진 제1 허브(111)와, 제1 허브(111)의 외주면에 동일한 간격을 두고 형성된 다수의 주 날개(primary blades)(120)를 포함한다.Referring to FIG. 4, the first portion 110 includes a first hub 111 having a substantially ring shape, a plurality of primary blades 120 (not shown) formed at equal intervals on the outer circumferential surface of the first hub 111, ).
제1 허브(111)는 축류형 임펠러(100)를 회전 구동시키기 위해 회전축(미도시)과 같은 소정의 구동 부재와 연결될 수 있도록 중앙에 구멍(113)이 형성될 수 있다.The first hub 111 may be formed with a hole 113 at the center so as to be connected to a predetermined driving member such as a rotating shaft (not shown) for rotationally driving the axial flow impeller 100.
또한, 제1 허브(111)는 저면을 따라 동일한 간격으로 다수의 제1 결합돌기(115)가 돌출 형성된다. 이 경우, 각 제1 결합돌기(115) 사이에는 후술하는 다수의 제2 결합돌기(135)가 삽입되는 다수의 제1 결합홈(117)이 마련된다.In addition, the first hub 111 has a plurality of first coupling protrusions 115 protruding at equal intervals along the bottom surface thereof. In this case, a plurality of first coupling grooves 117 into which a plurality of second coupling protrusions 135 to be described later are inserted are provided between the respective first coupling protrusions 115.
다수의 주 날개(120)는 허브(111)의 일단이 외주면에 일체로 연결되고, 타단으로 갈수록 소정 곡률로 휘어지게 형성된다. A plurality of main blades 120 are integrally connected to the outer circumferential surface of one end of the hub 111 and bent at a predetermined curvature toward the other end.
도 4와 같이, 각 주 날개(120)는 부압면(121)과, 부압면의 반대측에 위치한 압력면(123)과, 제1 허브(111)에 인접한 날개 허브면(125)과, 주 날개(120)의 끝단에 위치한 날개팁 면(127)을 포함한다. 이 경우, 각 주 날개(120)는 상단을 전단(L.E.)으로 정의하고, 하단을 후단(T.E.)으로 정의한다.4, each main wing 120 includes a negative pressure surface 121, a pressure surface 123 located on the opposite side of the negative pressure surface, a wing hub surface 125 adjacent to the first hub 111, And a wing tip surface 127 at the end of the wing tip 120. In this case, the upper end of each main wing 120 is defined as a front end (L.E.) and the lower end is defined as a rear end (T.E.).
제2 부분(130)은 대략 링 형상으로 이루어진 제2 허브(131)와, 제2 허브(131)의 외주면에 동일한 간격을 두고 형성된 다수의 주 날개(primary blades)(140)를 포함한다.The second portion 130 includes a second hub 131 formed in a substantially ring shape and a plurality of primary blades 140 formed at equal intervals on the outer circumferential surface of the second hub 131.
또한, 제2 허브(131)는 제1 허브(111)와 마찬가지로 중앙에 구멍(133)이 형성될 수 있다. 이 경우 제2 허브(131)의 외경은 제1 허브(111)의 외경과 동일하게 형성될 수 있고, 제2 허브(131)의 내경은 제1 허브(111)의 내경과 같거나 작게 형성될 수 있으며, 이는 회전축 또는 회전축에 대응하는 회전하는 구동 부재에 임펠러(100)를 고정하기 위해 고려될 수 있는 구조이다.Also, the second hub 131 may have a hole 133 formed at the center thereof, like the first hub 111. In this case, the outer diameter of the second hub 131 may be the same as the outer diameter of the first hub 111, and the inner diameter of the second hub 131 may be equal to or smaller than the inner diameter of the first hub 111 Which is a structure that can be considered for securing the impeller 100 to a rotating driving member corresponding to the rotating shaft or the rotating shaft.
또한, 제2 허브(131)는 상면을 따라 동일한 간격으로 다수의 제2 결합돌기(135)가 돌출 형성된다. 이 경우, 각 제2 결합돌기(135) 사이에는 다수의 제1 결합돌기(115)가 삽입되는 다수의 제2 결합홈(137)이 마련된다.In addition, the second hub 131 has a plurality of second coupling protrusions 135 formed at equal intervals along the upper surface thereof. In this case, a plurality of second coupling grooves 137 are formed between the second coupling protrusions 135, into which a plurality of first coupling protrusions 115 are inserted.
이와 같이, 제1 및 제2 허브(111, 131)는 다수의 제1 결합돌기(115)가 다수의 제2 결합홈(137)에 삽입되고, 동시에 다수의 제2 결합돌기(135)가 다수의 제1 결합홈(117)에 각각 삽입됨에 따라 상호 결합된다. 이 경우, 제1 및 제2 허브(111, 131)는 상호 압박 상태로 결합되거나, 별도의 접착제를 이용하여 상호 접착될 수 있다.As described above, the first and second hubs 111 and 131 are configured such that a plurality of first coupling protrusions 115 are inserted into the plurality of second coupling grooves 137, and at the same time, a plurality of second coupling protrusions 135 And are coupled to each other as they are respectively inserted into the first coupling grooves 117 of the main body 110. [ In this case, the first and second hubs 111 and 131 may be coupled to each other in a compressed state or may be bonded to each other using a separate adhesive.
다수의 보조 날개(140)는 일단이 제2 허브(131)의 외주면에 일체로 연결되고, 타단으로 갈수록 소정 곡률로 휘어지게 형성된다. 또한, 제1 및 제2 허브(111, 131)가 상호 결합하게 되면, 다수의 보조 날개(140)는 각각 다수의 주 날개(120) 하측에 배치될 수 있다.The plurality of auxiliary vanes 140 are integrally connected to the outer circumferential surface of the second hub 131 at one end and curved at a predetermined curvature toward the other end. In addition, when the first and second hubs 111 and 131 are coupled to each other, the plurality of auxiliary blades 140 may be disposed below the plurality of main blades 120, respectively.
도 4와 같이, 각 보조 날개(140)는 부압면(141)과, 부압면의 반대측에 위치한 압력면(143)과, 제2 허브(131)에 인접한 날개 허브면(145)과, 보조 날개(140)의 끝단에 위치한 날개팁 면(147)을 포함한다. 이 경우, 각 보조 날개(140)는 상단을 선단(L.E.)으로 정의하고, 하단을 후단(T.E.)으로 정의한다.4, each of the auxiliary vanes 140 includes a negative pressure surface 141, a pressure surface 143 located on the opposite side of the negative pressure surface, a vane hub surface 145 adjacent to the second hub 131, And a wing tip surface 147 at the end of the wing tip 140. In this case, each of the auxiliary vanes 140 defines the upper end thereof as a tip end (L.E.) and the lower end thereof as a rear end (T.E.).
도 5는 본 발명의 일 실시예에 따른 축류형 임펠러와 종래의 임펠러의 날개 주위의 유동이 개략적으로 유선과 함께 보여주는 도면이다.FIG. 5 is a schematic view of a flow around a wing of an axial flow impeller according to an embodiment of the present invention and a conventional impeller together with a wired line.
도 5(a)를 참조하면, 일반적으로 입구 영각이 +인 경우(즉, 입구유동이 입구 날개 캠버접선방향보다 압력면 쪽으로 입사하는 경우), 날개의 캠버로 인해 부압면(S) 위에서 유동박리가 일어나 유선이 날개를 따라 흐르지 못하고 날개후단 캠버접선방향보다 부압면쪽으로 벗어나게 된다. 이 경우에는 날개후단 근처에서 유동박리로 인한 두꺼운 경계층 유동이 진행하면서 δ'의 두꺼운 후류 유동이 발생하게 된다. 도 5(a)에서 미설명부호 P는 날개의 압력면을 나타낸다.Referring to FIG. 5A, when the inlet angle is + (that is, when the inlet flow is incident on the pressure surface side with respect to the inlet wing camber tangential direction), the flow separation on the negative pressure surface S due to the camber of the wing So that the streamline can not flow along the wing and deviate toward the negative pressure side than the tangential direction of the wing tail camber. In this case, the flow of the thick boundary layer due to the flow separation near the rear end of the wing proceeds and a thick wake flow of δ 'occurs. In FIG. 5 (a), reference numerals P denote the pressure surfaces of the vanes.
그런데 본 발명은, 도 5(b)와 같이, 두 개의 주 날개(120) 사이에 보조 날개(140)가 배치된다. 이에 따라, 입구면적 A2와 A3의 채널 유동을 만들면 도 5(a)와 같이 주 날개 사이의 입구 면적 A1에서부터 유동이 감속되어 유동박리가 일어나는 것과는 달리, 입구면적 A2 부근에서는 오히려 가속이 일어나면서 주 날개(120)의 부압면(121) 하류에서 유동박리가 없어진다. 또한, 보조 날개(140)의 부압면(141)에서 작은 크기의 유동박리로 인해 좁은 후류 두께 δ'가 발생하며, 채널 사이의 이탈각 δ도 줄어들어 날개 캠버에 의한 압력증가가 발생하게 하므로 보조날개가 없는 경우보다 더 큰 캠버각의 적용이 가능하다.However, in the present invention, as shown in FIG. 5 (b), an auxiliary blade 140 is disposed between two main blades 120. Accordingly, unlike the inlet area A flow is decelerated from the entrance area A 1 between 5 main blade as shown in (a) creating a channel flow of 2 and A 3 occurs the flow separation, in the inlet area A 2 near rather accelerates The flow separation is eliminated at the downstream side of the negative pressure surface 121 of the main wing 120. In addition, due to the small amount of flow separation at the negative pressure surface 141 of the auxiliary vane 140, a narrow wake thickness? 'Is generated and the deviation angle? Between the channels is also reduced to cause an increase in pressure by the vane camber, A larger camber angle can be applied.
도 6은 본 발명의 일 실시예에 따른 축류형 임펠러의 주 날개 및 보조 날개 간의 관계를 보여주는 도면이다.6 is a view showing a relationship between a main blade and an auxiliary blade of an axial flow impeller according to an embodiment of the present invention.
도 6을 참조하면, 주 날개(120)의 전단 (L.E.)과 후단 (T.E.)사이의 제1 원통위 각도는 Φ1이며 같은 수의 보조날개(140)의 전단 (L.E.)과 후단 (T.E.)사이의 제2 원통위 각도는 θ1이다. 6, the first cylinder angle between the front end LE and the rear end TE of the main wing 120 is Φ 1 and the front end LE and the rear end TE of the same number of the auxiliary wings 140, Lt; RTI ID = 0.0 &gt; 1. & Lt; / RTI &gt;
그리고 제1 원통위 각도 Φ1은 보조 날개(140)와 겹치는 상류 각도 Φ1u 와, 하류 각도 Φ1d 와, 보조 날개(140)와 겹치지 않는 Φ1m로 구성된다. 여기서, Φ1u = θ1d, Φ1d = θ1u 이며, 이 값들은 날개 반경이 허브부터 끝단으로 가면서 바뀌게 된다. 만일 Φ1 = θ1이면 동일한 날개의 수가 2배가 되는 배치가 되므로, 본 발명은 0 < θ1 < Φ1를 만족하여 주 날개(120)보다 보조 날개(140)의 각도간격이 작은 경우이며, 보조 날개(140)의 후단이 주 날개(120)의 후단과 일치하여 임펠러(100, 도 3 참조)의 높이가 증가하지 않도록 하며, 보조날개의 θ1u 가 θ1d 보다 커서 주 날개(120)의 부압면(121, 도 4 참조) 하류 부근의 채널이 충분히 가이드 되도록 한다. The first cylinder head angle? 1 is composed of an upstream angle? 1u overlapping with the auxiliary vane 140, a downstream angle? 1d, and? 1m which does not overlap with the auxiliary vane 140. Here, Φ 1u = θ 1d , Φ 1d = θ 1u , and these values change as the blade radius goes from the hub to the end. If? 1 =? 1, then the number of the same blades would be doubled, so that the present invention is 0 <? 1 < 3 and the rear end of the auxiliary wing 140 coincides with the rear end of the main wing 120 so that the impeller 100 (see Fig. 3) not to increase the height of and (see 121, Fig. 4) the suction side of the auxiliary wings of the cursor θ 1u main blade 120 than θ 1d so that the vicinity of the downstream guide channel fully.
전술한 바와 같이, 제1 허브(111)와 제2 허브(131)는 제1 및 제2 결합돌기(115, 135)와 제1 및 제2 결합홈(117, 137)에 의해 도 3과 같이 상호 결합된다. 이때 주 날개(120)의 하류각도 Φ1d에 해당하는 주 날개(120)의 후단 부분은 제1 허브(111)에는 붙지 않으나 제2 허브(131)와 밀착 결합된다.As described above, the first hub 111 and the second hub 131 are formed by the first and second coupling protrusions 115 and 135 and the first and second coupling grooves 117 and 137 as shown in FIG. 3 They are mutually coupled. The rear end portion of the main wing 120 corresponding to the downstream angle Φ 1d of the main wing 120 is not attached to the first hub 111 but is tightly coupled to the second hub 131.
도면에 도시하지는 않았으나, 제1 및 제2 허브(111, 131)가 원통 형상이 아닌 원추 형상으로 제작될 수 있다. 예를 들어, 제1 허브(111)의 하측에 제2 허브(131)를 결합하는 경우, 전체적으로 단일 원추 형상을 이룰 수도 있다. 이와 같이 제1 및 제2 허브가 원추 형상으로 이루어지는 경우 사류형 임펠러로도 사용될 수 있다.Although not shown in the drawing, the first and second hubs 111 and 131 may be formed in a conical shape instead of a cylindrical shape. For example, when the second hub 131 is coupled to the lower side of the first hub 111, a single conical shape may be formed as a whole. If the first and second hubs are formed in the shape of a cone, they can also be used as a saddle type impeller.
도 7은 본 발명의 다른 실시예에 따른 원심형 임펠러를 나타내는 조립 사시도이고, 도 8은 도 7에 도시된 윈심형 임펠러의 제1 부분의 저면과 제2 부분의 상면을 동시에 도시한 분해 사시도이다.FIG. 7 is an assembled perspective view illustrating a centrifugal impeller according to another embodiment of the present invention, and FIG. 8 is an exploded perspective view illustrating a bottom surface of the first part of the centrifugal impeller shown in FIG. 7 and an upper surface of the second part at the same time .
도 7을 참조하면, 본 발명의 다른 실시예에 따른 원심형 임펠러(200)는 전술한 본 발명의 일 실시예에 따른 축류형 임펠러(100)와 마찬가지로 각각 사출성형을 통해 별개의 부품으로 이루어지는 제1 부분(210)과 제2 부분(230)을 포함한다. 제1 부분(210) 및 제2 부분(230)은 상호 결합한 상태로 임펠러로서 사용된다.Referring to FIG. 7, the centrifugal impeller 200 according to another embodiment of the present invention, like the axial flow impeller 100 according to the above-described embodiment of the present invention, 1 &lt; / RTI &gt; portion 210 and a second portion &lt; RTI ID = 0.0 &gt; 230 &lt; / RTI & The first portion 210 and the second portion 230 are used as an impeller in a state of mutual engagement.
도 8을 참조하면, 제1 부분(210)은 허브(211)와, 원형의 플레이트로 이루어진 밑판(225)과, 일정한 간격을 두고 형성된 다수의 주 날개(220)를 포함한다.Referring to FIG. 8, the first portion 210 includes a hub 211, a base plate 225 formed of a circular plate, and a plurality of main blades 220 formed at regular intervals.
허브(211)는 원심형 임펠러(200)를 회전 구동시키기 위해 회전축(미도시)과 같은 소정의 구동 부재와 연결될 수 있도록 중앙에 구멍(213)이 형성될 수 있다. 허브(211)는 대략 원추 형상으로 이루어질 수 있다.The hub 211 may be formed with a hole 213 at the center so as to be connected to a predetermined driving member such as a rotating shaft (not shown) for rotating the centrifugal impeller 200. The hub 211 may have a substantially conical shape.
밑판(215)은 상면 중앙부에 허브(211)의 하단이 일체로 연결 형성된다. 밑판(215)은 다수의 주 날개(220)가 원주 방향을 따라 동일한 간격으로 배치되고, 다수의 주 날개(220)의 하단이 밑판(215)의 상면에 일체로 연결 형성된다.The lower plate 215 is integrally formed with the lower end of the hub 211 integrally formed at the center of the upper surface. A plurality of main blades 220 are arranged at equal intervals along the circumferential direction of the base plate 215 and the lower ends of the plurality of main blades 220 are integrally connected to the upper surface of the base plate 215.
또한, 밑판(215)은 상면에 서로 인접한 주 날개(220) 사이에 후술하는 다수의 보조 날개(240)의 하단이 삽입되는 다수의 제1 결합홈(217)이 형성된다.The base plate 215 is formed with a plurality of first coupling grooves 217 between which the lower ends of a plurality of auxiliary vanes 240 described later are inserted between the main blades 220 adjacent to each other on the upper surface.
다수의 주 날개(220)는 전단(L.E.)이 제1 허브(211)의 외주면에 인접하게 배치되고, 전단으로부터 후단(T.E.)으로 갈수록 소정 곡률로 휘어지게 형성된다. A plurality of main blades 220 are arranged such that a front end (L.E.) is disposed adjacent to the outer circumferential surface of the first hub 211 and is bent at a predetermined curvature from the front end to the rear end (T.E.).
각 주 날개(220)는 부압면(221)과, 부압면의 반대측에 위치한 압력면(223)과, 밑판(215)에 인접한 날개 아랫면(225)과, 후술하는 제2 부분(230)의 슈라우드(231)에 인접한 날개 윗면(227)을 포함한다. 이 경우, 각 주 날개(220)의 내측단을 전단(L.E.)으로 정의하고, 외측단을 후단(T.E.)으로 정의한다.Each main wing 220 has a negative pressure surface 221, a pressure surface 223 located on the opposite side of the negative pressure surface, a wing undersurface 225 adjacent to the bottom plate 215 and a shroud And a wing top surface (227) adjacent to the wing surface (231). In this case, the inner end of each main wing 220 is defined as a front end (L.E.), and the outer end is defined as a rear end (T.E.).
제2 부분(230)은 대략 링 형상으로 이루어진 슈라우드(231)와, 슈라우드(231)의 저면을 따라 동일한 간격을 두고 형성된 다수의 보조 날개(240)를 포함한다. 이 경우, 다수의 보조 날개(240)는 원호 형상 또는 S자 형상으로 이루어질 수 있다.The second portion 230 includes a shroud 231 having a generally ring shape and a plurality of auxiliary blades 240 formed at equal intervals along the bottom surface of the shroud 231. In this case, the plurality of auxiliary blades 240 may be formed in an arc shape or an S shape.
슈라우드(231)의 외경은 대략 밑판(215)의 외경과 동일하게 형성될 수 있다. 또한, 슈라유드(231)의 저면에는 다수의 보조 날개(240) 사이에 다수의 주 날개(220)가 삽입되는 다수의 제2 결합홈(233)이 마련된다. 다수의 제2 결합홈(233)에는 각각 다수의 주 날개(220)의 상단의 일부가 삽입된 수 있다.The outer diameter of the shroud 231 may be approximately the same as the outer diameter of the bottom plate 215. A plurality of second coupling grooves 233 are formed in the bottom surface of the shroud 231 to insert a plurality of main blades 220 between the plurality of auxiliary blades 240. And a plurality of upper ends of the plurality of main blades 220 may be respectively inserted into the plurality of second coupling grooves 233.
이와 같이, 다수의 제1 결합홈(217)에 다수의 보조 날개(240)의 하단이 삽입되고, 동시에 다수의 제2 결합홈(233)에 다수의 주 날개(220)의 상단이 삽입됨에 따라, 제1 및 제2 부분(210, 230)은 상호 결합된다. 이 경우, 각 결합부분은 상호 압박 상태로 결합되거나, 별도의 접착제를 이용하여 상호 접착될 수 있다.As the lower ends of the plurality of auxiliary vanes 240 are inserted into the plurality of first coupling grooves 217 and the upper ends of the plurality of main vanes 220 are inserted into the plurality of second coupling grooves 233, And the first and second portions 210 and 230 are coupled to each other. In this case, each of the engaging portions may be bonded to each other in a state of being pressed together or may be bonded to each other by using a separate adhesive.
다수의 보조 날개(240)는 각각 부압면(241)과, 부압면의 반대측에 위치한 압력면(243)과, 날개 아랫면(245)과, 슈라우드(231)에 인접한 날개 윗면(247)을 포함한다. 이 경우, 각 보조 날개(240)의 내측단을 선단(L.E.)으로 정의하고, 외측단을 후단(T.E.)으로 정의한다.The plurality of auxiliary vanes 240 each include a negative pressure surface 241 and a pressure surface 243 located on the opposite side of the negative pressure surface and a wing lower surface 245 and a wing top surface 247 adjacent to the shroud 231 . In this case, the inner end of each auxiliary wing 240 is defined as a tip end (L.E.), and the outer end is defined as a rear end (T.E.).
도 9는 본 발명의 다른 실시예에 따른 원심형 임펠러의 주 날개 후류 유동형태가 후향익(실선으로 표시)이고 스플릿 베인 형태의 보조 날개를 구비한 예와, 원심형 임펠러의 주 날개 후류 유동형태가 전향익(점선으로 표시)인 것을 함께 도시한 도면이고, 도 10은 본 발명의 다른 실시예에 따른 원심형 임펠러의 주 날개와 보조 날개를 함께 보여주는 단면도이다. FIG. 9 is a view showing an example in which the flow shape of the main wing of the centrifugal impeller according to another embodiment of the present invention is a reverse wing (indicated by a solid line) and having an auxiliary wing in the form of a split vane, FIG. 10 is a cross-sectional view showing a main blade and an auxiliary blade of a centrifugal impeller according to another embodiment of the present invention. FIG.
도 9를 참조하면, 원심형 임펠러 주 날개 후류 유동형태가 후향익인 것을 실선으로 표시하고, 원심형 임펠러 주 날개 후류 유동형태가 전향익인 것을 점선으로 각각 표시하였다. Referring to FIG. 9, a dotted line indicates that the flow shape of the main wing of the centrifugal impeller is indicated by a solid line, and a dotted line indicates that the wake flow shape of the centrifugal impeller is the forward flow.
이 경우, 회전방향과 반대 방향으로 휘어진 후향익에서는 파란색 실선으로 표시된 바와 같이 압력면을 제외하면 슬립에 의한 날개 사이의 넓은 후류(wake)유동이 존재한다. 한편, 주 날개 출구가 회전방향과 같은 방향으로 휘어진 전향익에서는 주황색 실선과 같이 회전방향으로 휘어지면서 부압면에서 큰 유동박리가 발생하므로 후류(wake)의 에너지손실이 후향익 출구날개보다 크다. 그러나 회전방향 출구 상대속도로 상기 수학식 2의 Cθ2 의 증가로 압력에너지증가는 상대적으로 크다.In this case, there is a wake flow between the blades due to the slip, except for the pressure surface, as indicated by the blue solid line in the backward curved shape which is bent in the opposite direction to the rotational direction. On the other hand, the energy loss of the wake is larger than that of the backward wing exit wing because the flow wing is bent in the rotational direction like the orange solid line in the forward wing where the main wing outlet is bent in the same direction as the rotation direction. However, the increase in the pressure energy due to the increase of C? 2 in Equation (2) is relatively large at the rotational direction outlet relative speed.
본 발명은 후향익 날개의 높은 효율과 전향익 날개의 고압력에너지의 장점을 동시에 이용하기 위해, S 형태의 하이브리드 날개가 도 10에 함께 도시되어 있으나 전향익 날개 부압면의 큰 유동박리를 극복하기 위해 주 날개 사이에 스플릿 베인이라고 불리는 보조 날개가 설치되어 축류형 임펠러에서와 같이 채널을 두 개로 나눔에 따라 초록색 실선과 같이 주 날개 부압면에서의 슬립과 후류 유동은 감소되며 단지 보조 날개 부압면에서 작은 유동박리와 함께 후류 유동이 존재하므로 세 가지 유동형태 중 가장 바람직하다. In order to simultaneously utilize the high efficiency of the rearward wing and the high pressure energy of the forward wing blade, the hybrid wing of the S shape is shown in FIG. 10, but in order to overcome the large flow separation of the forward wing- The auxiliary wing, called the split vane, is installed between the main wings. By dividing the channel into two as in the axial flow type impeller, the slip and wake flow on the main wing negative pressure side are reduced like the green solid line, Since there is a wake flow with flow separation, it is most preferable among the three flow types.
도 9에서 미설명 부호 U2와 Cm2 는 각각 날개끝단 회전속도와 출구유동의 절대속도의 반경방향 성분이고, Cθ2는 출구 절대속도의 회전성분이고, C2와 W2는 각각 출구 절대속도벡터의 크기 및 출구 상대속도벡터의 크기이다.In FIG. 9, reference numerals U 2 and C m2 denote radial components of the blade tip rotational speed and the absolute velocity of the exit flow, respectively, C θ2 is the rotational component of the exit absolute velocity, C 2 and W 2 are the exit absolute velocity The magnitude of the vector and the magnitude of the exit relative velocity vector.
도 10을 참조하면, 보조 날개를 설치하는 하이브리드 날개에서의 채널은 주 날개 부압면과 보조 날개 압력면 사이의 입구면적 Ssu(u는 상류를 나타내는 첨자), 주 날개 압력면과 보조 날개 부압면 사이의 입구면적 Spu, 그리고 각 채널 하류에서의 면적인 Ssd 과 Spd 로 구성되며, 일반적으로 날개 입구높이와 출구높이는 거의 비슷하므로 날개 하류로 가면서 반경이 커지면서 입구면적에 비해 출구면적의 증가로 인한 속도감소 및 압력 증가로 인한 유동박리가 발생하게 된다. 10, the channel in the hybrid wing for providing the auxiliary wing has an inlet area Ssu between the main wing negative pressure face and the auxiliary wing pressure face, where u is an index indicative of the upstream side, between the main wing pressure face and the auxiliary wing negative pressure face The inlet area Spu of each channel, and the area Ssd and Spd downstream of each channel. Generally, the height of the vane inlet is almost the same as the height of the outlet. Therefore, And flow separation due to pressure increase.
본 발명에서는 주 날개 부압면 채널의 입구면적 Ssu와 출구면적 Ssd가 크게 달라지지 않도록 보조 날개의 출구각은 주 날개 출구각(도 2의 β2b)과 비슷하게 유지하면서 S 형태의 변곡이 생기는 위치 근처에 보조 날개의 입구가 시작하도록 하며, 보조 날개의 입구각도는 채널 사이의 주 유선에 유동각 접선이 일치하도록 한다. 또한, 보조 날개가 2개의 주 날개 중앙에 배치되어도 채널 수직면적 중 Ssu가 Spu보다 작게 되므로 두 면적이 같도록 보조날개 전단(L.E.)을 입구 동일 반경 채널 사이로 이동시키며, Ssu와 Ssd가 비슷하도록 앞서 구한 위치의 보조 날개 전단 (L.E.)을 피봇점으로 보조 날개 후단(T.E.)을 출구 동일 반경 채널 사이로 이동하여 출구각과 채널 사이 출구위치를 정할 수 있다. In the present invention, the outlet angle of the auxiliary vanes is kept close to the main vane outlet angle (β 2b in FIG. 2) so that the inlet area Ssu and the outlet area Ssd of the main vane negative pressure side channel do not greatly vary, And the inlet angle of the auxiliary vane is such that the flow angle tangent coincides with the main stream line between the channels. In addition, even if the auxiliary wing is placed at the center of the two main wings, the auxiliary wing shear (LE) is moved between the same radius channels so that Ssu is smaller than Spu, so that the two areas are equal. The position of the outlet between the exit angle and the channel can be determined by moving the auxiliary blade front end (LE) at the obtained position to the pivot point and the auxiliary blade rear end (TE) between the outlet and the same radius channel.
도 11은 본 발명의 다른 실시예에 따른 원심형 임펠러의 보조 날개의 채널 사이의 위치를 회전방향으로 동일하게 배치하지 않고 랜덤하게 배치한 예를 나타낸 도면이다.11 is a view showing an example in which the positions of the channels of the auxiliary vanes of the centrifugal impeller according to another embodiment of the present invention are randomly arranged without being equally arranged in the rotating direction.
본 발명은 원심형 임펠러의 보조 날개의 채널 사이의 위치를 회전방향으로 동일하게 배치하지 않고, 도 11과 같이 랜덤하게 배치하여 보조 날개 부압면 위의 유동박리 와동(Vortex)과 채널통과 와동(Vortex)들의 위상이 상쇄되도록 하며, 이 경우 양력분포에 의한 축 수직면 추력(Thrust)과 토크밸런스(torque balance)가 이루어지도록 배치할 수 있다.The position of the auxiliary vanes of the centrifugal impeller is not randomly arranged in the direction of rotation but is randomly arranged as shown in Fig. 11, and the flow separation vortex and the channel passing vortex In this case, it is possible to arrange the thrust and thrust balance by an axial vertical surface by the lift distribution.
한편, 도 7에 도시된 원심형 임펠러(200)는 제1 부분(210) 및 제2 부분(230)을 상호 결합하는 형태의 임펠러로서, 제1 및 제2 부분(210,230)을 별도로 제작한다. 하지만 본 발명은 이에 제한되지 않고 단일 몸체를 이루는 임펠러를 제공할 수 있다. 구체적인 설명은 도 12 내지 도 14을 참고하여 설명한다.Meanwhile, the centrifugal impeller 200 shown in FIG. 7 is a type of impeller coupling the first part 210 and the second part 230, and the first and second parts 210 and 230 are separately manufactured. However, the present invention is not limited to this, and an impeller constituting a single body can be provided. A detailed description will be given with reference to Figs. 12 to 14. Fig.
도 12는 본 발명의 또 다른 실시예에 따른 사류형 주 날개와 보조 날개를 구비한 임펠러를 나타내는 사시도이고, 도 13은 본 발명의 또 다른 실시예에 따른 임펠러를 나타내는 평면도이고, 도 14는 도 13에 표시된 A-A선을 따라 나타낸 단면도이다.FIG. 12 is a perspective view showing an impeller having a main wing and a secondary wing according to still another embodiment of the present invention, FIG. 13 is a plan view showing an impeller according to another embodiment of the present invention, and FIG. 13 is a cross-sectional view along the line AA shown in Fig.
도 12 내지 도 14를 참조하면, 본 발명의 또 다른 실시예에 따른 임펠러(300)는 단일 몸체로 사출하기 위해 원형 밑판(315)의 외경을 슈라우드(331)의 내경보다 약간 작게 형성할 수 있다.12 to 14, the outer diameter of the circular bottom plate 315 may be formed to be slightly smaller than the inner diameter of the shroud 331 in order to inject the impeller 300 into a single body according to another embodiment of the present invention .
이 경우, 원형 밑판(315)과 슈라우드(331)는 도 14와 같이 모두 유동 하류방향으로 경사지게 형성되어 있으나, 이에 제한되지 않고 회전축 방향과 수직이 되도록 수평 방향으로 형성될 수도 있다.In this case, the circular bottom plate 315 and the shroud 331 are all inclined in the flow downstream direction as shown in FIG. 14, but they are not limited thereto and may be formed in a horizontal direction so as to be perpendicular to the direction of the rotation axis.
또한, 임펠러(300)에 구비된 다수의 주 날개(320)와 다수의 보조 날개(330)는 단일 금형으로 제작이 가능하도록 슈라우드(331)와 원형 밑판(315) 또는 허브(317)에 일체로 결합될 수 있다. 즉, 다수의 주 날개(320)는 상단이 슈라우드(331)에 연결되고 하단이 원형 밑판(315) 또는 허브(317)에 연결된다. 또한 다수의 보조 날개(330) 역시 상단이 슈라우드(331)에 연결되고 하단이 원형 밑판(315) 또는 허브(317)에 연결된다.The plurality of main blades 320 and the plurality of auxiliary blades 330 provided on the impeller 300 are integrally formed with the shroud 331 and the circular bottom plate 315 or the hub 317 Can be combined. That is, the plurality of main blades 320 are connected to the shroud 331 at the upper end and connected to the circular bottom plate 315 or the hub 317 at the lower end. Also, a plurality of auxiliary vanes 330 are connected to the shroud 331 at the upper end and connected to the circular bottom plate 315 or the hub 317 at the lower end.
이 경우, 다수의 주 날개(320)와 다수의 보조 날개(330)는 원주 방향을 따라 교대로 형성될 수 있다.In this case, the plurality of main blades 320 and the plurality of auxiliary blades 330 may be formed alternately along the circumferential direction.
한편, 도 7에 도시된 축류형 임펠러(200)는 유동이 회전축 방향으로 유입된 후 회전축 방향에 수직한 반경방향으로 압력이 상승되어 토출된다. 이와 달리 도 12에 도시된 사류형 임펠러(300)는 유동이 회전축 방향으로 유입되어 축류형과 비슷하게 회전축 방향에 대해 소정의 경사를 가지고 압력이 상승되어 토출하게 된다. 이 경우 사류형 임펠러(300)는 도 14에 도시된 유선의 유동 방향과 같은 유로가 형성될 수 있다.On the other hand, the axial flow impeller 200 shown in FIG. 7 is discharged after the flow is introduced in the direction of the rotation axis, and then the pressure is raised in the radial direction perpendicular to the direction of the rotation axis. In the alternative impeller 300 shown in FIG. 12, the flow is introduced in the direction of the rotation axis, and the pressure is increased with a predetermined inclination relative to the direction of the rotation axis similarly to the axial flow type. In this case, the flow-type impeller 300 may have the same flow path as the flow direction of the wire shown in FIG.
본 발명은 기재된 실시 예에 한정되는 것은 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 당해기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다고 해야 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. It is therefore intended that such variations and modifications fall within the scope of the appended claims.

Claims (18)

  1. 제1 허브와, 상기 제1 허브의 외주를 따라 동일한 간격을 두고 연장 형성된 다수의 주 날개를 구비하는 제1 부분; 및A first portion having a first hub and a plurality of main blades extending equidistantly along an outer periphery of the first hub; And
    상기 제1 허브의 하측에 요철 결합되는 제2 허브와, 상기 제2 허브의 외주를 따라 간격을 두고 연장 형성된 다수의 보조 날개를 구비하는 제2 부분;을 포함하며,And a second portion having a second hub that is concavo-convex coupled to the lower side of the first hub and a plurality of auxiliary wings extending at an interval along the outer circumference of the second hub,
    각 주 날개의 전단(L.E.)과 후단(T.E.) 사이의 투영 각도를 Φ1, 다수의 보조날개의 각 전단(L.E.)과 후단(T.E.) 사이의 투영 각도를 θ1 라고 할 때, When the projection angle between the front end LE and the rear end TE of each main wing is Φ 1 and the projection angle between the front end LE and the rear end TE of a plurality of auxiliary wings is θ 1 ,
    각 주 날개와 보조 날개가 겹치는 상류 각도 Φ1u, θ1u 및 하류 각도 Φ1d, θ1d 와, 각 주 날개와 보조 날개가 겹치지 않는 Φ1m, θ1m 으로 구성되며, Is composed of the respective main wing and the auxiliary wing overlapping the upstream angle Φ 1u, θ 1u and a downstream angle Φ 1d, 1d and θ, Φ 1m, 1m θ do not overlap each main wing and the auxiliary wing,
    상기 Φ1 및 θ1 는 주 날개 및 보조 날개의 반경이 각 허브부터 끝단으로 가면서 0 < θ1 < Φ1를 만족하도록, 상기 θ1 이 상기 Φ1 보다 작은 것을 특징으로 하는 임펠러. The Φ 1 and θ 1 is the radius of the main blade and the auxiliary blade going from the end of each hub 0 <θ 1 < So as to satisfy the Φ 1, the impeller 1 is θ which is smaller than the Φ 1.
  2. 제1항에 있어서,The method according to claim 1,
    상기 보조 날개의 θ1u와 θ1d 의 크기는 상기 주 날개 부압면 하류 부근의 채널이 가이드 되도록 상기 주 날개와의 겹쳐지는 각도들인 것을 특징으로 하는 임펠러.And the magnitudes of? 1u and? 1d of the auxiliary vanes are angles that overlap with the main vane so that a channel near the downstream of the main vane negative pressure surface is guided.
  3. 제1항에 있어서,The method according to claim 1,
    상기 제1 허브는 저면에 간격을 두고 다수의 제1 결합돌기와, 상기 다수의 결합돌기에 의해 마련되는 다수의 제1 결합홈이 형성되고,Wherein the first hub has a plurality of first coupling protrusions spaced apart from each other on a bottom surface thereof and a plurality of first coupling grooves formed by the plurality of coupling protrusions,
    상기 제2 허브는 상면에 간격을 두고 다수의 제2 결합돌기와, 상기 다수의 결합돌기에 의해 마련되는 다수의 제2 결합홈이 형성되며,Wherein the second hub has a plurality of second coupling projections spaced apart from each other on an upper surface thereof and a plurality of second coupling grooves formed by the plurality of coupling projections,
    상기 다수의 제1 결합돌기는 상기 다수의 제2 결합홈에 결합되고, Wherein the plurality of first engaging projections are engaged with the plurality of second engaging grooves,
    상기 다수의 제2 결합돌기는 상기 다수의 제1 결합홈에 결합되는 것을 특징으로 하는 임펠러. And the plurality of second engaging projections are coupled to the plurality of first engaging grooves.
  4. 제3항에 있어서,The method of claim 3,
    상기 다수의 제1 결합돌기와 상기 다수의 제2 결합홈에 압박 결합되고,A plurality of first engaging projections and a plurality of second engaging grooves,
    상기 다수의 제2 결합돌기는 상기 다수의 제1 결합홈에 압박 결합되는 것을 특징으로 하는 임펠러.And the plurality of second engaging projections are press-engaged with the plurality of first engaging grooves.
  5. 제3항에 있어서,The method of claim 3,
    상기 다수의 제1 결합돌기는 접착제에 의해 상기 다수의 제2 결합홈에 접착 결합되고,Wherein the plurality of first engaging projections are adhesively bonded to the plurality of second engaging grooves by an adhesive,
    상기 다수의 제2 결합돌기는 접착제에 의해 상기 다수의 제1 결합홈에 접착 결합되는 것을 특징으로 하는 임펠러.Wherein the plurality of second engaging projections are adhesively joined to the plurality of first engaging grooves by an adhesive.
  6. 제1항에 있어서,The method according to claim 1,
    상기 제1 허브 및 상기 제2 허브는 띠 형상으로 이루어지는 것을 특징으로 하는 임펠러Characterized in that the first hub and the second hub are in the form of strips
  7. 제1항에 있어서,The method according to claim 1,
    상기 제1 및 제2 허브는 상호 결합 시 단일 원추 형상인 것을 특징으로 하는 임펠러.Wherein the first and second hubs are of a single conical shape when coupled to each other.
  8. 원형 밑판과, 상기 원형 밑판의 상면 중앙에 돌출 형성된 허브와, 상기 원형 밑판의 상면에 동일한 간격을 두고 상기 허브를 중심으로 원주 방향으로 형성된 다수의 주 날개를 구비하는 제1 부분; 및A first portion having a circular bottom plate, a hub protruding from the center of the upper surface of the circular bottom plate, and a plurality of main blades circumferentially formed around the hub at equal intervals on an upper surface of the circular bottom plate; And
    띠 형상의 슈라우드와, 상기 슈라우드의 저면을 따라 간격을 두고 일체로 형성된 다수의 보조 날개를 구비하는 제2 부분을 포함하며,And a second portion having a strip-shaped shroud and a plurality of auxiliary blades integrally formed at intervals along the bottom surface of the shroud,
    주 날개 부압면과 보조날개 압력면 사이의 입구면적을 Ssu 라 하고, 주 날개 압력면과 보조날개 부압면 사이의 입구면적을 Spu 라 하고, 각 채널 하류에서의 면적인 주 날개의 부압면 채널 하류면적을 Ssd라 하고, 주 날개의 압력면 채널 하류면적을 Spd라 할 때,The inlet area between the main wing pressure side and the auxiliary wing pressure face is Ssu and the inlet area between the main wing pressure face and the auxiliary wing negative pressure face is Spu and the area of the main wing downstream of each channel If the area is Ssd and the downstream area of the pressure side channel of the main wing is Spd,
    각 보조 날개의 출구각은 각 주 날개 출구각과 동일하고,The exit angle of each auxiliary wing is the same as the angle of each main wing exit,
    상기 보조 날개의 입구는 S 형태의 변곡이 생기는 곳에 위치하고,The inlet of the auxiliary vane is located at a position where an S-
    상기 보조 날개의 입구각도는 채널의 주 유선에 유동각 접선이 일치하는 각도인 것을 특징으로 하는 임펠러.Wherein the inlet angle of the auxiliary vane is an angle that the flow angle tangent line coincides with the main flow line of the channel.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 Ssu와 상기 Spu가 동일하게 되도록 상기 보조 날개 전단(L.E.)을 입구 동일 반경 채널 사이로 위치하는 것을 특징으로 하는 임펠러.Wherein the auxiliary blade front end (L.E.) is located between the inlet same radius channels such that Ssu and Spu are the same.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 Ssu와 Ssd가 유사하게 유지되도록 상기 보조 날개 전단(L.E.)을 피봇점으로 하여 상기 보조 날개 후단(T.E.)을 출구 동일 반경 채널 사이로 회전 이동하여 출구각과 채널 사이 출구위치를 설정하는 것을 특징으로 하는 임펠러.(TE) is rotationally moved between the same radial channels of the outlet with the auxiliary blade front (LE) as a pivot point so that the Ssu and the Ssd are kept similar to each other, thereby setting the outlet angle and the outlet position between the channels Impeller.
  11. 제8항에 있어서,9. The method of claim 8,
    상기 슈라우드는 띠 형상으로 이루어지는 것을 특징으로 하는 임펠러.Wherein the shroud is in the shape of a strip.
  12. 제8항에 있어서,9. The method of claim 8,
    상기 밑판은 상면에 상기 다수의 보조 날개의 하단이 삽입되는 다수의 제1 결합홈이 형성되고,Wherein the bottom plate has a plurality of first coupling grooves formed on an upper surface thereof to receive the lower ends of the plurality of auxiliary blades,
    상기 슈라우드는 저면에 상기 다수의 주 날개의 상단이 삽입되는 다수의 제2 결합홈이 형성되는 것을 특징으로 하는 임펠러.Wherein the shroud has a plurality of second coupling grooves formed in its bottom surface to receive the upper ends of the plurality of main blades.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 다수의 보조 날개의 하단은 상기 다수의 제1 결합홈에 압박 결합되고,A lower end of the plurality of auxiliary vanes is press-coupled to the plurality of first coupling grooves,
    상기 다수의 주 날개의 하단은 상기 다수의 제2 결합홈에 압박 결합되는 것을 특징으로 하는 임펠러.And the lower ends of the plurality of main blades are press-coupled to the plurality of second coupling grooves.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 다수의 보조 날개의 하단은 접착제에 의해 상기 다수의 제1 결합홈에 접착 결합되고,Wherein the lower ends of the plurality of auxiliary vanes are adhesively bonded to the plurality of first coupling grooves by an adhesive,
    상기 다수의 주 날개의 하단은 접착제에 의해 상기 다수의 제2 결합홈에 접착 결합되는 것을 특징으로 하는 임펠러.And the lower ends of the plurality of main blades are adhesively joined to the plurality of second coupling grooves by an adhesive.
  15. 제1항 또는 제8항에 있어서,The method according to claim 1 or 8,
    각 주 날개 사이에 1개씩 배치된 다수의 보조 날개는 임펠러의 회전 방향을 따라 서로 상이한 간격으로 배치되는 것을 특징으로 하는 임펠러.And a plurality of auxiliary blades arranged one by one between the main blades are arranged at different intervals along the rotational direction of the impeller.
  16. 제8항에 있어서,9. The method of claim 8,
    상기 원형 밑판과 상기 슈라우드는 유동 하류방향으로 경사지거나 수평 방향으로 형성된 것을 특징으로 하는 임펠러.Wherein the circular bottom plate and the shroud are inclined or horizontally oriented in a downstream direction of flow.
  17. 제16항에 있어서,17. The method of claim 16,
    상기 원형 밑판의 외경이 상기 슈라우드의 내경보다 작게 형성된 것을 특징으로 하는 임펠러.Wherein an outer diameter of the circular bottom plate is smaller than an inner diameter of the shroud.
  18. 제16항에 있어서,17. The method of claim 16,
    상기 다수의 주 날개와 상기 다수의 보조 날개는 상기 원형 밑판과 상기 슈라우드에 일체로 결합된 것을 특징으로 하는 임펠러.Wherein the plurality of main blades and the plurality of auxiliary blades are integrally coupled to the circular bottom plate and the shroud.
PCT/KR2017/014809 2017-11-07 2017-12-15 Impeller having primary blades and secondary blades WO2019093576A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/761,530 US20200370562A1 (en) 2017-11-07 2017-12-15 Impeller having primary blades and secondary blades

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170147057 2017-11-07
KR10-2017-0147057 2017-11-07
KR1020170171944A KR102083168B1 (en) 2017-11-07 2017-12-14 Impeller having primary blades and secondary blades
KR10-2017-0171944 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019093576A1 true WO2019093576A1 (en) 2019-05-16

Family

ID=61394492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014809 WO2019093576A1 (en) 2017-11-07 2017-12-15 Impeller having primary blades and secondary blades

Country Status (3)

Country Link
US (1) US20200370562A1 (en)
KR (1) KR102083168B1 (en)
WO (1) WO2019093576A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2019106653A (en) * 2018-03-14 2020-09-11 Кэрриер Корпорейшн OPEN CENTRIFUGAL COMPRESSOR IMPELLER
CN111946664B (en) * 2020-09-16 2022-03-15 台州学院 Centrifugal fan blade with slotting structure
US11518443B1 (en) * 2021-06-16 2022-12-06 Quinn Aerospace Inc. Control system for rotating thrust-producing apparatus
JP2024015654A (en) * 2022-07-25 2024-02-06 山洋電気株式会社 axial fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034694A1 (en) * 2004-08-11 2006-02-16 Datech Technology Co., Ltd. Radial fan having axial fan blade configuration
US20080159867A1 (en) * 2007-01-02 2008-07-03 Sheng-An Yang Impeller assembly
US20110176916A1 (en) * 2010-01-16 2011-07-21 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Centrifugal fan and impeller thereof
US20140030104A1 (en) * 2012-07-27 2014-01-30 Msi Computer (Shenzhen) Co., Ltd. Fan device and vane thereof
US20170002833A1 (en) * 2015-07-03 2017-01-05 Cooler Master Co., Ltd. Modular fan blade

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1725336A (en) * 1927-04-06 1929-08-20 Crystal Oil Burner Corp Fuel propelling and mixing device
US1919970A (en) * 1933-02-07 1933-07-25 Gen Electric Impeller
US2373713A (en) * 1942-05-20 1945-04-17 Gen Electric Centrifugal compressor
US3017837A (en) * 1959-02-17 1962-01-23 Thomas E Judd Multi stage centrifugal pump
US3285187A (en) * 1965-11-05 1966-11-15 Msl Ind Inc Impeller for use in centrifugal pump or blower and a method of manufacture thereof
CA1183675A (en) * 1980-12-19 1985-03-12 Isao Miki Method for producing profiled product having fins
US4877373A (en) * 1988-02-08 1989-10-31 Dresser-Rand Company Vaned diffuser with small straightening vanes
US6419450B1 (en) * 2001-05-21 2002-07-16 Grundfos Pumps Manufacturing Corporation Variable width pump impeller
JP3876195B2 (en) * 2002-07-05 2007-01-31 本田技研工業株式会社 Centrifugal compressor impeller
KR20040104971A (en) * 2003-06-03 2004-12-14 삼성전자주식회사 Turbofan and manufacturing method thereof
TWI227109B (en) * 2003-09-22 2005-01-21 Sheng-An Yang Heat dissipation blade
US7189059B2 (en) * 2004-10-27 2007-03-13 Honeywell International, Inc. Compressor including an enhanced vaned shroud
JP4294046B2 (en) * 2006-10-31 2009-07-08 日本高分子株式会社 Centrifugal fan and manufacturing method thereof
US7905703B2 (en) * 2007-05-17 2011-03-15 General Electric Company Centrifugal compressor return passages using splitter vanes
EP2020509B1 (en) * 2007-08-03 2014-10-15 Hitachi, Ltd. Centrifugal compressor, impeller and operating method of the same
US8128360B2 (en) * 2007-11-12 2012-03-06 Crane Pumps & Systems, Inc. Vortex pump with splitter blade impeller
US8602728B2 (en) * 2010-02-05 2013-12-10 Cameron International Corporation Centrifugal compressor diffuser vanelet
CA2811348A1 (en) * 2010-08-12 2012-02-16 Nuovo Pignone S.P.A. Radial diffuser vane for centrifugal compressors
WO2013128539A1 (en) * 2012-02-27 2013-09-06 三菱重工コンプレッサ株式会社 Rotary machine
CN103062112B (en) * 2013-01-10 2016-07-20 中联重科股份有限公司 Road cleaning equipment and centrifugal blower fan blade wheel thereof
FR3003908B1 (en) * 2013-03-28 2017-07-07 Turbomeca DIFFUSER WITH FINES OF A RADIAL OR MIXED COMPRESSOR
KR101465052B1 (en) * 2013-04-12 2014-11-25 두산중공업 주식회사 Shrouds of centrifugal compressor impeller and method of manufacturing the same
US20160281732A1 (en) * 2015-03-27 2016-09-29 Dresser-Rand Company Impeller with offset splitter blades
DE102015219556A1 (en) * 2015-10-08 2017-04-13 Rolls-Royce Deutschland Ltd & Co Kg Diffuser for radial compressor, centrifugal compressor and turbo machine with centrifugal compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034694A1 (en) * 2004-08-11 2006-02-16 Datech Technology Co., Ltd. Radial fan having axial fan blade configuration
US20080159867A1 (en) * 2007-01-02 2008-07-03 Sheng-An Yang Impeller assembly
US20110176916A1 (en) * 2010-01-16 2011-07-21 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Centrifugal fan and impeller thereof
US20140030104A1 (en) * 2012-07-27 2014-01-30 Msi Computer (Shenzhen) Co., Ltd. Fan device and vane thereof
US20170002833A1 (en) * 2015-07-03 2017-01-05 Cooler Master Co., Ltd. Modular fan blade

Also Published As

Publication number Publication date
KR102083168B1 (en) 2020-03-02
KR20180020117A (en) 2018-02-27
US20200370562A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019093576A1 (en) Impeller having primary blades and secondary blades
WO2014182124A1 (en) Centrifugal fan
US4530639A (en) Dual-entry centrifugal compressor
EP0955468A2 (en) Centrifugal flow fan and fan/orifice assembly
WO2018070643A1 (en) Centrifugal impeller having backward blade with dual gradient cross-sectional shape
TW201200738A (en) Electric blower and electric vacuum cleaner with the same
GB2189845A (en) Gas turbine cooling air transferring apparatus
WO2012161436A2 (en) Regenerative-type fluid machinery having a guide vane on a channel wall
US20190390554A1 (en) Ventilated high pressure blade of a helicopter turbine comprising an upstream duct and a central cooling chamber
US11649829B2 (en) Impeller with a seamless connection of the impeller blades to a disc body
WO2016195371A1 (en) Turbo fan and air conditioner having the same
WO2014171631A1 (en) Air blower for fuel cell vehicle
WO2016190454A1 (en) Turbo fan and air conditioner including same
IT9067163A1 (en) PERFECTED TURBOMOLECULAR PUMP.
US3876328A (en) Compressor with improved performance diffuser
WO2020027489A1 (en) Variable impeller of pump
WO2015108354A1 (en) Blade tip sealing apparatus for gas turbine
TW202217151A (en) Multiblade centrifugal fan
JPS63176629A (en) Compressor disk for turbine engine with centripetal accelerator for sucking cooling air of turbine
KR860000485A (en) Wing wheel of centrifugal blower
WO2022080594A1 (en) Centrifugal compressor
CN213270441U (en) Compressor impeller and compressor
WO2018216979A1 (en) Torque converter
JPH05340395A (en) Axial flow rotary machine
WO2017196156A1 (en) Rotor and motor including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931233

Country of ref document: EP

Kind code of ref document: A1