WO2019093234A1 - Encoding device, decoding device, encoding method, and decoding method - Google Patents

Encoding device, decoding device, encoding method, and decoding method Download PDF

Info

Publication number
WO2019093234A1
WO2019093234A1 PCT/JP2018/040801 JP2018040801W WO2019093234A1 WO 2019093234 A1 WO2019093234 A1 WO 2019093234A1 JP 2018040801 W JP2018040801 W JP 2018040801W WO 2019093234 A1 WO2019093234 A1 WO 2019093234A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
processing
convolutional
neural network
convolutional neural
Prior art date
Application number
PCT/JP2018/040801
Other languages
French (fr)
Japanese (ja)
Inventor
アレック ホジキンソン
ルカ リザジオ
遠間 正真
西 孝啓
安倍 清史
龍一 加納
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2019093234A1 publication Critical patent/WO2019093234A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals

Definitions

  • the present disclosure relates to an encoding device, a decoding device, an encoding method, and a decoding method.
  • H.264 also called High Efficiency Video Coding (HEVC)
  • HEVC High Efficiency Video Coding
  • the image space domain is transformed into a coding space domain using a Fourier transform such as discrete cosine transform.
  • the encoding space region transformed by Fourier transform may not be the optimal encoding space region for performing compression on the input image.
  • the present disclosure provides an encoding device and the like that can perform compression of an image in which deterioration of image quality is further suppressed.
  • An encoding apparatus includes a memory and a circuit accessible to the memory, and the circuit accessible to the memory uses a first convolutional neural network model for the input image.
  • Compression processing is performed on the input image by performing conversion from an image space region to an encoding space region, and compression that is a result of compression and decompression on the input image using a second convolutional neural network model
  • a process of extracting a feature amount used in post-processing, which is a process of bringing a release image close to the input image, is performed.
  • the encoding device and the like in one aspect of the present disclosure can perform compression of an image with further suppressed deterioration in image quality.
  • FIG. 1 is a diagram showing an MS-SSIM curve of the codec architecture in the comparative example.
  • FIG. 2 is a block diagram showing the configuration of the image processing apparatus according to the first embodiment.
  • FIG. 3 is a block diagram showing an example of a configuration of a coding apparatus according to Embodiment 1.
  • FIG. 4 is a block diagram showing an example of the configuration of the decoding apparatus in the first embodiment.
  • FIG. 5 is a block diagram showing a connection configuration of the convolutional neural network in the first embodiment.
  • FIG. 6 is a block diagram showing an example of a specific connection configuration of the convolutional neural network according to the first embodiment.
  • FIG. 7 is a block diagram showing the configuration of a convolution block in the first embodiment.
  • FIG. 1 is a diagram showing an MS-SSIM curve of the codec architecture in the comparative example.
  • FIG. 2 is a block diagram showing the configuration of the image processing apparatus according to the first embodiment.
  • FIG. 3 is a block diagram showing an example of
  • FIG. 8 is a block diagram showing a configuration of a residual block in the first embodiment.
  • FIG. 9 is a diagram showing an experimental result of verifying the effectiveness of the image processing apparatus according to the first embodiment.
  • FIG. 10 is a block diagram showing an implementation example of the coding apparatus according to Embodiment 1.
  • FIG. 11 is a flowchart of an exemplary operation of the coding apparatus according to Embodiment 1.
  • FIG. 12 is a block diagram showing an implementation example of the decoding apparatus according to the first embodiment.
  • FIG. 13 is a flowchart showing an operation example of the decoding apparatus according to the first embodiment.
  • FIG. 14 is an overall configuration diagram of a content supply system for realizing content distribution service.
  • FIG. 15 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 16 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 17 is a diagram showing an example of a display screen of a web page.
  • FIG. 18 is a diagram showing an example of a display screen of a web page.
  • FIG. 19 is a diagram illustrating an example of a smartphone.
  • FIG. 20 is a block diagram showing a configuration example of a smartphone.
  • An encoding apparatus includes a memory and a circuit accessible to the memory, and the circuit accessible to the memory uses a first convolutional neural network model to generate an input image.
  • compression processing is performed on the input image by performing conversion from an image space region to a coding space region, and using the second convolutional neural network model, the result is compression and decompression on the input image.
  • a process of extracting a feature amount used in post-processing which is a process of bringing a decompressed image close to the input image is performed.
  • the encoding apparatus uses the first convolutional neural network model for converting to the encoding space and the second convolutional neural network model for extracting the feature quantity used in the post-processing, thereby causing the image quality to be degraded. More suppressed image compression can be performed.
  • the feature amount is high frequency information included in the input image.
  • the encoding apparatus extracts a high-frequency image included in the input image that predominantly includes the information lost by the quantization process, as a feature amount for bringing the decompressed image closer to the input image.
  • processing can be performed to bring the decompressed image closer to the input image in post-processing, so it is possible to perform compression of the image in which deterioration of the image quality is further suppressed.
  • the first convolutional neural network model and the second convolutional neural network model include two or more convolutional blocks, and include one or more residual blocks, and the two or more convolutions
  • Each of the blocks is a processing block including one or more convolutional layers
  • each of the one or more residual blocks is a convolutional group including at least one convolutional layer of the two or more convolutional blocks
  • the data input to the residual block is input to the convolution group included in the residual block, and the data input to the residual block is added to the data output from the convolution group It is a processing block.
  • the encoding apparatus can perform compression of an image in which the deterioration of image quality is further suppressed by using a convolutional neural network model capable of learning and inference with higher accuracy.
  • the one or more residual blocks are two or more residual blocks.
  • the encoding apparatus can perform compression of an image in which the deterioration of image quality is further suppressed by using a convolutional neural network model capable of learning and inference with higher accuracy.
  • the two or more convolutional blocks are four or more convolutional blocks, and the one or more residual blocks constitute a residual group, and at least one of the four or more convolutional blocks.
  • At least one convolutional block including two convolutional blocks and not included in the residual group among the four or more convolutional blocks constitutes a first convolutional group, and the remaining ones of the four or more convolutional blocks
  • At least one convolution block which is not included in the difference group or the first convolution group constitutes a second convolution group, and data outputted from the first convolution group is inputted to the residual group, Data output from the residual group is input to the second convolution group.
  • the encoding apparatus can apply more sophisticated operations to the abstracted feature of the image. Therefore, efficient processing is possible.
  • the circuit includes a memory and a circuit accessible to the memory, and the circuit accessible to the memory uses a first convolutional neural network model to generate an input image from an encoding space area.
  • Decompression processing is performed on the input image by performing conversion to an image space area, and a decompressed image as a result of decompression on the input image is processed using the second convolutional neural network model.
  • a process is performed to acquire feature amounts used in post-processing, which is a process of approaching an image.
  • the decoding apparatus further suppresses the deterioration of the image quality by using the first convolutional neural network model for converting to the image space and the second convolutional neural network model for acquiring the feature amount used in the post-processing. Can be obtained.
  • the circuit capable of accessing the memory may further use the third convolutional neural network model, and use the feature value acquired using the second convolutional neural network model as the post-processing.
  • the decompressed image obtained using the first convolutional neural network model is processed to be close to the original image.
  • processing can be performed to bring the decompressed image closer to the input image in post-processing, so it is possible to obtain a decompressed image in which the deterioration of the image quality is further suppressed.
  • the first convolutional neural network model is used to convert the input image from the image space area to the encoding space area to perform compression processing on the input image, thereby performing a second convolutional neural network.
  • a network model is used to extract feature quantities used in post-processing, which is processing for bringing a decompressed image, which is the result of compression and decompression on the input image, closer to the input image.
  • the deterioration of the image quality is further suppressed by using the first convolutional neural network model for converting to the encoding space and the second convolutional neural network model for extracting feature quantities used in post-processing Image compression can be performed.
  • the input image is converted from the encoding space region to the image space region using the first convolutional neural network model to perform decompression processing on the input image, and the second convolution is performed.
  • a neural network model is used to acquire feature quantities used in post-processing, which is processing for bringing a decompressed image, which is the result of decompression on the input image, closer to the original image of the input image.
  • This decoding method uses the first convolutional neural network model for conversion to image space and the second convolutional neural network model for acquiring feature quantities used in post-processing to further suppress image quality deterioration. A cancellation image can be obtained.
  • these general or specific aspects may be realized by a system, an apparatus, a method, an integrated circuit, a computer program, or a non-transitory recording medium such as a computer readable CD-ROM.
  • the present invention may be realized as any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • Embodiment 1 First, an outline of the first embodiment will be described as an example of an image processing apparatus to which the processing and / or configuration described in each aspect of the present disclosure described later can be applied.
  • Embodiment 1 is merely an example of an image processing apparatus, encoding apparatus or decoding apparatus to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and will be described in each aspect of the present disclosure.
  • the processing and / or configuration can also be implemented in an image processing apparatus, an encoding apparatus or a decoding apparatus different from the first embodiment.
  • each aspect of the present disclosure among a plurality of components constituting the image processing apparatus, the encoding apparatus, or the decoding apparatus Replacing the component corresponding to the component described in the above with the component described in each aspect of the present disclosure
  • the image processing apparatus, encoding apparatus or decoding apparatus according to the first embodiment is applied to an arbitrary change such as addition, replacement, or deletion of a function or a process to be performed on a part of a plurality of components constituting the processing device, the encoding device, or the decoding device.
  • the manner of implementation of the processing and / or configuration described in each aspect of the present disclosure is not limited to the above example.
  • it may be implemented in an apparatus used for a purpose different from the moving picture / image coding apparatus or the moving picture / image decoding apparatus disclosed in the first embodiment, or the process and / or the process described in each aspect.
  • the configuration may be implemented alone.
  • the processes and / or configurations described in the different embodiments may be implemented in combination.
  • CNN Convolutional Neural Network
  • CNN convolutional neural network
  • FIG. 1 is a diagram showing an MS-SSIM curve of the codec architecture in the comparative example.
  • the vertical axis indicates MS-SSIM (multi-scale structural similarity) with respect to RGB, and the horizontal axis indicates compression ratio (Bits per Pixsel).
  • the architecture corresponds to 265 conventional codecs, and WaveOne means that it is a Sakai architecture using a convolutional neural network (CNN).
  • CNN convolutional neural network
  • CNN convolutional neural network
  • CNN convolutional neural networks
  • CNN convolutional neural networks
  • codecs transform an input image from an image space domain to a coding space domain using Fourier transform such as discrete cosine transform.
  • Fourier transform provides many good properties for the codec
  • the Fourier transform transformed encoding space region may not be the optimal encoding space region for performing compression on the input image .
  • the image processing apparatus by using the convolutional neural network, it is possible to perform compression of the image in which the deterioration of the image quality is further suppressed and obtain a decompressed image in which the deterioration of the quality is further suppressed. be able to.
  • the image processing apparatus performs compression processing or decompression processing of an image using two convolutional neural networks. More specifically, the image processing apparatus uses a convolutional neural network model for performing a compression process and a convolutional neural network model for performing a process of extracting feature quantities used in post-processing. In addition, the image processing apparatus uses a convolutional neural network model for performing decompression processing and a convolutional neural network model for performing processing for acquiring feature amounts used in post-processing.
  • the image processing apparatus may include an encoding apparatus and a decoding apparatus.
  • the encoding device encodes an image. That is, the encoding apparatus compresses the original image (input image) to output a compressed image which is a result of the compression on the original image.
  • the decoding device decodes the encoded image. That is, the decoding apparatus performs decompression on the compressed image that is the result of compression on the original image, thereby outputting a decompressed image that is the result of decompression on the compressed image.
  • FIG. 2 is a block diagram showing an example of the configuration of the image processing apparatus 10 according to the present embodiment.
  • FIG. 3 is a block diagram showing an example of a configuration of coding apparatus 100 in the first embodiment.
  • FIG. 4 is a block diagram showing an example of a configuration of decoding apparatus 200 in the first embodiment.
  • the same elements as in FIG. 2 are denoted by the same reference numerals.
  • the image processing apparatus 10 illustrated in FIG. 2 includes an image coding unit 101, a post-processing feature extraction unit 102, a quantum unit 103, an entropy coding unit 104, a storage unit 105, an image decoding unit 106, and a post-processing. And a post-processing unit 108.
  • the image processing apparatus 10 may include the encoding apparatus 100 shown in FIG. 3 and the decoding apparatus 200 shown in FIG. 4.
  • the image encoding unit 101 transforms an input image from an image space region to an encoding space region using a first convolutional neural network model.
  • the first convolutional neural network model is subjected to learning for conversion into a coding space region optimal for image compression.
  • the first convolutional neural network model includes two or more convolutional blocks. Also, the first convolutional neural network model includes one or more residual blocks.
  • FIG. 5 is a block diagram showing a connection configuration of convolutional neural network 300 in the first embodiment.
  • FIG. 6 is a block diagram showing an example of a specific connection configuration of convolutional neural network 300 in the first embodiment.
  • FIG. 7 is a block diagram showing a configuration of convolution block 310 in the first embodiment.
  • FIG. 8 is a block diagram showing a configuration of residual block 320 in the first embodiment.
  • the first convolutional neural network model includes, for example, one or more convolutional blocks 310 and one or more convolutional blocks 310 followed by one or more residual blocks 320, as shown in FIG. 5, for example. After the residual block 320 of, one or more convolutional blocks 330 are included.
  • the configuration of the first convolutional neural network model is not limited to the configuration of the convolutional neural network 300 shown in FIG.
  • One or more convolutional blocks and one or more residual blocks may be configured in any way.
  • the one or more convolutional blocks are four or more convolutional blocks, and the one or more residual blocks constitute a residual group and may include at least two convolutional blocks of the four or more convolutional blocks. Good.
  • At least one convolutional block not included in the residual group among the four or more convolutional blocks constitutes a first convolutional group, and the first convolutional group is also included in the residual group among the four or more convolutional blocks.
  • the at least one convolution block which is not included also constitutes a second convolution group. Data output from the first convolutional group is input to the residual group, and data output from the residual group is input to the second convolution group.
  • the first convolutional neural network model may be a convolutional neural network model 300 shown in FIG. That is, the first convolutional neural network model includes, for example, two convolutional blocks 310 forming the first convolutional group, two residual blocks 320 forming the residual group, and two forming the second convolutional group. And a convolution block 330.
  • two convolution blocks 310 constituting a first convolution group are connected in series
  • two convolution blocks 330 constituting a second convolution group are connected in series.
  • the two residual blocks 320 that make up the residual group are also arranged in series.
  • the convolution block 310, 330 samples the input data at twice the original frequency
  • the residual block 320 adds more capacity to the convolutional neural network model while keeping the receptive field the same size as the convolution block 310, 330 .
  • the first convolutional neural network model can provide 16 times downsampling on the input image.
  • the first convolutional neural network model needs to have a latent space with high information density while learning strong expressions for the input image while reducing the receptive field to 16/1. It becomes. Having a high information density latent space eliminates the need to worry about collisions in the latent space throughout the latent space. Also, convolutional neural network models with high information density latent space can reconstruct arbitrary images from the latent space. This means that even with quantization, graceful degradation can be maintained while suppressing the introduction of distortion.
  • the convolution block 310 is a processing block including one or more convolutional layers, and includes two or more convolutional layers 311, a non-linear activation function 312, and a normalization layer 313, as shown in FIG. 7, for example. Note that, since the convolution block 330 and the convolution block 322 are also the same, the convolution block 310 will be described as an example here. In the example illustrated in FIG. 7, data input to the convolution block 310 is output from the convolution block 310 via the convolution layer 311, the non-linear activation function 312, and the normalization layer 313.
  • the convolution layer 311 is a processing layer that performs a convolution operation on the data input to the convolution block 310 and outputs the result of the convolution operation.
  • the convolution layer 311 is configured by, for example, 32 filters with a kernel size of 3 and stride 2.
  • the nonlinear activation function 312 is a function that outputs an operation result using data output from the convolution layer 311 as an argument.
  • the non-linear activation function 312 controls the output of the non-linear activation function 312 according to the bias.
  • the normalization layer 313 normalizes the data output from the non-linear activation function 312 and outputs normalized data in order to suppress data bias. In the present embodiment, the normalization layer 313 normalizes data output from the nonlinear activation function 312 using Batch Normalization that smoothes data values.
  • the residual block 320 is a processing block configured in a convolution group including two or more convolution layers 311 of at least one of the two or more convolution blocks 310 and 330 described above. Also, residual block 320 inputs incoming data into the convolutional group and adds incoming data to the data output from the convolutional group.
  • residual block 320 includes two convolutional blocks 322 connected in series, as shown for example in FIG. For example, data input to residual block 320 is input to one convolutional block 322 (ie, left convolutional block 322 in FIG. 8). Then, data output from one convolution block 322 is input to the other convolution block 322 (that is, the right convolution block 322 in FIG. 8).
  • the convolution block 322 has the same configuration as the convolution block 310 or 330.
  • data input to the residual block 320 is added to data output from the right convolution block 322 and output from the residual block 320. That is, the data input to the residual block 320 and the data output from the right convolution block 322 are summed and output from the residual block 320.
  • two convolutional blocks 322 are connected in series as the residual group 321, but three or more convolutional blocks 322 may be connected in series.
  • the image encoding unit 101 does not use the first convolutional neural network model, but uses a conventional method, that is, Fourier transform such as discrete cosine transform, to encode an input image from an image space region to an encoding space region. Conversion may be performed.
  • Fourier transform such as discrete cosine transform
  • the post-processing feature extraction unit 102 performs processing for extracting feature quantities used in post-processing using the second convolutional neural network model.
  • the feature amount is high frequency information included in the input image.
  • Post-processing is processing for bringing a decompressed image, which is the result of compression and decompression on an input image, closer to the input image.
  • the second convolutional neural network model is subjected to learning for performing processing for extracting feature quantities used in post-processing.
  • the second convolutional neural network model includes two or more convolutional blocks.
  • the first convolutional neural network model includes one or more residual blocks. That is, the configuration of the second convolutional neural network model is the same as that of the first convolutional neural network model, but may be different.
  • the configuration of the first convolutional neural network model is as described above, and thus the description thereof is omitted.
  • the quantum unit 103 quantizes the data output from the image encoding unit 101 and inversely quantizes the quantized data.
  • the quantum unit 103 includes, for example, the quantization unit 103A or the inverse quantization unit 103B illustrated in FIG.
  • the quantization unit 103A quantizes the data output from the image coding unit 101.
  • the quantizing unit 103A of the present embodiment is configured of, for example, a quantizer that controls the particle size according to (Expression 1). As a result, not only smooth quantization can be performed, but also errors in reconstruction (inverse quantization) can be suppressed.
  • the quantization unit 103A of the present embodiment in place of rounding up, the quantization unit that controls the particle size by (Equation 1) rounds off. As a result, the quantized representation will not be full bits, but will lose half of the bits.
  • the quantization unit 103B of the present embodiment can perform quantization more smoothly, it does not use vector quantization and perceptual metrics. If perceptual metrics are not used, it is possible to introduce a large distortion at the time of reconstruction (during inverse quantization). That is, in the quantization unit 103A of the present embodiment, there is room for further improvement because there is no function of vector quantization and perceptual metric.
  • the inverse quantization unit 103B performs inverse quantization on the compressed image (input image) decoded by the entropy decoding unit 104B. Specifically, the inverse quantization unit 103B inversely quantizes the data quantized by the quantization unit 103A, that is, the compressed image (input image) decoded by the entropy decoding unit 104B. Similar to the quantization unit 103A, the inverse quantization unit 103B may be a dequantizer that uses rounding instead of rounding up and controls the particle size according to (Expression 1).
  • the entropy coding unit 104 performs compression and decompression processing on the input image.
  • the entropy coding unit 104 includes, for example, the entropy coding unit 104A or the entropy decoding unit 104B shown in FIG.
  • the entropy coding unit 104A entropy codes the data output from the quantization unit 103A.
  • the entropy coding unit 104A according to the present embodiment performs adaptive binary arithmetic coding suitable for learning expression in order to remove all redundancy from the quantized expression.
  • the entropy coding unit 104A acquires, as the context of the pixel to be encoded, all pixels before the pixel to be encoded, which is all quantized representations.
  • the entropy coding unit 104A creates a histogram for all the previous pixels acquired as contexts. This histogram is used as a probability table by the entropy coding unit 104A.
  • coding by this method is simple, it has the same function as classical arithmetic coding or an entropy coder using deep learning. That is, the coding according to this method is H.264. H.264 / H. Although simpler than the CABAC used at 265, the results that can be obtained are fully available.
  • the entropy coding unit 104A may entropy code the data output from the quantization unit 103A and the feature quantity extracted by the post-processing feature extraction unit 102.
  • the entropy decoding unit 104B entropy decodes the compressed image (input image). Specifically, the entropy decoding unit 104B entropy decodes the compressed image (input image) using adaptive binary arithmetic coding. The detailed method is the same as the entropy coding, so the description is omitted.
  • the entropy decoding unit 104B entropy decodes the compressed image (input image).
  • the storage unit 105 stores the data entropy-coded by the entropy coding unit 104.
  • the storage unit 105 also outputs the stored entropy-coded data to the entropy decoding unit 104B.
  • the image decoding unit 106 transforms the input image from the encoding space region to the image space region using the first convolutional neural network model.
  • the first convolutional neural network model here is subjected to learning for conversion into an image space area optimal for image decompression.
  • the first convolutional neural network model here also includes two or more convolutional blocks.
  • the first convolutional neural network model includes one or more residual blocks. That is, the configuration of the first convolutional neural network model used by the image decoding unit 106 is the same as the configuration of the first convolutional neural network model used by the image encoding unit 101. Therefore, since the configuration of the first convolutional neural network model is as described above, the description will be omitted.
  • the image decoding unit 106 does not use the first convolutional neural network model, but uses the conventional method, that is, Fourier transform such as discrete cosine transform, to convert the input image into the image space region from the encoding space region.
  • a conversion inverse conversion may be performed.
  • the post-processing feature acquisition unit 107 uses the second convolutional neural network model to perform processing for acquiring feature quantities used in post-processing.
  • the feature amount is high frequency information included in the input image.
  • the post-processing is processing for bringing a decompressed image, which is a result of decompression on an input image, closer to an original image of the input image.
  • the configuration of the second convolutional neural network model is the same as the configuration of the second convolutional neural network model used by the post-processing feature extraction unit 102. Therefore, the configuration of the second convolutional neural network model is as described above, and thus the description thereof is omitted.
  • the post-processing feature acquisition unit 107 expands (decompresses) the entropy-coded data when the compressed image and the feature amount are input as the entropy-coded data to the entropy decoding unit 104B. Acquired by extracting feature quantities.
  • the post-processing feature acquisition unit 107 may acquire the feature quantity extracted by the post-processing feature extraction unit 102.
  • the post-processing unit 108 performs a process for bringing the decompressed image closer to the input image, and outputs the decompressed image subjected to the process as an output image.
  • the post-processing unit 108 performs post-processing using the third convolutional neural network model.
  • post-processing is processing for bringing a decompressed image obtained using the first convolutional neural network model closer to the original image, using feature amounts acquired using the second convolutional neural network model.
  • the post-processing unit 108 uses the feature amount acquired by the post-processing feature acquisition unit 107 for the decompressed image obtained by the image decoding unit 106 using the third convolutional neural network model. Perform processing to make it close to the original image.
  • the third convolutional neural network model consists of a series of convolutional blocks that maintain a constant receptive field. More specifically, the third convolutional neural network model includes two or more convolutional blocks. Also, the first convolutional neural network model includes one or more residual blocks. That is, the configuration of the third convolutional neural network model may be the same as the configuration of the first and second convolutional neural network models. The configuration of the first convolutional neural network model and the like is as described above, and thus the description thereof is omitted.
  • the post-processing unit 108 can improve the quality of the image using the third convolutional neural network model. As a result, it is possible to cause the image encoding unit 101 or the like to perform aggressive image compression while maintaining the value of MS-SSIM.
  • the post-processing unit 108 causes the post-processing feature acquisition unit 107 to acquire high-frequency information extracted from the original image in order to improve the quality of the image quality.
  • the high frequency information extracted from the original image is entropy coded together with the quantized image, and is entropy decoded in the entropy decoding unit 104B.
  • the entropy decoded high frequency information may be further decoded into the image space by the post-processing feature acquisition unit 107 or the entropy decoding unit 104B.
  • the post-processing unit 108 converts the high frequency information decoded into the image space acquired by the post-processing feature acquisition unit 107 into a decompressed image converted from the encoding space region to the image space region by the image decoding unit 106. include. This makes it possible to reintroduce the details lost due to quantization in the decompressed image, so that a higher MS-SSIM can be obtained.
  • the first to third convolutional neural networks are described as having residual blocks connected in a residual manner, but the present invention is not limited to this. Other architectures may be applied.
  • a feedback structure may be applied, such as a Recurrent Neural Network or a Recursive Neural Network.
  • the output of one or more convolutional blocks may be used as the input of the one or more convolutional blocks.
  • the residual connection may then be used in the reverse direction.
  • the image processing apparatus 10 of the present embodiment it is possible to perform compression of an image in which deterioration of image quality is further suppressed using a convolutional neural network, and to obtain a decompressed image in which deterioration of quality is further suppressed. it can.
  • CNN convolutional neural network
  • the convolutional neural network by using the convolutional neural network, it is possible to compress an image in which the deterioration of image quality is further suppressed, and an image in which a decompressed image in which the deterioration of quality is further suppressed can be obtained.
  • the processing device 10 can be realized.
  • CNN convolutional neural networks
  • CNN convolutional neural networks
  • GAN Generative Adversalial Networks
  • image compression is performed using a convolutional neural network that does not employ GAN. This embodiment does not focus on the basic network architecture needed for good image modeling, but focuses on the network architecture for the very difficult hyperparameter search needed to achieve good convergence. It is because it is applied.
  • GAN may be employed to obtain better results.
  • FIG. 9 is a diagram showing an experimental result on effectiveness verification of the image processing apparatus 10 in the first embodiment.
  • FIG. 9 shows experimental results when learned with the RAISE 6K data set and verified with the KODAK test data set.
  • Encoder corresponds to the image encoding unit 101
  • PostProcessor corresponds to the post-processing unit 108.
  • All Modules corresponds to the image processing apparatus 10.
  • the RAISE 6K dataset is a dataset consisting of raw natural images, consisting of 6,000 4K photographs evenly divided into seven categories: indoor, outdoor, nature, people, objects, buildings .
  • preparation is made to randomly take out 10 parts of 128 ⁇ 128 pixels in size for each image to make a data set of learning images.
  • KODAK's data set is a test data set composed of natural images, and consists of 24 images of 768 ⁇ 512 pixels. Note that the natural images that make up the KODAK data set include various colors and textures, so it is a difficult data set for image compression.
  • the image processing apparatus 10 can perform compression of the image in which the deterioration of the image quality is further suppressed, and the compression in which the deterioration of the quality is further suppressed It turned out that a cancellation image can be obtained.
  • FIG. 10 is a block diagram showing an implementation example of the coding apparatus 100 according to the first embodiment.
  • the encoding device 100 includes a circuit 160 and a memory 162.
  • a part of the image processing apparatus 10 shown in FIG. 2 and a plurality of components of the encoding apparatus 100 shown in FIG. 3 are implemented by the circuit 160 and the memory 162 shown in FIG.
  • the circuit 160 is a circuit that performs information processing and can access the memory 162.
  • the circuit 160 is a dedicated or general-purpose electronic circuit that encodes an image.
  • the circuit 160 may be a processor such as a CPU.
  • the circuit 160 may also be an assembly of a plurality of electronic circuits.
  • the circuit 160 may play a role of a plurality of components excluding the component for storing information among the plurality of components of the encoding device 100 illustrated in FIG. 3 and the like.
  • the memory 162 is a dedicated or general-purpose memory in which information for the circuit 160 to encode an image is stored.
  • the memory 162 may be an electronic circuit or may be connected to the circuit 160.
  • the memory 162 may also be included in the circuit 160.
  • the memory 162 may be a collection of a plurality of electronic circuits.
  • the memory 162 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium.
  • the memory 162 may be a non-volatile memory or a volatile memory.
  • the memory 162 may store a moving image composed of a plurality of images to be encoded, or may store a bit string corresponding to the encoded image.
  • the memory 162 may also store a program for the circuit 160 to encode a moving image.
  • a plurality of convolutional neural network models may be stored.
  • the memory 162 may store a plurality of parameters of a plurality of convolutional neural network models.
  • all of the plurality of components shown in FIG. 3 and the like may not be mounted, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 3 and the like may be included in another device, and some of the plurality of processes described above may be performed by another device.
  • FIG. 11 is a flowchart showing an operation example of the coding apparatus 100 shown in FIG.
  • the coding apparatus 100 shown in FIG. 10 performs the operation shown in FIG.
  • the circuit 160 of the encoding device 100 transforms the input image from the image space region to the encoding space region using the first convolutional neural network model using the memory 162.
  • the compression process is performed on the input image (S101).
  • the circuit 160 of the encoding apparatus 100 extracts a feature value used in post-processing, which is processing to bring the decompressed image closer to the input image, using the memory 162.
  • a process is performed (S102).
  • the encoding apparatus 100 degrades the image quality using the first convolutional neural network model for converting to the encoding space and the second convolutional neural network model for extracting the feature amount used in the post-processing. Can be compressed more effectively.
  • FIG. 12 is a block diagram showing an implementation example of the decoding apparatus 200 according to the first embodiment.
  • the decoding device 200 includes a circuit 260 and a memory 262.
  • a part of the image processing apparatus 10 shown in FIG. 2 and a plurality of components of the decoding apparatus 200 shown in FIG. 4 are implemented by the circuit 260 and the memory 262 shown in FIG.
  • the circuit 260 is a circuit that performs information processing and can access the memory 262.
  • circuit 260 is a dedicated or general purpose electronic circuit that uses memory 262 to decode the compressed image.
  • the circuit 260 may be a processor such as a CPU.
  • the circuit 260 may be a collection of a plurality of electronic circuits.
  • the circuit 260 may play a role of a plurality of components excluding the component for storing information among the plurality of components of the decoding apparatus 200 illustrated in FIG. 4 and the like.
  • the memory 262 is a dedicated or general-purpose memory in which information for the circuit 260 to decode a compressed image or a decompressed image after decoding is stored.
  • the memory 262 may be an electronic circuit or may be connected to the circuit 260. Also, the memory 262 may be included in the circuit 260. Further, the memory 262 may be a collection of a plurality of electronic circuits. Also, the memory 262 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium.
  • the memory 262 may be either a non-volatile memory or a volatile memory.
  • a bit string corresponding to the encoded image may be stored, or a decompressed image corresponding to the decoded bit string may be stored.
  • the memory 262 may also store a program for the circuit 260 to decode an image.
  • the memory 262 may store a plurality of convolutional neural network models.
  • the memory 262 may store a plurality of parameters of a plurality of convolutional neural network models.
  • all of the plurality of components shown in FIG. 4 and the like may not be mounted, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 4 and the like may be included in another device, and some of the plurality of processes described above may be performed by another device.
  • FIG. 13 is a flow chart showing an operation example of the decoding apparatus 200 shown in FIG.
  • the decoding apparatus 200 shown in FIG. 12 performs the operation shown in FIG.
  • the circuit 260 of the decoding device 200 performs conversion of the input image from the encoding space region to the image space region using the memory 262 and using the first convolutional neural network model. Decompression processing is performed on the input image (S411).
  • the circuit 260 of the decoding device 200 uses the memory 262 to process the decompressed image, which is the result of decompression on the input image, closer to the original image of the input image using the second convolutional neural network model.
  • a process is performed to acquire a feature amount used in a certain post-process (S412).
  • the decompressed image in which the deterioration of the image quality is further suppressed by using the first convolutional neural network model for converting to the image space and the second convolutional neural network model for acquiring the feature used in the post-processing is obtained. You can get it.
  • coding apparatus 100 and decoding apparatus 200 in the present embodiment may be used as an image coding apparatus that codes an image such as an intra picture and an image decoding apparatus that decodes a compressed image. Furthermore, even if encoding apparatus 100 and decoding apparatus 200 in the present embodiment are each used as a moving image encoding apparatus that encodes each of a plurality of images and a moving image decoding apparatus that decodes each of a plurality of compressed images. Good.
  • At least a part of the present embodiment may be used as a coding method, may be used as a decoding method, or may be used as another method.
  • each component may be configured by dedicated hardware or implemented by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the image processing apparatus 10 may include a processing circuit (Processing Circuitry) and a storage device (Storage) electrically connected to the processing circuit and accessible to the processing circuit.
  • a processing circuit Processing Circuitry
  • a storage device Storage
  • the processing circuit corresponds to the circuit 110
  • the storage device corresponds to the memory 262.
  • the processing circuit includes at least one of dedicated hardware and a program execution unit, and executes processing using a storage device.
  • the storage device stores a software program executed by the program execution unit.
  • the software for realizing the image processing apparatus 10 and the like of the present embodiment is a program as follows.
  • this program performs compression processing on the input image by performing conversion on the input image from the image space region to the encoding space region using the first convolutional neural network model in the computer, Coding that uses a second convolutional neural network model to extract feature quantities used in post processing, which is processing for bringing a decompressed image, which is the result of compression and decompression on the input image, closer to the input image
  • Coding that uses a second convolutional neural network model to extract feature quantities used in post processing, which is processing for bringing a decompressed image, which is the result of compression and decompression on the input image, closer to the input image
  • the method may be implemented.
  • the program also causes the computer to perform a decompression process on the input image by transforming the input image from the encoding space region to the image space region using the first convolutional neural network model.
  • the second convolutional neural network model is used to obtain a feature amount to be used in post-processing, which is processing for bringing a decompressed image, which is a result of decompression on the input image, closer to the original image of the input image.
  • a decryption method may be performed.
  • each component may be a circuit as described above. These circuits may constitute one circuit as a whole or may be separate circuits. Each component may be realized by a general purpose processor or a dedicated processor.
  • first and second ordinal numbers may be given as appropriate to components and the like.
  • the aspect of the image processing apparatus 10 was demonstrated based on embodiment, the aspect of the image processing apparatus 10 is not limited to this embodiment. Without departing from the spirit of the present disclosure, various modifications that may occur to those skilled in the art may be applied to the present embodiment, and a form configured by combining components in different embodiments may be included within the scope of the image processing apparatus 10. It may be included.
  • This aspect may be practiced in combination with at least some of the other aspects in this disclosure. Also, part of the processing or part of the configuration of this aspect may be implemented in combination with other aspects.
  • This aspect may be practiced in combination with at least some of the other aspects in the present disclosure.
  • part of the processing described in the flowchart of this aspect part of the configuration of the apparatus, part of the syntax, and the like may be implemented in combination with other aspects.
  • each of the functional blocks can usually be realized by an MPU, a memory, and the like. Further, the processing by each of the functional blocks is usually realized by a program execution unit such as a processor reading and executing software (program) recorded in a recording medium such as a ROM.
  • the software may be distributed by downloading or the like, or may be distributed by being recorded in a recording medium such as a semiconductor memory.
  • each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the processor that executes the program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • the system is characterized by having an image coding apparatus using an image coding method, an image decoding apparatus using an image decoding method, and an image coding / decoding apparatus provided with both.
  • Other configurations in the system can be suitably modified as the case may be.
  • FIG. 14 is a diagram showing an overall configuration of a content supply system ex100 for realizing content distribution service.
  • the area for providing communication service is divided into desired sizes, and base stations ex106, ex107, ex108, ex109 and ex110, which are fixed wireless stations, are installed in each cell.
  • each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet service provider ex102 or the communication network ex104 and the base stations ex106 to ex110 on the Internet ex101 Is connected.
  • the content supply system ex100 may connect any of the above-described elements in combination.
  • the respective devices may be connected to each other directly or indirectly via a telephone network, near-field radio, etc., not via the base stations ex106 to ex110 which are fixed wireless stations.
  • the streaming server ex103 is connected to each device such as the computer ex111, the game machine ex112, the camera ex113, the home appliance ex114, and the smartphone ex115 via the Internet ex101 or the like.
  • the streaming server ex103 is connected to a terminal or the like in a hotspot in the aircraft ex117 via the satellite ex116.
  • a radio access point or a hotspot may be used instead of base stations ex106 to ex110.
  • the streaming server ex103 may be directly connected to the communication network ex104 without the internet ex101 or the internet service provider ex102, or may be directly connected with the airplane ex117 without the satellite ex116.
  • the camera ex113 is a device capable of shooting a still image such as a digital camera and shooting a moving image.
  • the smartphone ex115 is a smartphone, a mobile phone, a PHS (Personal Handyphone System), or the like compatible with a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
  • the home appliance ex118 is a refrigerator or a device included in a home fuel cell cogeneration system.
  • a terminal having a photographing function when a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, live distribution and the like become possible.
  • a terminal (a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, a smartphone ex115, a terminal in an airplane ex117, etc.) transmits the still image or moving image content captured by the user using the terminal.
  • the encoding process described in each embodiment is performed, and video data obtained by the encoding and sound data obtained by encoding a sound corresponding to the video are multiplexed, and the obtained data is transmitted to the streaming server ex103. That is, each terminal functions as an image coding apparatus according to an aspect of the present disclosure.
  • the streaming server ex 103 streams the content data transmitted to the requested client.
  • the client is a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, a smartphone ex115, a terminal in the airplane ex117, or the like capable of decoding the above-described encoded data.
  • Each device that receives the distributed data decrypts and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present disclosure.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, or distribute data in a distributed manner.
  • the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and content delivery may be realized by a network connecting a large number of edge servers distributed around the world and the edge servers.
  • CDN Content Delivery Network
  • content delivery may be realized by a network connecting a large number of edge servers distributed around the world and the edge servers.
  • physically close edge servers are dynamically assigned according to clients. The delay can be reduced by caching and distributing the content to the edge server.
  • processing is distributed among multiple edge servers, or the distribution subject is switched to another edge server, or a portion of the network where a failure has occurred. Since the delivery can be continued bypassing, high-speed and stable delivery can be realized.
  • each terminal may perform encoding processing of captured data, or may perform processing on the server side, or may share processing with each other.
  • a processing loop is performed twice.
  • the first loop the complexity or code amount of the image in frame or scene units is detected.
  • the second loop processing is performed to maintain the image quality and improve the coding efficiency.
  • the terminal performs a first encoding process
  • the server receiving the content performs a second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can.
  • the first encoded data made by the terminal can also be received and reproduced by another terminal, enabling more flexible real time delivery Become.
  • the camera ex 113 or the like extracts a feature amount from an image, compresses data relating to the feature amount as metadata, and transmits the data to the server.
  • the server performs compression according to the meaning of the image, for example, determining the importance of the object from the feature amount and switching the quantization accuracy.
  • Feature amount data is particularly effective in improving the accuracy and efficiency of motion vector prediction at the time of second compression in the server.
  • the terminal may perform simple coding such as VLC (variable length coding) and the server may perform coding with a large processing load such as CABAC (context adaptive binary arithmetic coding method).
  • a plurality of video data in which substantially the same scenes are shot by a plurality of terminals.
  • a unit of GOP Group of Picture
  • a unit of picture or a tile into which a picture is divided, using a plurality of terminals for which photographing was performed and other terminals and servers which are not photographing as necessary.
  • the encoding process is allocated in units, etc. to perform distributed processing. This reduces delay and can realize more real time performance.
  • the server may manage and / or instruct the video data captured by each terminal to be mutually referred to.
  • the server may receive the encoded data from each terminal and change the reference relationship among a plurality of data, or may correct or replace the picture itself and re-encode it. This makes it possible to generate streams with enhanced quality and efficiency of each piece of data.
  • the server may deliver the video data after performing transcoding for changing the coding method of the video data.
  • the server may convert the encoding system of the MPEG system into the VP system, or the H.264 system. H.264. It may be converted to 265.
  • the encoding process can be performed by the terminal or one or more servers. Therefore, in the following, although the description such as “server” or “terminal” is used as the subject of processing, part or all of the processing performed by the server may be performed by the terminal, or the processing performed by the terminal Some or all may be performed on the server. In addition, with regard to these, the same applies to the decoding process.
  • the server not only encodes a two-dimensional moving image, but also automatically encodes a still image based on scene analysis of the moving image or at a time designated by the user and transmits it to the receiving terminal. It is also good. Furthermore, if the server can acquire relative positional relationship between the imaging terminals, the three-dimensional shape of the scene is not only determined based on the two-dimensional moving image but also the video of the same scene captured from different angles. Can be generated. Note that the server may separately encode three-dimensional data generated by a point cloud or the like, or an image to be transmitted to the receiving terminal based on a result of recognizing or tracking a person or an object using the three-dimensional data. Alternatively, it may be generated by selecting or reconfiguring from videos taken by a plurality of terminals.
  • the user can enjoy the scene by arbitrarily selecting each video corresponding to each photographing terminal, or from the three-dimensional data reconstructed using a plurality of images or videos, the video of the arbitrary viewpoint You can also enjoy the extracted content.
  • the sound may be picked up from a plurality of different angles as well as the video, and the server may multiplex the sound from a specific angle or space with the video and transmit it according to the video.
  • the server may create viewpoint images for the right eye and for the left eye, respectively, and may perform coding to allow reference between each viewpoint video using Multi-View Coding (MVC) or the like. It may be encoded as another stream without reference. At the time of decoding of another stream, reproduction may be performed in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
  • MVC Multi-View Coding
  • the server superimposes virtual object information in the virtual space on camera information in the real space based on the three-dimensional position or the movement of the user's viewpoint.
  • the decoding apparatus may acquire or hold virtual object information and three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposed data by smoothly connecting.
  • the decoding device transmits the motion of the user's viewpoint to the server in addition to the request for virtual object information, and the server creates superimposed data in accordance with the motion of the viewpoint received from the three-dimensional data held in the server.
  • the superimposed data may be encoded and distributed to the decoding device.
  • the superimposed data has an ⁇ value indicating transparency as well as RGB
  • the server sets the ⁇ value of a portion other than the object created from the three-dimensional data to 0 etc., and the portion is transparent , May be encoded.
  • the server may set RGB values of predetermined values as a background, such as chroma key, and generate data in which the portion other than the object has a background color.
  • the decryption processing of the distributed data may be performed by each terminal which is a client, may be performed by the server side, or may be performed sharing each other.
  • one terminal may send a reception request to the server once, the content corresponding to the request may be received by another terminal and decoded, and the decoded signal may be transmitted to a device having a display. Data of high image quality can be reproduced by distributing processing and selecting appropriate content regardless of the performance of the communicable terminal itself.
  • a viewer's personal terminal may decode and display a partial area such as a tile in which a picture is divided. Thereby, it is possible to confirm at hand the area in which the user is in charge or the area to be checked in more detail while sharing the whole image.
  • encoded data over the network such as encoded data being cached on a server that can be accessed in a short time from a receiving terminal, or copied to an edge server in a content delivery service, etc. It is also possible to switch the bit rate of the received data based on ease.
  • the switching of content will be described using a scalable stream compression-coded by applying the moving picture coding method shown in each of the above-described embodiments shown in FIG.
  • the server may have a plurality of streams with the same content but different qualities as individual streams, but is temporally / spatial scalable which is realized by coding into layers as shown in the figure.
  • the configuration may be such that the content is switched using the feature of the stream. That is, the decoding side determines low-resolution content and high-resolution content by determining which layer to decode depending on the internal factor of performance and external factors such as the state of the communication band. It can be switched freely and decoded. For example, when it is desired to view the continuation of the video being watched by the smartphone ex115 while moving on a device such as the Internet TV after returning home, the device only has to decode the same stream to different layers, so the burden on the server side Can be reduced.
  • the picture is encoded for each layer, and the enhancement layer includes meta information based on statistical information of the image, etc., in addition to the configuration for realizing the scalability in which the enhancement layer exists above the base layer.
  • the decoding side may generate high-quality content by super-resolving a picture of the base layer based on the meta information.
  • the super resolution may be either an improvement in the SN ratio at the same resolution or an expansion of the resolution.
  • Meta information includes information for identifying linear or non-linear filter coefficients used for super-resolution processing, or information for identifying parameter values in filter processing used for super-resolution processing, machine learning or least squares operation, etc. .
  • the picture may be divided into tiles or the like according to the meaning of an object or the like in the image, and the decoding side may be configured to decode only a part of the area by selecting the tile to be decoded.
  • the decoding side can position the desired object based on the meta information And determine the tile that contains the object. For example, as shown in FIG. 16, meta information is stored using a data storage structure different from pixel data, such as an SEI message in HEVC. This meta information indicates, for example, the position, size, or color of the main object.
  • meta information may be stored in units of a plurality of pictures, such as streams, sequences, or random access units.
  • the decoding side can acquire the time when a specific person appears in the video and the like, and can identify the picture in which the object exists and the position of the object in the picture by combining the information with the picture unit.
  • FIG. 17 is a diagram showing an example of a display screen of a web page in the computer ex111 and the like.
  • FIG. 18 is a diagram showing an example of a display screen of a web page in the smartphone ex115 and the like.
  • the web page may include a plurality of link images which are links to image content, and the appearance differs depending on the browsing device.
  • the display device When multiple link images are visible on the screen, the display device until the user explicitly selects the link image, or until the link image approaches near the center of the screen or the entire link image falls within the screen
  • the (decoding device) displays still images or I pictures of each content as link images, displays images such as gif animation with a plurality of still images or I pictures, etc., receives only the base layer Decode and display.
  • the display device decodes the base layer with the highest priority.
  • the display device may decode up to the enhancement layer if there is information indicating that the content is scalable in the HTML configuring the web page.
  • the display device decodes only forward referenced pictures (I picture, P picture, forward referenced only B picture) before the selection or when the communication band is very strict. And, by displaying, it is possible to reduce the delay between the decoding time of the leading picture and the display time (delay from the start of decoding of the content to the start of display).
  • the display device may roughly ignore the reference relationship of pictures and roughly decode all B pictures and P pictures with forward reference, and may perform normal decoding as time passes and the number of received pictures increases.
  • the receiving terminal when transmitting or receiving still image or video data such as two-dimensional or three-dimensional map information for automatic traveling or driving assistance of a car, the receiving terminal is added as image information belonging to one or more layers as meta information Information on weather or construction may also be received, and these may be correlated and decoded.
  • the meta information may belong to the layer or may be simply multiplexed with the image data.
  • the receiving terminal since a car including a receiving terminal, a drone or an airplane moves, the receiving terminal transmits the position information of the receiving terminal at the time of reception request to seamlessly receive and decode while switching the base stations ex106 to ex110. Can be realized.
  • the receiving terminal can dynamically switch how much meta information is received or how much map information is updated according to the user's selection, the user's situation or the state of the communication band. become.
  • the client can receive, decode, and reproduce the encoded information transmitted by the user in real time.
  • the server may perform the encoding process after performing the editing process. This can be realized, for example, with the following configuration.
  • the server performs recognition processing such as shooting error, scene search, meaning analysis, and object detection from the original image or encoded data after shooting in real time or by accumulation. Then, the server manually or automatically corrects out-of-focus or camera shake, etc. based on the recognition result, or a scene with low importance such as a scene whose brightness is low or out of focus compared with other pictures. Make edits such as deleting, emphasizing the edge of an object, or changing the color. The server encodes the edited data based on the edited result. It is also known that the audience rating drops when the shooting time is too long, and the server works not only with scenes with low importance as described above, but also moves as content becomes within a specific time range according to the shooting time. Scenes with a small amount of motion may be clipped automatically based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of semantic analysis of the scene.
  • recognition processing such as shooting error, scene search, meaning analysis, and object detection from the original image or encoded data after shooting in real
  • the server may change and encode the face of a person at the periphery of the screen, or the inside of a house, etc. into an image out of focus.
  • the server recognizes whether or not the face of a person different from the person registered in advance appears in the image to be encoded, and if so, performs processing such as mosaicing the face portion. May be Alternatively, the user designates a person or background area desired to process an image from the viewpoint of copyright etc.
  • preprocessing or post-processing of encoding replaces the designated area with another video or blurs the focus. It is also possible to perform such processing. If it is a person, it is possible to replace the image of the face part while tracking the person in the moving image.
  • the decoding apparatus first receives the base layer with the highest priority, and performs decoding and reproduction, although it depends on the bandwidth.
  • the decoding device may receive the enhancement layer during this period, and may play back high-quality video including the enhancement layer if it is played back more than once, such as when playback is looped.
  • scalable coding it is possible to provide an experience in which the stream gradually becomes smart and the image becomes better although it is a rough moving image when it is not selected or when it starts watching.
  • the same experience can be provided even if the coarse stream played back first and the second stream coded with reference to the first moving image are configured as one stream .
  • these encoding or decoding processes are generally processed in an LSI ex 500 that each terminal has.
  • the LSI ex 500 may be a single chip or a plurality of chips.
  • Software for moving image encoding or decoding is incorporated in any recording medium (CD-ROM, flexible disk, hard disk, etc.) readable by computer ex111 or the like, and encoding or decoding is performed using the software. It is also good.
  • moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex 500 included in the smartphone ex 115.
  • the LSI ex 500 may be configured to download and activate application software.
  • the terminal first determines whether the terminal corresponds to the content coding scheme or has the ability to execute a specific service. If the terminal does not support the content encoding method or does not have the ability to execute a specific service, the terminal downloads the codec or application software, and then acquires and reproduces the content.
  • the present invention is not limited to the content supply system ex100 via the Internet ex101, but also to a system for digital broadcasting at least a moving picture coding apparatus (image coding apparatus) or a moving picture decoding apparatus (image decoding apparatus) of the above embodiments. Can be incorporated. There is a difference in that it is multicast-oriented with respect to the configuration in which the content supply system ex100 can be easily unicasted, since multiplexed data in which video and sound are multiplexed is transmitted on broadcast radio waves using satellites etc. Similar applications are possible for the encoding process and the decoding process.
  • FIG. 19 is a diagram showing the smartphone ex115.
  • FIG. 20 is a diagram showing a configuration example of the smartphone ex115.
  • the smartphone ex115 receives an antenna ex450 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex465 capable of taking video and still images, a video taken by the camera unit ex465, and the antenna ex450 And a display unit ex ⁇ b> 458 for displaying data obtained by decoding an image or the like.
  • the smartphone ex115 further includes an operation unit ex466 that is a touch panel or the like, a voice output unit ex457 that is a speaker or the like for outputting voice or sound, a voice input unit ex456 that is a microphone or the like for inputting voice, Identify the user, the memory unit ex 467 capable of storing encoded video or still image, recorded voice, received video or still image, encoded data such as mail, or decoded data, and specify a network, etc. And a slot unit ex464 that is an interface unit with the SIM ex 468 for authenticating access to various data. Note that an external memory may be used instead of the memory unit ex467.
  • a main control unit ex460 that integrally controls the display unit ex458 and the operation unit ex466, a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, / Demodulation unit ex452, multiplexing / demultiplexing unit ex453, audio signal processing unit ex454, slot unit ex464, and memory unit ex467 are connected via a bus ex470.
  • the power supply circuit unit ex461 activates the smartphone ex115 to an operable state by supplying power from the battery pack to each unit.
  • the smartphone ex115 performs processing such as call and data communication based on control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like.
  • the audio signal collected by the audio input unit ex456 is converted to a digital audio signal by the audio signal processing unit ex454, spread spectrum processing is performed by the modulation / demodulation unit ex452, and digital analog conversion is performed by the transmission / reception unit ex451.
  • transmission is performed via the antenna ex450.
  • the received data is amplified and subjected to frequency conversion processing and analog-to-digital conversion processing, subjected to spectrum despreading processing by modulation / demodulation unit ex452, and converted to an analog sound signal by sound signal processing unit ex454.
  • Output from In the data communication mode text, still images, or video data are sent to the main control unit ex460 via the operation input control unit ex462 by the operation of the operation unit ex466 or the like of the main unit, and transmission and reception processing is similarly performed.
  • the video signal processing unit ex 455 executes the video signal stored in the memory unit ex 467 or the video signal input from the camera unit ex 465 as described above.
  • the video data is compressed and encoded by the moving picture encoding method shown in the form, and the encoded video data is sent to the multiplexing / demultiplexing unit ex453.
  • the audio signal processing unit ex454 encodes an audio signal collected by the audio input unit ex456 while capturing a video or a still image with the camera unit ex465, and sends the encoded audio data to the multiplexing / demultiplexing unit ex453.
  • the multiplexing / demultiplexing unit ex453 multiplexes the encoded video data and the encoded audio data according to a predetermined method, and performs modulation processing and conversion by the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the transmission / reception unit ex451. It processes and transmits via antenna ex450.
  • the multiplexing / demultiplexing unit ex453 multiplexes in order to decode multiplexed data received via the antenna ex450.
  • the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the encoded video data is supplied to the video signal processing unit ex455 via the synchronization bus ex470, and The converted audio data is supplied to the audio signal processing unit ex 454.
  • the video signal processing unit ex 455 decodes the video signal by the moving picture decoding method corresponding to the moving picture coding method described in each of the above embodiments, and is linked from the display unit ex 458 via the display control unit ex 459. An image or a still image included in the moving image file is displayed.
  • the audio signal processing unit ex 454 decodes the audio signal, and the audio output unit ex 457 outputs the audio. Furthermore, since real-time streaming is widespread, depending on the user's situation, it may happen that sound reproduction is not socially appropriate. Therefore, as an initial value, it is preferable to have a configuration in which only the video data is reproduced without reproducing the audio signal. Audio may be synchronized and played back only when the user performs an operation such as clicking on video data.
  • the smartphone ex115 has been described as an example, in addition to a transceiving terminal having both an encoder and a decoder as a terminal, a transmitting terminal having only the encoder and a receiver having only the decoder There are three possible implementation forms: terminals. Furthermore, in the digital broadcasting system, it has been described that multiplexed data in which audio data is multiplexed with video data is received or transmitted, but in multiplexed data, character data related to video other than audio data is also described. It may be multiplexed, or video data itself may be received or transmitted, not multiplexed data.
  • the terminal often includes a GPU. Therefore, a configuration in which a large area is collectively processed using the performance of the GPU may be performed using a memory shared by the CPU and the GPU, or a memory whose address is managed so as to be commonly used. As a result, coding time can be shortened, real time property can be secured, and low delay can be realized. In particular, it is efficient to perform processing of motion search, deblock filter, sample adaptive offset (SAO), and transform / quantization collectively in units of pictures or the like on the GPU instead of the CPU.
  • SAO sample adaptive offset
  • the present disclosure is applicable to, for example, a television receiver, a digital video recorder, a car navigation system, a mobile phone, a digital camera, a digital video camera, a video conference system, an electronic mirror, and the like.
  • Image processing apparatus 100 Encoding apparatus 101 Image coding part 102 Feature extraction part 103 for post-processing Quantum part 103A Quantization part 103B Inverse quantization part 104 Entropy coding part 104A Entropy coding part 104B Entropy decoding part 105 Storage part 106 Image Decoding unit 107 Post-processing feature acquisition unit 108 Post-processing unit 160, 260 Circuit 162, 262 Memory 200 Decoding device 300 Convolutional neural network 310, 322, 330 Convoluted block 311 Convoluted layer 312 Nonlinear activation function 313 Normalized layer 320 Residual Block 321 residual group

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

An encoding device (100) is provided with a memory (162) and a circuit (160). The circuit (160) uses a first convolution neural network model to execute, on an input image, conversion of an image space region into an encoded space region to execute a compression process on the input image, and uses a second convolutional neural network model to execute a process of extracting feature amounts used for a post-process of making a decompressed image closer to the input image, the decompressed image being obtained as a result of compression and decompression of the input image.

Description

符号化装置、復号装置、符号化方法及び復号方法Encoding device, decoding device, encoding method and decoding method
 本開示は、符号化装置、復号装置、符号化方法及び復号方法に関する。 The present disclosure relates to an encoding device, a decoding device, an encoding method, and a decoding method.
 従来、動画像を符号化するための規格として、HEVC(High Efficiency Video Coding)とも呼ばれるH.265が存在する(非特許文献1)。 Conventionally, as a standard for coding moving pictures, H.264, also called High Efficiency Video Coding (HEVC), is used. There exist 265 (nonpatent literature 1).
 H.265では、入力画像に対する圧縮を行うために、離散コサイン変換などのフーリエ変換を用いて、画像空間領域を符号化空間領域に変換する。 H. At 265, to perform compression on the input image, the image space domain is transformed into a coding space domain using a Fourier transform such as discrete cosine transform.
 しかしながら、フーリエ変換により変換された符号化空間領域は、入力画像に対する圧縮を行うための最適な符号化空間領域ではない可能性がある。 However, the encoding space region transformed by Fourier transform may not be the optimal encoding space region for performing compression on the input image.
 そこで、本開示は、画質の劣化をより抑制した画像の圧縮を行うことができる符号化装置等を提供する。 Thus, the present disclosure provides an encoding device and the like that can perform compression of an image in which deterioration of image quality is further suppressed.
 本開示の一態様における符号化装置は、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行うことで前記入力画像に対する圧縮の処理を行い、第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮および圧縮解除の結果である圧縮解除画像を前記入力画像に近づける処理である後処理において用いられる特徴量を抽出する処理を行う。 An encoding apparatus according to an aspect of the present disclosure includes a memory and a circuit accessible to the memory, and the circuit accessible to the memory uses a first convolutional neural network model for the input image. Compression processing is performed on the input image by performing conversion from an image space region to an encoding space region, and compression that is a result of compression and decompression on the input image using a second convolutional neural network model A process of extracting a feature amount used in post-processing, which is a process of bringing a release image close to the input image, is performed.
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータで読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 Note that these general or specific aspects may be realized by a system, an apparatus, a method, an integrated circuit, a computer program, or a non-transitory recording medium such as a computer readable CD-ROM. The present invention may be realized as any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 本開示の一態様における符号化装置等は、画質の劣化をより抑制した画像の圧縮を行うことができる。 The encoding device and the like in one aspect of the present disclosure can perform compression of an image with further suppressed deterioration in image quality.
図1は、比較例におけるコーデックアーキテクチャのMS-SSIM曲線を示す図である。FIG. 1 is a diagram showing an MS-SSIM curve of the codec architecture in the comparative example. 図2は、実施の形態1における画像処理装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the image processing apparatus according to the first embodiment. 図3は、実施の形態1における符号化装置の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of a configuration of a coding apparatus according to Embodiment 1. 図4は、実施の形態1における復号装置の構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of the decoding apparatus in the first embodiment. 図5は、実施の形態1における畳み込みニューラルネットワークの接続構成を示すブロック図である。FIG. 5 is a block diagram showing a connection configuration of the convolutional neural network in the first embodiment. 図6は、実施の形態1における畳み込みニューラルネットワークの具体的な接続構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of a specific connection configuration of the convolutional neural network according to the first embodiment. 図7は、実施の形態1における畳み込みブロックの構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of a convolution block in the first embodiment. 図8は、実施の形態1における残差ブロックの構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a residual block in the first embodiment. 図9は、実施の形態1における画像処理装置の有効性検証についての実験結果を示す図である。FIG. 9 is a diagram showing an experimental result of verifying the effectiveness of the image processing apparatus according to the first embodiment. 図10は、実施の形態1に係る符号化装置の実装例を示すブロック図である。FIG. 10 is a block diagram showing an implementation example of the coding apparatus according to Embodiment 1. 図11は、実施の形態1に係る符号化装置の動作例を示すフローチャートである。FIG. 11 is a flowchart of an exemplary operation of the coding apparatus according to Embodiment 1. 図12は、実施の形態1に係る復号装置の実装例を示すブロック図である。FIG. 12 is a block diagram showing an implementation example of the decoding apparatus according to the first embodiment. 図13は、実施の形態1に係る復号装置の動作例を示すフローチャートである。FIG. 13 is a flowchart showing an operation example of the decoding apparatus according to the first embodiment. 図14は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 14 is an overall configuration diagram of a content supply system for realizing content distribution service. 図15は、スケーラブル符号化時の符号化構造の一例を示す図である。FIG. 15 is a diagram illustrating an example of a coding structure at the time of scalable coding. 図16は、スケーラブル符号化時の符号化構造の一例を示す図である。FIG. 16 is a diagram illustrating an example of a coding structure at the time of scalable coding. 図17は、webページの表示画面例を示す図である。FIG. 17 is a diagram showing an example of a display screen of a web page. 図18は、webページの表示画面例を示す図である。FIG. 18 is a diagram showing an example of a display screen of a web page. 図19は、スマートフォンの一例を示す図である。FIG. 19 is a diagram illustrating an example of a smartphone. 図20は、スマートフォンの構成例を示すブロック図である。FIG. 20 is a block diagram showing a configuration example of a smartphone.
 本開示の一態様に係る符号化装置は、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行うことで前記入力画像に対する圧縮の処理を行い、第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮および圧縮解除の結果である圧縮解除画像を前記入力画像に近づける処理である後処理において用いられる特徴量を抽出する処理を行う。 An encoding apparatus according to an aspect of the present disclosure includes a memory and a circuit accessible to the memory, and the circuit accessible to the memory uses a first convolutional neural network model to generate an input image. On the other hand, compression processing is performed on the input image by performing conversion from an image space region to a coding space region, and using the second convolutional neural network model, the result is compression and decompression on the input image. A process of extracting a feature amount used in post-processing which is a process of bringing a decompressed image close to the input image is performed.
 これにより、符号化装置は、符号化空間に変換するための第1の畳み込みニューラルネットワークモデルと、後処理で用いる特徴量を抽出する第2の畳み込みニューラルネットワークモデルとを用いて、画質の劣化をより抑制した画像の圧縮を行うことができる。 Thereby, the encoding apparatus uses the first convolutional neural network model for converting to the encoding space and the second convolutional neural network model for extracting the feature quantity used in the post-processing, thereby causing the image quality to be degraded. More suppressed image compression can be performed.
 また、例えば、前記特徴量は、前記入力画像に含まれる高周波情報である。 Also, for example, the feature amount is high frequency information included in the input image.
 このように、符号化装置は、圧縮解除画像を入力画像に近づけるための特徴量として、量子化処理により失われた情報を支配的に含む入力画像に含まれる高周波画像を抽出する。これにより、後処理において圧縮解除画像を入力画像に近づける処理を行わせることができるので、画質の劣化をより抑制した画像の圧縮を行うことができる。 As described above, the encoding apparatus extracts a high-frequency image included in the input image that predominantly includes the information lost by the quantization process, as a feature amount for bringing the decompressed image closer to the input image. As a result, processing can be performed to bring the decompressed image closer to the input image in post-processing, so it is possible to perform compression of the image in which deterioration of the image quality is further suppressed.
 また、例えば、前記第1の畳み込みニューラルネットワークモデルおよび前記第2の畳み込みニューラルネットワークモデルは、2つ以上の畳み込みブロックを含み、かつ、1つ以上の残差ブロックを含み、前記2つ以上の畳み込みブロックのそれぞれは、1以上の畳み込み層を含む処理ブロックであり、前記1つ以上の残差ブロックのそれぞれは、前記2つ以上の畳み込みブロックのうちの少なくとも1つの畳み込み層を2以上含む畳み込みグループで構成され、当該残差ブロックに入力されるデータを当該残差ブロックに含まれる前記畳み込みグループに入力し、かつ、当該残差ブロックに入力されるデータを前記畳み込みグループから出力されるデータに加える処理ブロックである。 Also, for example, the first convolutional neural network model and the second convolutional neural network model include two or more convolutional blocks, and include one or more residual blocks, and the two or more convolutions Each of the blocks is a processing block including one or more convolutional layers, and each of the one or more residual blocks is a convolutional group including at least one convolutional layer of the two or more convolutional blocks The data input to the residual block is input to the convolution group included in the residual block, and the data input to the residual block is added to the data output from the convolution group It is a processing block.
 これにより、符号化装置は、より高精度の学習及び推論が可能な畳み込みニューラルネットワークモデルを用いて、画質の劣化をより抑制した画像の圧縮を行うことができる。 As a result, the encoding apparatus can perform compression of an image in which the deterioration of image quality is further suppressed by using a convolutional neural network model capable of learning and inference with higher accuracy.
 また、例えば、前記1つ以上の残差ブロックは、2つ以上の残差ブロックである。 Also, for example, the one or more residual blocks are two or more residual blocks.
 これにより、符号化装置は、より高精度の学習及び推論が可能な畳み込みニューラルネットワークモデルを用いて、画質の劣化をより抑制した画像の圧縮を行うことができる。 As a result, the encoding apparatus can perform compression of an image in which the deterioration of image quality is further suppressed by using a convolutional neural network model capable of learning and inference with higher accuracy.
 また、例えば、前記2つ以上の畳み込みブロックは、4つ以上の畳み込みブロックであり、前記1つ以上の残差ブロックは、残差グループを構成し、前記4つ以上の畳み込みブロックのうちの少なくとも2つの畳み込みブロックを含み、前記4つ以上の畳み込みブロックのうち前記残差グループに含まれない少なくとも1つの畳み込みブロックは、第1畳み込みグループを構成し、前記4つ以上の畳み込みブロックのうち前記残差グループにも前記第1畳み込みグループにも含まれない少なくとも1つの畳み込みブロックは、第2畳み込みグループを構成し、前記第1畳み込みグループから出力されるデータは、前記残差グループに入力され、前記残差グループから出力されるデータは、前記第2畳み込みグループに入力される。 Also, for example, the two or more convolutional blocks are four or more convolutional blocks, and the one or more residual blocks constitute a residual group, and at least one of the four or more convolutional blocks. At least one convolutional block including two convolutional blocks and not included in the residual group among the four or more convolutional blocks constitutes a first convolutional group, and the remaining ones of the four or more convolutional blocks At least one convolution block which is not included in the difference group or the first convolution group constitutes a second convolution group, and data outputted from the first convolution group is inputted to the residual group, Data output from the residual group is input to the second convolution group.
 これにより、符号化装置は、画像の抽象化された特徴量に対して、より高度な演算を適用することができる。したがって、効率的な処理が可能である。 Thus, the encoding apparatus can apply more sophisticated operations to the abstracted feature of the image. Therefore, efficient processing is possible.
 また、例えば、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、符号化空間領域から画像空間領域に変換を行うことで前記入力画像に対する圧縮解除の処理を行い、第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮解除の結果である圧縮解除画像を前記入力画像の原画像に近づける処理である後処理において用いられる特徴量を取得する処理を行う。 Also, for example, the circuit includes a memory and a circuit accessible to the memory, and the circuit accessible to the memory uses a first convolutional neural network model to generate an input image from an encoding space area. Decompression processing is performed on the input image by performing conversion to an image space area, and a decompressed image as a result of decompression on the input image is processed using the second convolutional neural network model. A process is performed to acquire feature amounts used in post-processing, which is a process of approaching an image.
 これにより、復号装置は、画像空間に変換するための第1の畳み込みニューラルネットワークモデルと、後処理で用いる特徴量を取得する第2の畳み込みニューラルネットワークモデルとを用いて、画質の劣化をより抑制した圧縮解除画像を得ることができる。 Thereby, the decoding apparatus further suppresses the deterioration of the image quality by using the first convolutional neural network model for converting to the image space and the second convolutional neural network model for acquiring the feature amount used in the post-processing. Can be obtained.
 また、例えば、前記メモリにアクセス可能な前記回路は、さらに、第3の畳み込みニューラルネットワークモデルを用いて、前記後処理として、第2の畳み込みニューラルネットワークモデルを用いて取得した前記特徴量を用いて、前記第1の畳み込みニューラルネットワークモデルを用いて得た前記圧縮解除画像に対して前記原画像に近づける処理を行う。 Also, for example, the circuit capable of accessing the memory may further use the third convolutional neural network model, and use the feature value acquired using the second convolutional neural network model as the post-processing. The decompressed image obtained using the first convolutional neural network model is processed to be close to the original image.
 これにより、後処理において圧縮解除画像を入力画像に近づける処理を行わせることができるので、画質の劣化をより抑制した圧縮解除画像を得ることができる。 As a result, processing can be performed to bring the decompressed image closer to the input image in post-processing, so it is possible to obtain a decompressed image in which the deterioration of the image quality is further suppressed.
 また、例えば、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行うことで前記入力画像に対する圧縮の処理を行い、第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮および圧縮解除の結果である圧縮解除画像を前記入力画像に近づける処理である後処理において用いられる特徴量を抽出する処理を行う。 In addition, for example, the first convolutional neural network model is used to convert the input image from the image space area to the encoding space area to perform compression processing on the input image, thereby performing a second convolutional neural network. A network model is used to extract feature quantities used in post-processing, which is processing for bringing a decompressed image, which is the result of compression and decompression on the input image, closer to the input image.
 この符号化方法により、符号化空間に変換するための第1の畳み込みニューラルネットワークモデルと、後処理で用いる特徴量を抽出する第2の畳み込みニューラルネットワークモデルとを用いて、画質の劣化をより抑制した画像の圧縮を行うことができる。 By this encoding method, the deterioration of the image quality is further suppressed by using the first convolutional neural network model for converting to the encoding space and the second convolutional neural network model for extracting feature quantities used in post-processing Image compression can be performed.
 また、例えば、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、符号化空間領域から画像空間領域に変換を行うことで前記入力画像に対する圧縮解除の処理を行い、第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮解除の結果である圧縮解除画像を前記入力画像の原画像に近づける処理である後処理において用いられる特徴量を取得する処理を行う。 Also, for example, the input image is converted from the encoding space region to the image space region using the first convolutional neural network model to perform decompression processing on the input image, and the second convolution is performed. A neural network model is used to acquire feature quantities used in post-processing, which is processing for bringing a decompressed image, which is the result of decompression on the input image, closer to the original image of the input image.
 この復号方法により、画像空間に変換するための第1の畳み込みニューラルネットワークモデルと、後処理で用いる特徴量を取得する第2の畳み込みニューラルネットワークモデルとを用いて、画質の劣化をより抑制した圧縮解除画像を得ることができる。 This decoding method uses the first convolutional neural network model for conversion to image space and the second convolutional neural network model for acquiring feature quantities used in post-processing to further suppress image quality deterioration. A cancellation image can be obtained.
 さらに、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータで読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 Furthermore, these general or specific aspects may be realized by a system, an apparatus, a method, an integrated circuit, a computer program, or a non-transitory recording medium such as a computer readable CD-ROM. The present invention may be realized as any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 以下、実施の形態について図面を参照しながら具体的に説明する。 Embodiments will be specifically described below with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 The embodiments described below are all inclusive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the scope of the claims. Further, among the components in the following embodiments, components not described in the independent claim indicating the highest concept are described as arbitrary components.
 (実施の形態1)
 まず、後述する本開示の各態様で説明する処理および/または構成を適用可能な画像処理装置の一例として、実施の形態1の概要を説明する。ただし、実施の形態1は、本開示の各態様で説明する処理および/または構成を適用可能な画像処理装置、符号化装置または復号化装置の一例にすぎず、本開示の各態様で説明する処理および/または構成は、実施の形態1とは異なる画像処理装置、符号化装置または復号化装置においても実施可能である。
Embodiment 1
First, an outline of the first embodiment will be described as an example of an image processing apparatus to which the processing and / or configuration described in each aspect of the present disclosure described later can be applied. However, Embodiment 1 is merely an example of an image processing apparatus, encoding apparatus or decoding apparatus to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and will be described in each aspect of the present disclosure. The processing and / or configuration can also be implemented in an image processing apparatus, an encoding apparatus or a decoding apparatus different from the first embodiment.
 実施の形態1に対して本開示の各態様で説明する処理および/または構成を適用する場合、例えば以下のいずれかを行ってもよい。 When the processing and / or configuration described in each aspect of the present disclosure is applied to Embodiment 1, for example, any of the following may be performed.
 (1)実施の形態1の画像処理装置、符号化装置または復号化装置に対して、当該画像処理装置、符号化装置または復号化装置を構成する複数の構成要素のうち、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (2)実施の形態1の画像処理装置、符号化装置または復号化装置に対して、当該画像処理装置、符号化装置または復号化装置を構成する複数の構成要素のうち一部の構成要素について機能または実施する処理の追加、置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (3)実施の形態1の画像処理装置、符号化装置または復号化装置が実施する方法に対して、処理の追加、および/または当該方法に含まれる複数の処理のうちの一部の処理について置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (4)実施の形態1の画像処理装置、符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (5)実施の形態1の画像処理装置、符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素が備える機能の一部を備える構成要素、または実施の形態1の画像処理装置、符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素が実施する処理の一部を実施する構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (6)実施の形態1の画像処理装置、符号化装置または復号化装置が実施する方法に対して、当該方法に含まれる複数の処理のうち、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (7)実施の形態1の画像処理装置、符号化装置または復号化装置が実施する方法に含まれる複数の処理のうちの一部の処理を、本開示の各態様で説明する処理と組み合わせて実施すること
(1) With respect to the image processing apparatus, the encoding apparatus, or the decoding apparatus according to the first embodiment, each aspect of the present disclosure among a plurality of components constituting the image processing apparatus, the encoding apparatus, or the decoding apparatus Replacing the component corresponding to the component described in the above with the component described in each aspect of the present disclosure (2) The image processing apparatus, encoding apparatus or decoding apparatus according to the first embodiment The present disclosure is applied to an arbitrary change such as addition, replacement, or deletion of a function or a process to be performed on a part of a plurality of components constituting the processing device, the encoding device, or the decoding device. Replacing the component corresponding to the component described in each aspect with the component described in each aspect of the present disclosure (3) A method implemented by the image processing apparatus, the encoding apparatus or the decoding apparatus according to the first embodiment To the processes described in each aspect of the present disclosure, after arbitrary changes such as addition of processing and / or partial processing of a plurality of processing included in the method are performed. Replacing the corresponding processing with the processing described in each aspect of the present disclosure (4) Configuration of a part of a plurality of components constituting the image processing apparatus, the encoding apparatus or the decoding apparatus according to the first embodiment Processing performed by the component described in each aspect of the present disclosure, the component provided with a part of the function of the component described in each aspect of the present disclosure, or the component described in each aspect of the present disclosure (5) A part of components of the plurality of components constituting the image processing apparatus, the encoding apparatus or the decoding apparatus according to the first embodiment is provided Equipped with some of the features A component that performs a part of processing performed by a part of the plurality of components constituting the image processing apparatus, the encoding apparatus, or the decoding apparatus according to the first embodiment, or A component described in each aspect of the present disclosure, a component provided with a part of a function provided in a component described in each aspect of the present disclosure, or a part of processing performed by a component described in each aspect of the present disclosure (6) The method performed by the image processing apparatus, the encoding apparatus, or the decoding apparatus according to the first embodiment is not limited to the process of the present embodiment among the plurality of processes included in the method. Replacing the process corresponding to the process described in each aspect of the disclosure with the process described in each aspect of the disclosure (7) A method implemented by the image processing apparatus, the encoding apparatus, or the decoding apparatus according to the first embodiment Multiple included Performing some of the processing in combination with the processing described in each aspect of the present disclosure
 なお、本開示の各態様で説明する処理および/または構成の実施の仕方は、上記の例に限定されるものではない。例えば、実施の形態1において開示する動画像/画像符号化装置または動画像/画像復号化装置とは異なる目的で利用される装置において実施されてもよいし、各態様において説明した処理および/または構成を単独で実施してもよい。また、異なる態様において説明した処理および/または構成を組み合わせて実施してもよい。 Note that the manner of implementation of the processing and / or configuration described in each aspect of the present disclosure is not limited to the above example. For example, it may be implemented in an apparatus used for a purpose different from the moving picture / image coding apparatus or the moving picture / image decoding apparatus disclosed in the first embodiment, or the process and / or the process described in each aspect. The configuration may be implemented alone. Also, the processes and / or configurations described in the different embodiments may be implemented in combination.
 [画像処理装置の概要]
 現在、画像とビデオとはオンラインで消費されるメディアの70%以上を占めており、画像とビデオの圧縮はますます重要になってきている。従来、コーデックは、個々の画像に合わせて圧縮および/または圧縮解除を行わず、「ワンサイズ対応」にて圧縮および/または圧縮解除を行う。また、従来のコーデックに用いられている技術を、個々の画像に合わせて適用することは現実的ではない。このため、コーデックに深層学習の技術を用いて、個々の画像に合わせた圧縮および/または圧縮解除を行うことが提案されつつある。
[Overview of image processing apparatus]
Currently, images and video account for over 70% of the media consumed online, and image and video compression is becoming increasingly important. Conventionally, codecs do not perform compression and / or decompression on an individual image basis, but perform compression and / or decompression on a "one size" basis. Also, it is not practical to apply the techniques used in conventional codecs to individual images. For this reason, it has been proposed that compression and / or decompression be tailored to individual images using deep learning techniques for codecs.
 また、従来のコーデックには、容易に改善できる領域がかなりある。例えば、H.265またはBPG(Better Portable Graphics)で用いられるコーデックでは、洗練された符号化処理、復号処理およびパイプライン処理が利用されている。しかし、洗練されたパイプライン処理を利用する場合でも、フィルタリング、特徴抽出、および予測などにおいて線形変換が使用されるため、線形変換による制限が存在する。一方、ディープニューラルネットワーク(DNN:Deep Neural Networks)は、本質的に非線形関数である。そして、ニューラルネットワークは、グローバル関数に近似できるため、コーデックで用いられるパイプラインの一部またはすべてをニューラルネットワークに置き換えることで、線形変換による制限を外せる可能性がある。 Also, conventional codecs have a number of areas that can be easily improved. For example, H. The codec used in H.265 or BPG (Better Portable Graphics) utilizes sophisticated encoding, decoding and pipeline processing. However, even with sophisticated pipelined processing, linear transformations are used in filtering, feature extraction, prediction, etc., so there are limitations due to linear transformations. On the other hand, Deep Neural Networks (DNN) are inherently non-linear functions. And, since a neural network can be approximated to a global function, it is possible to remove the restriction by linear transformation by replacing part or all of the pipeline used in the codec with the neural network.
 そこで、本実施の形態では、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)を画像圧縮に適用する。 Therefore, in the present embodiment, a convolutional neural network (CNN: Convolutional Neural Network) is applied to image compression.
 ところで、畳み込みニューラルネットワーク(CNN)を画像圧縮に適用するためには、処理が比較的速く行われることが求められるだけでなく、少なくとも従来のコーデックと同じくらいの圧縮率を実現することが求められる。 By the way, in order to apply a convolutional neural network (CNN) to image compression, it is required not only that the processing be performed relatively fast, but also to realize at least a compression rate equal to that of the conventional codec. .
 図1は、比較例におけるコーデックアーキテクチャのMS-SSIM曲線を示す図である。図1において、縦軸はRGBに対するMS-SSIM(multi-scale structural similarity)を示し、横軸は圧縮率(Bits per Pixsel)を示す。また、図1において、BPGは例えばH.265の従来のコーデックに相当するアーキテクチャであり、WaveOneは、畳み込みニューラルネットワーク(CNN)を用いた某社のアーキテクチャであることを意味する。図1に示されているように、畳み込みニューラルネットワーク(CNN)を用いたアーキテクチャは、従来のコーデックを上回るパフォーマンスを達成していることがわかる。 FIG. 1 is a diagram showing an MS-SSIM curve of the codec architecture in the comparative example. In FIG. 1, the vertical axis indicates MS-SSIM (multi-scale structural similarity) with respect to RGB, and the horizontal axis indicates compression ratio (Bits per Pixsel). Further, in FIG. The architecture corresponds to 265 conventional codecs, and WaveOne means that it is a Sakai architecture using a convolutional neural network (CNN). As shown in FIG. 1, it can be seen that an architecture using a convolutional neural network (CNN) achieves performance over conventional codecs.
 畳み込みニューラルネットワーク(CNN)を画像圧縮に適用する手法としては、まず、入力画像に対して画像空間領域から符号化空間領域への写像を学習するオートエンコーダーを使用する手法が提案されている。その後、符号化空間領域に写像された入力画像を量子化し、画像空間領域へのマッピングを学習することが提案されている。 As a method of applying a convolutional neural network (CNN) to image compression, a method of using an auto-encoder for learning a mapping from an image space area to an encoding space area for an input image has been proposed first. Subsequently, it has been proposed to quantize the input image mapped to the coding space region and learn the mapping to the image space region.
 近年、畳み込みニューラルネットワーク(CNN)を用いることで、セマンティックセグメンテーションから画像分類、さらには圧縮までを含む多くのビジョンタスクにおいて、最先端のパフォーマンスが達成されている。これらのパフォーマンスは、畳み込みニューラルネットワーク(CNN)に対して課題に適した機能を習得させることで実現されている。 In recent years, convolutional neural networks (CNN) have been used to achieve state-of-the-art performance in many vision tasks, including from semantic segmentation to image classification to compression. These performances are realized by having a convolutional neural network (CNN) learn the functions suitable for the task.
 以上から、畳み込みニューラルネットワーク(CNN)を画像圧縮に適用することで、従来のコーデックに存在する欠点を解決できる可能性があるのがわかる。 From the above, it can be seen that the application of convolutional neural networks (CNN) to image compression has the potential to solve the drawbacks present in conventional codecs.
 従来のコーデックでは、離散コサイン変換などのフーリエ変換を用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行う。しかしながら、フーリエ変換は、コーデックにとって多くの優れた特性を提供するものの、フーリエ変換により変換された符号化空間領域は、入力画像に対する圧縮を行うための最適な符号化空間領域ではない可能性がある。 Conventional codecs transform an input image from an image space domain to a coding space domain using Fourier transform such as discrete cosine transform. However, although the Fourier transform provides many good properties for the codec, the Fourier transform transformed encoding space region may not be the optimal encoding space region for performing compression on the input image .
 それに対して、本実施の形態の画像処理装置では、畳み込みニューラルネットワークを用いることで、画質の劣化をより抑制した画像の圧縮を行うことができ、質の劣化をより抑制した圧縮解除画像を得ることができる。 On the other hand, in the image processing apparatus according to the present embodiment, by using the convolutional neural network, it is possible to perform compression of the image in which the deterioration of the image quality is further suppressed and obtain a decompressed image in which the deterioration of the quality is further suppressed. be able to.
 本実施の形態における画像処理装置では、2つの畳み込みニューラルネットワークを用いて画像の圧縮処理または圧縮解除処理を行う。より具体的には、画像処理装置は、圧縮の処理を行うための畳み込みニューラルネットワークモデルと、後処理において用いられる特徴量を抽出する処理を行う畳み込みニューラルネットワークモデルとを用いる。また、画像処理装置は、圧縮解除の処理を行うための畳み込みニューラルネットワークモデルと、後処理において用いられる特徴量を取得する処理を行う畳み込みニューラルネットワークモデルと用いる。 The image processing apparatus according to the present embodiment performs compression processing or decompression processing of an image using two convolutional neural networks. More specifically, the image processing apparatus uses a convolutional neural network model for performing a compression process and a convolutional neural network model for performing a process of extracting feature quantities used in post-processing. In addition, the image processing apparatus uses a convolutional neural network model for performing decompression processing and a convolutional neural network model for performing processing for acquiring feature amounts used in post-processing.
 なお、画像処理装置は、符号化装置と復号装置とを含んでいてもよい。符号化装置は、画像を符号化する。すなわち、符号化装置は、原画像(入力画像)に対して圧縮を行うことにより、原画像に対する圧縮の結果である圧縮画像を出力する。復号装置は、符号化された画像を復号する。すなわち、復号装置は、原画像に対する圧縮の結果である圧縮画像に対して圧縮解除を行うことにより、圧縮画像に対する圧縮解除の結果である圧縮解除画像を出力する。 The image processing apparatus may include an encoding apparatus and a decoding apparatus. The encoding device encodes an image. That is, the encoding apparatus compresses the original image (input image) to output a compressed image which is a result of the compression on the original image. The decoding device decodes the encoded image. That is, the decoding apparatus performs decompression on the compressed image that is the result of compression on the original image, thereby outputting a decompressed image that is the result of decompression on the compressed image.
 [画像処理装置の具体例]
 図2は、本実施の形態における画像処理装置10の構成の一例を示すブロック図である。図3は、実施の形態1における符号化装置100の構成の一例を示すブロック図である。図4は、実施の形態1における復号装置200の構成の一例を示すブロック図である。図3および図4において、図2と同様の要素には同一の符号を付している。
[Specific example of image processing apparatus]
FIG. 2 is a block diagram showing an example of the configuration of the image processing apparatus 10 according to the present embodiment. FIG. 3 is a block diagram showing an example of a configuration of coding apparatus 100 in the first embodiment. FIG. 4 is a block diagram showing an example of a configuration of decoding apparatus 200 in the first embodiment. In FIGS. 3 and 4, the same elements as in FIG. 2 are denoted by the same reference numerals.
 図2に示す画像処理装置10は、画像符号化部101と、後処理用特徴抽出部102と、量子部103と、エントロピー符号部104と、格納部105と、画像復号部106と、後処理用特徴取得部107と、後処理部108とを備える。なお、画像処理装置10が図3に示す符号化装置100と図4に示す復号装置200とを含んでもよい。 The image processing apparatus 10 illustrated in FIG. 2 includes an image coding unit 101, a post-processing feature extraction unit 102, a quantum unit 103, an entropy coding unit 104, a storage unit 105, an image decoding unit 106, and a post-processing. And a post-processing unit 108. The image processing apparatus 10 may include the encoding apparatus 100 shown in FIG. 3 and the decoding apparatus 200 shown in FIG. 4.
 画像符号化部101は、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行う。 The image encoding unit 101 transforms an input image from an image space region to an encoding space region using a first convolutional neural network model.
 ここで、第1の畳み込みニューラルネットワークモデルは、画像の圧縮に最適な符号化空間領域への変換を行うための学習が行われている。第1の畳み込みニューラルネットワークモデルは、2つ以上の畳み込みブロックを含む。また、第1の畳み込みニューラルネットワークモデルは、1つ以上の残差ブロックを含む。 Here, the first convolutional neural network model is subjected to learning for conversion into a coding space region optimal for image compression. The first convolutional neural network model includes two or more convolutional blocks. Also, the first convolutional neural network model includes one or more residual blocks.
 以下、本実施の形態における第1の畳み込みニューラルネットワークモデルについて説明する。 Hereinafter, the first convolutional neural network model in the present embodiment will be described.
 図5は、実施の形態1における畳み込みニューラルネットワーク300の接続構成を示すブロック図である。図6は、実施の形態1における畳み込みニューラルネットワーク300の具体的な接続構成の一例を示すブロック図である。図7は、実施の形態1における畳み込みブロック310の構成を示すブロック図である。図8は、実施の形態1における残差ブロック320の構成を示すブロック図である。 FIG. 5 is a block diagram showing a connection configuration of convolutional neural network 300 in the first embodiment. FIG. 6 is a block diagram showing an example of a specific connection configuration of convolutional neural network 300 in the first embodiment. FIG. 7 is a block diagram showing a configuration of convolution block 310 in the first embodiment. FIG. 8 is a block diagram showing a configuration of residual block 320 in the first embodiment.
 第1の畳み込みニューラルネットワークモデルは、例えば図5に示すように、1つ以上の畳み込みブロック310を含み、1つ以上の畳み込みブロック310の後に1つ以上の残差ブロック320を含み、1つ以上の残差ブロック320の後に1つ以上の畳み込みブロック330を含む。なお、第1の畳み込みニューラルネットワークモデルの構成は、図5に示された畳み込みニューラルネットワーク300の構成に限られない。1つ以上の畳み込みブロック、および、1つ以上の残差ブロックがどのように構成されていてもよい。1つ以上の畳み込みブロックは、4つ以上の畳み込みブロックであり、1つ以上の残差ブロックは、残差グループを構成し、4つ以上の畳み込みブロックのうちの少なくとも2つの畳み込みブロックを含んでもよい。この場合、4つ以上の畳み込みブロックのうち残差グループに含まれない少なくとも1つの畳み込みブロックは、第1畳み込みグループを構成し、4つ以上の畳み込みブロックのうち残差グループにも第1畳み込みグループにも含まれない少なくとも1つの畳み込みブロックは、第2畳み込みグループを構成する。第1畳み込みグループから出力されるデータは、残差グループに入力され、残差グループから出力されるデータは、第2畳み込みグループに入力される。 The first convolutional neural network model includes, for example, one or more convolutional blocks 310 and one or more convolutional blocks 310 followed by one or more residual blocks 320, as shown in FIG. 5, for example. After the residual block 320 of, one or more convolutional blocks 330 are included. The configuration of the first convolutional neural network model is not limited to the configuration of the convolutional neural network 300 shown in FIG. One or more convolutional blocks and one or more residual blocks may be configured in any way. The one or more convolutional blocks are four or more convolutional blocks, and the one or more residual blocks constitute a residual group and may include at least two convolutional blocks of the four or more convolutional blocks. Good. In this case, at least one convolutional block not included in the residual group among the four or more convolutional blocks constitutes a first convolutional group, and the first convolutional group is also included in the residual group among the four or more convolutional blocks. The at least one convolution block which is not included also constitutes a second convolution group. Data output from the first convolutional group is input to the residual group, and data output from the residual group is input to the second convolution group.
 例えば、第1の畳み込みニューラルネットワークモデルは、図6に示す畳み込みニューラルネットワークモデル300であってもよい。すなわち、第1の畳み込みニューラルネットワークモデルは、例えば、第1畳み込みグループを構成する2つの畳み込みブロック310と、残差グループを構成する2つの残差ブロック320と、第2畳み込みグループを構成する2つの畳み込みブロック330とで構成されてもよい。ここで、第1畳み込みグループを構成する2つの畳み込みブロック310は直列に接続され、第2畳み込みグループを構成する2つの畳み込みブロック330は直列に接続される。残差グループを構成する2つの残差ブロック320も直列に構成される。 For example, the first convolutional neural network model may be a convolutional neural network model 300 shown in FIG. That is, the first convolutional neural network model includes, for example, two convolutional blocks 310 forming the first convolutional group, two residual blocks 320 forming the residual group, and two forming the second convolutional group. And a convolution block 330. Here, two convolution blocks 310 constituting a first convolution group are connected in series, and two convolution blocks 330 constituting a second convolution group are connected in series. The two residual blocks 320 that make up the residual group are also arranged in series.
 畳み込みブロック310、330は入力されたデータを原周波数の2倍でサンプリングする残差ブロック320は、受容野を畳み込みブロック310、330と同じサイズに保ちながら畳み込みニューラルネットワークモデルに多くの容量を追加する。これにより、第1の畳み込みニューラルネットワークモデルは、入力画像に対して、16倍のダウンサンプリングをもたらすことができる。このように、第1の畳み込みニューラルネットワークモデルは、受容野を16/1に縮小しつつも、入力画像に対して強力な表現を学べる一方で、高い情報密度を有する潜在空間を有することが必要となる。高い情報密度の潜在空間を有することで、潜在空間全体において潜在空間内の衝突を心配する必要がなくなるからである。また、高い情報密度の潜在空間を有する畳み込みニューラルネットワークモデルは、潜在空間から任意のイメージを再構築できます。これは、量子化しても、歪みの導入を抑制しながら、グレースフル・デグラデーションを維持できることを意味する。 The convolution block 310, 330 samples the input data at twice the original frequency The residual block 320 adds more capacity to the convolutional neural network model while keeping the receptive field the same size as the convolution block 310, 330 . Thereby, the first convolutional neural network model can provide 16 times downsampling on the input image. Thus, the first convolutional neural network model needs to have a latent space with high information density while learning strong expressions for the input image while reducing the receptive field to 16/1. It becomes. Having a high information density latent space eliminates the need to worry about collisions in the latent space throughout the latent space. Also, convolutional neural network models with high information density latent space can reconstruct arbitrary images from the latent space. This means that even with quantization, graceful degradation can be maintained while suppressing the introduction of distortion.
 以下、畳み込みブロック310等、残差ブロック320の詳細について説明する。 Hereinafter, details of the residual block 320 such as the convolution block 310 will be described.
 畳み込みブロック310は、1以上の畳み込み層を含む処理ブロックであり、例えば図7に示すように、2以上の畳み込み層311、非線形活性化関数312、および、正規化層313を含む。なお、畳み込みブロック330、畳み込みブロック322も同様のため、ここでは畳み込みブロック310を例を挙げて説明する。図7に示す例では、畳み込みブロック310に入力されたデータが、畳み込み層311、非線形活性化関数312、および、正規化層313を介して、畳み込みブロック310から出力される。畳み込み層311は、畳み込みブロック310に入力されたデータに対して畳み込み演算を行って、畳み込み演算の結果を出力する処理層である。畳み込み層311は、例えば、カーネルサイズが3の32フィルタで、かつ、ストライド2で構成される。非線形活性化関数312は、畳み込み層311から出力されるデータを引数として用いて演算結果を出力する関数である。例えば、非線形活性化関数312は、バイアスに従って、非線形活性化関数312の出力を制御する。正規化層313は、データの偏りを抑制するため、非線形活性化関数312から出力されるデータを正規化し、正規化されたデータを出力する。本実施の形態では、正規化層313は、データ値の平滑化を行うBatch Normalizationを用いて、非線形活性化関数312から出力されるデータを正規化する。 The convolution block 310 is a processing block including one or more convolutional layers, and includes two or more convolutional layers 311, a non-linear activation function 312, and a normalization layer 313, as shown in FIG. 7, for example. Note that, since the convolution block 330 and the convolution block 322 are also the same, the convolution block 310 will be described as an example here. In the example illustrated in FIG. 7, data input to the convolution block 310 is output from the convolution block 310 via the convolution layer 311, the non-linear activation function 312, and the normalization layer 313. The convolution layer 311 is a processing layer that performs a convolution operation on the data input to the convolution block 310 and outputs the result of the convolution operation. The convolution layer 311 is configured by, for example, 32 filters with a kernel size of 3 and stride 2. The nonlinear activation function 312 is a function that outputs an operation result using data output from the convolution layer 311 as an argument. For example, the non-linear activation function 312 controls the output of the non-linear activation function 312 according to the bias. The normalization layer 313 normalizes the data output from the non-linear activation function 312 and outputs normalized data in order to suppress data bias. In the present embodiment, the normalization layer 313 normalizes data output from the nonlinear activation function 312 using Batch Normalization that smoothes data values.
 残差ブロック320は、上記の2つ以上の畳み込みブロック310、330のうちの少なくとも1つの畳み込み層311を2以上含む畳み込みグループで構成される処理ブロックである。また、残差ブロック320は、入力されるデータを当該畳み込みグループに入力し、かつ、入力されるデータを畳み込みグループから出力されるデータに加える。本実施の形態では、残差ブロック320は、例えば図8に示すように、直列に接続された2つの畳み込みブロック322を含む。例えば、残差ブロック320へ入力されるデータが1つの畳み込みブロック322(つまり、図8において左の畳み込みブロック322)に入力される。そして、1つの畳み込みブロック322から出力されるデータが他の畳み込みブロック322(つまり、図8において右の畳み込みブロック322)に入力される。畳み込みブロック322は、畳み込みブロック310または330と同一の構成である。 The residual block 320 is a processing block configured in a convolution group including two or more convolution layers 311 of at least one of the two or more convolution blocks 310 and 330 described above. Also, residual block 320 inputs incoming data into the convolutional group and adds incoming data to the data output from the convolutional group. In the present embodiment, residual block 320 includes two convolutional blocks 322 connected in series, as shown for example in FIG. For example, data input to residual block 320 is input to one convolutional block 322 (ie, left convolutional block 322 in FIG. 8). Then, data output from one convolution block 322 is input to the other convolution block 322 (that is, the right convolution block 322 in FIG. 8). The convolution block 322 has the same configuration as the convolution block 310 or 330.
 また、残差ブロック320へ入力されるデータが、右の畳み込みブロック322から出力されるデータに加えられて、残差ブロック320から出力される。つまり、残差ブロック320へ入力されるデータと、右の畳み込みブロック322から出力されるデータとが、合計されて残差ブロック320から出力される。 Also, data input to the residual block 320 is added to data output from the right convolution block 322 and output from the residual block 320. That is, the data input to the residual block 320 and the data output from the right convolution block 322 are summed and output from the residual block 320.
 ここでは、残差グループ321として、2つの畳み込みブロック322が直列に接続されているが、3つ以上の畳み込みブロック322が直列に接続されていてもよい。 Here, two convolutional blocks 322 are connected in series as the residual group 321, but three or more convolutional blocks 322 may be connected in series.
 なお、画像符号化部101は、第1の畳み込みニューラルネットワークモデルを用いないで、従来の方法すなわち離散コサイン変換などのフーリエ変換を用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行ってもよい。 Note that the image encoding unit 101 does not use the first convolutional neural network model, but uses a conventional method, that is, Fourier transform such as discrete cosine transform, to encode an input image from an image space region to an encoding space region. Conversion may be performed.
 以下、図2に戻って説明を続ける。 Hereinafter, the description will be continued returning to FIG.
 後処理用特徴抽出部102は、第2の畳み込みニューラルネットワークモデルを用いて、後処理において用いられる特徴量を抽出する処理を行う。ここで、特徴量は、入力画像に含まれる高周波情報である。後処理は、入力画像に対する圧縮および圧縮解除の結果である圧縮解除画像を入力画像に近づける処理である。 The post-processing feature extraction unit 102 performs processing for extracting feature quantities used in post-processing using the second convolutional neural network model. Here, the feature amount is high frequency information included in the input image. Post-processing is processing for bringing a decompressed image, which is the result of compression and decompression on an input image, closer to the input image.
 第2の畳み込みニューラルネットワークモデルは、後処理において用いられる特徴量を抽出する処理を行うための学習が行われている。第2の畳み込みニューラルネットワークモデルは、2つ以上の畳み込みブロックを含む。また、第1の畳み込みニューラルネットワークモデルは、1つ以上の残差ブロックを含む。つまり、第2の畳み込みニューラルネットワークモデルの構成は、第1の畳み込みニューラルネットワークモデルの構成と同じであるが、異なっていてもよい。第1の畳み込みニューラルネットワークモデルの構成については上記で説明した通りであるので説明を省略する。 The second convolutional neural network model is subjected to learning for performing processing for extracting feature quantities used in post-processing. The second convolutional neural network model includes two or more convolutional blocks. Also, the first convolutional neural network model includes one or more residual blocks. That is, the configuration of the second convolutional neural network model is the same as that of the first convolutional neural network model, but may be different. The configuration of the first convolutional neural network model is as described above, and thus the description thereof is omitted.
 量子部103は、画像符号化部101から出力されたデータを量子化したり、量子化したデータを逆量子化したりする。量子部103は、例えば図3に示す量子化部103Aまたは逆量子化部103Bで構成される。 The quantum unit 103 quantizes the data output from the image encoding unit 101 and inversely quantizes the quantized data. The quantum unit 103 includes, for example, the quantization unit 103A or the inverse quantization unit 103B illustrated in FIG.
 量子化部103Aは、画像符号化部101から出力されたデータを量子化する。 The quantization unit 103A quantizes the data output from the image coding unit 101.
 ところで、図1に示す比較例において提案されるアーキテクチャの多くは、粗い量子化ステップを用いているため、情報の多くが失われる。これに対して、本実施の形態の量子化部103Aは、例えば(式1)により粒度を制御する量子化器で構成される。これにより、より滑らかな量子化を行うことができるだけでなく、再構成(逆量子化)する際の誤差を抑制することができる。 By the way, since many of the architectures proposed in the comparative example shown in FIG. 1 use coarse quantization steps, much information is lost. On the other hand, the quantizing unit 103A of the present embodiment is configured of, for example, a quantizer that controls the particle size according to (Expression 1). As a result, not only smooth quantization can be performed, but also errors in reconstruction (inverse quantization) can be suppressed.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 さらに、本実施の形態の量子化部103Aでは、(式1)により粒度を制御する量子化器において、切り上げに代えて四捨五入する。この結果、量子化された表現はフルビットではなく、ビットの半分を失うことになる。本実施の形態の量子化部103Bは、より滑らかに量子化を行うことができるものの、ベクトル量子化および知覚メトリックを用いていない。知覚的メトリックを用いていなければ、再構成時(逆量子化時)に大きな歪みを導入することが可能できる。つまり、本実施の形態の量子化部103Aでは、ベクトル量子化および知覚メトリックの機能がないため、さらなる改善の余地がある。 Furthermore, in the quantization unit 103A of the present embodiment, in place of rounding up, the quantization unit that controls the particle size by (Equation 1) rounds off. As a result, the quantized representation will not be full bits, but will lose half of the bits. Although the quantization unit 103B of the present embodiment can perform quantization more smoothly, it does not use vector quantization and perceptual metrics. If perceptual metrics are not used, it is possible to introduce a large distortion at the time of reconstruction (during inverse quantization). That is, in the quantization unit 103A of the present embodiment, there is room for further improvement because there is no function of vector quantization and perceptual metric.
 逆量子化部103Bは、エントロピー復号部104Bで復号された圧縮画像(入力画像)の逆量子化を行う。具体的には、逆量子化部103Bは、量子化部103Aが量子化したデータすなわちエントロピー復号部104Bで復号された圧縮画像(入力画像)を、逆量子化する。逆量子化部103Bも量子化部103Aと同様に、切り上げに代えて四捨五入を利用し、かつ、(式1)により粒度を制御する逆量子化器であればよい。 The inverse quantization unit 103B performs inverse quantization on the compressed image (input image) decoded by the entropy decoding unit 104B. Specifically, the inverse quantization unit 103B inversely quantizes the data quantized by the quantization unit 103A, that is, the compressed image (input image) decoded by the entropy decoding unit 104B. Similar to the quantization unit 103A, the inverse quantization unit 103B may be a dequantizer that uses rounding instead of rounding up and controls the particle size according to (Expression 1).
 エントロピー符号部104は、入力画像に対する圧縮および圧縮解除の処理を行う。エントロピー符号部104は、例えば図3に示すエントロピー符号化部104Aまたはエントロピー復号部104Bで構成される。 The entropy coding unit 104 performs compression and decompression processing on the input image. The entropy coding unit 104 includes, for example, the entropy coding unit 104A or the entropy decoding unit 104B shown in FIG.
 エントロピー符号化部104Aは、量子化部103Aから出力されたデータをエントロピー符号化する。本実施の形態のエントロピー符号化部104Aは、量子化された表現からすべての冗長性を除去するために、学習表現に適した適応型二進算術符号化を行う。 The entropy coding unit 104A entropy codes the data output from the quantization unit 103A. The entropy coding unit 104A according to the present embodiment performs adaptive binary arithmetic coding suitable for learning expression in order to remove all redundancy from the quantized expression.
 より具体的には、エントロピー符号化部104Aは、符号化対象の画素のコンテキストとして、量子化されたすべての表現である符号化対象の画素の前のすべての画素を取得する。エントロピー符号化部104Aは、コンテキストとして取得した前のすべての画素についてのヒストグラムを作成する。このヒストグラムは、エントロピー符号化部104Aにより確率テーブルとして使用される。この手法による符号化は単純ではあるものの、古典的な算術コーディング、または深層学習を使用するエントロピー符号化器と同様の機能を有する。つまり、この手法による符号化は、H.264/H.265で使用されるCABACよりも簡単であるものの、得ることのできる結果は、十分に利用可能である。 More specifically, the entropy coding unit 104A acquires, as the context of the pixel to be encoded, all pixels before the pixel to be encoded, which is all quantized representations. The entropy coding unit 104A creates a histogram for all the previous pixels acquired as contexts. This histogram is used as a probability table by the entropy coding unit 104A. Although coding by this method is simple, it has the same function as classical arithmetic coding or an entropy coder using deep learning. That is, the coding according to this method is H.264. H.264 / H. Although simpler than the CABAC used at 265, the results that can be obtained are fully available.
 なお、エントロピー符号化部104Aは、量子化部103Aから出力されたデータと後処理用特徴抽出部102が抽出した特徴量とをエントロピー符号化してもよい。 The entropy coding unit 104A may entropy code the data output from the quantization unit 103A and the feature quantity extracted by the post-processing feature extraction unit 102.
 エントロピー復号部104Bは、圧縮画像(入力画像)をエントロピー復号する。具体的には、エントロピー復号部104Bは、適応型二進算術符号化を用いて、圧縮画像(入力画像)をエントロピー復号する。詳細な手法はエントロピー符号化と同様のため、説明を省略する。なお、エントロピー復号部104Bは、エントロピー符号部104でエントロピー符号化されたデータとして、格納部105から圧縮画像と特徴量とが入力された場合、圧縮画像(入力画像)をエントロピー復号する。 The entropy decoding unit 104B entropy decodes the compressed image (input image). Specifically, the entropy decoding unit 104B entropy decodes the compressed image (input image) using adaptive binary arithmetic coding. The detailed method is the same as the entropy coding, so the description is omitted. When the compressed image and the feature amount are input from the storage unit 105 as the data entropy-coded by the entropy coding unit 104, the entropy decoding unit 104B entropy decodes the compressed image (input image).
 格納部105は、エントロピー符号部104でエントロピー符号化されたデータを格納する。また、格納部105は、格納したエントロピー符号化されたデータをエントロピー復号部104Bに出力する。 The storage unit 105 stores the data entropy-coded by the entropy coding unit 104. The storage unit 105 also outputs the stored entropy-coded data to the entropy decoding unit 104B.
 画像復号部106は、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、符号化空間領域から画像空間領域に変換を行う。 The image decoding unit 106 transforms the input image from the encoding space region to the image space region using the first convolutional neural network model.
 ここでの第1の畳み込みニューラルネットワークモデルは、画像の圧縮解除に最適な画像空間領域への変換を行うための学習が行われている。なお、ここでの第1の畳み込みニューラルネットワークモデルも、2つ以上の畳み込みブロックを含む。また、第1の畳み込みニューラルネットワークモデルは、1つ以上の残差ブロックを含む。つまり、画像復号部106が用いる第1の畳み込みニューラルネットワークモデルの構成は、画像符号化部101が用いる第1の畳み込みニューラルネットワークモデルの構成と同じである。したがって、第1の畳み込みニューラルネットワークモデルの構成については、上記で説明した通りであるので説明を省略する。 The first convolutional neural network model here is subjected to learning for conversion into an image space area optimal for image decompression. Note that the first convolutional neural network model here also includes two or more convolutional blocks. Also, the first convolutional neural network model includes one or more residual blocks. That is, the configuration of the first convolutional neural network model used by the image decoding unit 106 is the same as the configuration of the first convolutional neural network model used by the image encoding unit 101. Therefore, since the configuration of the first convolutional neural network model is as described above, the description will be omitted.
 なお、画像復号部106は、第1の畳み込みニューラルネットワークモデルを用いないで、従来の方法すなわち離散コサイン変換などのフーリエ変換を用いて、入力画像に対して、符号化空間領域から画像空間領域に変換(逆変換)を行ってもよい。 It should be noted that the image decoding unit 106 does not use the first convolutional neural network model, but uses the conventional method, that is, Fourier transform such as discrete cosine transform, to convert the input image into the image space region from the encoding space region. A conversion (inverse conversion) may be performed.
 後処理用特徴取得部107は、第2の畳み込みニューラルネットワークモデルを用いて、後処理において用いられる特徴量を取得する処理を行う。ここで、特徴量は、入力画像に含まれる高周波情報である。また、後処理は、入力画像に対する圧縮解除の結果である圧縮解除画像を入力画像の原画像に近づける処理である。なお、この第2の畳み込みニューラルネットワークモデルの構成は、後処理用特徴抽出部102が用いる第2の畳み込みニューラルネットワークモデルの構成と同じである。したがって、第2の畳み込みニューラルネットワークモデルの構成については、上記で説明した通りであるので説明を省略する。 The post-processing feature acquisition unit 107 uses the second convolutional neural network model to perform processing for acquiring feature quantities used in post-processing. Here, the feature amount is high frequency information included in the input image. The post-processing is processing for bringing a decompressed image, which is a result of decompression on an input image, closer to an original image of the input image. The configuration of the second convolutional neural network model is the same as the configuration of the second convolutional neural network model used by the post-processing feature extraction unit 102. Therefore, the configuration of the second convolutional neural network model is as described above, and thus the description thereof is omitted.
 後処理用特徴取得部107は、エントロピー復号部104Bに、エントロピー符号化されたデータとして、圧縮画像と特徴量とが入力された場合、エントロピー符号化されたデータを展開(圧縮解除)して、特徴量を抽出することで取得する。後処理用特徴取得部107は、エントロピー復号部104Bに、エントロピー符号化されたデータとして、圧縮画像が入力された場合、後処理用特徴抽出部102が抽出した特徴量を取得してもよい。 The post-processing feature acquisition unit 107 expands (decompresses) the entropy-coded data when the compressed image and the feature amount are input as the entropy-coded data to the entropy decoding unit 104B. Acquired by extracting feature quantities. When the compressed image is input to the entropy decoding unit 104B as the entropy-coded data, the post-processing feature acquisition unit 107 may acquire the feature quantity extracted by the post-processing feature extraction unit 102.
 後処理部108は、圧縮解除画像を入力画像に近づけるための処理を行い、当該処理が行われた圧縮解除画像を出力画像として出力する。後処理部108は、第3の畳み込みニューラルネットワークモデルを用いて、後処理を行う。ここで後処理とは、第2の畳み込みニューラルネットワークモデルを用いて取得した特徴量を用いて、第1の畳み込みニューラルネットワークモデルを用いて得た圧縮解除画像に対して原画像に近づける処理である。換言すると、後処理部108は、第3の畳み込みニューラルネットワークモデルを用いて、画像復号部106が得た圧縮解除画像に対して、後処理用特徴取得部107が取得した特徴量を利用して原画像に近づける処理を行う。 The post-processing unit 108 performs a process for bringing the decompressed image closer to the input image, and outputs the decompressed image subjected to the process as an output image. The post-processing unit 108 performs post-processing using the third convolutional neural network model. Here, post-processing is processing for bringing a decompressed image obtained using the first convolutional neural network model closer to the original image, using feature amounts acquired using the second convolutional neural network model. . In other words, the post-processing unit 108 uses the feature amount acquired by the post-processing feature acquisition unit 107 for the decompressed image obtained by the image decoding unit 106 using the third convolutional neural network model. Perform processing to make it close to the original image.
 ここで、第3の畳み込みニューラルネットワークモデルは、圧縮解除画像を原画像に近づけるための学習が行われている。第3の畳み込みニューラルネットワークモデルは、一定の受容野を維持する一連の畳み込みブロックで構成されている。より具体的には、第3の畳み込みニューラルネットワークモデルは、2つ以上の畳み込みブロックを含む。また、第1の畳み込みニューラルネットワークモデルは、1つ以上の残差ブロックを含む。つまり、第3の畳み込みニューラルネットワークモデルの構成は、第1、第2の畳み込みニューラルネットワークモデルの構成と同じであってもよい。第1の畳み込みニューラルネットワークモデル等の構成については上記で説明した通りであるので説明を省略する。 Here, in the third convolutional neural network model, learning is performed to bring the decompressed image closer to the original image. The third convolutional neural network model consists of a series of convolutional blocks that maintain a constant receptive field. More specifically, the third convolutional neural network model includes two or more convolutional blocks. Also, the first convolutional neural network model includes one or more residual blocks. That is, the configuration of the third convolutional neural network model may be the same as the configuration of the first and second convolutional neural network models. The configuration of the first convolutional neural network model and the like is as described above, and thus the description thereof is omitted.
 このように、後処理部108は、第3の畳み込みニューラルネットワークモデルを用いて、画像の品質を改善することができる。これにより、MS-SSIMの値を維持したまま、画像符号化部101等により攻撃的な画像の圧縮を行わせることができる。 Thus, the post-processing unit 108 can improve the quality of the image using the third convolutional neural network model. As a result, it is possible to cause the image encoding unit 101 or the like to perform aggressive image compression while maintaining the value of MS-SSIM.
 後処理部108は、画質の品質の改善を行うために、後処理用特徴取得部107に原画像から抽出された高周波情報を取得させる。なお、上述したように、原画像から抽出された高周波情報は、量子化された画像と共にエントロピー符号化されており、エントロピー復号部104Bにおいてエントロピー復号される。エントロピー復号された高周波情報は、後処理用特徴取得部107またはエントロピー復号部104Bにおいて、さらに画像空間に復号化されてもよい。 The post-processing unit 108 causes the post-processing feature acquisition unit 107 to acquire high-frequency information extracted from the original image in order to improve the quality of the image quality. As described above, the high frequency information extracted from the original image is entropy coded together with the quantized image, and is entropy decoded in the entropy decoding unit 104B. The entropy decoded high frequency information may be further decoded into the image space by the post-processing feature acquisition unit 107 or the entropy decoding unit 104B.
 後処理部108は、後処理用特徴取得部107が取得した、画像空間に復号化された高周波情報を、画像復号部106で、符号化空間領域から画像空間領域に変換された圧縮解除画像に含める。これにより、圧縮解除画像に、量子化によって失われた詳細を再導入することができるので、より高いMS-SSIMを得ることができる。 The post-processing unit 108 converts the high frequency information decoded into the image space acquired by the post-processing feature acquisition unit 107 into a decompressed image converted from the encoding space region to the image space region by the image decoding unit 106. include. This makes it possible to reintroduce the details lost due to quantization in the decompressed image, so that a higher MS-SSIM can be obtained.
 なお、本実施の形態では、第1~第3の畳み込みニューラルネットワークは、残差接続される残差ブロックを有するとして説明したが、これに限らない。その他のアーキテクチャが適用されてもよい。 In the present embodiment, the first to third convolutional neural networks are described as having residual blocks connected in a residual manner, but the present invention is not limited to this. Other architectures may be applied.
 例えば、リカレントニューラルネットワーク(Recurrent Neural Network)又はリカーシブニューラルネットワーク(Recursive Neural Network)のように、フィードバック構造が適用されてもよい。具体的には、1つ以上の畳み込みブロックの出力が、その1つ以上の畳み込みブロックの入力に用いられてもよい。そして、残差接続が逆向きに用いられてもよい。 For example, a feedback structure may be applied, such as a Recurrent Neural Network or a Recursive Neural Network. In particular, the output of one or more convolutional blocks may be used as the input of the one or more convolutional blocks. The residual connection may then be used in the reverse direction.
 [画像処理装置の効果等]
 本実施の形態の画像処理装置10によれば、畳み込みニューラルネットワークを用いて、画質の劣化をより抑制した画像の圧縮を行うことができ、質の劣化をより抑制した圧縮解除画像を得ることができる。
[Effects of image processing apparatus etc.]
According to the image processing apparatus 10 of the present embodiment, it is possible to perform compression of an image in which deterioration of image quality is further suppressed using a convolutional neural network, and to obtain a decompressed image in which deterioration of quality is further suppressed. it can.
 ところで、図1に示される比較例におけるコーデックアーキテクチャでは、重要な傾向として、圧縮を改善するためにフレーム内予測への依存がある。図1に示されるコーデックアーキテクチャのうち、JPEG標準では予測は使用されていないが、BPGでは符号化対象(現在)の画素ブロックを予測するために35の異なる「方向モード」を使用する。これに対して、畳み込みニューラルネットワーク(CNN)を用いた場合には、フレーム内予測のために用いる、異なる方向モードを極限まで引き上げることができるだけでなく、複雑な依存関係をさまざまなスケールで学ぶことができる。したがって、畳み込みニューラルネットワーク(CNN)を用いることで、従来のコーデックに存在する欠点を解決し、入力画像に対する圧縮を行うための最適な符号化空間領域に変換できる可能性がある。つまり、畳み込みニューラルネットワーク(CNN)では、初期のレイヤにおいては画素レベルで動作する一方で、より深いレイヤにおいてはグローバルスケールで動作する。このため、このマルチスケール・アスペクトは、「予測ブロック」の間だけではなく、ピクセル依存性およびグローバル依存性を学習することが可能になる。 By the way, in the codec architecture in the comparative example shown in FIG. 1, an important tendency is to rely on intra-frame prediction to improve compression. Of the codec architectures shown in FIG. 1, no prediction is used in the JPEG standard, but BPG uses 35 different "direction modes" to predict the current (current) pixel block to be coded. On the other hand, in the case of using a convolutional neural network (CNN), it is possible not only to raise different directional modes to the limit used for intra-frame prediction, but also to learn complex dependencies on various scales. Can. Thus, using a convolutional neural network (CNN) may overcome the shortcomings present in conventional codecs and convert it into an optimal coding space domain for compression on the input image. That is, in the convolutional neural network (CNN), while operating at the pixel level in the initial layer, it operates at the global scale in the deeper layer. Thus, this multi-scale aspect can learn not only between "predicted blocks" but also pixel and global dependencies.
 よって、本実施の形態によれば、畳み込みニューラルネットワークを用いることで、画質の劣化をより抑制した画像の圧縮を行うことができ、質の劣化をより抑制した圧縮解除画像を得ることができる画像処理装置10を実現できる。 Therefore, according to the present embodiment, by using the convolutional neural network, it is possible to compress an image in which the deterioration of image quality is further suppressed, and an image in which a decompressed image in which the deterioration of quality is further suppressed can be obtained. The processing device 10 can be realized.
 なお、畳み込みニューラルネットワーク(CNN)は、非常に強力であるものの、いくつかの欠点がある。畳み込みニューラルネットワークの欠点の1つは、さまざまなハイパーパラメータのセットまでに長い時間を要することである。畳み込みニューラルネットワークを構成するモデルすなわちネットワークアーキテクチャは特定のハイパーパラメータに非常に敏感であるため、収束するまでに時間を要するからである。 Although convolutional neural networks (CNN) are very powerful, they have some drawbacks. One of the disadvantages of convolutional neural networks is that it takes a long time to set various hyperparameters. This is because the models or network architectures that make up the convolutional neural network are very sensitive to certain hyperparameters, so it takes time to converge.
 近年、画像圧縮に畳み込みニューラルネットワーク(CNN)を使用するためのいくつかのアプローチが提案されている。提案されている各ネットワークアーキテクチャには長所と短所があるものの、提案されているほとんどのネットワークアーキテクチャは、基本形式として、エンコーディングネットワークモジュール、デコーディングネットワークモジュール、量子化モジュール、およびエントロピーコーディングモジュールで構成される。また、提案されているほとんどのネットワークアーキテクチャでは、特徴量の抽出とエントロピーコーディングの改善に焦点が当たっている。 Recently, several approaches have been proposed for using convolutional neural networks (CNN) for image compression. Although each proposed network architecture has advantages and disadvantages, most proposed network architectures consist of an encoding network module, a decoding network module, a quantization module, and an entropy coding module as a basic form. Ru. Also, most of the proposed network architectures focus on feature extraction and entropy coding improvement.
 敵対的学習、特に敵対的生成ネットワーク(GAN:Generative Adversarial Networks)を使用することは、大きな画像生成、超解像、さらには画像圧縮など複雑なタスクに対する生成モデルにおいて有望である。つまり、画像圧縮にGANを採用すると、データの基礎的な事後分布をモデル化するGANの能力から、非常に低いビットレートで視覚的に魅力的な画像を保持できる画像圧縮を実現できる可能性がある。本実施の形態では、GANを採用しない畳み込みニューラルネットワークを用いて画像圧縮を行う。本実施の形態では、良好な画像モデリングに必要な基本的なネットワークアーキテクチャに焦点を当てておらず、優れたコンバージェンスを得るために必要な、非常に難しいハイパーパラメータ検索のためのネットワークアーキテクチャに焦点を当てているからである。ただし、より良い結果を得るために、GANを採用してもよい。 The use of hostile learning, in particular Generative Adversalial Networks (GAN), is promising in generative models for complex tasks such as large image generation, super-resolution and even image compression. In other words, if GAN is used for image compression, the ability of GAN to model the underlying posterior distribution of data has the potential to realize image compression that can hold visually attractive images at very low bit rates. is there. In the present embodiment, image compression is performed using a convolutional neural network that does not employ GAN. This embodiment does not focus on the basic network architecture needed for good image modeling, but focuses on the network architecture for the very difficult hyperparameter search needed to achieve good convergence. It is because it is applied. However, GAN may be employed to obtain better results.
 (実験例)
 本実施の形態の画像処理装置10の有効性について、学習用画像のデータセットおよびテスト用画像のデータセットを用いて検証したので、説明する。
(Experimental example)
The effectiveness of the image processing apparatus 10 according to the present embodiment will be described because it has been verified using a data set of a learning image and a data set of a test image.
 図9は、実施の形態1における画像処理装置10の有効性検証についての実験結果を示す図である。図9には、RAISE6Kのデータセットで学習され、KODAKのテスト用のデータセットで検証したときの実験結果が示されている。図9において、「Encoder」は、画像符号化部101に該当し、「PostProcessor」は、後処理部108に該当する。「All Modules」は、画像処理装置10に該当する。 FIG. 9 is a diagram showing an experimental result on effectiveness verification of the image processing apparatus 10 in the first embodiment. FIG. 9 shows experimental results when learned with the RAISE 6K data set and verified with the KODAK test data set. In FIG. 9, “Encoder” corresponds to the image encoding unit 101, and “PostProcessor” corresponds to the post-processing unit 108. “All Modules” corresponds to the image processing apparatus 10.
 RAISE6Kのデータセットは、生の自然画像で構成されるデータセットであり、屋内、屋外、自然、人物、オブジェクト、建物の7つのカテゴリーに均等に分かれた6,000の4K写真で構成されている。学習時には、RAISE6Kのデータセットにおいて、画像ごとに、128×128ピクセルの大きさの部分を10個ランダムに取り出して学習用画像のデータセットとする準備を行う。 The RAISE 6K dataset is a dataset consisting of raw natural images, consisting of 6,000 4K photographs evenly divided into seven categories: indoor, outdoor, nature, people, objects, buildings . At the time of learning, in the data set of RAISE 6K, preparation is made to randomly take out 10 parts of 128 × 128 pixels in size for each image to make a data set of learning images.
 KODAKのデータセットは、自然画像で構成されるテスト用のデータセットであり、768×512ピクセルからなる24個の画像からなる。なお、KODAKのデータセットを構成する自然画像にはさまざまな色とテクスチャとが含まれているため、画像圧縮の難しいデータセットである。 KODAK's data set is a test data set composed of natural images, and consists of 24 images of 768 × 512 pixels. Note that the natural images that make up the KODAK data set include various colors and textures, so it is a difficult data set for image compression.
 また、本実験では、次のハイパーパラメータにより学習を行った。すなわち、学習率を0.0001として、100,000回ごとに5倍減少させた。また、1バッチあたり128画像を用いて学習させ、400,000回反復させた。また、最適化手法として、Adam(Adaptive moment estimation)を採用した。 Also, in this experiment, learning was performed using the following hyper parameters. That is, the learning rate was reduced by a factor of five every 100,000 times, with 0.0001. Also, training was performed using 128 images per batch and repeated 400,000 times. Moreover, Adam (Adaptive moment estimation) was adopted as an optimization method.
 検証の結果得られた実験結果は、図9に示すように、「Encoder」および「PostProcessor」において、圧縮率が2.05を示し、MS-SSIMが1に近い値である0.96および0.975を示した。また、「All Modules」において、圧縮率が2.05を示し、各々のモジュール「Encoder」および「PostProcessor」よりも良好な値を示した。「All Modules」において、MS-SSIMは、PostProcessor」と同様の値0.975を示した。 The experimental results obtained as a result of the verification show that, as shown in FIG. 9, in “Encoder” and “PostProcessor”, the compression ratio is 2.05 and MS-SSIM is a value close to 1 0.96 and 0 It showed .975. Moreover, in "All Modules", the compression ratio showed 2.05 and showed a better value than each module "Encoder" and "PostProcessor". In "All Modules", MS-SSIM showed the same value 0.975 as PostProcessor.
 この実験結果から、本実施の形態の画像処理装置10は、畳み込みニューラルネットワークを用いることで、画質の劣化をより抑制した画像の圧縮を行うことができ、かつ、質の劣化をより抑制した圧縮解除画像を得ることができることがわかった。 From this experimental result, by using the convolutional neural network, the image processing apparatus 10 according to this embodiment can perform compression of the image in which the deterioration of the image quality is further suppressed, and the compression in which the deterioration of the quality is further suppressed It turned out that a cancellation image can be obtained.
 [符号化装置の実装例]
 図10は、実施の形態1に係る符号化装置100の実装例を示すブロック図である。符号化装置100は、回路160およびメモリ162を備える。例えば、図2に示す画像処理装置10の一部および図3に示された符号化装置100の複数の構成要素は、図10に示された回路160およびメモリ162によって実装される。
[Implementation example of encoding device]
FIG. 10 is a block diagram showing an implementation example of the coding apparatus 100 according to the first embodiment. The encoding device 100 includes a circuit 160 and a memory 162. For example, a part of the image processing apparatus 10 shown in FIG. 2 and a plurality of components of the encoding apparatus 100 shown in FIG. 3 are implemented by the circuit 160 and the memory 162 shown in FIG.
 回路160は、情報処理を行う回路であり、メモリ162にアクセス可能な回路である。例えば、回路160は、画像を符号化する専用又は汎用の電子回路である。回路160は、CPUのようなプロセッサであってもよい。また、回路160は、複数の電子回路の集合体であってもよい。また、例えば、回路160は、図3等に示された符号化装置100の複数の構成要素のうち、情報を記憶するための構成要素を除く、複数の構成要素の役割を果たしてもよい。 The circuit 160 is a circuit that performs information processing and can access the memory 162. For example, the circuit 160 is a dedicated or general-purpose electronic circuit that encodes an image. The circuit 160 may be a processor such as a CPU. The circuit 160 may also be an assembly of a plurality of electronic circuits. Also, for example, the circuit 160 may play a role of a plurality of components excluding the component for storing information among the plurality of components of the encoding device 100 illustrated in FIG. 3 and the like.
 メモリ162は、回路160が画像を符号化するための情報が記憶される専用又は汎用のメモリである。メモリ162は、電子回路であってもよく、回路160に接続されていてもよい。また、メモリ162は、回路160に含まれていてもよい。また、メモリ162は、複数の電子回路の集合体であってもよい。また、メモリ162は、磁気ディスク又は光ディスク等であってもよいし、ストレージ又は記録媒体等と表現されてもよい。また、メモリ162は、不揮発性メモリでもよいし、揮発性メモリでもよい。 The memory 162 is a dedicated or general-purpose memory in which information for the circuit 160 to encode an image is stored. The memory 162 may be an electronic circuit or may be connected to the circuit 160. The memory 162 may also be included in the circuit 160. Also, the memory 162 may be a collection of a plurality of electronic circuits. In addition, the memory 162 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. The memory 162 may be a non-volatile memory or a volatile memory.
 例えば、メモリ162には、符号化される複数の画像からなる動画像が記憶されてもよいし、符号化された画像に対応するビット列が記憶されてもよい。また、メモリ162には、回路160が動画像を符号化するためのプログラムが記憶されていてもよい。また、メモリ162には、複数の畳み込みニューラルネットワークモデルが記憶されていてもよい。例えば、メモリ162には、複数の畳み込みニューラルネットワークモデルの複数のパラメータが記憶されていてもよい。 For example, the memory 162 may store a moving image composed of a plurality of images to be encoded, or may store a bit string corresponding to the encoded image. The memory 162 may also store a program for the circuit 160 to encode a moving image. Further, in the memory 162, a plurality of convolutional neural network models may be stored. For example, the memory 162 may store a plurality of parameters of a plurality of convolutional neural network models.
 なお、符号化装置100において、図3等に示された複数の構成要素の全てが実装されなくてもよいし、上述された複数の処理の全てが行われなくてもよい。図3等に示された複数の構成要素の一部は、他の装置に含まれていてもよいし、上述された複数の処理の一部は、他の装置によって実行されてもよい。 Note that, in the encoding apparatus 100, all of the plurality of components shown in FIG. 3 and the like may not be mounted, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 3 and the like may be included in another device, and some of the plurality of processes described above may be performed by another device.
 以下に、図3に示された符号化装置100の動作例を示す。 An operation example of the coding apparatus 100 shown in FIG. 3 will be shown below.
 図11は、図10に示された符号化装置100の動作例を示すフローチャートである。例えば、図10に示された符号化装置100は、図11に示された動作を行う。 FIG. 11 is a flowchart showing an operation example of the coding apparatus 100 shown in FIG. For example, the coding apparatus 100 shown in FIG. 10 performs the operation shown in FIG.
 具体的には、符号化装置100の回路160は、メモリ162を用いて、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行うことで入力画像に対する圧縮の処理を行う(S101)。 Specifically, the circuit 160 of the encoding device 100 transforms the input image from the image space region to the encoding space region using the first convolutional neural network model using the memory 162. The compression process is performed on the input image (S101).
 次に、符号化装置100の回路160は、メモリ162を用いて、第2の畳み込みニューラルネットワークモデルを用いて、圧縮解除画像を入力画像に近づける処理である後処理において用いられる特徴量を抽出する処理を行う(S102)。 Next, using the second convolutional neural network model, the circuit 160 of the encoding apparatus 100 extracts a feature value used in post-processing, which is processing to bring the decompressed image closer to the input image, using the memory 162. A process is performed (S102).
 これにより、符号化装置100は、符号化空間に変換するための第1の畳み込みニューラルネットワークモデルと、後処理で用いる特徴量を抽出する第2の畳み込みニューラルネットワークモデルとを用いて、画質の劣化をより抑制した画像の圧縮を行うことができる。 Thereby, the encoding apparatus 100 degrades the image quality using the first convolutional neural network model for converting to the encoding space and the second convolutional neural network model for extracting the feature amount used in the post-processing. Can be compressed more effectively.
 [復号装置の実装例]
 図12は、実施の形態1に係る復号装置200の実装例を示すブロック図である。復号装置200は、回路260およびメモリ262を備える。例えば、図2に示す画像処理装置10の一部および図4に示された復号装置200の複数の構成要素は、図12に示された回路260およびメモリ262によって実装される。
[Implementation example of decryption device]
FIG. 12 is a block diagram showing an implementation example of the decoding apparatus 200 according to the first embodiment. The decoding device 200 includes a circuit 260 and a memory 262. For example, a part of the image processing apparatus 10 shown in FIG. 2 and a plurality of components of the decoding apparatus 200 shown in FIG. 4 are implemented by the circuit 260 and the memory 262 shown in FIG.
 回路260は、情報処理を行う回路であり、メモリ262にアクセス可能な回路である。例えば、回路260は、メモリ262を用いて圧縮画像を復号する専用又は汎用の電子回路である。回路260は、CPUのようなプロセッサであってもよい。また、回路260は、複数の電子回路の集合体であってもよい。また、例えば、回路260は、図4等に示された復号装置200の複数の構成要素のうち、情報を記憶するための構成要素を除く、複数の構成要素の役割を果たしてもよい。 The circuit 260 is a circuit that performs information processing and can access the memory 262. For example, circuit 260 is a dedicated or general purpose electronic circuit that uses memory 262 to decode the compressed image. The circuit 260 may be a processor such as a CPU. Also, the circuit 260 may be a collection of a plurality of electronic circuits. Also, for example, the circuit 260 may play a role of a plurality of components excluding the component for storing information among the plurality of components of the decoding apparatus 200 illustrated in FIG. 4 and the like.
 メモリ262は、回路260が圧縮画像を復号するための情報または復号後の圧縮解除画像が記憶される専用又は汎用のメモリである。メモリ262は、電子回路であってもよく、回路260に接続されていてもよい。また、メモリ262は、回路260に含まれていてもよい。また、メモリ262は、複数の電子回路の集合体であってもよい。また、メモリ262は、磁気ディスク又は光ディスク等であってもよいし、ストレージ又は記録媒体等と表現されてもよい。また、メモリ262は、不揮発性メモリでもよいし、揮発性メモリでもよい。 The memory 262 is a dedicated or general-purpose memory in which information for the circuit 260 to decode a compressed image or a decompressed image after decoding is stored. The memory 262 may be an electronic circuit or may be connected to the circuit 260. Also, the memory 262 may be included in the circuit 260. Further, the memory 262 may be a collection of a plurality of electronic circuits. Also, the memory 262 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. The memory 262 may be either a non-volatile memory or a volatile memory.
 例えば、メモリ262には、符号化された画像(圧縮画像)に対応するビット列が記憶されてもよいし、復号されたビット列に対応する圧縮解除画像が記憶されてもよい。また、メモリ262には、回路260が画像を復号するためのプログラムが記憶されていてもよい。また、メモリ262には、複数の畳み込みニューラルネットワークモデルが記憶されていてもよい。例えば、メモリ262には、複数の畳み込みニューラルネットワークモデルの複数のパラメータが記憶されていてもよい。 For example, in the memory 262, a bit string corresponding to the encoded image (compressed image) may be stored, or a decompressed image corresponding to the decoded bit string may be stored. The memory 262 may also store a program for the circuit 260 to decode an image. Further, the memory 262 may store a plurality of convolutional neural network models. For example, the memory 262 may store a plurality of parameters of a plurality of convolutional neural network models.
 なお、復号装置200において、図4等に示された複数の構成要素の全てが実装されなくてもよいし、上述された複数の処理の全てが行われなくてもよい。図4等に示された複数の構成要素の一部は、他の装置に含まれていてもよいし、上述された複数の処理の一部は、他の装置によって実行されてもよい。 In the decoding apparatus 200, all of the plurality of components shown in FIG. 4 and the like may not be mounted, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 4 and the like may be included in another device, and some of the plurality of processes described above may be performed by another device.
 以下に、図12に示された復号装置200の動作例を示す。 Hereinafter, an operation example of the decoding apparatus 200 shown in FIG. 12 will be shown.
 図13は、図12に示された復号装置200の動作例を示すフローチャートである。例えば、図12に示された復号装置200は、図13に示された動作を行う。 FIG. 13 is a flow chart showing an operation example of the decoding apparatus 200 shown in FIG. For example, the decoding apparatus 200 shown in FIG. 12 performs the operation shown in FIG.
 具体的には、復号装置200の回路260は、メモリ262を用いて、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、符号化空間領域から画像空間領域に変換を行うことで入力画像に対する圧縮解除の処理を行う(S411)。 Specifically, the circuit 260 of the decoding device 200 performs conversion of the input image from the encoding space region to the image space region using the memory 262 and using the first convolutional neural network model. Decompression processing is performed on the input image (S411).
 次に、復号装置200の回路260は、メモリ262を用いて、第2の畳み込みニューラルネットワークモデルを用いて、入力画像に対する圧縮解除の結果である圧縮解除画像を入力画像の原画像に近づける処理である後処理において用いられる特徴量を取得する処理を行う(S412)。 Next, the circuit 260 of the decoding device 200 uses the memory 262 to process the decompressed image, which is the result of decompression on the input image, closer to the original image of the input image using the second convolutional neural network model. A process is performed to acquire a feature amount used in a certain post-process (S412).
 これにより、画像空間に変換するための第1の畳み込みニューラルネットワークモデルと、後処理で用いる特徴を取得する第2の畳み込みニューラルネットワークモデルとを用いて、画質の劣化をより抑制した圧縮解除画像を得ることができる。 As a result, the decompressed image in which the deterioration of the image quality is further suppressed by using the first convolutional neural network model for converting to the image space and the second convolutional neural network model for acquiring the feature used in the post-processing is obtained. You can get it.
 [補足]
 また、本実施の形態における符号化装置100および復号装置200は、それぞれ、イントラピクチャなどの画像を符号化する画像符号化装置および圧縮画像を復号する画像復号装置として利用されてもよい。また、本実施の形態における符号化装置100および復号装置200は、それぞれ、複数の画像それぞれを符号化する動画像符号化装置および複数の圧縮画像それぞれを復号する動画像復号装置として利用されてもよい。
[Supplement]
In addition, coding apparatus 100 and decoding apparatus 200 in the present embodiment may be used as an image coding apparatus that codes an image such as an intra picture and an image decoding apparatus that decodes a compressed image. Furthermore, even if encoding apparatus 100 and decoding apparatus 200 in the present embodiment are each used as a moving image encoding apparatus that encodes each of a plurality of images and a moving image decoding apparatus that decodes each of a plurality of compressed images. Good.
 また、本実施の形態の少なくとも一部が、符号化方法として利用されてもよいし、復号方法として利用されてもよいし、その他の方法として利用されてもよい。 In addition, at least a part of the present embodiment may be used as a coding method, may be used as a decoding method, or may be used as another method.
 また、本実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the present embodiment, each component may be configured by dedicated hardware or implemented by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 具体的には、画像処理装置10は、処理回路(Processing Circuitry)と、当該処理回路に電気的に接続された、当該処理回路からアクセス可能な記憶装置(Storage)とを備えていてもよい。例えば、処理回路は回路110に対応し、記憶装置はメモリ262に対応する。 Specifically, the image processing apparatus 10 may include a processing circuit (Processing Circuitry) and a storage device (Storage) electrically connected to the processing circuit and accessible to the processing circuit. For example, the processing circuit corresponds to the circuit 110 and the storage device corresponds to the memory 262.
 処理回路は、専用のハードウェアおよびプログラム実行部の少なくとも一方を含み、記憶装置を用いて処理を実行する。また、記憶装置は、処理回路がプログラム実行部を含む場合には、当該プログラム実行部により実行されるソフトウェアプログラムを記憶する。 The processing circuit includes at least one of dedicated hardware and a program execution unit, and executes processing using a storage device. In addition, when the processing circuit includes a program execution unit, the storage device stores a software program executed by the program execution unit.
 ここで、本実施の形態の画像処理装置10などを実現するソフトウェアは、次のようなプログラムである。 Here, the software for realizing the image processing apparatus 10 and the like of the present embodiment is a program as follows.
 すなわち、このプログラムは、コンピュータに、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行うことで前記入力画像に対する圧縮の処理を行い、第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮および圧縮解除の結果である圧縮解除画像を前記入力画像に近づける処理である後処理において用いられる特徴量を抽出する処理を行う符号化方法を実行させてもよい。また、このプログラムは、コンピュータに、第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、符号化空間領域から画像空間領域に変換を行うことで前記入力画像に対する圧縮解除の処理を行い、第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮解除の結果である圧縮解除画像を前記入力画像の原画像に近づける処理である後処理において用いられる特徴量を取得する処理を行う復号方法を実行させてもよい。 That is, this program performs compression processing on the input image by performing conversion on the input image from the image space region to the encoding space region using the first convolutional neural network model in the computer, Coding that uses a second convolutional neural network model to extract feature quantities used in post processing, which is processing for bringing a decompressed image, which is the result of compression and decompression on the input image, closer to the input image The method may be implemented. The program also causes the computer to perform a decompression process on the input image by transforming the input image from the encoding space region to the image space region using the first convolutional neural network model. The second convolutional neural network model is used to obtain a feature amount to be used in post-processing, which is processing for bringing a decompressed image, which is a result of decompression on the input image, closer to the original image of the input image. A decryption method may be performed.
 また、各構成要素は、上述の通り、回路であってもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路であってもよい。また、各構成要素は、汎用的なプロセッサで実現されてもよいし、専用のプロセッサで実現されてもよい。 Also, each component may be a circuit as described above. These circuits may constitute one circuit as a whole or may be separate circuits. Each component may be realized by a general purpose processor or a dedicated processor.
 また、特定の構成要素が実行する処理を別の構成要素が実行してもよい。また、処理を実行する順番が変更されてもよいし、複数の処理が並行して実行されてもよい。また、第1および第2等の序数が、適宜、構成要素などに対して与えられてもよい。 Also, another component may execute the processing that a particular component performs. Further, the order of executing the processing may be changed, or a plurality of processing may be executed in parallel. In addition, first and second ordinal numbers may be given as appropriate to components and the like.
 以上、画像処理装置10の態様について、実施の形態に基づいて説明したが、画像処理装置10の態様は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、画像処理装置10の範囲内に含まれてもよい。 As mentioned above, although the aspect of the image processing apparatus 10 was demonstrated based on embodiment, the aspect of the image processing apparatus 10 is not limited to this embodiment. Without departing from the spirit of the present disclosure, various modifications that may occur to those skilled in the art may be applied to the present embodiment, and a form configured by combining components in different embodiments may be included within the scope of the image processing apparatus 10. It may be included.
 本態様は、本開示における他の態様の少なくとも一部と組み合わせて実施されてもよい。また、本態様の一部の処理又は一部の構成などが、他の態様と組み合わせて実施されてもよい。 This aspect may be practiced in combination with at least some of the other aspects in this disclosure. Also, part of the processing or part of the configuration of this aspect may be implemented in combination with other aspects.
 本態様を本開示における他の態様の少なくとも一部と組み合わせて実施してもよい。また、本態様のフローチャートに記載の一部の処理、装置の一部の構成、シンタックスの一部などを他の態様と組み合わせて実施してもよい。 This aspect may be practiced in combination with at least some of the other aspects in the present disclosure. In addition, part of the processing described in the flowchart of this aspect, part of the configuration of the apparatus, part of the syntax, and the like may be implemented in combination with other aspects.
 (実施の形態2)
 以上の各実施の形態において、機能ブロックの各々は、通常、MPU及びメモリ等によって実現可能である。また、機能ブロックの各々による処理は、通常、プロセッサなどのプログラム実行部が、ROM等の記録媒体に記録されたソフトウェア(プログラム)を読み出して実行することで実現される。当該ソフトウェアはダウンロード等により配布されてもよいし、半導体メモリなどの記録媒体に記録して配布されてもよい。なお、各機能ブロックをハードウェア(専用回路)によって実現することも、当然、可能である。
Second Embodiment
In each of the above embodiments, each of the functional blocks can usually be realized by an MPU, a memory, and the like. Further, the processing by each of the functional blocks is usually realized by a program execution unit such as a processor reading and executing software (program) recorded in a recording medium such as a ROM. The software may be distributed by downloading or the like, or may be distributed by being recorded in a recording medium such as a semiconductor memory. Of course, it is also possible to realize each functional block by hardware (dedicated circuit).
 また、各実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 Also, the processing described in each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good. Moreover, the processor that executes the program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
 本開示の態様は、以上の実施例に限定されることなく、種々の変更が可能であり、それらも本開示の態様の範囲内に包含される。 The aspects of the present disclosure are not limited to the above examples, and various modifications are possible, which are also included in the scope of the aspects of the present disclosure.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)又は動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、画像復号方法を用いた画像復号装置、及び両方を備える画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, an application example of the moving picture coding method (image coding method) or the moving picture decoding method (image decoding method) shown in each of the above-described embodiments and a system using the same will be described. The system is characterized by having an image coding apparatus using an image coding method, an image decoding apparatus using an image decoding method, and an image coding / decoding apparatus provided with both. Other configurations in the system can be suitably modified as the case may be.
 [使用例]
 図14は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
[Example of use]
FIG. 14 is a diagram showing an overall configuration of a content supply system ex100 for realizing content distribution service. The area for providing communication service is divided into desired sizes, and base stations ex106, ex107, ex108, ex109 and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100では、インターネットex101に、インターネットサービスプロバイダex102又は通信網ex104、及び基地局ex106~ex110を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器が接続される。当該コンテンツ供給システムex100は、上記のいずれかの要素を組合せて接続するようにしてもよい。固定無線局である基地局ex106~ex110を介さずに、各機器が電話網又は近距離無線等を介して直接的又は間接的に相互に接続されていてもよい。また、ストリーミングサーバex103は、インターネットex101等を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器と接続される。また、ストリーミングサーバex103は、衛星ex116を介して、飛行機ex117内のホットスポット内の端末等と接続される。 In this content supply system ex100, each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet service provider ex102 or the communication network ex104 and the base stations ex106 to ex110 on the Internet ex101 Is connected. The content supply system ex100 may connect any of the above-described elements in combination. The respective devices may be connected to each other directly or indirectly via a telephone network, near-field radio, etc., not via the base stations ex106 to ex110 which are fixed wireless stations. Also, the streaming server ex103 is connected to each device such as the computer ex111, the game machine ex112, the camera ex113, the home appliance ex114, and the smartphone ex115 via the Internet ex101 or the like. Also, the streaming server ex103 is connected to a terminal or the like in a hotspot in the aircraft ex117 via the satellite ex116.
 なお、基地局ex106~ex110の代わりに、無線アクセスポイント又はホットスポット等が用いられてもよい。また、ストリーミングサーバex103は、インターネットex101又はインターネットサービスプロバイダex102を介さずに直接通信網ex104と接続されてもよいし、衛星ex116を介さず直接飛行機ex117と接続されてもよい。 A radio access point or a hotspot may be used instead of base stations ex106 to ex110. Also, the streaming server ex103 may be directly connected to the communication network ex104 without the internet ex101 or the internet service provider ex102, or may be directly connected with the airplane ex117 without the satellite ex116.
 カメラex113はデジタルカメラ等の静止画撮影、及び動画撮影が可能な機器である。また、スマートフォンex115は、一般に2G、3G、3.9G、4G、そして今後は5Gと呼ばれる移動通信システムの方式に対応したスマートフォン機、携帯電話機、又はPHS(Personal Handyphone System)等である。 The camera ex113 is a device capable of shooting a still image such as a digital camera and shooting a moving image. The smartphone ex115 is a smartphone, a mobile phone, a PHS (Personal Handyphone System), or the like compatible with a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
 家電ex118は、冷蔵庫、又は家庭用燃料電池コージェネレーションシステムに含まれる機器等である。 The home appliance ex118 is a refrigerator or a device included in a home fuel cell cogeneration system.
 コンテンツ供給システムex100では、撮影機能を有する端末が基地局ex106等を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、端末(コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、及び飛行機ex117内の端末等)は、ユーザが当該端末を用いて撮影した静止画又は動画コンテンツに対して上記各実施の形態で説明した符号化処理を行い、符号化により得られた映像データと、映像に対応する音を符号化した音データと多重化し、得られたデータをストリーミングサーバex103に送信する。即ち、各端末は、本開示の一態様に係る画像符号化装置として機能する。 In the content supply system ex100, when a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, live distribution and the like become possible. In live distribution, a terminal (a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, a smartphone ex115, a terminal in an airplane ex117, etc.) transmits the still image or moving image content captured by the user using the terminal. The encoding process described in each embodiment is performed, and video data obtained by the encoding and sound data obtained by encoding a sound corresponding to the video are multiplexed, and the obtained data is transmitted to the streaming server ex103. That is, each terminal functions as an image coding apparatus according to an aspect of the present disclosure.
 一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントは、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、又は飛行機ex117内の端末等である。配信されたデータを受信した各機器は、受信したデータを復号化処理して再生する。即ち、各機器は、本開示の一態様に係る画像復号装置として機能する。 On the other hand, the streaming server ex 103 streams the content data transmitted to the requested client. The client is a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, a smartphone ex115, a terminal in the airplane ex117, or the like capable of decoding the above-described encoded data. Each device that receives the distributed data decrypts and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present disclosure.
 [分散処理]
 また、ストリーミングサーバex103は複数のサーバ又は複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。例えば、ストリーミングサーバex103は、CDN(Contents Delivery Network)により実現され、世界中に分散された多数のエッジサーバとエッジサーバ間をつなぐネットワークによりコンテンツ配信が実現されていてもよい。CDNでは、クライアントに応じて物理的に近いエッジサーバが動的に割り当てられる。そして、当該エッジサーバにコンテンツがキャッシュ及び配信されることで遅延を減らすことができる。また、何らかのエラーが発生した場合又はトラフィックの増加などにより通信状態が変わる場合に複数のエッジサーバで処理を分散したり、他のエッジサーバに配信主体を切り替えたり、障害が生じたネットワークの部分を迂回して配信を続けることができるので、高速かつ安定した配信が実現できる。
[Distributed processing]
Also, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, or distribute data in a distributed manner. For example, the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and content delivery may be realized by a network connecting a large number of edge servers distributed around the world and the edge servers. In the CDN, physically close edge servers are dynamically assigned according to clients. The delay can be reduced by caching and distributing the content to the edge server. In addition, when there is an error or when the communication status changes due to an increase in traffic etc., processing is distributed among multiple edge servers, or the distribution subject is switched to another edge server, or a portion of the network where a failure has occurred. Since the delivery can be continued bypassing, high-speed and stable delivery can be realized.
 また、配信自体の分散処理にとどまらず、撮影したデータの符号化処理を各端末で行ってもよいし、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、一般に符号化処理では、処理ループが2度行われる。1度目のループでフレーム又はシーン単位での画像の複雑さ、又は、符号量が検出される。また、2度目のループでは画質を維持して符号化効率を向上させる処理が行われる。例えば、端末が1度目の符号化処理を行い、コンテンツを受け取ったサーバ側が2度目の符号化処理を行うことで、各端末での処理負荷を減らしつつもコンテンツの質と効率を向上させることができる。この場合、ほぼリアルタイムで受信して復号する要求があれば、端末が行った一度目の符号化済みデータを他の端末で受信して再生することもできるので、より柔軟なリアルタイム配信も可能になる。 In addition to the distributed processing of distribution itself, each terminal may perform encoding processing of captured data, or may perform processing on the server side, or may share processing with each other. As an example, generally in the encoding process, a processing loop is performed twice. In the first loop, the complexity or code amount of the image in frame or scene units is detected. In the second loop, processing is performed to maintain the image quality and improve the coding efficiency. For example, the terminal performs a first encoding process, and the server receiving the content performs a second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can. In this case, if there is a request to receive and decode in substantially real time, the first encoded data made by the terminal can also be received and reproduced by another terminal, enabling more flexible real time delivery Become.
 他の例として、カメラex113等は、画像から特徴量抽出を行い、特徴量に関するデータをメタデータとして圧縮してサーバに送信する。サーバは、例えば特徴量からオブジェクトの重要性を判断して量子化精度を切り替えるなど、画像の意味に応じた圧縮を行う。特徴量データはサーバでの再度の圧縮時の動きベクトル予測の精度及び効率向上に特に有効である。また、端末でVLC(可変長符号化)などの簡易的な符号化を行い、サーバでCABAC(コンテキスト適応型二値算術符号化方式)など処理負荷の大きな符号化を行ってもよい。 As another example, the camera ex 113 or the like extracts a feature amount from an image, compresses data relating to the feature amount as metadata, and transmits the data to the server. The server performs compression according to the meaning of the image, for example, determining the importance of the object from the feature amount and switching the quantization accuracy. Feature amount data is particularly effective in improving the accuracy and efficiency of motion vector prediction at the time of second compression in the server. Also, the terminal may perform simple coding such as VLC (variable length coding) and the server may perform coding with a large processing load such as CABAC (context adaptive binary arithmetic coding method).
 さらに他の例として、スタジアム、ショッピングモール、又は工場などにおいては、複数の端末によりほぼ同一のシーンが撮影された複数の映像データが存在する場合がある。この場合には、撮影を行った複数の端末と、必要に応じて撮影をしていない他の端末及びサーバを用いて、例えばGOP(Group of Picture)単位、ピクチャ単位、又はピクチャを分割したタイル単位などで符号化処理をそれぞれ割り当てて分散処理を行う。これにより、遅延を減らし、よりリアルタイム性を実現できる。 As still another example, in a stadium, a shopping mall, or a factory, there may be a plurality of video data in which substantially the same scenes are shot by a plurality of terminals. In this case, for example, a unit of GOP (Group of Picture), a unit of picture, or a tile into which a picture is divided, using a plurality of terminals for which photographing was performed and other terminals and servers which are not photographing as necessary. The encoding process is allocated in units, etc. to perform distributed processing. This reduces delay and can realize more real time performance.
 また、複数の映像データはほぼ同一シーンであるため、各端末で撮影された映像データを互いに参照し合えるように、サーバで管理及び/又は指示をしてもよい。または、各端末からの符号化済みデータを、サーバが受信し複数のデータ間で参照関係を変更、又はピクチャ自体を補正或いは差し替えて符号化しなおしてもよい。これにより、一つ一つのデータの質と効率を高めたストリームを生成できる。 Further, since a plurality of video data are substantially the same scene, the server may manage and / or instruct the video data captured by each terminal to be mutually referred to. Alternatively, the server may receive the encoded data from each terminal and change the reference relationship among a plurality of data, or may correct or replace the picture itself and re-encode it. This makes it possible to generate streams with enhanced quality and efficiency of each piece of data.
 また、サーバは、映像データの符号化方式を変更するトランスコードを行ったうえで映像データを配信してもよい。例えば、サーバは、MPEG系の符号化方式をVP系に変換してもよいし、H.264をH.265に変換してもよい。 Also, the server may deliver the video data after performing transcoding for changing the coding method of the video data. For example, the server may convert the encoding system of the MPEG system into the VP system, or the H.264 system. H.264. It may be converted to 265.
 このように、符号化処理は、端末、又は1以上のサーバにより行うことが可能である。よって、以下では、処理を行う主体として「サーバ」又は「端末」等の記載を用いるが、サーバで行われる処理の一部又は全てが端末で行われてもよいし、端末で行われる処理の一部又は全てがサーバで行われてもよい。また、これらに関しては、復号処理についても同様である。 Thus, the encoding process can be performed by the terminal or one or more servers. Therefore, in the following, although the description such as "server" or "terminal" is used as the subject of processing, part or all of the processing performed by the server may be performed by the terminal, or the processing performed by the terminal Some or all may be performed on the server. In addition, with regard to these, the same applies to the decoding process.
 [3D、マルチアングル]
 近年では、互いにほぼ同期した複数のカメラex113及び/又はスマートフォンex115などの端末により撮影された異なるシーン、又は、同一シーンを異なるアングルから撮影した画像或いは映像を統合して利用することも増えてきている。各端末で撮影した映像は、別途取得した端末間の相対的な位置関係、又は、映像に含まれる特徴点が一致する領域などに基づいて統合される。
[3D, multi-angle]
In recent years, it has been increasingly used to integrate and use different scenes captured by terminals such as a plurality of cameras ex113 and / or smartphone ex115 which are substantially synchronized with each other, or images or videos of the same scene captured from different angles. There is. The images captured by each terminal are integrated based on the relative positional relationship between the terminals acquired separately, or an area where the feature points included in the image coincide with each other.
 サーバは、2次元の動画像を符号化するだけでなく、動画像のシーン解析などに基づいて自動的に、又は、ユーザが指定した時刻において、静止画を符号化し、受信端末に送信してもよい。サーバは、さらに、撮影端末間の相対的な位置関係を取得できる場合には、2次元の動画像だけでなく、同一シーンが異なるアングルから撮影された映像に基づき、当該シーンの3次元形状を生成できる。なお、サーバは、ポイントクラウドなどにより生成した3次元のデータを別途符号化してもよいし、3次元データを用いて人物又はオブジェクトを認識或いは追跡した結果に基づいて、受信端末に送信する映像を、複数の端末で撮影した映像から選択、又は、再構成して生成してもよい。 The server not only encodes a two-dimensional moving image, but also automatically encodes a still image based on scene analysis of the moving image or at a time designated by the user and transmits it to the receiving terminal. It is also good. Furthermore, if the server can acquire relative positional relationship between the imaging terminals, the three-dimensional shape of the scene is not only determined based on the two-dimensional moving image but also the video of the same scene captured from different angles. Can be generated. Note that the server may separately encode three-dimensional data generated by a point cloud or the like, or an image to be transmitted to the receiving terminal based on a result of recognizing or tracking a person or an object using the three-dimensional data. Alternatively, it may be generated by selecting or reconfiguring from videos taken by a plurality of terminals.
 このようにして、ユーザは、各撮影端末に対応する各映像を任意に選択してシーンを楽しむこともできるし、複数画像又は映像を用いて再構成された3次元データから任意視点の映像を切り出したコンテンツを楽しむこともできる。さらに、映像と同様に音も複数の相異なるアングルから収音され、サーバは、映像に合わせて特定のアングル又は空間からの音を映像と多重化して送信してもよい。 In this way, the user can enjoy the scene by arbitrarily selecting each video corresponding to each photographing terminal, or from the three-dimensional data reconstructed using a plurality of images or videos, the video of the arbitrary viewpoint You can also enjoy the extracted content. Furthermore, the sound may be picked up from a plurality of different angles as well as the video, and the server may multiplex the sound from a specific angle or space with the video and transmit it according to the video.
 また、近年ではVirtual Reality(VR)及びAugmented Reality(AR)など、現実世界と仮想世界とを対応付けたコンテンツも普及してきている。VRの画像の場合、サーバは、右目用及び左目用の視点画像をそれぞれ作成し、Multi-View Coding(MVC)などにより各視点映像間で参照を許容する符号化を行ってもよいし、互いに参照せずに別ストリームとして符号化してもよい。別ストリームの復号時には、ユーザの視点に応じて仮想的な3次元空間が再現されるように互いに同期させて再生するとよい。 Also, in recent years, content in which the real world and the virtual world are associated, such as Virtual Reality (VR) and Augmented Reality (AR), has also become widespread. In the case of VR images, the server may create viewpoint images for the right eye and for the left eye, respectively, and may perform coding to allow reference between each viewpoint video using Multi-View Coding (MVC) or the like. It may be encoded as another stream without reference. At the time of decoding of another stream, reproduction may be performed in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
 ARの画像の場合には、サーバは、現実空間のカメラ情報に、仮想空間上の仮想物体情報を、3次元的位置又はユーザの視点の動きに基づいて重畳する。復号装置は、仮想物体情報及び3次元データを取得又は保持し、ユーザの視点の動きに応じて2次元画像を生成し、スムーズにつなげることで重畳データを作成してもよい。または、復号装置は仮想物体情報の依頼に加えてユーザの視点の動きをサーバに送信し、サーバは、サーバに保持される3次元データから受信した視点の動きに合わせて重畳データを作成し、重畳データを符号化して復号装置に配信してもよい。なお、重畳データは、RGB以外に透過度を示すα値を有し、サーバは、3次元データから作成されたオブジェクト以外の部分のα値が0などに設定し、当該部分が透過する状態で、符号化してもよい。もしくは、サーバは、クロマキーのように所定の値のRGB値を背景に設定し、オブジェクト以外の部分は背景色にしたデータを生成してもよい。 In the case of an AR image, the server superimposes virtual object information in the virtual space on camera information in the real space based on the three-dimensional position or the movement of the user's viewpoint. The decoding apparatus may acquire or hold virtual object information and three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposed data by smoothly connecting. Alternatively, the decoding device transmits the motion of the user's viewpoint to the server in addition to the request for virtual object information, and the server creates superimposed data in accordance with the motion of the viewpoint received from the three-dimensional data held in the server. The superimposed data may be encoded and distributed to the decoding device. Note that the superimposed data has an α value indicating transparency as well as RGB, and the server sets the α value of a portion other than the object created from the three-dimensional data to 0 etc., and the portion is transparent , May be encoded. Alternatively, the server may set RGB values of predetermined values as a background, such as chroma key, and generate data in which the portion other than the object has a background color.
 同様に配信されたデータの復号処理はクライアントである各端末で行っても、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、ある端末が、一旦サーバに受信リクエストを送り、そのリクエストに応じたコンテンツを他の端末で受信し復号処理を行い、ディスプレイを有する装置に復号済みの信号が送信されてもよい。通信可能な端末自体の性能によらず処理を分散して適切なコンテンツを選択することで画質のよいデータを再生することができる。また、他の例として大きなサイズの画像データをTV等で受信しつつ、鑑賞者の個人端末にピクチャが分割されたタイルなど一部の領域が復号されて表示されてもよい。これにより、全体像を共有化しつつ、自身の担当分野又はより詳細に確認したい領域を手元で確認することができる。 Similarly, the decryption processing of the distributed data may be performed by each terminal which is a client, may be performed by the server side, or may be performed sharing each other. As one example, one terminal may send a reception request to the server once, the content corresponding to the request may be received by another terminal and decoded, and the decoded signal may be transmitted to a device having a display. Data of high image quality can be reproduced by distributing processing and selecting appropriate content regardless of the performance of the communicable terminal itself. As another example, while receiving image data of a large size by a TV or the like, a viewer's personal terminal may decode and display a partial area such as a tile in which a picture is divided. Thereby, it is possible to confirm at hand the area in which the user is in charge or the area to be checked in more detail while sharing the whole image.
 また今後は、屋内外にかかわらず近距離、中距離、又は長距離の無線通信が複数使用可能な状況下で、MPEG-DASHなどの配信システム規格を利用して、接続中の通信に対して適切なデータを切り替えながらシームレスにコンテンツを受信することが予想される。これにより、ユーザは、自身の端末のみならず屋内外に設置されたディスプレイなどの復号装置又は表示装置を自由に選択しながらリアルタイムで切り替えられる。また、自身の位置情報などに基づいて、復号する端末及び表示する端末を切り替えながら復号を行うことができる。これにより、目的地への移動中に、表示可能なデバイスが埋め込まれた隣の建物の壁面又は地面の一部に地図情報を表示させながら移動することも可能になる。また、符号化データが受信端末から短時間でアクセスできるサーバにキャッシュされている、又は、コンテンツ・デリバリー・サービスにおけるエッジサーバにコピーされている、などの、ネットワーク上での符号化データへのアクセス容易性に基づいて、受信データのビットレートを切り替えることも可能である。 Also, from now on, for communication under connection using a delivery system standard such as MPEG-DASH under a situation where multiple short distance, middle distance or long distance wireless communication can be used regardless of indoor or outdoor. It is expected to receive content seamlessly while switching the appropriate data. As a result, the user can switch in real time while freely selecting not only his own terminal but also a decoding apparatus or display apparatus such as a display installed indoors and outdoors. In addition, decoding can be performed while switching between a terminal to be decoded and a terminal to be displayed, based on own position information and the like. This makes it possible to move while displaying map information on the wall surface or part of the ground of the next building in which the displayable device is embedded while moving to the destination. Also, access to encoded data over the network, such as encoded data being cached on a server that can be accessed in a short time from a receiving terminal, or copied to an edge server in a content delivery service, etc. It is also possible to switch the bit rate of the received data based on ease.
 [スケーラブル符号化]
 コンテンツの切り替えに関して、図15に示す、上記各実施の形態で示した動画像符号化方法を応用して圧縮符号化されたスケーラブルなストリームを用いて説明する。サーバは、個別のストリームとして内容は同じで質の異なるストリームを複数有していても構わないが、図示するようにレイヤに分けて符号化を行うことで実現される時間的/空間的スケーラブルなストリームの特徴を活かして、コンテンツを切り替える構成であってもよい。つまり、復号側が性能という内的要因と通信帯域の状態などの外的要因とに応じてどのレイヤまで復号するかを決定することで、復号側は、低解像度のコンテンツと高解像度のコンテンツとを自由に切り替えて復号できる。例えば移動中にスマートフォンex115で視聴していた映像の続きを、帰宅後にインターネットTV等の機器で視聴したい場合には、当該機器は、同じストリームを異なるレイヤまで復号すればよいので、サーバ側の負担を軽減できる。
[Scalable coding]
The switching of content will be described using a scalable stream compression-coded by applying the moving picture coding method shown in each of the above-described embodiments shown in FIG. The server may have a plurality of streams with the same content but different qualities as individual streams, but is temporally / spatial scalable which is realized by coding into layers as shown in the figure. The configuration may be such that the content is switched using the feature of the stream. That is, the decoding side determines low-resolution content and high-resolution content by determining which layer to decode depending on the internal factor of performance and external factors such as the state of the communication band. It can be switched freely and decoded. For example, when it is desired to view the continuation of the video being watched by the smartphone ex115 while moving on a device such as the Internet TV after returning home, the device only has to decode the same stream to different layers, so the burden on the server side Can be reduced.
 さらに、上記のように、レイヤ毎にピクチャが符号化されており、ベースレイヤの上位にエンハンスメントレイヤが存在するスケーラビリティを実現する構成以外に、エンハンスメントレイヤが画像の統計情報などに基づくメタ情報を含み、復号側が、メタ情報に基づきベースレイヤのピクチャを超解像することで高画質化したコンテンツを生成してもよい。超解像とは、同一解像度におけるSN比の向上、及び、解像度の拡大のいずれであってもよい。メタ情報は、超解像処理に用いる線形或いは非線形のフィルタ係数を特定するため情報、又は、超解像処理に用いるフィルタ処理、機械学習或いは最小2乗演算におけるパラメータ値を特定する情報などを含む。 Furthermore, as described above, the picture is encoded for each layer, and the enhancement layer includes meta information based on statistical information of the image, etc., in addition to the configuration for realizing the scalability in which the enhancement layer exists above the base layer. The decoding side may generate high-quality content by super-resolving a picture of the base layer based on the meta information. The super resolution may be either an improvement in the SN ratio at the same resolution or an expansion of the resolution. Meta information includes information for identifying linear or non-linear filter coefficients used for super-resolution processing, or information for identifying parameter values in filter processing used for super-resolution processing, machine learning or least squares operation, etc. .
 または、画像内のオブジェクトなどの意味合いに応じてピクチャがタイル等に分割されており、復号側が、復号するタイルを選択することで一部の領域だけを復号する構成であってもよい。また、オブジェクトの属性(人物、車、ボールなど)と映像内の位置(同一画像における座標位置など)とをメタ情報として格納することで、復号側は、メタ情報に基づいて所望のオブジェクトの位置を特定し、そのオブジェクトを含むタイルを決定できる。例えば、図16に示すように、メタ情報は、HEVCにおけるSEIメッセージなど画素データとは異なるデータ格納構造を用いて格納される。このメタ情報は、例えば、メインオブジェクトの位置、サイズ、又は色彩などを示す。 Alternatively, the picture may be divided into tiles or the like according to the meaning of an object or the like in the image, and the decoding side may be configured to decode only a part of the area by selecting the tile to be decoded. Also, by storing the attribute of the object (person, car, ball, etc.) and the position in the image (coordinate position in the same image, etc.) as meta information, the decoding side can position the desired object based on the meta information And determine the tile that contains the object. For example, as shown in FIG. 16, meta information is stored using a data storage structure different from pixel data, such as an SEI message in HEVC. This meta information indicates, for example, the position, size, or color of the main object.
 また、ストリーム、シーケンス又はランダムアクセス単位など、複数のピクチャから構成される単位でメタ情報が格納されてもよい。これにより、復号側は、特定人物が映像内に出現する時刻などが取得でき、ピクチャ単位の情報と合わせることで、オブジェクトが存在するピクチャ、及び、ピクチャ内でのオブジェクトの位置を特定できる。 Also, meta information may be stored in units of a plurality of pictures, such as streams, sequences, or random access units. As a result, the decoding side can acquire the time when a specific person appears in the video and the like, and can identify the picture in which the object exists and the position of the object in the picture by combining the information with the picture unit.
 [Webページの最適化]
 図17は、コンピュータex111等におけるwebページの表示画面例を示す図である。図18は、スマートフォンex115等におけるwebページの表示画面例を示す図である。図17及び図18に示すようにwebページが、画像コンテンツへのリンクであるリンク画像を複数含む場合があり、閲覧するデバイスによってその見え方は異なる。画面上に複数のリンク画像が見える場合には、ユーザが明示的にリンク画像を選択するまで、又は画面の中央付近にリンク画像が近付く或いはリンク画像の全体が画面内に入るまでは、表示装置(復号装置)は、リンク画像として各コンテンツが有する静止画又はIピクチャを表示したり、複数の静止画又はIピクチャ等でgifアニメのような映像を表示したり、ベースレイヤのみ受信して映像を復号及び表示したりする。
Web Page Optimization
FIG. 17 is a diagram showing an example of a display screen of a web page in the computer ex111 and the like. FIG. 18 is a diagram showing an example of a display screen of a web page in the smartphone ex115 and the like. As shown in FIGS. 17 and 18, the web page may include a plurality of link images which are links to image content, and the appearance differs depending on the browsing device. When multiple link images are visible on the screen, the display device until the user explicitly selects the link image, or until the link image approaches near the center of the screen or the entire link image falls within the screen The (decoding device) displays still images or I pictures of each content as link images, displays images such as gif animation with a plurality of still images or I pictures, etc., receives only the base layer Decode and display.
 ユーザによりリンク画像が選択された場合、表示装置は、ベースレイヤを最優先にして復号する。なお、webページを構成するHTMLにスケーラブルなコンテンツであることを示す情報があれば、表示装置は、エンハンスメントレイヤまで復号してもよい。また、リアルタイム性を担保するために、選択される前又は通信帯域が非常に厳しい場合には、表示装置は、前方参照のピクチャ(Iピクチャ、Pピクチャ、前方参照のみのBピクチャ)のみを復号及び表示することで、先頭ピクチャの復号時刻と表示時刻との間の遅延(コンテンツの復号開始から表示開始までの遅延)を低減できる。また、表示装置は、ピクチャの参照関係を敢えて無視して全てのBピクチャ及びPピクチャを前方参照にして粗く復号し、時間が経ち受信したピクチャが増えるにつれて正常の復号を行ってもよい。 When the link image is selected by the user, the display device decodes the base layer with the highest priority. Note that the display device may decode up to the enhancement layer if there is information indicating that the content is scalable in the HTML configuring the web page. Also, in order to secure real-time capability, the display device decodes only forward referenced pictures (I picture, P picture, forward referenced only B picture) before the selection or when the communication band is very strict. And, by displaying, it is possible to reduce the delay between the decoding time of the leading picture and the display time (delay from the start of decoding of the content to the start of display). In addition, the display device may roughly ignore the reference relationship of pictures and roughly decode all B pictures and P pictures with forward reference, and may perform normal decoding as time passes and the number of received pictures increases.
 [自動走行]
 また、車の自動走行又は走行支援のため2次元又は3次元の地図情報などの静止画又は映像データを送受信する場合、受信端末は、1以上のレイヤに属する画像データに加えて、メタ情報として天候又は工事の情報なども受信し、これらを対応付けて復号してもよい。なお、メタ情報は、レイヤに属してもよいし、単に画像データと多重化されてもよい。
[Auto run]
In addition, when transmitting or receiving still image or video data such as two-dimensional or three-dimensional map information for automatic traveling or driving assistance of a car, the receiving terminal is added as image information belonging to one or more layers as meta information Information on weather or construction may also be received, and these may be correlated and decoded. The meta information may belong to the layer or may be simply multiplexed with the image data.
 この場合、受信端末を含む車、ドローン又は飛行機などが移動するため、受信端末は、当該受信端末の位置情報を受信要求時に送信することで、基地局ex106~ex110を切り替えながらシームレスな受信及び復号を実現できる。また、受信端末は、ユーザの選択、ユーザの状況又は通信帯域の状態に応じて、メタ情報をどの程度受信するか、又は地図情報をどの程度更新していくかを動的に切り替えることが可能になる。 In this case, since a car including a receiving terminal, a drone or an airplane moves, the receiving terminal transmits the position information of the receiving terminal at the time of reception request to seamlessly receive and decode while switching the base stations ex106 to ex110. Can be realized. In addition, the receiving terminal can dynamically switch how much meta information is received or how much map information is updated according to the user's selection, the user's situation or the state of the communication band. become.
 以上のようにして、コンテンツ供給システムex100では、ユーザが送信した符号化された情報をリアルタイムでクライアントが受信して復号し、再生することができる。 As described above, in the content providing system ex100, the client can receive, decode, and reproduce the encoded information transmitted by the user in real time.
 [個人コンテンツの配信]
 また、コンテンツ供給システムex100では、映像配信業者による高画質で長時間のコンテンツのみならず、個人による低画質で短時間のコンテンツのユニキャスト、又はマルチキャスト配信が可能である。また、このような個人のコンテンツは今後も増加していくと考えられる。個人コンテンツをより優れたコンテンツにするために、サーバは、編集処理を行ってから符号化処理を行ってもよい。これは例えば、以下のような構成で実現できる。
[Distribution of personal content]
Further, in the content supply system ex100, not only high-quality and long-time content by a video distribution company but also unicast or multicast distribution of low-quality and short-time content by an individual is possible. In addition, such personal content is expected to increase in the future. In order to make the personal content more excellent, the server may perform the encoding process after performing the editing process. This can be realized, for example, with the following configuration.
 撮影時にリアルタイム又は蓄積して撮影後に、サーバは、原画又は符号化済みデータから撮影エラー、シーン探索、意味の解析、及びオブジェクト検出などの認識処理を行う。そして、サーバは、認識結果に基いて手動又は自動で、ピントずれ又は手ブレなどを補正したり、明度が他のピクチャに比べて低い又は焦点が合っていないシーンなどの重要性の低いシーンを削除したり、オブジェクトのエッジを強調したり、色合いを変化させるなどの編集を行う。サーバは、編集結果に基いて編集後のデータを符号化する。また撮影時刻が長すぎると視聴率が下がることも知られており、サーバは、撮影時間に応じて特定の時間範囲内のコンテンツになるように上記のように重要性が低いシーンのみならず動きが少ないシーンなどを、画像処理結果に基き自動でクリップしてもよい。または、サーバは、シーンの意味解析の結果に基づいてダイジェストを生成して符号化してもよい。 At the time of shooting, the server performs recognition processing such as shooting error, scene search, meaning analysis, and object detection from the original image or encoded data after shooting in real time or by accumulation. Then, the server manually or automatically corrects out-of-focus or camera shake, etc. based on the recognition result, or a scene with low importance such as a scene whose brightness is low or out of focus compared with other pictures. Make edits such as deleting, emphasizing the edge of an object, or changing the color. The server encodes the edited data based on the edited result. It is also known that the audience rating drops when the shooting time is too long, and the server works not only with scenes with low importance as described above, but also moves as content becomes within a specific time range according to the shooting time. Scenes with a small amount of motion may be clipped automatically based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of semantic analysis of the scene.
 なお、個人コンテンツには、そのままでは著作権、著作者人格権、又は肖像権等の侵害となるものが写り込んでいるケースもあり、共有する範囲が意図した範囲を超えてしまうなど個人にとって不都合な場合もある。よって、例えば、サーバは、画面の周辺部の人の顔、又は家の中などを敢えて焦点が合わない画像に変更して符号化してもよい。また、サーバは、符号化対象画像内に、予め登録した人物とは異なる人物の顔が映っているかどうかを認識し、映っている場合には、顔の部分にモザイクをかけるなどの処理を行ってもよい。または、符号化の前処理又は後処理として、著作権などの観点からユーザが画像を加工したい人物又は背景領域を指定し、サーバは、指定された領域を別の映像に置き換える、又は焦点をぼかすなどの処理を行うことも可能である。人物であれば、動画像において人物をトラッキングしながら、顔の部分の映像を置き換えることができる。 In some cases, there are cases where personal content may infringe copyright, author's personality right, portrait right, etc. as it is, and it is inconvenient for the individual, such as the range of sharing exceeds the intended range. There are also cases. Thus, for example, the server may change and encode the face of a person at the periphery of the screen, or the inside of a house, etc. into an image out of focus. In addition, the server recognizes whether or not the face of a person different from the person registered in advance appears in the image to be encoded, and if so, performs processing such as mosaicing the face portion. May be Alternatively, the user designates a person or background area desired to process an image from the viewpoint of copyright etc. as preprocessing or post-processing of encoding, and the server replaces the designated area with another video or blurs the focus. It is also possible to perform such processing. If it is a person, it is possible to replace the image of the face part while tracking the person in the moving image.
 また、データ量の小さい個人コンテンツの視聴はリアルタイム性の要求が強いため、帯域幅にもよるが、復号装置は、まずベースレイヤを最優先で受信して復号及び再生を行う。復号装置は、この間にエンハンスメントレイヤを受信し、再生がループされる場合など2回以上再生される場合に、エンハンスメントレイヤも含めて高画質の映像を再生してもよい。このようにスケーラブルな符号化が行われているストリームであれば、未選択時又は見始めた段階では粗い動画だが、徐々にストリームがスマートになり画像がよくなるような体験を提供することができる。スケーラブル符号化以外にも、1回目に再生される粗いストリームと、1回目の動画を参照して符号化される2回目のストリームとが1つのストリームとして構成されていても同様の体験を提供できる。 Also, since viewing of personal content with a small amount of data has a strong demand for real-time performance, the decoding apparatus first receives the base layer with the highest priority, and performs decoding and reproduction, although it depends on the bandwidth. The decoding device may receive the enhancement layer during this period, and may play back high-quality video including the enhancement layer if it is played back more than once, such as when playback is looped. In the case of a stream in which scalable coding is performed as described above, it is possible to provide an experience in which the stream gradually becomes smart and the image becomes better although it is a rough moving image when it is not selected or when it starts watching. Besides scalable coding, the same experience can be provided even if the coarse stream played back first and the second stream coded with reference to the first moving image are configured as one stream .
 [その他の使用例]
 また、これらの符号化又は復号処理は、一般的に各端末が有するLSIex500において処理される。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化又は復号用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、又はハードディスクなど)に組み込み、そのソフトウェアを用いて符号化又は復号処理を行ってもよい。さらに、スマートフォンex115がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データはスマートフォンex115が有するLSIex500で符号化処理されたデータである。
[Other use cases]
Also, these encoding or decoding processes are generally processed in an LSI ex 500 that each terminal has. The LSI ex 500 may be a single chip or a plurality of chips. Software for moving image encoding or decoding is incorporated in any recording medium (CD-ROM, flexible disk, hard disk, etc.) readable by computer ex111 or the like, and encoding or decoding is performed using the software. It is also good. Furthermore, when the smartphone ex115 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex 500 included in the smartphone ex 115.
 なお、LSIex500は、アプリケーションソフトをダウンロードしてアクティベートする構成であってもよい。この場合、端末は、まず、当該端末がコンテンツの符号化方式に対応しているか、又は、特定サービスの実行能力を有するかを判定する。端末がコンテンツの符号化方式に対応していない場合、又は、特定サービスの実行能力を有さない場合、端末は、コーデック又はアプリケーションソフトをダウンロードし、その後、コンテンツ取得及び再生する。 The LSI ex 500 may be configured to download and activate application software. In this case, the terminal first determines whether the terminal corresponds to the content coding scheme or has the ability to execute a specific service. If the terminal does not support the content encoding method or does not have the ability to execute a specific service, the terminal downloads the codec or application software, and then acquires and reproduces the content.
 また、インターネットex101を介したコンテンツ供給システムex100に限らず、デジタル放送用システムにも上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)又は動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。衛星などを利用して放送用の電波に映像と音が多重化された多重化データを載せて送受信するため、コンテンツ供給システムex100のユニキャストがし易い構成に対してマルチキャスト向きであるという違いがあるが符号化処理及び復号処理に関しては同様の応用が可能である。 Further, the present invention is not limited to the content supply system ex100 via the Internet ex101, but also to a system for digital broadcasting at least a moving picture coding apparatus (image coding apparatus) or a moving picture decoding apparatus (image decoding apparatus) of the above embodiments. Can be incorporated. There is a difference in that it is multicast-oriented with respect to the configuration in which the content supply system ex100 can be easily unicasted, since multiplexed data in which video and sound are multiplexed is transmitted on broadcast radio waves using satellites etc. Similar applications are possible for the encoding process and the decoding process.
 [ハードウェア構成]
 図19は、スマートフォンex115を示す図である。また、図20は、スマートフォンex115の構成例を示す図である。スマートフォンex115は、基地局ex110との間で電波を送受信するためのアンテナex450と、映像及び静止画を撮ることが可能なカメラ部ex465と、カメラ部ex465で撮像した映像、及びアンテナex450で受信した映像等が復号されたデータを表示する表示部ex458とを備える。スマートフォンex115は、さらに、タッチパネル等である操作部ex466と、音声又は音響を出力するためのスピーカ等である音声出力部ex457と、音声を入力するためのマイク等である音声入力部ex456と、撮影した映像或いは静止画、録音した音声、受信した映像或いは静止画、メール等の符号化されたデータ、又は、復号化されたデータを保存可能なメモリ部ex467と、ユーザを特定し、ネットワークをはじめ各種データへのアクセスの認証をするためのSIMex468とのインタフェース部であるスロット部ex464とを備える。なお、メモリ部ex467の代わりに外付けメモリが用いられてもよい。
[Hardware configuration]
FIG. 19 is a diagram showing the smartphone ex115. FIG. 20 is a diagram showing a configuration example of the smartphone ex115. The smartphone ex115 receives an antenna ex450 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex465 capable of taking video and still images, a video taken by the camera unit ex465, and the antenna ex450 And a display unit ex <b> 458 for displaying data obtained by decoding an image or the like. The smartphone ex115 further includes an operation unit ex466 that is a touch panel or the like, a voice output unit ex457 that is a speaker or the like for outputting voice or sound, a voice input unit ex456 that is a microphone or the like for inputting voice, Identify the user, the memory unit ex 467 capable of storing encoded video or still image, recorded voice, received video or still image, encoded data such as mail, or decoded data, and specify a network, etc. And a slot unit ex464 that is an interface unit with the SIM ex 468 for authenticating access to various data. Note that an external memory may be used instead of the memory unit ex467.
 また、表示部ex458及び操作部ex466等を統括的に制御する主制御部ex460と、電源回路部ex461、操作入力制御部ex462、映像信号処理部ex455、カメラインタフェース部ex463、ディスプレイ制御部ex459、変調/復調部ex452、多重/分離部ex453、音声信号処理部ex454、スロット部ex464、及びメモリ部ex467とがバスex470を介して接続されている。 Further, a main control unit ex460 that integrally controls the display unit ex458 and the operation unit ex466, a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, / Demodulation unit ex452, multiplexing / demultiplexing unit ex453, audio signal processing unit ex454, slot unit ex464, and memory unit ex467 are connected via a bus ex470.
 電源回路部ex461は、ユーザの操作により電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することによりスマートフォンex115を動作可能な状態に起動する。 When the power supply key is turned on by the user's operation, the power supply circuit unit ex461 activates the smartphone ex115 to an operable state by supplying power from the battery pack to each unit.
 スマートフォンex115は、CPU、ROM及びRAM等を有する主制御部ex460の制御に基づいて、通話及データ通信等の処理を行う。通話時は、音声入力部ex456で収音した音声信号を音声信号処理部ex454でデジタル音声信号に変換し、これを変調/復調部ex452でスペクトラム拡散処理し、送信/受信部ex451でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex450を介して送信する。また受信データを増幅して周波数変換処理及びアナログデジタル変換処理を施し、変調/復調部ex452でスペクトラム逆拡散処理し、音声信号処理部ex454でアナログ音声信号に変換した後、これを音声出力部ex457から出力する。データ通信モード時は、本体部の操作部ex466等の操作によってテキスト、静止画、又は映像データが操作入力制御部ex462を介して主制御部ex460に送出され、同様に送受信処理が行われる。データ通信モード時に映像、静止画、又は映像と音声を送信する場合、映像信号処理部ex455は、メモリ部ex467に保存されている映像信号又はカメラ部ex465から入力された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex453に送出する。また、音声信号処理部ex454は、映像又は静止画等をカメラ部ex465で撮像中に音声入力部ex456で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex453に送出する。多重/分離部ex453は、符号化済み映像データと符号化済み音声データを所定の方式で多重化し、変調/復調部(変調/復調回路部)ex452、及び送信/受信部ex451で変調処理及び変換処理を施してアンテナex450を介して送信する。 The smartphone ex115 performs processing such as call and data communication based on control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like. At the time of a call, the audio signal collected by the audio input unit ex456 is converted to a digital audio signal by the audio signal processing unit ex454, spread spectrum processing is performed by the modulation / demodulation unit ex452, and digital analog conversion is performed by the transmission / reception unit ex451. After processing and frequency conversion processing, transmission is performed via the antenna ex450. Further, the received data is amplified and subjected to frequency conversion processing and analog-to-digital conversion processing, subjected to spectrum despreading processing by modulation / demodulation unit ex452, and converted to an analog sound signal by sound signal processing unit ex454. Output from In the data communication mode, text, still images, or video data are sent to the main control unit ex460 via the operation input control unit ex462 by the operation of the operation unit ex466 or the like of the main unit, and transmission and reception processing is similarly performed. In the case of transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex 455 executes the video signal stored in the memory unit ex 467 or the video signal input from the camera unit ex 465 as described above. The video data is compressed and encoded by the moving picture encoding method shown in the form, and the encoded video data is sent to the multiplexing / demultiplexing unit ex453. Further, the audio signal processing unit ex454 encodes an audio signal collected by the audio input unit ex456 while capturing a video or a still image with the camera unit ex465, and sends the encoded audio data to the multiplexing / demultiplexing unit ex453. Do. The multiplexing / demultiplexing unit ex453 multiplexes the encoded video data and the encoded audio data according to a predetermined method, and performs modulation processing and conversion by the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the transmission / reception unit ex451. It processes and transmits via antenna ex450.
 電子メール又はチャットに添付された映像、又はウェブページ等にリンクされた映像を受信した場合、アンテナex450を介して受信された多重化データを復号するために、多重/分離部ex453は、多重化データを分離することにより、多重化データを映像データのビットストリームと音声データのビットストリームとに分け、同期バスex470を介して符号化された映像データを映像信号処理部ex455に供給するとともに、符号化された音声データを音声信号処理部ex454に供給する。映像信号処理部ex455は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって映像信号を復号し、ディスプレイ制御部ex459を介して表示部ex458から、リンクされた動画像ファイルに含まれる映像又は静止画が表示される。また音声信号処理部ex454は、音声信号を復号し、音声出力部ex457から音声が出力される。なおリアルタイムストリーミングが普及しているため、ユーザの状況によっては音声の再生が社会的にふさわしくない場も起こりえる。そのため、初期値としては、音声信号は再生せず映像データのみを再生する構成の方が望ましい。ユーザが映像データをクリックするなど操作を行った場合にのみ音声を同期して再生してもよい。 When a video attached to an e-mail or a chat or a video linked to a web page or the like is received, the multiplexing / demultiplexing unit ex453 multiplexes in order to decode multiplexed data received via the antenna ex450. By separating the data, the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the encoded video data is supplied to the video signal processing unit ex455 via the synchronization bus ex470, and The converted audio data is supplied to the audio signal processing unit ex 454. The video signal processing unit ex 455 decodes the video signal by the moving picture decoding method corresponding to the moving picture coding method described in each of the above embodiments, and is linked from the display unit ex 458 via the display control unit ex 459. An image or a still image included in the moving image file is displayed. The audio signal processing unit ex 454 decodes the audio signal, and the audio output unit ex 457 outputs the audio. Furthermore, since real-time streaming is widespread, depending on the user's situation, it may happen that sound reproduction is not socially appropriate. Therefore, as an initial value, it is preferable to have a configuration in which only the video data is reproduced without reproducing the audio signal. Audio may be synchronized and played back only when the user performs an operation such as clicking on video data.
 またここではスマートフォンex115を例に説明したが、端末としては符号化器及び復号化器を両方持つ送受信型端末の他に、符号化器のみを有する送信端末、及び、復号化器のみを有する受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムにおいて、映像データに音声データなどが多重化された多重化データを受信又は送信するとして説明したが、多重化データには、音声データ以外に映像に関連する文字データなどが多重化されてもよいし、多重化データではなく映像データ自体が受信又は送信されてもよい。 Also, although the smartphone ex115 has been described as an example, in addition to a transceiving terminal having both an encoder and a decoder as a terminal, a transmitting terminal having only the encoder and a receiver having only the decoder There are three possible implementation forms: terminals. Furthermore, in the digital broadcasting system, it has been described that multiplexed data in which audio data is multiplexed with video data is received or transmitted, but in multiplexed data, character data related to video other than audio data is also described. It may be multiplexed, or video data itself may be received or transmitted, not multiplexed data.
 なお、CPUを含む主制御部ex460が符号化又は復号処理を制御するとして説明したが、端末はGPUを備えることも多い。よって、CPUとGPUで共通化されたメモリ、又は共通に使用できるようにアドレスが管理されているメモリにより、GPUの性能を活かして広い領域を一括して処理する構成でもよい。これにより符号化時間を短縮でき、リアルタイム性を確保し、低遅延を実現できる。特に動き探索、デブロックフィルタ、SAO(Sample Adaptive Offset)、及び変換・量子化の処理を、CPUではなく、GPUでピクチャなどの単位で一括して行うと効率的である。 Although the main control unit ex 460 including the CPU is described as controlling the encoding or decoding process, the terminal often includes a GPU. Therefore, a configuration in which a large area is collectively processed using the performance of the GPU may be performed using a memory shared by the CPU and the GPU, or a memory whose address is managed so as to be commonly used. As a result, coding time can be shortened, real time property can be secured, and low delay can be realized. In particular, it is efficient to perform processing of motion search, deblock filter, sample adaptive offset (SAO), and transform / quantization collectively in units of pictures or the like on the GPU instead of the CPU.
 本開示は、例えば、テレビジョン受像機、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、デジタルビデオカメラ、テレビ会議システム、又は、電子ミラー等に利用可能である。 The present disclosure is applicable to, for example, a television receiver, a digital video recorder, a car navigation system, a mobile phone, a digital camera, a digital video camera, a video conference system, an electronic mirror, and the like.
  10 画像処理装置
  100 符号化装置
  101 画像符号化部
  102 後処理用特徴抽出部
  103 量子部
  103A 量子化部
  103B 逆量子化部
  104 エントロピー符号部
  104A エントロピー符号化部
  104B エントロピー復号部
  105 格納部
  106 画像復号部
  107 後処理用特徴取得部
  108 後処理部
  160、260 回路
  162、262 メモリ
  200 復号装置
  300 畳み込みニューラルネットワーク
  310、322、330 畳み込みブロック
  311 畳み込み層
  312 非線形活性化関数
  313 正規化層
  320 残差ブロック
  321 残差グループ
DESCRIPTION OF SYMBOLS 10 Image processing apparatus 100 Encoding apparatus 101 Image coding part 102 Feature extraction part 103 for post-processing Quantum part 103A Quantization part 103B Inverse quantization part 104 Entropy coding part 104A Entropy coding part 104B Entropy decoding part 105 Storage part 106 Image Decoding unit 107 Post-processing feature acquisition unit 108 Post-processing unit 160, 260 Circuit 162, 262 Memory 200 Decoding device 300 Convolutional neural network 310, 322, 330 Convoluted block 311 Convoluted layer 312 Nonlinear activation function 313 Normalized layer 320 Residual Block 321 residual group

Claims (9)

  1.  メモリと、
     前記メモリにアクセス可能な回路とを備え、
     前記メモリにアクセス可能な前記回路は、
     第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行うことで前記入力画像に対する圧縮の処理を行い、
     第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮および圧縮解除の結果である圧縮解除画像を前記入力画像に近づける処理である後処理において用いられる特徴量を抽出する処理を行う、
     符号化装置。
    With memory
    A circuit capable of accessing the memory;
    The circuit accessible to the memory is
    A compression process is performed on the input image by performing conversion on the input image from the image space region to the encoding space region using the first convolutional neural network model,
    The second convolutional neural network model is used to extract feature quantities used in post-processing, which is processing for bringing a decompressed image, which is the result of compression and decompression on the input image, closer to the input image.
    Encoding device.
  2.  前記特徴量は、前記入力画像に含まれる高周波情報である、
     請求項1に記載の符号化装置。
    The feature amount is high frequency information included in the input image.
    The encoding device according to claim 1.
  3.  前記第1の畳み込みニューラルネットワークモデルおよび前記第2の畳み込みニューラルネットワークモデルは、2つ以上の畳み込みブロックを含み、かつ、1つ以上の残差ブロックを含み、
     前記2つ以上の畳み込みブロックのそれぞれは、1以上の畳み込み層を含む処理ブロックであり、
     前記1つ以上の残差ブロックのそれぞれは、前記2つ以上の畳み込みブロックのうちの少なくとも1つの畳み込み層を2以上含む畳み込みグループで構成され、当該残差ブロックに入力されるデータを当該残差ブロックに含まれる前記畳み込みグループに入力し、かつ、当該残差ブロックに入力されるデータを前記畳み込みグループから出力されるデータに加える処理ブロックである、
     請求項1または2に記載の符号化装置。
    The first convolutional neural network model and the second convolutional neural network model include two or more convolutional blocks and include one or more residual blocks,
    Each of the two or more convolutional blocks is a processing block comprising one or more convolutional layers,
    Each of the one or more residual blocks is composed of a convolutional group including two or more of at least one convolution layer of the two or more convolutional blocks, and the data input to the residual block is the residual A processing block that is input to the convolutional group included in the block and adds data input to the residual block to data output from the convolutional group;
    An encoding device according to claim 1 or 2.
  4.  前記1つ以上の残差ブロックは、2つ以上の残差ブロックである、
     請求項3に記載の符号化装置。
    The one or more residual blocks are two or more residual blocks,
    The encoding device according to claim 3.
  5.  前記2つ以上の畳み込みブロックは、4つ以上の畳み込みブロックであり、
     前記1つ以上の残差ブロックは、残差グループを構成し、前記4つ以上の畳み込みブロックのうちの少なくとも2つの畳み込みブロックを含み、
     前記4つ以上の畳み込みブロックのうち前記残差グループに含まれない少なくとも1つの畳み込みブロックは、第1畳み込みグループを構成し、
     前記4つ以上の畳み込みブロックのうち前記残差グループにも前記第1畳み込みグループにも含まれない少なくとも1つの畳み込みブロックは、第2畳み込みグループを構成し、
     前記第1畳み込みグループから出力されるデータは、前記残差グループに入力され、
     前記残差グループから出力されるデータは、前記第2畳み込みグループに入力される、
     請求項3または4に記載の符号化装置。
    The two or more convolutional blocks are four or more convolutional blocks,
    The one or more residual blocks constitute a residual group and include at least two convolutional blocks of the four or more convolutional blocks,
    At least one convolutional block not included in the residual group among the four or more convolutional blocks constitutes a first convolutional group,
    At least one convolutional block among the four or more convolutional blocks which is not included in the residual group or the first convolutional group constitutes a second convolutional group,
    Data output from the first convolutional group is input to the residual group,
    Data output from the residual group is input to the second convolution group,
    The encoding device according to claim 3 or 4.
  6.  メモリと、
     前記メモリにアクセス可能な回路とを備え、
     前記メモリにアクセス可能な前記回路は、
     第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、符号化空間領域から画像空間領域に変換を行うことで前記入力画像に対する圧縮解除の処理を行い、
     第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮解除の結果である圧縮解除画像を前記入力画像の原画像に近づける処理である後処理において用いられる特徴量を取得する処理を行う、
     復号装置。
    With memory
    A circuit capable of accessing the memory;
    The circuit accessible to the memory is
    The input image is subjected to a decompression process on the input image by performing conversion from the encoding space region to the image space region using the first convolutional neural network model,
    The second convolutional neural network model is used to acquire feature quantities used in post-processing, which is processing for bringing a decompressed image, which is the result of decompression on the input image, closer to the original image of the input image.
    Decoding device.
  7.  前記メモリにアクセス可能な前記回路は、
     さらに、第3の畳み込みニューラルネットワークモデルを用いて、前記後処理として、第2の畳み込みニューラルネットワークモデルを用いて取得した前記特徴量を用いて、前記第1の畳み込みニューラルネットワークモデルを用いて得た前記圧縮解除画像に対して前記原画像に近づける処理を行う、
     請求項6に記載の復号装置。
    The circuit accessible to the memory is
    Furthermore, a third convolutional neural network model is used, and the post-processing is performed using the first convolutional neural network model using the feature quantity acquired using the second convolutional neural network model Perform processing for bringing the decompressed image closer to the original image,
    The decoding apparatus according to claim 6.
  8.  第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、画像空間領域から符号化空間領域に変換を行うことで前記入力画像に対する圧縮の処理を行い、
     第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮および圧縮解除の結果である圧縮解除画像を前記入力画像に近づける処理である後処理において用いられる特徴量を抽出する処理を行う、
     符号化方法。
    A compression process is performed on the input image by performing conversion on the input image from the image space region to the encoding space region using the first convolutional neural network model,
    The second convolutional neural network model is used to extract feature quantities used in post-processing, which is processing for bringing a decompressed image, which is the result of compression and decompression on the input image, closer to the input image.
    Encoding method.
  9.  第1の畳み込みニューラルネットワークモデルを用いて、入力画像に対して、符号化空間領域から画像空間領域に変換を行うことで前記入力画像に対する圧縮解除の処理を行い、
     第2の畳み込みニューラルネットワークモデルを用いて、前記入力画像に対する圧縮解除の結果である圧縮解除画像を前記入力画像の原画像に近づける処理である後処理において用いられる特徴量を取得する処理を行う、
     復号方法。
    The input image is subjected to a decompression process on the input image by performing conversion from the encoding space region to the image space region using the first convolutional neural network model,
    The second convolutional neural network model is used to acquire feature quantities used in post-processing, which is processing for bringing a decompressed image, which is the result of decompression on the input image, closer to the original image of the input image.
    Decryption method.
PCT/JP2018/040801 2017-11-08 2018-11-02 Encoding device, decoding device, encoding method, and decoding method WO2019093234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762583156P 2017-11-08 2017-11-08
US62/583,156 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093234A1 true WO2019093234A1 (en) 2019-05-16

Family

ID=66438862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040801 WO2019093234A1 (en) 2017-11-08 2018-11-02 Encoding device, decoding device, encoding method, and decoding method

Country Status (1)

Country Link
WO (1) WO2019093234A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208677A1 (en) * 2018-04-27 2019-10-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Coding device, decoding device, coding method, and decoding method
US10872186B2 (en) 2017-01-04 2020-12-22 Stmicroelectronics S.R.L. Tool to create a reconfigurable interconnect framework
US11227086B2 (en) 2017-01-04 2022-01-18 Stmicroelectronics S.R.L. Reconfigurable interconnect
US20220224907A1 (en) * 2019-05-10 2022-07-14 Nippon Telegraph And Telephone Corporation Encoding apparatus, encoding method, and program
WO2022210661A1 (en) * 2021-03-30 2022-10-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Image encoding method, image decoding method, image processing method, image encoding device, and image decoding device
US11531873B2 (en) 2020-06-23 2022-12-20 Stmicroelectronics S.R.L. Convolution acceleration with embedded vector decompression
US11593609B2 (en) 2020-02-18 2023-02-28 Stmicroelectronics S.R.L. Vector quantization decoding hardware unit for real-time dynamic decompression for parameters of neural networks
JP2023509826A (en) * 2020-07-15 2023-03-10 テンセント・アメリカ・エルエルシー Method, Apparatus and Computer Program for Permuted Neural Residual Compression
JP2023516305A (en) * 2020-12-16 2023-04-19 テンセント・アメリカ・エルエルシー Reference Neural Network Model for Adaptation of 2D Video for Streaming to Heterogeneous Client Endpoints

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156864A1 (en) * 2015-03-31 2016-10-06 Magic Pony Technology Limited Training end-to-end video processes
WO2017178827A1 (en) * 2016-04-15 2017-10-19 Magic Pony Technology Limited In-loop post filtering for video encoding and decoding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156864A1 (en) * 2015-03-31 2016-10-06 Magic Pony Technology Limited Training end-to-end video processes
WO2017178827A1 (en) * 2016-04-15 2017-10-19 Magic Pony Technology Limited In-loop post filtering for video encoding and decoding

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOHNSTON, NICK ET AL.: "Improved Lossy Image Compression with Priming and Spatially Adaptive BitRates for Recurrent Networks", 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, 18 June 2018 (2018-06-18), XP033476412 *
TAI, YING ET AL.: "Image Super-Resolution via Deep Recursive Residual Network", CVPR 2017, 26 July 2017 (2017-07-26), XP033249624 *
THEIS, LUCAS ET AL.: "LOSSY IMAGE COMPRESSION WITH COMPRESSIVE AUTOENCODERS", 1 March 2017 (2017-03-01), XP080753545 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11562115B2 (en) 2017-01-04 2023-01-24 Stmicroelectronics S.R.L. Configurable accelerator framework including a stream switch having a plurality of unidirectional stream links
US10872186B2 (en) 2017-01-04 2020-12-22 Stmicroelectronics S.R.L. Tool to create a reconfigurable interconnect framework
US11227086B2 (en) 2017-01-04 2022-01-18 Stmicroelectronics S.R.L. Reconfigurable interconnect
US11675943B2 (en) 2017-01-04 2023-06-13 Stmicroelectronics S.R.L. Tool to create a reconfigurable interconnect framework
WO2019208677A1 (en) * 2018-04-27 2019-10-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Coding device, decoding device, coding method, and decoding method
US20220224907A1 (en) * 2019-05-10 2022-07-14 Nippon Telegraph And Telephone Corporation Encoding apparatus, encoding method, and program
US11593609B2 (en) 2020-02-18 2023-02-28 Stmicroelectronics S.R.L. Vector quantization decoding hardware unit for real-time dynamic decompression for parameters of neural networks
US11880759B2 (en) 2020-02-18 2024-01-23 Stmicroelectronics S.R.L. Vector quantization decoding hardware unit for real-time dynamic decompression for parameters of neural networks
US11531873B2 (en) 2020-06-23 2022-12-20 Stmicroelectronics S.R.L. Convolution acceleration with embedded vector decompression
US11836608B2 (en) 2020-06-23 2023-12-05 Stmicroelectronics S.R.L. Convolution acceleration with embedded vector decompression
JP2023509826A (en) * 2020-07-15 2023-03-10 テンセント・アメリカ・エルエルシー Method, Apparatus and Computer Program for Permuted Neural Residual Compression
JP2023516305A (en) * 2020-12-16 2023-04-19 テンセント・アメリカ・エルエルシー Reference Neural Network Model for Adaptation of 2D Video for Streaming to Heterogeneous Client Endpoints
JP7447293B2 (en) 2020-12-16 2024-03-11 テンセント・アメリカ・エルエルシー References to Neural Network Models for Adaptation of 2D Video for Streaming to Heterogeneous Client Endpoints
WO2022210661A1 (en) * 2021-03-30 2022-10-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Image encoding method, image decoding method, image processing method, image encoding device, and image decoding device

Similar Documents

Publication Publication Date Title
CN111295884B (en) Image processing apparatus and image processing method
WO2019093234A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019208677A1 (en) Coding device, decoding device, coding method, and decoding method
JP7014881B2 (en) Coding device and coding method
JP7422811B2 (en) non-transitory storage medium
JP7104085B2 (en) Decoding method and coding method
WO2018021374A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019022099A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2018101288A1 (en) Encoding device, encoding method, decoding device, and decoding method
JP7001822B2 (en) Decoding device and decoding method
WO2018097115A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019013235A1 (en) Coding device, coding method, decoding device and decoding method
JP2017103744A (en) Image decoding method, image encoding method, image decoding device, image encoding device and image encoding and decoding device
WO2019013236A1 (en) Coding device, coding method, decoding device and decoding method
WO2019069782A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2020004593A1 (en) Data generating device, and data generating method
US11356663B2 (en) Encoder, decoder, encoding method, and decoding method
WO2019009314A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2018021373A1 (en) Encoding device, decoding device, encoding method, and decoding method
JPWO2018074291A1 (en) Image coding method, transmission method and image coding apparatus
WO2022050166A1 (en) Reproduction device, transmission device, reproduction method, and transmission method
WO2019069902A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2018097117A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019059107A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2019065329A1 (en) Encoding device, decoding device, encoding method and decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18875770

Country of ref document: EP

Kind code of ref document: A1