WO2018097115A1 - Encoding device, decoding device, encoding method, and decoding method - Google Patents

Encoding device, decoding device, encoding method, and decoding method Download PDF

Info

Publication number
WO2018097115A1
WO2018097115A1 PCT/JP2017/041749 JP2017041749W WO2018097115A1 WO 2018097115 A1 WO2018097115 A1 WO 2018097115A1 JP 2017041749 W JP2017041749 W JP 2017041749W WO 2018097115 A1 WO2018097115 A1 WO 2018097115A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
candidate
block
prediction
encoding
Prior art date
Application number
PCT/JP2017/041749
Other languages
French (fr)
Japanese (ja)
Inventor
安倍 清史
西 孝啓
遠間 正真
橋本 隆
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2018097115A1 publication Critical patent/WO2018097115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding

Definitions

  • the present disclosure relates to an encoding device that encodes a moving image including a plurality of pictures.
  • H.264 265 exists.
  • H. H.265 is also called HEVC (High Efficiency Video Coding).
  • the present disclosure provides an encoding device and the like that may be able to improve the encoding efficiency while suppressing an increase in processing load.
  • An encoding apparatus is an encoding apparatus that encodes a moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit uses the memory.
  • a plurality of candidate motion vectors based on respective motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image, and from the plurality of candidate motion vectors, the encoding target block
  • At least one prediction motion vector candidate is extracted, a motion vector of the coding target block is derived with reference to a reference picture included in the moving image, and prediction of the extracted at least one prediction motion vector candidate is performed
  • the difference between the motion vector and the derived motion vector of the encoding target block is encoded, and the derived encoding target block of the encoding target block is encoded.
  • Motion vector is used to perform motion compensation on the encoding target block, and in the extraction of the at least one prediction motion vector candidate, all of the at least one prediction motion vector candidate is converted into an image area of the encoding target block. Is extracted based on the respective evaluation results of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image.
  • the encoding apparatus and the like can improve encoding efficiency while suppressing an increase in processing load.
  • FIG. 1 is a block diagram showing a functional configuration of the encoding apparatus according to Embodiment 1.
  • FIG. 2 is a diagram illustrating an example of block division in the first embodiment.
  • FIG. 3 is a table showing conversion basis functions corresponding to each conversion type.
  • FIG. 4A is a diagram illustrating an example of the shape of a filter used in ALF.
  • FIG. 4B is a diagram illustrating another example of the shape of a filter used in ALF.
  • FIG. 4C is a diagram illustrating another example of the shape of a filter used in ALF.
  • FIG. 5 is a diagram illustrating 67 intra prediction modes in intra prediction.
  • FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along the motion trajectory.
  • FIG. 1 is a block diagram showing a functional configuration of the encoding apparatus according to Embodiment 1.
  • FIG. 2 is a diagram illustrating an example of block division in the first embodiment.
  • FIG. 3 is a table showing conversion basis functions
  • FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture.
  • FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion.
  • FIG. 9 is a diagram for explaining the derivation of motion vectors in units of sub-blocks based on the motion vectors of a plurality of adjacent blocks.
  • FIG. 10 is a block diagram showing a functional configuration of the decoding apparatus according to the first embodiment.
  • FIG. 11 is a flowchart illustrating motion compensation by another encoding device that is the basis of the present disclosure.
  • FIG. 12 is a flowchart illustrating motion compensation by another decoding device that is the basis of the present disclosure.
  • FIG. 13 is a diagram for explaining an example of an evaluation value calculation method.
  • FIG. 11 is a flowchart illustrating motion compensation by another encoding device that is the basis of the present disclosure.
  • FIG. 12 is a flowchart illustrating motion compensation by another decoding device that is the
  • FIG. 14 is a diagram for explaining another example of the evaluation value calculation method.
  • FIG. 15 is a flowchart illustrating an example of motion compensation by the encoding device according to the second embodiment.
  • FIG. 16 is a flowchart illustrating an example of motion compensation by the decoding apparatus according to the second embodiment.
  • FIG. 17 is a flowchart illustrating another example of motion compensation by the encoding apparatus according to the second embodiment.
  • FIG. 18 is a flowchart showing another example of motion compensation by the decoding apparatus in the second embodiment.
  • FIG. 19 is a diagram for explaining a method of extracting N predicted motion vector candidates from a plurality of candidate motion vectors in the second embodiment.
  • FIG. 20 is a flowchart illustrating a method of selecting a motion vector predictor by the encoding device and the decoding device according to Embodiment 3.
  • FIG. 21 is a flowchart illustrating an example of motion compensation by the encoding device according to the fourth embodiment.
  • FIG. 22 is a flowchart illustrating an example of motion compensation by the decoding apparatus according to the fourth embodiment.
  • FIG. 23 is a diagram for explaining a method of extracting motion vector predictor candidates according to the fourth embodiment.
  • FIG. 24 is a diagram illustrating an example of a common candidate list in the fourth embodiment.
  • FIG. 25 is a block diagram illustrating an implementation example of the encoding device according to each embodiment.
  • FIG. 26 is a block diagram illustrating an implementation example of the decoding apparatus according to each embodiment.
  • FIG. 27 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 28 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 29 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 30 shows an example of a web page display screen.
  • FIG. 31 is a diagram illustrating an example of a web page display screen.
  • FIG. 32 is a diagram illustrating an example of a smartphone.
  • FIG. 33 is a block diagram illustrating a configuration example of a smartphone.
  • an outline of the first embodiment will be described as an example of an encoding device and a decoding device to which the processing and / or configuration described in each aspect of the present disclosure to be described later can be applied.
  • the first embodiment is merely an example of an encoding device and a decoding device to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and the processing and / or processing described in each aspect of the present disclosure.
  • the configuration can also be implemented in an encoding device and a decoding device different from those in the first embodiment.
  • the encoding apparatus or decoding apparatus according to the first embodiment corresponds to the constituent elements described in each aspect of the present disclosure among a plurality of constituent elements constituting the encoding apparatus or decoding apparatus. Replacing the constituent elements with constituent elements described in each aspect of the present disclosure (2) A plurality of constituent elements constituting the encoding apparatus or decoding apparatus with respect to the encoding apparatus or decoding apparatus of the first embodiment The constituent elements corresponding to the constituent elements described in each aspect of the present disclosure are added to the present disclosure after arbitrary changes such as addition, replacement, and deletion of functions or processes to be performed on some constituent elements among the constituent elements.
  • a component that performs a part of processing performed by a component is a component that is described in each aspect of the present disclosure, a component that includes a part of a function included in the component described in each aspect of the present disclosure, (6)
  • a method performed by the encoding device or the decoding device according to Embodiment 1 is performed in combination with a component that performs a part of processing performed by the component described in each aspect of the disclosure.
  • the process corresponding to the process described in each aspect of the present disclosure is replaced with the process described in each aspect of the present disclosure.
  • the encoding apparatus according to the first embodiment or A part of the plurality of processes included in the method performed by the decoding device is performed in combination with the processes described in each aspect of the present disclosure
  • the processes and / or configurations described in each aspect of the present disclosure are not limited to the above examples.
  • the present invention may be implemented in an apparatus used for a different purpose from the moving picture / picture encoding apparatus or moving picture / picture decoding apparatus disclosed in the first embodiment, and the processing and / or described in each aspect.
  • the configuration may be implemented alone.
  • you may implement combining the process and / or structure which were demonstrated in the different aspect.
  • FIG. 1 is a block diagram showing a functional configuration of encoding apparatus 100 according to Embodiment 1.
  • the encoding device 100 is a moving image / image encoding device that encodes moving images / images in units of blocks.
  • an encoding apparatus 100 is an apparatus that encodes an image in units of blocks, and includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, and entropy encoding.
  • Unit 110 inverse quantization unit 112, inverse transform unit 114, addition unit 116, block memory 118, loop filter unit 120, frame memory 122, intra prediction unit 124, inter prediction unit 126, A prediction control unit 128.
  • the encoding device 100 is realized by, for example, a general-purpose processor and a memory.
  • the processor when the software program stored in the memory is executed by the processor, the processor performs the division unit 102, the subtraction unit 104, the conversion unit 106, the quantization unit 108, the entropy encoding unit 110, and the inverse quantization unit 112.
  • the encoding apparatus 100 includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, an entropy coding unit 110, an inverse quantizing unit 112, an inverse transforming unit 114, an adding unit 116, and a loop filter unit 120.
  • the intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128 may be implemented as one or more dedicated electronic circuits.
  • the dividing unit 102 divides each picture included in the input moving image into a plurality of blocks, and outputs each block to the subtracting unit 104.
  • the dividing unit 102 first divides a picture into blocks of a fixed size (for example, 128 ⁇ 128).
  • This fixed size block may be referred to as a coding tree unit (CTU).
  • the dividing unit 102 divides each of the fixed size blocks into blocks of a variable size (for example, 64 ⁇ 64 or less) based on recursive quadtree and / or binary tree block division.
  • This variable size block may be referred to as a coding unit (CU), a prediction unit (PU) or a transform unit (TU).
  • CU, PU, and TU do not need to be distinguished, and some or all blocks in a picture may be processing units of CU, PU, and TU.
  • FIG. 2 is a diagram showing an example of block division in the first embodiment.
  • a solid line represents a block boundary by quadtree block division
  • a broken line represents a block boundary by binary tree block division.
  • the block 10 is a 128 ⁇ 128 pixel square block (128 ⁇ 128 block).
  • the 128 ⁇ 128 block 10 is first divided into four square 64 ⁇ 64 blocks (quadtree block division).
  • the upper left 64 ⁇ 64 block is further divided vertically into two rectangular 32 ⁇ 64 blocks, and the left 32 ⁇ 64 block is further divided vertically into two rectangular 16 ⁇ 64 blocks (binary tree block division). As a result, the upper left 64 ⁇ 64 block is divided into two 16 ⁇ 64 blocks 11 and 12 and a 32 ⁇ 64 block 13.
  • the upper right 64 ⁇ 64 block is horizontally divided into two rectangular 64 ⁇ 32 blocks 14 and 15 (binary tree block division).
  • the lower left 64x64 block is divided into four square 32x32 blocks (quadrant block division). Of the four 32 ⁇ 32 blocks, the upper left block and the lower right block are further divided.
  • the upper left 32 ⁇ 32 block is vertically divided into two rectangular 16 ⁇ 32 blocks, and the right 16 ⁇ 32 block is further divided horizontally into two 16 ⁇ 16 blocks (binary tree block division).
  • the lower right 32 ⁇ 32 block is horizontally divided into two 32 ⁇ 16 blocks (binary tree block division).
  • the lower left 64 ⁇ 64 block is divided into a 16 ⁇ 32 block 16, two 16 ⁇ 16 blocks 17 and 18, two 32 ⁇ 32 blocks 19 and 20, and two 32 ⁇ 16 blocks 21 and 22.
  • the lower right 64x64 block 23 is not divided.
  • the block 10 is divided into 13 variable-size blocks 11 to 23 based on the recursive quadtree and binary tree block division.
  • Such division may be called QTBT (quad-tree plus binary tree) division.
  • one block is divided into four or two blocks (quadrature tree or binary tree block division), but the division is not limited to this.
  • one block may be divided into three blocks (triple tree block division).
  • Such a division including a tri-tree block division may be called an MBT (multi type tree) division.
  • the subtraction unit 104 subtracts the prediction signal (prediction sample) from the original signal (original sample) in units of blocks divided by the division unit 102. That is, the subtraction unit 104 calculates a prediction error (also referred to as a residual) of a coding target block (hereinafter referred to as a current block). Then, the subtraction unit 104 outputs the calculated prediction error to the conversion unit 106.
  • a prediction error also referred to as a residual of a coding target block (hereinafter referred to as a current block).
  • the original signal is an input signal of the encoding device 100, and is a signal (for example, a luminance (luma) signal and two color difference (chroma) signals) representing an image of each picture constituting the moving image.
  • a signal representing an image may be referred to as a sample.
  • the transform unit 106 transforms the prediction error in the spatial domain into a transform factor in the frequency domain, and outputs the transform coefficient to the quantization unit 108. Specifically, the transform unit 106 performs, for example, a predetermined discrete cosine transform (DCT) or discrete sine transform (DST) on a prediction error in the spatial domain.
  • DCT discrete cosine transform
  • DST discrete sine transform
  • the conversion unit 106 adaptively selects a conversion type from a plurality of conversion types, and converts a prediction error into a conversion coefficient using a conversion basis function corresponding to the selected conversion type. May be. Such a conversion may be referred to as EMT (explicit multiple core transform) or AMT (adaptive multiple transform).
  • the plurality of conversion types include, for example, DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII.
  • FIG. 3 is a table showing conversion basis functions corresponding to each conversion type. In FIG. 3, N indicates the number of input pixels. Selection of a conversion type from among these multiple conversion types may depend on, for example, the type of prediction (intra prediction and inter prediction), or may depend on an intra prediction mode.
  • Information indicating whether or not to apply such EMT or AMT (for example, called an AMT flag) and information indicating the selected conversion type are signaled at the CU level.
  • AMT flag information indicating whether or not to apply such EMT or AMT
  • the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the conversion unit 106 may reconvert the conversion coefficient (conversion result). Such reconversion is sometimes referred to as AST (adaptive secondary transform) or NSST (non-separable secondary transform). For example, the conversion unit 106 performs re-conversion for each sub-block (for example, 4 ⁇ 4 sub-block) included in the block of the conversion coefficient corresponding to the intra prediction error. Information indicating whether or not NSST is applied and information related to the transformation matrix used for NSST are signaled at the CU level. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the separable conversion is a method of performing the conversion a plurality of times by separating the number of dimensions of the input for each direction, and the non-separable conversion is two or more when the input is multidimensional.
  • the dimensions are collectively regarded as one dimension, and conversion is performed collectively.
  • non-separable conversion if an input is a 4 ⁇ 4 block, it is regarded as one array having 16 elements, and 16 ⁇ 16 conversion is performed on the array. The thing which performs the conversion process with a matrix is mentioned.
  • a 4 ⁇ 4 input block is regarded as a single array having 16 elements, and then the Givens rotation is performed multiple times on the array (Hypercube Givens Transform) is also a non-separable. It is an example of conversion.
  • the quantization unit 108 quantizes the transform coefficient output from the transform unit 106. Specifically, the quantization unit 108 scans the transform coefficients of the current block in a predetermined scanning order, and quantizes the transform coefficients based on the quantization parameter (QP) corresponding to the scanned transform coefficients. Then, the quantization unit 108 outputs the quantized transform coefficient (hereinafter referred to as a quantization coefficient) of the current block to the entropy encoding unit 110 and the inverse quantization unit 112.
  • QP quantization parameter
  • the predetermined order is an order for quantization / inverse quantization of transform coefficients.
  • the predetermined scanning order is defined in ascending order of frequency (order from low frequency to high frequency) or descending order (order from high frequency to low frequency).
  • the quantization parameter is a parameter that defines a quantization step (quantization width). For example, if the value of the quantization parameter increases, the quantization step also increases. That is, if the value of the quantization parameter increases, the quantization error increases.
  • the entropy encoding unit 110 generates an encoded signal (encoded bit stream) by performing variable length encoding on the quantization coefficient that is input from the quantization unit 108. Specifically, the entropy encoding unit 110 binarizes the quantization coefficient, for example, and arithmetically encodes the binary signal.
  • the inverse quantization unit 112 inversely quantizes the quantization coefficient that is an input from the quantization unit 108. Specifically, the inverse quantization unit 112 inversely quantizes the quantization coefficient of the current block in a predetermined scanning order. Then, the inverse quantization unit 112 outputs the inverse-quantized transform coefficient of the current block to the inverse transform unit 114.
  • the inverse transform unit 114 restores the prediction error by inverse transforming the transform coefficient that is an input from the inverse quantization unit 112. Specifically, the inverse transform unit 114 restores the prediction error of the current block by performing an inverse transform corresponding to the transform by the transform unit 106 on the transform coefficient. Then, the inverse transformation unit 114 outputs the restored prediction error to the addition unit 116.
  • the restored prediction error does not match the prediction error calculated by the subtraction unit 104 because information is lost due to quantization. That is, the restored prediction error includes a quantization error.
  • the adder 116 reconstructs the current block by adding the prediction error input from the inverse transform unit 114 and the prediction sample input from the prediction control unit 128. Then, the adding unit 116 outputs the reconfigured block to the block memory 118 and the loop filter unit 120.
  • the reconstructed block is sometimes referred to as a local decoding block.
  • the block memory 118 is a storage unit for storing blocks in an encoding target picture (hereinafter referred to as current picture) that are referred to in intra prediction. Specifically, the block memory 118 stores the reconstructed block output from the adding unit 116.
  • the loop filter unit 120 applies a loop filter to the block reconstructed by the adding unit 116 and outputs the filtered reconstructed block to the frame memory 122.
  • the loop filter is a filter (in-loop filter) used in the encoding loop, and includes, for example, a deblocking filter (DF), a sample adaptive offset (SAO), an adaptive loop filter (ALF), and the like.
  • a least square error filter is applied to remove coding distortion. For example, for each 2 ⁇ 2 sub-block in the current block, a plurality of multiples based on the direction of the local gradient and the activity are provided. One filter selected from the filters is applied.
  • sub-blocks for example, 2 ⁇ 2 sub-blocks
  • a plurality of classes for example, 15 or 25 classes.
  • the direction value D of the gradient is derived, for example, by comparing gradients in a plurality of directions (for example, horizontal, vertical, and two diagonal directions).
  • the gradient activation value A is derived, for example, by adding gradients in a plurality of directions and quantizing the addition result.
  • a filter for a sub-block is determined from among a plurality of filters.
  • FIG. 4A to 4C are diagrams showing a plurality of examples of filter shapes used in ALF.
  • 4A shows a 5 ⁇ 5 diamond shape filter
  • FIG. 4B shows a 7 ⁇ 7 diamond shape filter
  • FIG. 4C shows a 9 ⁇ 9 diamond shape filter.
  • Information indicating the shape of the filter is signalized at the picture level. It should be noted that the signalization of the information indicating the filter shape need not be limited to the picture level, but may be another level (for example, a sequence level, a slice level, a tile level, a CTU level, or a CU level).
  • ON / OFF of ALF is determined at the picture level or the CU level, for example. For example, for luminance, it is determined whether to apply ALF at the CU level, and for color difference, it is determined whether to apply ALF at the picture level.
  • Information indicating ALF on / off is signaled at the picture level or the CU level. Signaling of information indicating ALF on / off need not be limited to the picture level or the CU level, and may be performed at other levels (for example, a sequence level, a slice level, a tile level, or a CTU level). Good.
  • a coefficient set of a plurality of selectable filters (for example, up to 15 or 25 filters) is signalized at the picture level.
  • the signalization of the coefficient set need not be limited to the picture level, but may be another level (for example, sequence level, slice level, tile level, CTU level, CU level, or sub-block level).
  • the frame memory 122 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 122 stores the reconstructed block filtered by the loop filter unit 120.
  • the intra prediction unit 124 generates a prediction signal (intra prediction signal) by referring to the block in the current picture stored in the block memory 118 and performing intra prediction (also referred to as intra-screen prediction) of the current block. Specifically, the intra prediction unit 124 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, luminance value and color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. To the unit 128.
  • the intra prediction unit 124 performs intra prediction using one of a plurality of predefined intra prediction modes.
  • the plurality of intra prediction modes include one or more non-directional prediction modes and a plurality of directional prediction modes.
  • One or more non-directional prediction modes are for example H.264. It includes Planar prediction mode and DC prediction mode defined by H.265 / HEVC (High-Efficiency Video Coding) standard (Non-patent Document 1).
  • the multiple directionality prediction modes are for example H.264. It includes 33-direction prediction modes defined in the H.265 / HEVC standard. In addition to the 33 directions, the plurality of directionality prediction modes may further include 32 direction prediction modes (a total of 65 directionality prediction modes).
  • FIG. 5 is a diagram illustrating 67 intra prediction modes (two non-directional prediction modes and 65 directional prediction modes) in intra prediction. The solid line arrows The 33 directions defined in the H.265 / HEVC standard are represented, and the dashed arrow represents the added 32 directions.
  • the luminance block may be referred to in the intra prediction of the color difference block. That is, the color difference component of the current block may be predicted based on the luminance component of the current block.
  • Such intra prediction is sometimes called CCLM (cross-component linear model) prediction.
  • the intra prediction mode (for example, called CCLM mode) of the color difference block which refers to such a luminance block may be added as one of the intra prediction modes of the color difference block.
  • the intra prediction unit 124 may correct the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction. Intra prediction with such correction may be called PDPC (position dependent intra prediction combination). Information indicating whether or not PDPC is applied (for example, referred to as a PDPC flag) is signaled, for example, at the CU level.
  • the signalization of this information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the inter prediction unit 126 refers to a reference picture stored in the frame memory 122 and is different from the current picture, and performs inter prediction (also referred to as inter-screen prediction) of the current block, thereby generating a prediction signal (inter prediction signal). Prediction signal). Inter prediction is performed in units of a current block or a sub-block (for example, 4 ⁇ 4 block) in the current block. For example, the inter prediction unit 126 performs motion estimation in the reference picture for the current block or sub-block. Then, the inter prediction unit 126 generates an inter prediction signal of the current block or sub-block by performing motion compensation using motion information (for example, a motion vector) obtained by motion search. Then, the inter prediction unit 126 outputs the generated inter prediction signal to the prediction control unit 128.
  • inter prediction also referred to as inter-screen prediction
  • a motion vector predictor may be used for signalizing the motion vector. That is, the difference between the motion vector and the predicted motion vector may be signaled.
  • an inter prediction signal may be generated using not only the motion information of the current block obtained by motion search but also the motion information of adjacent blocks. Specifically, the inter prediction signal is generated in units of sub-blocks in the current block by weighted addition of the prediction signal based on the motion information obtained by motion search and the prediction signal based on the motion information of adjacent blocks. May be.
  • Such inter prediction motion compensation
  • OBMC overlapped block motion compensation
  • OBMC block size information indicating the size of a sub-block for OBMC
  • OBMC flag information indicating whether or not to apply the OBMC mode
  • the level of signalization of these information does not need to be limited to the sequence level and the CU level, and may be other levels (for example, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). Good.
  • the motion information may be derived on the decoding device side without being converted into a signal.
  • H.M. A merge mode defined in the H.265 / HEVC standard may be used.
  • the motion information may be derived by performing motion search on the decoding device side. In this case, motion search is performed without using the pixel value of the current block.
  • the mode in which motion search is performed on the decoding device side is sometimes called a PMMVD (patterned motion vector derivation) mode or an FRUC (frame rate up-conversion) mode.
  • PMMVD patterned motion vector derivation
  • FRUC frame rate up-conversion
  • a list of a plurality of candidates each having a predicted motion vector is generated Is done. Then, the evaluation value of each candidate included in the candidate list is calculated, and one candidate is selected based on the evaluation value.
  • a motion vector for the current block is derived based on the selected candidate motion vector.
  • the selected candidate motion vector is directly derived as a motion vector for the current block.
  • the motion vector for the current block may be derived by performing pattern matching in the peripheral region at the position in the reference picture corresponding to the selected candidate motion vector.
  • the evaluation value is calculated by pattern matching between an area in the reference picture corresponding to the motion vector and a predetermined area.
  • the first pattern matching and the second pattern matching may be referred to as bilateral matching and template matching, respectively.
  • pattern matching is performed between two blocks in two different reference pictures that follow the motion trajectory of the current block. Therefore, in the first pattern matching, a region in another reference picture along the motion trajectory of the current block is used as the predetermined region for calculating the candidate evaluation value described above.
  • FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along a motion trajectory.
  • pattern matching bilateral matching
  • two blocks along the motion trajectory of the current block (Cur block) and two blocks in two different reference pictures (Ref0, Ref1) are used.
  • Ref0, Ref1 two blocks in two different reference pictures
  • the motion vectors (MV0, MV1) pointing to the two reference blocks are temporal distances between the current picture (Cur Pic) and the two reference pictures (Ref0, Ref1). It is proportional to (TD0, TD1).
  • the first pattern matching uses a mirror-symmetric bi-directional motion vector Is derived.
  • pattern matching is performed between a template in the current picture (a block adjacent to the current block in the current picture (for example, an upper and / or left adjacent block)) and a block in the reference picture. Therefore, in the second pattern matching, a block adjacent to the current block in the current picture is used as the predetermined region for calculating the candidate evaluation value described above.
  • FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture.
  • the current block is searched by searching the reference picture (Ref0) for the block that most closely matches the block adjacent to the current block (Cur block) in the current picture (Cur Pic).
  • Ref0 the reference picture
  • FRUC flag Information indicating whether or not to apply such FRUC mode
  • FRUC flag information indicating whether or not to apply such FRUC mode
  • the FRUC mode is applied (for example, when the FRUC flag is true)
  • information indicating the pattern matching method (first pattern matching or second pattern matching) (for example, called the FRUC mode flag) is signaled at the CU level. It becomes. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, sequence level, picture level, slice level, tile level, CTU level, or sub-block level). .
  • motion information may be derived on the decoding device side by a method different from motion search.
  • the motion vector correction amount may be calculated using a peripheral pixel value for each pixel based on a model assuming constant velocity linear motion.
  • BIO bi-directional optical flow
  • FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion.
  • (v x , v y ) indicates a velocity vector
  • ⁇ 0 and ⁇ 1 are the time between the current picture (Cur Pic) and two reference pictures (Ref 0 , Ref 1 ), respectively.
  • the distance. (MVx 0 , MVy 0 ) indicates a motion vector corresponding to the reference picture Ref 0
  • (MVx 1 , MVy 1 ) indicates a motion vector corresponding to the reference picture Ref 1 .
  • This optical flow equation consists of (i) the product of the time derivative of the luminance value, (ii) the horizontal component of the horizontal velocity and the spatial gradient of the reference image, and (iii) the vertical velocity and the spatial gradient of the reference image. Indicates that the sum of the products of the vertical components of is equal to zero. Based on a combination of this optical flow equation and Hermite interpolation, a block-based motion vector obtained from a merge list or the like is corrected in pixel units.
  • the motion vector may be derived on the decoding device side by a method different from the derivation of the motion vector based on the model assuming constant velocity linear motion.
  • a motion vector may be derived for each subblock based on the motion vectors of a plurality of adjacent blocks.
  • This mode may be referred to as an affine motion compensation prediction mode.
  • FIG. 9 is a diagram for explaining the derivation of motion vectors in units of sub-blocks based on the motion vectors of a plurality of adjacent blocks.
  • the current block includes 16 4 ⁇ 4 sub-blocks.
  • the motion vector v 0 of the upper left corner control point of the current block is derived based on the motion vector of the adjacent block
  • the motion vector v 1 of the upper right corner control point of the current block is derived based on the motion vector of the adjacent sub block. Is done.
  • the motion vector (v x , v y ) of each sub-block in the current block is derived by the following equation (2).
  • x and y indicate the horizontal position and vertical position of the sub-block, respectively, and w indicates a predetermined weight coefficient.
  • Such an affine motion compensation prediction mode may include several modes in which the motion vector derivation methods of the upper left and upper right corner control points are different.
  • Information indicating such an affine motion compensation prediction mode (for example, called an affine flag) is signaled at the CU level. Note that the information indicating the affine motion compensation prediction mode need not be limited to the CU level, but other levels (for example, sequence level, picture level, slice level, tile level, CTU level, or sub-block level). ).
  • the prediction control unit 128 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the subtraction unit 104 and the addition unit 116 as a prediction signal.
  • FIG. 10 is a block diagram showing a functional configuration of decoding apparatus 200 according to Embodiment 1.
  • the decoding device 200 is a moving image / image decoding device that decodes moving images / images in units of blocks.
  • the decoding device 200 includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse transformation unit 206, an addition unit 208, a block memory 210, a loop filter unit 212, and a frame memory 214. And an intra prediction unit 216, an inter prediction unit 218, and a prediction control unit 220.
  • the decoding device 200 is realized by, for example, a general-purpose processor and a memory.
  • the processor executes the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, and the intra prediction unit. 216, the inter prediction unit 218, and the prediction control unit 220.
  • the decoding apparatus 200 is dedicated to the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, the intra prediction unit 216, the inter prediction unit 218, and the prediction control unit 220. It may be realized as one or more electronic circuits.
  • the entropy decoding unit 202 performs entropy decoding on the encoded bit stream. Specifically, the entropy decoding unit 202 performs arithmetic decoding from a coded bit stream to a binary signal, for example. Then, the entropy decoding unit 202 debinarizes the binary signal. As a result, the entropy decoding unit 202 outputs the quantized coefficient to the inverse quantization unit 204 in units of blocks.
  • the inverse quantization unit 204 inversely quantizes the quantization coefficient of a decoding target block (hereinafter referred to as a current block) that is an input from the entropy decoding unit 202. Specifically, the inverse quantization unit 204 inversely quantizes each quantization coefficient of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the quantization coefficient (that is, the transform coefficient) obtained by inverse quantization of the current block to the inverse transform unit 206.
  • a decoding target block hereinafter referred to as a current block
  • the inverse quantization unit 204 inversely quantizes each quantization coefficient of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the quantization coefficient (that is, the transform coefficient) obtained by inverse quantization of the current block to the inverse transform unit 206.
  • the inverse transform unit 206 restores the prediction error by inverse transforming the transform coefficient that is an input from the inverse quantization unit 204.
  • the inverse conversion unit 206 determines the current block based on the information indicating the read conversion type. Inversely transform the conversion coefficient of.
  • the inverse transform unit 206 applies inverse retransformation to the transform coefficient.
  • the adder 208 reconstructs the current block by adding the prediction error input from the inverse converter 206 and the prediction sample input from the prediction controller 220. Then, the adding unit 208 outputs the reconfigured block to the block memory 210 and the loop filter unit 212.
  • the block memory 210 is a storage unit for storing a block that is referred to in intra prediction and that is within a decoding target picture (hereinafter referred to as a current picture). Specifically, the block memory 210 stores the reconstructed block output from the adding unit 208.
  • the loop filter unit 212 applies a loop filter to the block reconstructed by the adding unit 208, and outputs the filtered reconstructed block to the frame memory 214, the display device, and the like.
  • one filter is selected from the plurality of filters based on the local gradient direction and activity, The selected filter is applied to the reconstruction block.
  • the frame memory 214 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 214 stores the reconstructed block filtered by the loop filter unit 212.
  • the intra prediction unit 216 performs intra prediction with reference to the block in the current picture stored in the block memory 210 based on the intra prediction mode read from the encoded bitstream, so that a prediction signal (intra prediction Signal). Specifically, the intra prediction unit 216 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, luminance value and color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the unit 220.
  • a prediction signal for example, luminance value and color difference value
  • the intra prediction unit 216 may predict the color difference component of the current block based on the luminance component of the current block.
  • the intra prediction unit 216 corrects the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction.
  • the inter prediction unit 218 refers to the reference picture stored in the frame memory 214 and predicts the current block. Prediction is performed in units of a current block or a sub-block (for example, 4 ⁇ 4 block) in the current block. For example, the inter prediction unit 218 generates an inter prediction signal of the current block or sub-block by performing motion compensation using motion information (for example, a motion vector) read from the encoded bitstream, and generates the inter prediction signal. The result is output to the prediction control unit 220.
  • motion information for example, a motion vector
  • the inter prediction unit 218 When the information read from the encoded bitstream indicates that the OBMC mode is to be applied, the inter prediction unit 218 includes not only the motion information of the current block obtained by motion search but also the motion information of adjacent blocks. To generate an inter prediction signal.
  • the inter prediction unit 218 follows the pattern matching method (bilateral matching or template matching) read from the encoded stream. Motion information is derived by performing motion search. Then, the inter prediction unit 218 performs motion compensation using the derived motion information.
  • the inter prediction unit 218 derives a motion vector based on a model assuming constant velocity linear motion. Also, when the information read from the encoded bitstream indicates that the affine motion compensated prediction mode is applied, the inter prediction unit 218 determines the motion vector in units of subblocks based on the motion vectors of a plurality of adjacent blocks. Is derived.
  • the prediction control unit 220 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the adding unit 208 as a prediction signal.
  • Embodiment 2 The encoding device and decoding device in the present embodiment have the same configuration and function as in Embodiment 1, but are characterized by processing operations of inter prediction units 126 and 218 and the like.
  • FIG. 11 is a flowchart illustrating motion compensation by another encoding device that is the basis of the present disclosure.
  • a motion vector is shown as MV.
  • the encoding device performs motion compensation for each prediction block corresponding to the prediction unit described above. At this time, the encoding device first determines a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of encoded blocks around the prediction block temporally or spatially. Obtain (step S101).
  • the encoding apparatus determines each of N (N is an integer of 2 or more) candidate motion vectors from among the plurality of candidate motion vectors acquired in step S101 as predicted motion vector candidates. Extraction is performed according to the priority order (step S102). The priority order is predetermined for each of the N candidate motion vectors.
  • the encoding apparatus selects one predicted motion vector candidate from the N predicted motion vector candidates as the predicted motion vector of the predicted block.
  • the encoding apparatus encodes prediction motion vector selection information for identifying the selected prediction motion vector into a stream (step S103).
  • the stream is the above-described encoded signal or encoded bit stream.
  • the encoding device refers to the encoded reference picture and derives a motion vector of the prediction block (step S104). At this time, the encoding apparatus further encodes a difference value between the derived motion vector and the predicted motion vector into a stream as difference motion vector information.
  • An encoded reference picture is a picture composed of a plurality of blocks reconstructed after encoding.
  • the encoding apparatus performs motion compensation on the prediction block using the derived motion vector and the encoded reference picture, thereby generating a prediction image of the prediction block (step S105).
  • the predicted image is the above-described inter prediction signal.
  • FIG. 12 is a flowchart showing motion compensation by another decoding device as a basis of the present disclosure.
  • the decoding device performs motion compensation for each prediction block for each prediction block.
  • the decoding apparatus first acquires a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of decoded blocks around the prediction block temporally or spatially. (Step S111).
  • the decoding apparatus sets a predetermined priority as a predicted motion vector candidate for each of N (N is an integer of 2 or more) candidate motion vectors from among the plurality of candidate motion vectors acquired in step S111. Extraction is performed according to the rank (step S112). The priority order is predetermined for each of the N candidate motion vectors.
  • the decoding apparatus decodes the predicted motion vector selection information from the input stream, and uses the decoded predicted motion vector selection information to select one predicted motion vector from the N predicted motion vector candidates.
  • a candidate is selected as a prediction motion vector of a prediction block (step S113).
  • the decoding apparatus decodes the difference motion vector information from the input stream, and adds the difference value, which is the decoded difference motion vector information, to the selected prediction motion vector, thereby obtaining the prediction block.
  • a motion vector is derived (step S114).
  • the decoding apparatus generates a predicted image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the decoded reference picture (step S115).
  • a predetermined priority order is used to extract N predicted motion vector candidates.
  • each of the plurality of candidate motion vectors may be evaluated in order to obtain a prediction motion vector having a smaller difference from the motion vector of the prediction block. That is, the respective evaluation values of the plurality of candidate motion vectors acquired in step S101 or step 111 are calculated, and N predicted motion vector candidates are selected from the plurality of candidate motion vectors based on the calculated evaluation values. It may be extracted.
  • FIG. 13 is a diagram for explaining an example of an evaluation value calculation method.
  • a method for calculating the evaluation value for example, there is a template matching method.
  • a reconstructed image of a coded region or a decoded region in a moving image is used for calculating an evaluation value.
  • the encoded region and the decoded region are collectively referred to as the processed region
  • the encoding target picture and the decoding target picture are collectively referred to as the processing target picture.
  • a prediction block to be encoded and a prediction block to be decoded are collectively referred to as a processing target prediction block.
  • the encoding device includes a reconstructed image of an encoded region around the processing target prediction block in the encoding target picture and a block specified by the candidate motion vector in the encoded reference picture.
  • a difference value from a reconstructed image of a certain encoded area is calculated.
  • the difference value is calculated as a sum of absolute differences of pixel values.
  • the decoding device also includes a reconstructed image of a decoded region in the vicinity of the processing target prediction block in the decoding target picture and a decoded image in the vicinity of the block specified by the candidate motion vector in the decoded reference picture.
  • a difference value from the reconstructed image of the area is calculated.
  • the difference value is calculated as a sum of absolute differences of pixel values.
  • a block designated by a candidate motion vector in a reference picture is hereinafter referred to as a designated block.
  • This designated block is at a position indicated by the candidate motion vector with reference to the spatial position of the processing target prediction block.
  • the relative position of the processed area with respect to the designated block in the reference picture is equal to the relative position of the processed area with respect to the processing target prediction block in the processing target picture.
  • the processed region around the processing target prediction block or the designated block may be a region adjacent to the left of the block and a region adjacent to the top of the block, or may be only a region adjacent to the left. , Only the region adjacent to the upper side may be used. For example, if there are an adjacent area on the left and an adjacent area on the upper side, those areas are used for calculation of the evaluation value, and if any area does not exist, only the existing area is used for calculation of the evaluation value. used.
  • the encoding device and the decoding device calculate an evaluation value using the obtained difference value. For example, a higher evaluation value is calculated as the difference value is smaller. Note that the encoding device and the decoding device may calculate the evaluation value using information other than the difference value.
  • evaluation value calculation method by the template matching method shown in the example of FIG. 13 is an example, and is not limited to this.
  • the position of the region used for the evaluation or the method for determining whether or not the region can be used is not limited to the example in FIG.
  • FIG. 14 is a diagram for explaining another example of an evaluation value calculation method.
  • a method for calculating the evaluation value for example, there is a bilateral matching method. Even in this bilateral matching method, a reconstructed image of a coded region or a decoded region in a moving image is used to calculate an evaluation value.
  • the encoded region and the decoded region are collectively referred to as a processed region
  • the encoding target picture and the decoding target picture are collectively referred to as a processing target picture.
  • a prediction block to be encoded and a prediction block to be decoded are collectively referred to as a processing target prediction block.
  • the encoding device reconstructs an image of a block specified by a candidate motion vector in the encoded reference picture 1 and a reconstructed image of a block specified by a symmetric motion vector in the encoded reference picture 2
  • the difference value is calculated.
  • Both the block specified by the candidate motion vector and the block specified by the symmetric motion vector are encoded regions.
  • the difference value is calculated as a sum of absolute differences of pixel values.
  • the decoding device also includes a reconstructed image of a block specified by a candidate motion vector in the decoded reference picture 1 and a reconstructed image of a block specified by a symmetric motion vector in the decoded reference picture 2.
  • the difference value is calculated. Both the block specified by the candidate motion vector and the block specified by the symmetric motion vector are decoded regions. For example, the difference value is calculated as a sum of absolute differences of pixel values.
  • the symmetric motion vector is a motion vector generated by scaling the candidate motion vector according to the display time interval described above.
  • the block specified by each of the candidate motion vector and the symmetric motion vector is at a position pointed to based on the spatial position of the processing target prediction block.
  • the encoding device and the decoding device calculate an evaluation value using the obtained difference value. For example, a higher evaluation value is calculated as the difference value is smaller. Note that the encoding device and the decoding device may calculate the evaluation value using information other than the difference value.
  • evaluation value calculation method by the bilateral matching method shown in FIG. 14 is an example, and the present invention is not limited to this.
  • the method of specifying the position of the processed region used for evaluation is not limited to the example shown in FIG.
  • N predicted motion vector candidates from a plurality of candidate motion vectors based on such evaluation values.
  • the template matching method and the bilateral matching method are methods used in the above-described FRUC mode. Therefore, a method for extracting a predicted motion vector candidate based on such an evaluation value is also referred to as an extraction method based on an evaluation result by FRUC.
  • a first extraction method based on the evaluation result by FRUC and a first priority based on a predetermined priority order are used. Two extraction methods can be used.
  • the encoding device and the decoding device extract one prediction motion vector candidate using the first extraction method in order to extract two prediction motion vector candidates from a plurality of candidate motion vectors,
  • the remaining one motion vector predictor candidate is extracted using the above extraction method.
  • a separate candidate list is used for each of the first extraction method and the second extraction method.
  • These candidate lists are lists indicating a plurality of candidate motion vectors.
  • encoding apparatus 100 and decoding apparatus 200 in the present embodiment use an extraction method based on the evaluation result by FRUC, and perform motion compensation for the prediction block using one candidate list for the prediction block. Do.
  • the encoding apparatus 100 extracts at least one prediction motion vector candidate of the encoding target block from a plurality of candidate motion vectors. At this time, the encoding apparatus 100 uses a plurality of candidates using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block as all of the at least one prediction motion vector candidate. Extraction is performed based on the evaluation results of each motion vector.
  • the decoding apparatus 200 in the present embodiment extracts at least one predicted motion vector candidate of the decoding target block from a plurality of candidate motion vectors. At this time, the decoding apparatus 200 converts all of the at least one predicted motion vector candidate into a plurality of candidate motion vectors using the reconstructed image of the decoded region in the moving image without using the image region of the decoding target block. Extract based on each evaluation result.
  • the encoding apparatus 100 and the decoding apparatus 200 in the present embodiment extract all predicted motion vector candidates by an extraction method based on the evaluation result by FRUC.
  • all predicted motion vector candidates are extracted without using an extraction method based on a predetermined priority order.
  • All the predicted motion vector candidates may be one predicted motion vector candidate or a plurality of predicted motion vector candidates. Therefore, since an extraction method based on a predetermined priority order is not used, a dedicated candidate list for the extraction method is not necessary, and motion compensation using one candidate list is performed for the prediction block. .
  • FIG. 15 is a flowchart illustrating an example of motion compensation by the encoding apparatus 100 according to the present embodiment.
  • the inter prediction unit 126 and the like of the encoding device 100 execute the processing illustrated in FIG.
  • the inter prediction unit 126 performs motion compensation for each prediction block corresponding to the above-described prediction unit, with respect to the encoding target block that is the prediction block. At this time, the inter prediction unit 126 first determines a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of encoded blocks around the prediction block temporally or spatially. Is acquired (step S201).
  • information such as a motion vector of an encoded block may be a motion vector used for motion compensation of the encoded block, and not only the motion vector but also a picture and code including the encoded block.
  • the display time interval between the pictures to be converted may be included.
  • the plurality of candidate motion vectors are obtained by scaling each of the motion vectors of the plurality of encoded blocks according to the display time interval.
  • the plurality of encoded blocks around the prediction block are different from the encoding target picture, for example, from a plurality of encoded blocks adjacent to the lower left, upper left, and upper right of the prediction block to be encoded. It may be all or a part of a plurality of encoded blocks included in a picture.
  • the inter prediction unit 126 calculates the evaluation values of the plurality of candidate motion vectors acquired in step S201 using the reconstructed image of the encoded region. That is, the inter prediction unit 126 calculates those evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, the inter prediction unit 126 selects one candidate motion vector having the highest evaluation value from among the plurality of candidate motion vectors as a prediction motion vector of the prediction block (step S202). That is, the inter prediction unit 126 extracts all of the at least one predicted motion vector candidate described above by selecting only one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors.
  • the inter prediction unit 126 may correct the predicted motion vector by finely moving the selected predicted motion vector in the peripheral region so that the FRUC evaluation value becomes higher. That is, the inter prediction unit 126 may correct the predicted motion vector by finely searching for a region where the FRUC evaluation value is higher.
  • the inter prediction unit 126 refers to the encoded reference picture and derives a motion vector of the prediction block (step S203). At this time, the inter prediction unit 126 further calculates a difference value between the derived motion vector and the predicted motion vector.
  • the entropy encoding unit 110 encodes the difference value as a difference motion vector information into a stream. That is, the entropy encoding unit 110 encodes the difference between the predicted motion vector that is the selected candidate motion vector and the motion vector of the derived encoding target block.
  • the inter prediction unit 126 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the encoded reference picture (step S204). .
  • inter prediction unit 126 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
  • FIG. 16 is a flowchart showing an example of motion compensation by the decoding apparatus 200 according to the present embodiment.
  • the decoding device 200 illustrated in FIG. 10 decodes a moving image including a plurality of encoded pictures, the inter prediction unit 218 and the like of the decoding device 200 execute the processing illustrated in FIG.
  • the inter prediction unit 218 performs motion compensation on the decoding target block that is a prediction block for each prediction block corresponding to the above-described prediction unit. At this time, the inter prediction unit 218 first selects a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of decoded blocks around the prediction block temporally or spatially. Obtain (step S211).
  • the information such as the motion vector of the decoded block may be a motion vector used for motion compensation of the decoded block, and not only the motion vector but also a picture including the decoded block and a decoding target picture. Display time intervals between the two.
  • the plurality of candidate motion vectors are obtained by scaling each of the motion vectors of the plurality of decoded blocks according to the display time interval.
  • a plurality of decoded blocks around the prediction block are included in, for example, a plurality of decoded blocks adjacent to the lower left, upper left, and upper right of the prediction block to be decoded, and a picture different from the decoding target picture. It may be all or some of the decoded blocks of the plurality of decoded blocks.
  • the inter prediction unit 218 calculates each evaluation value of the plurality of candidate motion vectors acquired in step S211 using the reconstructed image of the decoded area. That is, the inter prediction unit 218 calculates the evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, the inter prediction unit 218 selects one candidate motion vector having the highest evaluation value from among the plurality of candidate motion vectors as a prediction motion vector of the prediction block (step S212). That is, the inter prediction unit 218 extracts all of the above-described at least one predicted motion vector candidate by selecting only one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors.
  • the inter prediction unit 218 may correct the predicted motion vector by finely moving the selected predicted motion vector in the peripheral region so that the FRUC evaluation value becomes higher. That is, the inter prediction unit 218 may correct the predicted motion vector by finely searching for a region where the FRUC evaluation value is higher.
  • the inter prediction unit 218 derives a motion vector of the prediction block using the difference motion vector information decoded by the entropy decoding unit 202 from the stream input to the decoding device 200 (step S213). Specifically, the inter prediction unit 218 derives the motion vector of the prediction block by adding the difference value, which is the decoded difference motion vector information, and the selected prediction motion vector. That is, the entropy decoding unit 202 decodes difference motion vector information that is difference information indicating a difference between two motion vectors. Then, the inter prediction unit 218 derives the motion vector of the prediction block that is the decoding target block by adding the prediction motion vector that is the selected candidate motion vector to the difference indicated by the decoded difference information. .
  • the inter prediction unit 218 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the decoded reference picture (step S214).
  • inter prediction unit 218 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
  • one predicted motion vector candidate is extracted, but a plurality of predicted motion vector candidates may be extracted.
  • FIG. 17 is a flowchart showing another example of motion compensation by the encoding apparatus 100 according to the present embodiment.
  • the inter prediction unit 126 and the like of the encoding device 100 perform the processing illustrated in FIG.
  • the inter prediction unit 126 performs motion compensation for each prediction block corresponding to the above-described prediction unit, with respect to the encoding target block that is the prediction block. At this time, the inter prediction unit 126 first determines a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of encoded blocks around the prediction block temporally or spatially. Is acquired (step S201).
  • the inter prediction unit 126 calculates the evaluation values of the plurality of candidate motion vectors acquired in step S201 using the reconstructed image of the encoded region. That is, the inter prediction unit 126 calculates those evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, based on the evaluation values of the plurality of candidate motion vectors, the inter prediction unit 126 calculates each of N (N is an integer of 2 or more) candidate motion vectors from among the plurality of candidate motion vectors. (Step S202a). That is, the inter prediction unit 126 extracts N candidate motion vectors as all of the at least one predicted motion vector candidate from the plurality of candidate motion vectors based on the evaluation result.
  • the inter prediction unit 126 extracts the top N candidate motion vectors from the plurality of candidate motion vectors in the order of good evaluation results as all of the above-described at least one prediction motion vector candidate. In other words, the inter prediction unit 126 extracts the top N candidate motion vectors from the plurality of candidate motion vectors in the descending order of evaluation value as predicted motion vector candidates.
  • the inter prediction unit 126 finely moves the selected predicted motion vector candidates in the peripheral region so that the FRUC evaluation value becomes higher for each of the extracted N predicted motion vector candidates.
  • the predicted motion vector candidate may be corrected. That is, the inter prediction unit 126 may correct these motion vector predictor candidates by finely searching for a region where the FRUC evaluation value is higher.
  • the inter prediction unit 126 selects a prediction motion vector of the prediction block from the extracted N prediction motion vector candidates (step S202b). At this time, the inter prediction unit 126 outputs prediction motion vector selection information for identifying the selected prediction motion vector.
  • the entropy encoding unit 110 encodes the predicted motion vector selection information into a stream.
  • the inter prediction unit 126 may use an original image of a prediction block that is a coding target block. For example, the inter prediction unit 126 calculates, for each of N predicted motion vector candidates, the difference between the image of the block specified by the predicted motion vector candidate and the original image of the predicted block. Then, the inter prediction unit 126 selects a motion vector predictor candidate having the smallest difference as a motion vector predictor of the prediction block. Alternatively, the inter prediction unit 126 may derive a motion vector of the prediction block by performing a motion search using the original image of the prediction block.
  • the inter prediction unit 126 performs an operation between a block image specified by the predicted motion vector candidate and a block image specified by the derived predicted block motion vector. Calculate the difference. Then, the inter prediction unit 126 selects a motion vector predictor candidate having the smallest difference as a motion vector predictor of the prediction block.
  • the inter prediction unit 126 refers to the encoded reference picture and derives a motion vector of the prediction block (step S203). At this time, the inter prediction unit 126 further calculates a difference value between the derived motion vector and the predicted motion vector.
  • the entropy encoding unit 110 encodes the difference value as a difference motion vector information into a stream.
  • the inter prediction unit 126 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the encoded reference picture (step S204). .
  • inter prediction unit 126 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
  • FIG. 18 is a flowchart showing another example of motion compensation by the decoding apparatus 200 according to this embodiment.
  • the decoding device 200 illustrated in FIG. 10 decodes a moving image including a plurality of encoded pictures
  • the inter prediction unit 218 and the like of the decoding device 200 perform the processing illustrated in FIG.
  • the inter prediction unit 218 performs motion compensation on the decoding target block that is a prediction block for each prediction block corresponding to the above-described prediction unit. At this time, the inter prediction unit 218 first selects a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of decoded blocks around the prediction block temporally or spatially. Obtain (step S211).
  • the inter prediction unit 218 calculates each evaluation value of the plurality of candidate motion vectors acquired in step S211 using the reconstructed image of the decoded area. That is, the inter prediction unit 218 calculates the evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, based on the evaluation values of the plurality of candidate motion vectors, the inter prediction unit 218 calculates each of N (N is an integer of 2 or more) candidate motion vectors from among the plurality of candidate motion vectors. (Step S212a). That is, the inter prediction unit 218 extracts N candidate motion vectors as all of the at least one predicted motion vector candidate from the plurality of candidate motion vectors based on the above evaluation result.
  • the inter prediction unit 218 extracts the top N candidate motion vectors from the plurality of candidate motion vectors in descending order of evaluation results as all of the above-described at least one prediction motion vector candidate. In other words, the inter prediction unit 218 extracts the top N candidate motion vectors as predicted motion vector candidates from the plurality of candidate motion vectors in descending order of evaluation value.
  • the inter prediction unit 218 finely moves the selected predicted motion vector candidate in the peripheral region so that the FRUC evaluation value becomes higher for each of the extracted N predicted motion vector candidates.
  • the predicted motion vector candidate may be corrected. That is, the inter prediction unit 218 may correct these motion vector predictor candidates by finely searching for a region where the FRUC evaluation value is higher.
  • the inter prediction unit 218 uses the prediction motion vector selection information decoded by the entropy decoding unit 202 from the stream input to the decoding apparatus 200, and extracts one prediction motion from the N predicted motion vector candidates extracted.
  • a vector candidate is selected as a prediction motion vector of a prediction block (step S212b). That is, the entropy decoding unit 202 decodes prediction motion vector selection information that is selection information for identifying a prediction motion vector. Then, the inter prediction unit 218 selects a predicted motion vector candidate identified by the decoded predicted motion vector selection information from the extracted N predicted motion vector candidates as the predicted motion vector.
  • the inter prediction unit 218 derives a motion vector of the prediction block using the difference motion vector information decoded by the entropy decoding unit 202 from the stream input to the decoding device 200 (step S213). Specifically, the inter prediction unit 218 derives the motion vector of the prediction block by adding the difference value, which is the decoded difference motion vector information, and the selected prediction motion vector. That is, the entropy decoding unit 202 decodes difference motion vector information that is difference information indicating a difference between two motion vectors. Then, the inter prediction unit 218 derives the motion vector of the prediction block that is the decoding target block by adding the selected prediction motion vector to the difference indicated by the decoded difference information.
  • the inter prediction unit 218 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the decoded reference picture (step S214).
  • inter prediction unit 218 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
  • FIG. 19 is a diagram for explaining a method of extracting N predicted motion vector candidates from a plurality of candidate motion vectors.
  • the first group is a group to which candidate motion vectors obtained based on, for example, the motion vector of a block in the encoding target picture belong.
  • the second group is a group to which candidate motion vectors obtained based on, for example, a motion vector of a block in a picture different from the picture to be encoded belong.
  • the inter prediction units 126 and 218 extract one candidate motion vector having the highest evaluation value as the predicted motion vector candidate 1 from the first group. Furthermore, the inter prediction units 126 and 218 extract one candidate motion vector having the highest evaluation value in the second group as the predicted motion vector candidate 2 from the second group.
  • the inter prediction units 126 and 218 may classify a plurality of candidate motion vectors into M groups (M is an integer larger than N). Then, the inter prediction units 126 and 218 select, from each of the M groups, one candidate motion vector having the best evaluation result in that group as a representative candidate motion vector. Next, the inter prediction units 126 and 218 select the top N representative candidate motion vectors from the selected M representative candidate motion vectors in the order of good evaluation results, and all the at least one predicted motion vector candidate described above. May be extracted as
  • the inter prediction units 126 and 218 classify all candidate motion vectors into three groups as shown in (c) of FIG.
  • the first group is a group to which candidate motion vectors obtained based on, for example, the motion vector of the block on the left side of the encoding target block in the encoding target picture belong.
  • the second group is a group to which candidate motion vectors obtained based on, for example, the motion vector of the block above the encoding target block in the encoding target picture belong.
  • the third group is a group to which candidate motion vectors obtained based on, for example, a motion vector of a block in a picture different from the encoding target picture belong.
  • the inter prediction units 126 and 218 select one candidate motion vector having the highest evaluation value in the first group as the representative candidate motion vector 1 from the first group. Furthermore, the inter prediction units 126 and 218 select, from the second group, one candidate motion vector having the highest evaluation value in the second group as the representative candidate motion vector 2. Furthermore, the inter prediction units 126 and 218 select one candidate motion vector having the highest evaluation value in the third group as the representative candidate motion vector 3 from the third group.
  • the inter prediction units 126 and 218 respectively extract the top two representative candidate motion vectors as predicted motion vector candidates in descending order of evaluation value from the extracted three representative candidate motion vectors.
  • two prediction motion vector candidates are extracted, but the number is not limited to two, and three or more prediction motion vector candidates may be extracted.
  • the encoding device in the present embodiment is an encoding device that encodes a moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit uses the memory, A plurality of candidate motion vectors are acquired based on respective motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image, and at least one of the encoding target blocks is obtained from the plurality of candidate motion vectors.
  • One prediction motion vector candidate is extracted, a motion vector of the coding target block is derived with reference to a reference picture included in the moving image, and a prediction motion vector of the extracted at least one prediction motion vector candidate is extracted And a difference between the derived motion vector of the encoding target block and a motion of the derived encoding target block.
  • Motion compensation is performed on the encoding target block using a vector, and in the extraction of the at least one prediction motion vector candidate, all of the at least one prediction motion vector candidate is converted into an image area of the encoding target block. Extraction is performed based on the respective evaluation results of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using it.
  • the memory may be the frame memory 122 or another memory, and the processing circuit may include, for example, the inter prediction unit 126 and the entropy encoding unit 110.
  • all of at least one prediction motion vector candidate is the evaluation result of each of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block. That is, it is extracted based on the evaluation result by FRUC. Therefore, the prediction accuracy of the prediction block that is the encoding target block can be increased, and the encoding efficiency can be improved. Furthermore, in this embodiment, a motion vector predictor candidate is not extracted based on a predetermined priority order. Therefore, if a candidate list for extraction based on the evaluation result by FRUC is generated, all motion vector predictor candidates can be extracted, and it is not necessary to generate a candidate list for extraction based on priority. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
  • the processing circuit selects only the one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors, whereby the at least one predicted motion vector is selected. Extracting all motion vector candidates, and encoding the difference, the difference between the predicted motion vector that is the selected candidate motion vector and the derived motion vector of the encoding target block may be encoded. Good.
  • one predicted motion vector candidate is extracted, and the predicted motion vector candidate is selected as the predicted motion vector.
  • the predicted motion vector candidate is selected as the predicted motion vector.
  • information for identifying the selected predicted motion vector is encoded. Must be included in the stream.
  • one prediction motion vector candidate is extracted and the prediction motion vector candidate is selected as the prediction motion vector, and thus it is not necessary to encode such information. Therefore, the code amount can be reduced.
  • the processing circuit selects N (N is an integer of 2 or more) candidate motion vectors based on the evaluation result from the plurality of candidate motion vectors. Extracting as all of at least one predicted motion vector candidate, and the processing circuit further selects the predicted motion vector from the extracted N predicted motion vector candidates and identifies the selected predicted motion vector In the encoding of the difference, the difference between the selected predicted motion vector and the derived motion vector of the encoding target block may be encoded.
  • a plurality of motion vector predictor candidates are extracted, and prediction motion vector candidates with higher prediction accuracy are predicted from among them by using an image of the prediction block that is the encoding target block. It can be selected as a motion vector. Therefore, the encoding efficiency can be improved.
  • the decoding device since the selection information for identifying the prediction motion vector selected in this way is encoded, the decoding device decodes the selection information, thereby the prediction selected as the prediction motion vector in the encoding device.
  • the motion vector candidate can be appropriately identified. Therefore, the encoded moving image can be appropriately decoded by the decoding device.
  • the processing circuit obtains the top N candidate motion vectors from the plurality of candidate motion vectors in descending order of the evaluation result, and the at least one predicted motion vector. You may extract as all of the candidates. For example, each evaluation result of the plurality of candidate motion vectors has a small difference between the reconstructed image of the first encoded region specified by the candidate motion vector and the second encoded reconstructed image. It is a good evaluation result.
  • N predicted motion vector candidates with high prediction accuracy can be preferentially selected from a plurality of candidate motion vectors.
  • the processing circuit classifies the plurality of candidate motion vectors into N groups, and the evaluation result in the group is determined from each of the N groups. All of the at least one predicted motion vector candidate may be extracted by extracting the best candidate motion vector. For example, as shown in FIG. 19B, the plurality of candidate motion vectors are classified into N groups having different properties. Since one predicted motion vector candidate with the best evaluation result is extracted from each of the N groups, N predicted motion vector candidates having different properties and high prediction accuracy can be extracted. . As a result, the range of selection of the prediction motion vector can be expanded, and the possibility that a prediction motion vector with higher prediction accuracy is selected can be increased.
  • the processing circuit classifies the plurality of candidate motion vectors into M groups (M is an integer greater than N), and from each of the M groups. , One candidate motion vector having the best evaluation result in the group is selected as a representative candidate motion vector, and the top N representative candidates in order of the evaluation result from the selected M representative candidate motion vectors.
  • Motion vectors may be extracted as all of the at least one predicted motion vector candidate.
  • the decoding device is a decoding device that decodes an encoded moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit includes the memory.
  • the processing circuit includes the memory.
  • One prediction motion vector candidate is extracted, difference information indicating a difference between two motion vectors is decoded, and a prediction of the extracted at least one prediction motion vector candidate is obtained as a difference indicated by the decoded difference information.
  • a motion vector of the decoding target block is derived by adding a motion vector, and the derived decoding target block is derived.
  • Motion compensation is performed on the decoding target block using a motion vector of a block, and in the extraction of the at least one prediction motion vector candidate, all of the at least one prediction motion vector candidate Extraction is performed based on the respective evaluation results of the plurality of candidate motion vectors using the reconstructed image of the decoded region in the moving image without using the region.
  • the memory may be the frame memory 214 or another memory, and the processing circuit may include, for example, the inter prediction unit 218 and the entropy decoding unit 202.
  • all of the at least one predicted motion vector candidate are evaluated results of each of the plurality of candidate motion vectors using the reconstructed image of the decoded region in the moving image without using the image region of the decoding target block, that is, Extracted based on the evaluation result by FRUC. Therefore, it is possible to improve the prediction efficiency of the prediction block that is the decoding target block and improve the encoding efficiency.
  • a motion vector predictor candidate is not extracted based on a predetermined priority order. Therefore, if a candidate list for extraction based on the evaluation result by FRUC is generated, all motion vector predictor candidates can be extracted, and it is not necessary to generate a candidate list for extraction based on priority. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
  • the processing circuit selects only the one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors, whereby the at least one predicted motion vector is selected.
  • the processing circuit selects only the one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors, whereby the at least one predicted motion vector is selected.
  • one predicted motion vector candidate is extracted, and the predicted motion vector candidate is selected as the predicted motion vector.
  • the predicted motion vector candidate is selected as the predicted motion vector.
  • information for identifying the motion vector predictor selected by the encoding device from the motion vector predictor candidates needs to be decoded from the stream.
  • one prediction motion vector candidate is extracted and the prediction motion vector candidate is selected as the prediction motion vector, and thus it is not necessary to decode such information. Therefore, the code amount can be reduced.
  • the processing circuit selects N (N is an integer of 2 or more) candidate motion vectors based on the evaluation result from the plurality of candidate motion vectors. Extracting as all of at least one predicted motion vector candidate, and the processing circuit further decodes selection information for identifying the predicted motion vector, decoded from the extracted N predicted motion vector candidates The predicted motion vector candidate identified by the selection information is selected as the predicted motion vector, and in the derivation of the motion vector of the decoding target block, the selected predicted motion is added to the difference indicated by the decoded difference information.
  • a motion vector of the decoding target block may be derived by adding the vectors.
  • a plurality of motion vector predictor candidates are extracted, and from them, a motion vector predictor candidate with higher prediction accuracy can be selected as a motion vector predictor based on selection information. Therefore, the encoding efficiency can be improved.
  • the processing circuit obtains the top N candidate motion vectors from the plurality of candidate motion vectors in descending order of the evaluation result, and the at least one predicted motion vector. You may extract as all of the candidates. For example, the evaluation result of each of the plurality of candidate motion vectors is better as the difference between the reconstructed image of the first decoded area specified by the candidate motion vector and the second decoded reconstructed image is smaller. It is an evaluation result.
  • N predicted motion vector candidates with high prediction accuracy can be preferentially selected from a plurality of candidate motion vectors.
  • the processing circuit classifies the plurality of candidate motion vectors into N groups, and the evaluation result in the group is determined from each of the N groups. All of the at least one predicted motion vector candidate may be extracted by extracting the best candidate motion vector. For example, as shown in FIG. 19B, the plurality of candidate motion vectors are classified into N groups having different properties. Since one predicted motion vector candidate with the best evaluation result is extracted from each of the N groups, N predicted motion vector candidates having different properties and high prediction accuracy can be extracted. . As a result, the range of selection of the prediction motion vector can be expanded, and the possibility that a prediction motion vector with higher prediction accuracy is selected can be increased.
  • the processing circuit classifies the plurality of candidate motion vectors into M groups (M is an integer greater than N), and each of the M groups. Then, one candidate motion vector having the best evaluation result in the group is selected as a representative candidate motion vector, and the top N representatives in order of good evaluation result from the selected M representative candidate motion vectors.
  • candidate motion vectors may be extracted as all of the at least one predicted motion vector candidate.
  • non-transitory recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM.
  • the present invention may be realized by any combination of a method, an integrated circuit, a computer program, and a recording medium.
  • Embodiment 3 [FRUC / priority switching]
  • the encoding apparatus and decoding apparatus in the present embodiment have the same configuration as that of Embodiment 1, but are characterized by the processing operations of inter prediction units 126 and 218. That is, in the present embodiment as well as in the second embodiment, a problem in the above [knowledge that became the basis of the present disclosure], that is, a plurality of different candidate lists for one prediction block must be created. It solves the problem that the processing load increases.
  • Such an encoding apparatus 100 encodes mode information for identifying an extraction method in the above-described extraction of at least one prediction motion vector candidate. Then, the encoding device 100 selects the extraction method identified by the mode information for the block to be encoded from the first extraction method and the second extraction method, and, according to the selected extraction method, At least one predicted motion vector candidate is extracted.
  • the first extraction method is an extraction method based on the evaluation results of a plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block. It is.
  • the second extraction method is an extraction method based on a predetermined priority order for a plurality of candidate motion vectors.
  • the decoding apparatus 200 decodes mode information for identifying an extraction method in the extraction of at least one predicted motion vector candidate. Then, the decoding apparatus 200 selects an extraction method identified for the block to be decoded by the decoded mode information from the first extraction method and the second extraction method, and according to the selected extraction method, At least one predicted motion vector candidate is extracted.
  • encoding apparatus 100 and decoding apparatus 200 for each prediction block, extract at least one prediction motion vector candidate, an extraction method based on an evaluation result by FRUC, and a predetermined priority order. Switch to the extraction method based on.
  • FIG. 20 is a flowchart showing a method of selecting a motion vector predictor by the encoding device 100 and the decoding device 200 according to this embodiment.
  • the inter prediction units 126 and 218 determine whether the mode information indicates 0 or 1 (step S301).
  • the inter prediction units 126 and 218 extract at least one motion vector predictor candidate based on the evaluation result by FRUC, as in the second embodiment (Step S1). S302). Specifically, the inter prediction units 126 and 218 perform evaluation using encoded or decoded reconstructed images for each of a plurality of candidate motion vectors. Then, the inter prediction units 126 and 218 extract at least one prediction motion vector candidate from the plurality of candidate motion vectors based on the evaluation result.
  • N predictions (N is an integer equal to or greater than 2) are predicted as in the examples illustrated in FIGS.
  • Motion vector candidates are extracted (step S303). Specifically, the inter prediction units 126 and 218 extract N predicted motion vector candidates from a plurality of candidate motion vectors according to a predetermined priority order.
  • the inter prediction units 126 and 218 determine whether or not the number of the extracted prediction motion vector candidates is plural (step S304). When the inter prediction units 126 and 218 determine that the number of extracted motion vector predictor candidates is one (No in step S304), the inter motion prediction units 126 and 218 determine the extracted motion vector predictor candidates as encoding target blocks. It selects as a prediction motion vector of a certain prediction block (step S305).
  • the inter prediction units 126 and 218 determine that the number of extracted motion vector predictor candidates is plural (Yes in step S304), the inter prediction units 126 and 218 are identified by the motion vector predictor selection information from the plurality of motion vector predictor candidates.
  • the predicted motion vector candidate is selected as the predicted motion vector of the predicted block (step S306).
  • the inter prediction units 126 and 218 select a predicted motion vector candidate indicated by the predicted motion vector selection information from the N predicted motion vector candidates. It selects as a prediction motion vector of a prediction block (step S306).
  • the above-described mode information is encoded into a stream by the entropy encoding unit 110 of the encoding device 100, and is decoded from the stream by the entropy decoding unit 202 of the decoding device 200.
  • Such mode information is encoded in the header area of any one of the sequence layer, the picture layer, and the slice layer. That is, the entropy encoding unit 110 encodes mode information for identifying an extraction method for each block included in the layer in the header area of the layer. In addition, the entropy decoding unit 202 decodes mode information for identifying an extraction method for each block included in the layer from the header area of the layer.
  • the extraction method based on FRUC and the extraction method according to a predetermined priority order can be switched for each sequence, picture or slice.
  • the mode information may be encoded in the stream in units of prediction blocks. That is, the entropy encoding unit 110 encodes mode information for identifying an extraction method for the block for each block included in the moving image. Further, the entropy decoding unit 202 decodes mode information for identifying an extraction method for each block included in the moving image. Thereby, those extraction methods can be switched for every prediction block.
  • mode information is an example, Comprising: Numerical values other than these numerical values may be sufficient.
  • the mode information may indicate an identifier other than a numerical value. That is, the mode information may indicate any identifier as long as it is an identifier that can distinguish the extraction method based on the FRUC evaluation result and the extraction method according to a predetermined priority order.
  • the above-described prediction motion vector selection information is encoded into a stream in units of prediction blocks by the entropy encoding unit 110 of the encoding device 100, and is decoded from the stream by the entropy decoding unit 202 of the decoding device 200.
  • the encoding device in the present embodiment is an encoding device that encodes a moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit uses the memory, A plurality of candidate motion vectors are acquired based on respective motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image, and at least one of the encoding target blocks is obtained from the plurality of candidate motion vectors.
  • One prediction motion vector candidate is extracted, a motion vector of the coding target block is derived with reference to a reference picture included in the moving image, and a prediction motion vector of the extracted at least one prediction motion vector candidate is extracted And a difference between the derived motion vector of the encoding target block and a motion of the derived encoding target block.
  • the vector is used to perform motion compensation on the encoding target block, and in the extraction of the at least one predicted motion vector candidate, mode information for identifying the extraction method is encoded, and the first extraction method and the second
  • the extraction method identified by the mode information is selected for the encoding target block, and the at least one prediction motion vector candidate is extracted according to the selected extraction method, and the first Is an extraction method based on the evaluation results of each of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block.
  • the second extraction method is an extraction method based on a predetermined priority order for the plurality of candidate motion vectors.
  • the memory may be the frame memory 122 or another memory, and the processing circuit may include, for example, the inter prediction unit 126 and the entropy encoding unit 110.
  • the first extraction method based on the evaluation result by FRUC or the second extraction method based on a predetermined priority order is applied to the prediction block which is the encoding target block according to the mode information. Is done. That is, the extraction method is switched. Therefore, the prediction accuracy of the prediction block that is the encoding target block can be increased, and the encoding efficiency can be improved. Furthermore, in this embodiment, since any one of the first extraction method and the second extraction method is applied to the prediction block, the candidate for the first extraction method for the prediction block is used. There is no need to separately generate a list and a candidate list for the second extraction method. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
  • an extraction method for each block included in the layer is identified in a header area of any one of a sequence layer, a picture layer, and a slice layer in the moving image stream.
  • Mode information may be encoded.
  • mode information for identifying an extraction method for the block may be encoded for each block included in the moving image.
  • the decoding device is a decoding device that decodes an encoded moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit includes the memory.
  • the processing circuit includes the memory.
  • One prediction motion vector candidate is extracted, difference information indicating a difference between two motion vectors is decoded, and a prediction of the extracted at least one prediction motion vector candidate is obtained as a difference indicated by the decoded difference information.
  • a motion vector of the decoding target block is derived by adding a motion vector, and the derived decoding target block is derived.
  • an extraction method identified for the decoding target block by the decoded mode information is selected from the second extraction method, and the at least one motion vector predictor candidate is extracted according to the selected extraction method
  • extraction is performed based on each evaluation result of the plurality of candidate motion vectors using the reconstructed image of the decoded region in the moving image without using the image region of the decoding target block.
  • the second extraction method is an extraction method based on a predetermined priority order for the plurality of candidate motion vectors.
  • the memory may be the frame memory 214 or another memory, and the processing circuit may include, for example, the inter prediction unit 218 and the entropy decoding unit 202.
  • the first extraction method based on the evaluation result by FRUC or the second extraction method based on a predetermined priority order is applied to the prediction block which is the decoding target block according to the mode information.
  • the extraction method is switched. Therefore, it is possible to improve the prediction efficiency of the prediction block that is the decoding target block and improve the encoding efficiency.
  • the candidate for the first extraction method for the prediction block is used. There is no need to separately generate a list and a candidate list for the second extraction method. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
  • the mode information in order to identify the extraction method for each block included in the layer from the header area of any one of the sequence layer, the picture layer, and the slice layer in the moving image stream
  • the mode information may be decoded.
  • mode information for identifying an extraction method for the block may be decoded for each block included in the moving image.
  • non-transitory recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM.
  • the present invention may be realized by any combination of a method, an integrated circuit, a computer program, and a recording medium.
  • Embodiment 4 Extract motion vector candidates with FRUC / priority from common candidate list
  • the encoding apparatus and decoding apparatus in the present embodiment have the same configuration as that of Embodiment 1, but are characterized by the processing operations of inter prediction units 126 and 218. That is, in the present embodiment, as in the second and third embodiments, a plurality of candidate lists different from each other are created for the problem in the above-mentioned [Knowledge on which this disclosure is based], that is, one prediction block. This solves the problem that the processing load increases.
  • the encoding apparatus 100 extracts N predicted motion vector candidates (N is an integer of 2 or more) for the encoding target block from a plurality of candidate motion vectors.
  • N is an integer of 2 or more
  • the encoding apparatus 100 generates a candidate list that is a list indicating a plurality of candidate motion vectors and is common to the first extraction method and the second extraction method.
  • M is an integer less than or equal to 1 and less than N
  • M is an integer less than or equal to 1 and less than N
  • the first extraction method is an extraction method based on the evaluation results of a plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block.
  • the extraction method is based on the evaluation result by FRUC.
  • the second extraction method is an extraction method based on a predetermined priority order for a plurality of candidate motion vectors.
  • decoding apparatus 200 extracts N (N is an integer of 2 or more) prediction motion vector candidates for the decoding target block from a plurality of candidate motion vectors.
  • the decoding apparatus 200 generates a candidate list that is a list indicating a plurality of candidate motion vectors and is common to the first extraction method and the second extraction method.
  • decoding apparatus 200 extracts M (M is an integer of 1 or more and less than N) predicted motion vector candidates from a plurality of candidate motion vectors shown in the common candidate list according to the first extraction method.
  • FIG. 21 is a flowchart showing an example of motion compensation by the encoding apparatus 100 according to the present embodiment.
  • the inter prediction unit 126 and the like of the encoding device 100 execute the processing illustrated in FIG.
  • the inter prediction unit 126 performs motion compensation for each prediction block corresponding to the above-described prediction unit, with respect to the encoding target block that is the prediction block.
  • the inter prediction unit 126 first determines a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of encoded blocks around the prediction block temporally or spatially. Is acquired (step S201).
  • the inter prediction unit 126 is a candidate list indicating a plurality of candidate motion vectors acquired in step S201, and includes an extraction method based on an evaluation result by FRUC and an extraction method based on a predetermined priority order. Generate a common candidate list.
  • the inter prediction unit 126 calculates the evaluation values of the plurality of candidate motion vectors acquired in step S201 using the reconstructed image of the encoded region. That is, the inter prediction unit 126 calculates those evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, based on the evaluation values of the plurality of candidate motion vectors, the inter prediction unit 126 calculates each of the M candidate motion vectors from among the plurality of candidate motion vectors shown in the common candidate list. Extracted as candidate 1 (step S202aa). That is, the inter prediction unit 126 extracts the top M candidate motion vectors as the predicted motion vector candidates from the plurality of candidate motion vectors in descending order of evaluation value.
  • the inter prediction unit 126 finely moves the selected motion vector predictor candidate 1 in the peripheral region so that the FRUC evaluation value becomes higher for each of the extracted M motion vector predictor candidates.
  • the predicted motion vector candidate 1 may be corrected. That is, the inter prediction unit 126 may correct the predicted motion vector candidates 1 by finely searching for a region where the FRUC evaluation value is higher.
  • the inter prediction unit 126 extracts each of L candidate motion vectors as a predicted motion vector candidate 2 from the plurality of candidate motion vectors shown in the common candidate list according to a predetermined priority order. (Step S202ab).
  • the inter prediction unit 126 selects one predicted motion vector candidate from the extracted M predicted motion vector candidates 1 and L predicted motion vector candidates 2 as a predicted motion vector of the predicted block. (Step S202b). At this time, the inter prediction unit 126 outputs prediction motion vector selection information for identifying the selected prediction motion vector.
  • the entropy encoding unit 110 encodes the predicted motion vector selection information into a stream.
  • the inter prediction unit 126 refers to the encoded reference picture and derives a motion vector of the prediction block (step S203). At this time, the inter prediction unit 126 further calculates a difference value between the derived motion vector and the predicted motion vector.
  • the entropy encoding unit 110 encodes the difference value as a difference motion vector information into a stream.
  • the inter prediction unit 126 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the encoded reference picture (step S204). .
  • inter prediction unit 126 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
  • FIG. 22 is a flowchart showing an example of motion compensation by the decoding apparatus 200 according to this embodiment.
  • the decoding device 200 illustrated in FIG. 10 decodes a moving image including a plurality of encoded pictures
  • the inter prediction unit 218 and the like of the decoding device 200 perform the processing illustrated in FIG.
  • the inter prediction unit 218 performs motion compensation on the decoding target block that is a prediction block for each prediction block corresponding to the above-described prediction unit. At this time, the inter prediction unit 218 first selects a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of decoded blocks around the prediction block temporally or spatially. Obtain (step S211).
  • the inter prediction unit 218 is a candidate list indicating a plurality of candidate motion vectors acquired in step S211, and includes an extraction method based on an evaluation result by FRUC and an extraction method based on a predetermined priority order. Generate a common candidate list.
  • the inter prediction unit 218 calculates each evaluation value of the plurality of candidate motion vectors acquired in step S211 using the reconstructed image of the decoded area. That is, the inter prediction unit 218 calculates the evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, based on the evaluation values of the plurality of candidate motion vectors, the inter prediction unit 218 predicts each of the M candidate motion vectors from among the plurality of candidate motion vectors indicated in the common candidate list. Extracted as candidate 1 (step S212aa). That is, the inter prediction unit 218 extracts the top M candidate motion vectors as the predicted motion vector candidates from the plurality of candidate motion vectors in descending order of evaluation value.
  • the inter prediction unit 218 finely moves the selected predicted motion vector candidate 1 in the peripheral region so that the FRUC evaluation value becomes higher for each of the extracted M predicted motion vector candidates.
  • the predicted motion vector candidate 1 may be corrected. That is, the inter prediction unit 218 may correct the motion vector predictor candidates 1 by finely searching for a region where the FRUC evaluation value is higher.
  • the inter prediction unit 218 extracts each of the L candidate motion vectors as a predicted motion vector candidate 2 from the plurality of candidate motion vectors shown in the common candidate list according to a predetermined priority order. (Step S212ab).
  • the inter prediction unit 218 uses the motion vector predictor selection information to select one motion vector predictor candidate from the extracted M motion vector predictor candidates 1 and L motion vector predictor candidates 2 as a prediction block. It selects as a prediction motion vector (step S212b). That is, the entropy decoding unit 202 decodes prediction motion vector selection information for identifying a prediction motion vector of a prediction block that is a decoding target block. Then, the inter prediction unit 218 selects a predicted motion vector candidate identified by the decoded predicted motion vector selection information from the extracted N predicted motion vector candidates 1 and 2 as a predicted motion vector of the predicted block. .
  • the inter prediction unit 218 derives a motion vector of the prediction block using the difference motion vector information decoded by the entropy decoding unit 202 from the stream input to the decoding device 200 (step S213). Specifically, the inter prediction unit 218 derives the motion vector of the prediction block by adding the difference value, which is the decoded difference motion vector information, and the selected prediction motion vector. That is, the entropy decoding unit 202 decodes difference motion vector information that is difference information indicating a difference between two motion vectors. Then, the inter prediction unit 218 derives the motion vector of the prediction block that is the decoding target block by adding the selected prediction motion vector to the difference indicated by the decoded difference information.
  • the inter prediction unit 218 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the decoded reference picture (step S214).
  • inter prediction unit 218 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
  • the extraction result of the first extraction method that is, You may utilize the extraction result based on the evaluation result by FRUC. That is, the inter prediction units 126 and 218, at least one candidate motion other than the M predicted motion vector candidates extracted by the first extraction method, from among a plurality of candidate motion vectors shown in the common candidate list. L predicted motion vector candidates are extracted from the vector according to the priority order using the evaluation result in the first extraction method.
  • FIG. 23 is a diagram for explaining a method of extracting a motion vector predictor candidate according to the present embodiment.
  • the inter prediction units 126 and 218 classify a plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more). Then, in the extraction of M motion vector predictor candidates 1, the inter prediction units 126 and 218 select the top M candidates in descending order of the evaluation result from a plurality of candidate motion vectors indicated in the common candidate list. A motion vector is extracted as M predicted motion vector candidates 1. Further, in the extraction of L predicted motion vector candidates 2, the inter prediction units 126 and 218 exclude at least one of the common candidate lists excluding the group to which each of the M predicted motion vector candidates 1 belongs. L predicted motion vector candidates 2 are extracted from one or more candidate motion vectors belonging to any of the groups according to priority.
  • the inter prediction units 126 and 218 first include a plurality of candidates indicated in the common candidate list.
  • Candidate motion vectors are classified into three groups G1 to C3.
  • the group G1 is a group to which candidate motion vectors obtained based on, for example, the motion vector of the block on the left side of the encoding target block in the encoding target picture belong.
  • the group G2 is a group to which a candidate motion vector obtained based on, for example, a motion vector of a block above the encoding target block in the encoding target picture belongs.
  • the group G3 is a group to which a candidate motion vector obtained based on, for example, a motion vector of a block in a picture different from the encoding target picture belongs.
  • the inter prediction units 126 and 218 extract the candidate motion vector having the highest evaluation value as the predicted motion vector candidate 1 from the plurality of candidate motion vectors shown in the common candidate list.
  • the inter prediction units 126 and 218 prioritize one or more candidate motion vectors belonging to any of the groups G2 and G3, except for the group G1 to which the prediction motion vector candidate 1 belongs, from the common candidate list.
  • One candidate motion vector is extracted as a predicted motion vector candidate 2 according to the rank.
  • the inter prediction units 126 and 218 classify a plurality of candidate motion vectors shown in the common candidate list into K groups. Then, in the extraction of M motion vector predictor candidates 1, the inter prediction units 126 and 218 determine the top M candidate motion vectors in descending order of evaluation results from a plurality of candidate motion vectors indicated in the common candidate list. Are extracted as M predicted motion vector candidates 1. Further, the inter prediction units 126 and 218, from a plurality of candidate motion vectors belonging to any one of at least one group excluding the group to which each of the M motion vector predictor candidates 1 belongs, from the common candidate list. The candidate motion vector having the best evaluation result is identified as the next predicted motion vector candidate.
  • the inter prediction units 126 and 218 include one or more members belonging to the same group as the group to which the identified next-point predicted motion vector candidate belongs in the common candidate list.
  • L predicted motion vectors 2 are extracted from the candidate motion vectors according to the priority order.
  • the inter prediction units 126 and 218 extract the candidate motion vector having the highest evaluation value as the predicted motion vector candidate 1 from the plurality of candidate motion vectors shown in the common candidate list. Further, the inter prediction units 126 and 218 have an evaluation value of a plurality of candidate motion vectors belonging to any of the groups G2 and G3, excluding the group G1 to which the prediction motion vector candidate 1 belongs, from the common candidate list. The highest candidate motion vector 4 is specified as the next predicted motion vector candidate. Then, the inter prediction units 126 and 218 determine, from one or more candidate motion vectors belonging to the same group as the group G2 to which the candidate motion vector 4 belongs, of the identified next-point predicted motion vector candidates in the common candidate list. One candidate motion vector is extracted as a predicted motion vector candidate 2 in accordance with the priority order.
  • FIG. 24 is a diagram showing an example of a common candidate list.
  • the inter prediction units 126 and 218 may use the common candidate shown in (b) of FIG. 24 for the encoding target block or the decoding target block (hereinafter simply referred to as a processing target block) shown in (a) of FIG. Generate a list.
  • This common candidate list includes an L0 list and an L1 list.
  • the inter prediction units 126 and 218 include candidate motion vectors based on the motion vectors of adjacent blocks 1, 2, and 5 adjacent to the processing target block in the common candidate list.
  • the adjacent block 1 is a block adjacent to the lower left of the processing target block
  • the adjacent block 2 is a block adjacent to the upper right of the processing target block
  • the adjacent block 5 is a block adjacent to the upper left of the processing target block.
  • the adjacent block 1 is encoded or decoded by the motion vectors mvL01 and mvL11.
  • the adjacent block 2 is encoded or decoded by the motion vectors mvL02 and mvL12.
  • the adjacent block 5 is encoded or decoded by the motion vector mvL05.
  • the inter prediction units 126 and 218 include candidate motion vectors based on these motion vectors as a spatial candidate motion vector in a common candidate list.
  • the inter prediction units 126 and 218 may include candidate motion vectors based on motion vectors of other adjacent blocks in the common candidate list as spatial candidate motion vectors.
  • the other adjacent block is the adjacent block 3 on the right side of the adjacent block 2 or the adjacent block 4 on the lower side of the adjacent block 1.
  • the inter prediction units 126 and 218 may scale the motion vectors of adjacent blocks based on the display time interval, and include the scaled motion vectors as candidate motion vectors in the candidate list.
  • the inter prediction units 126 and 218 may include the temporal candidate motion vector and the combined bi-prediction candidate motion vector (mvL0b, mvL1b) in the candidate list.
  • the temporal candidate motion vectors include, for example, a Col candidate motion vector (mvL0t, mvL1t) and a Universal candidate motion vector (mvL0u, mvL1u).
  • the Col candidate motion vector (mvL0t, mvL1t) is a candidate motion vector based on a motion vector of a block in a picture different from the picture including the processing target block, for example, a block at the same position as the processing target block.
  • the Col candidate motion vector (mvL0t, mvL1t) may be a candidate motion vector obtained by scaling a motion vector of a block in a picture different from the picture including the processing target block at a display time interval. Further, the Col candidate motion vector may be a candidate motion vector based on a motion vector of a block at a position different from the processing target block. Furthermore, a plurality of different Col candidate motion vectors may be included in the candidate list.
  • the Universal candidate motion vector (mvL0u, mvL1u) is a block in a picture different from the picture including the processing target block, and the motion vector of the block at a position that takes into account the amount of movement with the passage of time with respect to the position of the processing target block Is a candidate motion vector based on.
  • the combined bi-prediction candidate motion vector (mvL0b, mvL1b) is a candidate motion vector generated by combining the motion vectors of the L0 list and the L1 list of the candidate list.
  • the candidate list shown in FIG. 24B is commonly used for the extraction method based on the evaluation result by FRUC and the extraction method based on a predetermined priority.
  • the encoding device in the present embodiment is an encoding device that encodes a moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit uses the memory, A plurality of candidate motion vectors are acquired based on the motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image, and N for the encoding target block are obtained from the plurality of candidate motion vectors.
  • Selection information for extracting prediction motion vector candidates (N is an integer of 2 or more), selecting a prediction motion vector from the extracted N prediction motion vector candidates, and identifying the selected prediction motion vector And a motion vector of the encoding target block is derived with reference to a reference picture included in the moving image, and the derived encoding target block is derived.
  • a difference between the motion vector of the received image and the selected predicted motion vector is encoded, motion compensation is performed on the current block using the derived motion vector of the current block, and the N
  • a list showing the plurality of candidate motion vectors which is a common candidate list for the first extraction method and the second extraction method, is generated and shown in the common candidate list.
  • M is an integer of 1 or more and less than N
  • the first extraction method includes the encoding target block.
  • the memory may be the frame memory 122 or another memory
  • the processing circuit may include, for example, the inter prediction unit 126 and the entropy encoding unit 110.
  • M predicted motion vector candidates are extracted according to the first extraction method, that is, based on the evaluation result by FRUC. Therefore, the prediction accuracy of the prediction block that is the encoding target block can be increased, and the encoding efficiency can be improved.
  • a candidate list common to the first extraction method and the second extraction method is generated. That is, even when M predicted motion vector candidates are extracted according to the first extraction method, L predicted motion vector candidates are extracted according to the second extraction method based on a predetermined priority. Even in this case, a common candidate list is referenced. As a result, it is not necessary to individually generate a candidate list for the first extraction method and a candidate list for the second extraction method for the prediction block. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
  • the processing circuit includes the M number of motion vectors extracted by the first extraction method among the plurality of candidate motion vectors indicated in the common candidate list.
  • the L predicted motion vector candidates may be extracted from the remaining at least one candidate motion vector excluding the predicted motion vector candidates according to the priority order using the evaluation result in the first extraction method.
  • the extraction result according to the first extraction method (for example, step S202aa) is referred to. Therefore, it can be suppressed that the same candidate motion vector is extracted as a predicted motion vector candidate in the first extraction method and the second extraction method.
  • the processing circuit classifies the plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more),
  • K is an integer of 2 or more
  • the top M candidate motion vectors in the descending order of the evaluation result are selected from the plurality of candidate motion vectors shown in the common candidate list, and the M predicted motions.
  • any one of at least one group excluding the group to which each of the M motion vector predictor candidates belongs is included in the common candidate list.
  • the L predicted motion vector candidates may be extracted from one or more candidate motion vectors to which the motion vector belongs, according to the priority order. For example, each evaluation result of the plurality of candidate motion vectors has a small difference between the reconstructed image of the first encoded region specified by the candidate motion vector and the second encoded reconstructed image. It is a good evaluation result.
  • the processing circuit classifies the plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more), In the extraction according to the first extraction method, the top M candidate motion vectors in the descending order of the evaluation result are selected from the plurality of candidate motion vectors shown in the common candidate list, and the M predicted motions.
  • the candidate is extracted as a vector candidate, and further, the evaluation is performed from a plurality of candidate motion vectors belonging to any one of at least one group excluding a group to which each of the M predicted motion vector candidates belongs from the common candidate list.
  • the candidate motion vector with the best result is identified as the next predicted motion vector candidate, and in the extraction according to the second extraction method, the common candidate
  • the L predicted motion vector candidates may be extracted in accordance with the priority from one or more candidate motion vectors belonging to the same group as the group to which the identified next-point predicted motion vector candidate belongs. .
  • the decoding device is a decoding device that decodes an encoded moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit includes the memory.
  • N is an integer of 2 or more
  • predicted motion vector candidates are extracted, selection information for identifying a predicted motion vector of the decoding target block is decoded, and decoding is performed from the extracted N predicted motion vector candidates.
  • a predicted motion vector candidate identified by the selected information is selected as the predicted motion vector, and a difference between the two motion vectors is indicated.
  • the difference information is decoded, and the motion vector of the decoding target block is derived by adding the selected prediction motion vector to the difference indicated by the decoded difference information, and the derived decoding target block.
  • the motion vector is subjected to motion compensation using the motion vector, and the extraction of the N predicted motion vector candidates is a list indicating the plurality of candidate motion vectors, the first extraction method and the second A candidate list common to the extraction methods is generated, and M (M is an integer of 1 or more and less than N) according to the first extraction method from the plurality of candidate motion vectors indicated in the common candidate list.
  • Predicted motion vector candidates are extracted, and the L motion vector candidates are extracted from the plurality of candidate motion vectors indicated in the common candidate list according to the second extraction method.
  • L N ⁇ M) as predicted motion vector candidates
  • the first extraction method uses the reconstructed image of the decoded region in the moving image without using the image region of the decoding target block.
  • This is an extraction method based on the evaluation results of each of the plurality of candidate motion vectors
  • the second extraction method is an extraction method based on a predetermined priority order for the plurality of candidate motion vectors.
  • the memory may be the frame memory 214 or another memory, and the processing circuit may include, for example, the inter prediction unit 218 and the entropy decoding unit 202.
  • M predicted motion vector candidates are extracted according to the first extraction method, that is, based on the evaluation result by FRUC. Therefore, it is possible to improve the prediction efficiency of the prediction block that is the decoding target block and improve the encoding efficiency.
  • a candidate list common to the first extraction method and the second extraction method is generated. That is, even when M predicted motion vector candidates are extracted according to the first extraction method, L predicted motion vector candidates are extracted according to the second extraction method based on a predetermined priority. Even in this case, a common candidate list is referenced. As a result, it is not necessary to individually generate a candidate list for the first extraction method and a candidate list for the second extraction method for the prediction block. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
  • the processing circuit includes the M number of motion vectors extracted by the first extraction method among the plurality of candidate motion vectors indicated in the common candidate list.
  • the L predicted motion vector candidates may be extracted from the remaining at least one candidate motion vector excluding the predicted motion vector candidates according to the priority order using the evaluation result in the first extraction method.
  • the extraction result according to the first extraction method (for example, step S212aa) is referred to. Therefore, it can be suppressed that the same candidate motion vector is extracted as a predicted motion vector candidate in the first extraction method and the second extraction method.
  • the processing circuit classifies the plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more),
  • K is an integer of 2 or more
  • the top M candidate motion vectors in the descending order of the evaluation result are selected from the plurality of candidate motion vectors shown in the common candidate list, and the M predicted motions.
  • any one of at least one group excluding the group to which each of the M motion vector predictor candidates belongs is included in the common candidate list.
  • the L predicted motion vector candidates may be extracted from one or more candidate motion vectors to which the motion vector belongs, according to the priority order. For example, the evaluation result of each of the plurality of candidate motion vectors is better as the difference between the reconstructed image of the first decoded area specified by the candidate motion vector and the second decoded reconstructed image is smaller. It is an evaluation result.
  • the processing circuit classifies the plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more), In the extraction according to the first extraction method, the top M candidate motion vectors in the descending order of the evaluation result are selected from the plurality of candidate motion vectors shown in the common candidate list, and the M predicted motions.
  • the candidate is extracted as a vector candidate, and further, the evaluation is performed from a plurality of candidate motion vectors belonging to any one of at least one group excluding a group to which each of the M predicted motion vector candidates belongs from the common candidate list.
  • the candidate motion vector with the best result is identified as the next predicted motion vector candidate, and in the extraction according to the second extraction method, the common candidate
  • the L predicted motion vector candidates may be extracted in accordance with the priority from one or more candidate motion vectors belonging to the same group as the group to which the identified next-point predicted motion vector candidate belongs. .
  • non-transitory recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM.
  • the present invention may be realized by any combination of a method, an integrated circuit, a computer program, and a recording medium.
  • FIG. 25 is a block diagram illustrating an implementation example of the encoding device 100 according to each of the above embodiments.
  • the encoding device 100 includes a processing circuit 160 and a memory 162.
  • a plurality of components of the encoding device 100 shown in FIG. 1 are implemented by the processing circuit 160 and the memory 162 shown in FIG.
  • the processing circuit 160 is a circuit that performs information processing, and is a circuit that can access the memory 162.
  • the processing circuit 160 is a dedicated or general-purpose electronic circuit that encodes a moving image.
  • the processing circuit 160 may be a processor such as a CPU.
  • the processing circuit 160 may be an aggregate of a plurality of electronic circuits. Further, for example, the processing circuit 160 may serve as a plurality of components other than the components for storing information among the plurality of components of the encoding device 100 illustrated in FIG. 1.
  • the memory 162 is a general purpose or dedicated memory in which information for the processing circuit 160 to encode a moving image is stored.
  • the memory 162 may be an electronic circuit and may be connected to the processing circuit 160. Further, the memory 162 may be included in the processing circuit 160.
  • the memory 162 may be an aggregate of a plurality of electronic circuits. Further, the memory 162 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium.
  • the memory 162 may be a non-volatile memory or a volatile memory.
  • a moving image to be encoded may be stored, or a bit string corresponding to the encoded moving image may be stored.
  • the memory 162 may store a program for the processing circuit 160 to encode a moving image.
  • the memory 162 may serve as a component for storing information among a plurality of components of the encoding device 100 shown in FIG. Specifically, the memory 162 may serve as the block memory 118 and the frame memory 122 shown in FIG. More specifically, the memory 162 may store processed sub-blocks, processed blocks, processed pictures, and the like.
  • not all of the plurality of components shown in FIG. 1 or the like may be mounted, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 1 and the like may be included in another device, and some of the plurality of processes described above may be executed by another device.
  • a part of the plurality of components shown in FIG. 1 and the like are mounted, and a part of the plurality of processes described above is performed, so that a moving image can be generated with a small code amount. Can be handled appropriately.
  • FIG. 26 is a block diagram illustrating an implementation example of the decoding device 200 according to each of the above embodiments.
  • the decoding device 200 includes a processing circuit 260 and a memory 262.
  • a plurality of components of the decoding device 200 illustrated in FIG. 10 are implemented by the processing circuit 260 and the memory 262 illustrated in FIG.
  • the processing circuit 260 is a circuit that performs information processing, and is a circuit that can access the memory 262.
  • the processing circuit 260 is a general-purpose or dedicated electronic circuit that decodes a moving image.
  • the processing circuit 260 may be a processor such as a CPU.
  • the processing circuit 260 may be an aggregate of a plurality of electronic circuits.
  • the processing circuit 260 may serve as a plurality of constituent elements excluding a constituent element for storing information among a plurality of constituent elements of the decoding device 200 illustrated in FIG. 10.
  • the memory 262 is a general purpose or dedicated memory in which information for the processing circuit 260 to decode a moving image is stored.
  • the memory 262 may be an electronic circuit and may be connected to the processing circuit 260. Further, the memory 262 may be included in the processing circuit 260.
  • the memory 262 may be an aggregate of a plurality of electronic circuits.
  • the memory 262 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. Further, the memory 262 may be a nonvolatile memory or a volatile memory.
  • the memory 262 may store a bit sequence corresponding to the encoded moving image, or may store a moving image corresponding to the decoded bit sequence.
  • the memory 262 may store a program for the processing circuit 260 to decode a moving image.
  • the memory 262 may serve as a component for storing information among a plurality of components of the decoding device 200 illustrated in FIG. Specifically, the memory 262 may serve as the block memory 210 and the frame memory 214 shown in FIG. More specifically, the memory 262 may store processed sub-blocks, processed blocks, processed pictures, and the like.
  • the decoding device 200 not all of the plurality of components shown in FIG. 10 and the like may be implemented, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 10 and the like may be included in another device, and some of the plurality of processes described above may be executed by another device. Then, in the decoding device 200, a part of the plurality of components shown in FIG. 10 and the like are mounted, and a part of the plurality of processes described above is performed, so that a moving image is appropriately generated with a small code amount. Can be processed.
  • the encoding device 100 and the decoding device 200 in each of the above embodiments may be used as an image encoding device and an image decoding device, or may be used as a moving image encoding device and a moving image decoding device, respectively. .
  • the encoding device 100 and the decoding device 200 can each be used as an inter prediction device. That is, the encoding apparatus 100 and the decoding apparatus 200 may support only the inter prediction unit 126 and the inter prediction unit 218, respectively.
  • the prediction block is encoded or decoded as the encoding target block or the decoding target block.
  • the encoding target block or the decoding target block is not limited to the prediction block, and may be a sub-block. It may be another block.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • each of the encoding device 100 and the decoding device 200 includes a processing circuit (Processing Circuit) and a storage device (Storage) electrically connected to the processing circuit and accessible from the processing circuit. You may have.
  • Processing Circuit Processing Circuit
  • Storage Storage
  • the processing circuit includes at least one of dedicated hardware and a program execution unit, and executes processing using a storage device. Further, when the processing circuit includes a program execution unit, the storage device stores a software program executed by the program execution unit.
  • the software that realizes the encoding device 100 or the decoding device 200 according to each of the above embodiments is the following program.
  • this program causes the computer to execute processing according to the flowchart shown in any of FIGS. 15 to 18 and FIGS.
  • Each component may be a circuit as described above. These circuits may constitute one circuit as a whole, or may be separate circuits. Each component may be realized by a general-purpose processor or a dedicated processor.
  • the encoding / decoding device may include the encoding device 100 and the decoding device 200.
  • the first and second ordinal numbers used in the description may be replaced as appropriate.
  • an ordinal number may be newly given to a component or the like, or may be removed.
  • the aspect of the encoding apparatus 100 and the decoding apparatus 200 was demonstrated based on each embodiment, the aspect of the encoding apparatus 100 and the decoding apparatus 200 is not limited to these embodiment. As long as it does not deviate from the gist of the present disclosure, various modifications conceived by those skilled in the art in the embodiments and forms constructed by combining components in different embodiments are also possible for the encoding apparatus 100 and the decoding apparatus 200. It may be included within the scope of the embodiments.
  • each of the functional blocks can usually be realized by an MPU, a memory, and the like. Further, the processing by each functional block is usually realized by a program execution unit such as a processor reading and executing software (program) recorded on a recording medium such as a ROM. The software may be distributed by downloading or the like, or may be distributed by being recorded on a recording medium such as a semiconductor memory. Naturally, each functional block can be realized by hardware (dedicated circuit).
  • each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the number of processors that execute the program may be one or more. That is, centralized processing may be performed, or distributed processing may be performed.
  • the system includes an image encoding device using an image encoding method, an image decoding device using an image decoding method, and an image encoding / decoding device including both.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 27 is a diagram illustrating an overall configuration of a content supply system ex100 that implements a content distribution service.
  • the communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • devices such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101, the Internet service provider ex102 or the communication network ex104, and the base stations ex106 to ex110.
  • the content supply system ex100 may be connected by combining any of the above elements.
  • Each device may be directly or indirectly connected to each other via a telephone network or a short-range wireless communication without using the base stations ex106 to ex110 which are fixed wireless stations.
  • the streaming server ex103 is connected to each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101.
  • the streaming server ex103 is connected to a terminal in a hot spot in the airplane ex117 via the satellite ex116.
  • the streaming server ex103 may be directly connected to the communication network ex104 without going through the Internet ex101 or the Internet service provider ex102, or may be directly connected to the airplane ex117 without going through the satellite ex116.
  • the camera ex113 is a device that can shoot still images and moving images such as a digital camera.
  • the smartphone ex115 is a smartphone, a mobile phone, a PHS (Personal Handyphone System), or the like that corresponds to a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
  • PHS Personal Handyphone System
  • the home appliance ex118 is a device included in a refrigerator or a household fuel cell cogeneration system.
  • a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, thereby enabling live distribution or the like.
  • the terminal (computer ex111, game machine ex112, camera ex113, home appliance ex114, smartphone ex115, terminal in airplane ex117, etc.) is used for the still image or video content captured by the user using the terminal.
  • the encoding process described in each embodiment is performed, and the video data obtained by the encoding and the sound data obtained by encoding the sound corresponding to the video are multiplexed, and the obtained data is transmitted to the streaming server ex103. That is, each terminal functions as an image encoding device according to an aspect of the present invention.
  • the streaming server ex103 streams the content data transmitted to the requested client.
  • the client is a computer or the like in the computer ex111, the game machine ex112, the camera ex113, the home appliance ex114, the smart phone ex115, or the airplane ex117 that can decode the encoded data.
  • Each device that has received the distributed data decrypts and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present invention.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and content distribution may be realized by a network connecting a large number of edge servers and edge servers distributed all over the world.
  • CDN Contents Delivery Network
  • edge servers that are physically close to each other are dynamically allocated according to clients. Then, the content can be cached and distributed to the edge server, thereby reducing the delay.
  • the processing is distributed among multiple edge servers, the distribution subject is switched to another edge server, or the part of the network where the failure has occurred Since detouring can be continued, high-speed and stable distribution can be realized.
  • the captured data may be encoded at each terminal, may be performed on the server side, or may be shared with each other.
  • a processing loop is performed twice.
  • the first loop the complexity of the image or the code amount in units of frames or scenes is detected.
  • the second loop processing for maintaining the image quality and improving the coding efficiency is performed.
  • the terminal performs the first encoding process
  • the server receiving the content performs the second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can.
  • the encoded data of the first time performed by the terminal can be received and reproduced by another terminal, enabling more flexible real-time distribution.
  • the camera ex113 or the like extracts a feature amount from an image, compresses data relating to the feature amount as metadata, and transmits the metadata to the server.
  • the server performs compression according to the meaning of the image, for example, by determining the importance of the object from the feature amount and switching the quantization accuracy.
  • the feature data is particularly effective for improving the accuracy and efficiency of motion vector prediction at the time of re-compression on the server.
  • simple coding such as VLC (variable length coding) may be performed at the terminal, and coding with a large processing load such as CABAC (context adaptive binary arithmetic coding) may be performed at the server.
  • a plurality of video data in which almost the same scene is captured by a plurality of terminals.
  • a GOP Group of Picture
  • a picture unit or a tile obtained by dividing a picture using a plurality of terminals that have performed shooting and other terminals and servers that have not performed shooting as necessary.
  • Distributed processing is performed by assigning encoding processing in units or the like. Thereby, delay can be reduced and real-time property can be realized.
  • the server may manage and / or instruct the video data captured by each terminal to refer to each other.
  • the encoded data from each terminal may be received by the server and the reference relationship may be changed among a plurality of data, or the picture itself may be corrected or replaced to be encoded again. This makes it possible to generate a stream with improved quality and efficiency of each piece of data.
  • the server may distribute the video data after performing transcoding to change the encoding method of the video data.
  • the server may convert the MPEG encoding system to the VP encoding. H.264 in H.264. It may be converted into H.265.
  • the encoding process can be performed by a terminal or one or more servers. Therefore, in the following, description such as “server” or “terminal” is used as the subject performing processing, but part or all of processing performed by the server may be performed by the terminal, or processing performed by the terminal may be performed. Some or all may be performed at the server. The same applies to the decoding process.
  • the server not only encodes a two-dimensional moving image, but also encodes a still image automatically based on a scene analysis of the moving image or at a time specified by the user and transmits it to the receiving terminal. Also good.
  • the server can acquire the relative positional relationship between the photographing terminals, the server obtains the three-dimensional shape of the scene based on not only the two-dimensional moving image but also the video obtained by photographing the same scene from different angles. Can be generated.
  • the server may separately encode the three-dimensional data generated by the point cloud or the like, and the video to be transmitted to the receiving terminal based on the result of recognizing or tracking the person or the object using the three-dimensional data.
  • the images may be selected or reconstructed from videos captured by a plurality of terminals.
  • the user can arbitrarily select each video corresponding to each photographing terminal and enjoy a scene, or can display a video of an arbitrary viewpoint from three-dimensional data reconstructed using a plurality of images or videos. You can also enjoy the clipped content.
  • sound is collected from a plurality of different angles, and the server may multiplex and transmit sound from a specific angle or space according to the video.
  • the server may create viewpoint images for the right eye and the left eye, respectively, and perform encoding that allows reference between each viewpoint video by Multi-View Coding (MVC) or the like. You may encode as another stream, without referring. At the time of decoding another stream, it is preferable to reproduce in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
  • MVC Multi-View Coding
  • the server superimposes virtual object information in the virtual space on the camera information in the real space based on the three-dimensional position or the movement of the user's viewpoint.
  • the decoding device may acquire or hold virtual object information and three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposition data by connecting them smoothly.
  • the decoding device transmits the movement of the user's viewpoint to the server in addition to the request for the virtual object information, and the server creates superimposition data according to the movement of the viewpoint received from the three-dimensional data held in the server,
  • the superimposed data may be encoded and distributed to the decoding device.
  • the superimposed data has an ⁇ value indicating transparency in addition to RGB
  • the server sets the ⁇ value of a portion other than the object created from the three-dimensional data to 0 or the like, and the portion is transparent. May be encoded.
  • the server may generate data in which a RGB value of a predetermined value is set as the background, such as a chroma key, and the portion other than the object is set to the background color.
  • the decryption processing of the distributed data may be performed at each terminal as a client, may be performed on the server side, or may be performed in a shared manner.
  • a terminal may once send a reception request to the server, receive content corresponding to the request at another terminal, perform a decoding process, and transmit a decoded signal to a device having a display.
  • a part of a region such as a tile in which a picture is divided may be decoded and displayed on a viewer's personal terminal while receiving large-size image data on a TV or the like. Accordingly, it is possible to confirm at hand the area in which the person is responsible or the area to be confirmed in more detail while sharing the whole image.
  • access to encoded data on the network such as when the encoded data is cached in a server that can be accessed from the receiving terminal in a short time, or copied to the edge server in the content delivery service. It is also possible to switch the bit rate of received data based on ease.
  • the content switching will be described using a scalable stream that is compression-encoded by applying the moving image encoding method shown in each of the above embodiments shown in FIG.
  • the server may have a plurality of streams of the same content and different quality as individual streams, but the temporal / spatial scalable implementation realized by dividing into layers as shown in the figure.
  • the configuration may be such that the content is switched by utilizing the characteristics of the stream.
  • the decoding side decides which layer to decode according to internal factors such as performance and external factors such as the state of communication bandwidth, so that the decoding side can combine low-resolution content and high-resolution content. You can switch freely and decrypt. For example, when the user wants to continue watching the video that was viewed on the smartphone ex115 while moving on a device such as an Internet TV after returning home, the device only has to decode the same stream to a different layer, so the load on the server side Can be reduced.
  • the enhancement layer includes meta information based on image statistical information, etc., in addition to the configuration in which the picture is encoded for each layer and the enhancement layer exists above the base layer.
  • the decoding side may generate content with high image quality by super-resolution of the base layer picture based on the meta information.
  • Super-resolution may be either improvement of the SN ratio at the same resolution or enlargement of the resolution.
  • the meta information includes information for specifying a linear or non-linear filter coefficient used for super-resolution processing, or information for specifying a parameter value in filter processing, machine learning, or least square calculation used for super-resolution processing. .
  • the picture may be divided into tiles or the like according to the meaning of the object in the image, and the decoding side may select only a part of the region by selecting the tile to be decoded.
  • the decoding side can determine the position of the desired object based on the meta information. Can be identified and the tile containing the object can be determined.
  • the meta information is stored using a data storage structure different from the pixel data such as the SEI message in HEVC. This meta information indicates, for example, the position, size, or color of the main object.
  • meta information may be stored in units composed of a plurality of pictures, such as streams, sequences, or random access units.
  • the decoding side can acquire the time when the specific person appears in the video, etc., and can match the picture in which the object exists and the position of the object in the picture by combining with the information in units of pictures.
  • FIG. 30 shows an example of a web page display screen on the computer ex111 or the like.
  • FIG. 31 is a diagram illustrating an example of a display screen of a web page on the smartphone ex115 or the like.
  • the web page may include a plurality of link images that are links to image content, and the appearance differs depending on the browsing device.
  • the display device when a plurality of link images are visible on the screen, the display device until the user explicitly selects the link image, or until the link image approaches the center of the screen or the entire link image enters the screen.
  • the (decoding device) displays a still image or an I picture included in each content as a link image, displays a video like a gif animation with a plurality of still images or I pictures, or receives only a base layer to receive a video. Are decoded and displayed.
  • the display device When the link image is selected by the user, the display device decodes the base layer with the highest priority. If there is information indicating that the HTML constituting the web page is scalable content, the display device may decode up to the enhancement layer. Also, in order to ensure real-time properties, the display device only decodes forward reference pictures (I picture, P picture, forward reference only B picture) before being selected or when the communication band is very strict. In addition, the delay between the decoding time of the first picture and the display time (delay from the start of content decoding to the start of display) can be reduced by displaying. Further, the display device may intentionally ignore the reference relationship of pictures and roughly decode all B pictures and P pictures with forward reference, and perform normal decoding as the number of received pictures increases over time.
  • forward reference pictures I picture, P picture, forward reference only B picture
  • the receiving terminal when transmitting and receiving still image or video data such as two-dimensional or three-dimensional map information for automatic driving or driving support of a car, the receiving terminal adds meta data to image data belonging to one or more layers. Weather or construction information may also be received and decoded in association with each other. The meta information may belong to a layer or may be simply multiplexed with image data.
  • the receiving terminal since the car, drone, airplane, or the like including the receiving terminal moves, the receiving terminal transmits the position information of the receiving terminal at the time of the reception request, thereby seamless reception and decoding while switching the base stations ex106 to ex110. Can be realized.
  • the receiving terminal can dynamically switch how much meta-information is received or how much map information is updated according to the user's selection, the user's situation, or the communication band state. become.
  • the encoded information transmitted by the user can be received, decoded and reproduced in real time by the client.
  • the content supply system ex100 can perform not only high-quality and long-time content by a video distributor but also unicast or multicast distribution of low-quality and short-time content by an individual. Moreover, such personal contents are expected to increase in the future.
  • the server may perform the encoding process after performing the editing process. This can be realized, for example, with the following configuration.
  • the server After shooting, the server performs recognition processing such as shooting error, scene search, semantic analysis, and object detection from the original image or encoded data. Then, the server manually or automatically corrects out-of-focus or camera shake based on the recognition result, or selects a less important scene such as a scene whose brightness is lower than that of other pictures or is out of focus. Edit such as deleting, emphasizing the edge of an object, and changing the hue.
  • the server encodes the edited data based on the editing result. It is also known that if the shooting time is too long, the audience rating will decrease, and the server will move not only in the less important scenes as described above, but also in motion according to the shooting time. A scene with few images may be automatically clipped based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of the semantic analysis of the scene.
  • the server may change and encode the face of the person in the periphery of the screen or the inside of the house into an unfocused image.
  • the server recognizes whether or not a face of a person different from the person registered in advance is shown in the encoding target image, and if so, performs processing such as applying a mosaic to the face part. May be.
  • the user designates a person or background area that the user wants to process an image from the viewpoint of copyright, etc., and the server replaces the designated area with another video or blurs the focus. It is also possible to perform such processing. If it is a person, the face image can be replaced while tracking the person in the moving image.
  • the decoding device first receives the base layer with the highest priority and performs decoding and reproduction, depending on the bandwidth.
  • the decoding device may receive the enhancement layer during this time, and may play back high-quality video including the enhancement layer when played back twice or more, such as when playback is looped.
  • a stream that is scalable in this way can provide an experience in which the stream becomes smarter and the image is improved gradually, although it is a rough moving picture when it is not selected or at the beginning of viewing.
  • the same experience can be provided even if the coarse stream played back the first time and the second stream coded with reference to the first video are configured as one stream. .
  • these encoding or decoding processes are generally processed in the LSI ex500 included in each terminal.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding or decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111 and the like, and encoding or decoding processing is performed using the software. Also good.
  • moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the smartphone ex115.
  • the LSI ex500 may be configured to download and activate application software.
  • the terminal first determines whether the terminal is compatible with the content encoding method or has a specific service execution capability. If the terminal does not support the content encoding method or does not have the capability to execute a specific service, the terminal downloads a codec or application software, and then acquires and reproduces the content.
  • the content supply system ex100 via the Internet ex101, but also a digital broadcasting system, at least the moving image encoding device (image encoding device) or the moving image decoding device (image decoding device) of the above embodiments. Any of these can be incorporated.
  • the unicasting of the content supply system ex100 is suitable for multicasting because it uses a satellite or the like to transmit and receive multiplexed data in which video and sound are multiplexed on broadcasting radio waves.
  • the same application is possible for the encoding process and the decoding process.
  • FIG. 32 is a diagram illustrating the smartphone ex115.
  • FIG. 33 is a diagram illustrating a configuration example of the smartphone ex115.
  • the smartphone ex115 receives the antenna ex450 for transmitting / receiving radio waves to / from the base station ex110, the camera unit ex465 capable of taking video and still images, the video captured by the camera unit ex465, and the antenna ex450.
  • a display unit ex458 for displaying data obtained by decoding the video or the like.
  • the smartphone ex115 further includes an operation unit ex466 that is a touch panel or the like, a voice output unit ex457 that is a speaker or the like for outputting voice or sound, a voice input unit ex456 that is a microphone or the like for inputting voice, and photographing.
  • Memory unit ex467 that can store encoded video or still image, recorded audio, received video or still image, encoded data such as mail, or decoded data, and a user, and network
  • An external memory may be used instead of the memory unit ex467.
  • a main control unit ex460 that comprehensively controls the display unit ex458, the operation unit ex466, and the like, a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, a modulation / Demodulation unit ex452, multiplexing / demultiplexing unit ex453, audio signal processing unit ex454, slot unit ex464, and memory unit ex467 are connected via bus ex470.
  • the power supply circuit unit ex461 starts up the smartphone ex115 in an operable state by supplying power from the battery pack to each unit.
  • the smartphone ex115 performs processing such as calling and data communication based on the control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like.
  • the voice signal picked up by the voice input unit ex456 is converted into a digital voice signal by the voice signal processing unit ex454, spread spectrum processed by the modulation / demodulation unit ex452, and digital / analog converted by the transmission / reception unit ex451.
  • the data is transmitted via the antenna ex450.
  • the received data is amplified and subjected to frequency conversion processing and analog-digital conversion processing, spectrum despreading processing is performed by the modulation / demodulation unit ex452, and converted to analog audio signal by the audio signal processing unit ex454, and then this is output to the audio output unit ex457.
  • text, still image, or video data is sent to the main control unit ex460 via the operation input control unit ex462 by the operation of the operation unit ex466 of the main body unit, and transmission / reception processing is performed similarly.
  • the video signal processing unit ex455 uses the video signal stored in the memory unit ex467 or the video signal input from the camera unit ex465 as described above.
  • the video data is compressed and encoded by the moving image encoding method shown in the form, and the encoded video data is sent to the multiplexing / demultiplexing unit ex453.
  • the audio signal processing unit ex454 encodes the audio signal picked up by the audio input unit ex456 while the camera unit ex465 captures a video or a still image, and sends the encoded audio data to the multiplexing / separating unit ex453. To do.
  • the multiplexing / demultiplexing unit ex453 multiplexes the encoded video data and the encoded audio data by a predetermined method, and the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the modulation / demodulation unit ex451 perform modulation processing and conversion.
  • the data is processed and transmitted via the antenna ex450.
  • the multiplexing / demultiplexing unit ex453 performs multiplexing By separating the data, the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the encoded video data is supplied to the video signal processing unit ex455 via the synchronization bus ex470. The converted audio data is supplied to the audio signal processing unit ex454.
  • the video signal processing unit ex455 decodes the video signal by the video decoding method corresponding to the video encoding method shown in each of the above embodiments, and is linked from the display unit ex458 via the display control unit ex459.
  • a video or still image included in the moving image file is displayed.
  • the audio signal processing unit ex454 decodes the audio signal, and the audio is output from the audio output unit ex457. Since real-time streaming is widespread, depending on the user's situation, there may be occasions where audio playback is not socially appropriate. Therefore, it is desirable that the initial value is a configuration in which only the video data is reproduced without reproducing the audio signal. Audio may be synchronized and played back only when the user performs an operation such as clicking on video data.
  • the smartphone ex115 has been described here as an example, in addition to a transmission / reception terminal having both an encoder and a decoder as a terminal, a transmission terminal having only an encoder and a reception having only a decoder There are three possible mounting formats: terminals.
  • terminals In the digital broadcasting system, it has been described as receiving or transmitting multiplexed data in which audio data or the like is multiplexed with video data.
  • multiplexed data includes character data related to video in addition to audio data. Multiplexing may be performed, and video data itself may be received or transmitted instead of multiplexed data.
  • the terminal often includes a GPU. Therefore, a configuration may be adopted in which a wide area is processed in a lump by utilizing the performance of the GPU by using a memory shared by the CPU and the GPU or a memory whose addresses are managed so as to be used in common. As a result, the encoding time can be shortened, real-time performance can be ensured, and low delay can be realized. In particular, it is efficient to perform motion search, deblocking filter, SAO (Sample Adaptive Offset), and transformation / quantization processing in batches in units of pictures or the like instead of the CPU.
  • SAO Sample Adaptive Offset
  • the present disclosure can be used for, for example, a television receiver, a digital video recorder, a car navigation, a mobile phone, a digital camera, a digital video camera, a video conference system, or an electronic mirror.

Abstract

An encoding device (100) extracts, from a plurality of candidate motion vectors, one or more predicted motion vector candidates for a block to be encoded, derives a motion vector for the block to be encoded by referring to a reference picture included in a moving image, encodes the difference between a predicted motion vector from among the extracted one or more predicted motion vector candidates and the derived motion vector for the block to be encoded, and uses the derived motion vector for the block to be encoded to perform motion compensation for the block to be encoded. In the extraction of the one or more predicted motion vector candidates, the device extracts all of the one or more predicted motion vector candidates on the basis of evaluation results for each of the plurality of candidate motion vectors obtained using a reconstructed image of an encoded region in the moving image without using the image region of the block to be encoded.

Description

符号化装置、復号装置、符号化方法及び復号方法Encoding device, decoding device, encoding method, and decoding method
 本開示は、複数のピクチャで構成される動画像を符号化する符号化装置等に関する。 The present disclosure relates to an encoding device that encodes a moving image including a plurality of pictures.
 従来、動画像を符号化するための規格として、H.265が存在する。H.265は、HEVC(High Efficiency Video Coding)とも呼ばれる。 Conventionally, as a standard for encoding moving images, H.264 265 exists. H. H.265 is also called HEVC (High Efficiency Video Coding).
 しかしながら、符号化効率のさらなる向上が望まれる一方で、その符号化効率の向上によって処理負担が増加してしまうという問題がある。 However, while further improvement of the encoding efficiency is desired, there is a problem that the processing load increases due to the improvement of the encoding efficiency.
 そこで、本開示は、処理負担の増加を抑えながら符号化効率の向上を図ることができる可能性がある符号化装置等を提供する。 Therefore, the present disclosure provides an encoding device and the like that may be able to improve the encoding efficiency while suppressing an increase in processing load.
 本開示の一態様に係る符号化装置は、動画像を符号化する符号化装置であって、処理回路と、前記処理回路に接続されたメモリとを備え、前記処理回路は、前記メモリを用いて、前記動画像における符号化対象ブロックに対応する複数の符号化済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、前記複数の候補動きベクトルから、前記符号化対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、前記動画像に含まれる参照ピクチャを参照して前記符号化対象ブロックの動きベクトルを導出し、抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化し、導出された前記符号化対象ブロックの動きベクトルを用いて前記符号化対象ブロックに対して動き補償を行い、前記少なくとも1つの予測動きベクトル候補の抽出では、前記少なくとも1つの予測動きベクトル候補の全てを、前記符号化対象ブロックの画像領域を使用せずに前記動画像における符号化済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する。 An encoding apparatus according to an aspect of the present disclosure is an encoding apparatus that encodes a moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit uses the memory. A plurality of candidate motion vectors based on respective motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image, and from the plurality of candidate motion vectors, the encoding target block At least one prediction motion vector candidate is extracted, a motion vector of the coding target block is derived with reference to a reference picture included in the moving image, and prediction of the extracted at least one prediction motion vector candidate is performed The difference between the motion vector and the derived motion vector of the encoding target block is encoded, and the derived encoding target block of the encoding target block is encoded. Motion vector is used to perform motion compensation on the encoding target block, and in the extraction of the at least one prediction motion vector candidate, all of the at least one prediction motion vector candidate is converted into an image area of the encoding target block. Is extracted based on the respective evaluation results of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image.
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific aspects may be realized by a system, apparatus, method, integrated circuit, computer program, or non-transitory recording medium such as a computer-readable CD-ROM. The present invention may be realized by any combination of an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 本開示の一態様に係る符号化装置等は、処理負担の増加を抑えながら符号化効率の向上を図ることができる。 The encoding apparatus and the like according to one aspect of the present disclosure can improve encoding efficiency while suppressing an increase in processing load.
図1は、実施の形態1に係る符号化装置の機能構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of the encoding apparatus according to Embodiment 1. 図2は、実施の形態1におけるブロック分割の一例を示す図である。FIG. 2 is a diagram illustrating an example of block division in the first embodiment. 図3は、各変換タイプに対応する変換基底関数を示す表である。FIG. 3 is a table showing conversion basis functions corresponding to each conversion type. 図4Aは、ALFで用いられるフィルタの形状の一例を示す図である。FIG. 4A is a diagram illustrating an example of the shape of a filter used in ALF. 図4Bは、ALFで用いられるフィルタの形状の他の一例を示す図である。FIG. 4B is a diagram illustrating another example of the shape of a filter used in ALF. 図4Cは、ALFで用いられるフィルタの形状の他の一例を示す図である。FIG. 4C is a diagram illustrating another example of the shape of a filter used in ALF. 図5は、イントラ予測における67個のイントラ予測モードを示す図である。FIG. 5 is a diagram illustrating 67 intra prediction modes in intra prediction. 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)を説明するための図である。FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along the motion trajectory. 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)を説明するための図である。FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture. 図8は、等速直線運動を仮定したモデルを説明するための図である。FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion. 図9は、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。FIG. 9 is a diagram for explaining the derivation of motion vectors in units of sub-blocks based on the motion vectors of a plurality of adjacent blocks. 図10は、実施の形態1に係る復号装置の機能構成を示すブロック図である。FIG. 10 is a block diagram showing a functional configuration of the decoding apparatus according to the first embodiment. 図11は、本開示の基礎となる他の符号化装置による動き補償を示すフローチャートである。FIG. 11 is a flowchart illustrating motion compensation by another encoding device that is the basis of the present disclosure. 図12は、本開示の基礎となる他の復号装置による動き補償を示すフローチャートである。FIG. 12 is a flowchart illustrating motion compensation by another decoding device that is the basis of the present disclosure. 図13は、評価値の算出方法の一例を説明するための図である。FIG. 13 is a diagram for explaining an example of an evaluation value calculation method. 図14は、評価値の算出方法の他の例を説明するための図である。FIG. 14 is a diagram for explaining another example of the evaluation value calculation method. 図15は、実施の形態2における符号化装置による動き補償の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of motion compensation by the encoding device according to the second embodiment. 図16は、実施の形態2における復号装置による動き補償の一例を示すフローチャートである。FIG. 16 is a flowchart illustrating an example of motion compensation by the decoding apparatus according to the second embodiment. 図17は、実施の形態2における符号化装置による動き補償の他の例を示すフローチャートである。FIG. 17 is a flowchart illustrating another example of motion compensation by the encoding apparatus according to the second embodiment. 図18は、実施の形態2における復号装置による動き補償の他の例を示すフローチャートである。FIG. 18 is a flowchart showing another example of motion compensation by the decoding apparatus in the second embodiment. 図19は、実施の形態2における、複数の候補動きベクトルからN個の予測動きベクトル候補を抽出する方法を説明するための図である。FIG. 19 is a diagram for explaining a method of extracting N predicted motion vector candidates from a plurality of candidate motion vectors in the second embodiment. 図20は、実施の形態3における符号化装置および復号装置による予測動きベクトルの選択方法を示すフローチャートである。FIG. 20 is a flowchart illustrating a method of selecting a motion vector predictor by the encoding device and the decoding device according to Embodiment 3. 図21は、実施の形態4における符号化装置による動き補償の一例を示すフローチャートである。FIG. 21 is a flowchart illustrating an example of motion compensation by the encoding device according to the fourth embodiment. 図22は、実施の形態4における復号装置による動き補償の一例を示すフローチャートである。FIG. 22 is a flowchart illustrating an example of motion compensation by the decoding apparatus according to the fourth embodiment. 図23は、実施の形態4における予測動きベクトル候補の抽出方法を説明するための図である。FIG. 23 is a diagram for explaining a method of extracting motion vector predictor candidates according to the fourth embodiment. 図24は、実施の形態4における共通の候補リストの一例を示す図である。FIG. 24 is a diagram illustrating an example of a common candidate list in the fourth embodiment. 図25は、各実施の形態に係る符号化装置の実装例を示すブロック図である。FIG. 25 is a block diagram illustrating an implementation example of the encoding device according to each embodiment. 図26は、各実施の形態に係る復号装置の実装例を示すブロック図である。FIG. 26 is a block diagram illustrating an implementation example of the decoding apparatus according to each embodiment. 図27は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 27 is an overall configuration diagram of a content supply system that implements a content distribution service. 図28は、スケーラブル符号化時の符号化構造の一例を示す図である。FIG. 28 is a diagram illustrating an example of a coding structure at the time of scalable coding. 図29は、スケーラブル符号化時の符号化構造の一例を示す図である。FIG. 29 is a diagram illustrating an example of a coding structure at the time of scalable coding. 図30は、webページの表示画面例を示す図である。FIG. 30 shows an example of a web page display screen. 図31は、webページの表示画面例を示す図である。FIG. 31 is a diagram illustrating an example of a web page display screen. 図32は、スマートフォンの一例を示す図である。FIG. 32 is a diagram illustrating an example of a smartphone. 図33は、スマートフォンの構成例を示すブロック図である。FIG. 33 is a block diagram illustrating a configuration example of a smartphone.
 以下、実施の形態について図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the scope of the claims. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 (実施の形態1)
 まず、後述する本開示の各態様で説明する処理および/または構成を適用可能な符号化装置および復号化装置の一例として、実施の形態1の概要を説明する。ただし、実施の形態1は、本開示の各態様で説明する処理および/または構成を適用可能な符号化装置および復号化装置の一例にすぎず、本開示の各態様で説明する処理および/または構成は、実施の形態1とは異なる符号化装置および復号化装置においても実施可能である。
(Embodiment 1)
First, an outline of the first embodiment will be described as an example of an encoding device and a decoding device to which the processing and / or configuration described in each aspect of the present disclosure to be described later can be applied. However, the first embodiment is merely an example of an encoding device and a decoding device to which the processing and / or configuration described in each aspect of the present disclosure can be applied, and the processing and / or processing described in each aspect of the present disclosure. The configuration can also be implemented in an encoding device and a decoding device different from those in the first embodiment.
 実施の形態1に対して本開示の各態様で説明する処理および/または構成を適用する場合、例えば以下のいずれかを行ってもよい。 When applying the processing and / or configuration described in each aspect of the present disclosure to Embodiment 1, for example, one of the following may be performed.
 (1)実施の形態1の符号化装置または復号化装置に対して、当該符号化装置または復号化装置を構成する複数の構成要素のうち、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (2)実施の形態1の符号化装置または復号化装置に対して、当該符号化装置または復号化装置を構成する複数の構成要素のうち一部の構成要素について機能または実施する処理の追加、置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する構成要素に対応する構成要素を、本開示の各態様で説明する構成要素に置き換えること
 (3)実施の形態1の符号化装置または復号化装置が実施する方法に対して、処理の追加、および/または当該方法に含まれる複数の処理のうちの一部の処理について置き換え、削除などの任意の変更を施した上で、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (4)実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (5)実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素が備える機能の一部を備える構成要素、または実施の形態1の符号化装置または復号化装置を構成する複数の構成要素のうちの一部の構成要素が実施する処理の一部を実施する構成要素を、本開示の各態様で説明する構成要素、本開示の各態様で説明する構成要素が備える機能の一部を備える構成要素、または本開示の各態様で説明する構成要素が実施する処理の一部を実施する構成要素と組み合わせて実施すること
 (6)実施の形態1の符号化装置または復号化装置が実施する方法に対して、当該方法に含まれる複数の処理のうち、本開示の各態様で説明する処理に対応する処理を、本開示の各態様で説明する処理に置き換えること
 (7)実施の形態1の符号化装置または復号化装置が実施する方法に含まれる複数の処理のうちの一部の処理を、本開示の各態様で説明する処理と組み合わせて実施すること
(1) The encoding apparatus or decoding apparatus according to the first embodiment corresponds to the constituent elements described in each aspect of the present disclosure among a plurality of constituent elements constituting the encoding apparatus or decoding apparatus. Replacing the constituent elements with constituent elements described in each aspect of the present disclosure (2) A plurality of constituent elements constituting the encoding apparatus or decoding apparatus with respect to the encoding apparatus or decoding apparatus of the first embodiment The constituent elements corresponding to the constituent elements described in each aspect of the present disclosure are added to the present disclosure after arbitrary changes such as addition, replacement, and deletion of functions or processes to be performed on some constituent elements among the constituent elements. (3) Addition of processes and / or a plurality of processes included in the method to the method performed by the encoding apparatus or decoding apparatus of the first embodiment home Replace any processing corresponding to the processing described in each aspect of the present disclosure with the processing described in each aspect of the present disclosure after performing arbitrary changes such as replacement and deletion of a part of the processing (4) Implementation The constituent elements described in each aspect of the present disclosure, the constituent elements described in the respective aspects of the present disclosure are part of the plurality of constituent elements constituting the encoding device or the decoding device of the first embodiment (5) Encoding device according to Embodiment 1 that is implemented in combination with a component that includes a part of the functions provided, or a component that performs a part of processing performed by a component described in each aspect of the present disclosure Alternatively, a component provided with a part of the functions provided by some of the components included in the decoding device, or a plurality of components included in the encoding device or the decoding device according to the first embodiment. Some of A component that performs a part of processing performed by a component is a component that is described in each aspect of the present disclosure, a component that includes a part of a function included in the component described in each aspect of the present disclosure, (6) A method performed by the encoding device or the decoding device according to Embodiment 1 is performed in combination with a component that performs a part of processing performed by the component described in each aspect of the disclosure. Of the plurality of processes included in the method, the process corresponding to the process described in each aspect of the present disclosure is replaced with the process described in each aspect of the present disclosure. (7) The encoding apparatus according to the first embodiment or A part of the plurality of processes included in the method performed by the decoding device is performed in combination with the processes described in each aspect of the present disclosure
 なお、本開示の各態様で説明する処理および/または構成の実施の仕方は、上記の例に限定されるものではない。例えば、実施の形態1において開示する動画像/画像符号化装置または動画像/画像復号化装置とは異なる目的で利用される装置において実施されてもよいし、各態様において説明した処理および/または構成を単独で実施してもよい。また、異なる態様において説明した処理および/または構成を組み合わせて実施してもよい。 Note that the processes and / or configurations described in each aspect of the present disclosure are not limited to the above examples. For example, the present invention may be implemented in an apparatus used for a different purpose from the moving picture / picture encoding apparatus or moving picture / picture decoding apparatus disclosed in the first embodiment, and the processing and / or described in each aspect. The configuration may be implemented alone. Moreover, you may implement combining the process and / or structure which were demonstrated in the different aspect.
 [符号化装置の概要]
 まず、実施の形態1に係る符号化装置の概要を説明する。図1は、実施の形態1に係る符号化装置100の機能構成を示すブロック図である。符号化装置100は、動画像/画像をブロック単位で符号化する動画像/画像符号化装置である。
[Outline of encoding device]
First, the outline | summary of the encoding apparatus which concerns on Embodiment 1 is demonstrated. FIG. 1 is a block diagram showing a functional configuration of encoding apparatus 100 according to Embodiment 1. The encoding device 100 is a moving image / image encoding device that encodes moving images / images in units of blocks.
 図1に示すように、符号化装置100は、画像をブロック単位で符号化する装置であって、分割部102と、減算部104と、変換部106と、量子化部108と、エントロピー符号化部110と、逆量子化部112と、逆変換部114と、加算部116と、ブロックメモリ118と、ループフィルタ部120と、フレームメモリ122と、イントラ予測部124と、インター予測部126と、予測制御部128と、を備える。 As shown in FIG. 1, an encoding apparatus 100 is an apparatus that encodes an image in units of blocks, and includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, and entropy encoding. Unit 110, inverse quantization unit 112, inverse transform unit 114, addition unit 116, block memory 118, loop filter unit 120, frame memory 122, intra prediction unit 124, inter prediction unit 126, A prediction control unit 128.
 符号化装置100は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128として機能する。また、符号化装置100は、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128に対応する専用の1以上の電子回路として実現されてもよい。 The encoding device 100 is realized by, for example, a general-purpose processor and a memory. In this case, when the software program stored in the memory is executed by the processor, the processor performs the division unit 102, the subtraction unit 104, the conversion unit 106, the quantization unit 108, the entropy encoding unit 110, and the inverse quantization unit 112. , An inverse transform unit 114, an addition unit 116, a loop filter unit 120, an intra prediction unit 124, an inter prediction unit 126, and a prediction control unit 128. The encoding apparatus 100 includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, an entropy coding unit 110, an inverse quantizing unit 112, an inverse transforming unit 114, an adding unit 116, and a loop filter unit 120. The intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128 may be implemented as one or more dedicated electronic circuits.
 以下に、符号化装置100に含まれる各構成要素について説明する。 Hereinafter, each component included in the encoding device 100 will be described.
 [分割部]
 分割部102は、入力動画像に含まれる各ピクチャを複数のブロックに分割し、各ブロックを減算部104に出力する。例えば、分割部102は、まず、ピクチャを固定サイズ(例えば128x128)のブロックに分割する。この固定サイズのブロックは、符号化ツリーユニット(CTU)と呼ばれることがある。そして、分割部102は、再帰的な四分木(quadtree)及び/又は二分木(binary tree)ブロック分割に基づいて、固定サイズのブロックの各々を可変サイズ(例えば64x64以下)のブロックに分割する。この可変サイズのブロックは、符号化ユニット(CU)、予測ユニット(PU)あるいは変換ユニット(TU)と呼ばれることがある。なお、本実施の形態では、CU、PU及びTUは区別される必要はなく、ピクチャ内の一部又はすべてのブロックがCU、PU、TUの処理単位となってもよい。
[Division part]
The dividing unit 102 divides each picture included in the input moving image into a plurality of blocks, and outputs each block to the subtracting unit 104. For example, the dividing unit 102 first divides a picture into blocks of a fixed size (for example, 128 × 128). This fixed size block may be referred to as a coding tree unit (CTU). Then, the dividing unit 102 divides each of the fixed size blocks into blocks of a variable size (for example, 64 × 64 or less) based on recursive quadtree and / or binary tree block division. . This variable size block may be referred to as a coding unit (CU), a prediction unit (PU) or a transform unit (TU). In the present embodiment, CU, PU, and TU do not need to be distinguished, and some or all blocks in a picture may be processing units of CU, PU, and TU.
 図2は、実施の形態1におけるブロック分割の一例を示す図である。図2において、実線は四分木ブロック分割によるブロック境界を表し、破線は二分木ブロック分割によるブロック境界を表す。 FIG. 2 is a diagram showing an example of block division in the first embodiment. In FIG. 2, a solid line represents a block boundary by quadtree block division, and a broken line represents a block boundary by binary tree block division.
 ここでは、ブロック10は、128x128画素の正方形ブロック(128x128ブロック)である。この128x128ブロック10は、まず、4つの正方形の64x64ブロックに分割される(四分木ブロック分割)。 Here, the block 10 is a 128 × 128 pixel square block (128 × 128 block). The 128 × 128 block 10 is first divided into four square 64 × 64 blocks (quadtree block division).
 左上の64x64ブロックは、さらに2つの矩形の32x64ブロックに垂直に分割され、左の32x64ブロックはさらに2つの矩形の16x64ブロックに垂直に分割される(二分木ブロック分割)。その結果、左上の64x64ブロックは、2つの16x64ブロック11、12と、32x64ブロック13とに分割される。 The upper left 64 × 64 block is further divided vertically into two rectangular 32 × 64 blocks, and the left 32 × 64 block is further divided vertically into two rectangular 16 × 64 blocks (binary tree block division). As a result, the upper left 64 × 64 block is divided into two 16 × 64 blocks 11 and 12 and a 32 × 64 block 13.
 右上の64x64ブロックは、2つの矩形の64x32ブロック14、15に水平に分割される(二分木ブロック分割)。 The upper right 64 × 64 block is horizontally divided into two rectangular 64 × 32 blocks 14 and 15 (binary tree block division).
 左下の64x64ブロックは、4つの正方形の32x32ブロックに分割される(四分木ブロック分割)。4つの32x32ブロックのうち左上のブロック及び右下のブロックはさらに分割される。左上の32x32ブロックは、2つの矩形の16x32ブロックに垂直に分割され、右の16x32ブロックはさらに2つの16x16ブロックに水平に分割される(二分木ブロック分割)。右下の32x32ブロックは、2つの32x16ブロックに水平に分割される(二分木ブロック分割)。その結果、左下の64x64ブロックは、16x32ブロック16と、2つの16x16ブロック17、18と、2つの32x32ブロック19、20と、2つの32x16ブロック21、22とに分割される。 The lower left 64x64 block is divided into four square 32x32 blocks (quadrant block division). Of the four 32 × 32 blocks, the upper left block and the lower right block are further divided. The upper left 32 × 32 block is vertically divided into two rectangular 16 × 32 blocks, and the right 16 × 32 block is further divided horizontally into two 16 × 16 blocks (binary tree block division). The lower right 32 × 32 block is horizontally divided into two 32 × 16 blocks (binary tree block division). As a result, the lower left 64 × 64 block is divided into a 16 × 32 block 16, two 16 × 16 blocks 17 and 18, two 32 × 32 blocks 19 and 20, and two 32 × 16 blocks 21 and 22.
 右下の64x64ブロック23は分割されない。 The lower right 64x64 block 23 is not divided.
 以上のように、図2では、ブロック10は、再帰的な四分木及び二分木ブロック分割に基づいて、13個の可変サイズのブロック11~23に分割される。このような分割は、QTBT(quad-tree plus binary tree)分割と呼ばれることがある。 As described above, in FIG. 2, the block 10 is divided into 13 variable-size blocks 11 to 23 based on the recursive quadtree and binary tree block division. Such division may be called QTBT (quad-tree plus binary tree) division.
 なお、図2では、1つのブロックが4つ又は2つのブロックに分割されていたが(四分木又は二分木ブロック分割)、分割はこれに限定されない。例えば、1つのブロックが3つのブロックに分割されてもよい(三分木ブロック分割)。このような三分木ブロック分割を含む分割は、MBT(multi type tree)分割と呼ばれることがある。 In FIG. 2, one block is divided into four or two blocks (quadrature tree or binary tree block division), but the division is not limited to this. For example, one block may be divided into three blocks (triple tree block division). Such a division including a tri-tree block division may be called an MBT (multi type tree) division.
 [減算部]
 減算部104は、分割部102によって分割されたブロック単位で原信号(原サンプル)から予測信号(予測サンプル)を減算する。つまり、減算部104は、符号化対象ブロック(以下、カレントブロックという)の予測誤差(残差ともいう)を算出する。そして、減算部104は、算出された予測誤差を変換部106に出力する。
[Subtraction section]
The subtraction unit 104 subtracts the prediction signal (prediction sample) from the original signal (original sample) in units of blocks divided by the division unit 102. That is, the subtraction unit 104 calculates a prediction error (also referred to as a residual) of a coding target block (hereinafter referred to as a current block). Then, the subtraction unit 104 outputs the calculated prediction error to the conversion unit 106.
 原信号は、符号化装置100の入力信号であり、動画像を構成する各ピクチャの画像を表す信号(例えば輝度(luma)信号及び2つの色差(chroma)信号)である。以下において、画像を表す信号をサンプルともいうこともある。 The original signal is an input signal of the encoding device 100, and is a signal (for example, a luminance (luma) signal and two color difference (chroma) signals) representing an image of each picture constituting the moving image. Hereinafter, a signal representing an image may be referred to as a sample.
 [変換部]
 変換部106は、空間領域の予測誤差を周波数領域の変換係数に変換し、変換係数を量子化部108に出力する。具体的には、変換部106は、例えば空間領域の予測誤差に対して予め定められた離散コサイン変換(DCT)又は離散サイン変換(DST)を行う。
[Conversion section]
The transform unit 106 transforms the prediction error in the spatial domain into a transform factor in the frequency domain, and outputs the transform coefficient to the quantization unit 108. Specifically, the transform unit 106 performs, for example, a predetermined discrete cosine transform (DCT) or discrete sine transform (DST) on a prediction error in the spatial domain.
 なお、変換部106は、複数の変換タイプの中から適応的に変換タイプを選択し、選択された変換タイプに対応する変換基底関数(transform basis function)を用いて、予測誤差を変換係数に変換してもよい。このような変換は、EMT(explicit multiple core transform)又はAMT(adaptive multiple transform)と呼ばれることがある。 Note that the conversion unit 106 adaptively selects a conversion type from a plurality of conversion types, and converts a prediction error into a conversion coefficient using a conversion basis function corresponding to the selected conversion type. May be. Such a conversion may be referred to as EMT (explicit multiple core transform) or AMT (adaptive multiple transform).
 複数の変換タイプは、例えば、DCT-II、DCT-V、DCT-VIII、DST-I及びDST-VIIを含む。図3は、各変換タイプに対応する変換基底関数を示す表である。図3においてNは入力画素の数を示す。これらの複数の変換タイプの中からの変換タイプの選択は、例えば、予測の種類(イントラ予測及びインター予測)に依存してもよいし、イントラ予測モードに依存してもよい。 The plurality of conversion types include, for example, DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII. FIG. 3 is a table showing conversion basis functions corresponding to each conversion type. In FIG. 3, N indicates the number of input pixels. Selection of a conversion type from among these multiple conversion types may depend on, for example, the type of prediction (intra prediction and inter prediction), or may depend on an intra prediction mode.
 このようなEMT又はAMTを適用するか否かを示す情報(例えばAMTフラグと呼ばれる)及び選択された変換タイプを示す情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 Information indicating whether or not to apply such EMT or AMT (for example, called an AMT flag) and information indicating the selected conversion type are signaled at the CU level. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
 また、変換部106は、変換係数(変換結果)を再変換してもよい。このような再変換は、AST(adaptive secondary transform)又はNSST(non-separable secondary transform)と呼ばれることがある。例えば、変換部106は、イントラ予測誤差に対応する変換係数のブロックに含まれるサブブロック(例えば4x4サブブロック)ごとに再変換を行う。NSSTを適用するか否かを示す情報及びNSSTに用いられる変換行列に関する情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 Further, the conversion unit 106 may reconvert the conversion coefficient (conversion result). Such reconversion is sometimes referred to as AST (adaptive secondary transform) or NSST (non-separable secondary transform). For example, the conversion unit 106 performs re-conversion for each sub-block (for example, 4 × 4 sub-block) included in the block of the conversion coefficient corresponding to the intra prediction error. Information indicating whether or not NSST is applied and information related to the transformation matrix used for NSST are signaled at the CU level. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
 ここで、Separableな変換とは、入力の次元の数だけ方向ごとに分離して複数回変換を行う方式であり、Non-Separableな変換とは、入力が多次元であった際に2つ以上の次元をまとめて1次元とみなして、まとめて変換を行う方式である。 Here, the separable conversion is a method of performing the conversion a plurality of times by separating the number of dimensions of the input for each direction, and the non-separable conversion is two or more when the input is multidimensional. In this method, the dimensions are collectively regarded as one dimension, and conversion is performed collectively.
 例えば、Non-Separableな変換の1例として、入力が4×4のブロックであった場合にはそれを16個の要素を持ったひとつの配列とみなし、その配列に対して16×16の変換行列で変換処理を行うようなものが挙げられる。 For example, as an example of non-separable conversion, if an input is a 4 × 4 block, it is regarded as one array having 16 elements, and 16 × 16 conversion is performed on the array. The thing which performs the conversion process with a matrix is mentioned.
 また、同様に4×4の入力ブロックを16個の要素を持ったひとつの配列とみなした後に、その配列に対してGivens回転を複数回行うようなもの(Hypercube Givens Transform)もNon-Separableな変換の例である。 Similarly, a 4 × 4 input block is regarded as a single array having 16 elements, and then the Givens rotation is performed multiple times on the array (Hypercube Givens Transform) is also a non-separable. It is an example of conversion.
 [量子化部]
 量子化部108は、変換部106から出力された変換係数を量子化する。具体的には、量子化部108は、カレントブロックの変換係数を所定の走査順序で走査し、走査された変換係数に対応する量子化パラメータ(QP)に基づいて当該変換係数を量子化する。そして、量子化部108は、カレントブロックの量子化された変換係数(以下、量子化係数という)をエントロピー符号化部110及び逆量子化部112に出力する。
[Quantization unit]
The quantization unit 108 quantizes the transform coefficient output from the transform unit 106. Specifically, the quantization unit 108 scans the transform coefficients of the current block in a predetermined scanning order, and quantizes the transform coefficients based on the quantization parameter (QP) corresponding to the scanned transform coefficients. Then, the quantization unit 108 outputs the quantized transform coefficient (hereinafter referred to as a quantization coefficient) of the current block to the entropy encoding unit 110 and the inverse quantization unit 112.
 所定の順序は、変換係数の量子化/逆量子化のための順序である。例えば、所定の走査順序は、周波数の昇順(低周波から高周波の順)又は降順(高周波から低周波の順)で定義される。 The predetermined order is an order for quantization / inverse quantization of transform coefficients. For example, the predetermined scanning order is defined in ascending order of frequency (order from low frequency to high frequency) or descending order (order from high frequency to low frequency).
 量子化パラメータとは、量子化ステップ(量子化幅)を定義するパラメータである。例えば、量子化パラメータの値が増加すれば量子化ステップも増加する。つまり、量子化パラメータの値が増加すれば量子化誤差が増大する。 The quantization parameter is a parameter that defines a quantization step (quantization width). For example, if the value of the quantization parameter increases, the quantization step also increases. That is, if the value of the quantization parameter increases, the quantization error increases.
 [エントロピー符号化部]
 エントロピー符号化部110は、量子化部108から入力である量子化係数を可変長符号化することにより符号化信号(符号化ビットストリーム)を生成する。具体的には、エントロピー符号化部110は、例えば、量子化係数を二値化し、二値信号を算術符号化する。
[Entropy encoding unit]
The entropy encoding unit 110 generates an encoded signal (encoded bit stream) by performing variable length encoding on the quantization coefficient that is input from the quantization unit 108. Specifically, the entropy encoding unit 110 binarizes the quantization coefficient, for example, and arithmetically encodes the binary signal.
 [逆量子化部]
 逆量子化部112は、量子化部108からの入力である量子化係数を逆量子化する。具体的には、逆量子化部112は、カレントブロックの量子化係数を所定の走査順序で逆量子化する。そして、逆量子化部112は、カレントブロックの逆量子化された変換係数を逆変換部114に出力する。
[Inverse quantization unit]
The inverse quantization unit 112 inversely quantizes the quantization coefficient that is an input from the quantization unit 108. Specifically, the inverse quantization unit 112 inversely quantizes the quantization coefficient of the current block in a predetermined scanning order. Then, the inverse quantization unit 112 outputs the inverse-quantized transform coefficient of the current block to the inverse transform unit 114.
 [逆変換部]
 逆変換部114は、逆量子化部112からの入力である変換係数を逆変換することにより予測誤差を復元する。具体的には、逆変換部114は、変換係数に対して、変換部106による変換に対応する逆変換を行うことにより、カレントブロックの予測誤差を復元する。そして、逆変換部114は、復元された予測誤差を加算部116に出力する。
[Inverse conversion part]
The inverse transform unit 114 restores the prediction error by inverse transforming the transform coefficient that is an input from the inverse quantization unit 112. Specifically, the inverse transform unit 114 restores the prediction error of the current block by performing an inverse transform corresponding to the transform by the transform unit 106 on the transform coefficient. Then, the inverse transformation unit 114 outputs the restored prediction error to the addition unit 116.
 なお、復元された予測誤差は、量子化により情報が失われているので、減算部104が算出した予測誤差と一致しない。すなわち、復元された予測誤差には、量子化誤差が含まれている。 Note that the restored prediction error does not match the prediction error calculated by the subtraction unit 104 because information is lost due to quantization. That is, the restored prediction error includes a quantization error.
 [加算部]
 加算部116は、逆変換部114からの入力である予測誤差と予測制御部128からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部116は、再構成されたブロックをブロックメモリ118及びループフィルタ部120に出力する。再構成ブロックは、ローカル復号ブロックと呼ばれることもある。
[Addition part]
The adder 116 reconstructs the current block by adding the prediction error input from the inverse transform unit 114 and the prediction sample input from the prediction control unit 128. Then, the adding unit 116 outputs the reconfigured block to the block memory 118 and the loop filter unit 120. The reconstructed block is sometimes referred to as a local decoding block.
 [ブロックメモリ]
 ブロックメモリ118は、イントラ予測で参照されるブロックであって符号化対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ118は、加算部116から出力された再構成ブロックを格納する。
[Block memory]
The block memory 118 is a storage unit for storing blocks in an encoding target picture (hereinafter referred to as current picture) that are referred to in intra prediction. Specifically, the block memory 118 stores the reconstructed block output from the adding unit 116.
 [ループフィルタ部]
 ループフィルタ部120は、加算部116によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ122に出力する。ループフィルタとは、符号化ループ内で用いられるフィルタ(インループフィルタ)であり、例えば、デブロッキング・フィルタ(DF)、サンプルアダプティブオフセット(SAO)及びアダプティブループフィルタ(ALF)などを含む。
[Loop filter section]
The loop filter unit 120 applies a loop filter to the block reconstructed by the adding unit 116 and outputs the filtered reconstructed block to the frame memory 122. The loop filter is a filter (in-loop filter) used in the encoding loop, and includes, for example, a deblocking filter (DF), a sample adaptive offset (SAO), an adaptive loop filter (ALF), and the like.
 ALFでは、符号化歪みを除去するための最小二乗誤差フィルタが適用され、例えばカレントブロック内の2x2サブブロックごとに、局所的な勾配(gradient)の方向及び活性度(activity)に基づいて複数のフィルタの中から選択された1つのフィルタが適用される。 In ALF, a least square error filter is applied to remove coding distortion. For example, for each 2 × 2 sub-block in the current block, a plurality of multiples based on the direction of the local gradient and the activity are provided. One filter selected from the filters is applied.
 具体的には、まず、サブブロック(例えば2x2サブブロック)が複数のクラス(例えば15又は25クラス)に分類される。サブブロックの分類は、勾配の方向及び活性度に基づいて行われる。例えば、勾配の方向値D(例えば0~2又は0~4)と勾配の活性値A(例えば0~4)とを用いて分類値C(例えばC=5D+A)が算出される。そして、分類値Cに基づいて、サブブロックが複数のクラス(例えば15又は25クラス)に分類される。 Specifically, first, sub-blocks (for example, 2 × 2 sub-blocks) are classified into a plurality of classes (for example, 15 or 25 classes). Sub-block classification is performed based on gradient direction and activity. For example, the classification value C (for example, C = 5D + A) is calculated using the gradient direction value D (for example, 0 to 2 or 0 to 4) and the gradient activity value A (for example, 0 to 4). Then, based on the classification value C, the sub-blocks are classified into a plurality of classes (for example, 15 or 25 classes).
 勾配の方向値Dは、例えば、複数の方向(例えば水平、垂直及び2つの対角方向)の勾配を比較することにより導出される。また、勾配の活性値Aは、例えば、複数の方向の勾配を加算し、加算結果を量子化することにより導出される。 The direction value D of the gradient is derived, for example, by comparing gradients in a plurality of directions (for example, horizontal, vertical, and two diagonal directions). The gradient activation value A is derived, for example, by adding gradients in a plurality of directions and quantizing the addition result.
 このような分類の結果に基づいて、複数のフィルタの中からサブブロックのためのフィルタが決定される。 -Based on the result of such classification, a filter for a sub-block is determined from among a plurality of filters.
 ALFで用いられるフィルタの形状としては例えば円対称形状が利用される。図4A~図4Cは、ALFで用いられるフィルタの形状の複数の例を示す図である。図4Aは、5x5ダイヤモンド形状フィルタを示し、図4Bは、7x7ダイヤモンド形状フィルタを示し、図4Cは、9x9ダイヤモンド形状フィルタを示す。フィルタの形状を示す情報は、ピクチャレベルで信号化される。なお、フィルタの形状を示す情報の信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル又はCUレベル)であってもよい。 As the shape of the filter used in ALF, for example, a circularly symmetric shape is used. 4A to 4C are diagrams showing a plurality of examples of filter shapes used in ALF. 4A shows a 5 × 5 diamond shape filter, FIG. 4B shows a 7 × 7 diamond shape filter, and FIG. 4C shows a 9 × 9 diamond shape filter. Information indicating the shape of the filter is signalized at the picture level. It should be noted that the signalization of the information indicating the filter shape need not be limited to the picture level, but may be another level (for example, a sequence level, a slice level, a tile level, a CTU level, or a CU level).
 ALFのオン/オフは、例えば、ピクチャレベル又はCUレベルで決定される。例えば、輝度についてはCUレベルでALFを適用するか否かが決定され、色差についてはピクチャレベルでALFを適用するか否かが決定される。ALFのオン/オフを示す情報は、ピクチャレベル又はCUレベルで信号化される。なお、ALFのオン/オフを示す情報の信号化は、ピクチャレベル又はCUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 ON / OFF of ALF is determined at the picture level or the CU level, for example. For example, for luminance, it is determined whether to apply ALF at the CU level, and for color difference, it is determined whether to apply ALF at the picture level. Information indicating ALF on / off is signaled at the picture level or the CU level. Signaling of information indicating ALF on / off need not be limited to the picture level or the CU level, and may be performed at other levels (for example, a sequence level, a slice level, a tile level, or a CTU level). Good.
 選択可能な複数のフィルタ(例えば15又は25までのフィルタ)の係数セットは、ピクチャレベルで信号化される。なお、係数セットの信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル、CUレベル又はサブブロックレベル)であってもよい。 A coefficient set of a plurality of selectable filters (for example, up to 15 or 25 filters) is signalized at the picture level. The signalization of the coefficient set need not be limited to the picture level, but may be another level (for example, sequence level, slice level, tile level, CTU level, CU level, or sub-block level).
 [フレームメモリ]
 フレームメモリ122は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ122は、ループフィルタ部120によってフィルタされた再構成ブロックを格納する。
[Frame memory]
The frame memory 122 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 122 stores the reconstructed block filtered by the loop filter unit 120.
 [イントラ予測部]
 イントラ予測部124は、ブロックメモリ118に格納されたカレントピクチャ内のブロックを参照してカレントブロックのイントラ予測(画面内予測ともいう)を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部124は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部128に出力する。
[Intra prediction section]
The intra prediction unit 124 generates a prediction signal (intra prediction signal) by referring to the block in the current picture stored in the block memory 118 and performing intra prediction (also referred to as intra-screen prediction) of the current block. Specifically, the intra prediction unit 124 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, luminance value and color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. To the unit 128.
 例えば、イントラ予測部124は、予め規定された複数のイントラ予測モードのうちの1つを用いてイントラ予測を行う。複数のイントラ予測モードは、1以上の非方向性予測モードと、複数の方向性予測モードと、を含む。 For example, the intra prediction unit 124 performs intra prediction using one of a plurality of predefined intra prediction modes. The plurality of intra prediction modes include one or more non-directional prediction modes and a plurality of directional prediction modes.
 1以上の非方向性予測モードは、例えばH.265/HEVC(High-Efficiency Video Coding)規格(非特許文献1)で規定されたPlanar予測モード及びDC予測モードを含む。 One or more non-directional prediction modes are for example H.264. It includes Planar prediction mode and DC prediction mode defined by H.265 / HEVC (High-Efficiency Video Coding) standard (Non-patent Document 1).
 複数の方向性予測モードは、例えばH.265/HEVC規格で規定された33方向の予測モードを含む。なお、複数の方向性予測モードは、33方向に加えてさらに32方向の予測モード(合計で65個の方向性予測モード)を含んでもよい。図5は、イントラ予測における67個のイントラ予測モード(2個の非方向性予測モード及び65個の方向性予測モード)を示す図である。実線矢印は、H.265/HEVC規格で規定された33方向を表し、破線矢印は、追加された32方向を表す。 The multiple directionality prediction modes are for example H.264. It includes 33-direction prediction modes defined in the H.265 / HEVC standard. In addition to the 33 directions, the plurality of directionality prediction modes may further include 32 direction prediction modes (a total of 65 directionality prediction modes). FIG. 5 is a diagram illustrating 67 intra prediction modes (two non-directional prediction modes and 65 directional prediction modes) in intra prediction. The solid line arrows The 33 directions defined in the H.265 / HEVC standard are represented, and the dashed arrow represents the added 32 directions.
 なお、色差ブロックのイントラ予測において、輝度ブロックが参照されてもよい。つまり、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分が予測されてもよい。このようなイントラ予測は、CCLM(cross-component linear model)予測と呼ばれることがある。このような輝度ブロックを参照する色差ブロックのイントラ予測モード(例えばCCLMモードと呼ばれる)は、色差ブロックのイントラ予測モードの1つとして加えられてもよい。 Note that the luminance block may be referred to in the intra prediction of the color difference block. That is, the color difference component of the current block may be predicted based on the luminance component of the current block. Such intra prediction is sometimes called CCLM (cross-component linear model) prediction. The intra prediction mode (for example, called CCLM mode) of the color difference block which refers to such a luminance block may be added as one of the intra prediction modes of the color difference block.
 イントラ予測部124は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正してもよい。このような補正をともなうイントラ予測は、PDPC(position dependent intra prediction combination)と呼ばれることがある。PDPCの適用の有無を示す情報(例えばPDPCフラグと呼ばれる)は、例えばCUレベルで信号化される。なお、この情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。 The intra prediction unit 124 may correct the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction. Intra prediction with such correction may be called PDPC (position dependent intra prediction combination). Information indicating whether or not PDPC is applied (for example, referred to as a PDPC flag) is signaled, for example, at the CU level. The signalization of this information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
 [インター予測部]
 インター予測部126は、フレームメモリ122に格納された参照ピクチャであってカレントピクチャとは異なる参照ピクチャを参照してカレントブロックのインター予測(画面間予測ともいう)を行うことで、予測信号(インター予測信号)を生成する。インター予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部126は、カレントブロック又はサブブロックについて参照ピクチャ内で動き探索(motion estimation)を行う。そして、インター予測部126は、動き探索により得られた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成する。そして、インター予測部126は、生成されたインター予測信号を予測制御部128に出力する。
[Inter prediction section]
The inter prediction unit 126 refers to a reference picture stored in the frame memory 122 and is different from the current picture, and performs inter prediction (also referred to as inter-screen prediction) of the current block, thereby generating a prediction signal (inter prediction signal). Prediction signal). Inter prediction is performed in units of a current block or a sub-block (for example, 4 × 4 block) in the current block. For example, the inter prediction unit 126 performs motion estimation in the reference picture for the current block or sub-block. Then, the inter prediction unit 126 generates an inter prediction signal of the current block or sub-block by performing motion compensation using motion information (for example, a motion vector) obtained by motion search. Then, the inter prediction unit 126 outputs the generated inter prediction signal to the prediction control unit 128.
 動き補償に用いられた動き情報は信号化される。動きベクトルの信号化には、予測動きベクトル(motion vector predictor)が用いられてもよい。つまり、動きベクトルと予測動きベクトルとの間の差分が信号化されてもよい。 The motion information used for motion compensation is signaled. A motion vector predictor may be used for signalizing the motion vector. That is, the difference between the motion vector and the predicted motion vector may be signaled.
 なお、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号が生成されてもよい。具体的には、動き探索により得られた動き情報に基づく予測信号と、隣接ブロックの動き情報に基づく予測信号と、を重み付け加算することにより、カレントブロック内のサブブロック単位でインター予測信号が生成されてもよい。このようなインター予測(動き補償)は、OBMC(overlapped block motion compensation)と呼ばれることがある。 Note that an inter prediction signal may be generated using not only the motion information of the current block obtained by motion search but also the motion information of adjacent blocks. Specifically, the inter prediction signal is generated in units of sub-blocks in the current block by weighted addition of the prediction signal based on the motion information obtained by motion search and the prediction signal based on the motion information of adjacent blocks. May be. Such inter prediction (motion compensation) is sometimes called OBMC (overlapped block motion compensation).
 このようなOBMCモードでは、OBMCのためのサブブロックのサイズを示す情報(例えばOBMCブロックサイズと呼ばれる)は、シーケンスレベルで信号化される。また、OBMCモードを適用するか否かを示す情報(例えばOBMCフラグと呼ばれる)は、CUレベルで信号化される。なお、これらの情報の信号化のレベルは、シーケンスレベル及びCUレベルに限定される必要はなく、他のレベル(例えばピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 In such an OBMC mode, information indicating the size of a sub-block for OBMC (for example, called OBMC block size) is signaled at the sequence level. Also, information indicating whether or not to apply the OBMC mode (for example, referred to as an OBMC flag) is signaled at the CU level. Note that the level of signalization of these information does not need to be limited to the sequence level and the CU level, and may be other levels (for example, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). Good.
 なお、動き情報は信号化されずに、復号装置側で導出されてもよい。例えば、H.265/HEVC規格で規定されたマージモードが用いられてもよい。また例えば、復号装置側で動き探索を行うことにより動き情報が導出されてもよい。この場合、カレントブロックの画素値を用いずに動き探索が行われる。 Note that the motion information may be derived on the decoding device side without being converted into a signal. For example, H.M. A merge mode defined in the H.265 / HEVC standard may be used. Further, for example, the motion information may be derived by performing motion search on the decoding device side. In this case, motion search is performed without using the pixel value of the current block.
 ここで、復号装置側で動き探索を行うモードについて説明する。この復号装置側で動き探索を行うモードは、PMMVD(pattern matched motion vector derivation)モード又はFRUC(frame rate up-conversion)モードと呼ばれることがある。 Here, a mode in which motion search is performed on the decoding device side will be described. The mode in which motion search is performed on the decoding device side is sometimes called a PMMVD (patterned motion vector derivation) mode or an FRUC (frame rate up-conversion) mode.
 まず、カレントブロックに空間的又は時間的に隣接する符号化済みブロックの動きベクトルを参照して、各々が予測動きベクトルを有する複数の候補のリスト(マージリストと共通であってもよい)が生成される。そして、候補リストに含まれる各候補の評価値が算出され、評価値に基づいて1つの候補が選択される。 First, by referring to the motion vector of an encoded block spatially or temporally adjacent to the current block, a list of a plurality of candidates each having a predicted motion vector (may be common with the merge list) is generated Is done. Then, the evaluation value of each candidate included in the candidate list is calculated, and one candidate is selected based on the evaluation value.
 そして、選択された候補の動きベクトルに基づいて、カレントブロックのための動きベクトルが導出される。具体的には、例えば、選択された候補の動きベクトルがそのままカレントブロックのための動きベクトルとして導出される。また例えば、選択された候補の動きベクトルに対応する参照ピクチャ内の位置の周辺領域において、パターンマッチングを行うことにより、カレントブロックのための動きベクトルが導出されてもよい。 Then, a motion vector for the current block is derived based on the selected candidate motion vector. Specifically, for example, the selected candidate motion vector is directly derived as a motion vector for the current block. Further, for example, the motion vector for the current block may be derived by performing pattern matching in the peripheral region at the position in the reference picture corresponding to the selected candidate motion vector.
 なお、評価値は、動きベクトルに対応する参照ピクチャ内の領域と、所定の領域との間のパターンマッチングによって算出される。 Note that the evaluation value is calculated by pattern matching between an area in the reference picture corresponding to the motion vector and a predetermined area.
 パターンマッチングとしては、第1パターンマッチング又は第2パターンマッチングが用いられる。第1パターンマッチング及び第2パターンマッチングは、それぞれ、バイラテラルマッチング(bilateral matching)及びテンプレートマッチング(template matching)と呼ばれることがある。 As the pattern matching, the first pattern matching or the second pattern matching is used. The first pattern matching and the second pattern matching may be referred to as bilateral matching and template matching, respectively.
 第1パターンマッチングでは、異なる2つの参照ピクチャ内の2つのブロックであってカレントブロックの動き軌道(motion trajectory)に沿う2つのブロックの間でパターンマッチングが行われる。したがって、第1パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントブロックの動き軌道に沿う他の参照ピクチャ内の領域が用いられる。 In the first pattern matching, pattern matching is performed between two blocks in two different reference pictures that follow the motion trajectory of the current block. Therefore, in the first pattern matching, a region in another reference picture along the motion trajectory of the current block is used as the predetermined region for calculating the candidate evaluation value described above.
 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)を説明するための図である。図6に示すように、第1パターンマッチングでは、カレントブロック(Cur block)の動き軌道に沿う2つのブロックであって異なる2つの参照ピクチャ(Ref0、Ref1)内の2つのブロックのペアの中で最もマッチするペアを探索することにより2つの動きベクトル(MV0、MV1)が導出される。 FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along a motion trajectory. As shown in FIG. 6, in the first pattern matching, two blocks along the motion trajectory of the current block (Cur block) and two blocks in two different reference pictures (Ref0, Ref1) are used. By searching for the best matching pair, two motion vectors (MV0, MV1) are derived.
 連続的な動き軌道の仮定の下では、2つの参照ブロックを指し示す動きベクトル(MV0、MV1)は、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref0、Ref1)との間の時間的な距離(TD0、TD1)に対して比例する。例えば、カレントピクチャが時間的に2つの参照ピクチャの間に位置し、カレントピクチャから2つの参照ピクチャへの時間的な距離が等しい場合、第1パターンマッチングでは、鏡映対称な双方向の動きベクトルが導出される。 Under the assumption of continuous motion trajectory, the motion vectors (MV0, MV1) pointing to the two reference blocks are temporal distances between the current picture (Cur Pic) and the two reference pictures (Ref0, Ref1). It is proportional to (TD0, TD1). For example, when the current picture is temporally located between two reference pictures and the temporal distances from the current picture to the two reference pictures are equal, the first pattern matching uses a mirror-symmetric bi-directional motion vector Is derived.
 第2パターンマッチングでは、カレントピクチャ内のテンプレート(カレントピクチャ内でカレントブロックに隣接するブロック(例えば上及び/又は左隣接ブロック))と参照ピクチャ内のブロックとの間でパターンマッチングが行われる。したがって、第2パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントピクチャ内のカレントブロックに隣接するブロックが用いられる。 In the second pattern matching, pattern matching is performed between a template in the current picture (a block adjacent to the current block in the current picture (for example, an upper and / or left adjacent block)) and a block in the reference picture. Therefore, in the second pattern matching, a block adjacent to the current block in the current picture is used as the predetermined region for calculating the candidate evaluation value described above.
 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)を説明するための図である。図7に示すように、第2パターンマッチングでは、カレントピクチャ(Cur Pic)内でカレントブロック(Cur block)に隣接するブロックと最もマッチするブロックを参照ピクチャ(Ref0)内で探索することによりカレントブロックの動きベクトルが導出される。 FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture. As shown in FIG. 7, in the second pattern matching, the current block is searched by searching the reference picture (Ref0) for the block that most closely matches the block adjacent to the current block (Cur block) in the current picture (Cur Pic). Of motion vectors are derived.
 このようなFRUCモードを適用するか否かを示す情報(例えばFRUCフラグと呼ばれる)は、CUレベルで信号化される。また、FRUCモードが適用される場合(例えばFRUCフラグが真の場合)、パターンマッチングの方法(第1パターンマッチング又は第2パターンマッチング)を示す情報(例えばFRUCモードフラグと呼ばれる)がCUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 Information indicating whether or not to apply such FRUC mode (for example, called FRUC flag) is signaled at the CU level. In addition, when the FRUC mode is applied (for example, when the FRUC flag is true), information indicating the pattern matching method (first pattern matching or second pattern matching) (for example, called the FRUC mode flag) is signaled at the CU level. It becomes. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, sequence level, picture level, slice level, tile level, CTU level, or sub-block level). .
 なお、動き探索とは異なる方法で、復号装置側で動き情報が導出されてもよい。例えば、等速直線運動を仮定したモデルに基づき、画素単位で周辺画素値を用いて動きベクトルの補正量が算出されてもよい。 Note that motion information may be derived on the decoding device side by a method different from motion search. For example, the motion vector correction amount may be calculated using a peripheral pixel value for each pixel based on a model assuming constant velocity linear motion.
 ここで、等速直線運動を仮定したモデルに基づいて動きベクトルを導出するモードについて説明する。このモードは、BIO(bi-directional optical flow)モードと呼ばれることがある。 Here, a mode for deriving a motion vector based on a model assuming constant velocity linear motion will be described. This mode may be referred to as a BIO (bi-directional optical flow) mode.
 図8は、等速直線運動を仮定したモデルを説明するための図である。図8において、(v,v)は、速度ベクトルを示し、τ、τは、それぞれ、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref,Ref)との間の時間的な距離を示す。(MVx,MVy)は、参照ピクチャRefに対応する動きベクトルを示し、(MVx、MVy)は、参照ピクチャRefに対応する動きベクトルを示す。 FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion. In FIG. 8, (v x , v y ) indicates a velocity vector, and τ 0 and τ 1 are the time between the current picture (Cur Pic) and two reference pictures (Ref 0 , Ref 1 ), respectively. The distance. (MVx 0 , MVy 0 ) indicates a motion vector corresponding to the reference picture Ref 0 , and (MVx 1 , MVy 1 ) indicates a motion vector corresponding to the reference picture Ref 1 .
 このとき速度ベクトル(v,v)の等速直線運動の仮定の下では、(MVx,MVy)及び(MVx,MVy)は、それぞれ、(vτ,vτ)及び(-vτ,-vτ)と表され、以下のオプティカルフロー等式(1)が成り立つ。 At this time, under the assumption of constant velocity linear motion of the velocity vector (v x , v y ), (MVx 0 , MVy 0 ) and (MVx 1 , MVy 1 ) are (v x τ 0 , v y τ), respectively. 0 ) and (−v x τ 1 , −v y τ 1 ), and the following optical flow equation (1) holds.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、I(k)は、動き補償後の参照画像k(k=0,1)の輝度値を示す。このオプティカルフロー等式は、(i)輝度値の時間微分と、(ii)水平方向の速度及び参照画像の空間勾配の水平成分の積と、(iii)垂直方向の速度及び参照画像の空間勾配の垂直成分の積と、の和が、ゼロと等しいことを示す。このオプティカルフロー等式とエルミート補間(Hermite interpolation)との組み合わせに基づいて、マージリスト等から得られるブロック単位の動きベクトルが画素単位で補正される。 Here, I (k) represents the luminance value of the reference image k (k = 0, 1) after motion compensation. This optical flow equation consists of (i) the product of the time derivative of the luminance value, (ii) the horizontal component of the horizontal velocity and the spatial gradient of the reference image, and (iii) the vertical velocity and the spatial gradient of the reference image. Indicates that the sum of the products of the vertical components of is equal to zero. Based on a combination of this optical flow equation and Hermite interpolation, a block-based motion vector obtained from a merge list or the like is corrected in pixel units.
 なお、等速直線運動を仮定したモデルに基づく動きベクトルの導出とは異なる方法で、復号装置側で動きベクトルが導出されてもよい。例えば、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルが導出されてもよい。 Note that the motion vector may be derived on the decoding device side by a method different from the derivation of the motion vector based on the model assuming constant velocity linear motion. For example, a motion vector may be derived for each subblock based on the motion vectors of a plurality of adjacent blocks.
 ここで、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出するモードについて説明する。このモードは、アフィン動き補償予測(affine motion compensation prediction)モードと呼ばれることがある。 Here, a mode for deriving a motion vector for each sub-block based on the motion vectors of a plurality of adjacent blocks will be described. This mode may be referred to as an affine motion compensation prediction mode.
 図9は、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。図9において、カレントブロックは、16の4x4サブブロックを含む。ここでは、隣接ブロックの動きベクトルに基づいてカレントブロックの左上角制御ポイントの動きベクトルvが導出され、隣接サブブロックの動きベクトルに基づいてカレントブロックの右上角制御ポイントの動きベクトルvが導出される。そして、2つの動きベクトルv及びvを用いて、以下の式(2)により、カレントブロック内の各サブブロックの動きベクトル(v,v)が導出される。 FIG. 9 is a diagram for explaining the derivation of motion vectors in units of sub-blocks based on the motion vectors of a plurality of adjacent blocks. In FIG. 9, the current block includes 16 4 × 4 sub-blocks. Here, the motion vector v 0 of the upper left corner control point of the current block is derived based on the motion vector of the adjacent block, and the motion vector v 1 of the upper right corner control point of the current block is derived based on the motion vector of the adjacent sub block. Is done. Then, using the two motion vectors v 0 and v 1 , the motion vector (v x , v y ) of each sub-block in the current block is derived by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、x及びyは、それぞれ、サブブロックの水平位置及び垂直位置を示し、wは、予め定められた重み係数を示す。 Here, x and y indicate the horizontal position and vertical position of the sub-block, respectively, and w indicates a predetermined weight coefficient.
 このようなアフィン動き補償予測モードでは、左上及び右上角制御ポイントの動きベクトルの導出方法が異なるいくつかのモードを含んでもよい。このようなアフィン動き補償予測モードを示す情報(例えばアフィンフラグと呼ばれる)は、CUレベルで信号化される。なお、このアフィン動き補償予測モードを示す情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。 Such an affine motion compensation prediction mode may include several modes in which the motion vector derivation methods of the upper left and upper right corner control points are different. Information indicating such an affine motion compensation prediction mode (for example, called an affine flag) is signaled at the CU level. Note that the information indicating the affine motion compensation prediction mode need not be limited to the CU level, but other levels (for example, sequence level, picture level, slice level, tile level, CTU level, or sub-block level). ).
 [予測制御部]
 予測制御部128は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として減算部104及び加算部116に出力する。
[Prediction control unit]
The prediction control unit 128 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the subtraction unit 104 and the addition unit 116 as a prediction signal.
 [復号装置の概要]
 次に、上記の符号化装置100から出力された符号化信号(符号化ビットストリーム)を復号可能な復号装置の概要について説明する。図10は、実施の形態1に係る復号装置200の機能構成を示すブロック図である。復号装置200は、動画像/画像をブロック単位で復号する動画像/画像復号装置である。
[Outline of Decoding Device]
Next, an outline of a decoding apparatus capable of decoding the encoded signal (encoded bit stream) output from the encoding apparatus 100 will be described. FIG. 10 is a block diagram showing a functional configuration of decoding apparatus 200 according to Embodiment 1. The decoding device 200 is a moving image / image decoding device that decodes moving images / images in units of blocks.
 図10に示すように、復号装置200は、エントロピー復号部202と、逆量子化部204と、逆変換部206と、加算部208と、ブロックメモリ210と、ループフィルタ部212と、フレームメモリ214と、イントラ予測部216と、インター予測部218と、予測制御部220と、を備える。 As illustrated in FIG. 10, the decoding device 200 includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse transformation unit 206, an addition unit 208, a block memory 210, a loop filter unit 212, and a frame memory 214. And an intra prediction unit 216, an inter prediction unit 218, and a prediction control unit 220.
 復号装置200は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220として機能する。また、復号装置200は、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220に対応する専用の1以上の電子回路として実現されてもよい。 The decoding device 200 is realized by, for example, a general-purpose processor and a memory. In this case, when the software program stored in the memory is executed by the processor, the processor executes the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, and the intra prediction unit. 216, the inter prediction unit 218, and the prediction control unit 220. Also, the decoding apparatus 200 is dedicated to the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, the intra prediction unit 216, the inter prediction unit 218, and the prediction control unit 220. It may be realized as one or more electronic circuits.
 以下に、復号装置200に含まれる各構成要素について説明する。 Hereinafter, each component included in the decoding device 200 will be described.
 [エントロピー復号部]
 エントロピー復号部202は、符号化ビットストリームをエントロピー復号する。具体的には、エントロピー復号部202は、例えば、符号化ビットストリームから二値信号に算術復号する。そして、エントロピー復号部202は、二値信号を多値化(debinarize)する。これにより、エントロピー復号部202は、ブロック単位で量子化係数を逆量子化部204に出力する。
[Entropy decoding unit]
The entropy decoding unit 202 performs entropy decoding on the encoded bit stream. Specifically, the entropy decoding unit 202 performs arithmetic decoding from a coded bit stream to a binary signal, for example. Then, the entropy decoding unit 202 debinarizes the binary signal. As a result, the entropy decoding unit 202 outputs the quantized coefficient to the inverse quantization unit 204 in units of blocks.
 [逆量子化部]
 逆量子化部204は、エントロピー復号部202からの入力である復号対象ブロック(以下、カレントブロックという)の量子化係数を逆量子化する。具体的には、逆量子化部204は、カレントブロックの量子化係数の各々について、当該量子化係数に対応する量子化パラメータに基づいて当該量子化係数を逆量子化する。そして、逆量子化部204は、カレントブロックの逆量子化された量子化係数(つまり変換係数)を逆変換部206に出力する。
[Inverse quantization unit]
The inverse quantization unit 204 inversely quantizes the quantization coefficient of a decoding target block (hereinafter referred to as a current block) that is an input from the entropy decoding unit 202. Specifically, the inverse quantization unit 204 inversely quantizes each quantization coefficient of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the quantization coefficient (that is, the transform coefficient) obtained by inverse quantization of the current block to the inverse transform unit 206.
 [逆変換部]
 逆変換部206は、逆量子化部204からの入力である変換係数を逆変換することにより予測誤差を復元する。
[Inverse conversion part]
The inverse transform unit 206 restores the prediction error by inverse transforming the transform coefficient that is an input from the inverse quantization unit 204.
 例えば符号化ビットストリームから読み解かれた情報がEMT又はAMTを適用することを示す場合(例えばAMTフラグが真)、逆変換部206は、読み解かれた変換タイプを示す情報に基づいてカレントブロックの変換係数を逆変換する。 For example, when the information read from the encoded bit stream indicates that EMT or AMT is applied (for example, the AMT flag is true), the inverse conversion unit 206 determines the current block based on the information indicating the read conversion type. Inversely transform the conversion coefficient of.
 また例えば、符号化ビットストリームから読み解かれた情報がNSSTを適用することを示す場合、逆変換部206は、変換係数に逆再変換を適用する。 Also, for example, when the information read from the encoded bitstream indicates that NSST is applied, the inverse transform unit 206 applies inverse retransformation to the transform coefficient.
 [加算部]
 加算部208は、逆変換部206からの入力である予測誤差と予測制御部220からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部208は、再構成されたブロックをブロックメモリ210及びループフィルタ部212に出力する。
[Addition part]
The adder 208 reconstructs the current block by adding the prediction error input from the inverse converter 206 and the prediction sample input from the prediction controller 220. Then, the adding unit 208 outputs the reconfigured block to the block memory 210 and the loop filter unit 212.
 [ブロックメモリ]
 ブロックメモリ210は、イントラ予測で参照されるブロックであって復号対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ210は、加算部208から出力された再構成ブロックを格納する。
[Block memory]
The block memory 210 is a storage unit for storing a block that is referred to in intra prediction and that is within a decoding target picture (hereinafter referred to as a current picture). Specifically, the block memory 210 stores the reconstructed block output from the adding unit 208.
 [ループフィルタ部]
 ループフィルタ部212は、加算部208によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ214及び表示装置等に出力する。
[Loop filter section]
The loop filter unit 212 applies a loop filter to the block reconstructed by the adding unit 208, and outputs the filtered reconstructed block to the frame memory 214, the display device, and the like.
 符号化ビットストリームから読み解かれたALFのオン/オフを示す情報がALFのオンを示す場合、局所的な勾配の方向及び活性度に基づいて複数のフィルタの中から1つのフィルタが選択され、選択されたフィルタが再構成ブロックに適用される。 If the ALF on / off information read from the encoded bitstream indicates ALF on, one filter is selected from the plurality of filters based on the local gradient direction and activity, The selected filter is applied to the reconstruction block.
 [フレームメモリ]
 フレームメモリ214は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ214は、ループフィルタ部212によってフィルタされた再構成ブロックを格納する。
[Frame memory]
The frame memory 214 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 214 stores the reconstructed block filtered by the loop filter unit 212.
 [イントラ予測部]
 イントラ予測部216は、符号化ビットストリームから読み解かれたイントラ予測モードに基づいて、ブロックメモリ210に格納されたカレントピクチャ内のブロックを参照してイントラ予測を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部216は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部220に出力する。
[Intra prediction section]
The intra prediction unit 216 performs intra prediction with reference to the block in the current picture stored in the block memory 210 based on the intra prediction mode read from the encoded bitstream, so that a prediction signal (intra prediction Signal). Specifically, the intra prediction unit 216 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, luminance value and color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the unit 220.
 なお、色差ブロックのイントラ予測において輝度ブロックを参照するイントラ予測モードが選択されている場合は、イントラ予測部216は、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分を予測してもよい。 In addition, when the intra prediction mode that refers to the luminance block is selected in the intra prediction of the color difference block, the intra prediction unit 216 may predict the color difference component of the current block based on the luminance component of the current block. .
 また、符号化ビットストリームから読み解かれた情報がPDPCの適用を示す場合、イントラ予測部216は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正する。 In addition, when the information read from the encoded bitstream indicates application of PDPC, the intra prediction unit 216 corrects the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction.
 [インター予測部]
 インター予測部218は、フレームメモリ214に格納された参照ピクチャを参照して、カレントブロックを予測する。予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部218は、符号化ビットストリームから読み解かれた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成し、インター予測信号を予測制御部220に出力する。
[Inter prediction section]
The inter prediction unit 218 refers to the reference picture stored in the frame memory 214 and predicts the current block. Prediction is performed in units of a current block or a sub-block (for example, 4 × 4 block) in the current block. For example, the inter prediction unit 218 generates an inter prediction signal of the current block or sub-block by performing motion compensation using motion information (for example, a motion vector) read from the encoded bitstream, and generates the inter prediction signal. The result is output to the prediction control unit 220.
 なお、符号化ビットストリームから読み解かれた情報がOBMCモードを適用することを示す場合、インター予測部218は、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号を生成する。 When the information read from the encoded bitstream indicates that the OBMC mode is to be applied, the inter prediction unit 218 includes not only the motion information of the current block obtained by motion search but also the motion information of adjacent blocks. To generate an inter prediction signal.
 また、符号化ビットストリームから読み解かれた情報がFRUCモードを適用することを示す場合、インター予測部218は、符号化ストリームから読み解かれたパターンマッチングの方法(バイラテラルマッチング又はテンプレートマッチング)に従って動き探索を行うことにより動き情報を導出する。そして、インター予測部218は、導出された動き情報を用いて動き補償を行う。 Also, when the information read from the encoded bitstream indicates that the FRUC mode is applied, the inter prediction unit 218 follows the pattern matching method (bilateral matching or template matching) read from the encoded stream. Motion information is derived by performing motion search. Then, the inter prediction unit 218 performs motion compensation using the derived motion information.
 また、インター予測部218は、BIOモードが適用される場合に、等速直線運動を仮定したモデルに基づいて動きベクトルを導出する。また、符号化ビットストリームから読み解かれた情報がアフィン動き補償予測モードを適用することを示す場合には、インター予測部218は、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出する。 In addition, when the BIO mode is applied, the inter prediction unit 218 derives a motion vector based on a model assuming constant velocity linear motion. Also, when the information read from the encoded bitstream indicates that the affine motion compensated prediction mode is applied, the inter prediction unit 218 determines the motion vector in units of subblocks based on the motion vectors of a plurality of adjacent blocks. Is derived.
 [予測制御部]
 予測制御部220は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として加算部208に出力する。
[Prediction control unit]
The prediction control unit 220 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the adding unit 208 as a prediction signal.
 (実施の形態2)
 本実施の形態における符号化装置および復号装置は、実施の形態1と同様の構成および機能を有するが、インター予測部126および218などの処理動作に特徴がある。
(Embodiment 2)
The encoding device and decoding device in the present embodiment have the same configuration and function as in Embodiment 1, but are characterized by processing operations of inter prediction units 126 and 218 and the like.
 [本開示の基礎となった知見]
 図11は、本開示の基礎となる他の符号化装置による動き補償を示すフローチャートである。なお、図11以降の各図では、動きベクトルをMVとして示す。
[Knowledge that became the basis of this disclosure]
FIG. 11 is a flowchart illustrating motion compensation by another encoding device that is the basis of the present disclosure. In addition, in each figure after FIG. 11, a motion vector is shown as MV.
 符号化装置は、上述の予測ユニットに相当する予測ブロックごとに、その予測ブロックに対して動き補償を行う。このときには、符号化装置は、まず、時間的または空間的に予測ブロックの周囲にある複数の符号化済みブロックの動きベクトルなどの情報に基づいて、その予測ブロックに対して複数の候補動きベクトルを取得する(ステップS101)。 The encoding device performs motion compensation for each prediction block corresponding to the prediction unit described above. At this time, the encoding device first determines a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of encoded blocks around the prediction block temporally or spatially. Obtain (step S101).
 次に、符号化装置は、ステップS101で取得された複数の候補動きベクトルの中から、N個(Nは2以上の整数)の候補動きベクトルのそれぞれを予測動きベクトル候補として、予め決められた優先順位に従って抽出する(ステップS102)。なお、その優先順位は、N個の候補動きベクトルのそれぞれに対して予め定められている。 Next, the encoding apparatus determines each of N (N is an integer of 2 or more) candidate motion vectors from among the plurality of candidate motion vectors acquired in step S101 as predicted motion vector candidates. Extraction is performed according to the priority order (step S102). The priority order is predetermined for each of the N candidate motion vectors.
 次に、符号化装置は、そのN個の予測動きベクトル候補の中から1つの予測動きベクトル候補を、予測ブロックの予測動きベクトルとして選択する。このとき、符号化装置は、選択された予測動きベクトルを識別するための予測動きベクトル選択情報をストリームに符号化する(ステップS103)。なお、ストリームは、上述の符号化信号または符号化ビットストリームである。 Next, the encoding apparatus selects one predicted motion vector candidate from the N predicted motion vector candidates as the predicted motion vector of the predicted block. At this time, the encoding apparatus encodes prediction motion vector selection information for identifying the selected prediction motion vector into a stream (step S103). The stream is the above-described encoded signal or encoded bit stream.
 次に、符号化装置は、符号化済み参照ピクチャを参照し、予測ブロックの動きベクトルを導出する(ステップS104)。このとき、符号化装置は、さらに、その導出された動きベクトルと予測動きベクトルとの差分値を差分動きベクトル情報としてストリームに符号化する。なお、符号化済み参照ピクチャは、符号化後に再構成された複数のブロックからなるピクチャである。 Next, the encoding device refers to the encoded reference picture and derives a motion vector of the prediction block (step S104). At this time, the encoding apparatus further encodes a difference value between the derived motion vector and the predicted motion vector into a stream as difference motion vector information. An encoded reference picture is a picture composed of a plurality of blocks reconstructed after encoding.
 最後に、符号化装置は、その導出された動きベクトルと符号化済み参照ピクチャとを用いて予測ブロックに対して動き補償を行ことにより、その予測ブロックの予測画像を生成する(ステップS105)。なお、予測画像は、上述のインター予測信号である。 Finally, the encoding apparatus performs motion compensation on the prediction block using the derived motion vector and the encoded reference picture, thereby generating a prediction image of the prediction block (step S105). The predicted image is the above-described inter prediction signal.
 図12は、本開示の基礎となる他の復号装置による動き補償を示すフローチャートである。 FIG. 12 is a flowchart showing motion compensation by another decoding device as a basis of the present disclosure.
 復号装置は、予測ブロックごとに、その予測ブロックに対して動き補償を行う。このときには、復号装置は、まず、時間的または空間的に予測ブロックの周囲にある複数の復号済みブロックの動きベクトルなどの情報に基づいて、その予測ブロックに対して複数の候補動きベクトルを取得する(ステップS111)。 The decoding device performs motion compensation for each prediction block for each prediction block. At this time, the decoding apparatus first acquires a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of decoded blocks around the prediction block temporally or spatially. (Step S111).
 次に、復号装置は、ステップS111で取得された複数の候補動きベクトルの中から、N個(Nは2以上の整数)の候補動きベクトルのそれぞれを予測動きベクトル候補として、予め決められた優先順位に従って抽出する(ステップS112)。なお、その優先順位は、N個の候補動きベクトルのそれぞれに対して予め定められている。 Next, the decoding apparatus sets a predetermined priority as a predicted motion vector candidate for each of N (N is an integer of 2 or more) candidate motion vectors from among the plurality of candidate motion vectors acquired in step S111. Extraction is performed according to the rank (step S112). The priority order is predetermined for each of the N candidate motion vectors.
 次に、復号装置は、入力されたストリームから予測動きベクトル選択情報を復号し、その復号された予測動きベクトル選択情報を用いて、そのN個の予測動きベクトル候補の中から1つの予測動きベクトル候補を、予測ブロックの予測動きベクトルとして選択する(ステップS113)。 Next, the decoding apparatus decodes the predicted motion vector selection information from the input stream, and uses the decoded predicted motion vector selection information to select one predicted motion vector from the N predicted motion vector candidates. A candidate is selected as a prediction motion vector of a prediction block (step S113).
 次に、復号装置は、入力されたストリームから差分動きベクトル情報を復号し、その復号された差分動きベクトル情報である差分値と、選択された予測動きベクトルとを加算することによって、予測ブロックの動きベクトルを導出する(ステップS114)。 Next, the decoding apparatus decodes the difference motion vector information from the input stream, and adds the difference value, which is the decoded difference motion vector information, to the selected prediction motion vector, thereby obtaining the prediction block. A motion vector is derived (step S114).
 最後に、復号装置は、その導出された動きベクトルと復号済み参照ピクチャとを用いて予測ブロックに対して動き補償を行ことにより、その予測ブロックの予測画像を生成する(ステップS115)。 Finally, the decoding apparatus generates a predicted image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the decoded reference picture (step S115).
 ここで、図11および図12に示す例では、N個の予測動きベクトル候補を抽出するために、予め定められた優先順位を用いている。しかし、予測ブロックの動きベクトルとの差分がより小さい予測動きベクトルを得るために、複数の候補動きベクトルのそれぞれを評価してもよい。つまり、ステップS101またはステップ111で取得された複数の候補動きベクトルのそれぞれの評価値を算出し、複数の候補動きベクトルの中からN個の予測動きベクトル候補をその算出された評価値に基づいて抽出してもよい。 Here, in the example shown in FIGS. 11 and 12, a predetermined priority order is used to extract N predicted motion vector candidates. However, each of the plurality of candidate motion vectors may be evaluated in order to obtain a prediction motion vector having a smaller difference from the motion vector of the prediction block. That is, the respective evaluation values of the plurality of candidate motion vectors acquired in step S101 or step 111 are calculated, and N predicted motion vector candidates are selected from the plurality of candidate motion vectors based on the calculated evaluation values. It may be extracted.
 図13は、評価値の算出方法の一例を説明するための図である。 FIG. 13 is a diagram for explaining an example of an evaluation value calculation method.
 評価値の算出方法としては、例えばテンプレートマッチング方式がある。このテンプレートマッチング方式では、動画像における符号化済み領域または復号済み領域の再構成画像が評価値の算出に用いられる。なお、図13では、符号化済み領域および復号済み領域は、処理済み領域として総称され、符号化対象ピクチャおよび復号対象ピクチャは処理対象ピクチャとして総称される。また、符号化の対象とされる予測ブロックおよび復号の対象とされる予測ブロックは、処理対象予測ブロックとして総称される。 As a method for calculating the evaluation value, for example, there is a template matching method. In this template matching method, a reconstructed image of a coded region or a decoded region in a moving image is used for calculating an evaluation value. In FIG. 13, the encoded region and the decoded region are collectively referred to as the processed region, and the encoding target picture and the decoding target picture are collectively referred to as the processing target picture. In addition, a prediction block to be encoded and a prediction block to be decoded are collectively referred to as a processing target prediction block.
 具体的には、符号化装置は、符号化対象ピクチャにおいて処理対象予測ブロックの周辺にある符号化済み領域の再構成画像と、符号化済み参照ピクチャにおいて候補動きベクトルによって指定されるブロックの周辺にある符号化済み領域の再構成画像との差分値を算出する。例えば、差分値は、画素値の差分絶対値和として算出される。 Specifically, the encoding device includes a reconstructed image of an encoded region around the processing target prediction block in the encoding target picture and a block specified by the candidate motion vector in the encoded reference picture. A difference value from a reconstructed image of a certain encoded area is calculated. For example, the difference value is calculated as a sum of absolute differences of pixel values.
 復号装置も、符号化装置と同様、復号対象ピクチャにおいて処理対象予測ブロックの周辺にある復号済み領域の再構成画像と、復号済み参照ピクチャにおいて候補動きベクトルによって指定されるブロックの周辺にある復号済み領域の再構成画像との差分値を算出する。例えば、差分値は、画素値の差分絶対値和として算出される。 Similar to the encoding device, the decoding device also includes a reconstructed image of a decoded region in the vicinity of the processing target prediction block in the decoding target picture and a decoded image in the vicinity of the block specified by the candidate motion vector in the decoded reference picture. A difference value from the reconstructed image of the area is calculated. For example, the difference value is calculated as a sum of absolute differences of pixel values.
 なお、参照ピクチャにおいて候補動きベクトルによって指定されるブロックを、以下、指定ブロックという。この指定ブロックは、処理対象予測ブロックの空間的な位置を基準にして候補動きベクトルによって指し示される位置にある。また、参照ピクチャにおける指定ブロックに対する処理済み領域の相対位置と、処理対象ピクチャにおける処理対象予測ブロックに対する処理済み領域の相対位置とは等しい。また、処理対象予測ブロックまたは指定ブロックの周辺にある処理済み領域は、それらのブロックの左に隣接する領域および上に隣接する領域であってもよく、左に隣接する領域だけであってもよく、上に隣接する領域だけであってもよい。例えば、左に隣接する領域および上に隣接する領域が存在すれば、それらの領域が評価値の算出に使用され、何れかの領域が存在しなければ、存在する領域のみが評価値の算出に使用される。 Note that a block designated by a candidate motion vector in a reference picture is hereinafter referred to as a designated block. This designated block is at a position indicated by the candidate motion vector with reference to the spatial position of the processing target prediction block. Further, the relative position of the processed area with respect to the designated block in the reference picture is equal to the relative position of the processed area with respect to the processing target prediction block in the processing target picture. In addition, the processed region around the processing target prediction block or the designated block may be a region adjacent to the left of the block and a region adjacent to the top of the block, or may be only a region adjacent to the left. , Only the region adjacent to the upper side may be used. For example, if there are an adjacent area on the left and an adjacent area on the upper side, those areas are used for calculation of the evaluation value, and if any area does not exist, only the existing area is used for calculation of the evaluation value. used.
 符号化装置および復号装置は、得られた差分値を用いて評価値を算出する。例えば、差分値が小さいほど高い評価値が算出される。なお、符号化装置および復号装置は、差分値に加えてそれ以外の情報を用いて評価値を算出してもよい。 The encoding device and the decoding device calculate an evaluation value using the obtained difference value. For example, a higher evaluation value is calculated as the difference value is smaller. Note that the encoding device and the decoding device may calculate the evaluation value using information other than the difference value.
 なお、図13の例に示すテンプレートマッチング方式による評価値の算出方法は、一例であって、これに限定されない。例えば、評価に用いられる領域の位置、または、領域の使用可否判断の方法は、図13の例に限定されず他の位置または方法であってもよい。 Note that the evaluation value calculation method by the template matching method shown in the example of FIG. 13 is an example, and is not limited to this. For example, the position of the region used for the evaluation or the method for determining whether or not the region can be used is not limited to the example in FIG.
 図14は、評価値の算出方法の他の例を説明するための図である。 FIG. 14 is a diagram for explaining another example of an evaluation value calculation method.
 評価値の算出方法としては、例えばバイラテラルマッチング方式がある。このバイラテラルマッチング方式でも、動画像における符号化済み領域または復号済み領域の再構成画像が評価値の算出に用いられる。なお、図14では、符号化済み領域および復号済み領域は、処理済み領域として総称され、符号化対象ピクチャおよび復号対象ピクチャは処理対象ピクチャとして総称されている。また、符号化の対象とされる予測ブロックおよび復号の対象とされる予測ブロックは、処理対象予測ブロックとして総称されている。 As a method for calculating the evaluation value, for example, there is a bilateral matching method. Even in this bilateral matching method, a reconstructed image of a coded region or a decoded region in a moving image is used to calculate an evaluation value. In FIG. 14, the encoded region and the decoded region are collectively referred to as a processed region, and the encoding target picture and the decoding target picture are collectively referred to as a processing target picture. In addition, a prediction block to be encoded and a prediction block to be decoded are collectively referred to as a processing target prediction block.
 具体的には、符号化装置は、符号化済み参照ピクチャ1において候補動きベクトルによって指定されるブロックの再構成画像と、符号化済み参照ピクチャ2において対称動きベクトルによって指定されるブロックの再構成画像との差分値を算出する。候補動きベクトルによって指定されるブロックと、対称動きベクトルによって指定されるブロックとはいずれも、符号化済み領域である。例えば、差分値は、画素値の差分絶対値和として算出される。 Specifically, the encoding device reconstructs an image of a block specified by a candidate motion vector in the encoded reference picture 1 and a reconstructed image of a block specified by a symmetric motion vector in the encoded reference picture 2 The difference value is calculated. Both the block specified by the candidate motion vector and the block specified by the symmetric motion vector are encoded regions. For example, the difference value is calculated as a sum of absolute differences of pixel values.
 復号装置も、符号化装置と同様、復号済み参照ピクチャ1において候補動きベクトルによって指定されるブロックの再構成画像と、復号済み参照ピクチャ2において対称動きベクトルによって指定されるブロックの再構成画像との差分値を算出する。候補動きベクトルによって指定されるブロックと、対称動きベクトルによって指定されるブロックとはいずれも、復号済み領域である。例えば、差分値は、画素値の差分絶対値和として算出される。 Similarly to the encoding device, the decoding device also includes a reconstructed image of a block specified by a candidate motion vector in the decoded reference picture 1 and a reconstructed image of a block specified by a symmetric motion vector in the decoded reference picture 2. The difference value is calculated. Both the block specified by the candidate motion vector and the block specified by the symmetric motion vector are decoded regions. For example, the difference value is calculated as a sum of absolute differences of pixel values.
 なお、対称動きベクトルは、候補動きベクトルを上述の表示時間間隔に応じてスケーリングすることによって生成される動きベクトルである。また、候補動きベクトルおよび対称動きベクトルのそれぞれによって指定されるブロックは、処理対象予測ブロックの空間的な位置を基準にして指し示される位置にある。 Note that the symmetric motion vector is a motion vector generated by scaling the candidate motion vector according to the display time interval described above. In addition, the block specified by each of the candidate motion vector and the symmetric motion vector is at a position pointed to based on the spatial position of the processing target prediction block.
 符号化装置および復号装置は、得られた差分値を用いて評価値を算出する。例えば、差分値が小さいほど高い評価値が算出される。なお、符号化装置および復号装置は、差分値に加えてそれ以外の情報を用いて評価値を算出してもよい。 The encoding device and the decoding device calculate an evaluation value using the obtained difference value. For example, a higher evaluation value is calculated as the difference value is smaller. Note that the encoding device and the decoding device may calculate the evaluation value using information other than the difference value.
 なお、図14に示すバイラテラルマッチング方式による評価値の算出方法は、一例であって、これに限定されない。例えば、評価に用いられる処理済み領域の位置を特定する方法は、図14に示す例に限定されない。 Note that the evaluation value calculation method by the bilateral matching method shown in FIG. 14 is an example, and the present invention is not limited to this. For example, the method of specifying the position of the processed region used for evaluation is not limited to the example shown in FIG.
 このような評価値に基づいて複数の候補動きベクトルからN個の予測動きベクトル候補を抽出することによって、予測ブロックの予測精度を向上することができる可能性がある。なお、テンプレートマッチング方式およびバイラテラルマッチング方式は、上述のFRUCモードで用いられる方式である。したがって、このような評価値に基づく予測動きベクトル候補の抽出方法を、FRUCによる評価結果に基づく抽出方法ともいう。 It may be possible to improve the prediction accuracy of the prediction block by extracting N predicted motion vector candidates from a plurality of candidate motion vectors based on such evaluation values. Note that the template matching method and the bilateral matching method are methods used in the above-described FRUC mode. Therefore, a method for extracting a predicted motion vector candidate based on such an evaluation value is also referred to as an extraction method based on an evaluation result by FRUC.
 ここで、予測ブロックに対して、複数の候補動きベクトルからN個の予測動きベクトル候補を抽出するために、FRUCによる評価結果に基づく第1の抽出方法と、予め定められた優先順位に基づく第2の抽出方法とを用いることができる。 Here, in order to extract N predicted motion vector candidates from the plurality of candidate motion vectors for the prediction block, a first extraction method based on the evaluation result by FRUC and a first priority based on a predetermined priority order are used. Two extraction methods can be used.
 例えば、符号化装置および復号装置は、複数の候補動きベクトルから2個の予測動きベクトル候補を抽出するために、第1の抽出方法を用いて1個の予測動きベクトル候補を抽出し、第2の抽出方法を用いて残りの1個の予測動きベクトル候補を抽出する。このような場合、第1の抽出方法および第2の抽出方法のそれぞれに対して個別の候補リストが用いられることが想定される。これらの候補リストは、複数の候補動きベクトルを示すリストである。 For example, the encoding device and the decoding device extract one prediction motion vector candidate using the first extraction method in order to extract two prediction motion vector candidates from a plurality of candidate motion vectors, The remaining one motion vector predictor candidate is extracted using the above extraction method. In such a case, it is assumed that a separate candidate list is used for each of the first extraction method and the second extraction method. These candidate lists are lists indicating a plurality of candidate motion vectors.
 したがって、上述のような場合には、予測精度を向上することができる可能性はあるが、1つの予測ブロックに対して互いに異なる複数の候補リストを作成しなければならず、処理負担が増加してしまうという課題が生じる。 Therefore, in the case described above, although there is a possibility that the prediction accuracy can be improved, a plurality of different candidate lists must be created for one prediction block, which increases the processing load. The problem of end up occurs.
 そこで、本実施の形態における符号化装置100および復号装置200は、FRUCによる評価結果に基づく抽出方法を利用し、かつ、予測ブロックに対して1つの候補リストを用いてその予測ブロックに対する動き補償を行う。 Therefore, encoding apparatus 100 and decoding apparatus 200 in the present embodiment use an extraction method based on the evaluation result by FRUC, and perform motion compensation for the prediction block using one candidate list for the prediction block. Do.
 具体的には、本実施の形態における符号化装置100は、複数の候補動きベクトルから、符号化対象ブロックの少なくとも1つの予測動きベクトル候補を抽出する。このとき、符号化装置100は、その少なくとも1つの予測動きベクトル候補の全てを、符号化対象ブロックの画像領域を使用せずに動画像における符号化済み領域の再構成画像を用いた複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する。 Specifically, the encoding apparatus 100 according to the present embodiment extracts at least one prediction motion vector candidate of the encoding target block from a plurality of candidate motion vectors. At this time, the encoding apparatus 100 uses a plurality of candidates using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block as all of the at least one prediction motion vector candidate. Extraction is performed based on the evaluation results of each motion vector.
 また、本実施の形態における復号装置200は、複数の候補動きベクトルから、復号対象ブロックの少なくとも1つの予測動きベクトル候補を抽出する。このとき、復号装置200は、その少なくとも1つの予測動きベクトル候補の全てを、復号対象ブロックの画像領域を使用せずに動画像における復号済み領域の再構成画像を用いた複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する。 Also, the decoding apparatus 200 in the present embodiment extracts at least one predicted motion vector candidate of the decoding target block from a plurality of candidate motion vectors. At this time, the decoding apparatus 200 converts all of the at least one predicted motion vector candidate into a plurality of candidate motion vectors using the reconstructed image of the decoded region in the moving image without using the image region of the decoding target block. Extract based on each evaluation result.
 つまり、本実施の形態における符号化装置100および復号装置200は、FRUCによる評価結果に基づく抽出方法によって全ての予測動きベクトル候補を抽出する。言い換えれば、予め定められた優先順位に基づく抽出方法を用いずに全ての予測動きベクトル候補を抽出する。この全ての予測動きベクトル候補は、1つの予測動きベクトル候補であってもよく、複数の予測動きベクトル候補であってもよい。したがって、予め定められた優先順位に基づく抽出方法は用いられないため、その抽出方法のための専用の候補リストは不要であり、予測ブロックに対して1つの候補リストを用いた動き補償が行われる。 That is, the encoding apparatus 100 and the decoding apparatus 200 in the present embodiment extract all predicted motion vector candidates by an extraction method based on the evaluation result by FRUC. In other words, all predicted motion vector candidates are extracted without using an extraction method based on a predetermined priority order. All the predicted motion vector candidates may be one predicted motion vector candidate or a plurality of predicted motion vector candidates. Therefore, since an extraction method based on a predetermined priority order is not used, a dedicated candidate list for the extraction method is not necessary, and motion compensation using one candidate list is performed for the prediction block. .
 [FRUCのみを使って1つの予測動きベクトル候補を抽出]
 図15は、本実施の形態における符号化装置100による動き補償の一例を示すフローチャートである。図1によって示される符号化装置100が、複数のピクチャで構成される動画像を符号化する際、符号化装置100のインター予測部126等が、図15によって示される処理を実行する。
[Extract one motion vector candidate using only FRUC]
FIG. 15 is a flowchart illustrating an example of motion compensation by the encoding apparatus 100 according to the present embodiment. When the encoding device 100 illustrated in FIG. 1 encodes a moving image including a plurality of pictures, the inter prediction unit 126 and the like of the encoding device 100 execute the processing illustrated in FIG.
 具体的には、インター予測部126は、上述の予測ユニットに相当する予測ブロックごとに、その予測ブロックである符号化対象ブロックに対して動き補償を行う。このときには、インター予測部126は、まず、時間的または空間的に予測ブロックの周囲にある複数の符号化済みブロックの動きベクトルなどの情報に基づいて、その予測ブロックに対して複数の候補動きベクトルを取得する(ステップS201)。例えば、符号化済みブロックの動きベクトルなどの情報は、その符号化済みブロックの動き補償に用いられた動きベクトルであってもよく、その動きベクトルだけでなく、符号化済みブロックを含むピクチャと符号化対象ピクチャとの間の表示時間間隔を含んでいてもよい。例えば、複数の候補動きベクトルは、複数の符号化済みブロックの動きベクトルのそれぞれが表示時間間隔に応じてスケーリングされたものである。また、予測ブロックの周囲にある複数の符号化済みブロックは、例えば、符号化対象の予測ブロックの左下、左上、および右上のそれぞれに隣接する複数の符号化済みブロックと、符号化対象ピクチャと異なるピクチャに含まれる複数の符号化済みのブロックとのうちの、全てまたは一部の符号化済みブロックであってもよい。 Specifically, the inter prediction unit 126 performs motion compensation for each prediction block corresponding to the above-described prediction unit, with respect to the encoding target block that is the prediction block. At this time, the inter prediction unit 126 first determines a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of encoded blocks around the prediction block temporally or spatially. Is acquired (step S201). For example, information such as a motion vector of an encoded block may be a motion vector used for motion compensation of the encoded block, and not only the motion vector but also a picture and code including the encoded block. The display time interval between the pictures to be converted may be included. For example, the plurality of candidate motion vectors are obtained by scaling each of the motion vectors of the plurality of encoded blocks according to the display time interval. Also, the plurality of encoded blocks around the prediction block are different from the encoding target picture, for example, from a plurality of encoded blocks adjacent to the lower left, upper left, and upper right of the prediction block to be encoded. It may be all or a part of a plurality of encoded blocks included in a picture.
 次に、インター予測部126は、ステップS201で取得された複数の候補動きベクトルのそれぞれの評価値を、符号化済み領域の再構成画像を用いて算出する。つまり、インター予測部126は、FRUC、すなわちテンプレートマッチング方式またはバイラテラルマッチング方式に基づいてそれらの評価値を算出する。そして、インター予測部126は、その複数の候補動きベクトルの中から、評価値が最も高い1つの候補動きベクトルを、予測ブロックの予測動きベクトルとして選択する(ステップS202)。つまり、インター予測部126は、複数の候補動きベクトルから、評価結果が最も良い1つの候補動きベクトルのみを選択することによって、上述の少なくとも1つの予測動きベクトル候補の全てを抽出する。 Next, the inter prediction unit 126 calculates the evaluation values of the plurality of candidate motion vectors acquired in step S201 using the reconstructed image of the encoded region. That is, the inter prediction unit 126 calculates those evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, the inter prediction unit 126 selects one candidate motion vector having the highest evaluation value from among the plurality of candidate motion vectors as a prediction motion vector of the prediction block (step S202). That is, the inter prediction unit 126 extracts all of the at least one predicted motion vector candidate described above by selecting only one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors.
 なお、インター予測部126は、FRUCによる評価値がより高くなるように、その選択された予測動きベクトルを周辺領域において細かく動かすことによって、その予測動きベクトルを補正してもよい。つまり、インター予測部126は、FRUCによる評価値がより高くなる領域を細かく探索することによって、その予測動きベクトルを補正してもよい。 Note that the inter prediction unit 126 may correct the predicted motion vector by finely moving the selected predicted motion vector in the peripheral region so that the FRUC evaluation value becomes higher. That is, the inter prediction unit 126 may correct the predicted motion vector by finely searching for a region where the FRUC evaluation value is higher.
 次に、インター予測部126は、符号化済み参照ピクチャを参照し、予測ブロックの動きベクトルを導出する(ステップS203)。このとき、インター予測部126は、さらに、その導出された動きベクトルと予測動きベクトルとの差分値を算出する。エントロピー符号化部110は、その差分値を差分動きベクトル情報としてストリームに符号化する。つまり、エントロピー符号化部110は、選択された候補動きベクトルである予測動きベクトルと、導出された符号化対象ブロックの動きベクトルとの差分を符号化する。 Next, the inter prediction unit 126 refers to the encoded reference picture and derives a motion vector of the prediction block (step S203). At this time, the inter prediction unit 126 further calculates a difference value between the derived motion vector and the predicted motion vector. The entropy encoding unit 110 encodes the difference value as a difference motion vector information into a stream. That is, the entropy encoding unit 110 encodes the difference between the predicted motion vector that is the selected candidate motion vector and the motion vector of the derived encoding target block.
 最後に、インター予測部126は、その導出された動きベクトルと符号化済み参照ピクチャとを用いて予測ブロックに対して動き補償を行ことにより、その予測ブロックの予測画像を生成する(ステップS204)。 Finally, the inter prediction unit 126 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the encoded reference picture (step S204). .
 なお、インター予測部126は、上述のような予測ブロック単位での動き補償の代わりに、予測ブロックを分割することによって得られるサブブロック単位で同様に動きベクトルを導出し、サブブロック単位で動き補償を行ってもよい。 Note that the inter prediction unit 126 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
 図16は、本実施の形態における復号装置200による動き補償の一例を示すフローチャートである。図10によって示される復号装置200が、符号化された複数のピクチャで構成される動画像を復号する際、復号装置200のインター予測部218等が、図16によって示される処理を実行する。 FIG. 16 is a flowchart showing an example of motion compensation by the decoding apparatus 200 according to the present embodiment. When the decoding device 200 illustrated in FIG. 10 decodes a moving image including a plurality of encoded pictures, the inter prediction unit 218 and the like of the decoding device 200 execute the processing illustrated in FIG.
 具体的には、インター予測部218は、上述の予測ユニットに相当する予測ブロックごとに、その予測ブロックである復号対象ブロックに対して動き補償を行う。このときには、インター予測部218は、まず、時間的または空間的に予測ブロックの周囲にある複数の復号済みブロックの動きベクトルなどの情報に基づいて、その予測ブロックに対して複数の候補動きベクトルを取得する(ステップS211)。例えば、復号済みブロックの動きベクトルなどの情報は、その復号済みブロックの動き補償に用いられた動きベクトルであってもよく、その動きベクトルだけでなく、復号済みブロックを含むピクチャと復号対象ピクチャとの間の表示時間間隔を含んでいてもよい。例えば、複数の候補動きベクトルは、複数の復号済みブロックの動きベクトルのそれぞれが表示時間間隔に応じてスケーリングされたものである。また、予測ブロックの周囲にある複数の復号済みブロックは、例えば、復号対象の予測ブロックの左下、左上、および右上のそれぞれに隣接する複数の復号済みブロックと、復号対象ピクチャと異なるピクチャに含まれる複数の復号済みのブロックとのうちの、全てまたは一部の復号済みブロックであってもよい。 Specifically, the inter prediction unit 218 performs motion compensation on the decoding target block that is a prediction block for each prediction block corresponding to the above-described prediction unit. At this time, the inter prediction unit 218 first selects a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of decoded blocks around the prediction block temporally or spatially. Obtain (step S211). For example, the information such as the motion vector of the decoded block may be a motion vector used for motion compensation of the decoded block, and not only the motion vector but also a picture including the decoded block and a decoding target picture. Display time intervals between the two. For example, the plurality of candidate motion vectors are obtained by scaling each of the motion vectors of the plurality of decoded blocks according to the display time interval. In addition, a plurality of decoded blocks around the prediction block are included in, for example, a plurality of decoded blocks adjacent to the lower left, upper left, and upper right of the prediction block to be decoded, and a picture different from the decoding target picture. It may be all or some of the decoded blocks of the plurality of decoded blocks.
 次に、インター予測部218は、ステップS211で取得された複数の候補動きベクトルのそれぞれの評価値を、復号済み領域の再構成画像を用いて算出する。つまり、インター予測部218は、FRUC、すなわちテンプレートマッチング方式またはバイラテラルマッチング方式に基づいてそれらの評価値を算出する。そして、インター予測部218は、その複数の候補動きベクトルの中から、評価値が最も高い1つの候補動きベクトルを、予測ブロックの予測動きベクトルとして選択する(ステップS212)。つまり、インター予測部218は、複数の候補動きベクトルから、評価結果が最も良い1つの候補動きベクトルのみを選択することによって、上述の少なくとも1つの予測動きベクトル候補の全てを抽出する。 Next, the inter prediction unit 218 calculates each evaluation value of the plurality of candidate motion vectors acquired in step S211 using the reconstructed image of the decoded area. That is, the inter prediction unit 218 calculates the evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, the inter prediction unit 218 selects one candidate motion vector having the highest evaluation value from among the plurality of candidate motion vectors as a prediction motion vector of the prediction block (step S212). That is, the inter prediction unit 218 extracts all of the above-described at least one predicted motion vector candidate by selecting only one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors.
 なお、インター予測部218は、FRUCによる評価値がより高くなるように、その選択された予測動きベクトルを周辺領域において細かく動かすことによって、その予測動きベクトルを補正してもよい。つまり、インター予測部218は、FRUCによる評価値がより高くなる領域を細かく探索することによって、その予測動きベクトルを補正してもよい。 Note that the inter prediction unit 218 may correct the predicted motion vector by finely moving the selected predicted motion vector in the peripheral region so that the FRUC evaluation value becomes higher. That is, the inter prediction unit 218 may correct the predicted motion vector by finely searching for a region where the FRUC evaluation value is higher.
 次に、インター予測部218は、復号装置200に入力されたストリームからエントロピー復号部202によって復号された差分動きベクトル情報を用いて、予測ブロックの動きベクトルを導出する(ステップS213)。具体的には、インター予測部218は、その復号された差分動きベクトル情報である差分値と、選択された予測動きベクトルとを加算することによって、予測ブロックの動きベクトルを導出する。つまり、エントロピー復号部202は、2つの動きベクトルの差分を示す差分情報である差分動きベクトル情報を復号する。そして、インター予測部218は、その復号された差分情報によって示される差分に、選択された候補動きベクトルである予測動きベクトルを加算することによって、復号対象ブロックである予測ブロックの動きベクトルを導出する。 Next, the inter prediction unit 218 derives a motion vector of the prediction block using the difference motion vector information decoded by the entropy decoding unit 202 from the stream input to the decoding device 200 (step S213). Specifically, the inter prediction unit 218 derives the motion vector of the prediction block by adding the difference value, which is the decoded difference motion vector information, and the selected prediction motion vector. That is, the entropy decoding unit 202 decodes difference motion vector information that is difference information indicating a difference between two motion vectors. Then, the inter prediction unit 218 derives the motion vector of the prediction block that is the decoding target block by adding the prediction motion vector that is the selected candidate motion vector to the difference indicated by the decoded difference information. .
 最後に、インター予測部218は、その導出された動きベクトルと復号済み参照ピクチャとを用いて予測ブロックに対して動き補償を行ことにより、その予測ブロックの予測画像を生成する(ステップS214)。 Finally, the inter prediction unit 218 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the decoded reference picture (step S214).
 なお、インター予測部218は、上述のような予測ブロック単位での動き補償の代わりに、予測ブロックを分割することによって得られるサブブロック単位で同様に動きベクトルを導出し、サブブロック単位で動き補償を行ってもよい。 Note that the inter prediction unit 218 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
 図15および図16に示す例では、1つの予測動きベクトル候補を抽出したが、複数の予測動きベクトル候補を抽出してもよい。 In the example shown in FIG. 15 and FIG. 16, one predicted motion vector candidate is extracted, but a plurality of predicted motion vector candidates may be extracted.
 [FRUCのみを使って複数の予測動きベクトル候補を抽出]
 図17は、本実施の形態における符号化装置100による動き補償の他の例を示すフローチャートである。図1によって示される符号化装置100が、複数のピクチャで構成される動画像を符号化する際、符号化装置100のインター予測部126等が、図17によって示される処理を実行する。
[Extract multiple motion vector candidates using only FRUC]
FIG. 17 is a flowchart showing another example of motion compensation by the encoding apparatus 100 according to the present embodiment. When the encoding device 100 illustrated in FIG. 1 encodes a moving image including a plurality of pictures, the inter prediction unit 126 and the like of the encoding device 100 perform the processing illustrated in FIG.
 具体的には、インター予測部126は、上述の予測ユニットに相当する予測ブロックごとに、その予測ブロックである符号化対象ブロックに対して動き補償を行う。このときには、インター予測部126は、まず、時間的または空間的に予測ブロックの周囲にある複数の符号化済みブロックの動きベクトルなどの情報に基づいて、その予測ブロックに対して複数の候補動きベクトルを取得する(ステップS201)。 Specifically, the inter prediction unit 126 performs motion compensation for each prediction block corresponding to the above-described prediction unit, with respect to the encoding target block that is the prediction block. At this time, the inter prediction unit 126 first determines a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of encoded blocks around the prediction block temporally or spatially. Is acquired (step S201).
 次に、インター予測部126は、ステップS201で取得された複数の候補動きベクトルのそれぞれの評価値を、符号化済み領域の再構成画像を用いて算出する。つまり、インター予測部126は、FRUC、すなわちテンプレートマッチング方式またはバイラテラルマッチング方式に基づいてそれらの評価値を算出する。そして、インター予測部126は、その複数の候補動きベクトルの評価値に基づいて、複数の候補動きベクトルの中からN個(Nは2以上の整数)の候補動きベクトルのそれぞれを予測動きベクトル候補として抽出する(ステップS202a)。つまり、インター予測部126は、複数の候補動きベクトルから、上述の評価結果に基づいてN個の候補動きベクトルを、上述の少なくとも1つの予測動きベクトル候補の全てとして抽出する。より具体的には、インター予測部126は、複数の候補動きベクトルから、評価結果が良い順で上位N個の候補動きベクトルを、上述の少なくとも1つの予測動きベクトル候補の全てとして抽出する。言い換えれば、インター予測部126は、複数の候補動きベクトルから、評価値の高い順で上位N個の候補動きベクトルをそれぞれ予測動きベクトル候補として抽出する。 Next, the inter prediction unit 126 calculates the evaluation values of the plurality of candidate motion vectors acquired in step S201 using the reconstructed image of the encoded region. That is, the inter prediction unit 126 calculates those evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, based on the evaluation values of the plurality of candidate motion vectors, the inter prediction unit 126 calculates each of N (N is an integer of 2 or more) candidate motion vectors from among the plurality of candidate motion vectors. (Step S202a). That is, the inter prediction unit 126 extracts N candidate motion vectors as all of the at least one predicted motion vector candidate from the plurality of candidate motion vectors based on the evaluation result. More specifically, the inter prediction unit 126 extracts the top N candidate motion vectors from the plurality of candidate motion vectors in the order of good evaluation results as all of the above-described at least one prediction motion vector candidate. In other words, the inter prediction unit 126 extracts the top N candidate motion vectors from the plurality of candidate motion vectors in the descending order of evaluation value as predicted motion vector candidates.
 なお、インター予測部126は、その抽出されたN個の予測動きベクトル候補のそれぞれについて、FRUCによる評価値がより高くなるように、その選択された予測動きベクトル候補を周辺領域において細かく動かすことによって、その予測動きベクトル候補を補正してもよい。つまり、インター予測部126は、FRUCによる評価値がより高くなる領域を細かく探索することによって、それらの予測動きベクトル候補を補正してもよい。 Note that the inter prediction unit 126 finely moves the selected predicted motion vector candidates in the peripheral region so that the FRUC evaluation value becomes higher for each of the extracted N predicted motion vector candidates. The predicted motion vector candidate may be corrected. That is, the inter prediction unit 126 may correct these motion vector predictor candidates by finely searching for a region where the FRUC evaluation value is higher.
 そして、インター予測部126は、抽出されたN個の予測動きベクトル候補から、予測ブロックの予測動きベクトルを選択する(ステップS202b)。このとき、インター予測部126は、その選択された予測動きベクトルを識別するための予測動きベクトル選択情報を出力する。エントロピー符号化部110は、その予測動きベクトル選択情報をストリームに符号化する。 Then, the inter prediction unit 126 selects a prediction motion vector of the prediction block from the extracted N prediction motion vector candidates (step S202b). At this time, the inter prediction unit 126 outputs prediction motion vector selection information for identifying the selected prediction motion vector. The entropy encoding unit 110 encodes the predicted motion vector selection information into a stream.
 この予測動きベクトルの選択では、インター予測部126は、符号化対象ブロックである予測ブロックの原画像を用いてもよい。例えば、インター予測部126は、N個の予測動きベクトル候補のそれぞれについて、その予測動きベクトル候補によって指定されるブロックの画像と、予測ブロックの原画像との差分を算出する。そして、インター予測部126は、その差分が最も小さい予測動きベクトル候補を、その予測ブロックの予測動きベクトルとして選択する。あるいは、インター予測部126は、予測ブロックの原画像を用いた動き探索を行うことによって、その予測ブロックの動きベクトルを導出してもよい。そして、インター予測部126は、N個の予測動きベクトル候補のそれぞれについて、その予測動きベクトル候補によって指定されるブロックの画像と、導出された予測ブロックの動きベクトルによって指定されるブロックの画像との差分を算出する。そして、インター予測部126は、その差分が最も小さい予測動きベクトル候補を、その予測ブロックの予測動きベクトルとして選択する。 In the selection of the prediction motion vector, the inter prediction unit 126 may use an original image of a prediction block that is a coding target block. For example, the inter prediction unit 126 calculates, for each of N predicted motion vector candidates, the difference between the image of the block specified by the predicted motion vector candidate and the original image of the predicted block. Then, the inter prediction unit 126 selects a motion vector predictor candidate having the smallest difference as a motion vector predictor of the prediction block. Alternatively, the inter prediction unit 126 may derive a motion vector of the prediction block by performing a motion search using the original image of the prediction block. Then, for each of the N predicted motion vector candidates, the inter prediction unit 126 performs an operation between a block image specified by the predicted motion vector candidate and a block image specified by the derived predicted block motion vector. Calculate the difference. Then, the inter prediction unit 126 selects a motion vector predictor candidate having the smallest difference as a motion vector predictor of the prediction block.
 次に、インター予測部126は、符号化済み参照ピクチャを参照し、予測ブロックの動きベクトルを導出する(ステップS203)。このとき、インター予測部126は、さらに、その導出された動きベクトルと予測動きベクトルとの差分値を算出する。エントロピー符号化部110は、その差分値を差分動きベクトル情報としてストリームに符号化する。 Next, the inter prediction unit 126 refers to the encoded reference picture and derives a motion vector of the prediction block (step S203). At this time, the inter prediction unit 126 further calculates a difference value between the derived motion vector and the predicted motion vector. The entropy encoding unit 110 encodes the difference value as a difference motion vector information into a stream.
 最後に、インター予測部126は、その導出された動きベクトルと符号化済み参照ピクチャとを用いて予測ブロックに対して動き補償を行ことにより、その予測ブロックの予測画像を生成する(ステップS204)。 Finally, the inter prediction unit 126 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the encoded reference picture (step S204). .
 なお、インター予測部126は、上述のような予測ブロック単位での動き補償の代わりに、予測ブロックを分割することによって得られるサブブロック単位で同様に動きベクトルを導出し、サブブロック単位で動き補償を行ってもよい。 Note that the inter prediction unit 126 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
 図18は、本実施の形態における復号装置200による動き補償の他の例を示すフローチャートである。図10によって示される復号装置200が、符号化された複数のピクチャで構成される動画像を復号する際、復号装置200のインター予測部218等が、図18によって示される処理を実行する。 FIG. 18 is a flowchart showing another example of motion compensation by the decoding apparatus 200 according to this embodiment. When the decoding device 200 illustrated in FIG. 10 decodes a moving image including a plurality of encoded pictures, the inter prediction unit 218 and the like of the decoding device 200 perform the processing illustrated in FIG.
 具体的には、インター予測部218は、上述の予測ユニットに相当する予測ブロックごとに、その予測ブロックである復号対象ブロックに対して動き補償を行う。このときには、インター予測部218は、まず、時間的または空間的に予測ブロックの周囲にある複数の復号済みブロックの動きベクトルなどの情報に基づいて、その予測ブロックに対して複数の候補動きベクトルを取得する(ステップS211)。 Specifically, the inter prediction unit 218 performs motion compensation on the decoding target block that is a prediction block for each prediction block corresponding to the above-described prediction unit. At this time, the inter prediction unit 218 first selects a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of decoded blocks around the prediction block temporally or spatially. Obtain (step S211).
 次に、インター予測部218は、ステップS211で取得された複数の候補動きベクトルのそれぞれの評価値を、復号済み領域の再構成画像を用いて算出する。つまり、インター予測部218は、FRUC、すなわちテンプレートマッチング方式またはバイラテラルマッチング方式に基づいてそれらの評価値を算出する。そして、インター予測部218は、その複数の候補動きベクトルの評価値に基づいて、複数の候補動きベクトルの中からN個(Nは2以上の整数)の候補動きベクトルのそれぞれを予測動きベクトル候補として抽出する(ステップS212a)。つまり、インター予測部218は、複数の候補動きベクトルから、上述の評価結果に基づいてN個の候補動きベクトルを、上述の少なくとも1つの予測動きベクトル候補の全てとして抽出する。より具体的には、インター予測部218は、複数の候補動きベクトルから、評価結果が良い順で上位N個の候補動きベクトルを、上述の少なくとも1つの予測動きベクトル候補の全てとして抽出する。言い換えれば、インター予測部218は、複数の候補動きベクトルから、評価値の高い順で上位N個の候補動きベクトルをそれぞれ予測動きベクトル候補として抽出する。 Next, the inter prediction unit 218 calculates each evaluation value of the plurality of candidate motion vectors acquired in step S211 using the reconstructed image of the decoded area. That is, the inter prediction unit 218 calculates the evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, based on the evaluation values of the plurality of candidate motion vectors, the inter prediction unit 218 calculates each of N (N is an integer of 2 or more) candidate motion vectors from among the plurality of candidate motion vectors. (Step S212a). That is, the inter prediction unit 218 extracts N candidate motion vectors as all of the at least one predicted motion vector candidate from the plurality of candidate motion vectors based on the above evaluation result. More specifically, the inter prediction unit 218 extracts the top N candidate motion vectors from the plurality of candidate motion vectors in descending order of evaluation results as all of the above-described at least one prediction motion vector candidate. In other words, the inter prediction unit 218 extracts the top N candidate motion vectors as predicted motion vector candidates from the plurality of candidate motion vectors in descending order of evaluation value.
 なお、インター予測部218は、その抽出されたN個の予測動きベクトル候補のそれぞれについて、FRUCによる評価値がより高くなるように、その選択された予測動きベクトル候補を周辺領域において細かく動かすことによって、その予測動きベクトル候補を補正してもよい。つまり、インター予測部218は、FRUCによる評価値がより高くなる領域を細かく探索することによって、それらの予測動きベクトル候補を補正してもよい。 Note that the inter prediction unit 218 finely moves the selected predicted motion vector candidate in the peripheral region so that the FRUC evaluation value becomes higher for each of the extracted N predicted motion vector candidates. The predicted motion vector candidate may be corrected. That is, the inter prediction unit 218 may correct these motion vector predictor candidates by finely searching for a region where the FRUC evaluation value is higher.
 次に、インター予測部218は、復号装置200に入力されたストリームからエントロピー復号部202によって復号された予測動きベクトル選択情報を用いて、抽出されたN個の予測動きベクトル候補から1つの予測動きベクトル候補を、予測ブロックの予測動きベクトルとして選択する(ステップS212b)。つまり、エントロピー復号部202は、予測動きベクトルを識別するための選択情報である予測動きベクトル選択情報を復号する。そして、インター予測部218は、抽出されたN個の予測動きベクトル候補から、復号された予測動きベクトル選択情報によって識別される予測動きベクトル候補を、その予測動きベクトルとして選択する。 Next, the inter prediction unit 218 uses the prediction motion vector selection information decoded by the entropy decoding unit 202 from the stream input to the decoding apparatus 200, and extracts one prediction motion from the N predicted motion vector candidates extracted. A vector candidate is selected as a prediction motion vector of a prediction block (step S212b). That is, the entropy decoding unit 202 decodes prediction motion vector selection information that is selection information for identifying a prediction motion vector. Then, the inter prediction unit 218 selects a predicted motion vector candidate identified by the decoded predicted motion vector selection information from the extracted N predicted motion vector candidates as the predicted motion vector.
 次に、インター予測部218は、復号装置200に入力されたストリームからエントロピー復号部202によって復号された差分動きベクトル情報を用いて、予測ブロックの動きベクトルを導出する(ステップS213)。具体的には、インター予測部218は、その復号された差分動きベクトル情報である差分値と、選択された予測動きベクトルとを加算することによって、予測ブロックの動きベクトルを導出する。つまり、エントロピー復号部202は、2つの動きベクトルの差分を示す差分情報である差分動きベクトル情報を復号する。そして、インター予測部218は、その復号された差分情報によって示される差分に、選択された予測動きベクトルを加算することによって、復号対象ブロックである予測ブロックの動きベクトルを導出する。 Next, the inter prediction unit 218 derives a motion vector of the prediction block using the difference motion vector information decoded by the entropy decoding unit 202 from the stream input to the decoding device 200 (step S213). Specifically, the inter prediction unit 218 derives the motion vector of the prediction block by adding the difference value, which is the decoded difference motion vector information, and the selected prediction motion vector. That is, the entropy decoding unit 202 decodes difference motion vector information that is difference information indicating a difference between two motion vectors. Then, the inter prediction unit 218 derives the motion vector of the prediction block that is the decoding target block by adding the selected prediction motion vector to the difference indicated by the decoded difference information.
 最後に、インター予測部218は、その導出された動きベクトルと復号済み参照ピクチャとを用いて予測ブロックに対して動き補償を行ことにより、その予測ブロックの予測画像を生成する(ステップS214)。 Finally, the inter prediction unit 218 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the decoded reference picture (step S214).
 なお、インター予測部218は、上述のような予測ブロック単位での動き補償の代わりに、予測ブロックを分割することによって得られるサブブロック単位で同様に動きベクトルを導出し、サブブロック単位で動き補償を行ってもよい。 Note that the inter prediction unit 218 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
 図19は、複数の候補動きベクトルからN個の予測動きベクトル候補を抽出する方法を説明するための図である。 FIG. 19 is a diagram for explaining a method of extracting N predicted motion vector candidates from a plurality of candidate motion vectors.
 図17および図18に示す例では、インター予測部126および218は、複数の候補動きベクトルの中から評価値の高い順で上位N個の候補動きベクトルをそれぞれ予測動きベクトル候補として抽出する。具体的には、N=2の場合、図19の(a)に示すように、インター予測部126および218は、全ての候補動きベクトルの中から評価値の高い順で上位2個の候補動きベクトルをそれぞれ予測動きベクトル候補1および2として抽出する。 17 and FIG. 18, the inter prediction units 126 and 218 respectively extract the top N candidate motion vectors as predicted motion vector candidates from the plurality of candidate motion vectors in descending order of evaluation value. Specifically, when N = 2, as illustrated in FIG. 19A, the inter prediction units 126 and 218 perform the top two candidate motions in descending order of evaluation value from all candidate motion vectors. The vectors are extracted as motion vector predictor candidates 1 and 2, respectively.
 しかし、インター予測部126および218は、複数の候補動きベクトルをN個のグループに分類し、N個のグループのそれぞれから、そのグループで評価結果が最も良い1つの候補動きベクトルを抽出することによって、上述の少なくとも1つの予測動きベクトル候補の全てを抽出してもよい。具体的には、N=2の場合、インター予測部126および218は、図19の(b)に示すように、全ての候補動きベクトルを2個のグループに分類する。1つ目のグループは、例えば、符号化対象ピクチャ内のブロックの動きベクトルなどに基づいて得られた候補動きベクトルが属するグループである。2つの目のグループは、例えば、符号化対象ピクチャと異なるピクチャ内のブロックの動きベクトルなどに基づいて得られた候補動きベクトルが属するグループである。 However, the inter prediction units 126 and 218 classify the plurality of candidate motion vectors into N groups, and extract one candidate motion vector having the best evaluation result in each group from each of the N groups. All of the above-described at least one predicted motion vector candidate may be extracted. Specifically, when N = 2, the inter prediction units 126 and 218 classify all candidate motion vectors into two groups as shown in FIG. The first group is a group to which candidate motion vectors obtained based on, for example, the motion vector of a block in the encoding target picture belong. The second group is a group to which candidate motion vectors obtained based on, for example, a motion vector of a block in a picture different from the picture to be encoded belong.
 そして、インター予測部126および218は、1つ目のグループから、そのグループで評価値が最も高い1つの候補動きベクトルを予測動きベクトル候補1として抽出する。さらに、インター予測部126および218は、2つ目のグループから、そのグループで評価値が最も高い1つの候補動きベクトルを予測動きベクトル候補2として抽出する。 Then, the inter prediction units 126 and 218 extract one candidate motion vector having the highest evaluation value as the predicted motion vector candidate 1 from the first group. Furthermore, the inter prediction units 126 and 218 extract one candidate motion vector having the highest evaluation value in the second group as the predicted motion vector candidate 2 from the second group.
 あるいは、インター予測部126および218は、複数の候補動きベクトルをM個(MはNよりも大きい整数)のグループに分類してもよい。そして、インター予測部126および218は、M個のグループのそれぞれから、そのグループで評価結果が最も良い1つの候補動きベクトルを代表候補動きベクトルとして選択する。次に、インター予測部126および218は、選択されたM個の代表候補動きベクトルから、評価結果が良い順で上位N個の代表候補動きベクトルを、上述の少なくとも1つの予測動きベクトル候補の全てとして抽出してもよい。 Alternatively, the inter prediction units 126 and 218 may classify a plurality of candidate motion vectors into M groups (M is an integer larger than N). Then, the inter prediction units 126 and 218 select, from each of the M groups, one candidate motion vector having the best evaluation result in that group as a representative candidate motion vector. Next, the inter prediction units 126 and 218 select the top N representative candidate motion vectors from the selected M representative candidate motion vectors in the order of good evaluation results, and all the at least one predicted motion vector candidate described above. May be extracted as
 具体的には、M=3の場合、インター予測部126および218は、図19の(c)に示すように、全ての候補動きベクトルを3個のグループに分類する。1つ目のグループは、例えば、符号化対象ピクチャ内における符号化対象ブロックの左側のブロックの動きベクトルなどに基づいて得られた候補動きベクトルが属するグループである。2つ目のグループは、例えば、符号化対象ピクチャ内における符号化対象ブロックの上側のブロックの動きベクトルなどに基づいて得られた候補動きベクトルが属するグループである。3つの目のグループは、例えば、符号化対象ピクチャと異なるピクチャ内のブロックの動きベクトルなどに基づいて得られた候補動きベクトルが属するグループである。 Specifically, when M = 3, the inter prediction units 126 and 218 classify all candidate motion vectors into three groups as shown in (c) of FIG. The first group is a group to which candidate motion vectors obtained based on, for example, the motion vector of the block on the left side of the encoding target block in the encoding target picture belong. The second group is a group to which candidate motion vectors obtained based on, for example, the motion vector of the block above the encoding target block in the encoding target picture belong. The third group is a group to which candidate motion vectors obtained based on, for example, a motion vector of a block in a picture different from the encoding target picture belong.
 そして、インター予測部126および218は、1つ目のグループから、その1つ目のグループで評価値が最も高い1つの候補動きベクトルを代表候補動きベクトル1として選択する。さらに、インター予測部126および218は、2つ目のグループから、その2つ目のグループで評価値が最も高い1つの候補動きベクトルを代表候補動きベクトル2として選択する。さらに、インター予測部126および218は、3つ目のグループから、その3つ目のグループで評価値が最も高い1つの候補動きベクトルを代表候補動きベクトル3として選択する。 Then, the inter prediction units 126 and 218 select one candidate motion vector having the highest evaluation value in the first group as the representative candidate motion vector 1 from the first group. Furthermore, the inter prediction units 126 and 218 select, from the second group, one candidate motion vector having the highest evaluation value in the second group as the representative candidate motion vector 2. Furthermore, the inter prediction units 126 and 218 select one candidate motion vector having the highest evaluation value in the third group as the representative candidate motion vector 3 from the third group.
 次に、インター予測部126および218は、抽出された3個の代表候補動きベクトルから、評価値の高い順で上位2個の代表候補動きベクトルをそれぞれ予測動きベクトル候補として抽出する。 Next, the inter prediction units 126 and 218 respectively extract the top two representative candidate motion vectors as predicted motion vector candidates in descending order of evaluation value from the extracted three representative candidate motion vectors.
 なお、図19に示す例では、2個の予測動きベクトル候補を抽出したが、2個に限らず、3個以上の予測動きベクトル候補を抽出してもよい。 In the example shown in FIG. 19, two prediction motion vector candidates are extracted, but the number is not limited to two, and three or more prediction motion vector candidates may be extracted.
 [実施の形態2の効果など]
 本実施の形態における符号化装置は、動画像を符号化する符号化装置であって、処理回路と、前記処理回路に接続されたメモリとを備え、前記処理回路は、前記メモリを用いて、前記動画像における符号化対象ブロックに対応する複数の符号化済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、前記複数の候補動きベクトルから、前記符号化対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、前記動画像に含まれる参照ピクチャを参照して前記符号化対象ブロックの動きベクトルを導出し、抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化し、導出された前記符号化対象ブロックの動きベクトルを用いて前記符号化対象ブロックに対して動き補償を行い、前記少なくとも1つの予測動きベクトル候補の抽出では、前記少なくとも1つの予測動きベクトル候補の全てを、前記符号化対象ブロックの画像領域を使用せずに前記動画像における符号化済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する。なお、メモリは、フレームメモリ122であっても、他のメモリであってもよく、処理回路は、例えばインター予測部126およびエントロピー符号化部110などを含んでいてもよい。
[Effects of Second Embodiment, etc.]
The encoding device in the present embodiment is an encoding device that encodes a moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit uses the memory, A plurality of candidate motion vectors are acquired based on respective motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image, and at least one of the encoding target blocks is obtained from the plurality of candidate motion vectors. One prediction motion vector candidate is extracted, a motion vector of the coding target block is derived with reference to a reference picture included in the moving image, and a prediction motion vector of the extracted at least one prediction motion vector candidate is extracted And a difference between the derived motion vector of the encoding target block and a motion of the derived encoding target block. Motion compensation is performed on the encoding target block using a vector, and in the extraction of the at least one prediction motion vector candidate, all of the at least one prediction motion vector candidate is converted into an image area of the encoding target block. Extraction is performed based on the respective evaluation results of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using it. The memory may be the frame memory 122 or another memory, and the processing circuit may include, for example, the inter prediction unit 126 and the entropy encoding unit 110.
 これにより、少なくとも1つの予測動きベクトル候補の全ては、符号化対象ブロックの画像領域を使用せずに動画像における符号化済み領域の再構成画像を用いた複数の候補動きベクトルのそれぞれの評価結果、つまりFRUCによる評価結果に基づいて抽出される。したがって、符号化対象ブロックである予測ブロックの予測精度を高めて、符号化効率の向上を図ることができる。さらに、本実施の形態では、予め定められた優先順位に基づいて予測動きベクトル候補を抽出することがない。そのため、FRUCによる評価結果に基づく抽出のための候補リストを生成すれば、全ての予測動きベクトル候補を抽出することができ、優先順位に基づく抽出のための候補リストを生成する必要がない。したがって、処理負担の増加を抑えながら符号化効率の向上を図ることができる。 Thereby, all of at least one prediction motion vector candidate is the evaluation result of each of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block. That is, it is extracted based on the evaluation result by FRUC. Therefore, the prediction accuracy of the prediction block that is the encoding target block can be increased, and the encoding efficiency can be improved. Furthermore, in this embodiment, a motion vector predictor candidate is not extracted based on a predetermined priority order. Therefore, if a candidate list for extraction based on the evaluation result by FRUC is generated, all motion vector predictor candidates can be extracted, and it is not necessary to generate a candidate list for extraction based on priority. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルから、前記評価結果が最も良い1つの候補動きベクトルのみを選択することによって、前記少なくとも1つの予測動きベクトル候補の全てを抽出し、前記差分の符号化では、選択された前記候補動きベクトルである前記予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化してもよい。 In addition, in the extraction of the at least one predicted motion vector candidate, the processing circuit selects only the one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors, whereby the at least one predicted motion vector is selected. Extracting all motion vector candidates, and encoding the difference, the difference between the predicted motion vector that is the selected candidate motion vector and the derived motion vector of the encoding target block may be encoded. Good.
 これにより、例えば図15に示すように、1つの予測動きベクトル候補が抽出され、その予測動きベクトル候補が予測動きベクトルとして選択される。一方、複数の予測動きベクトル候補が抽出されて、その複数の予測動きベクトル候補から1つの予測動きベクトルが選択される場合には、その選択された予測動きベクトルを識別するための情報を符号化してストリームに含める必要がある。しかし、図15に示す例では、1つの予測動きベクトル候補が抽出されて、その予測動きベクトル候補が予測動きベクトルとして選択されるため、そのような情報を符号化する必要がない。したがって、符号量の削減を図ることができる。 Thereby, for example, as shown in FIG. 15, one predicted motion vector candidate is extracted, and the predicted motion vector candidate is selected as the predicted motion vector. On the other hand, when a plurality of predicted motion vector candidates are extracted and one predicted motion vector is selected from the plurality of predicted motion vector candidates, information for identifying the selected predicted motion vector is encoded. Must be included in the stream. However, in the example illustrated in FIG. 15, one prediction motion vector candidate is extracted and the prediction motion vector candidate is selected as the prediction motion vector, and thus it is not necessary to encode such information. Therefore, the code amount can be reduced.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルから、前記評価結果に基づいてN個(Nは2以上の整数)の候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出し、前記処理回路は、さらに、抽出されたN個の予測動きベクトル候補から前記予測動きベクトルを選択し、選択された前記予測動きベクトルを識別するための選択情報を符号化し、前記差分の符号化では、選択された前記予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化してもよい。 In the extraction of the at least one predicted motion vector candidate, the processing circuit selects N (N is an integer of 2 or more) candidate motion vectors based on the evaluation result from the plurality of candidate motion vectors. Extracting as all of at least one predicted motion vector candidate, and the processing circuit further selects the predicted motion vector from the extracted N predicted motion vector candidates and identifies the selected predicted motion vector In the encoding of the difference, the difference between the selected predicted motion vector and the derived motion vector of the encoding target block may be encoded.
 これにより、例えば図17に示すように、複数の予測動きベクトル候補が抽出され、それらの中から、符号化対象ブロックである予測ブロックの画像を用いてより予測精度が高い予測動きベクトル候補を予測動きベクトルとして選択することができる。したがって、符号化効率の向上を図ることができる。また、このように選択された予測動きベクトルを識別するための選択情報が符号化されるため、復号装置は、その選択情報を復号することによって、符号化装置において予測動きベクトルとして選択された予測動きベクトル候補を適切に特定することができる。したがって、符号化された動画像を復号装置に適切に復号させることができる。 As a result, for example, as shown in FIG. 17, a plurality of motion vector predictor candidates are extracted, and prediction motion vector candidates with higher prediction accuracy are predicted from among them by using an image of the prediction block that is the encoding target block. It can be selected as a motion vector. Therefore, the encoding efficiency can be improved. In addition, since the selection information for identifying the prediction motion vector selected in this way is encoded, the decoding device decodes the selection information, thereby the prediction selected as the prediction motion vector in the encoding device. The motion vector candidate can be appropriately identified. Therefore, the encoded moving image can be appropriately decoded by the decoding device.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルから、前記評価結果が良い順で上位N個の候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出してもよい。例えば、前記複数の候補動きベクトルのそれぞれの評価結果は、当該候補動きベクトルによって特定される第1の符号化済み領域の再構成画像と、第2の符号化済み再構成画像との差分が小さいほど良い評価結果である。 In addition, in the extraction of the at least one predicted motion vector candidate, the processing circuit obtains the top N candidate motion vectors from the plurality of candidate motion vectors in descending order of the evaluation result, and the at least one predicted motion vector. You may extract as all of the candidates. For example, each evaluation result of the plurality of candidate motion vectors has a small difference between the reconstructed image of the first encoded region specified by the candidate motion vector and the second encoded reconstructed image. It is a good evaluation result.
 これにより、例えば図19の(a)に示すように、複数の候補動きベクトルから、予測精度が高いN個の予測動きベクトル候補を優先的に選択することができる。 Thereby, for example, as shown in FIG. 19A, N predicted motion vector candidates with high prediction accuracy can be preferentially selected from a plurality of candidate motion vectors.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルをN個のグループに分類し、前記N個のグループのそれぞれから、当該グループで前記評価結果が最も良い1つの候補動きベクトルを抽出することによって、前記少なくとも1つの予測動きベクトル候補の全てを抽出してもよい。例えば図19の(b)に示すように、複数の候補動きベクトルは互いに性質の異なるN個のグループに分類される。そして、N個のグループのそれぞれから、評価結果が最も良い1つの予測動きベクトル候補が抽出されるため、互いに性質が異なり、かつ予測精度が高いN個の予測動きベクトル候補を抽出することができる。その結果、予測動きベクトルの選択の幅を広げることができ、予測精度のより高い予測動きベクトルが選択される可能性を高めることができる。 In addition, in the extraction of the at least one predicted motion vector candidate, the processing circuit classifies the plurality of candidate motion vectors into N groups, and the evaluation result in the group is determined from each of the N groups. All of the at least one predicted motion vector candidate may be extracted by extracting the best candidate motion vector. For example, as shown in FIG. 19B, the plurality of candidate motion vectors are classified into N groups having different properties. Since one predicted motion vector candidate with the best evaluation result is extracted from each of the N groups, N predicted motion vector candidates having different properties and high prediction accuracy can be extracted. . As a result, the range of selection of the prediction motion vector can be expanded, and the possibility that a prediction motion vector with higher prediction accuracy is selected can be increased.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルをM個(MはNより大きい整数)のグループに分類し、前記M個のグループのそれぞれから、当該グループで前記評価結果が最も良い1つの候補動きベクトルを代表候補動きベクトルとして選択し、選択されたM個の前記代表候補動きベクトルから、前記評価結果が良い順で上位N個の代表候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出してもよい。 In the extraction of the at least one predicted motion vector candidate, the processing circuit classifies the plurality of candidate motion vectors into M groups (M is an integer greater than N), and from each of the M groups. , One candidate motion vector having the best evaluation result in the group is selected as a representative candidate motion vector, and the top N representative candidates in order of the evaluation result from the selected M representative candidate motion vectors. Motion vectors may be extracted as all of the at least one predicted motion vector candidate.
 これにより、例えば図19の(c)に示すように、抽出される予測動きベクトル候補の数(すなわちN個)よりも多くのグループに、複数の候補動きベクトルが分類される場合であっても、互いに性質が異なり、かつ予測精度が高いN個の予測動きベクトル候補を抽出することができる。 As a result, for example, as shown in FIG. 19C, even when a plurality of candidate motion vectors are classified into more groups than the number of predicted motion vector candidates to be extracted (that is, N). It is possible to extract N predicted motion vector candidates having different properties and high prediction accuracy.
 また、本実施の形態における復号装置は、符号化された動画像を復号する復号装置であって、処理回路と、前記処理回路に接続されたメモリとを備え、前記処理回路は、前記メモリを用いて、前記動画像における復号対象ブロックに対応する複数の復号済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、前記複数の候補動きベクトルから、前記復号対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、2つの動きベクトルの差分を示す差分情報を復号し、復号された前記差分情報によって示される差分に、抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出し、導出された前記復号対象ブロックの動きベクトルを用いて前記復号対象ブロックに対して動き補償を行い、前記少なくとも1つの予測動きベクトル候補の抽出では、前記少なくとも1つの予測動きベクトル候補の全てを、前記復号対象ブロックの画像領域を使用せずに前記動画像における復号済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する。なお、メモリは、フレームメモリ214であっても、他のメモリであってもよく、処理回路は、例えばインター予測部218およびエントロピー復号部202などを含んでいてもよい。 The decoding device according to the present embodiment is a decoding device that decodes an encoded moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit includes the memory. To obtain a plurality of candidate motion vectors based on respective motion vectors of a plurality of decoded blocks corresponding to a decoding target block in the moving image, and from the plurality of candidate motion vectors, at least one of the decoding target blocks One prediction motion vector candidate is extracted, difference information indicating a difference between two motion vectors is decoded, and a prediction of the extracted at least one prediction motion vector candidate is obtained as a difference indicated by the decoded difference information. A motion vector of the decoding target block is derived by adding a motion vector, and the derived decoding target block is derived. Motion compensation is performed on the decoding target block using a motion vector of a block, and in the extraction of the at least one prediction motion vector candidate, all of the at least one prediction motion vector candidate Extraction is performed based on the respective evaluation results of the plurality of candidate motion vectors using the reconstructed image of the decoded region in the moving image without using the region. The memory may be the frame memory 214 or another memory, and the processing circuit may include, for example, the inter prediction unit 218 and the entropy decoding unit 202.
 これにより、少なくとも1つの予測動きベクトル候補の全ては、復号対象ブロックの画像領域を使用せずに動画像における復号済み領域の再構成画像を用いた複数の候補動きベクトルのそれぞれの評価結果、つまりFRUCによる評価結果に基づいて抽出される。したがって、復号対象ブロックである予測ブロックの予測精度を高めて、符号化効率の向上を図ることができる。さらに、本実施の形態では、予め定められた優先順位に基づいて予測動きベクトル候補を抽出することがない。そのため、FRUCによる評価結果に基づく抽出のための候補リストを生成すれば、全ての予測動きベクトル候補を抽出することができ、優先順位に基づく抽出のための候補リストを生成する必要がない。したがって、処理負担の増加を抑えながら符号化効率の向上を図ることができる。 Thereby, all of the at least one predicted motion vector candidate are evaluated results of each of the plurality of candidate motion vectors using the reconstructed image of the decoded region in the moving image without using the image region of the decoding target block, that is, Extracted based on the evaluation result by FRUC. Therefore, it is possible to improve the prediction efficiency of the prediction block that is the decoding target block and improve the encoding efficiency. Furthermore, in this embodiment, a motion vector predictor candidate is not extracted based on a predetermined priority order. Therefore, if a candidate list for extraction based on the evaluation result by FRUC is generated, all motion vector predictor candidates can be extracted, and it is not necessary to generate a candidate list for extraction based on priority. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルから、前記評価結果が最も良い1つの候補動きベクトルのみを選択することによって、前記少なくとも1つの予測動きベクトル候補の全てを抽出し、前記復号対象ブロックの動きベクトルの導出では、復号された前記差分情報によって示される差分に、選択された前記候補動きベクトルである前記予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出してもよい。 In addition, in the extraction of the at least one predicted motion vector candidate, the processing circuit selects only the one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors, whereby the at least one predicted motion vector is selected. By extracting all motion vector candidates and deriving the motion vector of the decoding target block, the predicted motion vector that is the selected candidate motion vector is added to the difference indicated by the decoded difference information. The motion vector of the decoding target block may be derived.
 これにより、例えば図16に示すように、1つの予測動きベクトル候補が抽出され、その予測動きベクトル候補が予測動きベクトルとして選択される。一方、複数の予測動きベクトル候補が抽出される場合には、それらの予測動きベクトル候補から、符号化装置によって選択された予測動きベクトルを識別するための情報をストリームから復号する必要がある。しかし、図16に示す例では、1つの予測動きベクトル候補が抽出されて、その予測動きベクトル候補が予測動きベクトルとして選択されるため、そのような情報を復号する必要がない。したがって、符号量の削減を図ることができる。 Thereby, for example, as shown in FIG. 16, one predicted motion vector candidate is extracted, and the predicted motion vector candidate is selected as the predicted motion vector. On the other hand, when a plurality of motion vector predictor candidates are extracted, information for identifying the motion vector predictor selected by the encoding device from the motion vector predictor candidates needs to be decoded from the stream. However, in the example illustrated in FIG. 16, one prediction motion vector candidate is extracted and the prediction motion vector candidate is selected as the prediction motion vector, and thus it is not necessary to decode such information. Therefore, the code amount can be reduced.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルから、前記評価結果に基づいてN個(Nは2以上の整数)の候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出し、前記処理回路は、さらに、前記予測動きベクトルを識別するための選択情報を復号し、抽出されたN個の予測動きベクトル候補から、復号された前記選択情報によって識別される予測動きベクトル候補を、前記予測動きベクトルとして選択し、前記復号対象ブロックの動きベクトルの導出では、復号された前記差分情報によって示される差分に、選択された前記予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出してもよい。 In the extraction of the at least one predicted motion vector candidate, the processing circuit selects N (N is an integer of 2 or more) candidate motion vectors based on the evaluation result from the plurality of candidate motion vectors. Extracting as all of at least one predicted motion vector candidate, and the processing circuit further decodes selection information for identifying the predicted motion vector, decoded from the extracted N predicted motion vector candidates The predicted motion vector candidate identified by the selection information is selected as the predicted motion vector, and in the derivation of the motion vector of the decoding target block, the selected predicted motion is added to the difference indicated by the decoded difference information. A motion vector of the decoding target block may be derived by adding the vectors.
 これにより、例えば図18に示すように、複数の予測動きベクトル候補が抽出され、それらの中から、選択情報によって、より予測精度が高い予測動きベクトル候補を予測動きベクトルとして選択することができる。したがって、符号化効率の向上を図ることができる。 Thereby, for example, as shown in FIG. 18, a plurality of motion vector predictor candidates are extracted, and from them, a motion vector predictor candidate with higher prediction accuracy can be selected as a motion vector predictor based on selection information. Therefore, the encoding efficiency can be improved.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルから、前記評価結果が良い順で上位N個の候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出してもよい。例えば、前記複数の候補動きベクトルのそれぞれの評価結果は、当該候補動きベクトルによって特定される第1の復号済み領域の再構成画像と、第2の復号済み再構成画像との差分が小さいほど良い評価結果である。 In addition, in the extraction of the at least one predicted motion vector candidate, the processing circuit obtains the top N candidate motion vectors from the plurality of candidate motion vectors in descending order of the evaluation result, and the at least one predicted motion vector. You may extract as all of the candidates. For example, the evaluation result of each of the plurality of candidate motion vectors is better as the difference between the reconstructed image of the first decoded area specified by the candidate motion vector and the second decoded reconstructed image is smaller. It is an evaluation result.
 これにより、例えば図19の(a)に示すように、複数の候補動きベクトルから、予測精度が高いN個の予測動きベクトル候補を優先的に選択することができる。 Thereby, for example, as shown in FIG. 19A, N predicted motion vector candidates with high prediction accuracy can be preferentially selected from a plurality of candidate motion vectors.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルをN個のグループに分類し、前記N個のグループのそれぞれから、当該グループで前記評価結果が最も良い1つの候補動きベクトルを抽出することによって、前記少なくとも1つの予測動きベクトル候補の全てを抽出してもよい。例えば図19の(b)に示すように、複数の候補動きベクトルは互いに性質の異なるN個のグループに分類される。そして、N個のグループのそれぞれから、評価結果が最も良い1つの予測動きベクトル候補が抽出されるため、互いに性質が異なり、かつ予測精度が高いN個の予測動きベクトル候補を抽出することができる。その結果、予測動きベクトルの選択の幅を広げることができ、予測精度のより高い予測動きベクトルが選択される可能性を高めることができる。 In addition, in the extraction of the at least one predicted motion vector candidate, the processing circuit classifies the plurality of candidate motion vectors into N groups, and the evaluation result in the group is determined from each of the N groups. All of the at least one predicted motion vector candidate may be extracted by extracting the best candidate motion vector. For example, as shown in FIG. 19B, the plurality of candidate motion vectors are classified into N groups having different properties. Since one predicted motion vector candidate with the best evaluation result is extracted from each of the N groups, N predicted motion vector candidates having different properties and high prediction accuracy can be extracted. . As a result, the range of selection of the prediction motion vector can be expanded, and the possibility that a prediction motion vector with higher prediction accuracy is selected can be increased.
 また、前記処理回路は、前記少なくとも1つの予測動きベクトル候補の抽出では、前記複数の候補動きベクトルをM個(MはNよりも大きい整数)のグループに分類し、前記M個のグループのそれぞれから、当該グループで前記評価結果が最も良い1つの候補動きベクトルを代表候補動きベクトルとして選択し、選択されたM個の前記代表候補動きベクトルから、前記評価結果が良い順で上位N個の代表候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出してもよい。 In the extraction of the at least one predicted motion vector candidate, the processing circuit classifies the plurality of candidate motion vectors into M groups (M is an integer greater than N), and each of the M groups. Then, one candidate motion vector having the best evaluation result in the group is selected as a representative candidate motion vector, and the top N representatives in order of good evaluation result from the selected M representative candidate motion vectors. Candidate motion vectors may be extracted as all of the at least one predicted motion vector candidate.
 これにより、例えば図19の(c)に示すように、抽出される予測動きベクトル候補の数(すなわちN個)よりも多くのグループに、複数の候補動きベクトルが分類される場合であっても、互いに性質が異なり、かつ予測精度が高いN個の予測動きベクトル候補を抽出することができる。 As a result, for example, as shown in FIG. 19C, even when a plurality of candidate motion vectors are classified into more groups than the number of predicted motion vector candidates to be extracted (that is, N). It is possible to extract N predicted motion vector candidates having different properties and high prediction accuracy.
 これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized by a non-transitory recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. The present invention may be realized by any combination of a method, an integrated circuit, a computer program, and a recording medium.
 (実施の形態3)
 [FRUC/優先順位の切り替え]
 本実施の形態における符号化装置および復号装置は、実施の形態1と同様の構成を有するが、インター予測部126および218の処理動作に特徴がある。すなわち、本実施の形態も、実施の形態2と同様、上述の[本開示の基礎となった知見]における課題、つまり、1つの予測ブロックに対して互いに異なる複数の候補リストを作成しなければならず、処理負担が増加してしまうという課題を解決する。
(Embodiment 3)
[FRUC / priority switching]
The encoding apparatus and decoding apparatus in the present embodiment have the same configuration as that of Embodiment 1, but are characterized by the processing operations of inter prediction units 126 and 218. That is, in the present embodiment as well as in the second embodiment, a problem in the above [knowledge that became the basis of the present disclosure], that is, a plurality of different candidate lists for one prediction block must be created. It solves the problem that the processing load increases.
 このような本実施の形態における符号化装置100は、上述の少なくとも1つの予測動きベクトル候補の抽出では、抽出方法を識別するためのモード情報を符号化する。そして、符号化装置100は、第1の抽出方法および第2の抽出方法から、符号化対象ブロックに対してそのモード情報によって識別される抽出方法を選択し、選択された抽出方法にしたがって、その少なくとも1つの予測動きベクトル候補を抽出する。ここで、第1の抽出方法は、符号化対象ブロックの画像領域を使用せずに動画像における符号化済み領域の再構成画像を用いた複数の候補動きベクトルのそれぞれの評価結果に基づく抽出方法である。また、第2の抽出方法は、複数の候補動きベクトルに対して予め定められた優先順位に基づく抽出方法である。 Such an encoding apparatus 100 according to the present embodiment encodes mode information for identifying an extraction method in the above-described extraction of at least one prediction motion vector candidate. Then, the encoding device 100 selects the extraction method identified by the mode information for the block to be encoded from the first extraction method and the second extraction method, and, according to the selected extraction method, At least one predicted motion vector candidate is extracted. Here, the first extraction method is an extraction method based on the evaluation results of a plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block. It is. In addition, the second extraction method is an extraction method based on a predetermined priority order for a plurality of candidate motion vectors.
 また、本実施の形態における復号装置200は、上述の少なくとも1つの予測動きベクトル候補の抽出では、抽出方法を識別するためのモード情報を復号する。そして、復号装置200は、第1の抽出方法および第2の抽出方法から、復号されたモード情報によって復号対象ブロックに対して識別される抽出方法を選択し、選択された抽出方法にしたがって、その少なくとも1つの予測動きベクトル候補を抽出する。 Also, the decoding apparatus 200 according to the present embodiment decodes mode information for identifying an extraction method in the extraction of at least one predicted motion vector candidate. Then, the decoding apparatus 200 selects an extraction method identified for the block to be decoded by the decoded mode information from the first extraction method and the second extraction method, and according to the selected extraction method, At least one predicted motion vector candidate is extracted.
 つまり、本実施の形態における符号化装置100および復号装置200は、予測ブロックごとに、少なくとも1つの予測動きベクトル候補の抽出方法を、FRUCによる評価結果に基づく抽出方法と、予め定められた優先順位に基づく抽出方法とに切り替える。 That is, encoding apparatus 100 and decoding apparatus 200 according to the present embodiment, for each prediction block, extract at least one prediction motion vector candidate, an extraction method based on an evaluation result by FRUC, and a predetermined priority order. Switch to the extraction method based on.
 これにより、予測ブロックに対して互いに異なる複数の候補リストを作成することなく、処理負担の増加を抑えることができる。 This makes it possible to suppress an increase in processing load without creating a plurality of different candidate lists for the prediction block.
 図20は、本実施の形態における符号化装置100および復号装置200による予測動きベクトルの選択方法を示すフローチャートである。 FIG. 20 is a flowchart showing a method of selecting a motion vector predictor by the encoding device 100 and the decoding device 200 according to this embodiment.
 インター予測部126および218は、モード情報が0を示しているか、1を示しているかを判定する(ステップS301)。モード情報は、少なくとも1つの予測動きベクトル候補の抽出方法を識別するための情報である。具体的には、モード情報=0の場合には、そのモード情報は、第1の抽出方法、すなわち、FRUCによる評価結果に基づく抽出方法を示す。モード情報=1の場合には、そのモード情報は、第2の抽出方法、すなわち、予め定められた優先順位にしたがった抽出方法を示す。 The inter prediction units 126 and 218 determine whether the mode information indicates 0 or 1 (step S301). The mode information is information for identifying an extraction method of at least one prediction motion vector candidate. Specifically, when mode information = 0, the mode information indicates a first extraction method, that is, an extraction method based on an evaluation result by FRUC. When mode information = 1, the mode information indicates a second extraction method, that is, an extraction method according to a predetermined priority order.
 ここで、モード情報が0を示していると判定すると、インター予測部126および218は、実施の形態2と同様に、FRUCによる評価結果に基づいて少なくとも1つの予測動きベクトル候補を抽出する(ステップS302)。具体的には、インター予測部126および218は、複数の候補動きベクトルのそれぞれに対して符号化済みまたは復号済みの再構成画像を用いた評価を行う。そして、インター予測部126および218は、その評価結果に基づいて複数の候補動きベクトルから少なくとも1つの予測動きベクトル候補を抽出する。 Here, when it is determined that the mode information indicates 0, the inter prediction units 126 and 218 extract at least one motion vector predictor candidate based on the evaluation result by FRUC, as in the second embodiment (Step S1). S302). Specifically, the inter prediction units 126 and 218 perform evaluation using encoded or decoded reconstructed images for each of a plurality of candidate motion vectors. Then, the inter prediction units 126 and 218 extract at least one prediction motion vector candidate from the plurality of candidate motion vectors based on the evaluation result.
 一方、インター予測部126および218は、ステップS301において、モード情報が1を示していると判定すると、図11および図12に示す例と同様に、N個(Nは2以上の整数)の予測動きベクトル候補を抽出する(ステップS303)。具体的には、インター予測部126および218は、予め定められた優先順位にしたがって複数の候補動きベクトルからN個の予測動きベクトル候補を抽出する。 On the other hand, when the inter prediction units 126 and 218 determine that the mode information indicates 1 in step S301, N predictions (N is an integer equal to or greater than 2) are predicted as in the examples illustrated in FIGS. Motion vector candidates are extracted (step S303). Specifically, the inter prediction units 126 and 218 extract N predicted motion vector candidates from a plurality of candidate motion vectors according to a predetermined priority order.
 ステップS302において少なくとも1つの予測動きベクトル候補が抽出されたときには、インター予測部126および218は、その抽出された予測動きベクトル候補の数が複数であるか否かを判定する(ステップS304)。ここで、インター予測部126および218は、抽出された予測動きベクトル候補の数が1個であると判定すると(ステップS304のNo)、その抽出された予測動きベクトル候補を、符号化対象ブロックである予測ブロックの予測動きベクトルとして選択する(ステップS305)。 When at least one prediction motion vector candidate is extracted in step S302, the inter prediction units 126 and 218 determine whether or not the number of the extracted prediction motion vector candidates is plural (step S304). When the inter prediction units 126 and 218 determine that the number of extracted motion vector predictor candidates is one (No in step S304), the inter motion prediction units 126 and 218 determine the extracted motion vector predictor candidates as encoding target blocks. It selects as a prediction motion vector of a certain prediction block (step S305).
 一方、インター予測部126および218は、抽出された予測動きベクトル候補の数が複数であると判定すると(ステップS304のYes)、その複数の予測動きベクトル候補から、予測動きベクトル選択情報によって識別される予測動きベクトル候補を、予測ブロックの予測動きベクトルとして選択する(ステップS306)。 On the other hand, when the inter prediction units 126 and 218 determine that the number of extracted motion vector predictor candidates is plural (Yes in step S304), the inter prediction units 126 and 218 are identified by the motion vector predictor selection information from the plurality of motion vector predictor candidates. The predicted motion vector candidate is selected as the predicted motion vector of the predicted block (step S306).
 また、ステップS303においてN個の予測動きベクトル候補が抽出されたときには、インター予測部126および218は、そのN個の予測動きベクトル候補から、予測動きベクトル選択情報によって示される予測動きベクトル候補を、予測ブロックの予測動きベクトルとして選択する(ステップS306)。 In addition, when N predicted motion vector candidates are extracted in step S303, the inter prediction units 126 and 218 select a predicted motion vector candidate indicated by the predicted motion vector selection information from the N predicted motion vector candidates. It selects as a prediction motion vector of a prediction block (step S306).
 なお、上述のモード情報は、符号化装置100のエントロピー符号化部110によってストリームに符号化され、復号装置200のエントロピー復号部202によってそのストリームから復号される。 Note that the above-described mode information is encoded into a stream by the entropy encoding unit 110 of the encoding device 100, and is decoded from the stream by the entropy decoding unit 202 of the decoding device 200.
 このような、モード情報は、シーケンス層、ピクチャ層、およびスライス層のうちの何れかの層のヘッダ領域に符号化される。つまり、エントロピー符号化部110は、その層のヘッダ領域に、その層に含まれる各ブロックに対する抽出方法を識別するためのモード情報を符号化する。また、エントロピー復号部202は、その層のヘッダ領域から、その層に含まれる各ブロックに対する抽出方法を識別するためのモード情報を復号する。 Such mode information is encoded in the header area of any one of the sequence layer, the picture layer, and the slice layer. That is, the entropy encoding unit 110 encodes mode information for identifying an extraction method for each block included in the layer in the header area of the layer. In addition, the entropy decoding unit 202 decodes mode information for identifying an extraction method for each block included in the layer from the header area of the layer.
 これにより、FRUCに基づく抽出方法と、予め定められた優先順位にしたがった抽出方法とを、シーケンス、ピクチャまたはスライスごとに切り替えることができる。また、モード情報は、予測ブロック単位でストリームに符号化されていてもよい。つまり、エントロピー符号化部110は、動画像に含まれるブロックごとに、当該ブロックに対する抽出方法を識別するためのモード情報を符号化する。また、エントロピー復号部202は、動画像に含まれるブロックごとに、当該ブロックに対する抽出方法を識別するためのモード情報を復号する。これにより、それらの抽出方法を予測ブロックごとに切り替えることができる。 Thereby, the extraction method based on FRUC and the extraction method according to a predetermined priority order can be switched for each sequence, picture or slice. Further, the mode information may be encoded in the stream in units of prediction blocks. That is, the entropy encoding unit 110 encodes mode information for identifying an extraction method for the block for each block included in the moving image. Further, the entropy decoding unit 202 decodes mode information for identifying an extraction method for each block included in the moving image. Thereby, those extraction methods can be switched for every prediction block.
 なお、モード情報によって示される上述の数値(0または1)は一例であって、これらの数値以外の数値であってもよい。また、モード情報は、数値以外の識別子を示してもよい。つまり、FRUCによる評価結果に基づく抽出方法と、予め定められた優先順位にしたがった抽出方法とを区別し得る識別子であれば、モード情報はどのような識別子を示してもよい。 In addition, the above-mentioned numerical value (0 or 1) shown by mode information is an example, Comprising: Numerical values other than these numerical values may be sufficient. The mode information may indicate an identifier other than a numerical value. That is, the mode information may indicate any identifier as long as it is an identifier that can distinguish the extraction method based on the FRUC evaluation result and the extraction method according to a predetermined priority order.
 また、上述の予測動きベクトル選択情報は、符号化装置100のエントロピー符号化部110によって予測ブロック単位でストリームに符号化され、復号装置200のエントロピー復号部202によってそのストリームから復号される。 Also, the above-described prediction motion vector selection information is encoded into a stream in units of prediction blocks by the entropy encoding unit 110 of the encoding device 100, and is decoded from the stream by the entropy decoding unit 202 of the decoding device 200.
 [実施の形態3の効果など]
 本実施の形態における符号化装置は、動画像を符号化する符号化装置であって、処理回路と、前記処理回路に接続されたメモリとを備え、前記処理回路は、前記メモリを用いて、前記動画像における符号化対象ブロックに対応する複数の符号化済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、前記複数の候補動きベクトルから、前記符号化対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、前記動画像に含まれる参照ピクチャを参照して前記符号化対象ブロックの動きベクトルを導出し、抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化し、導出された前記符号化対象ブロックの動きベクトルを用いて前記符号化対象ブロックに対して動き補償を行い、前記少なくとも1つの予測動きベクトル候補の抽出では、抽出方法を識別するためのモード情報を符号化し、第1の抽出方法および第2の抽出方法から、前記符号化対象ブロックに対して前記モード情報によって識別される抽出方法を選択し、選択された前記抽出方法にしたがって、前記少なくとも1つの予測動きベクトル候補を抽出し、前記第1の抽出方法は、前記符号化対象ブロックの画像領域を使用せずに前記動画像における符号化済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づく抽出方法であり、前記第2の抽出方法は、前記複数の候補動きベクトルに対して予め定められた優先順位に基づく抽出方法である。なお、メモリは、フレームメモリ122であっても、他のメモリであってもよく、処理回路は、例えばインター予測部126およびエントロピー符号化部110などを含んでいてもよい。
[Effects of Embodiment 3 and the like]
The encoding device in the present embodiment is an encoding device that encodes a moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit uses the memory, A plurality of candidate motion vectors are acquired based on respective motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image, and at least one of the encoding target blocks is obtained from the plurality of candidate motion vectors. One prediction motion vector candidate is extracted, a motion vector of the coding target block is derived with reference to a reference picture included in the moving image, and a prediction motion vector of the extracted at least one prediction motion vector candidate is extracted And a difference between the derived motion vector of the encoding target block and a motion of the derived encoding target block. The vector is used to perform motion compensation on the encoding target block, and in the extraction of the at least one predicted motion vector candidate, mode information for identifying the extraction method is encoded, and the first extraction method and the second The extraction method identified by the mode information is selected for the encoding target block, and the at least one prediction motion vector candidate is extracted according to the selected extraction method, and the first Is an extraction method based on the evaluation results of each of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block. The second extraction method is an extraction method based on a predetermined priority order for the plurality of candidate motion vectors. The memory may be the frame memory 122 or another memory, and the processing circuit may include, for example, the inter prediction unit 126 and the entropy encoding unit 110.
 これにより、例えばFRUCによる評価結果に基づく第1の抽出方法か、予め定められた優先順位に基づく第2の抽出方法かが、モード情報に応じて符号化対象ブロックである予測ブロックに対して適用される。つまり、抽出方法が切り替えられる。したがって、符号化対象ブロックである予測ブロックの予測精度を高めて、符号化効率の向上を図ることができる。さらに、本実施の形態では、第1の抽出方法および第2の抽出方法の何れか1つの抽出方法が予測ブロックに適用されるため、予測ブロックに対して、第1の抽出方法のための候補リストと、第2の抽出方法のための候補リストとを個別に生成する必要がない。したがって、処理負担の増加を抑えながら符号化効率の向上を図ることができる。 Thereby, for example, the first extraction method based on the evaluation result by FRUC or the second extraction method based on a predetermined priority order is applied to the prediction block which is the encoding target block according to the mode information. Is done. That is, the extraction method is switched. Therefore, the prediction accuracy of the prediction block that is the encoding target block can be increased, and the encoding efficiency can be improved. Furthermore, in this embodiment, since any one of the first extraction method and the second extraction method is applied to the prediction block, the candidate for the first extraction method for the prediction block is used. There is no need to separately generate a list and a candidate list for the second extraction method. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
 また、前記モード情報の符号化では、前記動画像のストリームにおけるシーケンス層、ピクチャ層、およびスライス層のうちの何れかの層のヘッダ領域に、前記層に含まれる各ブロックに対する抽出方法を識別するためのモード情報を符号化してもよい。 In the encoding of the mode information, an extraction method for each block included in the layer is identified in a header area of any one of a sequence layer, a picture layer, and a slice layer in the moving image stream. Mode information may be encoded.
 これにより、シーケンス、ピクチャまたはスライス単位で抽出方法を切り替えることができる。また、例えば予測ブロックなどのブロック単位で抽出方法を切り替える場合よりも、モード情報の符号量を抑えることができる。 This makes it possible to switch the extraction method in sequence, picture or slice units. Moreover, the code amount of mode information can be suppressed compared with the case where the extraction method is switched in units of blocks such as prediction blocks.
 また、前記モード情報の符号化では、前記動画像に含まれるブロックごとに、当該ブロックに対する抽出方法を識別するためのモード情報を符号化してもよい。 In the encoding of the mode information, mode information for identifying an extraction method for the block may be encoded for each block included in the moving image.
 これにより、例えば予測ブロックなどのブロック単位で抽出方法を切り替えることができる。また、シーケンス、ピクチャまたはスライス単位で抽出方法を切り替える場合よりも、ブロックの予測精度の向上の可能性を高めることができる。 This makes it possible to switch the extraction method in units of blocks such as prediction blocks. In addition, the possibility of improving the prediction accuracy of a block can be increased as compared with the case of switching the extraction method in units of sequences, pictures, or slices.
 また、本実施の形態における復号装置は、符号化された動画像を復号する復号装置であって、処理回路と、前記処理回路に接続されたメモリとを備え、前記処理回路は、前記メモリを用いて、前記動画像における復号対象ブロックに対応する複数の復号済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、前記複数の候補動きベクトルから、前記復号対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、2つの動きベクトルの差分を示す差分情報を復号し、復号された前記差分情報によって示される差分に、抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出し、導出された前記復号対象ブロックの動きベクトルを用いて前記復号対象ブロックに対して動き補償を行い、前記少なくとも1つの予測動きベクトル候補の抽出では、抽出方法を識別するためのモード情報を復号し、第1の抽出方法および第2の抽出方法から、復号された前記モード情報によって前記復号対象ブロックに対して識別される抽出方法を選択し、選択された前記抽出方法にしたがって、前記少なくとも1つの予測動きベクトル候補を抽出し、前記第1の抽出方法は、前記復号対象ブロックの画像領域を使用せずに前記動画像における復号済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づく抽出方法であり、前記第2の抽出方法は、前記複数の候補動きベクトルに対して予め定められた優先順位に基づく抽出方法である。なお、メモリは、フレームメモリ214であっても、他のメモリであってもよく、処理回路は、例えばインター予測部218およびエントロピー復号部202などを含んでいてもよい。 The decoding device according to the present embodiment is a decoding device that decodes an encoded moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit includes the memory. To obtain a plurality of candidate motion vectors based on respective motion vectors of a plurality of decoded blocks corresponding to a decoding target block in the moving image, and from the plurality of candidate motion vectors, at least one of the decoding target blocks One prediction motion vector candidate is extracted, difference information indicating a difference between two motion vectors is decoded, and a prediction of the extracted at least one prediction motion vector candidate is obtained as a difference indicated by the decoded difference information. A motion vector of the decoding target block is derived by adding a motion vector, and the derived decoding target block is derived. A first motion compensation method for performing the motion compensation on the decoding target block by using a motion vector of a signal, and extracting the at least one predicted motion vector candidate by decoding mode information for identifying an extraction method; And an extraction method identified for the decoding target block by the decoded mode information is selected from the second extraction method, and the at least one motion vector predictor candidate is extracted according to the selected extraction method In the first extraction method, extraction is performed based on each evaluation result of the plurality of candidate motion vectors using the reconstructed image of the decoded region in the moving image without using the image region of the decoding target block. The second extraction method is an extraction method based on a predetermined priority order for the plurality of candidate motion vectors.The memory may be the frame memory 214 or another memory, and the processing circuit may include, for example, the inter prediction unit 218 and the entropy decoding unit 202.
 これにより、例えばFRUCによる評価結果に基づく第1の抽出方法か、予め定められた優先順位に基づく第2の抽出方法かが、モード情報に応じて復号対象ブロックである予測ブロックに対して適用される。つまり、抽出方法が切り替えられる。したがって、復号対象ブロックである予測ブロックの予測精度を高めて、符号化効率の向上を図ることができる。さらに、本実施の形態では、第1の抽出方法および第2の抽出方法の何れか1つの抽出方法が予測ブロックに適用されるため、予測ブロックに対して、第1の抽出方法のための候補リストと、第2の抽出方法のための候補リストとを個別に生成する必要がない。したがって、処理負担の増加を抑えながら符号化効率の向上を図ることができる。 Accordingly, for example, the first extraction method based on the evaluation result by FRUC or the second extraction method based on a predetermined priority order is applied to the prediction block which is the decoding target block according to the mode information. The That is, the extraction method is switched. Therefore, it is possible to improve the prediction efficiency of the prediction block that is the decoding target block and improve the encoding efficiency. Furthermore, in this embodiment, since any one of the first extraction method and the second extraction method is applied to the prediction block, the candidate for the first extraction method for the prediction block is used. There is no need to separately generate a list and a candidate list for the second extraction method. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
 また、前記モード情報の復号では、前記動画像のストリームにおけるシーケンス層、ピクチャ層、およびスライス層のうちの何れかの層のヘッダ領域から、前記層に含まれる各ブロックに対する抽出方法を識別するためのモード情報を復号してもよい。 In the decoding of the mode information, in order to identify the extraction method for each block included in the layer from the header area of any one of the sequence layer, the picture layer, and the slice layer in the moving image stream The mode information may be decoded.
 これにより、シーケンス、ピクチャまたはスライス単位で抽出方法を切り替えることができる。また、例えば予測ブロックなどのブロック単位で抽出方法を切り替える場合よりも、モード情報の符号量を抑えることができる。 This makes it possible to switch the extraction method in sequence, picture or slice units. Moreover, the code amount of mode information can be suppressed compared with the case where the extraction method is switched in units of blocks such as prediction blocks.
 また、前記モード情報の復号では、前記動画像に含まれるブロックごとに、当該ブロックに対する抽出方法を識別するためのモード情報を復号してもよい。 Further, in the decoding of the mode information, mode information for identifying an extraction method for the block may be decoded for each block included in the moving image.
 これにより、例えば予測ブロックなどのブロック単位で抽出方法を切り替えることができる。また、シーケンス、ピクチャまたはスライス単位で抽出方法を切り替える場合よりも、ブロックの予測精度の向上の可能性を高めることができる。 This makes it possible to switch the extraction method in units of blocks such as prediction blocks. In addition, the possibility of improving the prediction accuracy of a block can be increased as compared with the case of switching the extraction method in units of sequences, pictures, or slices.
 これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized by a non-transitory recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. The present invention may be realized by any combination of a method, an integrated circuit, a computer program, and a recording medium.
 (実施の形態4)
 [共通の候補リストからFRUC・優先順位で予測動きベクトル候補を抽出]
 本実施の形態における符号化装置および復号装置は、実施の形態1と同様の構成を有するが、インター予測部126および218の処理動作に特徴がある。すなわち、本実施の形態も、実施の形態2および3と同様、上述の[本開示の基礎となった知見]における課題、つまり、1つの予測ブロックに対して互いに異なる複数の候補リストを作成しなければならず、処理負担が増加してしまうという課題を解決する。
(Embodiment 4)
[Extract motion vector candidates with FRUC / priority from common candidate list]
The encoding apparatus and decoding apparatus in the present embodiment have the same configuration as that of Embodiment 1, but are characterized by the processing operations of inter prediction units 126 and 218. That is, in the present embodiment, as in the second and third embodiments, a plurality of candidate lists different from each other are created for the problem in the above-mentioned [Knowledge on which this disclosure is based], that is, one prediction block. This solves the problem that the processing load increases.
 このような本実施の形態における符号化装置100は、複数の候補動きベクトルから、符号化対象ブロックに対するN個(Nは2以上の整数)の予測動きベクトル候補を抽出する。このとき、符号化装置100は、複数の候補動きベクトルを示すリストであって、第1の抽出方法および第2の抽出方法に共通の候補リストを生成する。そして、符号化装置100は、その共通の候補リストに示される複数の候補動きベクトルから、第1の抽出方法にしたがって、M個(Mは1以上N未満の整数)の予測動きベクトル候補を抽出する。さらに、符号化装置100は、その共通の候補リストに示される複数の候補動きベクトルから、第2の抽出方法にしたがって、L個(L=N-M)の予測動きベクトル候補を抽出する。ここで、第1の抽出方法は、符号化対象ブロックの画像領域を使用せずに動画像における符号化済み領域の再構成画像を用いた複数の候補動きベクトルのそれぞれの評価結果に基づく抽出方法であって、具体的には、FRUCによる評価結果に基づく抽出方法である。また、第2の抽出方法は、複数の候補動きベクトルに対して予め定められた優先順位に基づく抽出方法である。 The encoding apparatus 100 according to the present embodiment extracts N predicted motion vector candidates (N is an integer of 2 or more) for the encoding target block from a plurality of candidate motion vectors. At this time, the encoding apparatus 100 generates a candidate list that is a list indicating a plurality of candidate motion vectors and is common to the first extraction method and the second extraction method. Then, encoding apparatus 100 extracts M (M is an integer less than or equal to 1 and less than N) predicted motion vector candidates from a plurality of candidate motion vectors indicated in the common candidate list according to the first extraction method. To do. Furthermore, encoding apparatus 100 extracts L (L = N−M) predicted motion vector candidates from a plurality of candidate motion vectors shown in the common candidate list according to the second extraction method. Here, the first extraction method is an extraction method based on the evaluation results of a plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block. Specifically, the extraction method is based on the evaluation result by FRUC. In addition, the second extraction method is an extraction method based on a predetermined priority order for a plurality of candidate motion vectors.
 また、本実施の形態における復号装置200は、複数の候補動きベクトルから、復号対象ブロックに対するN個(Nは2以上の整数)の予測動きベクトル候補を抽出する。このとき、復号装置200は、複数の候補動きベクトルを示すリストであって、第1の抽出方法および第2の抽出方法に共通の候補リストを生成する。そして、復号装置200は、その共通の候補リストに示される複数の候補動きベクトルから、第1の抽出方法にしたがって、M個(Mは1以上N未満の整数)の予測動きベクトル候補を抽出する。さらに、復号装置200は、その共通の候補リストに示される複数の候補動きベクトルから、第2の抽出方法にしたがって、L個(L=N-M)の予測動きベクトル候補として抽出する。 Also, decoding apparatus 200 according to the present embodiment extracts N (N is an integer of 2 or more) prediction motion vector candidates for the decoding target block from a plurality of candidate motion vectors. At this time, the decoding apparatus 200 generates a candidate list that is a list indicating a plurality of candidate motion vectors and is common to the first extraction method and the second extraction method. Then, decoding apparatus 200 extracts M (M is an integer of 1 or more and less than N) predicted motion vector candidates from a plurality of candidate motion vectors shown in the common candidate list according to the first extraction method. . Furthermore, the decoding apparatus 200 extracts L (L = N−M) predicted motion vector candidates from a plurality of candidate motion vectors shown in the common candidate list according to the second extraction method.
 図21は、本実施の形態における符号化装置100による動き補償の一例を示すフローチャートである。図1によって示される符号化装置100が、複数のピクチャで構成される動画像を符号化する際、符号化装置100のインター予測部126等が、図21によって示される処理を実行する。 FIG. 21 is a flowchart showing an example of motion compensation by the encoding apparatus 100 according to the present embodiment. When the encoding device 100 illustrated in FIG. 1 encodes a moving image including a plurality of pictures, the inter prediction unit 126 and the like of the encoding device 100 execute the processing illustrated in FIG.
 具体的には、インター予測部126は、上述の予測ユニットに相当する予測ブロックごとに、その予測ブロックである符号化対象ブロックに対して動き補償を行う。このときには、インター予測部126は、まず、時間的または空間的に予測ブロックの周囲にある複数の符号化済みブロックの動きベクトルなどの情報に基づいて、その予測ブロックに対して複数の候補動きベクトルを取得する(ステップS201)。このとき、インター予測部126は、ステップS201で取得された複数の候補動きベクトルを示す候補リストであって、FRUCによる評価結果に基づく抽出方法と、予め定められた優先順位に基づく抽出方法とに共通の候補リストを生成する。 Specifically, the inter prediction unit 126 performs motion compensation for each prediction block corresponding to the above-described prediction unit, with respect to the encoding target block that is the prediction block. At this time, the inter prediction unit 126 first determines a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of encoded blocks around the prediction block temporally or spatially. Is acquired (step S201). At this time, the inter prediction unit 126 is a candidate list indicating a plurality of candidate motion vectors acquired in step S201, and includes an extraction method based on an evaluation result by FRUC and an extraction method based on a predetermined priority order. Generate a common candidate list.
 次に、インター予測部126は、ステップS201で取得された複数の候補動きベクトルのそれぞれの評価値を、符号化済み領域の再構成画像を用いて算出する。つまり、インター予測部126は、FRUC、すなわちテンプレートマッチング方式またはバイラテラルマッチング方式に基づいてそれらの評価値を算出する。そして、インター予測部126は、その複数の候補動きベクトルの評価値に基づいて、上記共通の候補リストに示される複数の候補動きベクトルの中から、M個の候補動きベクトルのそれぞれを予測動きベクトル候補1として抽出する(ステップS202aa)。つまり、インター予測部126は、複数の候補動きベクトルから、評価値の高い順で上位M個の候補動きベクトルをそれぞれ予測動きベクトル候補として抽出する。なお、インター予測部126は、その抽出されたM個の予測動きベクトル候補のそれぞれについて、FRUCによる評価値がより高くなるように、その選択された予測動きベクトル候補1を周辺領域において細かく動かすことによって、その予測動きベクトル候補1を補正してもよい。つまり、インター予測部126は、FRUCによる評価値がより高くなる領域を細かく探索することによって、それらの予測動きベクトル候補1を補正してもよい。 Next, the inter prediction unit 126 calculates the evaluation values of the plurality of candidate motion vectors acquired in step S201 using the reconstructed image of the encoded region. That is, the inter prediction unit 126 calculates those evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, based on the evaluation values of the plurality of candidate motion vectors, the inter prediction unit 126 calculates each of the M candidate motion vectors from among the plurality of candidate motion vectors shown in the common candidate list. Extracted as candidate 1 (step S202aa). That is, the inter prediction unit 126 extracts the top M candidate motion vectors as the predicted motion vector candidates from the plurality of candidate motion vectors in descending order of evaluation value. In addition, the inter prediction unit 126 finely moves the selected motion vector predictor candidate 1 in the peripheral region so that the FRUC evaluation value becomes higher for each of the extracted M motion vector predictor candidates. Thus, the predicted motion vector candidate 1 may be corrected. That is, the inter prediction unit 126 may correct the predicted motion vector candidates 1 by finely searching for a region where the FRUC evaluation value is higher.
 さらに、インター予測部126は、上記共通の候補リストに示される複数の候補動きベクトルの中から、L個の候補動きベクトルのそれぞれを予測動きベクトル候補2として、予め定められた優先順位にしたがって抽出する(ステップS202ab)。 Further, the inter prediction unit 126 extracts each of L candidate motion vectors as a predicted motion vector candidate 2 from the plurality of candidate motion vectors shown in the common candidate list according to a predetermined priority order. (Step S202ab).
 そして、インター予測部126は、抽出されたM個の予測動きベクトル候補1およびL個の予測動きベクトル候補2のうちの何れか1つの予測動きベクトル候補を、予測ブロックの予測動きベクトルとして選択する(ステップS202b)。このとき、インター予測部126は、その選択された予測動きベクトルを識別するための予測動きベクトル選択情報を出力する。エントロピー符号化部110は、その予測動きベクトル選択情報をストリームに符号化する。 Then, the inter prediction unit 126 selects one predicted motion vector candidate from the extracted M predicted motion vector candidates 1 and L predicted motion vector candidates 2 as a predicted motion vector of the predicted block. (Step S202b). At this time, the inter prediction unit 126 outputs prediction motion vector selection information for identifying the selected prediction motion vector. The entropy encoding unit 110 encodes the predicted motion vector selection information into a stream.
 次に、インター予測部126は、符号化済み参照ピクチャを参照し、予測ブロックの動きベクトルを導出する(ステップS203)。このとき、インター予測部126は、さらに、その導出された動きベクトルと予測動きベクトルとの差分値を算出する。エントロピー符号化部110は、その差分値を差分動きベクトル情報としてストリームに符号化する。 Next, the inter prediction unit 126 refers to the encoded reference picture and derives a motion vector of the prediction block (step S203). At this time, the inter prediction unit 126 further calculates a difference value between the derived motion vector and the predicted motion vector. The entropy encoding unit 110 encodes the difference value as a difference motion vector information into a stream.
 最後に、インター予測部126は、その導出された動きベクトルと符号化済み参照ピクチャとを用いて予測ブロックに対して動き補償を行ことにより、その予測ブロックの予測画像を生成する(ステップS204)。 Finally, the inter prediction unit 126 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the encoded reference picture (step S204). .
 なお、インター予測部126は、上述のような予測ブロック単位での動き補償の代わりに、予測ブロックを分割することによって得られるサブブロック単位で同様に動きベクトルを導出し、サブブロック単位で動き補償を行ってもよい。 Note that the inter prediction unit 126 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
 図22は、本実施の形態における復号装置200による動き補償の一例を示すフローチャートである。図10によって示される復号装置200が、符号化された複数のピクチャで構成される動画像を復号する際、復号装置200のインター予測部218等が、図22によって示される処理を実行する。 FIG. 22 is a flowchart showing an example of motion compensation by the decoding apparatus 200 according to this embodiment. When the decoding device 200 illustrated in FIG. 10 decodes a moving image including a plurality of encoded pictures, the inter prediction unit 218 and the like of the decoding device 200 perform the processing illustrated in FIG.
 具体的には、インター予測部218は、上述の予測ユニットに相当する予測ブロックごとに、その予測ブロックである復号対象ブロックに対して動き補償を行う。このときには、インター予測部218は、まず、時間的または空間的に予測ブロックの周囲にある複数の復号済みブロックの動きベクトルなどの情報に基づいて、その予測ブロックに対して複数の候補動きベクトルを取得する(ステップS211)。 Specifically, the inter prediction unit 218 performs motion compensation on the decoding target block that is a prediction block for each prediction block corresponding to the above-described prediction unit. At this time, the inter prediction unit 218 first selects a plurality of candidate motion vectors for the prediction block based on information such as motion vectors of a plurality of decoded blocks around the prediction block temporally or spatially. Obtain (step S211).
 このとき、インター予測部218は、ステップS211で取得された複数の候補動きベクトルを示す候補リストであって、FRUCによる評価結果に基づく抽出方法と、予め定められた優先順位に基づく抽出方法とに共通の候補リストを生成する。 At this time, the inter prediction unit 218 is a candidate list indicating a plurality of candidate motion vectors acquired in step S211, and includes an extraction method based on an evaluation result by FRUC and an extraction method based on a predetermined priority order. Generate a common candidate list.
 次に、インター予測部218は、ステップS211で取得された複数の候補動きベクトルのそれぞれの評価値を、復号済み領域の再構成画像を用いて算出する。つまり、インター予測部218は、FRUC、すなわちテンプレートマッチング方式またはバイラテラルマッチング方式に基づいてそれらの評価値を算出する。そして、インター予測部218は、その複数の候補動きベクトルの評価値に基づいて、上記共通の候補リストに示される複数の候補動きベクトルの中から、M個の候補動きベクトルのそれぞれを予測動きベクトル候補1として抽出する(ステップS212aa)。つまり、インター予測部218は、複数の候補動きベクトルから、評価値の高い順で上位M個の候補動きベクトルをそれぞれ予測動きベクトル候補として抽出する。なお、インター予測部218は、その抽出されたM個の予測動きベクトル候補のそれぞれについて、FRUCによる評価値がより高くなるように、その選択された予測動きベクトル候補1を周辺領域において細かく動かすことによって、その予測動きベクトル候補1を補正してもよい。つまり、インター予測部218は、FRUCによる評価値がより高くなる領域を細かく探索することによって、それらの予測動きベクトル候補1を補正してもよい。 Next, the inter prediction unit 218 calculates each evaluation value of the plurality of candidate motion vectors acquired in step S211 using the reconstructed image of the decoded area. That is, the inter prediction unit 218 calculates the evaluation values based on FRUC, that is, the template matching method or the bilateral matching method. Then, based on the evaluation values of the plurality of candidate motion vectors, the inter prediction unit 218 predicts each of the M candidate motion vectors from among the plurality of candidate motion vectors indicated in the common candidate list. Extracted as candidate 1 (step S212aa). That is, the inter prediction unit 218 extracts the top M candidate motion vectors as the predicted motion vector candidates from the plurality of candidate motion vectors in descending order of evaluation value. Note that the inter prediction unit 218 finely moves the selected predicted motion vector candidate 1 in the peripheral region so that the FRUC evaluation value becomes higher for each of the extracted M predicted motion vector candidates. Thus, the predicted motion vector candidate 1 may be corrected. That is, the inter prediction unit 218 may correct the motion vector predictor candidates 1 by finely searching for a region where the FRUC evaluation value is higher.
 さらに、インター予測部218は、上記共通の候補リストに示される複数の候補動きベクトルの中から、L個の候補動きベクトルのそれぞれを予測動きベクトル候補2として、予め定められた優先順位にしたがって抽出する(ステップS212ab)。 Further, the inter prediction unit 218 extracts each of the L candidate motion vectors as a predicted motion vector candidate 2 from the plurality of candidate motion vectors shown in the common candidate list according to a predetermined priority order. (Step S212ab).
 次に、インター予測部218は、予測動きベクトル選択情報を用いて、抽出されたM個の予測動きベクトル候補1およびL個の予測動きベクトル候補2から1つの予測動きベクトル候補を、予測ブロックの予測動きベクトルとして選択する(ステップS212b)。つまり、エントロピー復号部202は、復号対象ブロックである予測ブロックの予測動きベクトルを識別するための予測動きベクトル選択情報を復号する。そして、インター予測部218は、抽出されたN個の予測動きベクトル候補1および2から、復号された予測動きベクトル選択情報によって識別される予測動きベクトル候補を、予測ブロックの予測動きベクトルとして選択する。 Next, the inter prediction unit 218 uses the motion vector predictor selection information to select one motion vector predictor candidate from the extracted M motion vector predictor candidates 1 and L motion vector predictor candidates 2 as a prediction block. It selects as a prediction motion vector (step S212b). That is, the entropy decoding unit 202 decodes prediction motion vector selection information for identifying a prediction motion vector of a prediction block that is a decoding target block. Then, the inter prediction unit 218 selects a predicted motion vector candidate identified by the decoded predicted motion vector selection information from the extracted N predicted motion vector candidates 1 and 2 as a predicted motion vector of the predicted block. .
 次に、インター予測部218は、復号装置200に入力されたストリームからエントロピー復号部202によって復号された差分動きベクトル情報を用いて、予測ブロックの動きベクトルを導出する(ステップS213)。具体的には、インター予測部218は、その復号された差分動きベクトル情報である差分値と、選択された予測動きベクトルとを加算することによって、予測ブロックの動きベクトルを導出する。つまり、エントロピー復号部202は、2つの動きベクトルの差分を示す差分情報である差分動きベクトル情報を復号する。そして、インター予測部218は、その復号された差分情報によって示される差分に、選択された予測動きベクトルを加算することによって、復号対象ブロックである予測ブロックの動きベクトルを導出する。 Next, the inter prediction unit 218 derives a motion vector of the prediction block using the difference motion vector information decoded by the entropy decoding unit 202 from the stream input to the decoding device 200 (step S213). Specifically, the inter prediction unit 218 derives the motion vector of the prediction block by adding the difference value, which is the decoded difference motion vector information, and the selected prediction motion vector. That is, the entropy decoding unit 202 decodes difference motion vector information that is difference information indicating a difference between two motion vectors. Then, the inter prediction unit 218 derives the motion vector of the prediction block that is the decoding target block by adding the selected prediction motion vector to the difference indicated by the decoded difference information.
 最後に、インター予測部218は、その導出された動きベクトルと復号済み参照ピクチャとを用いて予測ブロックに対して動き補償を行ことにより、その予測ブロックの予測画像を生成する(ステップS214)。 Finally, the inter prediction unit 218 generates a prediction image of the prediction block by performing motion compensation on the prediction block using the derived motion vector and the decoded reference picture (step S214).
 なお、インター予測部218は、上述のような予測ブロック単位での動き補償の代わりに、予測ブロックを分割することによって得られるサブブロック単位で同様に動きベクトルを導出し、サブブロック単位で動き補償を行ってもよい。 Note that the inter prediction unit 218 similarly derives a motion vector in units of subblocks obtained by dividing a prediction block instead of motion compensation in units of prediction blocks as described above, and performs motion compensation in units of subblocks. May be performed.
 ここで、本実施の形態では、インター予測部126および218による第2の抽出方法にしたがった抽出、すなわち、予め定められた優先順位に基づく抽出では、第1の抽出方法の抽出結果、すなわち、FRUCによる評価結果に基づく抽出結果を利用してもよい。つまり、インター予測部126および218は、共通の候補リストに示される複数の候補動きベクトルのうち、第1の抽出方法によって抽出されたM個の予測動きベクトル候補を除く残りの少なくとも1つの候補動きベクトルから、第1の抽出方法における評価結果を用いた優先順位にしたがってL個の予測動きベクトル候補を抽出する。 Here, in the present embodiment, in the extraction according to the second extraction method by the inter prediction units 126 and 218, that is, extraction based on a predetermined priority order, the extraction result of the first extraction method, that is, You may utilize the extraction result based on the evaluation result by FRUC. That is, the inter prediction units 126 and 218, at least one candidate motion other than the M predicted motion vector candidates extracted by the first extraction method, from among a plurality of candidate motion vectors shown in the common candidate list. L predicted motion vector candidates are extracted from the vector according to the priority order using the evaluation result in the first extraction method.
 図23は、本実施の形態における予測動きベクトル候補の抽出方法を説明するための図である。 FIG. 23 is a diagram for explaining a method of extracting a motion vector predictor candidate according to the present embodiment.
 例えば、インター予測部126および218は、共通の候補リストに示される複数の候補動きベクトルをK個(Kは2以上の整数)のグループに分類する。そして、M個の予測動きベクトル候補1の抽出では、インター予測部126および218は、その共通の候補リストに示される複数の候補動きベクトルから、上述の評価結果が良い順で上位M個の候補動きベクトルを、M個の予測動きベクトル候補1として抽出する。さらに、L個の予測動きベクトル候補2の抽出では、インター予測部126および218は、その共通の候補リストのうち、そのM個の予測動きベクトル候補1のそれぞれが属するグループを除く、少なくとも1つのグループの何れかに属する1つ以上の候補動きベクトルから、優先順位にしたがってL個の予測動きベクトル候補2を抽出する。 For example, the inter prediction units 126 and 218 classify a plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more). Then, in the extraction of M motion vector predictor candidates 1, the inter prediction units 126 and 218 select the top M candidates in descending order of the evaluation result from a plurality of candidate motion vectors indicated in the common candidate list. A motion vector is extracted as M predicted motion vector candidates 1. Further, in the extraction of L predicted motion vector candidates 2, the inter prediction units 126 and 218 exclude at least one of the common candidate lists excluding the group to which each of the M predicted motion vector candidates 1 belongs. L predicted motion vector candidates 2 are extracted from one or more candidate motion vectors belonging to any of the groups according to priority.
 具体的には、図23の(a)に示すように、K=3、M=1、およびL=1の場合、インター予測部126および218は、まず、共通の候補リストに示される複数の候補動きベクトルを3個のグループG1~C3に分類する。グループG1は、例えば、符号化対象ピクチャ内における符号化対象ブロックの左側のブロックの動きベクトルなどに基づいて得られた候補動きベクトルが属するグループである。グループG2は、例えば、符号化対象ピクチャ内における符号化対象ブロックの上側のブロックの動きベクトルなどに基づいて得られた候補動きベクトルが属するグループである。グループG3は、例えば、符号化対象ピクチャと異なるピクチャ内のブロックの動きベクトルなどに基づいて得られた候補動きベクトルが属するグループである。 Specifically, as illustrated in (a) of FIG. 23, when K = 3, M = 1, and L = 1, the inter prediction units 126 and 218 first include a plurality of candidates indicated in the common candidate list. Candidate motion vectors are classified into three groups G1 to C3. The group G1 is a group to which candidate motion vectors obtained based on, for example, the motion vector of the block on the left side of the encoding target block in the encoding target picture belong. The group G2 is a group to which a candidate motion vector obtained based on, for example, a motion vector of a block above the encoding target block in the encoding target picture belongs. The group G3 is a group to which a candidate motion vector obtained based on, for example, a motion vector of a block in a picture different from the encoding target picture belongs.
 次に、インター予測部126および218は、共通の候補リストに示される複数の候補動きベクトルから、上述の評価値が最も高い候補動きベクトルを予測動きベクトル候補1として抽出する。次に、インター予測部126および218は、共通の候補リストのうち、その予測動きベクトル候補1が属するグループG1を除く、グループG2およびG3の何れかに属する1つ以上の候補動きベクトルから、優先順位にしたがって1つの候補動きベクトルを予測動きベクトル候補2として抽出する。 Next, the inter prediction units 126 and 218 extract the candidate motion vector having the highest evaluation value as the predicted motion vector candidate 1 from the plurality of candidate motion vectors shown in the common candidate list. Next, the inter prediction units 126 and 218 prioritize one or more candidate motion vectors belonging to any of the groups G2 and G3, except for the group G1 to which the prediction motion vector candidate 1 belongs, from the common candidate list. One candidate motion vector is extracted as a predicted motion vector candidate 2 according to the rank.
 あるいは、インター予測部126および218は、共通の候補リストに示される複数の候補動きベクトルをK個のグループに分類する。そして、M個の予測動きベクトル候補1の抽出では、インター予測部126および218は、その共通の候補リストに示される複数の候補動きベクトルから、評価結果が良い順で上位M個の候補動きベクトルを、M個の予測動きベクトル候補1として抽出する。さらに、インター予測部126および218は、共通の候補リストのうち、そのM個の予測動きベクトル候補1のそれぞれが属するグループを除く、少なくとも1つのグループの何れかに属する複数の候補動きベクトルから、評価結果が最も良い候補動きベクトルを次点予測動きベクトル候補として特定する。そして、L個の予測動きベクトル候補2の抽出では、インター予測部126および218は、共通の候補リストのうち、特定された次点予測動きベクトル候補が属するグループと同じグループに属する1つ以上の候補動きベクトルから、優先順位にしたがってL個の予測動きベクトル2を抽出する。 Alternatively, the inter prediction units 126 and 218 classify a plurality of candidate motion vectors shown in the common candidate list into K groups. Then, in the extraction of M motion vector predictor candidates 1, the inter prediction units 126 and 218 determine the top M candidate motion vectors in descending order of evaluation results from a plurality of candidate motion vectors indicated in the common candidate list. Are extracted as M predicted motion vector candidates 1. Further, the inter prediction units 126 and 218, from a plurality of candidate motion vectors belonging to any one of at least one group excluding the group to which each of the M motion vector predictor candidates 1 belongs, from the common candidate list. The candidate motion vector having the best evaluation result is identified as the next predicted motion vector candidate. Then, in the extraction of L predicted motion vector candidates 2, the inter prediction units 126 and 218 include one or more members belonging to the same group as the group to which the identified next-point predicted motion vector candidate belongs in the common candidate list. L predicted motion vectors 2 are extracted from the candidate motion vectors according to the priority order.
 具体的には、図23の(b)に示すように、K=3、M=1、およびL=1の場合、インター予測部126および218は、まず、上述の例と同様に、共通の候補リストに示される複数の候補動きベクトルを3個のグループに分類する。 Specifically, as illustrated in (b) of FIG. 23, when K = 3, M = 1, and L = 1, the inter prediction units 126 and 218 first, as in the above example, A plurality of candidate motion vectors shown in the candidate list are classified into three groups.
 次に、インター予測部126および218は、共通の候補リストに示される複数の候補動きベクトルから、上述の評価値が最も高い候補動きベクトルを予測動きベクトル候補1として抽出する。さらに、インター予測部126および218は、共通の候補リストのうち、その予測動きベクトル候補1が属するグループG1を除く、グループG2およびG3の何れかに属する複数の候補動きベクトルのうち、評価値が最も高い候補動きベクトル4を次点予測動きベクトル候補として特定する。そして、インター予測部126および218は、共通の候補リストのうち、特定された次点予測動きベクトル候補、すなわち候補動きベクトル4が属するグループG2と同じグループに属する1つ以上の候補動きベクトルから、優先順位にしたがって1個の候補動きベクトルを予測動きベクトル候補2として抽出する。 Next, the inter prediction units 126 and 218 extract the candidate motion vector having the highest evaluation value as the predicted motion vector candidate 1 from the plurality of candidate motion vectors shown in the common candidate list. Further, the inter prediction units 126 and 218 have an evaluation value of a plurality of candidate motion vectors belonging to any of the groups G2 and G3, excluding the group G1 to which the prediction motion vector candidate 1 belongs, from the common candidate list. The highest candidate motion vector 4 is specified as the next predicted motion vector candidate. Then, the inter prediction units 126 and 218 determine, from one or more candidate motion vectors belonging to the same group as the group G2 to which the candidate motion vector 4 belongs, of the identified next-point predicted motion vector candidates in the common candidate list. One candidate motion vector is extracted as a predicted motion vector candidate 2 in accordance with the priority order.
 図24は、共通の候補リストの一例を示す図である。 FIG. 24 is a diagram showing an example of a common candidate list.
 例えば、インター予測部126および218は、図24の(a)に示す符号化対象ブロックまたは復号対象ブロック(以下、単に処理対象ブロックという)に対して、図24の(b)に示す共通の候補リストを生成する。この共通の候補リストは、L0リストとL1リストからなる。 For example, the inter prediction units 126 and 218 may use the common candidate shown in (b) of FIG. 24 for the encoding target block or the decoding target block (hereinafter simply referred to as a processing target block) shown in (a) of FIG. Generate a list. This common candidate list includes an L0 list and an L1 list.
 具体的には、インター予測部126および218は、処理対象ブロックに隣接する隣接ブロック1、2および5の動きベクトルに基づく候補動きベクトルを共通の候補リストに含める。隣接ブロック1は、処理対象ブロックの左下に隣接するブロックであり、隣接ブロック2は、処理対象ブロックの右上に隣接するブロックであり、隣接ブロック5は、処理対象ブロックの左上に隣接するブロックである。 Specifically, the inter prediction units 126 and 218 include candidate motion vectors based on the motion vectors of adjacent blocks 1, 2, and 5 adjacent to the processing target block in the common candidate list. The adjacent block 1 is a block adjacent to the lower left of the processing target block, the adjacent block 2 is a block adjacent to the upper right of the processing target block, and the adjacent block 5 is a block adjacent to the upper left of the processing target block. .
 例えば、隣接ブロック1は、動きベクトルmvL01およびmvL11によって符号化または復号される。隣接ブロック2は、動きベクトルmvL02およびmvL12によって符号化または復号される。隣接ブロック5は、動きベクトルmvL05によって符号化または復号される。このような場合、インター予測部126および218は、図24の(b)に示すように、それらの動きベクトルに基づく候補動きベクトルを、空間候補動きベクトルとして共通の候補リストに含める。なお、インター予測部126および218は、他の隣接ブロックの動きベクトルに基づく候補動きベクトルを、空間候補動きベクトルとして共通の候補リストに含めてもよい。例えば、他の隣接ブロックは、隣接ブロック2の右隣にある隣接ブロック3、または、隣接ブロック1の下隣にある隣接ブロック4などである。また、インター予測部126および218は、隣接ブロックの動きベクトルを表示時間間隔に基づいてスケーリングし、スケーリングされたその動きベクトルを候補動きベクトルとして候補リストに含めてもよい。 For example, the adjacent block 1 is encoded or decoded by the motion vectors mvL01 and mvL11. The adjacent block 2 is encoded or decoded by the motion vectors mvL02 and mvL12. The adjacent block 5 is encoded or decoded by the motion vector mvL05. In such a case, as illustrated in FIG. 24B, the inter prediction units 126 and 218 include candidate motion vectors based on these motion vectors as a spatial candidate motion vector in a common candidate list. Note that the inter prediction units 126 and 218 may include candidate motion vectors based on motion vectors of other adjacent blocks in the common candidate list as spatial candidate motion vectors. For example, the other adjacent block is the adjacent block 3 on the right side of the adjacent block 2 or the adjacent block 4 on the lower side of the adjacent block 1. Also, the inter prediction units 126 and 218 may scale the motion vectors of adjacent blocks based on the display time interval, and include the scaled motion vectors as candidate motion vectors in the candidate list.
 さらに、インター予測部126および218は、時間候補動きベクトルおよび結合双予測候補動きベクトル(mvL0b,mvL1b)を候補リストに含めてもよい。時間候補動きベクトルには、例えば、Col候補動きベクトル(mvL0t,mvL1t)と、Unilateral候補動きベクトル(mvL0u,mvL1u)とがある。Col候補動きベクトル(mvL0t,mvL1t)は、処理対象ブロックを含むピクチャとは異なるピクチャにあるブロック、例えば処理対象ブロックと同一の位置にあるブロックの動きベクトルに基づく候補動きベクトルである。なお、Col候補動きベクトル(mvL0t,mvL1t)は、処理対象ブロックを含むピクチャとは異なるピクチャにあるブロックの動きベクトルを表示時間間隔でスケーリングすることによって得られる候補動きベクトルであってもよい。また、Col候補動きベクトルは、処理対象ブロックと異なる位置にあるブロックの動きベクトルに基づく候補動きベクトルであってもよい。さらに、互いに異なる複数のCol候補動きベクトルが候補リストに含められてもよい。Unilateral候補動きベクトル(mvL0u,mvL1u)は、処理対象ブロックを含むピクチャとは異なるピクチャにおけるブロックであり、前記処理対象ブロックの位置に対して時間経過に伴う移動量を考慮した位置におけるブロックの動きベクトルに基づく候補動きベクトルである。結合双予測候補動きベクトル(mvL0b,mvL1b)は、候補リストのL0リストとL1リストのそれぞれの動きベクトルを組み合わせて生成される候補動きベクトルである。 Furthermore, the inter prediction units 126 and 218 may include the temporal candidate motion vector and the combined bi-prediction candidate motion vector (mvL0b, mvL1b) in the candidate list. The temporal candidate motion vectors include, for example, a Col candidate motion vector (mvL0t, mvL1t) and a Universal candidate motion vector (mvL0u, mvL1u). The Col candidate motion vector (mvL0t, mvL1t) is a candidate motion vector based on a motion vector of a block in a picture different from the picture including the processing target block, for example, a block at the same position as the processing target block. Note that the Col candidate motion vector (mvL0t, mvL1t) may be a candidate motion vector obtained by scaling a motion vector of a block in a picture different from the picture including the processing target block at a display time interval. Further, the Col candidate motion vector may be a candidate motion vector based on a motion vector of a block at a position different from the processing target block. Furthermore, a plurality of different Col candidate motion vectors may be included in the candidate list. The Universal candidate motion vector (mvL0u, mvL1u) is a block in a picture different from the picture including the processing target block, and the motion vector of the block at a position that takes into account the amount of movement with the passage of time with respect to the position of the processing target block Is a candidate motion vector based on. The combined bi-prediction candidate motion vector (mvL0b, mvL1b) is a candidate motion vector generated by combining the motion vectors of the L0 list and the L1 list of the candidate list.
 本実施の形態では、例えば図24の(b)に示す候補リストが、FRUCによる評価結果に基づく抽出方法と、予め定められた優先順位に基づく抽出方法とに共通に用いられる。 In the present embodiment, for example, the candidate list shown in FIG. 24B is commonly used for the extraction method based on the evaluation result by FRUC and the extraction method based on a predetermined priority.
 [実施の形態4の効果など]
 本実施の形態における符号化装置は、動画像を符号化する符号化装置であって、処理回路と、前記処理回路に接続されたメモリとを備え、前記処理回路は、前記メモリを用いて、前記動画像における符号化対象ブロックに対応する複数の符号化済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、前記複数の候補動きベクトルから、前記符号化対象ブロックに対するN個(Nは2以上の整数)の予測動きベクトル候補を抽出し、抽出された前記N個の予測動きベクトル候補から予測動きベクトルを選択し、選択された前記予測動きベクトルを識別するための選択情報を符号化し、前記動画像に含まれる参照ピクチャを参照して前記符号化対象ブロックの動きベクトルを導出し、導出された前記符号化対象ブロックの動きベクトルと、選択された前記予測動きベクトルとの差分を符号化し、導出された前記符号化対象ブロックの動きベクトルを用いて前記符号化対象ブロックに対して動き補償を行い、前記N個の予測動きベクトル候補の抽出では、前記複数の候補動きベクトルを示すリストであって、第1の抽出方法および第2の抽出方法に共通の候補リストを生成し、前記共通の候補リストに示される前記複数の候補動きベクトルから、前記第1の抽出方法にしたがって、M個(Mは1以上N未満の整数)の予測動きベクトル候補を抽出し、前記共通の候補リストに示される前記複数の候補動きベクトルから、前記第2の抽出方法にしたがって、L個(L=N-M)の予測動きベクトル候補を抽出し、前記第1の抽出方法は、前記符号化対象ブロックの画像領域を使用せずに前記動画像における符号化済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づく抽出方法であり、前記第2の抽出方法は、前記複数の候補動きベクトルに対して予め定められた優先順位に基づく抽出方法である。なお、メモリは、フレームメモリ122であっても、他のメモリであってもよく、処理回路は、例えばインター予測部126およびエントロピー符号化部110などを含んでいてもよい。
[Effects of Embodiment 4]
The encoding device in the present embodiment is an encoding device that encodes a moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit uses the memory, A plurality of candidate motion vectors are acquired based on the motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image, and N for the encoding target block are obtained from the plurality of candidate motion vectors. Selection information for extracting prediction motion vector candidates (N is an integer of 2 or more), selecting a prediction motion vector from the extracted N prediction motion vector candidates, and identifying the selected prediction motion vector And a motion vector of the encoding target block is derived with reference to a reference picture included in the moving image, and the derived encoding target block is derived. A difference between the motion vector of the received image and the selected predicted motion vector is encoded, motion compensation is performed on the current block using the derived motion vector of the current block, and the N In the extraction of predicted motion vector candidates, a list showing the plurality of candidate motion vectors, which is a common candidate list for the first extraction method and the second extraction method, is generated and shown in the common candidate list. In accordance with the first extraction method, M (M is an integer of 1 or more and less than N) prediction motion vector candidates are extracted from the plurality of candidate motion vectors, and the plurality of candidates shown in the common candidate list L (L = N−M) predicted motion vector candidates are extracted from motion vectors according to the second extraction method, and the first extraction method includes the encoding target block. Is an extraction method based on the respective evaluation results of the plurality of candidate motion vectors using the reconstructed image of the encoded region in the moving image without using the image region of the moving image, This is an extraction method based on a predetermined priority order for a plurality of candidate motion vectors. The memory may be the frame memory 122 or another memory, and the processing circuit may include, for example, the inter prediction unit 126 and the entropy encoding unit 110.
 これにより、第1の抽出方法にしたがって、つまりFRUCによる評価結果に基づいてM個の予測動きベクトル候補が抽出される。したがって、符号化対象ブロックである予測ブロックの予測精度を高めて、符号化効率の向上を図ることができる。また、本実施の形態では、第1の抽出方法および第2の抽出方法に共通の候補リストが生成される。つまり、その第1の抽出方法にしたがってM個の予測動きベクトル候補が抽出される場合でも、予め定められた優先順位に基づく第2の抽出方法にしたがってL個の予測動きベクトル候補が抽出される場合でも、共通の候補リストが参照される。その結果、予測ブロックに対して、第1の抽出方法のための候補リストと、第2の抽出方法のための候補リストとを個別に生成する必要がない。したがって、処理負担の増加を抑えながら符号化効率の向上を図ることができる。 Thus, M predicted motion vector candidates are extracted according to the first extraction method, that is, based on the evaluation result by FRUC. Therefore, the prediction accuracy of the prediction block that is the encoding target block can be increased, and the encoding efficiency can be improved. In this embodiment, a candidate list common to the first extraction method and the second extraction method is generated. That is, even when M predicted motion vector candidates are extracted according to the first extraction method, L predicted motion vector candidates are extracted according to the second extraction method based on a predetermined priority. Even in this case, a common candidate list is referenced. As a result, it is not necessary to individually generate a candidate list for the first extraction method and a candidate list for the second extraction method for the prediction block. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
 また、前記処理回路は、前記第2の抽出方法にしたがった抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルのうち、前記第1の抽出方法によって抽出された前記M個の予測動きベクトル候補を除く残りの少なくとも1つの前記候補動きベクトルから、前記第1の抽出方法における評価結果を用いた前記優先順位にしたがって前記L個の予測動きベクトル候補を抽出してもよい。 In addition, in the extraction according to the second extraction method, the processing circuit includes the M number of motion vectors extracted by the first extraction method among the plurality of candidate motion vectors indicated in the common candidate list. The L predicted motion vector candidates may be extracted from the remaining at least one candidate motion vector excluding the predicted motion vector candidates according to the priority order using the evaluation result in the first extraction method.
 例えば図21に示すように、第2の抽出方法にしたがった抽出(例えばステップS202ab)では、第1の抽出方法にしたがった抽出結果(例えばステップS202aa)が参照される。したがって、第1の抽出方法と第2の抽出方法とで同じ候補動きベクトルが予測動きベクトル候補として抽出されることを抑制することができる。 For example, as shown in FIG. 21, in the extraction according to the second extraction method (for example, step S202ab), the extraction result according to the first extraction method (for example, step S202aa) is referred to. Therefore, it can be suppressed that the same candidate motion vector is extracted as a predicted motion vector candidate in the first extraction method and the second extraction method.
 また、前記処理回路は、前記N個の予測動きベクトル候補の抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルをK個(Kは2以上の整数)のグループに分類し、前記第1の抽出方法にしたがった抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルから、前記評価結果が良い順で上位M個の候補動きベクトルを、前記M個の予測動きベクトル候補として抽出し、前記第2の抽出方法にしたがった抽出では、前記共通の候補リストのうち、前記M個の予測動きベクトル候補のそれぞれが属するグループを除く、少なくとも1つのグループの何れかに属する1つ以上の候補動きベクトルから、前記優先順位にしたがって前記L個の予測動きベクトル候補を抽出してもよい。例えば、前記複数の候補動きベクトルのそれぞれの評価結果は、当該候補動きベクトルによって特定される第1の符号化済み領域の再構成画像と、第2の符号化済み再構成画像との差分が小さいほど良い評価結果である。 In the extraction of the N predicted motion vector candidates, the processing circuit classifies the plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more), In the extraction according to the first extraction method, the top M candidate motion vectors in the descending order of the evaluation result are selected from the plurality of candidate motion vectors shown in the common candidate list, and the M predicted motions. In the extraction according to the second extraction method extracted as a vector candidate, any one of at least one group excluding the group to which each of the M motion vector predictor candidates belongs is included in the common candidate list. The L predicted motion vector candidates may be extracted from one or more candidate motion vectors to which the motion vector belongs, according to the priority order. For example, each evaluation result of the plurality of candidate motion vectors has a small difference between the reconstructed image of the first encoded region specified by the candidate motion vector and the second encoded reconstructed image. It is a good evaluation result.
 例えば図23の(a)に示すように、複数の候補動きベクトルは互いに性質の異なるK個のグループに分類される。そして、K個のグループの全体から、評価結果が最も良い1つ(M=1)の予測動きベクトル候補が抽出され、その予測動きベクトル候補が属するグループ以外のグループから予め定められた優先順位にしたがってもう1つ(L=1)の予測動きベクトル候補が抽出される。したがって、互いに性質が異なり、かつ予測精度が高い2個(N=2)の予測動きベクトル候補を抽出することができる。その結果、予測動きベクトルの選択の幅を広げることができ、予測精度のより高い予測動きベクトルが選択される可能性を高めることができる。 For example, as shown in FIG. 23A, a plurality of candidate motion vectors are classified into K groups having different properties. Then, one (M = 1) prediction motion vector candidate having the best evaluation result is extracted from the entire K groups, and the priority order is determined in advance from groups other than the group to which the prediction motion vector candidate belongs. Therefore, another (L = 1) prediction motion vector candidate is extracted. Therefore, two (N = 2) prediction motion vector candidates having different properties and high prediction accuracy can be extracted. As a result, the range of selection of the prediction motion vector can be expanded, and the possibility that a prediction motion vector with higher prediction accuracy is selected can be increased.
 また、前記処理回路は、前記N個の予測動きベクトル候補の抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルをK個(Kは2以上の整数)のグループに分類し、前記第1の抽出方法にしたがった抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルから、前記評価結果が良い順で上位M個の候補動きベクトルを、前記M個の予測動きベクトル候補として抽出し、さらに、前記共通の候補リストのうち、前記M個の予測動きベクトル候補のそれぞれが属するグループを除く、少なくとも1つのグループの何れかに属する複数の候補動きベクトルから、前記評価結果が最も良い候補動きベクトルを次点予測動きベクトル候補として特定し、前記第2の抽出方法にしたがった抽出では、前記共通の候補リストのうち、特定された前記次点予測動きベクトル候補が属するグループと同じグループに属する1つ以上の候補動きベクトルから、前記優先順位にしたがって前記L個の予測動きベクトル候補を抽出してもよい。 In the extraction of the N predicted motion vector candidates, the processing circuit classifies the plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more), In the extraction according to the first extraction method, the top M candidate motion vectors in the descending order of the evaluation result are selected from the plurality of candidate motion vectors shown in the common candidate list, and the M predicted motions. The candidate is extracted as a vector candidate, and further, the evaluation is performed from a plurality of candidate motion vectors belonging to any one of at least one group excluding a group to which each of the M predicted motion vector candidates belongs from the common candidate list. The candidate motion vector with the best result is identified as the next predicted motion vector candidate, and in the extraction according to the second extraction method, the common candidate The L predicted motion vector candidates may be extracted in accordance with the priority from one or more candidate motion vectors belonging to the same group as the group to which the identified next-point predicted motion vector candidate belongs. .
 例えば図23の(b)に示すように、複数の候補動きベクトルは互いに性質の異なるK個のグループに分類される。そして、K個のグループの全体から、評価結果が最も良い1つ(M=1)の予測動きベクトル候補が抽出され、その予測動きベクトル候補が属するグループ以外のグループから次点予測動きベクトル候補が特定される。さらに、その次点予測動きベクトル候補が属するグループと同じグループから、優先順位にしたがってもう1つ(L=1)の予測動きベクトル候補が抽出される。したがって、互いに性質が異なり、かつ予測精度が高い2個(N=2)の予測動きベクトル候補を抽出することができる。その結果、予測動きベクトルの選択の幅を広げることができ、予測精度のより高い予測動きベクトルが選択される可能性を高めることができる。 For example, as shown in FIG. 23B, the plurality of candidate motion vectors are classified into K groups having different properties. Then, one (M = 1) predicted motion vector candidate having the best evaluation result is extracted from the entire K groups, and the next-point predicted motion vector candidate is obtained from a group other than the group to which the predicted motion vector candidate belongs. Identified. Furthermore, another (L = 1) predicted motion vector candidate is extracted from the same group as the group to which the next-point predicted motion vector candidate belongs, according to the priority order. Therefore, two (N = 2) prediction motion vector candidates having different properties and high prediction accuracy can be extracted. As a result, the range of selection of the prediction motion vector can be expanded, and the possibility that a prediction motion vector with higher prediction accuracy is selected can be increased.
 また、本実施の形態における復号装置は、符号化された動画像を復号する復号装置であって、処理回路と、前記処理回路に接続されたメモリとを備え、前記処理回路は、前記メモリを用いて、前記動画像における復号対象ブロックに対応する複数の復号済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、前記複数の候補動きベクトルから、前記復号対象ブロックに対するN個(Nは2以上の整数)の予測動きベクトル候補を抽出し、前記復号対象ブロックの予測動きベクトルを識別するための選択情報を復号し、抽出された前記N個の予測動きベクトル候補から、復号された前記選択情報によって識別される予測動きベクトル候補を、前記予測動きベクトルとして選択し、2つの動きベクトルの差分を示す差分情報を復号し、復号された前記差分情報によって示される差分に、選択された前記予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出し、導出された前記復号対象ブロックの動きベクトルを用いて前記復号対象ブロックに対して動き補償を行い、前記N個の予測動きベクトル候補の抽出では、前記複数の候補動きベクトルを示すリストであって、第1の抽出方法および第2の抽出方法に共通の候補リストを生成し、前記共通の候補リストに示される前記複数の候補動きベクトルから、前記第1の抽出方法にしたがって、M個(Mは1以上N未満の整数)の予測動きベクトル候補を抽出し、前記共通の候補リストに示される前記複数の候補動きベクトルから、前記第2の抽出方法にしたがって、L個(L=N-M)の予測動きベクトル候補として抽出し、前記第1の抽出方法は、前記復号対象ブロックの画像領域を使用せずに前記動画像における復号済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づく抽出方法であり、前記第2の抽出方法は、前記複数の候補動きベクトルに対して予め定められた優先順位に基づく抽出方法である。なお、メモリは、フレームメモリ214であっても、他のメモリであってもよく、処理回路は、例えばインター予測部218およびエントロピー復号部202などを含んでいてもよい。 The decoding device according to the present embodiment is a decoding device that decodes an encoded moving image, and includes a processing circuit and a memory connected to the processing circuit, and the processing circuit includes the memory. To obtain a plurality of candidate motion vectors based on respective motion vectors of a plurality of decoded blocks corresponding to a decoding target block in the moving image, and from the plurality of candidate motion vectors, N pieces of motion vectors for the decoding target block are obtained. (N is an integer of 2 or more) predicted motion vector candidates are extracted, selection information for identifying a predicted motion vector of the decoding target block is decoded, and decoding is performed from the extracted N predicted motion vector candidates. A predicted motion vector candidate identified by the selected information is selected as the predicted motion vector, and a difference between the two motion vectors is indicated. The difference information is decoded, and the motion vector of the decoding target block is derived by adding the selected prediction motion vector to the difference indicated by the decoded difference information, and the derived decoding target block The motion vector is subjected to motion compensation using the motion vector, and the extraction of the N predicted motion vector candidates is a list indicating the plurality of candidate motion vectors, the first extraction method and the second A candidate list common to the extraction methods is generated, and M (M is an integer of 1 or more and less than N) according to the first extraction method from the plurality of candidate motion vectors indicated in the common candidate list. Predicted motion vector candidates are extracted, and the L motion vector candidates are extracted from the plurality of candidate motion vectors indicated in the common candidate list according to the second extraction method. L = N−M) as predicted motion vector candidates, and the first extraction method uses the reconstructed image of the decoded region in the moving image without using the image region of the decoding target block. This is an extraction method based on the evaluation results of each of the plurality of candidate motion vectors, and the second extraction method is an extraction method based on a predetermined priority order for the plurality of candidate motion vectors. The memory may be the frame memory 214 or another memory, and the processing circuit may include, for example, the inter prediction unit 218 and the entropy decoding unit 202.
 これにより、第1の抽出方法にしたがって、つまりFRUCによる評価結果に基づいてM個の予測動きベクトル候補が抽出される。したがって、復号対象ブロックである予測ブロックの予測精度を高めて、符号化効率の向上を図ることができる。また、本実施の形態では、第1の抽出方法および第2の抽出方法に共通の候補リストが生成される。つまり、その第1の抽出方法にしたがってM個の予測動きベクトル候補が抽出される場合でも、予め定められた優先順位に基づく第2の抽出方法にしたがってL個の予測動きベクトル候補が抽出される場合でも、共通の候補リストが参照される。その結果、予測ブロックに対して、第1の抽出方法のための候補リストと、第2の抽出方法のための候補リストとを個別に生成する必要がない。したがって、処理負担の増加を抑えながら符号化効率の向上を図ることができる。 Thus, M predicted motion vector candidates are extracted according to the first extraction method, that is, based on the evaluation result by FRUC. Therefore, it is possible to improve the prediction efficiency of the prediction block that is the decoding target block and improve the encoding efficiency. In this embodiment, a candidate list common to the first extraction method and the second extraction method is generated. That is, even when M predicted motion vector candidates are extracted according to the first extraction method, L predicted motion vector candidates are extracted according to the second extraction method based on a predetermined priority. Even in this case, a common candidate list is referenced. As a result, it is not necessary to individually generate a candidate list for the first extraction method and a candidate list for the second extraction method for the prediction block. Therefore, it is possible to improve the encoding efficiency while suppressing an increase in processing load.
 また、前記処理回路は、前記第2の抽出方法にしたがった抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルのうち、前記第1の抽出方法によって抽出された前記M個の予測動きベクトル候補を除く残りの少なくとも1つの前記候補動きベクトルから、前記第1の抽出方法における評価結果を用いた前記優先順位にしたがって前記L個の予測動きベクトル候補を抽出してもよい。 In addition, in the extraction according to the second extraction method, the processing circuit includes the M number of motion vectors extracted by the first extraction method among the plurality of candidate motion vectors indicated in the common candidate list. The L predicted motion vector candidates may be extracted from the remaining at least one candidate motion vector excluding the predicted motion vector candidates according to the priority order using the evaluation result in the first extraction method.
 例えば図22に示すように、第2の抽出方法にしたがった抽出(例えばステップS212ab)では、第1の抽出方法にしたがった抽出結果(例えばステップS212aa)が参照される。したがって、第1の抽出方法と第2の抽出方法とで同じ候補動きベクトルが予測動きベクトル候補として抽出されることを抑制することができる。 For example, as shown in FIG. 22, in the extraction according to the second extraction method (for example, step S212ab), the extraction result according to the first extraction method (for example, step S212aa) is referred to. Therefore, it can be suppressed that the same candidate motion vector is extracted as a predicted motion vector candidate in the first extraction method and the second extraction method.
 また、前記処理回路は、前記N個の予測動きベクトル候補の抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルをK個(Kは2以上の整数)のグループに分類し、前記第1の抽出方法にしたがった抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルから、前記評価結果が良い順で上位M個の候補動きベクトルを、前記M個の予測動きベクトル候補として抽出し、前記第2の抽出方法にしたがった抽出では、前記共通の候補リストのうち、前記M個の予測動きベクトル候補のそれぞれが属するグループを除く、少なくとも1つのグループの何れかに属する1つ以上の候補動きベクトルから、前記優先順位にしたがって前記L個の予測動きベクトル候補を抽出してもよい。例えば、前記複数の候補動きベクトルのそれぞれの評価結果は、当該候補動きベクトルによって特定される第1の復号済み領域の再構成画像と、第2の復号済み再構成画像との差分が小さいほど良い評価結果である。 In the extraction of the N predicted motion vector candidates, the processing circuit classifies the plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more), In the extraction according to the first extraction method, the top M candidate motion vectors in the descending order of the evaluation result are selected from the plurality of candidate motion vectors shown in the common candidate list, and the M predicted motions. In the extraction according to the second extraction method extracted as a vector candidate, any one of at least one group excluding the group to which each of the M motion vector predictor candidates belongs is included in the common candidate list. The L predicted motion vector candidates may be extracted from one or more candidate motion vectors to which the motion vector belongs, according to the priority order. For example, the evaluation result of each of the plurality of candidate motion vectors is better as the difference between the reconstructed image of the first decoded area specified by the candidate motion vector and the second decoded reconstructed image is smaller. It is an evaluation result.
 例えば図23の(a)に示すように、複数の候補動きベクトルは互いに性質の異なるK個のグループに分類される。そして、K個のグループの全体から、評価結果が最も良い1つ(M=1)の予測動きベクトル候補が抽出され、その予測動きベクトル候補が属するグループ以外のグループから予め定められた優先順位にしたがってもう1つ(L=1)の予測動きベクトル候補が抽出される。したがって、互いに性質が異なり、かつ予測精度が高い2個(N=2)の予測動きベクトル候補を抽出することができる。その結果、予測動きベクトルの選択の幅を広げることができ、予測精度のより高い予測動きベクトルが選択される可能性を高めることができる。 For example, as shown in FIG. 23A, a plurality of candidate motion vectors are classified into K groups having different properties. Then, one (M = 1) prediction motion vector candidate having the best evaluation result is extracted from the entire K groups, and the priority order is determined in advance from groups other than the group to which the prediction motion vector candidate belongs. Therefore, another (L = 1) prediction motion vector candidate is extracted. Therefore, two (N = 2) prediction motion vector candidates having different properties and high prediction accuracy can be extracted. As a result, the range of selection of the prediction motion vector can be expanded, and the possibility that a prediction motion vector with higher prediction accuracy is selected can be increased.
 また、前記処理回路は、前記N個の予測動きベクトル候補の抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルをK個(Kは2以上の整数)のグループに分類し、前記第1の抽出方法にしたがった抽出では、前記共通の候補リストに示される前記複数の候補動きベクトルから、前記評価結果が良い順で上位M個の候補動きベクトルを、前記M個の予測動きベクトル候補として抽出し、さらに、前記共通の候補リストのうち、前記M個の予測動きベクトル候補のそれぞれが属するグループを除く、少なくとも1つのグループの何れかに属する複数の候補動きベクトルから、前記評価結果が最も良い候補動きベクトルを次点予測動きベクトル候補として特定し、前記第2の抽出方法にしたがった抽出では、前記共通の候補リストのうち、特定された前記次点予測動きベクトル候補が属するグループと同じグループに属する1つ以上の候補動きベクトルから、前記優先順位にしたがって前記L個の予測動きベクトル候補を抽出してもよい。 In the extraction of the N predicted motion vector candidates, the processing circuit classifies the plurality of candidate motion vectors shown in the common candidate list into K groups (K is an integer of 2 or more), In the extraction according to the first extraction method, the top M candidate motion vectors in the descending order of the evaluation result are selected from the plurality of candidate motion vectors shown in the common candidate list, and the M predicted motions. The candidate is extracted as a vector candidate, and further, the evaluation is performed from a plurality of candidate motion vectors belonging to any one of at least one group excluding a group to which each of the M predicted motion vector candidates belongs from the common candidate list. The candidate motion vector with the best result is identified as the next predicted motion vector candidate, and in the extraction according to the second extraction method, the common candidate The L predicted motion vector candidates may be extracted in accordance with the priority from one or more candidate motion vectors belonging to the same group as the group to which the identified next-point predicted motion vector candidate belongs. .
 例えば図23の(b)に示すように、複数の候補動きベクトルは互いに性質の異なるK個のグループに分類される。そして、K個のグループの全体から、評価結果が最も良い1つ(M=1)の予測動きベクトル候補が抽出され、その予測動きベクトル候補が属するグループ以外のグループから次点予測動きベクトル候補が特定される。さらに、その次点予測動きベクトル候補が属するグループと同じグループから、優先順位にしたがってもう1つ(L=1)の予測動きベクトル候補が抽出される。したがって、互いに性質が異なり、かつ予測精度が高い2個(N=2)の予測動きベクトル候補を抽出することができる。その結果、予測動きベクトルの選択の幅を広げることができ、予測精度のより高い予測動きベクトルが選択される可能性を高めることができる。 For example, as shown in FIG. 23B, the plurality of candidate motion vectors are classified into K groups having different properties. Then, one (M = 1) predicted motion vector candidate having the best evaluation result is extracted from the entire K groups, and the next-point predicted motion vector candidate is obtained from a group other than the group to which the predicted motion vector candidate belongs. Identified. Furthermore, another (L = 1) predicted motion vector candidate is extracted from the same group as the group to which the next-point predicted motion vector candidate belongs, according to the priority order. Therefore, two (N = 2) prediction motion vector candidates having different properties and high prediction accuracy can be extracted. As a result, the range of selection of the prediction motion vector can be expanded, and the possibility that a prediction motion vector with higher prediction accuracy is selected can be increased.
 これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized by a non-transitory recording medium such as a system, apparatus, method, integrated circuit, computer program, or computer-readable CD-ROM. The present invention may be realized by any combination of a method, an integrated circuit, a computer program, and a recording medium.
 [実装例]
 図25は、上記各実施の形態に係る符号化装置100の実装例を示すブロック図である。符号化装置100は、処理回路160及びメモリ162を備える。例えば、図1に示された符号化装置100の複数の構成要素は、図25に示された処理回路160及びメモリ162によって実装される。
[Example of implementation]
FIG. 25 is a block diagram illustrating an implementation example of the encoding device 100 according to each of the above embodiments. The encoding device 100 includes a processing circuit 160 and a memory 162. For example, a plurality of components of the encoding device 100 shown in FIG. 1 are implemented by the processing circuit 160 and the memory 162 shown in FIG.
 処理回路160は、情報処理を行う回路であり、メモリ162にアクセス可能な回路である。例えば、処理回路160は、動画像を符号化する専用又は汎用の電子回路である。処理回路160は、CPUのようなプロセッサであってもよい。また、処理回路160は、複数の電子回路の集合体であってもよい。また、例えば、処理回路160は、図1に示された符号化装置100の複数の構成要素のうち、情報を記憶するための構成要素を除く、複数の構成要素の役割を果たしてもよい。 The processing circuit 160 is a circuit that performs information processing, and is a circuit that can access the memory 162. For example, the processing circuit 160 is a dedicated or general-purpose electronic circuit that encodes a moving image. The processing circuit 160 may be a processor such as a CPU. Further, the processing circuit 160 may be an aggregate of a plurality of electronic circuits. Further, for example, the processing circuit 160 may serve as a plurality of components other than the components for storing information among the plurality of components of the encoding device 100 illustrated in FIG. 1.
 メモリ162は、処理回路160が動画像を符号化するための情報が記憶される汎用又は専用のメモリである。メモリ162は、電子回路であってもよく、処理回路160に接続されていてもよい。また、メモリ162は、処理回路160に含まれていてもよい。また、メモリ162は、複数の電子回路の集合体であってもよい。また、メモリ162は、磁気ディスク又は光ディスク等であってもよいし、ストレージ又は記録媒体等と表現されてもよい。また、メモリ162は、不揮発性メモリでもよいし、揮発性メモリでもよい。 The memory 162 is a general purpose or dedicated memory in which information for the processing circuit 160 to encode a moving image is stored. The memory 162 may be an electronic circuit and may be connected to the processing circuit 160. Further, the memory 162 may be included in the processing circuit 160. The memory 162 may be an aggregate of a plurality of electronic circuits. Further, the memory 162 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. The memory 162 may be a non-volatile memory or a volatile memory.
 例えば、メモリ162には、符号化される動画像が記憶されてもよいし、符号化された動画像に対応するビット列が記憶されてもよい。また、メモリ162には、処理回路160が動画像を符号化するためのプログラムが記憶されていてもよい。 For example, in the memory 162, a moving image to be encoded may be stored, or a bit string corresponding to the encoded moving image may be stored. The memory 162 may store a program for the processing circuit 160 to encode a moving image.
 また、例えば、メモリ162は、図1に示された符号化装置100の複数の構成要素のうち、情報を記憶するための構成要素の役割を果たしてもよい。具体的には、メモリ162は、図1に示されたブロックメモリ118及びフレームメモリ122の役割を果たしてもよい。より具体的には、メモリ162には、処理済みサブブロック、処理済みブロック及び処理済みピクチャ等が記憶されてもよい。 Also, for example, the memory 162 may serve as a component for storing information among a plurality of components of the encoding device 100 shown in FIG. Specifically, the memory 162 may serve as the block memory 118 and the frame memory 122 shown in FIG. More specifically, the memory 162 may store processed sub-blocks, processed blocks, processed pictures, and the like.
 なお、符号化装置100において、図1等に示された複数の構成要素の全てが実装されなくてもよいし、上述された複数の処理の全てが行われなくてもよい。図1等に示された複数の構成要素の一部は、他の装置に含まれていてもよいし、上述された複数の処理の一部は、他の装置によって実行されてもよい。そして、符号化装置100において、図1等に示された複数の構成要素のうちの一部が実装され、上述された複数の処理の一部が行われることによって、少ない符号量で動画像が適切に処理され得る。 Note that in the encoding device 100, not all of the plurality of components shown in FIG. 1 or the like may be mounted, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 1 and the like may be included in another device, and some of the plurality of processes described above may be executed by another device. In the encoding apparatus 100, a part of the plurality of components shown in FIG. 1 and the like are mounted, and a part of the plurality of processes described above is performed, so that a moving image can be generated with a small code amount. Can be handled appropriately.
 図26は、上記各実施の形態に係る復号装置200の実装例を示すブロック図である。復号装置200は、処理回路260及びメモリ262を備える。例えば、図10に示された復号装置200の複数の構成要素は、図26に示された処理回路260及びメモリ262によって実装される。 FIG. 26 is a block diagram illustrating an implementation example of the decoding device 200 according to each of the above embodiments. The decoding device 200 includes a processing circuit 260 and a memory 262. For example, a plurality of components of the decoding device 200 illustrated in FIG. 10 are implemented by the processing circuit 260 and the memory 262 illustrated in FIG.
 処理回路260は、情報処理を行う回路であり、メモリ262にアクセス可能な回路である。例えば、処理回路260は、動画像を復号する汎用又は専用の電子回路である。処理回路260は、CPUのようなプロセッサであってもよい。また、処理回路260は、複数の電子回路の集合体であってもよい。また、例えば、処理回路260は、図10に示された復号装置200の複数の構成要素のうち、情報を記憶するための構成要素を除く、複数の構成要素の役割を果たしてもよい。 The processing circuit 260 is a circuit that performs information processing, and is a circuit that can access the memory 262. For example, the processing circuit 260 is a general-purpose or dedicated electronic circuit that decodes a moving image. The processing circuit 260 may be a processor such as a CPU. Further, the processing circuit 260 may be an aggregate of a plurality of electronic circuits. Further, for example, the processing circuit 260 may serve as a plurality of constituent elements excluding a constituent element for storing information among a plurality of constituent elements of the decoding device 200 illustrated in FIG. 10.
 メモリ262は、処理回路260が動画像を復号するための情報が記憶される汎用又は専用のメモリである。メモリ262は、電子回路であってもよく、処理回路260に接続されていてもよい。また、メモリ262は、処理回路260に含まれていてもよい。また、メモリ262は、複数の電子回路の集合体であってもよい。また、メモリ262は、磁気ディスク又は光ディスク等であってもよいし、ストレージ又は記録媒体等と表現されてもよい。また、メモリ262は、不揮発性メモリでもよいし、揮発性メモリでもよい。 The memory 262 is a general purpose or dedicated memory in which information for the processing circuit 260 to decode a moving image is stored. The memory 262 may be an electronic circuit and may be connected to the processing circuit 260. Further, the memory 262 may be included in the processing circuit 260. The memory 262 may be an aggregate of a plurality of electronic circuits. The memory 262 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. Further, the memory 262 may be a nonvolatile memory or a volatile memory.
 例えば、メモリ262には、符号化された動画像に対応するビット列が記憶されてもよいし、復号されたビット列に対応する動画像が記憶されてもよい。また、メモリ262には、処理回路260が動画像を復号するためのプログラムが記憶されていてもよい。 For example, the memory 262 may store a bit sequence corresponding to the encoded moving image, or may store a moving image corresponding to the decoded bit sequence. The memory 262 may store a program for the processing circuit 260 to decode a moving image.
 また、例えば、メモリ262は、図10に示された復号装置200の複数の構成要素のうち、情報を記憶するための構成要素の役割を果たしてもよい。具体的には、メモリ262は、図10に示されたブロックメモリ210及びフレームメモリ214の役割を果たしてもよい。より具体的には、メモリ262には、処理済みサブブロック、処理済みブロック及び処理済みピクチャ等が記憶されてもよい。 For example, the memory 262 may serve as a component for storing information among a plurality of components of the decoding device 200 illustrated in FIG. Specifically, the memory 262 may serve as the block memory 210 and the frame memory 214 shown in FIG. More specifically, the memory 262 may store processed sub-blocks, processed blocks, processed pictures, and the like.
 なお、復号装置200において、図10等に示された複数の構成要素の全てが実装されなくてもよいし、上述された複数の処理の全てが行われなくてもよい。図10等に示された複数の構成要素の一部は、他の装置に含まれていてもよいし、上述された複数の処理の一部は、他の装置によって実行されてもよい。そして、復号装置200において、図10等に示された複数の構成要素のうちの一部が実装され、上述された複数の処理の一部が行われることによって、少ない符号量で動画像が適切に処理され得る。 Note that in the decoding device 200, not all of the plurality of components shown in FIG. 10 and the like may be implemented, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 10 and the like may be included in another device, and some of the plurality of processes described above may be executed by another device. Then, in the decoding device 200, a part of the plurality of components shown in FIG. 10 and the like are mounted, and a part of the plurality of processes described above is performed, so that a moving image is appropriately generated with a small code amount. Can be processed.
 [補足]
 上記各実施の形態における符号化装置100及び復号装置200は、それぞれ、画像符号化装置及び画像復号装置として利用されてもよいし、動画像符号化装置及び動画像復号装置として利用されてもよい。あるいは、符号化装置100及び復号装置200は、それぞれ、インター予測装置として利用され得る。すなわち、符号化装置100及び復号装置200は、それぞれ、インター予測部126及びインター予測部218のみに対応していてもよい。
[Supplement]
The encoding device 100 and the decoding device 200 in each of the above embodiments may be used as an image encoding device and an image decoding device, or may be used as a moving image encoding device and a moving image decoding device, respectively. . Alternatively, the encoding device 100 and the decoding device 200 can each be used as an inter prediction device. That is, the encoding apparatus 100 and the decoding apparatus 200 may support only the inter prediction unit 126 and the inter prediction unit 218, respectively.
 また、上記各実施の形態では、予測ブロックを符号化対象ブロックまたは復号対象ブロックとして符号化または復号したが、符号化対象ブロックまたは復号対象ブロックは、予測ブロックに限らず、サブブロックであってもよいし、他のブロックであってもよい。 In each of the above embodiments, the prediction block is encoded or decoded as the encoding target block or the decoding target block. However, the encoding target block or the decoding target block is not limited to the prediction block, and may be a sub-block. It may be another block.
 また、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in each of the above embodiments, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 具体的には、符号化装置100及び復号装置200のそれぞれは、処理回路(Processing Circuitry)と、当該処理回路に電気的に接続された、当該処理回路からアクセス可能な記憶装置(Storage)とを備えていてもよい。 Specifically, each of the encoding device 100 and the decoding device 200 includes a processing circuit (Processing Circuit) and a storage device (Storage) electrically connected to the processing circuit and accessible from the processing circuit. You may have.
 処理回路は、専用のハードウェア及びプログラム実行部の少なくとも一方を含み、記憶装置を用いて処理を実行する。また、記憶装置は、処理回路がプログラム実行部を含む場合には、当該プログラム実行部により実行されるソフトウェアプログラムを記憶する。 The processing circuit includes at least one of dedicated hardware and a program execution unit, and executes processing using a storage device. Further, when the processing circuit includes a program execution unit, the storage device stores a software program executed by the program execution unit.
 ここで、上記各実施の形態の符号化装置100又は復号装置200などを実現するソフトウェアは、次のようなプログラムである。 Here, the software that realizes the encoding device 100 or the decoding device 200 according to each of the above embodiments is the following program.
 すなわち、このプログラムは、コンピュータに、図15~図18および図20~図22のうちの何れかに示すフローチャートにしたがった処理を実行させる。 That is, this program causes the computer to execute processing according to the flowchart shown in any of FIGS. 15 to 18 and FIGS.
 また、各構成要素は、上述の通り、回路であってもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路であってもよい。また、各構成要素は、汎用的なプロセッサで実現されてもよいし、専用のプロセッサで実現されてもよい。 Each component may be a circuit as described above. These circuits may constitute one circuit as a whole, or may be separate circuits. Each component may be realized by a general-purpose processor or a dedicated processor.
 また、特定の構成要素が実行する処理を別の構成要素が実行してもよい。また、処理を実行する順番が変更されてもよいし、複数の処理が並行して実行されてもよい。また、符号化復号装置が、符号化装置100及び復号装置200を備えていてもよい。 Also, another component may execute the process executed by a specific component. In addition, the order in which the processes are executed may be changed, or a plurality of processes may be executed in parallel. Further, the encoding / decoding device may include the encoding device 100 and the decoding device 200.
 説明に用いられた第1及び第2等の序数は、適宜、付け替えられてもよい。また、構成要素などに対して、序数が新たに与えられてもよいし、取り除かれてもよい。 The first and second ordinal numbers used in the description may be replaced as appropriate. In addition, an ordinal number may be newly given to a component or the like, or may be removed.
 以上、符号化装置100及び復号装置200の態様について、各実施の形態に基づいて説明したが、符号化装置100及び復号装置200の態様は、これらの実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、符号化装置100及び復号装置200の態様の範囲内に含まれてもよい。 As mentioned above, although the aspect of the encoding apparatus 100 and the decoding apparatus 200 was demonstrated based on each embodiment, the aspect of the encoding apparatus 100 and the decoding apparatus 200 is not limited to these embodiment. As long as it does not deviate from the gist of the present disclosure, various modifications conceived by those skilled in the art in the embodiments and forms constructed by combining components in different embodiments are also possible for the encoding apparatus 100 and the decoding apparatus 200. It may be included within the scope of the embodiments.
 (実施の形態5)
 以上の各実施の形態において、機能ブロックの各々は、通常、MPU及びメモリ等によって実現可能である。また、機能ブロックの各々による処理は、通常、プロセッサなどのプログラム実行部が、ROM等の記録媒体に記録されたソフトウェア(プログラム)を読み出して実行することで実現される。当該ソフトウェアはダウンロード等により配布されてもよいし、半導体メモリなどの記録媒体に記録して配布されてもよい。なお、各機能ブロックをハードウェア(専用回路)によって実現することも、当然、可能である。
(Embodiment 5)
In each of the above embodiments, each of the functional blocks can usually be realized by an MPU, a memory, and the like. Further, the processing by each functional block is usually realized by a program execution unit such as a processor reading and executing software (program) recorded on a recording medium such as a ROM. The software may be distributed by downloading or the like, or may be distributed by being recorded on a recording medium such as a semiconductor memory. Naturally, each functional block can be realized by hardware (dedicated circuit).
 また、各実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 Further, the processing described in each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good. The number of processors that execute the program may be one or more. That is, centralized processing may be performed, or distributed processing may be performed.
 本発明は、以上の実施例に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含される。 The present invention is not limited to the above embodiments, and various modifications are possible, and these are also included in the scope of the present invention.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)又は動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、画像復号方法を用いた画像復号装置、及び両方を備える画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, application examples of the moving picture coding method (picture coding method) or the moving picture decoding method (picture decoding method) shown in the above embodiments and a system using the same will be described. The system includes an image encoding device using an image encoding method, an image decoding device using an image decoding method, and an image encoding / decoding device including both. Other configurations in the system can be appropriately changed according to circumstances.
 [使用例]
 図27は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
[Example of use]
FIG. 27 is a diagram illustrating an overall configuration of a content supply system ex100 that implements a content distribution service. The communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100では、インターネットex101に、インターネットサービスプロバイダex102又は通信網ex104、及び基地局ex106~ex110を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器が接続される。当該コンテンツ供給システムex100は、上記のいずれかの要素を組合せて接続するようにしてもよい。固定無線局である基地局ex106~ex110を介さずに、各機器が電話網又は近距離無線等を介して直接的又は間接的に相互に接続されていてもよい。また、ストリーミングサーバex103は、インターネットex101等を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器と接続される。また、ストリーミングサーバex103は、衛星ex116を介して、飛行機ex117内のホットスポット内の端末等と接続される。 In the content supply system ex100, devices such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101, the Internet service provider ex102 or the communication network ex104, and the base stations ex106 to ex110. Is connected. The content supply system ex100 may be connected by combining any of the above elements. Each device may be directly or indirectly connected to each other via a telephone network or a short-range wireless communication without using the base stations ex106 to ex110 which are fixed wireless stations. The streaming server ex103 is connected to each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101. The streaming server ex103 is connected to a terminal in a hot spot in the airplane ex117 via the satellite ex116.
 なお、基地局ex106~ex110の代わりに、無線アクセスポイント又はホットスポット等が用いられてもよい。また、ストリーミングサーバex103は、インターネットex101又はインターネットサービスプロバイダex102を介さずに直接通信網ex104と接続されてもよいし、衛星ex116を介さず直接飛行機ex117と接続されてもよい。 Note that a wireless access point or a hot spot may be used instead of the base stations ex106 to ex110. Further, the streaming server ex103 may be directly connected to the communication network ex104 without going through the Internet ex101 or the Internet service provider ex102, or may be directly connected to the airplane ex117 without going through the satellite ex116.
 カメラex113はデジタルカメラ等の静止画撮影、及び動画撮影が可能な機器である。また、スマートフォンex115は、一般に2G、3G、3.9G、4G、そして今後は5Gと呼ばれる移動通信システムの方式に対応したスマートフォン機、携帯電話機、又はPHS(Personal Handyphone System)等である。 The camera ex113 is a device that can shoot still images and moving images such as a digital camera. The smartphone ex115 is a smartphone, a mobile phone, a PHS (Personal Handyphone System), or the like that corresponds to a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
 家電ex118は、冷蔵庫、又は家庭用燃料電池コージェネレーションシステムに含まれる機器等である。 The home appliance ex118 is a device included in a refrigerator or a household fuel cell cogeneration system.
 コンテンツ供給システムex100では、撮影機能を有する端末が基地局ex106等を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、端末(コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、及び飛行機ex117内の端末等)は、ユーザが当該端末を用いて撮影した静止画又は動画コンテンツに対して上記各実施の形態で説明した符号化処理を行い、符号化により得られた映像データと、映像に対応する音を符号化した音データと多重化し、得られたデータをストリーミングサーバex103に送信する。即ち、各端末は、本発明の一態様に係る画像符号化装置として機能する。 In the content supply system ex100, a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, thereby enabling live distribution or the like. In live distribution, the terminal (computer ex111, game machine ex112, camera ex113, home appliance ex114, smartphone ex115, terminal in airplane ex117, etc.) is used for the still image or video content captured by the user using the terminal. The encoding process described in each embodiment is performed, and the video data obtained by the encoding and the sound data obtained by encoding the sound corresponding to the video are multiplexed, and the obtained data is transmitted to the streaming server ex103. That is, each terminal functions as an image encoding device according to an aspect of the present invention.
 一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントは、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、又は飛行機ex117内の端末等である。配信されたデータを受信した各機器は、受信したデータを復号化処理して再生する。即ち、各機器は、本発明の一態様に係る画像復号装置として機能する。 On the other hand, the streaming server ex103 streams the content data transmitted to the requested client. The client is a computer or the like in the computer ex111, the game machine ex112, the camera ex113, the home appliance ex114, the smart phone ex115, or the airplane ex117 that can decode the encoded data. Each device that has received the distributed data decrypts and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present invention.
 [分散処理]
 また、ストリーミングサーバex103は複数のサーバ又は複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。例えば、ストリーミングサーバex103は、CDN(Contents Delivery Network)により実現され、世界中に分散された多数のエッジサーバとエッジサーバ間をつなぐネットワークによりコンテンツ配信が実現されていてもよい。CDNでは、クライアントに応じて物理的に近いエッジサーバが動的に割り当てられる。そして、当該エッジサーバにコンテンツがキャッシュ及び配信されることで遅延を減らすことができる。また、何らかのエラーが発生した場合又はトラフィックの増加などにより通信状態が変わる場合に複数のエッジサーバで処理を分散したり、他のエッジサーバに配信主体を切り替えたり、障害が生じたネットワークの部分を迂回して配信を続けることができるので、高速かつ安定した配信が実現できる。
[Distributed processing]
The streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner. For example, the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and content distribution may be realized by a network connecting a large number of edge servers and edge servers distributed all over the world. In CDN, edge servers that are physically close to each other are dynamically allocated according to clients. Then, the content can be cached and distributed to the edge server, thereby reducing the delay. Also, if some error occurs or the communication status changes due to an increase in traffic, etc., the processing is distributed among multiple edge servers, the distribution subject is switched to another edge server, or the part of the network where the failure has occurred Since detouring can be continued, high-speed and stable distribution can be realized.
 また、配信自体の分散処理にとどまらず、撮影したデータの符号化処理を各端末で行ってもよいし、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、一般に符号化処理では、処理ループが2度行われる。1度目のループでフレーム又はシーン単位での画像の複雑さ、又は、符号量が検出される。また、2度目のループでは画質を維持して符号化効率を向上させる処理が行われる。例えば、端末が1度目の符号化処理を行い、コンテンツを受け取ったサーバ側が2度目の符号化処理を行うことで、各端末での処理負荷を減らしつつもコンテンツの質と効率を向上させることができる。この場合、ほぼリアルタイムで受信して復号する要求があれば、端末が行った一度目の符号化済みデータを他の端末で受信して再生することもできるので、より柔軟なリアルタイム配信も可能になる。 In addition to the distributed processing of the distribution itself, the captured data may be encoded at each terminal, may be performed on the server side, or may be shared with each other. As an example, in general, in an encoding process, a processing loop is performed twice. In the first loop, the complexity of the image or the code amount in units of frames or scenes is detected. In the second loop, processing for maintaining the image quality and improving the coding efficiency is performed. For example, the terminal performs the first encoding process, and the server receiving the content performs the second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can. In this case, if there is a request to receive and decode in almost real time, the encoded data of the first time performed by the terminal can be received and reproduced by another terminal, enabling more flexible real-time distribution. Become.
 他の例として、カメラex113等は、画像から特徴量抽出を行い、特徴量に関するデータをメタデータとして圧縮してサーバに送信する。サーバは、例えば特徴量からオブジェクトの重要性を判断して量子化精度を切り替えるなど、画像の意味に応じた圧縮を行う。特徴量データはサーバでの再度の圧縮時の動きベクトル予測の精度及び効率向上に特に有効である。また、端末でVLC(可変長符号化)などの簡易的な符号化を行い、サーバでCABAC(コンテキスト適応型二値算術符号化方式)など処理負荷の大きな符号化を行ってもよい。 As another example, the camera ex113 or the like extracts a feature amount from an image, compresses data relating to the feature amount as metadata, and transmits the metadata to the server. The server performs compression according to the meaning of the image, for example, by determining the importance of the object from the feature amount and switching the quantization accuracy. The feature data is particularly effective for improving the accuracy and efficiency of motion vector prediction at the time of re-compression on the server. Also, simple coding such as VLC (variable length coding) may be performed at the terminal, and coding with a large processing load such as CABAC (context adaptive binary arithmetic coding) may be performed at the server.
 さらに他の例として、スタジアム、ショッピングモール、又は工場などにおいては、複数の端末によりほぼ同一のシーンが撮影された複数の映像データが存在する場合がある。この場合には、撮影を行った複数の端末と、必要に応じて撮影をしていない他の端末及びサーバを用いて、例えばGOP(Group of Picture)単位、ピクチャ単位、又はピクチャを分割したタイル単位などで符号化処理をそれぞれ割り当てて分散処理を行う。これにより、遅延を減らし、よりリアルタイム性を実現できる。 As yet another example, in a stadium, a shopping mall, a factory, or the like, there may be a plurality of video data in which almost the same scene is captured by a plurality of terminals. In this case, for example, a GOP (Group of Picture) unit, a picture unit, or a tile obtained by dividing a picture using a plurality of terminals that have performed shooting and other terminals and servers that have not performed shooting as necessary. Distributed processing is performed by assigning encoding processing in units or the like. Thereby, delay can be reduced and real-time property can be realized.
 また、複数の映像データはほぼ同一シーンであるため、各端末で撮影された映像データを互いに参照し合えるように、サーバで管理及び/又は指示をしてもよい。または、各端末からの符号化済みデータを、サーバが受信し複数のデータ間で参照関係を変更、又はピクチャ自体を補正或いは差し替えて符号化しなおしてもよい。これにより、一つ一つのデータの質と効率を高めたストリームを生成できる。 In addition, since the plurality of video data are almost the same scene, the server may manage and / or instruct the video data captured by each terminal to refer to each other. Alternatively, the encoded data from each terminal may be received by the server and the reference relationship may be changed among a plurality of data, or the picture itself may be corrected or replaced to be encoded again. This makes it possible to generate a stream with improved quality and efficiency of each piece of data.
 また、サーバは、映像データの符号化方式を変更するトランスコードを行ったうえで映像データを配信してもよい。例えば、サーバは、MPEG系の符号化方式をVP系に変換してもよいし、H.264をH.265に変換してもよい。 Also, the server may distribute the video data after performing transcoding to change the encoding method of the video data. For example, the server may convert the MPEG encoding system to the VP encoding. H.264 in H.264. It may be converted into H.265.
 このように、符号化処理は、端末、又は1以上のサーバにより行うことが可能である。よって、以下では、処理を行う主体として「サーバ」又は「端末」等の記載を用いるが、サーバで行われる処理の一部又は全てが端末で行われてもよいし、端末で行われる処理の一部又は全てがサーバで行われてもよい。また、これらに関しては、復号処理についても同様である。 Thus, the encoding process can be performed by a terminal or one or more servers. Therefore, in the following, description such as “server” or “terminal” is used as the subject performing processing, but part or all of processing performed by the server may be performed by the terminal, or processing performed by the terminal may be performed. Some or all may be performed at the server. The same applies to the decoding process.
 [3D、マルチアングル]
 近年では、互いにほぼ同期した複数のカメラex113及び/又はスマートフォンex115などの端末により撮影された異なるシーン、又は、同一シーンを異なるアングルから撮影した画像或いは映像を統合して利用することも増えてきている。各端末で撮影した映像は、別途取得した端末間の相対的な位置関係、又は、映像に含まれる特徴点が一致する領域などに基づいて統合される。
[3D, multi-angle]
In recent years, different scenes photographed by terminals such as a plurality of cameras ex113 and / or smartphones ex115 that are substantially synchronized with each other, or images or videos obtained by photographing the same scene from different angles have been increasingly used. Yes. The video captured by each terminal is integrated based on the relative positional relationship between the terminals acquired separately or the region where the feature points included in the video match.
 サーバは、2次元の動画像を符号化するだけでなく、動画像のシーン解析などに基づいて自動的に、又は、ユーザが指定した時刻において、静止画を符号化し、受信端末に送信してもよい。サーバは、さらに、撮影端末間の相対的な位置関係を取得できる場合には、2次元の動画像だけでなく、同一シーンが異なるアングルから撮影された映像に基づき、当該シーンの3次元形状を生成できる。なお、サーバは、ポイントクラウドなどにより生成した3次元のデータを別途符号化してもよいし、3次元データを用いて人物又はオブジェクトを認識或いは追跡した結果に基づいて、受信端末に送信する映像を、複数の端末で撮影した映像から選択、又は、再構成して生成してもよい。 The server not only encodes a two-dimensional moving image, but also encodes a still image automatically based on a scene analysis of the moving image or at a time specified by the user and transmits it to the receiving terminal. Also good. In addition, when the server can acquire the relative positional relationship between the photographing terminals, the server obtains the three-dimensional shape of the scene based on not only the two-dimensional moving image but also the video obtained by photographing the same scene from different angles. Can be generated. The server may separately encode the three-dimensional data generated by the point cloud or the like, and the video to be transmitted to the receiving terminal based on the result of recognizing or tracking the person or the object using the three-dimensional data. Alternatively, the images may be selected or reconstructed from videos captured by a plurality of terminals.
 このようにして、ユーザは、各撮影端末に対応する各映像を任意に選択してシーンを楽しむこともできるし、複数画像又は映像を用いて再構成された3次元データから任意視点の映像を切り出したコンテンツを楽しむこともできる。さらに、映像と同様に音も複数の相異なるアングルから収音され、サーバは、映像に合わせて特定のアングル又は空間からの音を映像と多重化して送信してもよい。 In this way, the user can arbitrarily select each video corresponding to each photographing terminal and enjoy a scene, or can display a video of an arbitrary viewpoint from three-dimensional data reconstructed using a plurality of images or videos. You can also enjoy the clipped content. Furthermore, as with video, sound is collected from a plurality of different angles, and the server may multiplex and transmit sound from a specific angle or space according to the video.
 また、近年ではVirtual Reality(VR)及びAugmented Reality(AR)など、現実世界と仮想世界とを対応付けたコンテンツも普及してきている。VRの画像の場合、サーバは、右目用及び左目用の視点画像をそれぞれ作成し、Multi-View Coding(MVC)などにより各視点映像間で参照を許容する符号化を行ってもよいし、互いに参照せずに別ストリームとして符号化してもよい。別ストリームの復号時には、ユーザの視点に応じて仮想的な3次元空間が再現されるように互いに同期させて再生するとよい。 Also, in recent years, content that associates the real world with the virtual world, such as Virtual Reality (VR) and Augmented Reality (AR), has become widespread. In the case of a VR image, the server may create viewpoint images for the right eye and the left eye, respectively, and perform encoding that allows reference between each viewpoint video by Multi-View Coding (MVC) or the like. You may encode as another stream, without referring. At the time of decoding another stream, it is preferable to reproduce in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
 ARの画像の場合には、サーバは、現実空間のカメラ情報に、仮想空間上の仮想物体情報を、3次元的位置又はユーザの視点の動きに基づいて重畳する。復号装置は、仮想物体情報及び3次元データを取得又は保持し、ユーザの視点の動きに応じて2次元画像を生成し、スムーズにつなげることで重畳データを作成してもよい。または、復号装置は仮想物体情報の依頼に加えてユーザの視点の動きをサーバに送信し、サーバは、サーバに保持される3次元データから受信した視点の動きに合わせて重畳データを作成し、重畳データを符号化して復号装置に配信してもよい。なお、重畳データは、RGB以外に透過度を示すα値を有し、サーバは、3次元データから作成されたオブジェクト以外の部分のα値が0などに設定し、当該部分が透過する状態で、符号化してもよい。もしくは、サーバは、クロマキーのように所定の値のRGB値を背景に設定し、オブジェクト以外の部分は背景色にしたデータを生成してもよい。 In the case of an AR image, the server superimposes virtual object information in the virtual space on the camera information in the real space based on the three-dimensional position or the movement of the user's viewpoint. The decoding device may acquire or hold virtual object information and three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposition data by connecting them smoothly. Alternatively, the decoding device transmits the movement of the user's viewpoint to the server in addition to the request for the virtual object information, and the server creates superimposition data according to the movement of the viewpoint received from the three-dimensional data held in the server, The superimposed data may be encoded and distributed to the decoding device. Note that the superimposed data has an α value indicating transparency in addition to RGB, and the server sets the α value of a portion other than the object created from the three-dimensional data to 0 or the like, and the portion is transparent. May be encoded. Alternatively, the server may generate data in which a RGB value of a predetermined value is set as the background, such as a chroma key, and the portion other than the object is set to the background color.
 同様に配信されたデータの復号処理はクライアントである各端末で行っても、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、ある端末が、一旦サーバに受信リクエストを送り、そのリクエストに応じたコンテンツを他の端末で受信し復号処理を行い、ディスプレイを有する装置に復号済みの信号が送信されてもよい。通信可能な端末自体の性能によらず処理を分散して適切なコンテンツを選択することで画質のよいデータを再生することができる。また、他の例として大きなサイズの画像データをTV等で受信しつつ、鑑賞者の個人端末にピクチャが分割されたタイルなど一部の領域が復号されて表示されてもよい。これにより、全体像を共有化しつつ、自身の担当分野又はより詳細に確認したい領域を手元で確認することができる。 Similarly, the decryption processing of the distributed data may be performed at each terminal as a client, may be performed on the server side, or may be performed in a shared manner. As an example, a terminal may once send a reception request to the server, receive content corresponding to the request at another terminal, perform a decoding process, and transmit a decoded signal to a device having a display. Regardless of the performance of the communicable terminal itself, it is possible to reproduce data with good image quality by distributing processing and selecting appropriate content. As another example, a part of a region such as a tile in which a picture is divided may be decoded and displayed on a viewer's personal terminal while receiving large-size image data on a TV or the like. Accordingly, it is possible to confirm at hand the area in which the person is responsible or the area to be confirmed in more detail while sharing the whole image.
 また今後は、屋内外にかかわらず近距離、中距離、又は長距離の無線通信が複数使用可能な状況下で、MPEG-DASHなどの配信システム規格を利用して、接続中の通信に対して適切なデータを切り替えながらシームレスにコンテンツを受信することが予想される。これにより、ユーザは、自身の端末のみならず屋内外に設置されたディスプレイなどの復号装置又は表示装置を自由に選択しながらリアルタイムで切り替えられる。また、自身の位置情報などに基づいて、復号する端末及び表示する端末を切り替えながら復号を行うことができる。これにより、目的地への移動中に、表示可能なデバイスが埋め込まれた隣の建物の壁面又は地面の一部に地図情報を表示させながら移動することも可能になる。また、符号化データが受信端末から短時間でアクセスできるサーバにキャッシュされている、又は、コンテンツ・デリバリー・サービスにおけるエッジサーバにコピーされている、などの、ネットワーク上での符号化データへのアクセス容易性に基づいて、受信データのビットレートを切り替えることも可能である。 In the future, in the situation where multiple short-distance, medium-distance, or long-distance wireless communications can be used regardless of whether indoors or outdoors, using a distribution system standard such as MPEG-DASH, It is expected that content is received seamlessly while switching appropriate data. Accordingly, the user can switch in real time while freely selecting a decoding device or a display device such as a display installed indoors or outdoors as well as his / her own terminal. Also, decoding can be performed while switching between a terminal to be decoded and a terminal to be displayed based on its own position information. This makes it possible to move while displaying map information on the wall surface of a neighboring building or a part of the ground in which a displayable device is embedded while moving to the destination. Also, access to encoded data on the network, such as when the encoded data is cached in a server that can be accessed from the receiving terminal in a short time, or copied to the edge server in the content delivery service. It is also possible to switch the bit rate of received data based on ease.
 [スケーラブル符号化]
 コンテンツの切り替えに関して、図25に示す、上記各実施の形態で示した動画像符号化方法を応用して圧縮符号化されたスケーラブルなストリームを用いて説明する。サーバは、個別のストリームとして内容は同じで質の異なるストリームを複数有していても構わないが、図示するようにレイヤに分けて符号化を行うことで実現される時間的/空間的スケーラブルなストリームの特徴を活かして、コンテンツを切り替える構成であってもよい。つまり、復号側が性能という内的要因と通信帯域の状態などの外的要因とに応じてどのレイヤまで復号するかを決定することで、復号側は、低解像度のコンテンツと高解像度のコンテンツとを自由に切り替えて復号できる。例えば移動中にスマートフォンex115で視聴していた映像の続きを、帰宅後にインターネットTV等の機器で視聴したい場合には、当該機器は、同じストリームを異なるレイヤまで復号すればよいので、サーバ側の負担を軽減できる。
[Scalable coding]
The content switching will be described using a scalable stream that is compression-encoded by applying the moving image encoding method shown in each of the above embodiments shown in FIG. The server may have a plurality of streams of the same content and different quality as individual streams, but the temporal / spatial scalable implementation realized by dividing into layers as shown in the figure. The configuration may be such that the content is switched by utilizing the characteristics of the stream. In other words, the decoding side decides which layer to decode according to internal factors such as performance and external factors such as the state of communication bandwidth, so that the decoding side can combine low-resolution content and high-resolution content. You can switch freely and decrypt. For example, when the user wants to continue watching the video that was viewed on the smartphone ex115 while moving on a device such as an Internet TV after returning home, the device only has to decode the same stream to a different layer, so the load on the server side Can be reduced.
 さらに、上記のように、レイヤ毎にピクチャが符号化されており、ベースレイヤの上位にエンハンスメントレイヤが存在するスケーラビリティを実現する構成以外に、エンハンスメントレイヤが画像の統計情報などに基づくメタ情報を含み、復号側が、メタ情報に基づきベースレイヤのピクチャを超解像することで高画質化したコンテンツを生成してもよい。超解像とは、同一解像度におけるSN比の向上、及び、解像度の拡大のいずれであってもよい。メタ情報は、超解像処理に用いる線形或いは非線形のフィルタ係数を特定するため情報、又は、超解像処理に用いるフィルタ処理、機械学習或いは最小2乗演算におけるパラメータ値を特定する情報などを含む。 Further, as described above, the enhancement layer includes meta information based on image statistical information, etc., in addition to the configuration in which the picture is encoded for each layer and the enhancement layer exists above the base layer. The decoding side may generate content with high image quality by super-resolution of the base layer picture based on the meta information. Super-resolution may be either improvement of the SN ratio at the same resolution or enlargement of the resolution. The meta information includes information for specifying a linear or non-linear filter coefficient used for super-resolution processing, or information for specifying a parameter value in filter processing, machine learning, or least square calculation used for super-resolution processing. .
 または、画像内のオブジェクトなどの意味合いに応じてピクチャがタイル等に分割されており、復号側が、復号するタイルを選択することで一部の領域だけを復号する構成であってもよい。また、オブジェクトの属性(人物、車、ボールなど)と映像内の位置(同一画像における座標位置など)とをメタ情報として格納することで、復号側は、メタ情報に基づいて所望のオブジェクトの位置を特定し、そのオブジェクトを含むタイルを決定できる。例えば、図29に示すように、メタ情報は、HEVCにおけるSEIメッセージなど画素データとは異なるデータ格納構造を用いて格納される。このメタ情報は、例えば、メインオブジェクトの位置、サイズ、又は色彩などを示す。 Alternatively, the picture may be divided into tiles or the like according to the meaning of the object in the image, and the decoding side may select only a part of the region by selecting the tile to be decoded. Also, by storing the object attributes (person, car, ball, etc.) and the position in the video (coordinate position in the same image, etc.) as meta information, the decoding side can determine the position of the desired object based on the meta information. Can be identified and the tile containing the object can be determined. For example, as shown in FIG. 29, the meta information is stored using a data storage structure different from the pixel data such as the SEI message in HEVC. This meta information indicates, for example, the position, size, or color of the main object.
 また、ストリーム、シーケンス又はランダムアクセス単位など、複数のピクチャから構成される単位でメタ情報が格納されてもよい。これにより、復号側は、特定人物が映像内に出現する時刻などが取得でき、ピクチャ単位の情報と合わせることで、オブジェクトが存在するピクチャ、及び、ピクチャ内でのオブジェクトの位置を特定できる。 Also, meta information may be stored in units composed of a plurality of pictures, such as streams, sequences, or random access units. Thereby, the decoding side can acquire the time when the specific person appears in the video, etc., and can match the picture in which the object exists and the position of the object in the picture by combining with the information in units of pictures.
 [Webページの最適化]
 図30は、コンピュータex111等におけるwebページの表示画面例を示す図である。図31は、スマートフォンex115等におけるwebページの表示画面例を示す図である。図30及び図31に示すようにwebページが、画像コンテンツへのリンクであるリンク画像を複数含む場合があり、閲覧するデバイスによってその見え方は異なる。画面上に複数のリンク画像が見える場合には、ユーザが明示的にリンク画像を選択するまで、又は画面の中央付近にリンク画像が近付く或いはリンク画像の全体が画面内に入るまでは、表示装置(復号装置)は、リンク画像として各コンテンツが有する静止画又はIピクチャを表示したり、複数の静止画又はIピクチャ等でgifアニメのような映像を表示したり、ベースレイヤのみ受信して映像を復号及び表示したりする。
[Web page optimization]
FIG. 30 shows an example of a web page display screen on the computer ex111 or the like. FIG. 31 is a diagram illustrating an example of a display screen of a web page on the smartphone ex115 or the like. As shown in FIGS. 30 and 31, the web page may include a plurality of link images that are links to image content, and the appearance differs depending on the browsing device. When a plurality of link images are visible on the screen, the display device until the user explicitly selects the link image, or until the link image approaches the center of the screen or the entire link image enters the screen. The (decoding device) displays a still image or an I picture included in each content as a link image, displays a video like a gif animation with a plurality of still images or I pictures, or receives only a base layer to receive a video. Are decoded and displayed.
 ユーザによりリンク画像が選択された場合、表示装置は、ベースレイヤを最優先にして復号する。なお、webページを構成するHTMLにスケーラブルなコンテンツであることを示す情報があれば、表示装置は、エンハンスメントレイヤまで復号してもよい。また、リアルタイム性を担保するために、選択される前又は通信帯域が非常に厳しい場合には、表示装置は、前方参照のピクチャ(Iピクチャ、Pピクチャ、前方参照のみのBピクチャ)のみを復号及び表示することで、先頭ピクチャの復号時刻と表示時刻との間の遅延(コンテンツの復号開始から表示開始までの遅延)を低減できる。また、表示装置は、ピクチャの参照関係を敢えて無視して全てのBピクチャ及びPピクチャを前方参照にして粗く復号し、時間が経ち受信したピクチャが増えるにつれて正常の復号を行ってもよい。 When the link image is selected by the user, the display device decodes the base layer with the highest priority. If there is information indicating that the HTML constituting the web page is scalable content, the display device may decode up to the enhancement layer. Also, in order to ensure real-time properties, the display device only decodes forward reference pictures (I picture, P picture, forward reference only B picture) before being selected or when the communication band is very strict. In addition, the delay between the decoding time of the first picture and the display time (delay from the start of content decoding to the start of display) can be reduced by displaying. Further, the display device may intentionally ignore the reference relationship of pictures and roughly decode all B pictures and P pictures with forward reference, and perform normal decoding as the number of received pictures increases over time.
 [自動走行]
 また、車の自動走行又は走行支援のため2次元又は3次元の地図情報などの静止画又は映像データを送受信する場合、受信端末は、1以上のレイヤに属する画像データに加えて、メタ情報として天候又は工事の情報なども受信し、これらを対応付けて復号してもよい。なお、メタ情報は、レイヤに属してもよいし、単に画像データと多重化されてもよい。
[Automatic driving]
In addition, when transmitting and receiving still image or video data such as two-dimensional or three-dimensional map information for automatic driving or driving support of a car, the receiving terminal adds meta data to image data belonging to one or more layers. Weather or construction information may also be received and decoded in association with each other. The meta information may belong to a layer or may be simply multiplexed with image data.
 この場合、受信端末を含む車、ドローン又は飛行機などが移動するため、受信端末は、当該受信端末の位置情報を受信要求時に送信することで、基地局ex106~ex110を切り替えながらシームレスな受信及び復号を実現できる。また、受信端末は、ユーザの選択、ユーザの状況又は通信帯域の状態に応じて、メタ情報をどの程度受信するか、又は地図情報をどの程度更新していくかを動的に切り替えることが可能になる。 In this case, since the car, drone, airplane, or the like including the receiving terminal moves, the receiving terminal transmits the position information of the receiving terminal at the time of the reception request, thereby seamless reception and decoding while switching the base stations ex106 to ex110. Can be realized. In addition, the receiving terminal can dynamically switch how much meta-information is received or how much map information is updated according to the user's selection, the user's situation, or the communication band state. become.
 以上のようにして、コンテンツ供給システムex100では、ユーザが送信した符号化された情報をリアルタイムでクライアントが受信して復号し、再生することができる。 As described above, in the content supply system ex100, the encoded information transmitted by the user can be received, decoded and reproduced in real time by the client.
 [個人コンテンツの配信]
 また、コンテンツ供給システムex100では、映像配信業者による高画質で長時間のコンテンツのみならず、個人による低画質で短時間のコンテンツのユニキャスト、又はマルチキャスト配信が可能である。また、このような個人のコンテンツは今後も増加していくと考えられる。個人コンテンツをより優れたコンテンツにするために、サーバは、編集処理を行ってから符号化処理を行ってもよい。これは例えば、以下のような構成で実現できる。
[Distribution of personal contents]
Further, the content supply system ex100 can perform not only high-quality and long-time content by a video distributor but also unicast or multicast distribution of low-quality and short-time content by an individual. Moreover, such personal contents are expected to increase in the future. In order to make personal content superior, the server may perform the encoding process after performing the editing process. This can be realized, for example, with the following configuration.
 撮影時にリアルタイム又は蓄積して撮影後に、サーバは、原画又は符号化済みデータから撮影エラー、シーン探索、意味の解析、及びオブジェクト検出などの認識処理を行う。そして、サーバは、認識結果に基いて手動又は自動で、ピントずれ又は手ブレなどを補正したり、明度が他のピクチャに比べて低い又は焦点が合っていないシーンなどの重要性の低いシーンを削除したり、オブジェクトのエッジを強調したり、色合いを変化させるなどの編集を行う。サーバは、編集結果に基いて編集後のデータを符号化する。また撮影時刻が長すぎると視聴率が下がることも知られており、サーバは、撮影時間に応じて特定の時間範囲内のコンテンツになるように上記のように重要性が低いシーンのみならず動きが少ないシーンなどを、画像処理結果に基き自動でクリップしてもよい。または、サーバは、シーンの意味解析の結果に基づいてダイジェストを生成して符号化してもよい。 After shooting, the server performs recognition processing such as shooting error, scene search, semantic analysis, and object detection from the original image or encoded data. Then, the server manually or automatically corrects out-of-focus or camera shake based on the recognition result, or selects a less important scene such as a scene whose brightness is lower than that of other pictures or is out of focus. Edit such as deleting, emphasizing the edge of an object, and changing the hue. The server encodes the edited data based on the editing result. It is also known that if the shooting time is too long, the audience rating will decrease, and the server will move not only in the less important scenes as described above, but also in motion according to the shooting time. A scene with few images may be automatically clipped based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of the semantic analysis of the scene.
 なお、個人コンテンツには、そのままでは著作権、著作者人格権、又は肖像権等の侵害となるものが写り込んでいるケースもあり、共有する範囲が意図した範囲を超えてしまうなど個人にとって不都合な場合もある。よって、例えば、サーバは、画面の周辺部の人の顔、又は家の中などを敢えて焦点が合わない画像に変更して符号化してもよい。また、サーバは、符号化対象画像内に、予め登録した人物とは異なる人物の顔が映っているかどうかを認識し、映っている場合には、顔の部分にモザイクをかけるなどの処理を行ってもよい。または、符号化の前処理又は後処理として、著作権などの観点からユーザが画像を加工したい人物又は背景領域を指定し、サーバは、指定された領域を別の映像に置き換える、又は焦点をぼかすなどの処理を行うことも可能である。人物であれば、動画像において人物をトラッキングしながら、顔の部分の映像を置き換えることができる。 In some cases, personal content may include infringements such as copyrights, author's personality rights, or portrait rights, which are inconvenient for individuals, such as exceeding the intended scope of sharing. In some cases. Therefore, for example, the server may change and encode the face of the person in the periphery of the screen or the inside of the house into an unfocused image. In addition, the server recognizes whether or not a face of a person different from the person registered in advance is shown in the encoding target image, and if so, performs processing such as applying a mosaic to the face part. May be. Alternatively, as a pre-processing or post-processing of encoding, the user designates a person or background area that the user wants to process an image from the viewpoint of copyright, etc., and the server replaces the designated area with another video or blurs the focus. It is also possible to perform such processing. If it is a person, the face image can be replaced while tracking the person in the moving image.
 また、データ量の小さい個人コンテンツの視聴はリアルタイム性の要求が強いため、帯域幅にもよるが、復号装置は、まずベースレイヤを最優先で受信して復号及び再生を行う。復号装置は、この間にエンハンスメントレイヤを受信し、再生がループされる場合など2回以上再生される場合に、エンハンスメントレイヤも含めて高画質の映像を再生してもよい。このようにスケーラブルな符号化が行われているストリームであれば、未選択時又は見始めた段階では粗い動画だが、徐々にストリームがスマートになり画像がよくなるような体験を提供することができる。スケーラブル符号化以外にも、1回目に再生される粗いストリームと、1回目の動画を参照して符号化される2回目のストリームとが1つのストリームとして構成されていても同様の体験を提供できる。 In addition, since viewing of personal content with a small amount of data is strongly demanded for real-time performance, the decoding device first receives the base layer with the highest priority and performs decoding and reproduction, depending on the bandwidth. The decoding device may receive the enhancement layer during this time, and may play back high-quality video including the enhancement layer when played back twice or more, such as when playback is looped. A stream that is scalable in this way can provide an experience in which the stream becomes smarter and the image is improved gradually, although it is a rough moving picture when it is not selected or at the beginning of viewing. In addition to scalable coding, the same experience can be provided even if the coarse stream played back the first time and the second stream coded with reference to the first video are configured as one stream. .
 [その他の使用例]
 また、これらの符号化又は復号処理は、一般的に各端末が有するLSIex500において処理される。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化又は復号用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、又はハードディスクなど)に組み込み、そのソフトウェアを用いて符号化又は復号処理を行ってもよい。さらに、スマートフォンex115がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データはスマートフォンex115が有するLSIex500で符号化処理されたデータである。
[Other usage examples]
In addition, these encoding or decoding processes are generally processed in the LSI ex500 included in each terminal. The LSI ex500 may be configured as a single chip or a plurality of chips. Note that moving image encoding or decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111 and the like, and encoding or decoding processing is performed using the software. Also good. Furthermore, when the smartphone ex115 has a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the smartphone ex115.
 なお、LSIex500は、アプリケーションソフトをダウンロードしてアクティベートする構成であってもよい。この場合、端末は、まず、当該端末がコンテンツの符号化方式に対応しているか、又は、特定サービスの実行能力を有するかを判定する。端末がコンテンツの符号化方式に対応していない場合、又は、特定サービスの実行能力を有さない場合、端末は、コーデック又はアプリケーションソフトをダウンロードし、その後、コンテンツ取得及び再生する。 Note that the LSI ex500 may be configured to download and activate application software. In this case, the terminal first determines whether the terminal is compatible with the content encoding method or has a specific service execution capability. If the terminal does not support the content encoding method or does not have the capability to execute a specific service, the terminal downloads a codec or application software, and then acquires and reproduces the content.
 また、インターネットex101を介したコンテンツ供給システムex100に限らず、デジタル放送用システムにも上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)又は動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。衛星などを利用して放送用の電波に映像と音が多重化された多重化データを載せて送受信するため、コンテンツ供給システムex100のユニキャストがし易い構成に対してマルチキャスト向きであるという違いがあるが符号化処理及び復号処理に関しては同様の応用が可能である。 Further, not only the content supply system ex100 via the Internet ex101, but also a digital broadcasting system, at least the moving image encoding device (image encoding device) or the moving image decoding device (image decoding device) of the above embodiments. Any of these can be incorporated. The difference is that the unicasting of the content supply system ex100 is suitable for multicasting because it uses a satellite or the like to transmit and receive multiplexed data in which video and sound are multiplexed on broadcasting radio waves. However, the same application is possible for the encoding process and the decoding process.
 [ハードウェア構成]
 図32は、スマートフォンex115を示す図である。また、図33は、スマートフォンex115の構成例を示す図である。スマートフォンex115は、基地局ex110との間で電波を送受信するためのアンテナex450と、映像及び静止画を撮ることが可能なカメラ部ex465と、カメラ部ex465で撮像した映像、及びアンテナex450で受信した映像等が復号されたデータを表示する表示部ex458とを備える。スマートフォンex115は、さらに、タッチパネル等である操作部ex466と、音声又は音響を出力するためのスピーカ等である音声出力部ex457と、音声を入力するためのマイク等である音声入力部ex456と、撮影した映像或いは静止画、録音した音声、受信した映像或いは静止画、メール等の符号化されたデータ、又は、復号化されたデータを保存可能なメモリ部ex467と、ユーザを特定し、ネットワークをはじめ各種データへのアクセスの認証をするためのSIMex468とのインタフェース部であるスロット部ex464とを備える。なお、メモリ部ex467の代わりに外付けメモリが用いられてもよい。
[Hardware configuration]
FIG. 32 is a diagram illustrating the smartphone ex115. FIG. 33 is a diagram illustrating a configuration example of the smartphone ex115. The smartphone ex115 receives the antenna ex450 for transmitting / receiving radio waves to / from the base station ex110, the camera unit ex465 capable of taking video and still images, the video captured by the camera unit ex465, and the antenna ex450. A display unit ex458 for displaying data obtained by decoding the video or the like. The smartphone ex115 further includes an operation unit ex466 that is a touch panel or the like, a voice output unit ex457 that is a speaker or the like for outputting voice or sound, a voice input unit ex456 that is a microphone or the like for inputting voice, and photographing. Memory unit ex467 that can store encoded video or still image, recorded audio, received video or still image, encoded data such as mail, or decoded data, and a user, and network A slot part ex464, which is an interface part with the SIMex 468 for authenticating access to various data. An external memory may be used instead of the memory unit ex467.
 また、表示部ex458及び操作部ex466等を統括的に制御する主制御部ex460と、電源回路部ex461、操作入力制御部ex462、映像信号処理部ex455、カメラインタフェース部ex463、ディスプレイ制御部ex459、変調/復調部ex452、多重/分離部ex453、音声信号処理部ex454、スロット部ex464、及びメモリ部ex467とがバスex470を介して接続されている。 Also, a main control unit ex460 that comprehensively controls the display unit ex458, the operation unit ex466, and the like, a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, a modulation / Demodulation unit ex452, multiplexing / demultiplexing unit ex453, audio signal processing unit ex454, slot unit ex464, and memory unit ex467 are connected via bus ex470.
 電源回路部ex461は、ユーザの操作により電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することによりスマートフォンex115を動作可能な状態に起動する。 When the power key is turned on by a user operation, the power supply circuit unit ex461 starts up the smartphone ex115 in an operable state by supplying power from the battery pack to each unit.
 スマートフォンex115は、CPU、ROM及びRAM等を有する主制御部ex460の制御に基づいて、通話及データ通信等の処理を行う。通話時は、音声入力部ex456で収音した音声信号を音声信号処理部ex454でデジタル音声信号に変換し、これを変調/復調部ex452でスペクトラム拡散処理し、送信/受信部ex451でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex450を介して送信する。また受信データを増幅して周波数変換処理及びアナログデジタル変換処理を施し、変調/復調部ex452でスペクトラム逆拡散処理し、音声信号処理部ex454でアナログ音声信号に変換した後、これを音声出力部ex457から出力する。データ通信モード時は、本体部の操作部ex466等の操作によってテキスト、静止画、又は映像データが操作入力制御部ex462を介して主制御部ex460に送出され、同様に送受信処理が行われる。データ通信モード時に映像、静止画、又は映像と音声を送信する場合、映像信号処理部ex455は、メモリ部ex467に保存されている映像信号又はカメラ部ex465から入力された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex453に送出する。また、音声信号処理部ex454は、映像又は静止画等をカメラ部ex465で撮像中に音声入力部ex456で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex453に送出する。多重/分離部ex453は、符号化済み映像データと符号化済み音声データを所定の方式で多重化し、変調/復調部(変調/復調回路部)ex452、及び送信/受信部ex451で変調処理及び変換処理を施してアンテナex450を介して送信する。 The smartphone ex115 performs processing such as calling and data communication based on the control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like. During a call, the voice signal picked up by the voice input unit ex456 is converted into a digital voice signal by the voice signal processing unit ex454, spread spectrum processed by the modulation / demodulation unit ex452, and digital / analog converted by the transmission / reception unit ex451. After performing the processing and the frequency conversion processing, the data is transmitted via the antenna ex450. Further, the received data is amplified and subjected to frequency conversion processing and analog-digital conversion processing, spectrum despreading processing is performed by the modulation / demodulation unit ex452, and converted to analog audio signal by the audio signal processing unit ex454, and then this is output to the audio output unit ex457. Output from. In the data communication mode, text, still image, or video data is sent to the main control unit ex460 via the operation input control unit ex462 by the operation of the operation unit ex466 of the main body unit, and transmission / reception processing is performed similarly. When transmitting video, still image, or video and audio in the data communication mode, the video signal processing unit ex455 uses the video signal stored in the memory unit ex467 or the video signal input from the camera unit ex465 as described above. The video data is compressed and encoded by the moving image encoding method shown in the form, and the encoded video data is sent to the multiplexing / demultiplexing unit ex453. The audio signal processing unit ex454 encodes the audio signal picked up by the audio input unit ex456 while the camera unit ex465 captures a video or a still image, and sends the encoded audio data to the multiplexing / separating unit ex453. To do. The multiplexing / demultiplexing unit ex453 multiplexes the encoded video data and the encoded audio data by a predetermined method, and the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the modulation / demodulation unit ex451 perform modulation processing and conversion. The data is processed and transmitted via the antenna ex450.
 電子メール又はチャットに添付された映像、又はウェブページ等にリンクされた映像を受信した場合、アンテナex450を介して受信された多重化データを復号するために、多重/分離部ex453は、多重化データを分離することにより、多重化データを映像データのビットストリームと音声データのビットストリームとに分け、同期バスex470を介して符号化された映像データを映像信号処理部ex455に供給するとともに、符号化された音声データを音声信号処理部ex454に供給する。映像信号処理部ex455は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって映像信号を復号し、ディスプレイ制御部ex459を介して表示部ex458から、リンクされた動画像ファイルに含まれる映像又は静止画が表示される。また音声信号処理部ex454は、音声信号を復号し、音声出力部ex457から音声が出力される。なおリアルタイムストリーミングが普及しているため、ユーザの状況によっては音声の再生が社会的にふさわしくない場も起こりえる。そのため、初期値としては、音声信号は再生せず映像データのみを再生する構成の方が望ましい。ユーザが映像データをクリックするなど操作を行った場合にのみ音声を同期して再生してもよい。 In order to decode the multiplexed data received via the antenna ex450 when the video attached to the e-mail or chat, or the video linked to the web page or the like is received, the multiplexing / demultiplexing unit ex453 performs multiplexing By separating the data, the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the encoded video data is supplied to the video signal processing unit ex455 via the synchronization bus ex470. The converted audio data is supplied to the audio signal processing unit ex454. The video signal processing unit ex455 decodes the video signal by the video decoding method corresponding to the video encoding method shown in each of the above embodiments, and is linked from the display unit ex458 via the display control unit ex459. A video or still image included in the moving image file is displayed. The audio signal processing unit ex454 decodes the audio signal, and the audio is output from the audio output unit ex457. Since real-time streaming is widespread, depending on the user's situation, there may be occasions where audio playback is not socially appropriate. Therefore, it is desirable that the initial value is a configuration in which only the video data is reproduced without reproducing the audio signal. Audio may be synchronized and played back only when the user performs an operation such as clicking on video data.
 またここではスマートフォンex115を例に説明したが、端末としては符号化器及び復号化器を両方持つ送受信型端末の他に、符号化器のみを有する送信端末、及び、復号化器のみを有する受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムにおいて、映像データに音声データなどが多重化された多重化データを受信又は送信するとして説明したが、多重化データには、音声データ以外に映像に関連する文字データなどが多重化されてもよいし、多重化データではなく映像データ自体が受信又は送信されてもよい。 In addition, although the smartphone ex115 has been described here as an example, in addition to a transmission / reception terminal having both an encoder and a decoder as a terminal, a transmission terminal having only an encoder and a reception having only a decoder There are three possible mounting formats: terminals. Furthermore, in the digital broadcasting system, it has been described as receiving or transmitting multiplexed data in which audio data or the like is multiplexed with video data. However, multiplexed data includes character data related to video in addition to audio data. Multiplexing may be performed, and video data itself may be received or transmitted instead of multiplexed data.
 なお、CPUを含む主制御部ex460が符号化又は復号処理を制御するとして説明したが、端末はGPUを備えることも多い。よって、CPUとGPUで共通化されたメモリ、又は共通に使用できるようにアドレスが管理されているメモリにより、GPUの性能を活かして広い領域を一括して処理する構成でもよい。これにより符号化時間を短縮でき、リアルタイム性を確保し、低遅延を実現できる。特に動き探索、デブロックフィルタ、SAO(Sample Adaptive Offset)、及び変換・量子化の処理を、CPUではなく、GPUでピクチャなどの単位で一括して行うと効率的である。 In addition, although it has been described that the main control unit ex460 including the CPU controls the encoding or decoding process, the terminal often includes a GPU. Therefore, a configuration may be adopted in which a wide area is processed in a lump by utilizing the performance of the GPU by using a memory shared by the CPU and the GPU or a memory whose addresses are managed so as to be used in common. As a result, the encoding time can be shortened, real-time performance can be ensured, and low delay can be realized. In particular, it is efficient to perform motion search, deblocking filter, SAO (Sample Adaptive Offset), and transformation / quantization processing in batches in units of pictures or the like instead of the CPU.
 本開示は、例えば、テレビジョン受像機、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、デジタルビデオカメラ、テレビ会議システム、又は、電子ミラー等に利用可能である。 The present disclosure can be used for, for example, a television receiver, a digital video recorder, a car navigation, a mobile phone, a digital camera, a digital video camera, a video conference system, or an electronic mirror.
  100 符号化装置
  102 分割部
  104 減算部
  106 変換部
  108 量子化部
  110 エントロピー符号化部
  112、204 逆量子化部
  114、206 逆変換部
  116、208 加算部
  118、210 ブロックメモリ
  120、212 ループフィルタ部
  122、214 フレームメモリ
  124、216 イントラ予測部
  126、218 インター予測部
  128、220 予測制御部
  160、260 処理回路
  162、262 メモリ
  200 復号装置
  202 エントロピー復号部
DESCRIPTION OF SYMBOLS 100 Coding apparatus 102 Division | segmentation part 104 Subtraction part 106 Conversion part 108 Quantization part 110 Entropy encoding part 112,204 Inverse quantization part 114,206 Inverse conversion part 116,208 Adder 118,210 Block memory 120,212 Loop filter Units 122 and 214 Frame memories 124 and 216 Intra prediction units 126 and 218 Inter prediction units 128 and 220 Prediction control units 160 and 260 Processing circuits 162 and 262 Memory 200 Decoding device 202 Entropy decoding unit

Claims (16)

  1.  動画像を符号化する符号化装置であって、
     処理回路と、前記処理回路に接続されたメモリとを備え、
     前記処理回路は、前記メモリを用いて、
     前記動画像における符号化対象ブロックに対応する複数の符号化済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、
     前記複数の候補動きベクトルから、前記符号化対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、
     前記動画像に含まれる参照ピクチャを参照して前記符号化対象ブロックの動きベクトルを導出し、
     抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化し、
     導出された前記符号化対象ブロックの動きベクトルを用いて前記符号化対象ブロックに対して動き補償を行い、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記少なくとも1つの予測動きベクトル候補の全てを、前記符号化対象ブロックの画像領域を使用せずに前記動画像における符号化済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する
     符号化装置。
    An encoding device for encoding a moving image,
    A processing circuit; and a memory connected to the processing circuit;
    The processing circuit uses the memory,
    Obtaining a plurality of candidate motion vectors based on respective motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image;
    Extracting at least one prediction motion vector candidate of the encoding target block from the plurality of candidate motion vectors;
    Deriving a motion vector of the encoding target block with reference to a reference picture included in the moving image,
    Encoding the difference between the predicted motion vector of the extracted at least one predicted motion vector candidate and the derived motion vector of the encoding target block;
    Performing motion compensation on the encoding target block using the derived motion vector of the encoding target block;
    In extracting the at least one predicted motion vector candidate,
    Evaluation of each of the plurality of candidate motion vectors using all of the at least one predicted motion vector candidate using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block An encoding device that extracts based on the result.
  2.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルから、前記評価結果が最も良い1つの候補動きベクトルのみを選択することによって、前記少なくとも1つの予測動きベクトル候補の全てを抽出し、
     前記差分の符号化では、
     選択された前記候補動きベクトルである前記予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化する、
     請求項1に記載の符号化装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    Extracting all of the at least one predicted motion vector candidate by selecting only one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors;
    In the encoding of the difference,
    Encoding the difference between the predicted motion vector that is the selected candidate motion vector and the derived motion vector of the encoding target block;
    The encoding device according to claim 1.
  3.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルから、前記評価結果に基づいてN個(Nは2以上の整数)の候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出し、
     前記処理回路は、さらに、
     抽出されたN個の予測動きベクトル候補から前記予測動きベクトルを選択し、
     選択された前記予測動きベクトルを識別するための選択情報を符号化し、
     前記差分の符号化では、
     選択された前記予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化する、
     請求項1に記載の符号化装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    N candidate motion vectors (N is an integer of 2 or more) are extracted as all of the at least one predicted motion vector candidate from the plurality of candidate motion vectors based on the evaluation result;
    The processing circuit further includes:
    Selecting the predicted motion vector from the extracted N predicted motion vector candidates;
    Encoding selection information for identifying the selected predicted motion vector;
    In the encoding of the difference,
    Encoding a difference between the selected predicted motion vector and the derived motion vector of the encoding target block;
    The encoding device according to claim 1.
  4.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルから、前記評価結果が良い順で上位N個の候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出する
     請求項3に記載の符号化装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    The encoding apparatus according to claim 3, wherein the top N candidate motion vectors are extracted as all of the at least one predicted motion vector candidate from the plurality of candidate motion vectors in order of good evaluation results.
  5.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルをN個のグループに分類し、
     前記N個のグループのそれぞれから、当該グループで前記評価結果が最も良い1つの候補動きベクトルを抽出することによって、前記少なくとも1つの予測動きベクトル候補の全てを抽出する
     請求項3に記載の符号化装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    Classifying the plurality of candidate motion vectors into N groups;
    The encoding according to claim 3, wherein, from each of the N groups, one candidate motion vector having the best evaluation result in the group is extracted to extract all of the at least one predicted motion vector candidate. apparatus.
  6.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルをM個(MはNより大きい整数)のグループに分類し、
     前記M個のグループのそれぞれから、当該グループで前記評価結果が最も良い1つの候補動きベクトルを代表候補動きベクトルとして選択し、
     選択されたM個の前記代表候補動きベクトルから、前記評価結果が良い順で上位N個の代表候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出する
     請求項3に記載の符号化装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    Classifying the plurality of candidate motion vectors into M groups (M is an integer greater than N);
    From each of the M groups, one candidate motion vector having the best evaluation result in the group is selected as a representative candidate motion vector,
    4. The code according to claim 3, wherein, from the selected M representative candidate motion vectors, the top N representative candidate motion vectors are extracted as all of the at least one predicted motion vector candidate in order of good evaluation results. Device.
  7.  前記複数の候補動きベクトルのそれぞれの評価結果は、当該候補動きベクトルによって特定される第1の符号化済み領域の再構成画像と、第2の符号化済み再構成画像との差分が小さいほど良い評価結果である
     請求項1~6の何れか1項に記載の符号化装置。
    The evaluation result of each of the plurality of candidate motion vectors is better as the difference between the reconstructed image of the first encoded region specified by the candidate motion vector and the second encoded reconstructed image is smaller. The encoding apparatus according to any one of claims 1 to 6, which is an evaluation result.
  8.  符号化された動画像を復号する復号装置であって、
     処理回路と、前記処理回路に接続されたメモリとを備え、
     前記処理回路は、前記メモリを用いて、
     前記動画像における復号対象ブロックに対応する複数の復号済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、
     前記複数の候補動きベクトルから、前記復号対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、
     2つの動きベクトルの差分を示す差分情報を復号し、
     復号された前記差分情報によって示される差分に、抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出し、
     導出された前記復号対象ブロックの動きベクトルを用いて前記復号対象ブロックに対して動き補償を行い、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記少なくとも1つの予測動きベクトル候補の全てを、前記復号対象ブロックの画像領域を使用せずに前記動画像における復号済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する
     復号装置。
    A decoding device for decoding an encoded moving image,
    A processing circuit; and a memory connected to the processing circuit;
    The processing circuit uses the memory,
    Obtaining a plurality of candidate motion vectors based on respective motion vectors of a plurality of decoded blocks corresponding to a decoding target block in the moving image;
    Extracting at least one predicted motion vector candidate of the decoding target block from the plurality of candidate motion vectors;
    Decoding difference information indicating the difference between two motion vectors;
    Deriving a motion vector of the decoding target block by adding a prediction motion vector of the extracted at least one prediction motion vector candidate to the difference indicated by the decoded difference information;
    Performing motion compensation on the decoding target block using the derived motion vector of the decoding target block;
    In extracting the at least one predicted motion vector candidate,
    All of the at least one predicted motion vector candidate is used as an evaluation result of each of the plurality of candidate motion vectors using a reconstructed image of a decoded region in the moving image without using an image region of the decoding target block. Decoding device that extracts based on.
  9.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルから、前記評価結果が最も良い1つの候補動きベクトルのみを選択することによって、前記少なくとも1つの予測動きベクトル候補の全てを抽出し、
     前記復号対象ブロックの動きベクトルの導出では、
     復号された前記差分情報によって示される差分に、選択された前記候補動きベクトルである前記予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出する
     請求項8に記載の復号装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    Extracting all of the at least one predicted motion vector candidate by selecting only one candidate motion vector having the best evaluation result from the plurality of candidate motion vectors;
    In deriving the motion vector of the block to be decoded,
    The decoding device according to claim 8, wherein the motion vector of the decoding target block is derived by adding the predicted motion vector, which is the selected candidate motion vector, to the difference indicated by the decoded difference information.
  10.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルから、前記評価結果に基づいてN個(Nは2以上の整数)の候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出し、
     前記処理回路は、さらに、
     前記予測動きベクトルを識別するための選択情報を復号し、
     抽出されたN個の予測動きベクトル候補から、復号された前記選択情報によって識別される予測動きベクトル候補を、前記予測動きベクトルとして選択し、
     前記復号対象ブロックの動きベクトルの導出では、
     復号された前記差分情報によって示される差分に、選択された前記予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出する
     請求項8に記載の復号装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    N candidate motion vectors (N is an integer of 2 or more) are extracted as all of the at least one predicted motion vector candidate from the plurality of candidate motion vectors based on the evaluation result;
    The processing circuit further includes:
    Decoding selection information for identifying the predicted motion vector;
    Selecting a predicted motion vector candidate identified by the decoded selection information as the predicted motion vector from the extracted N predicted motion vector candidates;
    In deriving the motion vector of the block to be decoded,
    The decoding device according to claim 8, wherein a motion vector of the decoding target block is derived by adding the selected prediction motion vector to a difference indicated by the decoded difference information.
  11.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルから、前記評価結果が良い順で上位N個の候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出する
     請求項10に記載の復号装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    The decoding apparatus according to claim 10, wherein the top N candidate motion vectors are extracted as all of the at least one predicted motion vector candidate from the plurality of candidate motion vectors in order of good evaluation results.
  12.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルをN個のグループに分類し、
     前記N個のグループのそれぞれから、当該グループで前記評価結果が最も良い1つの候補動きベクトルを抽出することによって、前記少なくとも1つの予測動きベクトル候補の全てを抽出する
     請求項10に記載の復号装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    Classifying the plurality of candidate motion vectors into N groups;
    The decoding device according to claim 10, wherein, from each of the N groups, one candidate motion vector having the best evaluation result in the group is extracted to extract all of the at least one predicted motion vector candidate. .
  13.  前記処理回路は、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記複数の候補動きベクトルをM個(MはNよりも大きい整数)のグループに分類し、
     前記M個のグループのそれぞれから、当該グループで前記評価結果が最も良い1つの候補動きベクトルを代表候補動きベクトルとして選択し、
     選択されたM個の前記代表候補動きベクトルから、前記評価結果が良い順で上位N個の代表候補動きベクトルを、前記少なくとも1つの予測動きベクトル候補の全てとして抽出する
     請求項10に記載の復号装置。
    The processing circuit includes:
    In extracting the at least one predicted motion vector candidate,
    Classifying the plurality of candidate motion vectors into M groups (M is an integer greater than N);
    From each of the M groups, one candidate motion vector having the best evaluation result in the group is selected as a representative candidate motion vector,
    The decoding according to claim 10, wherein, from the selected M representative candidate motion vectors, the top N representative candidate motion vectors are extracted as all of the at least one predicted motion vector candidate in the order of good evaluation results. apparatus.
  14.  前記複数の候補動きベクトルのそれぞれの評価結果は、当該候補動きベクトルによって特定される第1の復号済み領域の再構成画像と、第2の復号済み再構成画像との差分が小さいほど良い評価結果である
     請求項8~13の何れか1項に記載の復号装置。
    The evaluation result of each of the plurality of candidate motion vectors is such that the smaller the difference between the reconstructed image of the first decoded area specified by the candidate motion vector and the second decoded reconstructed image, the better the evaluation result. The decoding device according to any one of claims 8 to 13.
  15.  動画像を符号化する符号化方法であって、
     前記動画像における符号化対象ブロックに対応する複数の符号化済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、
     前記複数の候補動きベクトルから、前記符号化対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、
     前記動画像に含まれる参照ピクチャを参照して前記符号化対象ブロックの動きベクトルを導出し、
     抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルと、導出された前記符号化対象ブロックの動きベクトルとの差分を符号化し、
     導出された前記符号化対象ブロックの動きベクトルを用いて前記符号化対象ブロックに対して動き補償を行い、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記少なくとも1つの予測動きベクトル候補の全てを、前記符号化対象ブロックの画像領域を使用せずに前記動画像における符号化済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する
     符号化方法。
    An encoding method for encoding a moving image, comprising:
    Obtaining a plurality of candidate motion vectors based on respective motion vectors of a plurality of encoded blocks corresponding to the encoding target block in the moving image;
    Extracting at least one prediction motion vector candidate of the encoding target block from the plurality of candidate motion vectors;
    Deriving a motion vector of the encoding target block with reference to a reference picture included in the moving image,
    Encoding the difference between the predicted motion vector of the extracted at least one predicted motion vector candidate and the derived motion vector of the encoding target block;
    Performing motion compensation on the encoding target block using the derived motion vector of the encoding target block;
    In extracting the at least one predicted motion vector candidate,
    Evaluation of each of the plurality of candidate motion vectors using all of the at least one predicted motion vector candidate using the reconstructed image of the encoded region in the moving image without using the image region of the encoding target block An encoding method that extracts based on the result.
  16.  符号化された動画像を復号する復号方法であって、
     前記動画像における復号対象ブロックに対応する複数の復号済みブロックのそれぞれの動きベクトルに基づいて複数の候補動きベクトルを取得し、
     前記複数の候補動きベクトルから、前記復号対象ブロックの少なくとも1つの予測動きベクトル候補を抽出し、
     2つの動きベクトルの差分を示す差分情報を復号し、
     復号された前記差分情報によって示される差分に、抽出された前記少なくとも1つの予測動きベクトル候補のうちの予測動きベクトルを加算することによって、前記復号対象ブロックの動きベクトルを導出し、
     導出された前記復号対象ブロックの動きベクトルを用いて前記復号対象ブロックに対して動き補償を行い、
     前記少なくとも1つの予測動きベクトル候補の抽出では、
     前記少なくとも1つの予測動きベクトル候補の全てを、前記復号対象ブロックの画像領域を使用せずに前記動画像における復号済み領域の再構成画像を用いた前記複数の候補動きベクトルのそれぞれの評価結果に基づいて抽出する
     復号方法。
    A decoding method for decoding an encoded moving image, comprising:
    Obtaining a plurality of candidate motion vectors based on respective motion vectors of a plurality of decoded blocks corresponding to a decoding target block in the moving image;
    Extracting at least one predicted motion vector candidate of the decoding target block from the plurality of candidate motion vectors;
    Decoding difference information indicating the difference between two motion vectors;
    Deriving a motion vector of the decoding target block by adding a prediction motion vector of the extracted at least one prediction motion vector candidate to the difference indicated by the decoded difference information;
    Performing motion compensation on the decoding target block using the derived motion vector of the decoding target block;
    In extracting the at least one predicted motion vector candidate,
    All of the at least one predicted motion vector candidate is used as an evaluation result of each of the plurality of candidate motion vectors using a reconstructed image of a decoded region in the moving image without using an image region of the decoding target block. Decoding method based on extraction.
PCT/JP2017/041749 2016-11-22 2017-11-21 Encoding device, decoding device, encoding method, and decoding method WO2018097115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662425298P 2016-11-22 2016-11-22
US62/425298 2016-11-22

Publications (1)

Publication Number Publication Date
WO2018097115A1 true WO2018097115A1 (en) 2018-05-31

Family

ID=62195167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041749 WO2018097115A1 (en) 2016-11-22 2017-11-21 Encoding device, decoding device, encoding method, and decoding method

Country Status (2)

Country Link
TW (1) TW201826796A (en)
WO (1) WO2018097115A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170179A (en) * 2018-12-21 2021-07-23 松下电器(美国)知识产权公司 Encoding device, decoding device, encoding method, and decoding method
JP2021530165A (en) * 2018-07-02 2021-11-04 華為技術有限公司Huawei Technologies Co.,Ltd. Motion vector prediction methods and devices, encoders, and decoders

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422757B2 (en) * 2018-11-06 2024-01-26 北京字節跳動網絡技術有限公司 Location-based intra prediction
WO2020108591A1 (en) 2018-12-01 2020-06-04 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
CN117579817A (en) * 2018-12-07 2024-02-20 夏普株式会社 Moving image decoding device and moving image encoding device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099440A1 (en) * 2010-02-09 2011-08-18 日本電信電話株式会社 Predictive coding method for motion vector, predictive decoding method for motion vector, video coding device, video decoding device, and programs therefor
WO2011099463A1 (en) * 2010-02-09 2011-08-18 日本電信電話株式会社 Predictive coding method for motion vector, predictive decoding method for motion vector, video coding device, video decoding device, and programs therefor
JP2012129756A (en) * 2010-12-14 2012-07-05 Nippon Telegr & Teleph Corp <Ntt> Encoder, decoder, encoding method, decoding method, encoding program, and decoding program
JP2013058873A (en) * 2011-09-07 2013-03-28 Nippon Hoso Kyokai <Nhk> Motion vector prediction device, encoder, decoder, and program therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099440A1 (en) * 2010-02-09 2011-08-18 日本電信電話株式会社 Predictive coding method for motion vector, predictive decoding method for motion vector, video coding device, video decoding device, and programs therefor
WO2011099463A1 (en) * 2010-02-09 2011-08-18 日本電信電話株式会社 Predictive coding method for motion vector, predictive decoding method for motion vector, video coding device, video decoding device, and programs therefor
JP2012129756A (en) * 2010-12-14 2012-07-05 Nippon Telegr & Teleph Corp <Ntt> Encoder, decoder, encoding method, decoding method, encoding program, and decoding program
JP2013058873A (en) * 2011-09-07 2013-03-28 Nippon Hoso Kyokai <Nhk> Motion vector prediction device, encoder, decoder, and program therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, J. ET AL.: "Algorithm description of joint exploration test model 4", JOINT VIDEO EXPLORATION TEAM (JVET) OF ITU-T SG16WP 3 AND ISO/IEC JTC 1/SC29/WG11, JVET-D1001_V3, 4TH MEETING, November 2016 (2016-11-01), pages 1 - 22 *
ROBERT, A. LE LEANNEC, F. , POIRIER, T. : "High precision FRUC with additional candidates", JOINT VIDEO EXPLORATION TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC1/SC29/WG11,JVET-D0046_RL 4TH MEETING, October 2016 (2016-10-01), Chengdu, China, pages 1 - 7 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530165A (en) * 2018-07-02 2021-11-04 華為技術有限公司Huawei Technologies Co.,Ltd. Motion vector prediction methods and devices, encoders, and decoders
JP7223111B2 (en) 2018-07-02 2023-02-15 華為技術有限公司 Motion vector prediction method and apparatus, encoder and decoder
CN113170179A (en) * 2018-12-21 2021-07-23 松下电器(美国)知识产权公司 Encoding device, decoding device, encoding method, and decoding method

Also Published As

Publication number Publication date
TW201826796A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
WO2017199800A1 (en) Coding device, decoding device, coding method and decoding method
WO2018199051A1 (en) Coding device, decoding device, coding method, and decoding method
WO2018212110A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2018181448A1 (en) Image coding device, image decoding device, image coding method, and image decoding method
JP7339890B2 (en) Encoding device and decoding device
JP2019017066A (en) Coding apparatus, decoding apparatus, coding method, and decoding method
WO2018021374A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019151279A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2018101288A1 (en) Encoding device, encoding method, decoding device, and decoding method
WO2018190207A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2018097115A1 (en) Encoding device, decoding device, encoding method, and decoding method
JP2022111281A (en) Non-temporary storage medium
WO2019208372A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019189346A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2018212111A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2018199050A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2019221103A1 (en) Encoding device, decoding device, encoding method, and decoding method
JP2022093625A (en) Encoder, decoder, encoding method, and decoding method
JPWO2019098152A1 (en) Decoding device, image decoding device and decoding method
JP2020202597A (en) Decoder and decoding method
JP2020198655A (en) Decoder and decoding method
WO2018105579A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019189344A1 (en) Encoding device, decoding device, encoding method and decoding method
WO2018021373A1 (en) Encoding device, decoding device, encoding method, and decoding method
WO2019163794A1 (en) Encoding device and encoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873330

Country of ref document: EP

Kind code of ref document: A1