WO2019093186A1 - Microscope device and program - Google Patents

Microscope device and program Download PDF

Info

Publication number
WO2019093186A1
WO2019093186A1 PCT/JP2018/040208 JP2018040208W WO2019093186A1 WO 2019093186 A1 WO2019093186 A1 WO 2019093186A1 JP 2018040208 W JP2018040208 W JP 2018040208W WO 2019093186 A1 WO2019093186 A1 WO 2019093186A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
optical system
optical axis
observation target
focus
Prior art date
Application number
PCT/JP2018/040208
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 和多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019552730A priority Critical patent/JP6830548B2/en
Publication of WO2019093186A1 publication Critical patent/WO2019093186A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals

Definitions

  • the technology of the present disclosure relates to a microscope apparatus and a program.
  • pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced Pluripotent Stem) cells and cells induced to differentiate are imaged with a microscope or the like, and the features of the image are captured to identify the differentiation state of the cells, etc.
  • ES Embryonic Stem
  • iPS Induced Pluripotent Stem
  • Pluripotent stem cells such as ES cells and iPS cells have the ability to differentiate into cells of various tissues, and are noted as being applicable in regenerative medicine, drug development, disease elucidation, etc. ing.
  • the tiling imaging is an imaging method of imaging a plurality of narrow-field images and concatenating the plurality of imaged narrow-field images to generate a wide-field image.
  • the entire observation object is scanned by moving the imaging optical system of a microscope and a stage on which a culture vessel such as a well plate containing the observation object is installed two-dimensionally. By concatenating the images obtained for each, a wide field of view image can be generated that includes the entire observation object.
  • the imaging condition is not normally set for the region where the imaging condition is not normally set in the process of scanning (a region where it is predicted that a non-focused image will be imaged) It is disclosed that, when displaying the wide-field image by connecting the images of the respective areas to display the wide-field image, highlight the area where the abnormal information is set.
  • the technology of the present disclosure provides a microscope apparatus and program that can save the memory capacity consumed for data of an out-of-focus image in view of the above-described problems.
  • the technology of the present disclosure provides a microscope apparatus and a program capable of suppressing vibration or the like of an imaging optical system by not performing unreasonable focus control when appropriate focus control is not possible. .
  • an imaging optical system capable of imaging an observation target light indicating an observation target in a container containing an observation target on an imaging element is driven by being driven within a drivable range.
  • the imaging optical system is focused on a specific area before the optical axis reaches the specific area of each area in a state where the imaging device scans each area in the container by moving the area relative to the area.
  • a control unit configured to execute an imaging data saving process when the specific region of the optical axis reaches when the driving amount of the driving member at the time of moving to the position exceeds the drivable range.
  • the first aspect when scanning the observation target, it is possible to save the memory capacity consumed for the data of the out-of-focus image captured when the imaging optical system is not at the in-focus position.
  • the imaging data saving process compresses the image data generated by imaging the observation target light having passed through the specific area on the imaging element higher than a predetermined amount
  • a microscope apparatus that includes compression at a rate and storage.
  • the non-focused image data is consumed by compressing and storing the non-focused image data at a higher compression rate than the compression rate (predetermined amount) of the focused image data. Save memory space.
  • a third aspect of the present disclosure is the microscope apparatus according to the first aspect, wherein the imaging data saving process includes avoiding imaging of a specific area by the imaging optical system.
  • the data of the out-of-focus image is not captured and is not stored in the memory of the storage device as a result, it is possible to save the memory capacity consumed for the data of the out-of-focus image.
  • a fourth aspect of the present disclosure is the microscope apparatus according to any one of the first to third aspects, wherein the drive member is a piezoelectric element that is deformable along the optical axis direction of the imaging optical system.
  • the piezoelectric element that can be deformed at high speed as the optical axis direction drive member, it is possible to execute autofocus control that appropriately follows the scan performed at high speed.
  • the fifth aspect further includes a detection unit that detects the position of the specific area in the optical axis direction, and the in-focus position of the specific area is detected by the detection section. It is a microscope apparatus calculated based on the position in the optical axis direction.
  • the detection result of the detection unit can be used to predict an area where an out-of-focus image is captured in the process of scanning.
  • the detection units are provided side by side across the imaging optical system in the main scanning direction with respect to each area, and each detect the position of the specific area in the optical axis direction It is a microscope apparatus which has a pair of sensors.
  • the detection unit using a pair of sensors arranged in the scanning direction can predict an area where an out-of-focus image is captured in the process of scanning according to the scanning direction.
  • the imaging optical system includes an objective lens movable in the optical axis direction, and the drive member moves the objective lens in the optical axis direction. It is a microscope device.
  • the objective lens is moved in the optical axis direction by the drive member, whereby the autofocus control is performed.
  • An eighth aspect of the present disclosure is the microscope apparatus according to the first to seventh aspects, wherein the container is a well plate having a plurality of wells.
  • the eighth aspect it is possible to save the memory capacity consumed for the out-of-focus image data when scanning the observation target stored in the well plate in which the bottom surface variation easily occurs.
  • a ninth aspect of the present disclosure is a program for causing a computer to function as a control unit included in the microscope apparatus according to the first to eighth aspects.
  • an imaging optical system capable of imaging an observation target light indicating an observation target in a container containing the observation target on an imaging element is driven by driving within a drivable range.
  • the imaging optical system is focused on a specific area before the optical axis reaches the specific area of each area in a state where the imaging device scans each area in the container by moving the area relative to the area.
  • a controller configured to cause the drive member to execute focus control stop processing when the drive amount of the drive member at the time of moving to the position exceeds the drivable range when the optical axis reaches a specific region.
  • vibration or the like of the imaging optical system can be suppressed by not performing excessive focus control when appropriate focus control is impossible.
  • the focus control stop processing includes moving the drive member in the optical axis direction before the optical axis reaches the specific area or after the optical axis reaches the specific area.
  • a microscope apparatus including stopping the
  • the focus control stopping process is performed before the optical axis reaches the specific area or after the optical axis reaches the specific area, the reference position of the drive member in the optical axis direction.
  • a microscope apparatus including moving it to.
  • focus control when appropriate focus control is not possible, focus control is reset by returning the drive member to the reference position in the optical axis direction, and a new shape corresponding to the shape of the bottom surface of the container is provided. Focus control can be started.
  • a thirteenth aspect of the present disclosure is a program for causing a computer to function as a control unit included in the microscope apparatus according to the tenth to twelfth aspects.
  • the thirteenth aspect it is possible to provide a program capable of suppressing the vibration or the like of the imaging optical system by avoiding impossible focus control when appropriate focus control is impossible.
  • the positional relationship between the imaging optical system, the first and second displacement sensors, and the culture vessel when there is an observation target area at an arbitrary position in the culture vessel installed on the stage of the microscope apparatus according to the first embodiment It is a conceptual diagram which shows the 2nd example of a form. It is a state transition diagram for demonstrating an example of the timing of the autofocus control in the microscope apparatus which concerns on 1st Embodiment. It is a flowchart which shows an example of the flow of the wide view image acquisition process which concerns on 1st Embodiment. It is a flowchart which shows an example of the flow of the stage movement process which concerns on 1st Embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of the microscope apparatus 90 according to the first embodiment.
  • the microscope apparatus 90 includes a microscope apparatus body 10 and a microscope controller 20.
  • the microscope device 90 may be connected to the display device 30 and the input device 40 via the microscope control device 20.
  • the microscope apparatus 90 is an example of the microscope apparatus of the present disclosure.
  • the microscope apparatus main body 10 captures a phase-contrast image of cultured cells to be observed by the microscope apparatus 90.
  • the microscope apparatus body 10 includes a white light source 11 for emitting white light, a condenser lens 12, a slit plate 13, an imaging optical system 14, and a piezoelectric element 15. , An imaging element 16, and a detection unit 18.
  • Image sensor 16 is an example of an image sensor of this indication.
  • the slit plate 13 is provided with a ring-shaped slit for transmitting white light to a light shielding plate for shielding white light emitted from the white light source 11, and the white light passes through the slit to form a ring shape.
  • Illumination light L is formed.
  • the imaging optical system 14 includes a phase difference lens 14 a and an imaging lens 14 d.
  • the phase difference lens 14a includes an objective lens 14b and a phase plate 14c.
  • the phase plate 14 c has a phase ring formed on a transparent plate transparent to the wavelength of the illumination light L.
  • the size of the slit of the slit plate 13 described above is in a conjugate relationship with the phase ring of the phase plate 14 c.
  • phase film for shifting the phase of the incident light by 1 ⁇ 4 wavelength and a light reducing filter for reducing the incident light are formed in a ring shape.
  • the direct light incident on the phase ring has its phase shifted by 1 ⁇ 4 wavelength by passing through the phase ring, and its brightness is weakened.
  • most of the diffracted light diffracted by the object of observation passes through the transparent plate of the phase plate 14c, and its phase and brightness do not change.
  • the phase difference lens 14a having the objective lens 14b is moved in the optical axis direction of the objective lens 14b by the piezoelectric element 15 shown in FIG. 1 as an example.
  • the optical axis direction of the objective lens 14b and the Z direction are the same direction.
  • Auto focus control is performed by moving the phase difference lens 14 a to be in focus in the Z direction, and the contrast of the phase difference image captured by the image sensor 16 is adjusted.
  • the Z-direction position of the bottom surface of the culture vessel 50 described later installed on the stage 51 described later is detected in advance and set as a reference surface. Then, in the imaging optical system 14, the reference position in the Z direction is set so as to be at the in-focus position with respect to the reference plane.
  • the imaging optical system 14 placed at the reference position Should be in focus.
  • the bottom surface of the culture vessel 50 is close to the reference surface but does not completely match. This is because the bottom of the culture vessel 50 has variations due to manufacturing errors and the like. That is, the actual in-focus position with respect to each area of the bottom of the culture container 50 often does not coincide with the reference position.
  • the imaging optical system 14 is moved in the Z direction to correct the deviation between each area of the bottom surface of the culture vessel 50 and the reference surface, and the imaging optical system 14 is an observation target in each area. Control to be in the actual in-focus position.
  • the magnification of the phase difference lens 14a may be changed.
  • the phase difference lens 14a or the imaging optical system 14 having different magnifications may be configured to be exchangeable.
  • the replacement of the phase difference lens 14a or the imaging optical system 14 may be performed automatically or may be performed manually by the user.
  • the piezoelectric element 15 holds the objective lens 14b of the imaging optical system 14 and functions as a Z-direction transport device for moving the objective lens 14b in the Z direction.
  • the piezoelectric element 15 is an example of the drive member of the present disclosure.
  • the piezoelectric element 15 as the Z-direction transport device has the following differences in characteristics.
  • the piezoelectric element 15 can move the objective lens 14b of the imaging optical system 14 in the Z direction at high speed.
  • the piezoelectric element 15 has a limited drivable range.
  • the piezoelectric element 15 is configured to pass the phase difference light that has passed through the phase difference lens 14 a as it is.
  • the Z-direction transport device of the objective lens 14b is not limited to the piezoelectric element 15, and may move in the Z direction at a sufficiently high speed following the scanning.
  • the imaging lens 14 d receives the phase difference light having passed through the phase difference lens 14 a and the piezoelectric element 15, and forms an image on the image pickup element 16.
  • the imaging device 16 captures a phase difference image formed by the imaging lens 14d.
  • a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like is used.
  • an imaging device an imaging device provided with a RGB (Red Green Blue) color filter may be used, or a monochrome imaging device may be used.
  • the detection unit 18 detects the position in the Z direction (vertical direction) of the culture container 50 installed on the stage 51.
  • the detection unit 18 includes a first displacement sensor 18a and a second displacement sensor 18b.
  • the first displacement sensor 18a and the second displacement sensor 18b in the first embodiment are laser displacement meters, and the culture vessel 50 is irradiated with laser light, and the reflected light is detected to detect the Z direction of the bottom surface of the culture vessel 50.
  • the bottom surface of the culture container 50 refers to the interface between the bottom of the culture container 50 and the cell to be observed, that is, the observation target installation surface.
  • the culture container 50 is an example of the container in the disclosure.
  • the first displacement sensor 18a and the second displacement sensor 18b are provided side by side in the X direction shown in FIG. 1 with the phase difference lens 14a interposed therebetween.
  • each of the first displacement sensor 18a and the second displacement sensor 18b is disposed so as to be separated from the phase difference lens 14a by a distance of 9 times the side D of the observation target region R which is a square, that is, 9D. There is.
  • the observation target region R will be described later.
  • Positional information on the Z direction of the culture container 50 detected by the detection unit 18 is output to an imaging control unit 21 described later, and the imaging control unit 21 controls the piezoelectric element 15 based on the input positional information, Perform auto focus control.
  • the detection of the position of the culture container 50 by the first displacement sensor 18a and the second displacement sensor 18b and the autofocus control by the imaging control unit 21 will be described in detail later.
  • a stage 51 is provided between the slit plate 13 and the phase difference lens 14 a and the detection unit 18. On the stage 51, a culture container 50 containing cells to be observed is installed.
  • a well plate having six wells W is used as the culture vessel 50 as shown in FIG. 7 as an example.
  • the culture container 50 is not limited to this.
  • a well plate having 24 or 96 wells can be used as the culture vessel 50, or any well plate having any number of wells, or a vessel other than a well plate such as a petri dish or dish can be used. It is.
  • An appropriate container can be selected as the culture container 50 depending on the observation target and the purpose of the observation.
  • pluripotent stem cells such as iPS cells and ES cells
  • nerves induced to differentiate from stem cells include myocardium, blood cells, nerve and organ cells.
  • the stage 51 is moved in an X direction and a Y direction orthogonal to each other by a stage driving device 17 described later.
  • the X direction and the Y direction are directions orthogonal to the Z direction, and are directions orthogonal to each other in the horizontal plane.
  • the X direction is a main scanning direction
  • the Y direction is a sub scanning direction.
  • a rectangular opening 51 a is formed at the center of the stage 51.
  • the culture container 50 is placed on a member forming the opening 51a, and the phase difference light of the cells in the culture container 50 passes through the opening 51a.
  • the display device 30 displays the composite phase difference image generated and stored by the wide-field image acquisition processing described later, and includes, for example, a liquid crystal display. Further, the display device 30 may be configured by a touch panel and used as the input device 40.
  • the input device 40 includes a mouse, a keyboard, and the like, and receives various setting inputs from the user.
  • the input device 40 receives setting inputs such as, for example, an instruction to change the magnification of the phase difference lens 14 a and an instruction to change the moving speed of the stage.
  • FIG. 5 shows an example of the configuration of the electrical system of the microscope control device 20.
  • the microscope control device 20 includes a computer.
  • the computer of the microscope control device 20 includes a central processing unit (CPU) 70, a primary storage unit 72, a secondary storage unit 74, an input / output interface (I / O) 76, and the like.
  • the CPU 70, the primary storage unit 72, the secondary storage unit 74, and the I / O 76 are connected by a bus line.
  • the CPU 70 controls the entire microscope apparatus.
  • the primary storage unit 72 is a volatile memory used as a work area or the like when executing various programs.
  • An example of the primary storage unit 72 is a RAM (Random Access Memory).
  • the secondary storage unit 74 is a non-volatile memory in which various programs, various parameters, and the like are stored in advance, and stores a wide view image acquisition program 80 which is an example of a program according to the technology of the present disclosure. Examples of the secondary storage unit 74 include an EEPROM (Electrically Erasable Programmable Read-Only Memory), a flash memory, and the like.
  • the I / O 76 controls transmission and reception of various information between the microscope apparatus main body 10 and the microscope control apparatus 20.
  • the CPU 70 reads the wide field of view image acquisition program 80 from the secondary storage unit 74. Then, the CPU 70 expands the read wide-field image acquisition program 80 in the primary storage unit 72, and executes the expanded wide-field image acquisition program 80, whereby the imaging control unit 21 and the stage control unit shown in FIG. Acts as 22.
  • the stage control unit 22 moves the stage 51 in the X direction and the Y direction by controlling the stage driving device 17.
  • the stage drive device 17 is, for example, an actuator having a piezoelectric element or the like.
  • the imaging control unit 21 performs control (autofocus control) on the piezoelectric element 15 based on the position information of the culture container 50 in the Z direction detected by the detection unit 18.
  • the autofocus control is realized by moving the objective lens 14b of the imaging optical system 14 in the optical axis direction by driving the piezoelectric element 15.
  • the imaging control unit 21 is an example of a control unit according to the technology of the present disclosure.
  • 10, 11, 13, and 15 are flowcharts showing an example of a program for performing wide-field image acquisition processing in the first embodiment. 10, 11, 13, and 15 show an example of a program executed by the microscope control device 20.
  • the program executed by the microscope control device 20 is specifically executed by the CPU 70 of the microscope control device 20 functioning as the imaging control unit 21 and the stage control unit 22.
  • the wide-field-of-view image acquisition processing is divided into three parts of (1) start of flow, (2) scanning processing, and (3) processing after scanning processing.
  • the microscope apparatus body 10 is disposed on the stage 51 while the microscope control device 20 performs two-dimensional movement control on the stage 51 and autofocus control on the imaging optical system 14.
  • the microscope control device 20 performs two-dimensional movement control on the stage 51 and autofocus control on the imaging optical system 14.
  • a user who desires imaging of a wide-field image of an observation target first places the culture vessel 50 containing the cells to be observed on the stage 51.
  • the culture vessel 50 is described as a well plate having six wells W as an example.
  • FIG. 10 is a flowchart showing the entire wide-field image acquisition process.
  • step S100 the CPU 70 executes a scanning process.
  • step S100 stage movement processing (see FIG. 11), focus control preparation processing (see FIG. 13), and focus control processing (see FIG. 14) are performed.
  • Stage movement processing, focus control preparation processing, and focus control processing are performed in synchronization with each other.
  • the processing will be described below on the premise of this synchronous control.
  • stage moving process included in step S100 of FIG. 10 is shown as a subroutine in FIG.
  • FIG. 11 is an example of a processing program executed by the CPU 70 of the microscope control device 20 functioning as the stage control unit 22.
  • step S 202 the stage control unit 22 performs initial setting of the X-axis movement direction with respect to the stage 51.
  • the X-axis movement direction of the stage 51 is set to a negative direction.
  • step S204 the stage control unit 22 causes the stage drive device 17 to start the movement of the stage 51 along the set X-axis movement direction.
  • the stage 51 starts moving in the negative direction of the X-axis.
  • the imaging optical system 14 of the stationary microscope apparatus main body 10 moves relative to the stage 51 in the positive direction of the X axis.
  • relative movement of the imaging optical system 14 (and the observation target area R) relative to the stage 51 with the movement of the stage 51 by the stage drive device 17 is for convenience of the imaging optical system 14 (and the observation target area R). Described as movement.
  • the observation target region R is a region on the bottom surface of the culture vessel 50 where the microscope device body 10 can perform imaging and generate a phase difference image.
  • the observation target region R also moves relative to the stage 51 as the imaging optical system 14 moves relative to the stage 51.
  • the traveling direction of the imaging optical system 14 and the observation target region R on the plane including the bottom surface of the culture container 50 along with the movement of the stage 51 in the X direction is referred to as an X-axis scanning direction.
  • the XY plane including the bottom of the culture vessel 50 is referred to as a scan plane.
  • observation target region R is assumed to be a square region, but it is not limited to this.
  • the microscope apparatus body 10 is provided with a horizontal position detection sensor not shown in FIG.
  • the stage control unit 22 detects the position on the scanning plane at the present time of the observation target region R on the stage 51 using the horizontal position detection sensor.
  • the observation target region R moves at a constant speed along the X-axis scanning direction.
  • step S206 the determination as to whether the observation target region R has reached the end point position is an affirmative determination.
  • the end point position is a position at which the scanning in the X-axis direction ends in the scanning plane, and is illustrated in FIG.
  • the stage control unit 22 continues the movement of the stage 51 along the X-axis movement direction by the stage drive device 17 until the determination in step S206 is affirmative. That is, the imaging optical system 14 continues to move along the X-axis scanning direction relative to the stage 51 until the determination in step S206 is affirmative.
  • the CPU 70 of the microscope control device 20 controls the microscope apparatus main body 10 by performing imaging control processing described later in synchronization with stage movement processing.
  • a region overlapping the observation target region R is photographed at the bottom of the culture container 50, and a plurality of phase difference images are generated. That is, a phase difference image of each region on the bottom surface of the culture container 50 which is continuous along the X-axis scanning direction is generated.
  • the objective lens 14b of the imaging optical system 14 has its Z-direction position focused in each area on the bottom surface of the culture vessel 50 superimposed on the observation target area R. Note that it is set to position. Therefore, in the process of relative movement of the observation target region R toward the X-axis scanning direction, a phase difference image in a focused state is generated for each region on the bottom surface of the culture vessel 50 continuous along the X-axis scanning direction. Ru.
  • the CPU 70 of the microscope control device 20 stores the generated plurality of phase difference images in the primary storage unit 72 as an example.
  • the generated plurality of phase difference images may be stored in a cache memory (not shown) of the CPU 70 or the secondary storage unit 74.
  • step S208 the stage control unit 22 ends the movement of the stage 51 along the X-axis scanning direction by the stage drive device 17. Furthermore, the CPU 70 of the microscope control device 20 ends continuous imaging of the narrow-field image by the microscope device body 10. Next, the process proceeds to step S210.
  • step S210 the stage control unit 22 determines whether the observation target region R has reached the scan end point E.
  • the scanning end point E is a point at which the scanning process is ended in the scanning plane, and is exemplarily shown in FIG.
  • step S210 If the determination in step S210 is negative, the process proceeds to step S212.
  • step S212 the stage control unit 22 causes the stage drive device 17 to move the stage 51 by one unit in the negative direction of the X axis.
  • one unit is a distance corresponding to the length D of one side of the observation target region R.
  • FIG. Therefore, on the bottom surface of the culture container 50, the observation target region R moves by one unit in the positive direction of the Y axis.
  • the process proceeds to step S214.
  • step S214 the stage control unit 22 reverses the X-axis movement direction with respect to the stage 51. Thereby, the X-axis scanning direction of the observation target area R is reversed. Then, the process of FIG. 11 returns to step S204, and the stage control unit 22 starts X-axis scanning again, and the CPU 70 of the microscope control device 20 resumes continuous imaging of the narrow-field image by the microscope device body 10.
  • step S214 when step S214 is executed for the first time in the process of FIG. 11, the X-axis movement direction with respect to the stage 51 is set to a negative direction in step S202. It is set in the positive direction.
  • the process of FIG. 11 returns to step S204, the stage 51 starts moving in the positive direction of the X axis. Therefore, in this case, as shown in FIG. 8B, the imaging optical system 14 (and the observation target area R) of the stationary microscope apparatus main body 10 is in the negative direction of the X axis relative to the stage 51. It will move against.
  • step S210 is affirmative.
  • the stage control unit 22 executes the stage movement processing subroutine, the stage 51 is moved in the X and Y directions, and the observation target region R of the imaging optical system 14 is the bottom surface of the culture vessel 50 Scanning in a two-dimensional manner, a phase difference image of each area is generated and stored.
  • the solid line M in FIG. 7 shows an example of the movement of the observation target region R on the scanning plane including the bottom surface of the culture container 50 in the scanning process.
  • the observation target region R of the imaging optical system 14 moves along the solid line M from the scanning start point S to the scanning end point E. That is, after scanning in the positive direction of the X axis (right direction in FIG. 7), the observation target region R moves in the positive direction of the Y axis (downward direction in FIG. 7), and further moves in the negative direction of X axis (FIG. 7). Scan left). Then, the region R to be observed moves again in the positive direction of the Y axis, and scans in the positive direction of the X axis again. As described above, the observation target region R scans the bottom of the culture container 50 two-dimensionally by repeatedly performing reciprocating movement in the X direction and movement in the Y direction.
  • imaging optics up to the ranges R1 and R2 outside the range of the culture vessel 50 in the X direction It is necessary to move the system 14, the first displacement sensor 18a and the second displacement sensor 18b relatively. Then, it is necessary to secure at least a distance between the first displacement sensor 18a and the imaging optical system 14 in the X direction as the width in the X direction of the range R1, and at least a second displacement sensor as the width in the X direction of the range R2. It is necessary to secure a distance between the lens 18 b and the imaging optical system 14 in the X direction.
  • the width of the range R1 in the X direction is preferably the distance between the first displacement sensor 18a and the imaging optical system 14 in the X direction, and the width of the range R2 in the X direction is smaller than that of the second displacement sensor 18b. It is desirable to set the distance in the X direction to the image optical system 14.
  • the stage 51 to be observed is scanned within the range of the culture container 50 by moving the stage 51 in the X direction, it is desirable that the moving speed of the region R to be observed within the range of the culture container 50 be constant. Therefore, at the start of movement of the stage 51 in the X direction, it is necessary to accelerate the stage 51 to a constant speed, and at the end of movement of the stage 51 in the X direction, the stage 51 is decelerated from a constant speed and stopped. There is a need.
  • the moving speed of the stage 51 in the X direction is constant, it is possible to rapidly control the speed to a constant speed with almost no acceleration region, but when such control is performed, The liquid level of the culture solution or the like contained in the culture vessel 50 together with the cells may shake, which may lead to the deterioration of the image quality of the phase difference image. In addition, the same problem may occur when stopping the stage 51.
  • the range R1 and the range R2 shown in FIG. 5 are set in the acceleration / deceleration region of the movement of the stage 51 in the X direction.
  • the region R to be observed is scanned at a constant speed in the range of the culture vessel 50 without wasting the scanning range. be able to.
  • the fluctuation of the liquid level of the culture solution as described above can also be suppressed.
  • Imaging control processing The imaging control process included in step S100 of FIG. 10 is shown in FIG. 13 and FIG. 14 as a subroutine.
  • the first displacement sensor 18a and the second displacement sensor 18b are provided side by side in the X direction with the imaging optical system 14 interposed therebetween as shown in FIGS. 8A and 8B. . Therefore, when scanning each area on the bottom surface of the culture vessel 50 in which the observation target area R of the imaging optical system 14 continues along the X direction in the stage movement processing described above, the detection unit 18 selects the observation target area R The position in the Z direction of the bottom surface of the culture vessel 50 can be detected with respect to a region located forward in the X-axis scanning direction than the position of.
  • the observation target area R moves in the direction of the arrow shown in FIG. 8A (the right direction in FIG. 8A)
  • the observation target area R of the first displacement sensor 18a and the second displacement sensor 18b when the observation target area R moves in the direction of the arrow shown in FIG. 8A (the right direction in FIG. 8A), the observation target area R of the first displacement sensor 18a and the second displacement sensor 18b.
  • the first displacement sensor 18a located forward in the X-axis scanning direction detects the position in the Z direction of the bottom surface of the culture vessel 50.
  • the observation target region R further moves in the right direction in FIG. 8A
  • the observation target area R is moving in the arrow direction of FIG. 8B (left direction in FIG. 8B), the observation target area R of the first displacement sensor 18a and the second displacement sensor 18b.
  • the second displacement sensor 18 b located forward in the X-axis scanning direction detects the position of the bottom surface of the culture vessel 50 in the Z direction. Then, as described with reference to FIG. 8A, by performing focus control, the imaging optical system 14 is focused on the bottom surface of the culture vessel 50 when the observation target region R moves in the left direction of FIG. 8B. Each region can be photographed while keeping the
  • the Z direction position detection of the bottom surface of the culture container 50 using the first displacement sensor 18 a and the Z direction position detection of the bottom surface of the culture container 50 using the second displacement sensor 18 b By switching in accordance with the above, it is possible to always obtain positional information of the culture container 50 in the Z direction at the position of the observation target region R prior to imaging of the observation target region R.
  • the imaging control unit 21 performs focus control by adjusting the Z-direction position of the objective lens 14 b of the imaging optical system 14 using the piezoelectric element 15. Specifically, the imaging control unit 21 performs focus control by appropriately changing the amount of voltage applied to the piezoelectric element 15.
  • the piezoelectric element 15 has a limit in the drivable range, a situation may occur where the objective lens 14 b can not be moved by the distance necessary for focus control.
  • the observation target area R is in the I-th area
  • the observation planned area is arranged in the (I + 10) -th area. That is, the region to be observed is located 10 units ahead of the region to be observed R in the X-axis scanning direction.
  • FIG. 9 is a diagram showing the above relationship.
  • the observation planned area is an area on the bottom of the culture vessel 50 located vertically above the first displacement sensor 18a, and is an area where the observation target area R is overlapped after a predetermined time has elapsed.
  • the first displacement sensor 18a is disposed so as to be separated from the phase difference lens 14a in the X direction by a distance nine times the side D of the region R to be observed.
  • the region to be observed is an example of the specific region of the present disclosure.
  • FIG. 12 schematically shows the in-focus position of the objective lens 14b of the imaging optical system 14 for each of the I-th to I + 10-th regions shown in FIG.
  • the observation target region R is located in the I-th region on the current scan plane, and the observation scheduled region is the I + 10-th region.
  • the lower broken line shows the height corresponding to the reference plane of the bottom surface of the culture vessel 50 (the Z direction position of the objective lens 14b to be in focus with respect to the reference plane), and the central broken line shows the objective lens 14b.
  • the current Z direction position is shown, and the upper broken line represents the upper limit of the drivable range of the piezoelectric element 15.
  • the horizontal bars indicate the in-focus positions of the I-th to I + 10-th regions.
  • the Z-direction position of the bottom surface of the culture vessel 50 has already been detected by the first displacement sensor 18a for each of the I-th to I + 10-th regions. Then, the in-focus position in each area can be derived by subtracting the Z-direction position of each area detected from the Z-direction position of the reference surface of the culture vessel 50.
  • the observation target area R is the I + 10th area in the X-axis scanning direction on the scanning plane, such as the Ith area to the I + 1th area and the I + 2th area. That is, it moves to the observation scheduled area).
  • the imaging control unit 21 controls the piezoelectric element 15 to align the Z-direction position of the objective lens 14 b with each focusing position in each region.
  • the distance between the (I + 10) th region (that is, the region to be observed) and the reference surface of the in-focus position exceeds the drivable range of the piezoelectric element 15.
  • This situation is called range over.
  • the drivable range of the piezoelectric element 15 is an example of the drivable range of the present disclosure.
  • the imaging control unit 21 can not cause the imaging optical system 14 to reach the in-focus position when the observation target region R reaches the observation target region by control using only the piezoelectric element 15.
  • the narrow-field image captured in the (I + 10) th region is out of focus.
  • Out-of-focus narrow-field images are of low value in generating wide-field images for the observed object. In view of the limitation of the total amount of data that can be stored in the storage device, out-of-focus narrow-field image data is less valuable to store.
  • the imaging control unit 21 performs imaging in an out-of-focus state, and combines the generated data of the out-of-focus narrow-field image.
  • the data is compressed at a compression rate higher than that at the time of storing the focused narrow-field image, and stored in the storage device such as the primary storage unit 72 or the like.
  • compression of data at a compression rate higher than that at the time of storing a narrow-field image in focus state is called high compression.
  • the compression rate at the time of storing the in-focus narrow-field image is an example of the predetermined amount of the present disclosure.
  • storing image data in a highly compressed manner is an example of the imaging data saving process of the present disclosure.
  • the objective lens 14b can be transported vertically downward from the reference surface by appropriately arranging the position of the piezoelectric element 15 in the Z direction. That is, it is not necessary to align the lowest position of the Z-direction deformation of the piezoelectric element 15 with the position corresponding to the reference plane (the broken line in FIG. 12), and set the lower limit of the drivable range below the reference plane in the Z direction. It is possible.
  • the imaging control process according to the first embodiment includes the focus control preparation process subroutine shown in FIG. 13 and the focus control process subroutine shown in FIG.
  • the imaging control unit 21 executes the focus control preparation processing subroutine and the focus control processing subroutine in synchronization with each other to scan the bottom surface of the culture container 50, and the objective lens 14b is at the out-of-focus position.
  • the compressed narrow-field image data is highly compressed and stored.
  • an area where the in-focus position exceeds the drivable range of the piezoelectric element 15 is detected, and a flag is stored.
  • the focus control processing subroutine based on whether the flag for each area is off or on, it is determined whether to store the captured image data at a normal compression ratio or to store it at high compression. Ru.
  • step S302 the imaging control unit 21 detects the position in the Z direction of the region to be observed on the bottom surface of the culture container 50 by the first displacement sensor 18a.
  • the imaging control unit 21 derives Z-direction position information of the region to be observed, and stores the information in the storage device.
  • the Z-direction position information includes information of the detected Z-direction position and the in-focus position of the scheduled observation area determined based on the detected Z-direction position. As an example, it is stored in a cache memory (not shown) of CPU 70. Also, the detected Z-direction position may be stored in the primary storage unit 72 or the secondary storage unit 74.
  • step S306 the imaging control unit 21 derives a distance that is a shift of the in-focus position of the scheduled observation region from the Z direction position (broken line in the lower part of FIG. 12) corresponding to the reference plane. As described above, it is assumed that the in-focus position of each area is derived by the preceding process.
  • the calculated distance is recorded in, for example, a cache memory (not shown) of the CPU 70.
  • the distance may be stored in the primary storage unit 72 or the secondary storage unit 74.
  • the imaging control unit 21 determines whether the distance is smaller than a threshold.
  • the threshold is, for example, the upper limit of the movable distance of the piezoelectric element 15.
  • step S310 the imaging control unit 21 sets a flag on the region to be observed (turns on the flag).
  • the flag indicates that the in-focus position of the region to be observed is not reachable by the piezoelectric element 15.
  • the flag is recorded in a cache memory (not shown) of the CPU 70 as an example.
  • step S312 becomes positive, and the processing in FIG. 13 proceeds to step S314.
  • the observation target region R is located in the (I + 1) th region, and the (I + 11) th region is a new observation scheduled region.
  • step S314 the imaging control unit 21 determines whether or not a new observation planned region has reached the scanning end point E in the stage moving process performed by the stage control unit 22.
  • the determination in step S314 corresponds to step S210 of the stage moving subroutine shown in FIG.
  • step S324 If the determination in step S324 is negative, the process of FIG. 13 returns to step S302 again, and a new process is started. That is, with respect to the (I + 1) th area in which the observation target area R is currently arranged, the processing in step S302 and subsequent steps is performed with the (I + 11) th area as a new observation scheduled area.
  • step S308 determines whether the determination in step S308 is positive. If the determination in step S308 is negative, the flag is not set (is not turned on) for the observation scheduled region (I + the tenth region). That is, the flag for the (I + 10th) region is off). Then, when the observation target region R moves to the adjacent (I + 1) th region by the stage movement processing synchronized, the determination in step S312 becomes positive, and the processing in FIG. 13 proceeds to step S314. The subsequent processes are the same as in the case where the determination in step S308 is positive.
  • the imaging control unit 21 determines whether the deviation from the reference plane is within the threshold value or less for the area 10 units ahead of the observation target area R in the X-axis scanning direction, Repeat storing the flag on or off.
  • step S402 the imaging control unit 21 performs the Z direction of the (I + 1) th area (that is, an area adjacent to the current position of the observation target area R in the X-axis scanning direction) stored in the preceding focus control preparation process.
  • Get location information As described above, the Z direction position information includes information of the in-focus position of the (I + 1) th region. As described above, as an example, the Z direction position information of the (I + 1) th area is stored in a cache memory (not shown) of the CPU 70.
  • step S404 the imaging control unit 21 determines whether or not the flag is off for the (I + 1) th region (that is, the region where the observation target region R reaches next).
  • the flag for the (I + 1) th area is stored in the cache memory (not shown) of the CPU 70 as an example in the preceding focus control preparation process.
  • step S404 If the determination in step S404 is affirmative, from the reference plane of the in-focus position of the next area (that is, the (I + 1) -th area) that precedes the observation target area R by one unit in the X-axis scanning direction in the scanning plane.
  • the deviation of the above is within the drivable range of the piezoelectric element 15.
  • the imaging control unit 21 can adjust the objective lens 14b of the imaging optical system 14 to the in-focus position in the next area by controlling the piezoelectric element 15.
  • step S406 determines whether the observation target region R reaches the adjacent (I + 1) th region by the stage movement processing synchronized. Then, the process of FIG. 14 proceeds to step S408.
  • step S408 the imaging control unit 21 executes control to apply a voltage to the piezoelectric element 15 to deform the piezoelectric element 15 in the Z direction, and the objective lens 14b of the imaging optical system 14 held by the piezoelectric element. Is moved to the in-focus position with respect to the (I + 1) th region.
  • the piezoelectric element 15 of the first embodiment is controlled based on the voltage table 500 as an example.
  • An example of the voltage table 500 is shown in FIG.
  • the voltage table 500 includes information of the voltage to be applied to the piezoelectric element 15 with respect to the amount of displacement in the Z direction.
  • Voltage table 500 represents the performance value of piezoelectric element 15, and is stored in primary storage unit 72 as an example.
  • step S402 Z direction position information of the (I + 1) th region (that is, the current position of the observation target region R on the scan plane) is acquired. Further, in the preceding process, Z direction position information of the I-th area (the position of the observation target area R at the start time of the focus control processing subroutine of FIG. 14) is also acquired. A voltage value to be applied is derived in step S408 as the difference between the in-focus position of the I-th area and the in-focus position of the (I + 1) -th area.
  • the voltage value V3 is applied to the piezoelectric element 15 Then, the objective lens 14b can be brought to the in-focus position in the region of the (I + 1) th region.
  • Derivation of the applied voltage by the voltage table 500 is an example, and the contents described above can be expressed by a functional expression.
  • the piezoelectric element 15 to which the voltage V3 is applied is in the Z direction.
  • the objective lens 14b is moved to the in-focus position with respect to the (I + 1) th region.
  • step S408 the imaging control unit 21 brings the objective lens 14b of the imaging optical system to the in-focus position.
  • step S410 the imaging control unit 21 images the (I + 1) th area on the scanning plane to generate a phase difference image. Since appropriate focus control is performed in step S408, a focused narrow-field image of the (I + 1) th region is generated in step S410.
  • the imaging control unit 21 stores the generated narrow-field image in the in-focus state in the primary storage unit 72 as an example.
  • the narrow-field image may be stored in a not-shown cache memory or secondary storage unit 74 of the CPU.
  • step S412 the imaging control unit 21 determines whether the observation target region R has reached the scanning end point E in the stage moving process performed by the stage control unit 22.
  • the determination in step S422 corresponds to step S210 of the stage moving subroutine shown in FIG.
  • step S422 If the determination in step S422 is negative, the process of FIG. 14 returns to step S402, and the above-described process is repeated again. Thus, while the stage control unit 22 executes the stage movement process, the imaging control unit 21 continues to generate and store the narrow-field images of the respective areas on the scanning plane.
  • step S404 determines whether the determination in step S404 is negative.
  • step S310 of the focus control preparation process of FIG. 13 preceding a flag is set (turned on) to I + 1, and is recorded in a cache memory (not shown) of the CPU 70 as an example.
  • step S404 If a negative determination is made in step S404, a shift from the reference plane of the in-focus position of the next area (that is, the (I + 1) th area) preceding the observation target area R by one unit in the X-axis scanning direction in the scanning plane
  • the drivable range of the piezoelectric element 15 is exceeded. Therefore, even if the voltage applied to the piezoelectric element 15 is appropriately adjusted, the imaging control unit 21 can not align the objective lens 14b of the imaging optical system 14 at the in-focus position in the next region.
  • step S414 When the observation target region R reaches the adjacent I + 1th region by the stage movement processing synchronized, the determination in step S414 is positive. Then, the process of FIG. 14 proceeds to step S416.
  • the voltage to be applied to the piezoelectric element 15 for focus control is derived by referring to the acquired Z-direction position information and the voltage table 500.
  • the derived voltage value is applied to the piezoelectric element 15
  • the objective lens 14b of the imaging optical system 14 can not be transported to the in-focus position.
  • the distance in the Z direction between the in-focus position of the immediately preceding area (I-th area) and the in-focus position of the current position (I + 1-th area) is Z3 and a voltage value V3 is applied to the piezoelectric element 15 Do.
  • the Z direction position of the objective lens 14b moves to the drivable range upper limit (or drivable range lower limit) illustrated in FIG.
  • step S416 the imaging control unit 21 makes the Z-direction position of the objective lens 14b follow the variation of the bottom surface of the culture container 50 as much as possible within the drivable range of the piezoelectric element 15.
  • the objective lens 14b can not be brought into focus at the current position (the (I + 1) th region).
  • step S418 the imaging control unit 21 images the (I + 1) th region on the scanning plane to generate a phase difference image.
  • step S 418 an out-of-focus narrow-field image of the (I + 1) th region is generated. Then, the process proceeds to step S420.
  • the imaging control unit 21 highly compresses the out-of-focus narrow-field image generated in step S418 to reduce the data amount, and then stores the data. This can save memory of the storage device consuming less valuable images.
  • the highly compressed image data is stored in the primary storage unit 72 as an example.
  • step S420 When the process of step S420 is completed, the process of FIG. 14 proceeds to step S422. Step S422 has already been described.
  • the narrow-field image of each area of the bottom of the culture vessel 50 is generated and stored. Then, if the narrow-field image is out of focus, it is stored as highly compressed small data.
  • a narrow-field image is generated for each area on the bottom of the culture vessel 50, and the primary storage unit 72, a cache memory (not shown) of the CPU 70, or a secondary storage unit 74. Is stored in In particular, the out-of-focus narrow-field image is stored as highly compressed small data.
  • step S102 The process of FIG. 10 proceeds to step S102.
  • step S102 the CPU 70 of the microscope control device 20 reads out and combines the stored narrow-field images, thereby providing a single composite phase-contrast image (ie, wide-field image) showing the entire bottom surface of the culture vessel 50.
  • the region where the range-over of the piezoelectric element 15 has occurred can be represented as an out-of-focus narrow-field image in which the image quality is deteriorated due to high compression.
  • an out-of-focus narrow-field image may not be displayed, and may be replaced with some simple image.
  • step S104 the CPU 70 of the microscope control device 20 stores the generated composite phase difference image, and ends the wide-field image acquisition process.
  • the generated composite phase difference image can be stored, for example, in the secondary storage unit 74.
  • the stored wide-field image can be displayed on the display device 30.
  • the non-focused image in the process of scanning the bottom surface of the culture vessel 50 containing the observation target, is highly compressed and stored as small data.
  • the data capacity of the device can be reduced.
  • the microscope apparatus of the second embodiment is the same as the microscope apparatus of the first embodiment in that the wide-field image acquisition program 80 stored in the secondary storage unit 74 controls the focus control shown in FIG. It differs in that it includes a module related to processing.
  • the other configuration of the microscope apparatus of the second embodiment is the same as that of the first embodiment, and therefore, focus control processing of the second embodiment will be mainly described below.
  • focus control processing of the second embodiment will be mainly described below.
  • symbol about the structure which is common in 1st Embodiment, it demonstrates using the same code
  • the displacement of the in-focus position from the reference plane exceeds the drivable range of the piezoelectric element 15 in the region on the bottom surface of the culture vessel 50 to be imaged of the phase difference image.
  • the imaging optical system 14 can not be brought into focus.
  • the memory capacity of the storage device is saved by highly compressing and storing low-value unfocused image data in step S420.
  • the shift of the in-focus position from the reference plane beyond the drivable range of the piezoelectric element 15 makes the imaging optical system 14 in focus even if the piezoelectric element 15 is controlled.
  • the imaging by the imaging optical system 14 is not performed in the first place.
  • FIG. 16 shows a focus control processing subroutine of the second embodiment.
  • the processes in steps S602 to S614 in FIG. 16 are the same as the processes in steps S402 to S422 in FIG. 14 according to the first embodiment, and thus the description thereof is omitted.
  • step S604 determines whether the determination in step S604 corresponding to step S404 in FIG. 14 is negative, the process in FIG. 16 proceeds to step S616.
  • step S310 of the focus control preparation process of FIG. 13 preceding a flag is set (turned on) to I + 1, and is recorded in a cache memory (not shown) of the CPU 70 as an example.
  • step S404 If a negative determination is made in step S404, a shift from the reference plane of the in-focus position of the next area (that is, the (I + 1) th area) preceding the observation target area R by one unit in the X-axis scanning direction in the scanning plane
  • the drivable range of the piezoelectric element 15 is exceeded. Therefore, even if the voltage applied to the piezoelectric element 15 is appropriately adjusted, the imaging control unit 21 can not align the objective lens 14b of the imaging optical system 14 at the in-focus position in the next region.
  • step S614 the determination in step S614 is positive. Then, the process of FIG. 16 proceeds to step S614.
  • the imaging control unit 21 does not apply a voltage to the piezoelectric element 15, and The imaging of the narrow-field image by the imaging optical system 14 is not performed. Not performing imaging of a narrow-field image by the imaging optical system 14 is an example of an imaging data saving process of the present disclosure.
  • the objective lens 14b moves to the (I + 1) th region while maintaining the Z direction position in the Ith region. That is, when the observation target region R moves one unit in the X-axis scanning direction by the synchronized stage movement processing, the objective lens 14 b moves parallel to the horizontal plane (XY plane). Stopping the movement of the objective lens 14b in the Z direction is an example of the focus control stop process of the present disclosure.
  • processing may be performed to restore the objective lens 14 b to the initial position corresponding to the reference plane.
  • the imaging control unit 21 returns the objective lens 14 b to the initial position by applying a voltage of an appropriate value to the piezoelectric element based on the Z direction position information and the voltage table 500.
  • the return of the objective lens 14 b to the initial position is an example of the focus control stop process of the present disclosure.
  • imaging is not performed in the (I + 1) th region, and a narrow-field image is not generated. It should be noted that this area is an area where an in-focus image can not be generated even if imaging is performed.
  • a narrow-field image is generated for each area on the bottom surface of the culture vessel 50 in which range over has not occurred. It is stored in the storage unit 72, a cache memory (not shown) of the CPU 70, or the secondary storage unit 74. On the other hand, no narrow-field image is stored in the region where the range over of the piezoelectric element 15 has occurred.
  • step S100 The scanning process of step S100 according to the second embodiment and the process of FIG. 10 shift to step S102, and the generation of a wide-field image is performed as in the first embodiment.
  • the wide-field-of-view image generated in the second embodiment it is possible to paint using a certain color the region where the range over of the piezoelectric element 15 where imaging is not performed has occurred. As an example, it can be black and solid.
  • the other configuration and operation of the microscope apparatus of the second embodiment are the same as those of the microscope apparatus of the first embodiment.
  • imaging is not performed in a situation where only low-value out-of-focus images can be generated. Since the data is not stored, the data capacity of the storage device required for the entire scan can be reduced.
  • the second embodiment it is possible to suppress the vibration of the imaging optical system by not performing unreasonable focus control in a situation where the objective lens 14 b can not be transported to the in-focus position.
  • the focus control is reset by returning the objective lens 14b to the initial position in a situation where the objective lens 14b can not be transported to the in-focus position, and the shape of the bottom surface of the culture vessel 50 New focus control can be started according to
  • the detection unit 18 of the first embodiment includes the two displacement sensors 18a and 18b, and switches the displacement sensor to be used according to the change in the X-axis scanning direction of the observation target region R, but the second embodiment
  • the detection unit 19 has a single displacement sensor, and switches the position of the displacement sensor in accordance with the change of the X-axis scanning direction of the observation target region R.
  • An example of the microscope apparatus main body 10 which has a detection part 19 in FIG. 17 is shown.
  • FIGS. 18 and 19 are diagrams showing a specific configuration of the detection unit 19 of the present modification.
  • the detection unit 19 includes a displacement sensor 19a and a guide mechanism 19b for guiding the displacement sensor 19a and moving the position as shown in FIGS.
  • the displacement sensor 19a is the same as the first and second displacement sensors 18a and 18b of the first embodiment, and is constituted by a laser displacement sensor.
  • the guide mechanism 19 b includes a semicircular guide member, and moves the displacement sensor 19 a along the guide member.
  • the guide member moves the displacement sensor 19a from one side to the other side in the X direction across the imaging optical system 14 (the objective lens 14b).
  • FIG. 18 is a view showing the position of the displacement sensor 19a when the X-axis scanning direction of the observation region R is the arrow direction of FIG. 18 (the right direction of FIG. 18).
  • FIG. 19 is a view showing the position of the displacement sensor 19a when the X-axis scanning direction of the observation target region R is the arrow direction of FIG. 19 (left direction in FIG. 19).
  • the guide mechanism 19b described above is provided as a displacement sensor moving mechanism for moving the position of the displacement sensor, but the configuration of the displacement sensor moving mechanism is not limited to this, and the position of the displacement sensor If it is the structure which can be changed similarly, you may use another structure.
  • the wide-field-of-view image acquisition program 80 is read from the secondary storage unit 74 by way of example, but it is not always necessary to store the wide-field image acquisition program 80 in the secondary storage unit 74 from the beginning.
  • any portable storage medium 800 such as a solid state drive (SSD), a universal serial bus (USB) memory, or a digital versatile disc-read only memory (DVD-ROM) may be used.
  • the wide view image acquisition program 80 may be stored.
  • the wide-field image acquisition program 80 of the storage medium 800 is installed in the microscope apparatus 90, and the installed wide-field image acquisition program 80 is executed by the CPU 70.
  • the wide-field image acquisition program 80 is stored in a storage unit such as another computer or a server device connected to the microscope apparatus 90 via a communication network (not shown), and the wide-field image acquisition program 80 It may be downloaded according to 90 requests. In this case, the downloaded wide-field image acquisition program 80 is executed by the CPU 70.
  • the wide-field-of-view image acquisition processing described in the first and second embodiments is merely an example. Therefore, needless to say, unnecessary steps may be deleted, new steps may be added, or the processing order may be changed without departing from the scope of the present invention.
  • the wide view image acquisition processing is realized by the software configuration using a computer
  • the technology of the present disclosure is not limited to this.
  • the wide-field image acquisition processing may be executed only by a hardware configuration such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC).
  • the wide view image acquisition processing may be performed by a combination of a software configuration and a hardware configuration.
  • microscope apparatus main body 11 white light source 12 condenser lens 13 slit plate 14 imaging optical system 14a phase difference lens 14b objective lens 14c phase plate 14d imaging lens 15 piezoelectric element 16 imaging element 17 stage drive device 18 detection unit 18a displacement sensor 18b displacement Sensor 19 Detection unit 19a Displacement sensor 19b Guide mechanism 20 Microscope control device 21 Imaging control unit 22 Stage control unit 30 Display device 40 Input device 50 Culture vessel 51 Stage 51a Opening 72 Primary storage unit 74 Secondary storage unit 80 Wide field of view image acquisition program 90 microscope apparatus 500 voltage table 800 storage medium D one side E scan end point L illumination light M solid line Pd detection position Pr position R1 range R2 range R observation object area S scan start point V3 voltage value W well

Abstract

Provided are a microscope device and a program, capable of executing autofocus control whereby data volume for storing low-value image data can be economized when capturing a wide-field image at high magnification of an observation object accommodated in a container having significant unevenness in a bottom surface thereof. Data volume consumed by data of a non-focused image is economized by subjecting data of a captured non-focused image to high compression and storing the data as a small amount of data in the case of a region in which an objective lens 14b of an imaging optical system 14 cannot be conveyed to a focal position in the optical axis direction and only a non-focused image is obtained as a result of image capture.

Description

顕微鏡装置及びプログラムMicroscope apparatus and program
 本開示の技術は、顕微鏡装置及びプログラムに関する。 The technology of the present disclosure relates to a microscope apparatus and a program.
 従来、ES(Embryonic Stem)細胞およびiPS(Induced Pluripotent Stem)細胞などの多能性幹細胞及び分化誘導された細胞などを顕微鏡などで撮像し、その画像の特徴を捉えることで細胞の分化状態などを判定する方法が提案されている。 Conventionally, pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced Pluripotent Stem) cells and cells induced to differentiate are imaged with a microscope or the like, and the features of the image are captured to identify the differentiation state of the cells, etc. A method of determining has been proposed.
 ES細胞およびiPS細胞などの多能性幹細胞は、種々の組織の細胞に分化する能力を備えたものであり、再生医療、薬の開発、及び病気の解明などにおいて応用が可能なものとして注目されている。 Pluripotent stem cells such as ES cells and iPS cells have the ability to differentiate into cells of various tissues, and are noted as being applicable in regenerative medicine, drug development, disease elucidation, etc. ing.
 一方、顕微鏡による撮像によれば高倍率画像を取得することができるが、顕微鏡の結像光学系の観察領域は狭い範囲に限られる。そこで、観察対象の高倍率かつ広視野な画像を取得するため、いわゆるタイリング撮像を行うことが提案されている。タイリング撮像とは、複数の狭視野画像を撮像し、撮像された複数の狭視野画像を連結して広視野画像を生成する撮像方法である。具体的には、顕微鏡の結像光学系と、観察対象を収容したウェルプレートなどの培養容器が設置されたステージとを2次元的に相対移動させることで観察対象全体を走査し、観察領域の各々について得られた画像を連結することで、観察対象全体を含む広視野画像を生成することができる。 On the other hand, although high magnification images can be obtained by imaging with a microscope, the observation region of the imaging optical system of the microscope is limited to a narrow range. Therefore, it has been proposed to perform so-called tiling imaging in order to obtain a high-magnification, wide-field image of the observation target. The tiling imaging is an imaging method of imaging a plurality of narrow-field images and concatenating the plurality of imaged narrow-field images to generate a wide-field image. Specifically, the entire observation object is scanned by moving the imaging optical system of a microscope and a stage on which a culture vessel such as a well plate containing the observation object is installed two-dimensionally. By concatenating the images obtained for each, a wide field of view image can be generated that includes the entire observation object.
 そして、多数の観察対象を短時間に走査して観察対象全体を含む広視野画像を多数生成する場合、大量のデータ容量が必要となる。記憶装置に記憶可能なデータ総量に限界があることを考慮すると、合焦されていない画像である非合焦画像のデータにメモリ容量を浪費することは好ましくない。 When a large number of observation objects are scanned in a short time and a large number of wide-field images including the entire observation object are generated, a large amount of data capacity is required. In view of the limitation on the total amount of data that can be stored in the storage device, it is not desirable to waste memory capacity on unfocused image data, which is an unfocused image.
 特許文献1の顕微鏡装置は、走査の過程で撮像条件が正常に設定されなかった領域(非合焦画像が撮像されることが予測される領域)について、撮像条件は正常に設定されなかったことを示す異常情報を記憶装置に記憶しておき、各領域の画像を連結して広視野画像を表示する際に、異常情報が設定されている領域をハイライト表示することを開示している。 In the microscope apparatus of Patent Document 1, the imaging condition is not normally set for the region where the imaging condition is not normally set in the process of scanning (a region where it is predicted that a non-focused image will be imaged) It is disclosed that, when displaying the wide-field image by connecting the images of the respective areas to display the wide-field image, highlight the area where the abnormal information is set.
特開2013-50594号公報JP, 2013-50594, A
 しかしながら、特許文献1に係る技術によっては、非合焦画像のデータに消費されるメモリ容量を節約することは困難である。 However, it is difficult to save the memory capacity consumed for the data of the out-of-focus image by the technique according to Patent Document 1.
 1つの側面において、本開示の技術は、上述の問題に鑑み、非合焦画像のデータに消費するメモリ容量を節約することができる、顕微鏡装置及びプログラムを提供する。また他の側面において、本開示の技術は、適切なフォーカス制御が不可能な場合に無理なフォーカス制御を行わないことで、結像光学系の振動等を抑制できる、顕微鏡装置及びプログラムを提供する。 In one aspect, the technology of the present disclosure provides a microscope apparatus and program that can save the memory capacity consumed for data of an out-of-focus image in view of the above-described problems. In another aspect, the technology of the present disclosure provides a microscope apparatus and a program capable of suppressing vibration or the like of an imaging optical system by not performing unreasonable focus control when appropriate focus control is not possible. .
 本開示の第1の態様は、観察対象が収容された容器内の観察対象を示す観察対象光を撮像素子に結像可能な結像光学系と、駆動可能範囲内において駆動されることにより結像光学系を光軸方向に移動させる駆動部材と、容器が設置されるステージ及び結像光学系の少なくとも一方の光軸方向に交差する面内での移動により結像光学系を容器内の各領域に対して移動させることで撮像素子が容器内の各領域を走査している状態で、各領域のうちの特定領域に光軸が到達する前に、結像光学系を特定領域に対する合焦位置に移動させる際の駆動部材の駆動量が駆動可能範囲を超える場合、光軸の特定領域への到達時に、撮像データ節約処理を実行する制御部と、を含む顕微鏡装置である。 According to a first aspect of the present disclosure, an imaging optical system capable of imaging an observation target light indicating an observation target in a container containing an observation target on an imaging element is driven by being driven within a drivable range. By moving the imaging optical system in the optical axis direction, moving the imaging optical system in the plane intersecting the optical axis direction of at least one of the stage on which the container is installed and the imaging optical system, The imaging optical system is focused on a specific area before the optical axis reaches the specific area of each area in a state where the imaging device scans each area in the container by moving the area relative to the area. And a control unit configured to execute an imaging data saving process when the specific region of the optical axis reaches when the driving amount of the driving member at the time of moving to the position exceeds the drivable range.
 第1の態様によれば、観察対象を走査する際に、結像光学系が合焦位置に無いときに撮像された非合焦画像のデータに消費するメモリ容量を節約できる。 According to the first aspect, when scanning the observation target, it is possible to save the memory capacity consumed for the data of the out-of-focus image captured when the imaging optical system is not at the in-focus position.
 本開示の第2の態様は、第1の態様において、撮像データ節約処理は、特定領域を通過した観察対象光を撮像素子に結像させることにより生成された画像データを、所定量より高い圧縮率で圧縮して記憶することを含む、顕微鏡装置である。 According to a second aspect of the present disclosure, in the first aspect, the imaging data saving process compresses the image data generated by imaging the observation target light having passed through the specific area on the imaging element higher than a predetermined amount A microscope apparatus that includes compression at a rate and storage.
 第2の態様によれば、合焦画像のデータの圧縮率(所定量)に比べて高い圧縮率で非合焦画像のデータを圧縮して記憶することにより、非合焦画像のデータに消費するメモリ容量を節約できる。 According to the second aspect, the non-focused image data is consumed by compressing and storing the non-focused image data at a higher compression rate than the compression rate (predetermined amount) of the focused image data. Save memory space.
 本開示の第3の態様は、第1の態様において、撮像データ節約処理は、結像光学系による特定領域の撮像を回避することを含む、顕微鏡装置である。 A third aspect of the present disclosure is the microscope apparatus according to the first aspect, wherein the imaging data saving process includes avoiding imaging of a specific area by the imaging optical system.
 第3の態様によれば、非合焦画像のデータは撮像されず、その結果として記憶装置のメモリに記憶されないため、非合焦画像のデータに消費するメモリ容量を節約できる。 According to the third aspect, since the data of the out-of-focus image is not captured and is not stored in the memory of the storage device as a result, it is possible to save the memory capacity consumed for the data of the out-of-focus image.
 本開示の第4の態様は、第1から第3の態様において、駆動部材は、結像光学系の光軸方向に沿って変形可能な圧電素子である、顕微鏡装置である。 A fourth aspect of the present disclosure is the microscope apparatus according to any one of the first to third aspects, wherein the drive member is a piezoelectric element that is deformable along the optical axis direction of the imaging optical system.
 第4の態様によれば、光軸方向駆動部材として高速で変形可能な圧電素子を用いることにより、高速で行われる走査に適切に追従するオートフォーカス制御を実行することができる。 According to the fourth aspect, by using the piezoelectric element that can be deformed at high speed as the optical axis direction drive member, it is possible to execute autofocus control that appropriately follows the scan performed at high speed.
 本開示の第5の態様は、第1から第4の態様において、特定領域の光軸方向での位置を検出する検出部を更に含み、特定領域の合焦位置は、検出部によって検出された光軸方向での位置に基づいて算出される、顕微鏡装置である。 According to a fifth aspect of the present disclosure, in any of the first to fourth aspects, the fifth aspect further includes a detection unit that detects the position of the specific area in the optical axis direction, and the in-focus position of the specific area is detected by the detection section. It is a microscope apparatus calculated based on the position in the optical axis direction.
 第5の態様によれば、検出部の検出結果を用いて、走査の過程で非合焦画像が撮像される領域を予測することができる。 According to the fifth aspect, the detection result of the detection unit can be used to predict an area where an out-of-focus image is captured in the process of scanning.
 本開示の第6の態様は、第5の態様において、検出部は、各領域に対する主走査方向に結像光学系を挟んで並べて設けられ、特定領域の光軸方向での位置を各々検出する一対のセンサを有する、顕微鏡装置である。 According to a sixth aspect of the present disclosure, in the fifth aspect, the detection units are provided side by side across the imaging optical system in the main scanning direction with respect to each area, and each detect the position of the specific area in the optical axis direction It is a microscope apparatus which has a pair of sensors.
 第6の態様によれば、走査方向に並んだ一対のセンサを用いる検出部により、走査方向に応じて走査の過程で非合焦画像が撮像される領域を予測することができる。 According to the sixth aspect, the detection unit using a pair of sensors arranged in the scanning direction can predict an area where an out-of-focus image is captured in the process of scanning according to the scanning direction.
 本開示の第7の態様は、第1から第6の態様において、結像光学系は、光軸方向に移動可能な対物レンズを有し、駆動部材は光軸方向に対物レンズを移動させる、顕微鏡装置である。 According to a seventh aspect of the present disclosure, in any of the first to sixth aspects, the imaging optical system includes an objective lens movable in the optical axis direction, and the drive member moves the objective lens in the optical axis direction. It is a microscope device.
 第7の態様によれば、対物レンズが駆動部材により光軸方向に移動されることで、オートフォーカス制御が実行される。 According to the seventh aspect, the objective lens is moved in the optical axis direction by the drive member, whereby the autofocus control is performed.
 本開示の第8の態様は、第1から第7の態様において、容器は、複数のウェルを有するウェルプレートである、顕微鏡装置である。 An eighth aspect of the present disclosure is the microscope apparatus according to the first to seventh aspects, wherein the container is a well plate having a plurality of wells.
 第8の態様によれば、底面のバラつきが生じやすいウェルプレートに収容された観察対象を走査する際に、非合焦画像データに消費するメモリ容量を節約できる。 According to the eighth aspect, it is possible to save the memory capacity consumed for the out-of-focus image data when scanning the observation target stored in the well plate in which the bottom surface variation easily occurs.
 本開示の第9の態様は、コンピュータを、第1から第8の態様に係る顕微鏡装置に含まれる制御部として機能させるためのプログラムである。 A ninth aspect of the present disclosure is a program for causing a computer to function as a control unit included in the microscope apparatus according to the first to eighth aspects.
 本開示の第10の態様は、観察対象が収容された容器内の観察対象を示す観察対象光を撮像素子に結像可能な結像光学系と、駆動可能範囲内において駆動されることにより結像光学系を光軸方向に移動させる駆動部材と、容器が設置されるステージ及び結像光学系の少なくとも一方の光軸方向に交差する面内での移動により結像光学系を容器内の各領域に対して移動させることで撮像素子が容器内の各領域を走査している状態で、各領域のうちの特定領域に光軸が到達する前に、結像光学系を特定領域に対する合焦位置に移動させる際の駆動部材の駆動量が駆動可能範囲を超える場合、光軸の特定領域への到達時に、駆動部材にフォーカス制御停止処理を実行させる制御部と、を含む顕微鏡装置である。 According to a tenth aspect of the present disclosure, an imaging optical system capable of imaging an observation target light indicating an observation target in a container containing the observation target on an imaging element is driven by driving within a drivable range. By moving the imaging optical system in the optical axis direction, moving the imaging optical system in the plane intersecting the optical axis direction of at least one of the stage on which the container is installed and the imaging optical system, The imaging optical system is focused on a specific area before the optical axis reaches the specific area of each area in a state where the imaging device scans each area in the container by moving the area relative to the area. And a controller configured to cause the drive member to execute focus control stop processing when the drive amount of the drive member at the time of moving to the position exceeds the drivable range when the optical axis reaches a specific region.
 第10の態様によれば、適切なフォーカス制御が不可能な場合に無理なフォーカス制御を行わないことで、結像光学系の振動等を抑制できる。 According to the tenth aspect, vibration or the like of the imaging optical system can be suppressed by not performing excessive focus control when appropriate focus control is impossible.
 本開示の第11の態様は、第10の態様において、フォーカス制御停止処理は、光軸が特定領域へ到達する前または光軸が特定領域へ到達した後に、駆動部材の光軸方向への移動を停止することを含む、顕微鏡装置である。 In an eleventh aspect of the present disclosure, in the tenth aspect, the focus control stop processing includes moving the drive member in the optical axis direction before the optical axis reaches the specific area or after the optical axis reaches the specific area. A microscope apparatus, including stopping the
 第11の態様によれば、適切なフォーカス制御が不可能な場合に、駆動部材の光軸方向への移動を停止して現在位置に保つことで、無理なフォーカス制御を回避して結像光学系の振動等を抑制できる。 According to the eleventh aspect, in the case where appropriate focus control is impossible, movement of the drive member in the optical axis direction is stopped and kept at the current position, thereby avoiding unreasonable focus control and forming an imaging optical system. Vibration of the system can be suppressed.
 本開示の第12の態様は、第10の態様において、フォーカス制御停止処理は、光軸が特定領域へ到達する前または光軸が特定領域へ到達した後に、駆動部材を光軸方向の基準位置へ移動させることを含む、顕微鏡装置である。 According to a twelfth aspect of the present disclosure, in the tenth aspect, the focus control stopping process is performed before the optical axis reaches the specific area or after the optical axis reaches the specific area, the reference position of the drive member in the optical axis direction. A microscope apparatus, including moving it to.
 第12の態様によれば、適切なフォーカス制御が不可能な場合に、駆動部材を光軸方向の基準位置に復帰させることで、フォーカス制御をリセットし、容器の底面の形状に応じた新たなフォーカス制御を開始することができる。 According to the twelfth aspect, when appropriate focus control is not possible, focus control is reset by returning the drive member to the reference position in the optical axis direction, and a new shape corresponding to the shape of the bottom surface of the container is provided. Focus control can be started.
 本開示の第13の態様は、コンピュータを、第10から第12の態様に係る顕微鏡装置に含まれる制御部として機能させるためのプログラムである。 A thirteenth aspect of the present disclosure is a program for causing a computer to function as a control unit included in the microscope apparatus according to the tenth to twelfth aspects.
 第13の態様によれば、適切なフォーカス制御が不可能な場合に無理なフォーカス制御を回避することで、結像光学系の振動等を抑制できるプログラムを提供できる。 According to the thirteenth aspect, it is possible to provide a program capable of suppressing the vibration or the like of the imaging optical system by avoiding impossible focus control when appropriate focus control is impossible.
 本開示の一つの態様によれば、非合焦画像のデータに消費するメモリ容量を節約することができる。また本開示の他の態様によれば、適切なフォーカス制御が不可能な場合に無理なフォーカス制御を行わないことで、結像光学系の振動等を抑制できる。 According to one aspect of the present disclosure, it is possible to save a memory capacity consumed for data of an out-of-focus image. Further, according to another aspect of the present disclosure, it is possible to suppress vibration or the like of the imaging optical system by not performing excessive focus control when appropriate focus control is impossible.
第1実施形態に係る顕微鏡装置の構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of the microscope apparatus which concerns on 1st Embodiment. 第1実施形態に係る顕微鏡装置に含まれる結像光学系の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the imaging optical system contained in the microscope apparatus which concerns on 1st Embodiment. 第1実施形態に係る顕微鏡装置に含まれる圧電素子の構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of the piezoelectric element contained in the microscope apparatus which concerns on 1st Embodiment. 第1実施形態に係る顕微鏡装置に含まれるステージの構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of the stage contained in the microscope apparatus which concerns on 1st Embodiment. 第1実施形態に係る顕微鏡装置の電気系のハードウェア構成の一例を示すブロック図である。It is a block diagram showing an example of the hardware constitutions of the electric system of the microscope device concerning a 1st embodiment. 第1実施形態に係る顕微鏡装置に含まれる顕微鏡装置本体及び顕微鏡制御装置の本開示の技術に関する部分の要部構成を示すブロック図である。It is a block diagram showing an important section composition of a portion about a technique of this indication of a microscope device main part and a microscope control device contained in a microscope device concerning a 1st embodiment. 第1実施形態に係る顕微鏡装置のステージに設置される培養容器内における観察対象領域の走査位置の一例を示す概念図である。It is a conceptual diagram which shows an example of the scanning position of the observation object area | region in the culture container installed in the stage of the microscope apparatus which concerns on 1st Embodiment. 第1実施形態に係る顕微鏡装置のステージに設置される培養容器内の任意の位置に観察対象領域がある場合における結像光学系と、第1及び第2変位センサと、培養容器との位置関係の第1の形態例を示す概念図である。The positional relationship between the imaging optical system, the first and second displacement sensors, and the culture vessel when there is an observation target area at an arbitrary position in the culture vessel installed on the stage of the microscope apparatus according to the first embodiment It is a conceptual diagram which shows the 1st example of a form. 第1実施形態に係る顕微鏡装置のステージに設置される培養容器内の任意の位置に観察対象領域がある場合における結像光学系と、第1及び第2変位センサと、培養容器との位置関係の第2の形態例を示す概念図である。The positional relationship between the imaging optical system, the first and second displacement sensors, and the culture vessel when there is an observation target area at an arbitrary position in the culture vessel installed on the stage of the microscope apparatus according to the first embodiment It is a conceptual diagram which shows the 2nd example of a form. 第1実施形態に係る顕微鏡装置でのオートフォーカス制御のタイミングの一例を説明するための状態遷移図である。It is a state transition diagram for demonstrating an example of the timing of the autofocus control in the microscope apparatus which concerns on 1st Embodiment. 第1実施形態に係る広視野画像取得処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the wide view image acquisition process which concerns on 1st Embodiment. 第1実施形態に係るステージ移動処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the stage movement process which concerns on 1st Embodiment. 観察対象領域とZ方向の距離との関係の一例を示す概念図である。It is a conceptual diagram which shows an example of the relationship between an observation object area | region and the distance of a Z direction. 第1実施形態に係るフォーカス制御準備処理の流れの一例を示すフローチャートである。It is a flow chart which shows an example of a flow of focus control preparation processing concerning a 1st embodiment. 第1実施形態に係るフォーカス制御処理の流れの一例を示すフローチャートである。It is a flow chart which shows an example of a flow of focus control processing concerning a 1st embodiment. 第1実施形態に係る電圧テーブルの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the voltage table which concerns on 1st Embodiment. 第2実施形態に係るフォーカス制御処理の流れの一例を示すフローチャートである。It is a flow chart which shows an example of a flow of focus control processing concerning a 2nd embodiment. 変形例に係る顕微鏡装置の構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of the microscope apparatus which concerns on a modification. 変形例に係る顕微鏡装置に含まれる検出部の構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of the detection part contained in the microscope apparatus which concerns on a modification. 変形例に係る顕微鏡装置に含まれる検出部における変位センサの位置の切り替えの説明に供する図である。It is a figure where it uses for explanation of change of a position of a displacement sensor in a detection part contained in a microscope device concerning a modification. 第1及び第2実施形態に係る広視野画像取得プログラムが記憶された記憶媒体から広視野画像取得プログラムが顕微鏡装置にインストールされる態様の一例を示す概念図である。It is a conceptual diagram which shows an example of the aspect by which a wide-field image acquisition program is installed in a microscope apparatus from the storage medium with which the wide-field image acquisition program concerning 1st and 2nd embodiment was stored.
 以下、図面を参照して、本開示の各実施形態の詳細を述べる。 Hereinafter, details of each embodiment of the present disclosure will be described with reference to the drawings.
<第1実施形態>
<システムの概要>
 以下、本開示の技術の第1実施形態に係る顕微鏡装置90について、図面を参照しながら詳細に説明する。図1は、第1実施形態の顕微鏡装置90の概略構成を示すブロック図である。
First Embodiment
<Overview of system>
Hereinafter, a microscope apparatus 90 according to a first embodiment of the technology of the present disclosure will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of the microscope apparatus 90 according to the first embodiment.
 顕微鏡装置90は、顕微鏡装置本体10と、顕微鏡制御装置20とを含む。顕微鏡装置90は、顕微鏡制御装置20を介して、表示装置30及び入力装置40に接続されてもよい。 The microscope apparatus 90 includes a microscope apparatus body 10 and a microscope controller 20. The microscope device 90 may be connected to the display device 30 and the input device 40 via the microscope control device 20.
 顕微鏡装置90は、本開示の顕微鏡装置の一例である。 The microscope apparatus 90 is an example of the microscope apparatus of the present disclosure.
 顕微鏡装置本体10は、顕微鏡装置90の観察対象である培養された細胞の位相差画像を撮像するものである。具体的には、顕微鏡装置本体10は、一例として図1に示すように、白色光を出射する白色光源11と、コンデンサレンズ12と、スリット板13と、結像光学系14と、圧電素子15と、撮像素子16と、検出部18とを備えている。 The microscope apparatus main body 10 captures a phase-contrast image of cultured cells to be observed by the microscope apparatus 90. Specifically, as shown in FIG. 1 as an example, the microscope apparatus body 10 includes a white light source 11 for emitting white light, a condenser lens 12, a slit plate 13, an imaging optical system 14, and a piezoelectric element 15. , An imaging element 16, and a detection unit 18.
 撮像素子16は、本開示の撮像素子の一例である。  Image sensor 16 is an example of an image sensor of this indication.
 スリット板13は、白色光源11から出射された白色光を遮光する遮光板に対して白色光を透過するリング形状のスリットが設けられたものであり、白色光がスリットを通過することによってリング状の照明光Lが形成される。 The slit plate 13 is provided with a ring-shaped slit for transmitting white light to a light shielding plate for shielding white light emitted from the white light source 11, and the white light passes through the slit to form a ring shape. Illumination light L is formed.
 一例として図2に示すように、結像光学系14は、位相差レンズ14aおよび結像レンズ14dを備えている。そして、位相差レンズ14aは、対物レンズ14bおよび位相板14cを備えている。位相板14cは、照明光Lの波長に対して透明な透明板に対して位相リングを形成したものである。なお、上述したスリット板13のスリットの大きさは、位相板14cの位相リングと共役な関係にある。 As shown in FIG. 2 as an example, the imaging optical system 14 includes a phase difference lens 14 a and an imaging lens 14 d. The phase difference lens 14a includes an objective lens 14b and a phase plate 14c. The phase plate 14 c has a phase ring formed on a transparent plate transparent to the wavelength of the illumination light L. The size of the slit of the slit plate 13 described above is in a conjugate relationship with the phase ring of the phase plate 14 c.
 位相リングは、入射された光の位相を1/4波長ずらす位相膜と、入射された光を減光する減光フィルタとがリング状に形成されたものである。位相リングに入射された直接光は、位相リングを通過することによって位相が1/4波長ずれるとともに、その明るさが弱められる。一方、観察対象によって回折された回折光は大部分が位相板14cの透明板を通過し、その位相および明るさは変化しない。 In the phase ring, a phase film for shifting the phase of the incident light by 1⁄4 wavelength and a light reducing filter for reducing the incident light are formed in a ring shape. The direct light incident on the phase ring has its phase shifted by 1⁄4 wavelength by passing through the phase ring, and its brightness is weakened. On the other hand, most of the diffracted light diffracted by the object of observation passes through the transparent plate of the phase plate 14c, and its phase and brightness do not change.
 対物レンズ14bを有する位相差レンズ14aは、一例として図1に示す圧電素子15によって対物レンズ14bの光軸方向に移動するものである。なお、第1実施形態においては、対物レンズ14bの光軸方向とZ方向(鉛直方向)とは同じ方向である。位相差レンズ14aをZ方向において合焦位置に合わせるように移動させることによってオートフォーカス制御が行われ、撮像素子16によって撮像される位相差画像のコントラストが調整される。 The phase difference lens 14a having the objective lens 14b is moved in the optical axis direction of the objective lens 14b by the piezoelectric element 15 shown in FIG. 1 as an example. In the first embodiment, the optical axis direction of the objective lens 14b and the Z direction (vertical direction) are the same direction. Auto focus control is performed by moving the phase difference lens 14 a to be in focus in the Z direction, and the contrast of the phase difference image captured by the image sensor 16 is adjusted.
 ここで、第1実施形態においては、予め後述するステージ51に設置された後述する培養容器50の底面のZ方向位置が検出され、基準面として設定されている。そして、結像光学系14について、基準面に対して合焦位置にあるようにZ方向の基準位置が設定されている。 Here, in the first embodiment, the Z-direction position of the bottom surface of the culture vessel 50 described later installed on the stage 51 described later is detected in advance and set as a reference surface. Then, in the imaging optical system 14, the reference position in the Z direction is set so as to be at the in-focus position with respect to the reference plane.
 観察対象を収容した後述する培養容器50の底面、つまり培養容器50の底部と観察対象との境界面が基準面と一致していれば、基準位置に置かれた結像光学系14は観察対象に対して合焦状態になるはずである。しかしながら、培養容器50の底面は、基準面に近いが、完全には一致しない。培養容器50の底面に、製造誤差等に基づくバラつきが存在するからである。つまり、培養容器50の底面の各領域に対する現実の合焦位置は、基準位置とは一致しないことが多い。 If the bottom surface of the culture vessel 50 containing the observation target described later, that is, the boundary surface between the bottom portion of the culture vessel 50 and the observation target coincides with the reference surface, the imaging optical system 14 placed at the reference position Should be in focus. However, the bottom surface of the culture vessel 50 is close to the reference surface but does not completely match. This is because the bottom of the culture vessel 50 has variations due to manufacturing errors and the like. That is, the actual in-focus position with respect to each area of the bottom of the culture container 50 often does not coincide with the reference position.
 本開示におけるオートフォーカス制御とは、結像光学系14をZ方向に移動させて培養容器50の底面の各領域と基準面とのズレを補正し、各領域において結像光学系14が観察対象に対して現実の合焦位置にあるように制御することである。 In the autofocus control in the present disclosure, the imaging optical system 14 is moved in the Z direction to correct the deviation between each area of the bottom surface of the culture vessel 50 and the reference surface, and the imaging optical system 14 is an observation target in each area. Control to be in the actual in-focus position.
 また、位相差レンズ14aの倍率を変更可能な構成としてもよい。具体的には、異なる倍率を有する位相差レンズ14aまたは結像光学系14を交換可能に構成するようにしてもよい。位相差レンズ14aまたは結像光学系14の交換は、自動的に行うようにしてもよいし、ユーザが手動で行うようにしてもよい。 Further, the magnification of the phase difference lens 14a may be changed. Specifically, the phase difference lens 14a or the imaging optical system 14 having different magnifications may be configured to be exchangeable. The replacement of the phase difference lens 14a or the imaging optical system 14 may be performed automatically or may be performed manually by the user.
 一例として図3に示すように、圧電素子15は結像光学系14の対物レンズ14bを保持し、対物レンズ14bをZ方向に移動させるためのZ方向搬送装置として機能する。 As shown in FIG. 3 as an example, the piezoelectric element 15 holds the objective lens 14b of the imaging optical system 14 and functions as a Z-direction transport device for moving the objective lens 14b in the Z direction.
 圧電素子15は、本開示の駆動部材の一例である。 The piezoelectric element 15 is an example of the drive member of the present disclosure.
 Z方向搬送装置としての圧電素子15には、以下の特徴の相違がある。圧電素子15は、高速で結像光学系14の対物レンズ14bをZ方向に移動させることが可能である。一方で、圧電素子15は駆動可能範囲が限られている。 The piezoelectric element 15 as the Z-direction transport device has the following differences in characteristics. The piezoelectric element 15 can move the objective lens 14b of the imaging optical system 14 in the Z direction at high speed. On the other hand, the piezoelectric element 15 has a limited drivable range.
 なお、圧電素子15は、位相差レンズ14aを通過した位相差光をそのまま通過させる構成となっている。 The piezoelectric element 15 is configured to pass the phase difference light that has passed through the phase difference lens 14 a as it is.
 また、対物レンズ14bのZ方向搬送装置は圧電素子15に限らず、走査に追従して十分高速でZ方向に移動できればよい。 Further, the Z-direction transport device of the objective lens 14b is not limited to the piezoelectric element 15, and may move in the Z direction at a sufficiently high speed following the scanning.
 結像レンズ14dは、位相差レンズ14aおよび圧電素子15を通過した位相差光が入射され、これを撮像素子16に結像するものである。 The imaging lens 14 d receives the phase difference light having passed through the phase difference lens 14 a and the piezoelectric element 15, and forms an image on the image pickup element 16.
 撮像素子16は、結像レンズ14dによって結像された位相差画像を撮像するものである。撮像素子16としては、CCD(Charge-Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどが用いられる。撮像素子としては、RGB(Red Green Blue)のカラーフィルタが設けられた撮像素子を用いてもよいし、モノクロの撮像素子を用いるようにしてもよい。 The imaging device 16 captures a phase difference image formed by the imaging lens 14d. As the imaging device 16, a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like is used. As an imaging device, an imaging device provided with a RGB (Red Green Blue) color filter may be used, or a monochrome imaging device may be used.
 検出部18は、ステージ51に設置された培養容器50のZ方向(鉛直方向)の位置を検出するものである。検出部18は、具体的には、第1変位センサ18aおよび第2変位センサ18bを備えたものである。第1実施形態における第1変位センサ18aおよび第2変位センサ18bはレーザ変位計であり、培養容器50にレーザ光を照射し、その反射光を検出することによって、培養容器50の底面のZ方向の位置を検出するものである。なお、本開示において培養容器50の底面とは、培養容器50の底部と観察対象である細胞との境界面、すなわち観察対象設置面を指す。 The detection unit 18 detects the position in the Z direction (vertical direction) of the culture container 50 installed on the stage 51. Specifically, the detection unit 18 includes a first displacement sensor 18a and a second displacement sensor 18b. The first displacement sensor 18a and the second displacement sensor 18b in the first embodiment are laser displacement meters, and the culture vessel 50 is irradiated with laser light, and the reflected light is detected to detect the Z direction of the bottom surface of the culture vessel 50. To detect the position of In the present disclosure, the bottom surface of the culture container 50 refers to the interface between the bottom of the culture container 50 and the cell to be observed, that is, the observation target installation surface.
 培養容器50は、開示における容器の一例である。 The culture container 50 is an example of the container in the disclosure.
 第1実施形態において、第1変位センサ18aおよび第2変位センサ18bは、位相差レンズ14aを挟んで、図1に示すX方向に並べて設けられている。 In the first embodiment, the first displacement sensor 18a and the second displacement sensor 18b are provided side by side in the X direction shown in FIG. 1 with the phase difference lens 14a interposed therebetween.
 一例として、第1変位センサ18aおよび第2変位センサ18bの各々は、位相差レンズ14aから、正方形である観察対象領域Rの一辺Dの9倍の距離、つまり9Dだけ離間するように配置されている。観察対象領域Rについては後述する。 As an example, each of the first displacement sensor 18a and the second displacement sensor 18b is disposed so as to be separated from the phase difference lens 14a by a distance of 9 times the side D of the observation target region R which is a square, that is, 9D. There is. The observation target region R will be described later.
 検出部18によって検出された培養容器50のZ方向の位置情報は、後述の撮像制御部21に出力され、撮像制御部21は、入力された位置情報に基づいて、圧電素子15を制御し、オートフォーカス制御を行う。なお、第1変位センサ18aおよび第2変位センサ18bによる培養容器50の位置の検出および撮像制御部21によるオートフォーカス制御については、後で詳述する。 Positional information on the Z direction of the culture container 50 detected by the detection unit 18 is output to an imaging control unit 21 described later, and the imaging control unit 21 controls the piezoelectric element 15 based on the input positional information, Perform auto focus control. The detection of the position of the culture container 50 by the first displacement sensor 18a and the second displacement sensor 18b and the autofocus control by the imaging control unit 21 will be described in detail later.
 スリット板13と位相差レンズ14aおよび検出部18との間には、ステージ51が設けられている。ステージ51上には、観察対象である細胞が収容された培養容器50が設置される。 A stage 51 is provided between the slit plate 13 and the phase difference lens 14 a and the detection unit 18. On the stage 51, a culture container 50 containing cells to be observed is installed.
 第1実施形態に係る顕微鏡装置においては、一例として図7に示すように、6個のウェルWを有するウェルプレートを培養容器50として用いる。ただし、培養容器50はこれに限定されるものではない。例えば、24個または96個のウェルを有するウェルプレートを培養容器50として用いることができ、その他任意の個数のウェルを有するウェルプレート、またはシャーレ、ディッシュなどのウェルプレート以外の容器を用いることが可能である。観察対象及び観察の目的に応じて、適切な容器を培養容器50として選択することができる。 In the microscope apparatus according to the first embodiment, a well plate having six wells W is used as the culture vessel 50 as shown in FIG. 7 as an example. However, the culture container 50 is not limited to this. For example, a well plate having 24 or 96 wells can be used as the culture vessel 50, or any well plate having any number of wells, or a vessel other than a well plate such as a petri dish or dish can be used. It is. An appropriate container can be selected as the culture container 50 depending on the observation target and the purpose of the observation.
 また、培養容器50に収容される細胞としては、iPS細胞およびES細胞といった多能性幹細胞、幹細胞から分化誘導された神経、皮膚、心筋および肝臓の細胞、並びに人体から取り出された皮膚、網膜、心筋、血球、神経および臓器の細胞などがある。 Moreover, as cells accommodated in the culture vessel 50, pluripotent stem cells such as iPS cells and ES cells, nerves induced to differentiate from stem cells, cells of skin, myocardium and liver, skins removed from human body, retina, These include myocardium, blood cells, nerve and organ cells.
 ステージ51は、後述するステージ駆動装置17によって互いに直交するX方向およびY方向に移動するものである。X方向およびY方向は、Z方向に直交する方向であり、水平面内において互いに直交する方向である。第1実施形態においては、X方向を主走査方向とし、Y方向を副走査方向とする。 The stage 51 is moved in an X direction and a Y direction orthogonal to each other by a stage driving device 17 described later. The X direction and the Y direction are directions orthogonal to the Z direction, and are directions orthogonal to each other in the horizontal plane. In the first embodiment, the X direction is a main scanning direction, and the Y direction is a sub scanning direction.
 一例として図4に示すように、ステージ51の中央には、矩形の開口51aが形成されている。培養容器50は、開口51aを形成する部材の上に設置され、培養容器50内の細胞の位相差光が開口51aを通過する。 As shown in FIG. 4 as an example, a rectangular opening 51 a is formed at the center of the stage 51. The culture container 50 is placed on a member forming the opening 51a, and the phase difference light of the cells in the culture container 50 passes through the opening 51a.
 表示装置30は、後述する広視野画像取得処理によって生成され記憶された合成位相差画像を表示するものであり、たとえば液晶ディスプレイなどを備えたものである。また、表示装置30をタッチパネルによって構成し、入力装置40と兼用するようにしてもよい。 The display device 30 displays the composite phase difference image generated and stored by the wide-field image acquisition processing described later, and includes, for example, a liquid crystal display. Further, the display device 30 may be configured by a touch panel and used as the input device 40.
 入力装置40は、マウス及びキーボードなどを備えたものであり、ユーザによる種々の設定入力を受け付けるものである。入力装置40は、たとえば位相差レンズ14aの倍率の変更指示およびステージの移動速度の変更指示などの設定入力を受け付けるものである。 The input device 40 includes a mouse, a keyboard, and the like, and receives various setting inputs from the user. The input device 40 receives setting inputs such as, for example, an instruction to change the magnification of the phase difference lens 14 a and an instruction to change the moving speed of the stage.
 次に、顕微鏡装置本体10を制御する顕微鏡制御装置20の構成について説明する。図5は、顕微鏡制御装置20の電気系の構成の一例を示す。 Next, the configuration of the microscope control device 20 that controls the microscope apparatus main body 10 will be described. FIG. 5 shows an example of the configuration of the electrical system of the microscope control device 20.
 顕微鏡制御装置20はコンピュータを備えている。顕微鏡制御装置20のコンピュータは、CPU(Central Processing Unit)70、一次記憶部72、二次記憶部74、及びI/O(インプット・アウトプット・インタフェース)76等を備えている。CPU70、一次記憶部72、二次記憶部74、及びI/O76は、バスラインによって接続されている。 The microscope control device 20 includes a computer. The computer of the microscope control device 20 includes a central processing unit (CPU) 70, a primary storage unit 72, a secondary storage unit 74, an input / output interface (I / O) 76, and the like. The CPU 70, the primary storage unit 72, the secondary storage unit 74, and the I / O 76 are connected by a bus line.
 CPU70は、顕微鏡装置の全体を制御する。一次記憶部72は、各種プログラムの実行時のワークエリア等として用いられる揮発性のメモリである。一次記憶部72の一例としては、RAM(Random Access Memory)が挙げられる。二次記憶部74は、各種プログラム及び各種パラメータ等を予め記憶した不揮発性のメモリであり、本開示の技術に係るプログラムの一例である広視野画像取得プログラム80を記憶している。二次記憶部74の一例としては、EEPROM(Electrically Erasable Programmable Read-Only Memory)又はフラッシュメモリ等が挙げられる。I/O76は顕微鏡装置本体10と顕微鏡制御装置20との間の各種情報の送受信を司る。 The CPU 70 controls the entire microscope apparatus. The primary storage unit 72 is a volatile memory used as a work area or the like when executing various programs. An example of the primary storage unit 72 is a RAM (Random Access Memory). The secondary storage unit 74 is a non-volatile memory in which various programs, various parameters, and the like are stored in advance, and stores a wide view image acquisition program 80 which is an example of a program according to the technology of the present disclosure. Examples of the secondary storage unit 74 include an EEPROM (Electrically Erasable Programmable Read-Only Memory), a flash memory, and the like. The I / O 76 controls transmission and reception of various information between the microscope apparatus main body 10 and the microscope control apparatus 20.
 CPU70は、二次記憶部74から広視野画像取得プログラム80を読み出す。そして、CPU70は、読み出した広視野画像取得プログラム80を一次記憶部72に展開し、展開した広視野画像取得プログラム80を実行することで、一例として図6に示す撮像制御部21及びステージ制御部22として動作する。 The CPU 70 reads the wide field of view image acquisition program 80 from the secondary storage unit 74. Then, the CPU 70 expands the read wide-field image acquisition program 80 in the primary storage unit 72, and executes the expanded wide-field image acquisition program 80, whereby the imaging control unit 21 and the stage control unit shown in FIG. Acts as 22.
 ステージ制御部22は、ステージ駆動装置17を制御することで、ステージ51をX方向およびY方向に移動させる。ステージ駆動装置17は、例えば、圧電素子などを有するアクチュエータである。 The stage control unit 22 moves the stage 51 in the X direction and the Y direction by controlling the stage driving device 17. The stage drive device 17 is, for example, an actuator having a piezoelectric element or the like.
 撮像制御部21は、検出部18によって検出された培養容器50のZ方向の位置情報に基づいて、圧電素子15に対して制御(オートフォーカス制御)を行う。オートフォーカス制御は、圧電素子15の駆動によって結像光学系14の対物レンズ14bが光軸方向に移動することで実現される。 The imaging control unit 21 performs control (autofocus control) on the piezoelectric element 15 based on the position information of the culture container 50 in the Z direction detected by the detection unit 18. The autofocus control is realized by moving the objective lens 14b of the imaging optical system 14 in the optical axis direction by driving the piezoelectric element 15.
 撮像制御部21は、本開示の技術に係る制御部の一例である。 The imaging control unit 21 is an example of a control unit according to the technology of the present disclosure.
<広視野画像取得処理>
 以下、本開示の第1実施形態に係る顕微鏡装置90による広視野画像取得のプロセスについて詳細を説明する。 
<Wide-field image acquisition processing>
Hereinafter, the process of wide-field image acquisition by the microscope apparatus 90 according to the first embodiment of the present disclosure will be described in detail.
 図10、11、13、15は、第1実施形態において広視野画像取得処理を行うためのプログラムの一例を示すフローチャートである。図10、11、13、15は、顕微鏡制御装置20が実行するプログラムの一例を示している。 10, 11, 13, and 15 are flowcharts showing an example of a program for performing wide-field image acquisition processing in the first embodiment. 10, 11, 13, and 15 show an example of a program executed by the microscope control device 20.
 ここで、顕微鏡制御装置20が実行するプログラムは、具体的には撮像制御部21及びステージ制御部22として機能する顕微鏡制御装置20のCPU70によって実行される。 Here, the program executed by the microscope control device 20 is specifically executed by the CPU 70 of the microscope control device 20 functioning as the imaging control unit 21 and the stage control unit 22.
 なお、以下では、説明の便宜上、広視野画像取得処理を(1)フローの開始、(2)走査処理、(3)走査処理後の処理、の3つに分けて述べる。 In the following, for convenience of explanation, the wide-field-of-view image acquisition processing is divided into three parts of (1) start of flow, (2) scanning processing, and (3) processing after scanning processing.
[フローの開始]
 第1実施形態に係る顕微鏡装置90においては、顕微鏡制御装置20がステージ51に対する2次元的な移動制御及び結像光学系14に対するオートフォーカス制御を行いながら、顕微鏡装置本体10がステージ51上に配置された培養容器50の狭視野画像を連続的に撮像することにより、観察対象に対する走査が実行される。
Start Flow
In the microscope apparatus 90 according to the first embodiment, the microscope apparatus body 10 is disposed on the stage 51 while the microscope control device 20 performs two-dimensional movement control on the stage 51 and autofocus control on the imaging optical system 14. By continuously capturing the narrow-field image of the culture vessel 50 thus processed, a scan on the observation target is performed.
 観察対象の広視野画像の撮像を希望するユーザは、まず、観察対象である細胞が収容された培養容器50をステージ51上に設置する。 A user who desires imaging of a wide-field image of an observation target first places the culture vessel 50 containing the cells to be observed on the stage 51.
 上述したように、第1実施形態においては、一例として、培養容器50は6個のウェルWを有するウェルプレートであるものとして説明する。 As described above, in the first embodiment, the culture vessel 50 is described as a well plate having six wells W as an example.
 ユーザが入力装置40を通じて広視野画像の撮像を顕微鏡制御装置20に指示することにより、第1実施形態に係る広視野画像取得処理が開始される。以下、顕微鏡制御装置20のCPU70は、広視野画像取得プログラム80を二次記憶部74から読み出し、処理を実行する。図10は、広視野画像取得処理の全体を示すフローチャートである。 When the user instructs the microscope control device 20 to capture a wide-field image through the input device 40, the wide-field image acquisition process according to the first embodiment is started. Thereafter, the CPU 70 of the microscope control device 20 reads the wide field of view image acquisition program 80 from the secondary storage unit 74 and executes the process. FIG. 10 is a flowchart showing the entire wide-field image acquisition process.
[走査処理]
 ステップS100で、CPU70は、走査処理を実行する。ステップS100では、ステージ移動処理(図11参照)と、フォーカス制御準備処理(図13参照)と、フォーカス制御処理(図14参照)とが実行される。
[Scan process]
At step S100, the CPU 70 executes a scanning process. In step S100, stage movement processing (see FIG. 11), focus control preparation processing (see FIG. 13), and focus control processing (see FIG. 14) are performed.
 ステージ移動処理、フォーカス制御準備処理、及びフォーカス制御処理は、互いに同期して行われる。以下では、この同期制御を前提として、処理を説明する。 Stage movement processing, focus control preparation processing, and focus control processing are performed in synchronization with each other. The processing will be described below on the premise of this synchronous control.
(ステージ移動処理)
 図10のステップS100に含まれるステージ移動処理は、サブルーチンとして図11に示されている。図11は、ステージ制御部22として機能する顕微鏡制御装置20のCPU70が実行する処理プログラムの一例である。
(Stage movement processing)
The stage moving process included in step S100 of FIG. 10 is shown as a subroutine in FIG. FIG. 11 is an example of a processing program executed by the CPU 70 of the microscope control device 20 functioning as the stage control unit 22.
 ステップS202において、ステージ制御部22は、ステージ51に対するX軸移動方向の初期設定を行う。一例として、ステージ51のX軸移動方向は負方向に設定される。 In step S 202, the stage control unit 22 performs initial setting of the X-axis movement direction with respect to the stage 51. As one example, the X-axis movement direction of the stage 51 is set to a negative direction.
 次にステップS204において、ステージ制御部22は、ステージ駆動装置17により、設定されたX軸移動方向に沿ったステージ51の移動を開始させる。図11のサブルーチン開始直後であれば、ステップS202においてX軸移動方向が負方向に設定されているから、ステージ51は、X軸の負方向に対して移動を開始する。この場合、図8Aに示されるように、静止している顕微鏡装置本体10の結像光学系14は、ステージ51に対して相対的にX軸の正方向に対して移動することになる。以下では、ステージ駆動装置17によるステージ51の移動に伴う、結像光学系14(および観察対象領域R)のステージ51に対する相対移動を、便宜上、結像光学系14(および観察対象領域R)の移動として説明する。 Next, in step S204, the stage control unit 22 causes the stage drive device 17 to start the movement of the stage 51 along the set X-axis movement direction. Immediately after the start of the subroutine of FIG. 11, since the X-axis movement direction is set to the negative direction in step S202, the stage 51 starts moving in the negative direction of the X-axis. In this case, as shown in FIG. 8A, the imaging optical system 14 of the stationary microscope apparatus main body 10 moves relative to the stage 51 in the positive direction of the X axis. In the following, relative movement of the imaging optical system 14 (and the observation target area R) relative to the stage 51 with the movement of the stage 51 by the stage drive device 17 is for convenience of the imaging optical system 14 (and the observation target area R). Described as movement.
 図8Aおよび図8Bは、培養容器50の底面上の任意の位置に観察対象領域Rがある場合における結像光学系14、第1変位センサ18aおよび第2変位センサ18bと、培養容器50とのXY平面上での位置関係を示した図である。観察対象領域Rは、培養容器50の底面において、顕微鏡装置本体10が撮影を行い、位相差画像を生成することができる領域である。結像光学系14のステージ51に対する相対移動に伴い、観察対象領域Rもステージ51に対して相対移動する。以下、ステージ51のX方向移動に伴う、結像光学系14及び観察対象領域Rの培養容器50の底面を含む平面上での進行方向を、X軸走査方向と呼ぶ。さらに、培養容器50の底面を含むXY平面を、走査平面と呼ぶ。 8A and 8B show the imaging optical system 14, the first displacement sensor 18a and the second displacement sensor 18b, and the culture vessel 50 in the case where the observation target region R exists at an arbitrary position on the bottom surface of the culture vessel 50. It is the figure which showed the positional relationship on XY plane. The observation target region R is a region on the bottom surface of the culture vessel 50 where the microscope device body 10 can perform imaging and generate a phase difference image. The observation target region R also moves relative to the stage 51 as the imaging optical system 14 moves relative to the stage 51. Hereinafter, the traveling direction of the imaging optical system 14 and the observation target region R on the plane including the bottom surface of the culture container 50 along with the movement of the stage 51 in the X direction is referred to as an X-axis scanning direction. Furthermore, the XY plane including the bottom of the culture vessel 50 is referred to as a scan plane.
 以下では、説明の便宜上、観察対象領域Rは正方形の領域であるものとするが、これに限られるものではない。 In the following, for convenience of explanation, the observation target region R is assumed to be a square region, but it is not limited to this.
 なお、顕微鏡装置本体10は、図1に図示されていない水平位置検出センサを備えている。ステージ制御部22は、この水平位置検出センサを用いて、ステージ51における観察対象領域Rの現時点での走査平面上の位置を検出する。 The microscope apparatus body 10 is provided with a horizontal position detection sensor not shown in FIG. The stage control unit 22 detects the position on the scanning plane at the present time of the observation target region R on the stage 51 using the horizontal position detection sensor.
 なお、第1実施形態において、観察対象領域Rは、X軸走査方向に沿って一定の速度で移動する。 In the first embodiment, the observation target region R moves at a constant speed along the X-axis scanning direction.
 結像光学系14の観察対象領域Rが走査平面における終点位置に到達すると、ステップS206において、観察対象領域Rが終点位置に到達したか否かの判断が肯定判断となる。ここで終点位置とは、走査平面においてX軸方向の走査を終了する位置であり、図7において図示されている。 When the observation target region R of the imaging optical system 14 reaches the end point position on the scanning plane, in step S206, the determination as to whether the observation target region R has reached the end point position is an affirmative determination. Here, the end point position is a position at which the scanning in the X-axis direction ends in the scanning plane, and is illustrated in FIG.
 一方、ステップS206の判断が肯定判断となるまで、ステージ制御部22は、ステージ駆動装置17によるX軸移動方向に沿ったステージ51の移動を継続する。つまり、ステップS206の判断が肯定判断となるまで、結像光学系14は、ステージ51に対して相対的にX軸走査方向に沿って移動し続ける。 On the other hand, the stage control unit 22 continues the movement of the stage 51 along the X-axis movement direction by the stage drive device 17 until the determination in step S206 is affirmative. That is, the imaging optical system 14 continues to move along the X-axis scanning direction relative to the stage 51 until the determination in step S206 is affirmative.
 観察対象領域RがX軸走査方向に向かって移動する過程で、後述する撮像制御処理がステージ移動処理と同期して実行されていることにより、顕微鏡制御装置20のCPU70は、顕微鏡装置本体10に、培養容器50の底面において観察対象領域Rと重なる領域を撮影させ、複数の位相差画像を生成する。つまり、X軸走査方向に沿って連続する培養容器50の底面上の各領域の位相差画像が生成される。 In the process of moving the observation target region R in the X-axis scanning direction, the CPU 70 of the microscope control device 20 controls the microscope apparatus main body 10 by performing imaging control processing described later in synchronization with stage movement processing. A region overlapping the observation target region R is photographed at the bottom of the culture container 50, and a plurality of phase difference images are generated. That is, a phase difference image of each region on the bottom surface of the culture container 50 which is continuous along the X-axis scanning direction is generated.
 後述する撮像制御処理が実行されていることにより、観察対象領域Rに重ねあわされる培養容器50の底面上の各領域において、結像光学系14の対物レンズ14bは、そのZ方向位置が合焦位置に設定されていることに注意されたい。したがって、観察対象領域RがX軸走査方向に向かって相対移動する過程で、X軸走査方向に沿って連続する培養容器50の底面上の各領域について、合焦状態の位相差画像が生成される。 By performing imaging control processing described later, the objective lens 14b of the imaging optical system 14 has its Z-direction position focused in each area on the bottom surface of the culture vessel 50 superimposed on the observation target area R. Note that it is set to position. Therefore, in the process of relative movement of the observation target region R toward the X-axis scanning direction, a phase difference image in a focused state is generated for each region on the bottom surface of the culture vessel 50 continuous along the X-axis scanning direction. Ru.
 ただし、後述する撮像制御処理の説明において詳述する通り、圧電素子15によって対物レンズ14bを合焦位置に搬送できない場合があり得る。この場合に撮像が行われれば、非合焦状態の位相差画像が生成される。 However, as will be described in detail in the description of the imaging control process described later, there are cases where the piezoelectric element 15 can not convey the objective lens 14 b to the in-focus position. If imaging is performed in this case, an out-of-focus phase difference image is generated.
 さらに顕微鏡制御装置20のCPU70は、一例として、生成された複数の位相差画像を、一次記憶部72に記憶する。なお、生成された複数の位相差画像は、CPU70の図示しないキャッシュメモリ、または二次記憶部74に記憶されてもよい。 Furthermore, the CPU 70 of the microscope control device 20 stores the generated plurality of phase difference images in the primary storage unit 72 as an example. The generated plurality of phase difference images may be stored in a cache memory (not shown) of the CPU 70 or the secondary storage unit 74.
 ステップS204の判断が肯定判断である場合、ステップS208においてステージ制御部22は、ステージ駆動装置17によるX軸走査方向に沿ったステージ51の移動を終了する。さらに、顕微鏡制御装置20のCPU70は、顕微鏡装置本体10による狭視野画像の連続的な撮影を終了する。次に、処理はステップS210に移行する。 If the determination in step S204 is affirmative, in step S208, the stage control unit 22 ends the movement of the stage 51 along the X-axis scanning direction by the stage drive device 17. Furthermore, the CPU 70 of the microscope control device 20 ends continuous imaging of the narrow-field image by the microscope device body 10. Next, the process proceeds to step S210.
 ステップS210において、ステージ制御部22は、観察対象領域Rが走査終了点Eに到達したか否かの判断を行う。走査終了点Eとは、走査平面において走査処理を終了する点であり、図7に例示的に示されている。 In step S210, the stage control unit 22 determines whether the observation target region R has reached the scan end point E. The scanning end point E is a point at which the scanning process is ended in the scanning plane, and is exemplarily shown in FIG.
 ステップS210の判断が否定判断である場合、処理はステップS212へ移行する。 If the determination in step S210 is negative, the process proceeds to step S212.
 ステップS212において、ステージ制御部22は、ステージ駆動装置17により、ステージ51をX軸の負方向に一単位だけ移動させる。ここで一単位とは、観察対象領域Rの一辺の長さDに相当する距離である。この点に関し、図7を参照する。よって、培養容器50の底面において、観察対象領域RはY軸の正方向に一単位だけ移動することになる。次に、処理はステップS214に移行する。 In step S212, the stage control unit 22 causes the stage drive device 17 to move the stage 51 by one unit in the negative direction of the X axis. Here, one unit is a distance corresponding to the length D of one side of the observation target region R. In this regard, reference is made to FIG. Therefore, on the bottom surface of the culture container 50, the observation target region R moves by one unit in the positive direction of the Y axis. Next, the process proceeds to step S214.
 ステップS214において、ステージ制御部22は、ステージ51に対するX軸移動方向を反転させる。これにより、観察対象領域RのX軸走査方向が反転される。そして、図11の処理はステップS204に戻り、ステージ制御部22は再びX軸走査を開始し、顕微鏡制御装置20のCPU70は、顕微鏡装置本体10による狭視野画像の連続的な撮影を再開する。 In step S214, the stage control unit 22 reverses the X-axis movement direction with respect to the stage 51. Thereby, the X-axis scanning direction of the observation target area R is reversed. Then, the process of FIG. 11 returns to step S204, and the stage control unit 22 starts X-axis scanning again, and the CPU 70 of the microscope control device 20 resumes continuous imaging of the narrow-field image by the microscope device body 10.
 例えば、図11の処理において初めてステップS214が実行される場合には、ステップS202においてステージ51に対するX軸移動方向が負方向に設定されているから、反転の結果としてステージ51に対するX軸移動方向は正方向に設定される。この場合、図11の処理がステップS204に戻ると、ステージ51はX軸の正方向に対して移動を開始する。したがって、この場合、図8Bに示されるように、静止している顕微鏡装置本体10の結像光学系14(及び観察対象領域R)は、ステージ51に対して相対的にX軸の負方向に対して移動することになる。 For example, when step S214 is executed for the first time in the process of FIG. 11, the X-axis movement direction with respect to the stage 51 is set to a negative direction in step S202. It is set in the positive direction. In this case, when the process of FIG. 11 returns to step S204, the stage 51 starts moving in the positive direction of the X axis. Therefore, in this case, as shown in FIG. 8B, the imaging optical system 14 (and the observation target area R) of the stationary microscope apparatus main body 10 is in the negative direction of the X axis relative to the stage 51. It will move against.
 ステップS210の判断が肯定判断となるまで、図11の処理は継続される。 The process of FIG. 11 is continued until the determination of step S210 is affirmative.
 以上説明したように、ステージ制御部22がステージ移動処理サブルーチンを実行することにより、ステージ51がX方向およびY方向に移動され、結像光学系14の観察対象領域Rが培養容器50の底面を2次元状に走査し、各領域の位相差画像が生成され、記憶される。 As described above, when the stage control unit 22 executes the stage movement processing subroutine, the stage 51 is moved in the X and Y directions, and the observation target region R of the imaging optical system 14 is the bottom surface of the culture vessel 50 Scanning in a two-dimensional manner, a phase difference image of each area is generated and stored.
 図7の実線Mは、走査処理における、培養容器50の底面を含む走査平面での観察対象領域Rの移動の一例を示している。 The solid line M in FIG. 7 shows an example of the movement of the observation target region R on the scanning plane including the bottom surface of the culture container 50 in the scanning process.
 図7に示すように、結像光学系14の観察対象領域Rは、走査開始点Sから走査終了点Eまで実線Mに沿って移動する。すなわち、観察対象領域Rは、X軸の正方向(図7右方向)に走査した後、Y軸の正方向(図7の下方向)に移動し、さらにX軸の負方向(図7の左方向)に走査する。次いで、観察対象領域Rは、再びY軸の正方向に移動し、再びX軸の正方向に走査する。このように、観察対象領域Rは、X方向についての往復移動とY方向への移動を繰り返し行うことによって、培養容器50の底面を2次元状に走査する。 As shown in FIG. 7, the observation target region R of the imaging optical system 14 moves along the solid line M from the scanning start point S to the scanning end point E. That is, after scanning in the positive direction of the X axis (right direction in FIG. 7), the observation target region R moves in the positive direction of the Y axis (downward direction in FIG. 7), and further moves in the negative direction of X axis (FIG. 7). Scan left). Then, the region R to be observed moves again in the positive direction of the Y axis, and scans in the positive direction of the X axis again. As described above, the observation target region R scans the bottom of the culture container 50 two-dimensionally by repeatedly performing reciprocating movement in the X direction and movement in the Y direction.
 なお、ステージ移動処理における終点位置及びステージ移動速度の設定について、以下の点に留意されたい。 The following points should be noted regarding the setting of the end point position and the stage moving speed in the stage moving process.
 第1実施形態において、培養容器50の底面全体に対して走査を実行するためには、図7に示すように、培養容器50の範囲よりもX方向について外側の範囲R1、R2まで結像光学系14、第1変位センサ18aおよび第2変位センサ18bを相対的に移動させる必要がある。そして、範囲R1のX方向の幅として、少なくとも第1変位センサ18aと結像光学系14とのX方向の間隔を確保する必要があり、範囲R2のX方向の幅として、少なくとも第2変位センサ18bと結像光学系14とのX方向の間隔を確保する必要がある。そして、観察対象領域Rの走査時間をできるだけ短縮するには、観察対象領域Rの走査範囲をできるだけ狭くすることが望ましい。したがって、範囲R1のX方向の幅は、第1変位センサ18aと結像光学系14とのX方向の間隔とすることが望ましく、範囲R2のX方向の幅は、第2変位センサ18bと結像光学系14とのX方向の間隔とすることが望ましい。 In the first embodiment, in order to execute scanning on the entire bottom surface of the culture vessel 50, as shown in FIG. 7, imaging optics up to the ranges R1 and R2 outside the range of the culture vessel 50 in the X direction It is necessary to move the system 14, the first displacement sensor 18a and the second displacement sensor 18b relatively. Then, it is necessary to secure at least a distance between the first displacement sensor 18a and the imaging optical system 14 in the X direction as the width in the X direction of the range R1, and at least a second displacement sensor as the width in the X direction of the range R2. It is necessary to secure a distance between the lens 18 b and the imaging optical system 14 in the X direction. And in order to shorten the scanning time of observation object area R as much as possible, it is desirable to make the scanning range of observation object area R as narrow as possible. Therefore, the width of the range R1 in the X direction is preferably the distance between the first displacement sensor 18a and the imaging optical system 14 in the X direction, and the width of the range R2 in the X direction is smaller than that of the second displacement sensor 18b. It is desirable to set the distance in the X direction to the image optical system 14.
 一方、ステージ51をX方向に移動させることによって観察対象領域Rを培養容器50の範囲内において走査する場合、培養容器50の範囲における観察対象領域Rの移動速度は一定であることが望ましい。したがって、ステージ51のX方向への移動開始時にはステージ51が一定の速度になるまで加速する必要があり、ステージ51のX方向への移動終了時には、ステージ51を一定の速度から減速して停止させる必要がある。 On the other hand, when the region R to be observed is scanned within the range of the culture container 50 by moving the stage 51 in the X direction, it is desirable that the moving speed of the region R to be observed within the range of the culture container 50 be constant. Therefore, at the start of movement of the stage 51 in the X direction, it is necessary to accelerate the stage 51 to a constant speed, and at the end of movement of the stage 51 in the X direction, the stage 51 is decelerated from a constant speed and stopped. There is a need.
 また、ステージ51のX方向への移動速度を一定の速度にする場合、加速域をほとんどもたせることなく急速に一定の速度に制御することは可能であるが、このような制御を行った場合、培養容器50に細胞とともに収容された培養液などの液面が揺れてしまい、位相差画像の画質の低下を招く可能性がある。また、ステージ51を停止する際にも同様の問題が発生する可能性がある。 In addition, when the moving speed of the stage 51 in the X direction is constant, it is possible to rapidly control the speed to a constant speed with almost no acceleration region, but when such control is performed, The liquid level of the culture solution or the like contained in the culture vessel 50 together with the cells may shake, which may lead to the deterioration of the image quality of the phase difference image. In addition, the same problem may occur when stopping the stage 51.
 そこで、第1実施形態においては、図5に示す範囲R1および範囲R2をステージ51のX方向への移動の加減速域に設定する。このように培養容器50の範囲のX方向の両側に加減速域を設定することによって、走査範囲を無駄に広げることなく、かつ培養容器50の範囲において観察対象領域Rを一定の速度で走査することができる。さらに、上述したような培養液の液面の揺れも抑制することができる。 Therefore, in the first embodiment, the range R1 and the range R2 shown in FIG. 5 are set in the acceleration / deceleration region of the movement of the stage 51 in the X direction. Thus, by setting the acceleration / deceleration regions on both sides in the X direction of the range of the culture vessel 50, the region R to be observed is scanned at a constant speed in the range of the culture vessel 50 without wasting the scanning range. be able to. Furthermore, the fluctuation of the liquid level of the culture solution as described above can also be suppressed.
(撮像制御処理)
 図10のステップS100に含まれる撮像制御処理は、サブルーチンとして図13及び図14に示されている。
(Imaging control processing)
The imaging control process included in step S100 of FIG. 10 is shown in FIG. 13 and FIG. 14 as a subroutine.
 上述したように、第1実施形態においては、第1変位センサ18aと第2変位センサ18bは、図8A及び図8Bに示すように結像光学系14を挟んでX方向に並べて設けられている。そのため、上述したステージ移動処理において結像光学系14の観察対象領域RがX方向に沿って連続する培養容器50の底面上の各領域を走査する際に、検出部18は、観察対象領域Rの位置よりもX軸走査方向前方に位置する領域に対して、培養容器50の底面のZ方向の位置を検出することができる。 As described above, in the first embodiment, the first displacement sensor 18a and the second displacement sensor 18b are provided side by side in the X direction with the imaging optical system 14 interposed therebetween as shown in FIGS. 8A and 8B. . Therefore, when scanning each area on the bottom surface of the culture vessel 50 in which the observation target area R of the imaging optical system 14 continues along the X direction in the stage movement processing described above, the detection unit 18 selects the observation target area R The position in the Z direction of the bottom surface of the culture vessel 50 can be detected with respect to a region located forward in the X-axis scanning direction than the position of.
 具体的には、観察対象領域Rが図8Aに示す矢印方向(図8Aの右方向)に移動している場合には、第1変位センサ18aおよび第2変位センサ18bのうち、観察対象領域Rに対してX軸走査方向前方に位置する第1変位センサ18aが、培養容器50の底面のZ方向の位置を検出する。そして、観察対象領域Rが図8Aの右方向にさらに移動する際に、第1変位センサ18aが検出した培養容器50の底面のZ方向の位置と、前もって検出された培養容器50の基準面高さとを含むパラメータに基づくフォーカス制御を実行することにより、X軸走査方向に沿った培養容器50の底面上の各領域において、結像光学系14の対物レンズ14bのZ方向位置を合焦位置に合わせることができる。つまり、フォーカス制御を実行することにより、観察対象領域Rが図7の右方向に移動する際に、結像光学系14を培養容器50の底面に対して合焦状態に保ちつつ、各領域を撮影することができる。 Specifically, when the observation target area R moves in the direction of the arrow shown in FIG. 8A (the right direction in FIG. 8A), the observation target area R of the first displacement sensor 18a and the second displacement sensor 18b. The first displacement sensor 18a located forward in the X-axis scanning direction detects the position in the Z direction of the bottom surface of the culture vessel 50. Then, when the observation target region R further moves in the right direction in FIG. 8A, the position in the Z direction of the bottom surface of the culture container 50 detected by the first displacement sensor 18a and the reference surface height of the culture container 50 detected in advance. By performing focus control based on parameters including the distance in the Z direction position of the objective lens 14b of the imaging optical system 14 in each region on the bottom surface of the culture vessel 50 along the X axis scanning direction. It can be adjusted. That is, by performing focus control, when the observation target area R moves in the right direction of FIG. 7, each area is kept in focus while keeping the imaging optical system 14 in focus with respect to the bottom surface of the culture vessel 50. It can be taken.
 一方、観察対象領域Rが、図8Bの矢印方向(図8Bの左方向)に移動している場合には、第1変位センサ18aおよび第2変位センサ18bのうち、観察対象領域Rに対してX軸走査方向前方に位置する第2変位センサ18bが、培養容器50の底面のZ方向の位置を検出する。そして、図8Aについて説明した通り、フォーカス制御を実行することにより、観察対象領域Rが図8Bの左方向に移動する際に、結像光学系14を培養容器50の底面に対して合焦状態に保ちつつ、各領域を撮影することができる。 On the other hand, when the observation target area R is moving in the arrow direction of FIG. 8B (left direction in FIG. 8B), the observation target area R of the first displacement sensor 18a and the second displacement sensor 18b. The second displacement sensor 18 b located forward in the X-axis scanning direction detects the position of the bottom surface of the culture vessel 50 in the Z direction. Then, as described with reference to FIG. 8A, by performing focus control, the imaging optical system 14 is focused on the bottom surface of the culture vessel 50 when the observation target region R moves in the left direction of FIG. 8B. Each region can be photographed while keeping the
 このように第1変位センサ18aを用いた培養容器50の底面のZ方向位置検出と第2変位センサ18bを用いた培養容器50の底面のZ方向位置検出とを、観察対象領域Rの移動方向に応じて切り替えることによって、常に、観察対象領域Rの撮影に先行して、観察対象領域Rの位置における培養容器50のZ方向の位置情報を取得することができる。 As described above, the Z direction position detection of the bottom surface of the culture container 50 using the first displacement sensor 18 a and the Z direction position detection of the bottom surface of the culture container 50 using the second displacement sensor 18 b By switching in accordance with the above, it is possible to always obtain positional information of the culture container 50 in the Z direction at the position of the observation target region R prior to imaging of the observation target region R.
 撮像制御部21は、圧電素子15を用いて、結像光学系14の対物レンズ14bのZ方向位置を調整することにより、フォーカス制御を行う。具体的には、撮像制御部21は、圧電素子15に印加する電圧量を適切に変化させることにより、フォーカス制御を実行する。 The imaging control unit 21 performs focus control by adjusting the Z-direction position of the objective lens 14 b of the imaging optical system 14 using the piezoelectric element 15. Specifically, the imaging control unit 21 performs focus control by appropriately changing the amount of voltage applied to the piezoelectric element 15.
 しかしながら、圧電素子15は駆動可能範囲に限界があるため、対物レンズ14bをフォーカス制御に必要な距離だけ移動させることができない事態が生じ得る。 However, since the piezoelectric element 15 has a limit in the drivable range, a situation may occur where the objective lens 14 b can not be moved by the distance necessary for focus control.
 この点について、図12を参照して説明する。便宜上、以下では、観察対象領域Rは図8Aに示すようにX軸正方向に移動しているものとして説明する。 This point will be described with reference to FIG. For convenience, in the following description, it is assumed that the observation target region R moves in the positive direction of the X-axis as shown in FIG. 8A.
 説明の便宜上、培養容器50の底面のX軸方向を観察対象領域Rの一辺Dで分割することを考える。観察対象領域RがI番目の領域にある場合、観察予定領域はI+10番目の領域に配置されている。つまり、観察予定領域は、観察対象領域Rに対してX軸走査方向の10単位先前方の領域に位置している。図9は、以上の関係を示す図である。 For convenience of explanation, it is considered to divide the X-axis direction of the bottom surface of the culture vessel 50 by one side D of the region R to be observed. When the observation target area R is in the I-th area, the observation planned area is arranged in the (I + 10) -th area. That is, the region to be observed is located 10 units ahead of the region to be observed R in the X-axis scanning direction. FIG. 9 is a diagram showing the above relationship.
 ここで観察予定領域とは、第1変位センサ18aの鉛直上方に位置する培養容器50の底面上の領域であって、所定時間経過後に観察対象領域Rが重ね合わせられる領域をいう。上述したように、一例として、第1変位センサ18aは、位相差レンズ14aからX方向に観察対象領域Rの一辺Dの9倍の距離だけ離間するように配置されている。 Here, the observation planned area is an area on the bottom of the culture vessel 50 located vertically above the first displacement sensor 18a, and is an area where the observation target area R is overlapped after a predetermined time has elapsed. As described above, as an example, the first displacement sensor 18a is disposed so as to be separated from the phase difference lens 14a in the X direction by a distance nine times the side D of the region R to be observed.
 観察予定領域は、本開示の特定領域の一例である。 The region to be observed is an example of the specific region of the present disclosure.
 図12は、図9に示されたI番目の領域からI+10番目までの各領域について、結像光学系14の対物レンズ14bの合焦位置を図式的に示した図である。図12において、観察対象領域Rは、現在走査平面上でのI番目の領域に位置し、観察予定領域はI+10番目の領域である。 FIG. 12 schematically shows the in-focus position of the objective lens 14b of the imaging optical system 14 for each of the I-th to I + 10-th regions shown in FIG. In FIG. 12, the observation target region R is located in the I-th region on the current scan plane, and the observation scheduled region is the I + 10-th region.
 図12において、下方の破線は、培養容器50の底面の基準面に相当する高さ(基準面に対して合焦位置となる対物レンズ14bのZ方向位置)、中央の破線は対物レンズ14bの現在のZ方向位置を表し、上方の破線は圧電素子15の駆動可能範囲の上限を表している。また、水平な棒はI番目の領域からI+10番目までの各領域の合焦位置を表している。先行する走査において、第1変位センサ18aにより、I番目の領域からI+10番目までの各領域について培養容器50の底面のZ方向位置が既に検出されている。そして、各領域での合焦位置は、培養容器50の基準面のZ方向位置から検出された各領域のZ方向位置を減算することにより、導出することができる。 In FIG. 12, the lower broken line shows the height corresponding to the reference plane of the bottom surface of the culture vessel 50 (the Z direction position of the objective lens 14b to be in focus with respect to the reference plane), and the central broken line shows the objective lens 14b. The current Z direction position is shown, and the upper broken line represents the upper limit of the drivable range of the piezoelectric element 15. The horizontal bars indicate the in-focus positions of the I-th to I + 10-th regions. In the preceding scan, the Z-direction position of the bottom surface of the culture vessel 50 has already been detected by the first displacement sensor 18a for each of the I-th to I + 10-th regions. Then, the in-focus position in each area can be derived by subtracting the Z-direction position of each area detected from the Z-direction position of the reference surface of the culture vessel 50.
 同期されているステージ移動処理により、観察対象領域RはI番目の領域からI+1番目の領域、I+2番目の領域、というように、走査平面上においてX軸走査方向の各領域をI+10番目の領域(つまり、観察予定領域)まで移動していく。撮像制御部21は、圧電素子15を制御して、各領域において対物レンズ14bのZ方向位置をそれぞれの合焦位置に合わせる。 With the stage movement process being synchronized, the observation target area R is the I + 10th area in the X-axis scanning direction on the scanning plane, such as the Ith area to the I + 1th area and the I + 2th area. That is, it moves to the observation scheduled area). The imaging control unit 21 controls the piezoelectric element 15 to align the Z-direction position of the objective lens 14 b with each focusing position in each region.
 しかしながら、図12に示された状況では、I+10番目の領域(つまり、観察予定領域)の合焦位置の基準面との距離が、圧電素子15の駆動可能範囲を超えている。この状況をレンジオーバーという。圧電素子15の駆動可能範囲は、本開示の駆動可能範囲の一例である。 However, in the situation shown in FIG. 12, the distance between the (I + 10) th region (that is, the region to be observed) and the reference surface of the in-focus position exceeds the drivable range of the piezoelectric element 15. This situation is called range over. The drivable range of the piezoelectric element 15 is an example of the drivable range of the present disclosure.
 したがって、撮像制御部21は、圧電素子15のみを用いる制御によっては、観察対象領域Rが観察予定領域に到達した時点において、結像光学系14を合焦位置に到達させることができない。I+10番目の領域において撮像される狭視野画像は、非合焦状態である。観察対象について広視野画像を生成する際に、非合焦状態の狭視野画像は価値が低い。記憶装置に記憶可能なデータ総量に限界があることを考慮すると、非合焦状態の狭視野画像のデータは、保存する価値が低い。 Therefore, the imaging control unit 21 can not cause the imaging optical system 14 to reach the in-focus position when the observation target region R reaches the observation target region by control using only the piezoelectric element 15. The narrow-field image captured in the (I + 10) th region is out of focus. Out-of-focus narrow-field images are of low value in generating wide-field images for the observed object. In view of the limitation of the total amount of data that can be stored in the storage device, out-of-focus narrow-field image data is less valuable to store.
 そこで、第1実施形態に係る撮像制御部21は、観察対象領域Rが観察予定領域に到達すると、非合焦状態で撮像を行い、生成された非合焦状態の狭視野画像のデータを合焦状態の狭視野画像を記憶する際の圧縮率よりも高い圧縮率でデータを圧縮して、一次記憶部72等の記憶装置に記憶する。以下、合焦状態の狭視野画像を記憶する際の圧縮率よりも高い圧縮率でデータを圧縮することを、高圧縮と呼ぶ。価値の低い非合焦画像のデータを高圧縮して記憶することにより、記憶装置のメモリを節約することができる。 Therefore, when the observation target area R reaches the observation target area, the imaging control unit 21 according to the first embodiment performs imaging in an out-of-focus state, and combines the generated data of the out-of-focus narrow-field image. The data is compressed at a compression rate higher than that at the time of storing the focused narrow-field image, and stored in the storage device such as the primary storage unit 72 or the like. Hereinafter, compression of data at a compression rate higher than that at the time of storing a narrow-field image in focus state is called high compression. By storing the low-value non-focused image data in a highly compressed manner, it is possible to save storage memory.
 合焦状態の狭視野画像を記憶する際の圧縮率は、本開示の所定量の一例である。また、画像のデータを高圧縮して記憶することは、本開示の撮像データ節約処理の一例である。 The compression rate at the time of storing the in-focus narrow-field image is an example of the predetermined amount of the present disclosure. In addition, storing image data in a highly compressed manner is an example of the imaging data saving process of the present disclosure.
 なお、図12には図示されていないが、圧電素子15のZ方向位置を適切に配置することにより、対物レンズ14bを基準面より鉛直下方に搬送することが可能である。つまり、圧電素子15のZ方向変形の最低位置を基準面に相当する位置(図12の下方の破線)に合わせる必要は無く、基準面よりZ方向下方に駆動可能範囲の下限を設定することが可能である。 Although not shown in FIG. 12, the objective lens 14b can be transported vertically downward from the reference surface by appropriately arranging the position of the piezoelectric element 15 in the Z direction. That is, it is not necessary to align the lowest position of the Z-direction deformation of the piezoelectric element 15 with the position corresponding to the reference plane (the broken line in FIG. 12), and set the lower limit of the drivable range below the reference plane in the Z direction. It is possible.
 第1実施形態に係る撮像制御処理は、図13に示されたフォーカス制御準備処理サブルーチンと、図14に示されたフォーカス制御処理サブルーチンとを含む。撮像制御部21は、フォーカス制御準備処理サブルーチンと、フォーカス制御処理サブルーチンとを同期させて実行することにより、培養容器50の底面を走査する過程で、対物レンズ14bが非合焦位置にある場合に撮像された狭視野画像のデータを高圧縮して記憶する。 The imaging control process according to the first embodiment includes the focus control preparation process subroutine shown in FIG. 13 and the focus control process subroutine shown in FIG. The imaging control unit 21 executes the focus control preparation processing subroutine and the focus control processing subroutine in synchronization with each other to scan the bottom surface of the culture container 50, and the objective lens 14b is at the out-of-focus position. The compressed narrow-field image data is highly compressed and stored.
 フォーカス制御準備処理サブルーチンにおいては、合焦位置が圧電素子15の駆動可能範囲を超える領域を検出し、フラグを記憶する。フォーカス制御処理サブルーチンにおいては、各領域に対するフラグがオフであるかオンであるかに基づいて、撮像した画像データに対し通常の圧縮率で記憶するか、高圧縮して記憶するかの判断がなされる。 In the focus control preparation processing subroutine, an area where the in-focus position exceeds the drivable range of the piezoelectric element 15 is detected, and a flag is stored. In the focus control processing subroutine, based on whether the flag for each area is off or on, it is determined whether to store the captured image data at a normal compression ratio or to store it at high compression. Ru.
 まず、図13のフォーカス制御準備処理サブルーチンについて説明する。便宜上、図12に示されたように、走査平面上において観察対象領域RがI番目の領域に位置している状況を用いて説明する。 First, the focus control preparation processing subroutine of FIG. 13 will be described. For convenience, as shown in FIG. 12, description will be made using a situation where the observation target area R is located in the I-th area on the scanning plane.
 ステップS302において、撮像制御部21は、第1変位センサ18aによって、培養容器50の底面における観察予定領域のZ方向位置検出を行う。 In step S302, the imaging control unit 21 detects the position in the Z direction of the region to be observed on the bottom surface of the culture container 50 by the first displacement sensor 18a.
 次にステップS304において、撮像制御部21は、観察予定領域のZ方向位置情報を導出し、記憶装置に記憶する。Z方向位置情報は、検出されたZ方向位置とこれに基づいて定まる観察予定領域の合焦位置の情報を含む。一例として、CPU70の図示しないキャッシュメモリに記憶される。また、検出されたZ方向位置は、一次記憶部72または二次記憶部74に記憶されてもよい。 Next, in step S304, the imaging control unit 21 derives Z-direction position information of the region to be observed, and stores the information in the storage device. The Z-direction position information includes information of the detected Z-direction position and the in-focus position of the scheduled observation area determined based on the detected Z-direction position. As an example, it is stored in a cache memory (not shown) of CPU 70. Also, the detected Z-direction position may be stored in the primary storage unit 72 or the secondary storage unit 74.
 次に、ステップS306において、撮像制御部21は、基準面に相当するZ方向位置(図12の下方の破線)から観察予定領域の合焦位置のズレである距離を導出する。上述したように、各領域の合焦位置は、先行する処理によって導出されているものとする。 Next, in step S306, the imaging control unit 21 derives a distance that is a shift of the in-focus position of the scheduled observation region from the Z direction position (broken line in the lower part of FIG. 12) corresponding to the reference plane. As described above, it is assumed that the in-focus position of each area is derived by the preceding process.
 算出された距離は、一例として、CPU70の図示しないキャッシュメモリに記録される。また、距離は、一次記憶部72または二次記憶部74に記憶されてもよい。 The calculated distance is recorded in, for example, a cache memory (not shown) of the CPU 70. The distance may be stored in the primary storage unit 72 or the secondary storage unit 74.
 観察予定領域を適切に撮影するためには、観察対象領域Rが現在の観察予定領域に移動する際に、結像光学系14の対物レンズ14bをZ方向に距離だけ移動させる必要がある。 In order to appropriately photograph the region to be observed, it is necessary to move the objective lens 14b of the imaging optical system 14 by a distance in the Z direction when the region to be observed R moves to the current region to be observed.
 そしてステップS308において、撮像制御部21は、距離が閾値より小さいか否かを判断する。上述したように、閾値は、一例として、圧電素子15の移動可能距離の上限である。 Then, in step S308, the imaging control unit 21 determines whether the distance is smaller than a threshold. As described above, the threshold is, for example, the upper limit of the movable distance of the piezoelectric element 15.
 ステップS308の判断が肯定判断である場合、図13の処理はステップS310へ移行する。ステップS310において、撮像制御部21は、観察予定領域に対してフラグを立てる(フラグをオンする)。フラグは、観察予定領域の合焦位置が圧電素子15によって到達可能ではないことを示す。フラグは、一例として、CPU70の図示しないキャッシュメモリに記録される。 If the determination in step S308 is affirmative, the process of FIG. 13 proceeds to step S310. In step S310, the imaging control unit 21 sets a flag on the region to be observed (turns on the flag). The flag indicates that the in-focus position of the region to be observed is not reachable by the piezoelectric element 15. The flag is recorded in a cache memory (not shown) of the CPU 70 as an example.
 そして、同期されているステージ移動処理によって、観察対象領域Rが隣接するI+1番目の領域に移動すると、ステップS312の判断は肯定判断となり、図13の処理はステップS314へ移行する。この場合、観察対象領域RはI+1番目の領域に位置し、I+11番目の領域が新たな観察予定領域である。 Then, when the observation target region R moves to the adjacent (I + 1) th region by the stage movement processing synchronized, the determination in step S312 becomes positive, and the processing in FIG. 13 proceeds to step S314. In this case, the observation target region R is located in the (I + 1) th region, and the (I + 11) th region is a new observation scheduled region.
 ステップS314において、撮像制御部21は、ステージ制御部22が実行するステージ移動処理において、新たな観察予定領域が走査終了点Eに到達したか否かの判断を行う。ステップS314の判断は、図11に示されたステージ移動サブルーチンのステップS210に対応するものである。 In step S314, the imaging control unit 21 determines whether or not a new observation planned region has reached the scanning end point E in the stage moving process performed by the stage control unit 22. The determination in step S314 corresponds to step S210 of the stage moving subroutine shown in FIG.
 ステップS324の判断が否定判断である場合、図13の処理は再びステップS302に戻り、新たな処理が開始される。つまり、観察対象領域Rが現在配置されているI+1番目の領域に対し、I+11番目の領域を新たな観察予定領域として、ステップS302以降の処理が実行される。 If the determination in step S324 is negative, the process of FIG. 13 returns to step S302 again, and a new process is started. That is, with respect to the (I + 1) th area in which the observation target area R is currently arranged, the processing in step S302 and subsequent steps is performed with the (I + 11) th area as a new observation scheduled area.
 一方、ステップS308の判断が否定判断である場合、観察予定領域(I+10番目の領域)について、フラグは立てられない(オンされない)。つまり、I+10番目の領域に関するフラグはオフである)。そして、同期されているステージ移動処理によって、観察対象領域Rが隣接するI+1番目の領域に移動すると、ステップS312の判断は肯定判断となり、図13の処理はステップS314へ移行する。以降の処理は、ステップS308の判断が肯定判断である場合と同様である。 On the other hand, if the determination in step S308 is negative, the flag is not set (is not turned on) for the observation scheduled region (I + the tenth region). That is, the flag for the (I + 10th) region is off). Then, when the observation target region R moves to the adjacent (I + 1) th region by the stage movement processing synchronized, the determination in step S312 becomes positive, and the processing in FIG. 13 proceeds to step S314. The subsequent processes are the same as in the case where the determination in step S308 is positive.
 このようにして、フォーカス制御準備処理において、撮像制御部21は、観察対象領域RからX軸走査方向に10単位先行する領域について、基準面からのズレが閾値以下に収まっているかを判断し、フラグのオンまたはオフを記憶することを反復する。 Thus, in the focus control preparation process, the imaging control unit 21 determines whether the deviation from the reference plane is within the threshold value or less for the area 10 units ahead of the observation target area R in the X-axis scanning direction, Repeat storing the flag on or off.
 次に、図14のフォーカス制御処理を説明する。便宜上、図12に示されたように、観察対象領域RがI番目の領域に位置している状況を用いて説明する。 Next, the focus control process of FIG. 14 will be described. For convenience, as shown in FIG. 12, description will be made using a situation where the observation target area R is located in the I-th area.
 先行するフォーカス制御準備処理において、I+10番目までの各領域について、Z方向位置情報及びフラグがオフであるか否かがCPU70の図示しないキャッシュメモリに記憶されている。 In the preceding focus control preparation process, whether or not the Z direction position information and the flag are off is stored in a cache memory (not shown) of the CPU 70 for each of the (I + 10) th areas.
 ステップS402において、撮像制御部21は、先行するフォーカス制御準備処理において記憶されている、I+1番目の領域(すなわち、観察対象領域Rの現在の位置にX軸走査方向に隣接する領域)のZ方向位置情報を取得する。上述したように、Z方向位置情報にはI+1番目の領域の合焦位置の情報が含まれている。また上述したように、一例として、I+1番目の領域のZ方向位置情報は、CPU70の図示しないキャッシュメモリに記憶されている。 In step S402, the imaging control unit 21 performs the Z direction of the (I + 1) th area (that is, an area adjacent to the current position of the observation target area R in the X-axis scanning direction) stored in the preceding focus control preparation process. Get location information. As described above, the Z direction position information includes information of the in-focus position of the (I + 1) th region. As described above, as an example, the Z direction position information of the (I + 1) th area is stored in a cache memory (not shown) of the CPU 70.
 次に、ステップS404において、撮像制御部21は、I+1番目の領域(つまり、観察対象領域Rが次に到達する領域)について、フラグがオフであるか否かを判断する。上述したように、I+1番目の領域に対するフラグは、先行するフォーカス制御準備処理において、一例としてCPU70の図示しないキャッシュメモリに記憶されている。 Next, in step S404, the imaging control unit 21 determines whether or not the flag is off for the (I + 1) th region (that is, the region where the observation target region R reaches next). As described above, the flag for the (I + 1) th area is stored in the cache memory (not shown) of the CPU 70 as an example in the preceding focus control preparation process.
 ステップS404の判断が肯定判断である場合、走査平面において観察対象領域Rに対してX軸走査方向に一単位先行する、次の領域(つまり、I+1番目の領域)の合焦位置の基準面からのズレが、圧電素子15の駆動可能範囲に収まっている。この場合、撮像制御部21は、圧電素子15を制御することにより、次の領域において結像光学系14の対物レンズ14bを合焦位置に合わせることが可能である。 If the determination in step S404 is affirmative, from the reference plane of the in-focus position of the next area (that is, the (I + 1) -th area) that precedes the observation target area R by one unit in the X-axis scanning direction in the scanning plane. The deviation of the above is within the drivable range of the piezoelectric element 15. In this case, the imaging control unit 21 can adjust the objective lens 14b of the imaging optical system 14 to the in-focus position in the next area by controlling the piezoelectric element 15.
 そして、同期されているステージ移動処理によって、観察対象領域Rが隣接するI+1番目の領域に到達すると、ステップS406の判断は肯定判断となる。そして、図14の処理はステップS408に移行する。 Then, when the observation target region R reaches the adjacent (I + 1) th region by the stage movement processing synchronized, the determination in step S406 is positive. Then, the process of FIG. 14 proceeds to step S408.
 ステップS408において、撮像制御部21は、圧電素子15に電圧を印加する制御を実行し、圧電素子15をZ方向に変形させて、圧電素子に保持されている結像光学系14の対物レンズ14bをI+1番目の領域に対する合焦位置に移動させる。 In step S408, the imaging control unit 21 executes control to apply a voltage to the piezoelectric element 15 to deform the piezoelectric element 15 in the Z direction, and the objective lens 14b of the imaging optical system 14 held by the piezoelectric element. Is moved to the in-focus position with respect to the (I + 1) th region.
 ここで、第1実施形態の圧電素子15は、一例として、電圧テーブル500に基づいて制御される。図15に電圧テーブル500の一例を示す。電圧テーブル500は、Z方向の変位量に対する、圧電素子15に印加すべき電圧の情報を含む。電圧テーブル500は圧電素子15の性能値を表し、一例として一次記憶部72に記憶されている Here, the piezoelectric element 15 of the first embodiment is controlled based on the voltage table 500 as an example. An example of the voltage table 500 is shown in FIG. The voltage table 500 includes information of the voltage to be applied to the piezoelectric element 15 with respect to the amount of displacement in the Z direction. Voltage table 500 represents the performance value of piezoelectric element 15, and is stored in primary storage unit 72 as an example.
 上述したステップS402において、I+1番目の領域(すなわち、走査平面上での観察対象領域Rの現在の位置)のZ方向位置情報は取得されている。また、先行する処理において、I番目の領域(図14のフォーカス制御処理サブルーチン開始時点における観察対象領域Rの位置)のZ方向位置情報も取得されている。I番目の領域の合焦位置とI+1番目の領域の合焦位置との差分として、ステップS408において印加すべき電圧値が導出される。 In step S402 described above, Z direction position information of the (I + 1) th region (that is, the current position of the observation target region R on the scan plane) is acquired. Further, in the preceding process, Z direction position information of the I-th area (the position of the observation target area R at the start time of the focus control processing subroutine of FIG. 14) is also acquired. A voltage value to be applied is derived in step S408 as the difference between the in-focus position of the I-th area and the in-focus position of the (I + 1) -th area.
 例えば、直前の領域(I番目の領域)の合焦位置と現在位置(I+1番目の領域)の合焦位置とのZ方向の距離がZ3であったとすると、圧電素子15に電圧値V3を印加すれば、I+1番目の領域の領域において対物レンズ14bを合焦位置に合わせることができる。 For example, assuming that the distance in the Z direction between the in-focus position of the immediately preceding area (I-th area) and the in-focus position of the current position (I + 1-th area) is Z3, the voltage value V3 is applied to the piezoelectric element 15 Then, the objective lens 14b can be brought to the in-focus position in the region of the (I + 1) th region.
 なお、電圧テーブル500による印加電圧の導出は一例であって、上述の内容が関数式によって表現されることも可能である。 Derivation of the applied voltage by the voltage table 500 is an example, and the contents described above can be expressed by a functional expression.
 今はI+1番目の領域の合焦位置の基準面からのズレが圧電素子15の駆動可能範囲に収まっている場合を考えているのであるから、電圧V3を印加された圧電素子15はZ方向に変形し、対物レンズ14bはI+1番目の領域に対する合焦位置に移動される。 Now, it is considered that the displacement of the in-focus position of the (I + 1) th region from the reference plane falls within the drivable range of the piezoelectric element 15, so the piezoelectric element 15 to which the voltage V3 is applied is in the Z direction. In deformation, the objective lens 14b is moved to the in-focus position with respect to the (I + 1) th region.
 このようにして、ステップS408において、撮像制御部21は結像光学系の対物レンズ14bを合焦位置に合わせる。 Thus, in step S408, the imaging control unit 21 brings the objective lens 14b of the imaging optical system to the in-focus position.
 次にステップS410において、撮像制御部21は走査平面上のI+1番目の領域を撮像し、位相差画像を生成する。ステップS408において適切なフォーカス制御がなされているため、ステップS410において、I+1番目の領域の合焦状態の狭視野画像が生成される。 Next, in step S410, the imaging control unit 21 images the (I + 1) th area on the scanning plane to generate a phase difference image. Since appropriate focus control is performed in step S408, a focused narrow-field image of the (I + 1) th region is generated in step S410.
 ステップS412において、撮像制御部21は生成された合焦状態の狭視野画像を、一例として一次記憶部72に記憶する。狭視野画像は、CPUの図示しないキャッシュメモリまたは二次記憶部74に記憶されてもよい。 In step S412, the imaging control unit 21 stores the generated narrow-field image in the in-focus state in the primary storage unit 72 as an example. The narrow-field image may be stored in a not-shown cache memory or secondary storage unit 74 of the CPU.
 ステップS412の処理が完了すると、図14の処理はステップS422に移行する。ステップS422において、撮像制御部21は、ステージ制御部22が実行するステージ移動処理において観察対象領域Rが走査終了点Eに到達したか否かの判断を行う。ステップS422の判断は、図11に示されたステージ移動サブルーチンのステップS210に対応するものである。 When the process of step S412 is completed, the process of FIG. 14 proceeds to step S422. In step S422, the imaging control unit 21 determines whether the observation target region R has reached the scanning end point E in the stage moving process performed by the stage control unit 22. The determination in step S422 corresponds to step S210 of the stage moving subroutine shown in FIG.
 ステップS422の判断が否定判断である場合、図14の処理はステップS402へ戻り、再び上述の処理が繰り返される。このようにして、ステージ制御部22がステージ移動処理を実行している間、撮像制御部21は走査平面上の各領域の狭視野画像を生成し、記憶することを継続する。 If the determination in step S422 is negative, the process of FIG. 14 returns to step S402, and the above-described process is repeated again. Thus, while the stage control unit 22 executes the stage movement process, the imaging control unit 21 continues to generate and store the narrow-field images of the respective areas on the scanning plane.
 一方、ステップS404において否定判断である場合を説明する。 On the other hand, the case where the determination in step S404 is negative will be described.
 この場合、先行する図13のフォーカス制御準備処理のステップS310において、I+1にはフラグが立てられ(オンされ)、一例としてCPU70の図示しないキャッシュメモリに記録されている。 In this case, in step S310 of the focus control preparation process of FIG. 13 preceding, a flag is set (turned on) to I + 1, and is recorded in a cache memory (not shown) of the CPU 70 as an example.
 ステップS404において否定判断である場合、走査平面において観察対象領域Rに対してX軸走査方向に一単位先行する、次の領域(つまり、I+1番目の領域)の合焦位置の基準面からのズレが、圧電素子15の駆動可能範囲を超えている。したがって、撮像制御部21は、圧電素子15に印加する電圧を適切に調節しても、次の領域において結像光学系14の対物レンズ14bを合焦位置に合わせることができない。 If a negative determination is made in step S404, a shift from the reference plane of the in-focus position of the next area (that is, the (I + 1) th area) preceding the observation target area R by one unit in the X-axis scanning direction in the scanning plane However, the drivable range of the piezoelectric element 15 is exceeded. Therefore, even if the voltage applied to the piezoelectric element 15 is appropriately adjusted, the imaging control unit 21 can not align the objective lens 14b of the imaging optical system 14 at the in-focus position in the next region.
 同期されているステージ移動処理によって、観察対象領域Rが隣接するI+1番目の領域に到達すると、ステップS414の判断は肯定判断となる。そして、図14の処理はステップS416に移行する。 When the observation target region R reaches the adjacent I + 1th region by the stage movement processing synchronized, the determination in step S414 is positive. Then, the process of FIG. 14 proceeds to step S416.
 ステップS408について説明したように、フォーカス制御のために圧電素子15に印加すべき電圧は、取得済みのZ方向位置情報と電圧テーブル500とを参照することにより導出される。しかしながら、観察対象領域Rの走査平面上の現在の位置(I+1番目の領域)での合焦位置は圧電素子15の駆動可能範囲を超えているため、導出された電圧値を圧電素子15に印加しても、結像光学系14の対物レンズ14bを合焦位置に搬送することはできない。 As described in step S408, the voltage to be applied to the piezoelectric element 15 for focus control is derived by referring to the acquired Z-direction position information and the voltage table 500. However, since the in-focus position at the current position (I + 1st region) on the scanning plane of the observation target region R exceeds the drivable range of the piezoelectric element 15, the derived voltage value is applied to the piezoelectric element 15 However, the objective lens 14b of the imaging optical system 14 can not be transported to the in-focus position.
 例えば、直前の領域(I番目の領域)の合焦位置と現在位置(I+1番目の領域)の合焦位置とのZ方向の距離がZ3であり、圧電素子15に電圧値V3を印加したとする。この場合、対物レンズ14bのZ方向位置は、図12に例示した駆動可能範囲上限(または駆動可能範囲下限)まで移動して停止すると考えられる。 For example, it is assumed that the distance in the Z direction between the in-focus position of the immediately preceding area (I-th area) and the in-focus position of the current position (I + 1-th area) is Z3 and a voltage value V3 is applied to the piezoelectric element 15 Do. In this case, it is considered that the Z direction position of the objective lens 14b moves to the drivable range upper limit (or drivable range lower limit) illustrated in FIG.
 つまり、ステップS416において、撮像制御部21は圧電素子15の駆動可能範囲内で可能な限り、対物レンズ14bのZ方向位置を培養容器50の底面のバラつきに追従させる。しかし、この場合、現在位置(I+1番目の領域)において対物レンズ14bを合焦位置に合わせることはできない。 That is, in step S416, the imaging control unit 21 makes the Z-direction position of the objective lens 14b follow the variation of the bottom surface of the culture container 50 as much as possible within the drivable range of the piezoelectric element 15. However, in this case, the objective lens 14b can not be brought into focus at the current position (the (I + 1) th region).
 次に、図14の処理はステップS418へ移行する。ステップS418において、撮像制御部21は走査平面上のI+1番目の領域を撮像し、位相差画像を生成する。このとき対物レンズ14bは合焦位置にないため、ステップS418において、I+1番目の領域の非合焦状態の狭視野画像が生成される。そして処理はステップS420に移行する。 Next, the process of FIG. 14 proceeds to step S418. In step S418, the imaging control unit 21 images the (I + 1) th region on the scanning plane to generate a phase difference image. At this time, since the objective lens 14 b is not at the in-focus position, in step S 418, an out-of-focus narrow-field image of the (I + 1) th region is generated. Then, the process proceeds to step S420.
 上述したように、非合焦状態の狭視野画像は、観察対象について広視野画像を生成する際に価値が低い。そこで、ステップS420において、撮像制御部21は、ステップS418で生成された非合焦状態の狭視野画像を高圧縮してデータ量を小さくしてから、記憶する。これにより、価値の低い画像に消費する記憶装置のメモリを節約することができる。高圧縮された画像データは、一例として一次記憶部72に記憶される。 As mentioned above, the out-of-focus narrow-field image is of low value in generating a wide-field image for the observation object. Therefore, in step S420, the imaging control unit 21 highly compresses the out-of-focus narrow-field image generated in step S418 to reduce the data amount, and then stores the data. This can save memory of the storage device consuming less valuable images. The highly compressed image data is stored in the primary storage unit 72 as an example.
 ステップS420の処理が完了すると、図14の処理はステップS422に移行する。ステップS422については既に説明した。 When the process of step S420 is completed, the process of FIG. 14 proceeds to step S422. Step S422 has already been described.
 以上説明したように、図14のフォーカス制御処理が反復されることにより、培養容器50の底面の各領域の狭視野画像が生成され、記憶される。そして、狭視野画像が非合焦状態である場合には、高圧縮した小さなデータとして記憶される。 As described above, by repeating the focus control process of FIG. 14, the narrow-field image of each area of the bottom of the culture vessel 50 is generated and stored. Then, if the narrow-field image is out of focus, it is stored as highly compressed small data.
[走査処理後の処理]
 図10のステップS100の走査処理が終了した時点で、培養容器50の底面上の各領域について、狭視野画像が生成され、一次記憶部72、CPU70の図示しないキャッシュメモリ、または二次記憶部74に記憶されている。特に、非合焦状態の狭視野画像は、高圧縮された小さなデータとして記憶されている。
Processing after scan processing
At the end of the scanning process in step S100 of FIG. 10, a narrow-field image is generated for each area on the bottom of the culture vessel 50, and the primary storage unit 72, a cache memory (not shown) of the CPU 70, or a secondary storage unit 74. Is stored in In particular, the out-of-focus narrow-field image is stored as highly compressed small data.
 図10の処理は、ステップS102へ移行する。 The process of FIG. 10 proceeds to step S102.
 ステップS102において、顕微鏡制御装置20のCPU70は、記憶されている狭視野画像を読み出して結合することによって、培養容器50の底面の全体を示す1枚の合成位相差画像(つまり、広視野画像)を生成する。 In step S102, the CPU 70 of the microscope control device 20 reads out and combines the stored narrow-field images, thereby providing a single composite phase-contrast image (ie, wide-field image) showing the entire bottom surface of the culture vessel 50. Generate
 生成される広視野画像において、圧電素子15のレンジオーバーが発生した領域について、高圧縮によって画質が劣化した非合焦状態の狭視野画像として表されることができる。または、広視野画像において、非合焦状態の狭視野画画像は表示せず、何らかの単純な画像で置き換えることが可能である。例えば、圧電素子15のレンジオーバーが発生した領域を、ある色を用いて塗りつぶすことが可能である。一例として、黒色でベタ塗りすることができる。 In the wide-field-of-view image to be generated, the region where the range-over of the piezoelectric element 15 has occurred can be represented as an out-of-focus narrow-field image in which the image quality is deteriorated due to high compression. Alternatively, in a wide-field image, an out-of-focus narrow-field image may not be displayed, and may be replaced with some simple image. For example, it is possible to paint the area where the range over of the piezoelectric element 15 has occurred using a certain color. As an example, it can be black and solid.
 次にステップS104において、顕微鏡制御装置20のCPU70は、生成された合成位相差画像を記憶し、広視野画像取得処理を終了する。生成された合成位相差画像は、例えば二次記憶部74に記憶することができる。 Next, in step S104, the CPU 70 of the microscope control device 20 stores the generated composite phase difference image, and ends the wide-field image acquisition process. The generated composite phase difference image can be stored, for example, in the secondary storage unit 74.
 なお、記憶された広視野画像を表示装置30に表示させることが可能である。 The stored wide-field image can be displayed on the display device 30.
 本開示の技術の第1実施形態によれば、観察対象を収容した培養容器50の底面を走査する過程で、非合焦画像を高圧縮して小さなデータとして記憶するため、走査全体に要する記憶装置のデータ容量を低減することができる。 According to the first embodiment of the technology of the present disclosure, in the process of scanning the bottom surface of the culture vessel 50 containing the observation target, the non-focused image is highly compressed and stored as small data. The data capacity of the device can be reduced.
<第2実施形態>
 次に、本開示の技術に係る第2実施形態を用いた顕微鏡装置について、図面を参照しながら詳細に説明する。第2実施形態の顕微鏡装置は、第1実施形態の顕微鏡装置に対し、二次記憶部74に記憶される広視野画像取得プログラム80は、図14の処理に代えて図16に示されるフォーカス制御処理に係るモジュールを含む点で異なる。第2実施形態の顕微鏡装置は、その他の構成は、第1実施形態と同様であるので、以下、第2実施形態のフォーカス制御処理を中心に説明する。なお、第1実施形態と共通する構成については、同一の符号を用いて説明を行う。
Second Embodiment
Next, a microscope apparatus using a second embodiment according to the technology of the present disclosure will be described in detail with reference to the drawings. The microscope apparatus of the second embodiment is the same as the microscope apparatus of the first embodiment in that the wide-field image acquisition program 80 stored in the secondary storage unit 74 controls the focus control shown in FIG. It differs in that it includes a module related to processing. The other configuration of the microscope apparatus of the second embodiment is the same as that of the first embodiment, and therefore, focus control processing of the second embodiment will be mainly described below. In addition, about the structure which is common in 1st Embodiment, it demonstrates using the same code | symbol.
 第1実施形態において説明したように、位相差画像の撮像対象となる培養容器50の底面上の領域について、合焦位置の基準面からのズレが圧電素子15の駆動可能範囲を超えており圧電素子15を制御しても結像光学系14を合焦状態にすることができない場合がある。この場合、第1実施形態に係る図14のフォーカス制御処理では、ステップS420において、価値の低い非合焦画像データを高圧縮して記憶することにより、記憶装置のメモリ容量を節約した。 As described in the first embodiment, the displacement of the in-focus position from the reference plane exceeds the drivable range of the piezoelectric element 15 in the region on the bottom surface of the culture vessel 50 to be imaged of the phase difference image. In some cases, even if the element 15 is controlled, the imaging optical system 14 can not be brought into focus. In this case, in the focus control process of FIG. 14 according to the first embodiment, the memory capacity of the storage device is saved by highly compressing and storing low-value unfocused image data in step S420.
 一方、第2実施形態では、合焦位置の基準面からのズレが圧電素子15の駆動可能範囲を超えており圧電素子15を制御しても結像光学系14を合焦状態にすることができない場合には、そもそも結像光学系14による撮像を実行しない。以下、図16に即して説明する。 On the other hand, in the second embodiment, the shift of the in-focus position from the reference plane beyond the drivable range of the piezoelectric element 15 makes the imaging optical system 14 in focus even if the piezoelectric element 15 is controlled. When it is not possible, the imaging by the imaging optical system 14 is not performed in the first place. Hereinafter, description will be made with reference to FIG.
 図16は、第2実施形態のフォーカス制御処理サブルーチンを示す。図16のステップS602からステップS614の処理は、第1実施形態に係る図14のステップS402からステップS422の処理と同様であるので、説明を省略する。 FIG. 16 shows a focus control processing subroutine of the second embodiment. The processes in steps S602 to S614 in FIG. 16 are the same as the processes in steps S402 to S422 in FIG. 14 according to the first embodiment, and thus the description thereof is omitted.
 図14のステップS404に対応するステップS604の判断が否定判断となる場合、図16の処理はステップS616に移行する。 If the determination in step S604 corresponding to step S404 in FIG. 14 is negative, the process in FIG. 16 proceeds to step S616.
 この場合、先行する図13のフォーカス制御準備処理のステップS310において、I+1にはフラグが立てられ(オンされ)、一例としてCPU70の図示しないキャッシュメモリに記録されている。 In this case, in step S310 of the focus control preparation process of FIG. 13 preceding, a flag is set (turned on) to I + 1, and is recorded in a cache memory (not shown) of the CPU 70 as an example.
 ステップS404において否定判断である場合、走査平面において観察対象領域Rに対してX軸走査方向に一単位先行する、次の領域(つまり、I+1番目の領域)の合焦位置の基準面からのズレが、圧電素子15の駆動可能範囲を超えている。したがって、撮像制御部21は、圧電素子15に印加する電圧を適切に調節しても、次の領域において結像光学系14の対物レンズ14bを合焦位置に合わせることができない。 If a negative determination is made in step S404, a shift from the reference plane of the in-focus position of the next area (that is, the (I + 1) th area) preceding the observation target area R by one unit in the X-axis scanning direction in the scanning plane However, the drivable range of the piezoelectric element 15 is exceeded. Therefore, even if the voltage applied to the piezoelectric element 15 is appropriately adjusted, the imaging control unit 21 can not align the objective lens 14b of the imaging optical system 14 at the in-focus position in the next region.
 同期されているステージ移動処理によって、観察対象領域Rが隣接するI+1番目の領域に到達すると、ステップS614の判断は肯定判断となる。そして、図16の処理はステップS614に移行する。 When the observation target area R reaches the adjacent I + 1th area by the stage movement processing synchronized, the determination in step S614 is positive. Then, the process of FIG. 16 proceeds to step S614.
 したがって、合焦位置の基準面からのズレが圧電素子15の駆動可能範囲を超えている領域では、第2実施形態に係る撮像制御部21は、圧電素子15に電圧を印加せず、また結像光学系14による狭視野画像の撮像を行わない。結像光学系14による狭視野画像の撮像を行わないことは、本開示の撮像データ節約処理の一例である。 Therefore, in a region where the deviation of the in-focus position from the reference plane exceeds the drivable range of the piezoelectric element 15, the imaging control unit 21 according to the second embodiment does not apply a voltage to the piezoelectric element 15, and The imaging of the narrow-field image by the imaging optical system 14 is not performed. Not performing imaging of a narrow-field image by the imaging optical system 14 is an example of an imaging data saving process of the present disclosure.
 圧電素子15に電圧が印加されないことにより、対物レンズ14bはI番目の領域でのZ方向位置を保ちつつI+1番目の領域に移動する。つまり、同期されているステージ移動処理によって観察対象領域RがX軸走査方向へ一単位移動するに際して、対物レンズ14bは水平面(XY平面)に平行に移動する。対物レンズ14bのZ方向への移動を停止することは、本開示のフォーカス制御停止処理の一例である。 Since no voltage is applied to the piezoelectric element 15, the objective lens 14b moves to the (I + 1) th region while maintaining the Z direction position in the Ith region. That is, when the observation target region R moves one unit in the X-axis scanning direction by the synchronized stage movement processing, the objective lens 14 b moves parallel to the horizontal plane (XY plane). Stopping the movement of the objective lens 14b in the Z direction is an example of the focus control stop process of the present disclosure.
 なお、圧電素子15に電圧を印加せず、対物レンズ14bを水平面(XY平面)に平行に移動させる代わりに、対物レンズ14bを基準面に対応する初期位置に復帰させる処理を行ってもよい。この場合、第2実施形態に係る撮像制御部21は、Z方向位置情報と電圧テーブル500に基づいて適当な値の電圧を圧電素子に印加することで、対物レンズ14bを初期位置に復帰させることができる。対物レンズ14bを初期位置に復帰させることは、本開示のフォーカス制御停止処理の一例である。 Instead of moving the objective lens 14 b in parallel to the horizontal plane (XY plane) without applying a voltage to the piezoelectric element 15, processing may be performed to restore the objective lens 14 b to the initial position corresponding to the reference plane. In this case, the imaging control unit 21 according to the second embodiment returns the objective lens 14 b to the initial position by applying a voltage of an appropriate value to the piezoelectric element based on the Z direction position information and the voltage table 500. Can. The return of the objective lens 14 b to the initial position is an example of the focus control stop process of the present disclosure.
 また、I+1番目の領域において撮像は行われず、狭視野画像は生成されない。この領域は、もし撮像が行われたとしても合焦画像を生成することができない領域である点に注意されたい。 In addition, imaging is not performed in the (I + 1) th region, and a narrow-field image is not generated. It should be noted that this area is an area where an in-focus image can not be generated even if imaging is performed.
 第2実施形態に係るステップS100の走査処理(図10参照)が終了した時点で、培養容器50の底面上の各領域に関し、レンジオーバーが発生しなかった領域について狭視野画像が生成され、一次記憶部72、CPU70の図示しないキャッシュメモリ、または二次記憶部74に記憶されている。一方、圧電素子15のレンジオーバーが発生した領域については、狭視野画像が記憶されていない。 At the end of the scanning process (see FIG. 10) in step S100 according to the second embodiment, a narrow-field image is generated for each area on the bottom surface of the culture vessel 50 in which range over has not occurred. It is stored in the storage unit 72, a cache memory (not shown) of the CPU 70, or the secondary storage unit 74. On the other hand, no narrow-field image is stored in the region where the range over of the piezoelectric element 15 has occurred.
 第2実施形態に係るステップS100の走査処理、図10の処理はステップS102に移行し、第1実施形態と同様に広視野画像の生成が行われる。第2実施形態において生成される広視野画像において、撮像が行われていない圧電素子15のレンジオーバーが発生した領域について、ある色を用いて塗りつぶすことが可能である。一例として、黒色でベタ塗りすることができる。 The scanning process of step S100 according to the second embodiment and the process of FIG. 10 shift to step S102, and the generation of a wide-field image is performed as in the first embodiment. In the wide-field-of-view image generated in the second embodiment, it is possible to paint using a certain color the region where the range over of the piezoelectric element 15 where imaging is not performed has occurred. As an example, it can be black and solid.
 第2実施形態の顕微鏡装置のその他の構成および作用については、第1実施形態の顕微鏡装置と同様である。 The other configuration and operation of the microscope apparatus of the second embodiment are the same as those of the microscope apparatus of the first embodiment.
 本開示の技術の第2実施形態によれば、観察対象を収容した培養容器50の底面を走査する過程で、価値の低い非合焦画像しか生成できない状況では撮像を実行せず、画像データを記憶しないため、走査全体に要する記憶装置のデータ容量を低減することができる。 According to the second embodiment of the technology of the present disclosure, in the process of scanning the bottom of the culture vessel 50 containing the observation target, imaging is not performed in a situation where only low-value out-of-focus images can be generated. Since the data is not stored, the data capacity of the storage device required for the entire scan can be reduced.
 また第2実施形態によれば、対物レンズ14bを合焦位置に搬送することができない状況で、無理なフォーカス制御を行わないことにより、結像光学系の振動を抑制できる。 Further, according to the second embodiment, it is possible to suppress the vibration of the imaging optical system by not performing unreasonable focus control in a situation where the objective lens 14 b can not be transported to the in-focus position.
 さらに第2実施形態によれば、対物レンズ14bを合焦位置に搬送することができない状況で、対物レンズ14bを初期位置に復帰させることにより、フォーカス制御をリセットし、培養容器50の底面の形状に応じた新たなフォーカス制御を開始することができる。 Furthermore, according to the second embodiment, the focus control is reset by returning the objective lens 14b to the initial position in a situation where the objective lens 14b can not be transported to the in-focus position, and the shape of the bottom surface of the culture vessel 50 New focus control can be started according to
<変形例>
 以下、本開示の変形例を説明する。以下では第1実施形態に基づいて本変形例を説明するが、本変形例は第2実施形態に適用することも可能である。本変形例に係る顕微鏡装置は、第1実施形態に係る顕微鏡装置とは、検出部の構成が異なる。本変形例の顕微鏡装置は、その他の構成は、第1実施形態と同様であるので、以下、本変形例の顕微鏡装置の検出部の構成を中心に説明する。
<Modification>
Hereinafter, modifications of the present disclosure will be described. Although the present modification will be described below based on the first embodiment, the present modification can also be applied to the second embodiment. The microscope apparatus according to the present modification differs from the microscope apparatus according to the first embodiment in the configuration of the detection unit. The other configuration of the microscope apparatus of this modification is the same as that of the first embodiment, and therefore, the configuration of the detection unit of the microscope apparatus of this modification will be mainly described below.
 第1実施形態の検出部18は、2つの変位センサ18a及び18bを備え、観察対象領域RのX軸走査方向の変更に応じて使用する変位センサを切り替えるようにしたが、第2実施形態の検出部19は、単一の変位センサを有し、観察対象領域RのX軸走査方向の変更に応じて、その変位センサの位置を切り替えるようにしたものである。図17に、検出部19を有する顕微鏡装置本体10の一例を示す。 The detection unit 18 of the first embodiment includes the two displacement sensors 18a and 18b, and switches the displacement sensor to be used according to the change in the X-axis scanning direction of the observation target region R, but the second embodiment The detection unit 19 has a single displacement sensor, and switches the position of the displacement sensor in accordance with the change of the X-axis scanning direction of the observation target region R. An example of the microscope apparatus main body 10 which has a detection part 19 in FIG. 17 is shown.
 図18および図19は、本変形例の検出部19の具体的な構成を示す図である。検出部19は、図18および図19に示すように、変位センサ19aと変位センサ19aを案内してその位置を移動させるガイド機構19bとを備えている。 FIGS. 18 and 19 are diagrams showing a specific configuration of the detection unit 19 of the present modification. The detection unit 19 includes a displacement sensor 19a and a guide mechanism 19b for guiding the displacement sensor 19a and moving the position as shown in FIGS.
 変位センサ19aは、第1実施形態の第1および第2変位センサ18a、18bと同様であり、レーザ変位センサから構成されるものである。 The displacement sensor 19a is the same as the first and second displacement sensors 18a and 18b of the first embodiment, and is constituted by a laser displacement sensor.
 ガイド機構19bは、半円弧状のガイド部材を備えたものであり、このガイド部材に沿って変位センサ19aを移動させるものである。ガイド部材は、結像光学系14(対物レンズ14b)を挟んでX方向について一方の側から他方の側に変位センサ19aを移動させるものである。 The guide mechanism 19 b includes a semicircular guide member, and moves the displacement sensor 19 a along the guide member. The guide member moves the displacement sensor 19a from one side to the other side in the X direction across the imaging optical system 14 (the objective lens 14b).
 図18は、観察対象領域RのX軸走査方向が、図18の矢印方向(図18の右方向)である場合における変位センサ19aの位置を示す図である。一方、図19は、観察対象領域RのX軸走査方向が、図19の矢印方向(図19の左方向)である場合における変位センサ19aの位置を示す図である。観察対象領域RのX軸走査方向が図18の矢印方向から図19の矢印方向に変更された場合には、変位センサ19aは図18に示す位置からガイド機構19bのガイド部材に沿って移動し、図19に示す位置に切り替えられる。 FIG. 18 is a view showing the position of the displacement sensor 19a when the X-axis scanning direction of the observation region R is the arrow direction of FIG. 18 (the right direction of FIG. 18). On the other hand, FIG. 19 is a view showing the position of the displacement sensor 19a when the X-axis scanning direction of the observation target region R is the arrow direction of FIG. 19 (left direction in FIG. 19). When the X-axis scanning direction of the observation region R is changed from the arrow direction of FIG. 18 to the arrow direction of FIG. 19, the displacement sensor 19a moves along the guide member of the guide mechanism 19b from the position shown in FIG. , Is switched to the position shown in FIG.
 なお、第2実施形態においては、変位センサの位置を移動させる変位センサ移動機構として上述したガイド機構19bを設けるようにしたが、変位センサ移動機構の構成としてはこれに限らず、変位センサの位置を同様に変更可能な構成であれば、その他の構成を用いてもよい。 In the second embodiment, the guide mechanism 19b described above is provided as a displacement sensor moving mechanism for moving the position of the displacement sensor, but the configuration of the displacement sensor moving mechanism is not limited to this, and the position of the displacement sensor If it is the structure which can be changed similarly, you may use another structure.
 また、第1及び第2実施形態では、広視野画像取得プログラム80を二次記憶部74から読み出す場合を例示したが、必ずしも最初から二次記憶部74に記憶させておく必要はない。例えば、図22に示すように、SSD(Solid State Drive)、USB(Universal Serial Bus)メモリ、又はDVD-ROM(Digital versatile disc-Read Only Memory)等の任意の可搬型の記憶媒体800に先ずは広視野画像取得プログラム80を記憶させておいてもよい。この場合、記憶媒体800の広視野画像取得プログラム80が顕微鏡装置90にインストールされ、インストールされた広視野画像取得プログラム80がCPU70によって実行される。 In the first and second embodiments, the wide-field-of-view image acquisition program 80 is read from the secondary storage unit 74 by way of example, but it is not always necessary to store the wide-field image acquisition program 80 in the secondary storage unit 74 from the beginning. For example, as shown in FIG. 22, first, any portable storage medium 800 such as a solid state drive (SSD), a universal serial bus (USB) memory, or a digital versatile disc-read only memory (DVD-ROM) may be used. The wide view image acquisition program 80 may be stored. In this case, the wide-field image acquisition program 80 of the storage medium 800 is installed in the microscope apparatus 90, and the installed wide-field image acquisition program 80 is executed by the CPU 70.
 また、通信網(図示省略)を介して顕微鏡装置90に接続される他のコンピュータ又はサーバ装置等の記憶部に広視野画像取得プログラム80を記憶させておき、広視野画像取得プログラム80が顕微鏡装置90の要求に応じてダウンロードされるようにしてもよい。この場合、ダウンロードされた広視野画像取得プログラム80はCPU70によって実行される。 Further, the wide-field image acquisition program 80 is stored in a storage unit such as another computer or a server device connected to the microscope apparatus 90 via a communication network (not shown), and the wide-field image acquisition program 80 It may be downloaded according to 90 requests. In this case, the downloaded wide-field image acquisition program 80 is executed by the CPU 70.
 また、第1及び第2実施形態で説明した広視野画像取得処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。 Moreover, the wide-field-of-view image acquisition processing described in the first and second embodiments is merely an example. Therefore, needless to say, unnecessary steps may be deleted, new steps may be added, or the processing order may be changed without departing from the scope of the present invention.
 また、第1及び第2実施形態では、コンピュータを利用したソフトウェア構成により広視野画像取得処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、広視野画像取得処理が実行されるようにしてもよい。広視野画像取得処理がソフトウェア構成とハードウェア構成との組み合わせた構成によって実行されるようにしてもよい。 Further, in the first and second embodiments, the case where the wide view image acquisition processing is realized by the software configuration using a computer is exemplified, but the technology of the present disclosure is not limited to this. For example, instead of the software configuration using a computer, the wide-field image acquisition processing may be executed only by a hardware configuration such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC). . The wide view image acquisition processing may be performed by a combination of a software configuration and a hardware configuration.
10  顕微鏡装置本体
11  白色光源
12  コンデンサレンズ
13  スリット板
14  結像光学系
14a 位相差レンズ
14b 対物レンズ
14c 位相板
14d 結像レンズ
15  圧電素子
16  撮像素子
17  ステージ駆動装置
18  検出部
18a 変位センサ
18b 変位センサ
19  検出部
19a 変位センサ
19b ガイド機構
20  顕微鏡制御装置
21  撮像制御部
22  ステージ制御部
30  表示装置
40  入力装置
50  培養容器
51  ステージ
51a 開口
72  一次記憶部
74  二次記憶部
80  広視野画像取得プログラム
90  顕微鏡装置
500 電圧テーブル
800 記憶媒体
D   一辺
E   走査終了点
L   照明光
M   実線
Pd  検出位置
Pr  位置
R1  範囲
R2  範囲
R   観察対象領域
S   走査開始点
V3  電圧値
W   ウェル
DESCRIPTION OF SYMBOLS 10 microscope apparatus main body 11 white light source 12 condenser lens 13 slit plate 14 imaging optical system 14a phase difference lens 14b objective lens 14c phase plate 14d imaging lens 15 piezoelectric element 16 imaging element 17 stage drive device 18 detection unit 18a displacement sensor 18b displacement Sensor 19 Detection unit 19a Displacement sensor 19b Guide mechanism 20 Microscope control device 21 Imaging control unit 22 Stage control unit 30 Display device 40 Input device 50 Culture vessel 51 Stage 51a Opening 72 Primary storage unit 74 Secondary storage unit 80 Wide field of view image acquisition program 90 microscope apparatus 500 voltage table 800 storage medium D one side E scan end point L illumination light M solid line Pd detection position Pr position R1 range R2 range R observation object area S scan start point V3 voltage value W well

Claims (13)

  1.  観察対象が収容された容器内の前記観察対象を示す観察対象光を撮像素子に結像可能な結像光学系と、
     駆動可能範囲内において駆動されることにより前記結像光学系を光軸方向に移動させる駆動部材と、
     前記容器が設置されるステージ及び前記結像光学系の少なくとも一方の前記光軸方向に交差する面内での移動により前記結像光学系を前記容器内の各領域に対して移動させることで前記撮像素子が前記容器内の各領域を走査している状態で、前記各領域のうちの特定領域に光軸が到達する前に、前記結像光学系を前記特定領域に対する合焦位置に移動させる際の前記駆動部材の駆動量が前記駆動可能範囲を超える場合、前記光軸の前記特定領域への到達時に、撮像データ節約処理を実行する制御部と、
     を含む顕微鏡装置。
    An imaging optical system capable of imaging an observation target light indicating the observation target in a container in which the observation target is accommodated on an imaging element;
    A driving member for moving the imaging optical system in the optical axis direction by being driven within a drivable range;
    By moving the imaging optical system with respect to each region in the container by moving the stage on which the container is installed and at least one of the imaging optical system in a plane intersecting the optical axis direction. The imaging optical system is moved to the in-focus position with respect to the specific area before the optical axis reaches the specific area of the respective areas in a state where the imaging element scans each area in the container. A control unit that executes an imaging data saving process when the optical axis reaches the specific region when the drive amount of the drive member at the time of movement exceeds the drivable range;
    Microscope equipment.
  2.  前記撮像データ節約処理は、前記特定領域を通過した観察対象光を前記撮像素子に結像させることにより生成された画像データを、所定量より高い圧縮率で圧縮して記憶することを含む、
     請求項1に記載の顕微鏡装置。
    The imaging data saving process includes compressing and storing image data generated by focusing the observation target light having passed through the specific area on the imaging device at a compression rate higher than a predetermined amount.
    The microscope apparatus according to claim 1.
  3.  前記撮像データ節約処理は、前記結像光学系による前記特定領域の撮像を回避することを含む、
     請求項1に記載の顕微鏡装置。
    The imaging data saving process includes avoiding imaging of the specific area by the imaging optical system.
    The microscope apparatus according to claim 1.
  4.  前記駆動部材は、前記結像光学系の光軸方向に沿って変形可能な圧電素子である、
     請求項1から請求項3のいずれか一項に記載の顕微鏡装置。
    The driving member is a piezoelectric element that can be deformed along the optical axis direction of the imaging optical system.
    The microscope apparatus according to any one of claims 1 to 3.
  5.  前記特定領域の前記光軸方向での位置を検出する検出部を更に含み、
     前記特定領域の前記合焦位置は、前記検出部によって検出された前記光軸方向での前記位置に基づいて算出される、
     請求項1から請求項4のいずれか一項に記載の顕微鏡装置。
    It further includes a detection unit that detects the position of the specific area in the optical axis direction,
    The in-focus position of the specific area is calculated based on the position in the optical axis direction detected by the detection unit.
    The microscope apparatus as described in any one of Claims 1-4.
  6.  前記検出部は、前記各領域に対する主走査方向に前記結像光学系を挟んで並べて設けられ、前記特定領域の前記光軸方向での位置を各々検出する一対のセンサを有する、
     請求項5に記載の顕微鏡装置。
    The detection unit includes a pair of sensors provided side by side across the imaging optical system in the main scanning direction with respect to each of the areas, and detecting the position of the specific area in the optical axis direction.
    The microscope apparatus according to claim 5.
  7.  前記結像光学系は、前記光軸方向に移動可能な対物レンズを有し、
     前記駆動部材は前記光軸方向に前記対物レンズを移動させる、
     請求項1から請求項6のいずれか一項に記載の顕微鏡装置。
    The imaging optical system has an objective lens movable in the optical axis direction,
    The drive member moves the objective lens in the optical axis direction.
    The microscope apparatus according to any one of claims 1 to 6.
  8.  前記容器は、複数のウェルを有するウェルプレートである、
     請求項1から請求項7のいずれか一項に記載の顕微鏡装置。
    The container is a well plate having a plurality of wells,
    The microscope apparatus according to any one of claims 1 to 7.
  9.  コンピュータを、
     請求項1から請求項8のいずれか一項に記載の顕微鏡装置に含まれる前記制御部として機能させるためのプログラム。
    Computer,
    The program for functioning as said control part contained in the microscope apparatus as described in any one of Claims 1-8.
  10.  観察対象が収容された容器内の前記観察対象を示す観察対象光を撮像素子に結像可能な結像光学系と、
     駆動可能範囲内において駆動されることにより前記結像光学系を光軸方向に移動させる駆動部材と、
     前記容器が設置されるステージ及び前記結像光学系の少なくとも一方の前記光軸方向に交差する面内での移動により前記結像光学系を前記容器内の各領域に対して移動させることで前記撮像素子が前記容器内の各領域を走査している状態で、前記各領域のうちの特定領域に光軸が到達する前に、前記結像光学系を前記特定領域に対する合焦位置に移動させる際の前記駆動部材の駆動量が前記駆動可能範囲を超える場合、前記光軸の前記特定領域への到達時に、前記駆動部材にフォーカス制御停止処理を実行させる制御部と、
     を含む顕微鏡装置。
    An imaging optical system capable of imaging an observation target light indicating the observation target in a container in which the observation target is accommodated on an imaging element;
    A driving member for moving the imaging optical system in the optical axis direction by being driven within a drivable range;
    By moving the imaging optical system with respect to each region in the container by moving the stage on which the container is installed and at least one of the imaging optical system in a plane intersecting the optical axis direction. The imaging optical system is moved to the in-focus position with respect to the specific area before the optical axis reaches the specific area of the respective areas in a state where the imaging element scans each area in the container. A control unit that causes the drive member to execute focus control stop processing when the optical axis reaches the specific region when the drive amount of the drive member at the time of movement exceeds the drivable range;
    Microscope equipment.
  11.  前記フォーカス制御停止処理は、前記光軸が前記特定領域へ到達する前または前記光軸が前記特定領域へ到達した後に、前記駆動部材の前記光軸方向への移動を停止することを含む、
     請求項10に記載の顕微鏡装置。
    The focus control stop process includes stopping the movement of the drive member in the optical axis direction before the optical axis reaches the specific area or after the optical axis reaches the specific area.
    The microscope apparatus according to claim 10.
  12.  前記フォーカス制御停止処理は、前記光軸が前記特定領域へ到達する前または前記光軸が前記特定領域へ到達した後に、前記駆動部材を前記光軸方向の基準位置へ移動させることを含む、
     請求項10に記載の顕微鏡装置。
    The focus control stop processing includes moving the drive member to a reference position in the optical axis direction before the optical axis reaches the specific area or after the optical axis reaches the specific area.
    The microscope apparatus according to claim 10.
  13.  コンピュータを、
     請求項10から請求項12のいずれか一項に記載の顕微鏡装置に含まれる前記制御部として機能させるためのプログラム。
    Computer,
    The program for functioning as said control part contained in the microscope apparatus as described in any one of Claims 10-12.
PCT/JP2018/040208 2017-11-08 2018-10-30 Microscope device and program WO2019093186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019552730A JP6830548B2 (en) 2017-11-08 2018-10-30 Microscope equipment and programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-215884 2017-11-08
JP2017215884 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093186A1 true WO2019093186A1 (en) 2019-05-16

Family

ID=66438500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040208 WO2019093186A1 (en) 2017-11-08 2018-10-30 Microscope device and program

Country Status (2)

Country Link
JP (1) JP6830548B2 (en)
WO (1) WO2019093186A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106615A (en) * 1986-05-17 1988-05-11 Sumitomo Electric Ind Ltd Image processor with focal position detecting function
JPH109819A (en) * 1996-06-26 1998-01-16 Olympus Optical Co Ltd Distance measuring equipment
JPH10288734A (en) * 1997-04-15 1998-10-27 Nikon Corp Automatic focusing device
JP2000352661A (en) * 1999-06-14 2000-12-19 Olympus Optical Co Ltd Focusing device
JP2010072017A (en) * 2008-09-16 2010-04-02 Yokogawa Electric Corp Automatic focusing device
JP2014215582A (en) * 2013-04-30 2014-11-17 オリンパス株式会社 Confocal microscope device
JP2016024042A (en) * 2014-07-18 2016-02-08 レーザーテック株式会社 Inspection device and autofocusing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011977A (en) * 2005-07-04 2007-01-18 Nikon Corp Image processing method, computer executable program and microscope system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106615A (en) * 1986-05-17 1988-05-11 Sumitomo Electric Ind Ltd Image processor with focal position detecting function
JPH109819A (en) * 1996-06-26 1998-01-16 Olympus Optical Co Ltd Distance measuring equipment
JPH10288734A (en) * 1997-04-15 1998-10-27 Nikon Corp Automatic focusing device
JP2000352661A (en) * 1999-06-14 2000-12-19 Olympus Optical Co Ltd Focusing device
JP2010072017A (en) * 2008-09-16 2010-04-02 Yokogawa Electric Corp Automatic focusing device
JP2014215582A (en) * 2013-04-30 2014-11-17 オリンパス株式会社 Confocal microscope device
JP2016024042A (en) * 2014-07-18 2016-02-08 レーザーテック株式会社 Inspection device and autofocusing method

Also Published As

Publication number Publication date
JPWO2019093186A1 (en) 2020-11-26
JP6830548B2 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
EP1830217B1 (en) Image acquiring apparatus, image acquiring method, and image acquiring program
EP1830216B1 (en) Image acquiring apparatus, image acquiring method, and image acquiring program
US20190268573A1 (en) Digital microscope apparatus for reimaging blurry portion based on edge detection
CN114779459A (en) Real-time autofocus scanning
JP2007233094A (en) Image acquisition device, image acquisition method, and image acquisition program
US9906729B2 (en) Imaging apparatus and microscope system
CN115061271A (en) Real-time automatic focusing algorithm
WO2019093186A1 (en) Microscope device and program
WO2020012825A1 (en) Image generation device, image generation method, and image generation program
KR102157450B1 (en) Observation device and method, observation device control program
JPWO2019202979A1 (en) Observation device, operation method of observation device, and observation control program
WO2019097954A1 (en) Microscope device and program
KR102116199B1 (en) Observation device and method and observation device control program
JP2017173683A (en) Microscope system and specimen observation method
US11480780B2 (en) Observation device, observation method, and observation device control program
JP5730696B2 (en) Image processing apparatus and image display system
KR102318185B1 (en) Observation device and method and observation device control program
JP4914567B2 (en) Scanning confocal microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875173

Country of ref document: EP

Kind code of ref document: A1