WO2019093048A1 - Combined electricity storage system - Google Patents

Combined electricity storage system Download PDF

Info

Publication number
WO2019093048A1
WO2019093048A1 PCT/JP2018/037709 JP2018037709W WO2019093048A1 WO 2019093048 A1 WO2019093048 A1 WO 2019093048A1 JP 2018037709 W JP2018037709 W JP 2018037709W WO 2019093048 A1 WO2019093048 A1 WO 2019093048A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
current
power
capacitive
switch
Prior art date
Application number
PCT/JP2018/037709
Other languages
French (fr)
Japanese (ja)
Inventor
井上 健士
茂樹 牧野
大輝 小松
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019093048A1 publication Critical patent/WO2019093048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a complex system of batteries for supplying power to an electrical load.
  • Electric vehicles have a quick charge that shortens the charge time. This quick charge charges the battery to a charge rate of 80% in about 30 minutes of charge.
  • a system combining 8kWh of capacity type batteries (maximum charge rate 2C) and 2kWh of power type batteries (maximum charge rate 20C) (traveling about 100km by one charge), theoretically up to 16kW + 40kW Charge power can be received, and even if it is 1 minute charge, 0.93 kWh (about 9.3 km traveling) becomes possible.
  • the capacity kWh of the power type battery is specified, and the charging energy is 3.33 kWh, but it is still possible to travel about 33.3 km.
  • charging is 4kWh (about 32km traveling) in the first 5 minutes and 0.8kWh (about 6.4km traveling) in the first one minute.
  • this vehicle is loaded with 2kWh power type batteries, it takes about 6kwh in the first 5 minutes (6kWh for power type batteries to fully charge, approximately 48km travel), 1.47kWh in the first minute (approximately 11.7km travel) It becomes charge.
  • Patent Document 1 is a patent focusing on the prevention of circulating current (hereinafter referred to as cross current), and it is difficult to apply it to rapid charging as it is not conscious of rapid charging. This is because even if the battery potential is different, the charging current is further applied, so that the cross flow does not necessarily occur as a circuit equation.
  • cross current circulating current
  • An object of the present invention is to provide a control in which a charging power is increased as much as possible in a short time by a configuration in which a capacitive battery pack and a power battery pack are connected in parallel.
  • the capacitive battery pack switch and the power are charged when charging the composite storage system.
  • the battery pack switch is turned on to start charging, and when the current flowing to either the capacitive battery pack or the power battery pack is on the discharge side, the composite battery switch switch off on the discharge side Power storage system.
  • the figure of the system configuration example at the time of applying a compound electricity storage system to an electric vehicle The block diagram of the battery part of a composite electrical storage system. Control flow diagram of switch only. The principle figure which showed the current range which becomes the maximum charge current. Control flow diagram for both current and switch.
  • the capacitive battery pack 22 and the power battery pack 21 are connected in parallel via the capacitive battery pack switch 24 and the power battery pack switch 23. Start charging with the capacitive battery pack switch 24 and the power battery pack switch 23 turned on, and discharge when the current flowing to either the capacitive battery pack 22 or the power battery pack 21 becomes the discharge side. The battery pack switch on the side is off. Further, in the present embodiment, in the configuration in which the capacitive battery pack 22 and the power battery pack 21 are connected in parallel to the charger via the switch and the switch is controlled by the controller, the capacitive battery pack 22 and the power battery are An ammeter is provided in the pack 21.
  • the controller instructs the charger to calculate the total charging current, and the current to each battery pack is controlled to be equal to or less than the maximum C rate of the battery.
  • a charging time of 30 minutes is required. For example, if the quick charging is stopped for about 1 minute, the vehicle can only travel for about several kilometers.
  • the power storage battery pack 21 is connected in parallel to the conventional capacity battery pack 22 and parallel combination of switches is used for cost reduction.
  • FIG. 1 shows an embodiment of the present invention.
  • FIG. 1 shows an electric vehicle 10, which includes a motor generator 11, an inverter 12, a battery unit 13, an ECU 14, a communication line 15 for exchanging information to the ECU 14 with the battery unit 13 and the inverter 12, a quick charger 16, and a charging connector 17.
  • a motor generator 11 for generating power
  • an inverter 12 for converting DC to DC to DC to DC to DC to DC to DC or a battery unit 13
  • ECU 14 a communication line 15 for exchanging information to the ECU 14 with the battery unit 13 and the inverter 12, a quick charger 16, and a charging connector 17.
  • the electric vehicle 10 supplies electric power from the battery unit 13 to the inverter 12 and rotates by driving the motor generator 11. At the time of regeneration, the electric power generated by the motor generator 11 is rectified by the inverter and charged in the battery unit 13.
  • FIG. 1 shows the same motor and generator in the motor generator 11, the motor and the generator may be separate.
  • the quick charger 16 is connected to the electric vehicle 10 through the charging connector 17, and the power line 18 is connected to the battery unit 13. Further, the ECU 14 and the quick charger 16 are connected via the communication line 15, and the ECU 14 instructs the quick charger 16 a current command to charge the battery unit 13.
  • the quick charger 16 and the charging connector 17 may use general-purpose quick charging standards or a wireless power feeding system.
  • the battery unit 13 includes a power type battery pack 21, a capacity type battery pack 22 for holding a sustaining power, a power type battery pack switch 23, and a capacity type battery pack switch 24.
  • the ECU 14 issues an on / off command of the power type battery pack switch 23 (hereinafter sometimes simply referred to as a switch) and the capacitance type battery pack switch 24 (hereinafter sometimes simply referred to as a switch)
  • the current and voltage information of the capacitive battery pack 22 are read, and a current command value is sent to the quick charger 16.
  • the controller 14 may be prepared separately from the ECU 14.
  • the sequence of switches will now be described.
  • the idea here is to be able to charge the power that is the largest in the first 5 minutes or less. Further, as a constraint condition, the charging current of the capacity type battery pack 22 and the power type battery pack 21 should be less than a specified value.
  • the cross current is a phenomenon in which a battery with a higher voltage is discharged to a battery with a lower battery voltage when the two battery voltages connected in parallel are not aligned. In this case, the current charged to the low battery voltage is larger than the current charged from the charger.
  • step 31 both switch on command steps
  • step 32 current measurement step
  • step 33 judgement of cross current
  • step 34 judgement of charge end
  • the definition of the cross current is various, but here, it is defined as "the battery pack is charged while the battery pack is charged, and the other battery is discharged”.
  • the cross flow in step 33 it is assumed that either the power battery pack 21 or the capacity battery pack 22 is discharged.
  • Step 34 ends charging. In this charge end, it is assumed that the driver has stopped charging or is fully charged. If it is determined in step 34 that the charging has not been completed, the process proceeds to step 32. If the charging is completed, the flow of FIG. 3 is ended.
  • step 35 switch-off step of the battery pack to be discharged
  • the battery pack being discharged is switched off, and the process is transferred to step 36.
  • step 36 battery current / voltage measurement step
  • the current and voltage of the capacitive battery pack 22 and the current and voltage of the power battery pack 21 are measured, and the process proceeds to step 37.
  • step 37 it is determined whether or not cross current is generated when connected in parallel, and if it is determined that cross current is generated, the process is transferred to step 31; Transfer the process.
  • the cross current judgment is made by the difference in the signs of the estimated currents ip (power type battery pack 21) and ic (capacitance type battery pack 22) when connected in parallel. From the circuit equation, ip and ic indicate the direct current resistance rp of the power type battery pack 21, the direct current resistance rc of the capacitive type battery pack 22, the open circuit voltage (with polarization) vp of the power type battery pack 21 and the open type of the capacitive type battery pack 22 It is calculated as Expression 1 from voltage (polarization included) vc.
  • R rc ⁇ rp / (rc + rp)
  • Vb (rc ⁇ vp + rp ⁇ vc) / (rp + rc)
  • Ic (Vb-Vc) / rc
  • Ip (Vb-Vp) / rc (Equation 1)
  • rc and rp may be stored in advance in a table or may be values estimated from the current / voltage difference at the previous switch off timing. Since vp and vc are open circuit voltages (including polarization), they may be calculated from the terminal voltage as current ⁇ DC resistance.
  • step 38 (judgement of charge end) whether or not the charge is ended. If the charge is ended, the flow of FIG. 3 is ended, otherwise the processing is shifted to step 36.
  • steps 31 to 34 and steps 35 to 38 may be reversed.
  • the flow of FIG. 3 is implemented as a program of the ECU 14 of FIG. 1 or implemented as a program in a separately prepared controller.
  • the horizontal axis represents the current ic 41 of the capacitive battery pack 22, and the vertical axis represents the constraints ic ⁇ Icmax 43 and ip ⁇ Ipmax 44 with the current ip 42 of the power battery pack 21.
  • Voltage condition Vc + rcic Vp + in parallel It is a figure which becomes rpip45.
  • 41 is a capacitive battery current axis (+ is the charge side)
  • 42 is a power battery current axis (+ is the charge side)
  • 43 is a maximum current of the capacitive battery pack 22
  • 44 is a maximum current of the power battery pack 21
  • 45 is a condition straight line where the voltage is equal
  • 46 is a current total straight line
  • 47 is a maximum / crossflow restriction region.
  • the switch on the current negative side may be disconnected.
  • the maximum / crossflow restriction region 47 of the restriction condition rectangle of FIG. 4 may be adjusted to be Vc + rcic ⁇ Vmax and Vp + rpip ⁇ Vmax.
  • step 51 DC resistance / open voltage measurement step
  • DC resistance and open voltage of each of the capacity type battery pack 22 and the power type battery pack 21 are measured.
  • the DC resistance may use a value set in advance in a table.
  • step 52 each battery pack estimated current calculation step
  • the estimated current is calculated.
  • the charging current estimated values ip_cand and ic_cand calculated as Equation 2 and the charging current estimated values ip_cand2 and ic_cand2 calculated as Equation 3 are used.
  • the value of Expression 2 is a candidate for an intersection of the condition line 45 where the voltage becomes equal to the maximum / crossflow restriction condition area 47 which is the restriction condition of FIG. 4.
  • the value of Equation 3 is the point of intersection of the current total straight line 46 and the condition 45 where the voltage is equal.
  • Vc + rcic Vp + rpip
  • Imax ic + ip are ic_cand2, ip_cand2 (Equation 3)
  • ip_cand + ic_cand max Imax at step 53 charger maximum current determination)
  • ic_cand> 0 at step 54 capacitance battery pack 22 cross current determination)
  • ip_cand at step 56 power type battery pack 21 cross current determination) If> 0, both switches will be turned on with the current command value of the charger as ip_cand + ic_cand.
  • step 58 charge command step for both batteries
  • step 58 charge command step for both batteries
  • the capacitive battery pack 22 and the power battery pack 21 are connected again in parallel again.
  • the capacitive battery pack 22 and the power battery pack 21 are again used as the capacitive battery pack switch 24 and the power battery It is connected in parallel via a pack switch 23.
  • step 53 If ip_cand + ic_cand ⁇ Imax in step 53 and if ic_cand ⁇ 0 in step 54, the capacitive battery pack 22 in step 55 (the charging step of the power battery pack 21) is turned off, and the power battery pack 21 is On, set the current command of the charger to min (Ipmax, (Vmax-Vp) / rp). If it is determined in step 53 that ip_cand + ic_cand ⁇ Imax, and if ic_cand> 0 in step 54 and ip_cand ⁇ 0 in step 56, the power type battery pack 21 of step 57 (charging step of capacitive battery pack 22) is turned off. The capacitance type battery pack 22 is turned on, and the current command of the charger is set to min [Icmax, (Vmax-Vc) / rc].
  • both ic_cand2 and ip_cand2 are within the constraint rectangle 47, turn on both battery packs and let the charger current command be Imax. That is, if Ic_cand2 ⁇ 0 in step 58, the capacity type battery pack 22 in step 55 is turned off and the power type battery pack 21 is turned on, and the current command of the charger is min [Ipmax, (Vmax ⁇ Vp) / rp]. If ic_cand2> 0 in step 59 and ip_cand2 ⁇ 0 in step 501, the power type battery pack 21 is turned off, the capacity type battery pack 22 is turned on, and the current command of the charger is min [Icmax, It is set as Vmax-Vc) / rc].
  • the combined storage system When charging a current command value to the charger when charging with the charger, the capacitive battery pack 22 and the power are determined by the open circuit voltage value and the DC resistance value of the capacitive battery pack 22 and the power battery pack 21. If it is estimated that the current value estimation of either of the capacitive battery pack 22 and the power battery pack 21 can be estimated to be a charge, then the capacitive battery pack switch 24 and the power battery are determined.
  • the current command value be min (sum of estimated values of the capacity type battery pack 22 and the power type battery pack 21, the maximum charging current of the charger), If it is an estimated current value that causes discharge in either the capacitive battery pack 22 or the power battery pack 21, the switch on the battery pack side estimated to be discharged is turned off and the charge current command value is min (battery pack turned on).
  • the maximum current value on the side is set as (maximum voltage of the battery pack to be turned on-open voltage of the battery pack to be turned on) / battery pack direct current resistance to be turned on.
  • step 502 determines whether or not the charge is ended. If the charging has not ended, the process returns to step 51. If the charging is ended, the flow of FIG. 5 is ended.
  • DC resistance and open circuit voltage when returning to step 51, only the current voltage is measured without changing the state of the switch. If there is a change in the previous switch, DC resistance is calculated from the current and voltage difference. . Otherwise, the DC resistance is the previous estimated value or the value referred to in the table, and the open circuit voltage is taken as voltage-DC resistance ⁇ current.
  • step 57 the constant value control in which the current of the capacitive battery pack 22 is min [Icmax, (Vmax-Vc) / rc] is either Ipmax or control to be a constant voltage Vmax.
  • Icmax current of the capacitive battery pack 22
  • Vmax-Vc voltage of capacity type battery pack 22
  • rc constant voltage
  • step 58 control is performed to set min (ip_cand + ic_cand, Imax) in the current command of the charger, but there is also a possibility that each battery current may exceed the maximum value.
  • current command value current command value previous value + Gain 1 ⁇ (maximum current of power type battery pack 21 ⁇ current measured value of power type battery pack 21) + Gain 2 ⁇ ( ⁇ capacity of capacitive type battery pack 22)
  • the feedback control is applied as the current measurement value of the battery pack 22.
  • the values of Gain1 and Gain2 use predetermined positive constants which do not become unstable.
  • the total battery pack capacity has a relationship of: Capacitive battery pack 22> power battery pack 21 capacity.
  • the maximum current the maximum current of the total capacity battery pack 22> the maximum current of the total power battery pack 21.
  • total means that if the maximum current of one pack is 100A, it is converted to 200A if two parallel.
  • the battery in the battery unit 13 mounted in FIG. 1 may be an olivine iron lithium ion battery or a nickel-manganese-cobalt lithium ion mounted on an existing EV, or a separate semi-solid lithium ion A battery, a lead battery, or a nickel hydrogen battery may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This combined electricity storage system is configured by connecting a capacity battery pack and a power battery pack in parallel via a capacity battery pack switch and a power battery pack switch, wherein: when charging the combined electricity storage system, charging is started after turning on the capacity battery pack switch and the power battery pack switch; and when the current flowing through either the capacity battery pack or the power battery pack has become the discharge side, the switch of a battery pack, the current flowing through which has become the discharge side, is turned off. This can provide such a control that increases charging power as much as possible in a short time with a configuration in which the capacity battery pack and the power battery pack are in parallel.

Description

複合蓄電システムCombined storage system
 本発明は電気的な負荷に電力を供給する電池の複合システムである。 The present invention is a complex system of batteries for supplying power to an electrical load.
 電気自動車には充電時間を短くする急速充電がある。この急速充電は、30分程度の充電で電池を充電率80%まで充電する。 Electric vehicles have a quick charge that shortens the charge time. This quick charge charges the battery to a charge rate of 80% in about 30 minutes of charge.
 現状の急速充電では30分もの時間を要するため、ドライバーにとって充電時間が煩わしく、電気自動車普及の妨げの要因になっている。もし現状の急速充電器を用い5分のみ充電を打ち切ったとしても、現状電気自動車に搭載されている容量型電池(kWh重視型)は充電Cレートが低くせいぜい容量[kWh]の2倍程度の充電パワーしか出せない。現状10kWhの容量型電池を搭載したコミュータ電気自動車(一回の充電による航続距離約100km)では最大で20kWの充電パワーとなり、5分では1.65kWhの充電エネルギーで、およそ16.5kmの走行しかできない。1分では約1.65kmの走行しかできない。これを解決するためには、電池容量[kWh]を更に多く搭載することが考えられるが、電池代が高くなり普及の妨げとなりかねない。また容量型電池の充電Cレートを大きくする対策もあるが、解決に時間を要する。 Since the current rapid charging requires as much as 30 minutes, the charging time for the driver is bothersome, which is a factor that hinders the spread of electric vehicles. Even if charging is stopped for only 5 minutes using the current rapid charger, the capacity type battery (kWh-oriented type) currently mounted on electric vehicles has a low charging C rate and at most twice the capacity [kWh]. Only charge power can be provided. A commuter electric vehicle (with a cruising distance of about 100 km after one charge) with a current capacity of 10 kWh will have a maximum charging capacity of 20 kW, and in 5 minutes it can only travel about 16.5 km with 1.65 kWh of charging energy. It can only travel about 1.65 km in one minute. In order to solve this, it is conceivable to mount more battery capacity [kWh], but the battery cost may be high, which may hinder the spread. There is also a measure to increase the charging C rate of the capacity type battery, but it takes time to solve it.
 電気自動車の運用として、5分未満の駐車または停車中に10km程度の充電をすることで、少ない電池容量[kWh]の車でも、ユーザーに充電時間の煩わしさを意識させることなく一日の航続距離を確保できるように、かつ低コスト(搭載電池容量kWhの小さい)としたい。この解決策の一つには、容量は小さくとも充電パワーの大きな電池(パワー型電池)を搭載しておき、5分未満の充電で稼げる充電エネルギー[kWh]を稼ぐ構成が考えられる。例えば、8kWhの容量型電池(最大充電レート2C)と、2kWhのパワー型電池(最大充電レート20C)を組み合わせたシステム(一回の充電で約100km走行)だと、理論上最大16kW+40kWの充電パワーを受け付けることができ、例え1分の充電であっても0.93kWh(およそ9.3km走行)が可能となる。5分の充電だとパワー型電池の容量kWhが規定されているため3.33kWhの充電エネルギーとなるが、それでも約33.3kmもの走行が可能となる。また、もし1.2t車で24kWhの容量型電池を積んだ車両の例だと、最初の5分で4kWh(約32km走行)、最初の1分で0.8kWh(約6.4km走行)充電である。この車両に2kWhのパワー型電池を積んだ場合、最初の5分で約6kwh(パワー型電池が充電しきるため6kWhであり、約48km走行)、最初の1分で1.47kWh(約11.7km走行)充電となる。 As an operation of the electric car, by charging about 10 km while parking or stopping for less than 5 minutes, even a car with a small battery capacity [kWh] can continue the navigation of the day without making the user aware of the troublesomeness of charging time In order to secure the distance, we want low cost (small installed battery capacity kWh). One possible solution is to install a battery (power type battery) with a large charging power even if the capacity is small, and earn a charge energy [kWh] that can be earned by charging for less than 5 minutes. For example, a system combining 8kWh of capacity type batteries (maximum charge rate 2C) and 2kWh of power type batteries (maximum charge rate 20C) (traveling about 100km by one charge), theoretically up to 16kW + 40kW Charge power can be received, and even if it is 1 minute charge, 0.93 kWh (about 9.3 km traveling) becomes possible. When charging for 5 minutes, the capacity kWh of the power type battery is specified, and the charging energy is 3.33 kWh, but it is still possible to travel about 33.3 km. Also, in the case of a vehicle loaded with a 24kWh capacity battery by a 1.2t car, charging is 4kWh (about 32km traveling) in the first 5 minutes and 0.8kWh (about 6.4km traveling) in the first one minute. When this vehicle is loaded with 2kWh power type batteries, it takes about 6kwh in the first 5 minutes (6kWh for power type batteries to fully charge, approximately 48km travel), 1.47kWh in the first minute (approximately 11.7km travel) It becomes charge.
 しかしこの例では、2つの電池それぞれに対して最大電流を充電したベストケースであり、かつ2つの電池に充電器を繋いだ場合の例に過ぎない。2つの電池に充電器を繋いだ場合、コストが高くなる。そこで、2つの電池を並列にスィッチを解して接続した低コストシステムを想定し、急速充電する場合を考える。 However, in this example, it is the best case in which the maximum current is charged to each of the two batteries, and it is only an example in which the charger is connected to the two batteries. Connecting a charger to the two batteries is costly. Therefore, assuming a low-cost system in which two batteries are connected in parallel via a switch, consider the case of rapid charging.
 2つの電池を並列に接続する場合には、各電池の電位が違う場合、横流(循環電流)が発生する。この横流は電力損失を招きやすいため、この横流を防止するスィッチ制御特許があった。 When two batteries are connected in parallel, a cross current (circulating current) is generated when the potentials of the respective batteries are different. Since this cross current is likely to cause power loss, there has been a switch control patent for preventing this cross current.
特開2012-235610号公報JP 2012-235610 A
 特許文献1は循環電流防止(以下、横流と呼ぶ)に着目した特許であり、思想的に急速充電を意識したものではないためそのまま急速充電には適用するのは難しい。これは、電池電位が違ったとしても、充電電流が更に印加されるため、回路方程式として必ずしも横流が発生するとは限らないためである。 Patent Document 1 is a patent focusing on the prevention of circulating current (hereinafter referred to as cross current), and it is difficult to apply it to rapid charging as it is not conscious of rapid charging. This is because even if the battery potential is different, the charging current is further applied, so that the cross flow does not necessarily occur as a circuit equation.
 本発明の目的は、容量型電池パックとパワー型電池パックを並列にした構成で、短い時間で極力充電電力を大きくするような制御を提供することにある。 An object of the present invention is to provide a control in which a charging power is increased as much as possible in a short time by a configuration in which a capacitive battery pack and a power battery pack are connected in parallel.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are, for example, as follows.
 容量型電池パックとパワー型電池パックを、容量型電池パックスィッチとパワー型電池パックスィッチを介して並列に繋ぐ複合蓄電システムにおいて、複合蓄電システムに充電をする際に、容量型電池パックスィッチおよびパワー型電池パックスィッチをオンとして充電を開始し、容量型電池パックまたはパワー型電池パックのどちらかに流れる電流が放電側になったときに、放電側となった電池パックのスィッチをオフにする複合蓄電システム。 In a composite storage system in which a capacitive battery pack and a power battery pack are connected in parallel via a capacitive battery pack switch and a power battery pack switch, the capacitive battery pack switch and the power are charged when charging the composite storage system. The battery pack switch is turned on to start charging, and when the current flowing to either the capacitive battery pack or the power battery pack is on the discharge side, the composite battery switch switch off on the discharge side Power storage system.
 容量型電池パックとパワー型電池パックを、容量型電池パックスィッチとパワー型電池パックスィッチを介して並列に繋ぐ複合蓄電システムにおいて、複合蓄電システムを充電器で充電する際に、充電器側に電流指令値を送る場合にて、容量型電池パックとパワー型電池パックの開放電圧値および直流抵抗値により、容量型電池パックとパワー型電池パックを並列繋ぎにした場合の電流推定値を求め、容量型電池パックとパワー型電池パックいずれの電流値推定も充電と見積もられるならば容量型電池パックスィッチおよびパワー型電池パックスィッチをオンにして、電流指令値をmin(容量型電池パックとパワー型電池パックの電流推定値の和、充電器の最大充電電流)とし、もし容量型電池パックとパワー型電池パックのいずれかで放電となる電流推定値ならば、放電と推定される電池パック側のスィッチをオフとして充電電流指令値をmin(オンとなる電池パック側の最大電流値,(オンとなる電池パックの最大電圧-オンとなる電池パックの開放電圧)/オンとなる電池パック直流抵抗)と設定する複合蓄電システム。 In a complex power storage system in which a capacitive battery pack and a power battery pack are connected in parallel via a capacitive battery pack switch and a power battery pack switch, when charging the complex power storage system with a charger, current is applied to the charger side When sending the command value, estimate the current estimated value when the capacitive battery pack and the power battery pack are connected in parallel by the open circuit voltage value and DC resistance value of the capacitive battery pack and the power battery pack, If it is estimated that the current value estimation and charging of either of the battery pack and the power battery pack are made, turn on the capacity type battery pack switch and the power type battery pack switch, and set the current command value to min (Capacitive type battery pack and power type battery The sum of the pack's current estimates, the maximum charging current of the charger), and the discharge if either the capacitive battery pack or the power battery pack If the estimated current value is higher, the switch on the battery pack side that is estimated to be discharged is turned off and the charging current command value is min (maximum current value on the battery pack side to be on, (maximum voltage on the battery pack to be on The battery pack's open circuit voltage) / the battery pack's DC resistance, which is turned on.
 本発明により、容量型電池パックとパワー型電池パックを並列にした構成で、短い時間で極力充電電力を大きくするような制御を提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, with the configuration in which the capacitive battery pack and the power battery pack are arranged in parallel, it is possible to provide such control as to increase the charging power as much as possible in a short time. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
複合蓄電システムを電気自動車に適用した場合のシステム構成例の図。The figure of the system configuration example at the time of applying a compound electricity storage system to an electric vehicle. 複合蓄電システムの電池部の構成図。The block diagram of the battery part of a composite electrical storage system. スィッチのみの制御フロー図。Control flow diagram of switch only. 最大充電電流となる電流範囲を示した原理図。The principle figure which showed the current range which becomes the maximum charge current. 電流とスィッチの両方の制御フロー図。Control flow diagram for both current and switch.
 以下、図面を参照しながら本発明の実施形態について詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。例えば、以下に説明する実施例は、ビルマネージメントシステム、船、鉄道、電動飛行機にも適用できる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the following embodiments, and various modifications and applications can be made within the technical concept of the present invention. Is included in the range. For example, the embodiments described below are also applicable to building management systems, ships, railways, and electric planes.
 本実施例では、容量型電池パック22とパワー型電池パック21を、容量型電池パックスィッチ24とパワー型電池パックスィッチ23を介して並列に繋ぐ複合蓄電システムにおいて、複合蓄電システムに充電をする際に、容量型電池パックスィッチ24およびパワー型電池パックスィッチ23をオンとして充電を開始し、容量型電池パック22またはパワー型電池パック21のどちらかに流れる電流が放電側になったときに、放電側となった電池パックのスィッチをオフにしている。また、本実施例では、充電器にスィッチを介して容量型電池パック22とパワー型電池パック21を並列に接続し、コントローラにてスィッチを制御する構成において、容量型電池パック22とパワー型電池パック21に電流計を儲け、各々の電流の極性が逆になったときに、放電側となる電池パックのスィッチを切り離している。また、本実施例では、コントローラから充電器へトータルの充電電流を指令し、各電池パックへの電流が電池の最大Cレートに以下になるように制御している。 In this embodiment, when charging the composite storage system in a composite storage system in which the capacitive battery pack 22 and the power battery pack 21 are connected in parallel via the capacitive battery pack switch 24 and the power battery pack switch 23. Start charging with the capacitive battery pack switch 24 and the power battery pack switch 23 turned on, and discharge when the current flowing to either the capacitive battery pack 22 or the power battery pack 21 becomes the discharge side. The battery pack switch on the side is off. Further, in the present embodiment, in the configuration in which the capacitive battery pack 22 and the power battery pack 21 are connected in parallel to the charger via the switch and the switch is controlled by the controller, the capacitive battery pack 22 and the power battery are An ammeter is provided in the pack 21. When the polarity of each current is reversed, the switch of the battery pack to be discharged is separated. Further, in the present embodiment, the controller instructs the charger to calculate the total charging current, and the current to each battery pack is controlled to be equal to or less than the maximum C rate of the battery.
 従来の急速充電器で電気自動車などを充電する際、30分にもおよぶ充電時間が必要であり、例えば1分程度の急速充電打ち切りならば数km程度しか走行できない。急速充電器で最初の数分で10kmにも及ぶ充電を実現するため、従来の容量型電池パック22にパワー型電池パック21を並列に繋ぎ、低コストとするためスィッチによる並列結合とした複合蓄電システムを考慮した場合、最初の数分で充電量最大となる充電制御が不明であった。それに対して、上記により、急速充電モードにて充電電流を最大化することにより例え1分の電気自動車充電であっても0.93kWhもの充電(およそ9.3km走行)が可能になり、一回のフル充電ではせいぜい100kmしか走れない電気自動車でも、充電時間を意識させることなく一日に100km以上も走行させることが可能となる。 When charging an electric vehicle or the like with a conventional quick charger, a charging time of 30 minutes is required. For example, if the quick charging is stopped for about 1 minute, the vehicle can only travel for about several kilometers. In order to realize charging of up to 10 km in the first few minutes with the quick charger, the power storage battery pack 21 is connected in parallel to the conventional capacity battery pack 22 and parallel combination of switches is used for cost reduction. When considering the system, it was unclear which charging control would be the maximum charging amount in the first few minutes. On the other hand, by maximizing the charging current in the rapid charging mode, 0.93 kWh charging (about 9.3 km travel) becomes possible even if it is 1 minute by the above, and one full Even an electric car that can only travel 100 km at a charge can travel more than 100 km a day without being aware of the charging time.
 図1に本発明の形態を示す。図1は、電気自動車10であり、モータジェネレータ11、インバータ12、電池部13、ECU14、ECU14と電池部13およびインバータ12への情報をやり取りする通信線15、急速充電器16、充電コネクタ17で構成される。 FIG. 1 shows an embodiment of the present invention. FIG. 1 shows an electric vehicle 10, which includes a motor generator 11, an inverter 12, a battery unit 13, an ECU 14, a communication line 15 for exchanging information to the ECU 14 with the battery unit 13 and the inverter 12, a quick charger 16, and a charging connector 17. Configured
 電気自動車10は、電池部13からインバータ12へ電力を供給し、モータジェネレータ11を回して走行する。回生時にはモータジェネレータ11で発電した電力はインバータで整流され電池部13に充電される。なお、図1ではモータジェネレータ11内でモータとジェネレータ同じものを使う図になっているが、モータとジェネレータは別になっていても良い。急速充電器16は充電コネクタ17を介して電気自動車10に接続され、電力線18は電池部13に接続される。また通信線15を介してECU14と急速充電器16は接続され、ECU14より電池部13に充電する電流指令を急速充電器16に指令する。ここで急速充電器16と充電コネクタ17は汎用の急速充電規格のものを用いても良いし、無線給電システムを用いても構わない。 The electric vehicle 10 supplies electric power from the battery unit 13 to the inverter 12 and rotates by driving the motor generator 11. At the time of regeneration, the electric power generated by the motor generator 11 is rectified by the inverter and charged in the battery unit 13. Although FIG. 1 shows the same motor and generator in the motor generator 11, the motor and the generator may be separate. The quick charger 16 is connected to the electric vehicle 10 through the charging connector 17, and the power line 18 is connected to the battery unit 13. Further, the ECU 14 and the quick charger 16 are connected via the communication line 15, and the ECU 14 instructs the quick charger 16 a current command to charge the battery unit 13. Here, the quick charger 16 and the charging connector 17 may use general-purpose quick charging standards or a wireless power feeding system.
 次に電池部13の構成を図2に記す。電池部13は、パワー型電池パック21、持続力を保持するための容量型電池パック22、パワー型電池パックスィッチ23、容量型電池パックスィッチ24から構成される。ECU14は、パワー型電池パックスィッチ23(以下、単にスイッチと呼ぶ場合がある)、容量型電池パックスィッチ24(以下、単にスイッチと呼ぶ場合がある)のオンオフ指令を出し、パワー型電池パック21と容量型電池パック22の電流、電圧情報を読み取り、急速充電器16に電流指令値を送る。ここでECU14にて容量型電池パック22とパワー型電池パック21両方の情報を得、スィッチ制御をやる構成であるが、ECU14と別途コントローラを用意する構成であっても構わない。 Next, the configuration of the battery unit 13 is shown in FIG. The battery unit 13 includes a power type battery pack 21, a capacity type battery pack 22 for holding a sustaining power, a power type battery pack switch 23, and a capacity type battery pack switch 24. The ECU 14 issues an on / off command of the power type battery pack switch 23 (hereinafter sometimes simply referred to as a switch) and the capacitance type battery pack switch 24 (hereinafter sometimes simply referred to as a switch) The current and voltage information of the capacitive battery pack 22 are read, and a current command value is sent to the quick charger 16. Here, although the configuration is such that the information of both the capacitive battery pack 22 and the power battery pack 21 is obtained by the ECU 14 and the switch control is performed, the controller 14 may be prepared separately from the ECU 14.
 次にスィッチのシーケンスを説明する。ここでの思想としては、最初の5分という短い時間以下の充電で最大となるような電力を充電できるようにすることである。また制約条件としては容量型電池パック22、パワー型電池パック21の充電電流を規定以下にすることである。ここで、特許文献1で説明した横流の考えについて述べる。横流とは2つの並列接続している電池電圧が揃っていない場合、高い電圧の方の電池から低い電池電圧の電池に放電する現象である。この場合、低い電池電圧に充電される電流は充電器より充電される電流より大きい。この場合、熱損失の面で考えると、低い電池電圧の電池の発熱量、即ち熱損失が、電池単独時の充電より高いことを意味する。そして低い電池電圧の電池の電流が大きく、充電可能なCレートを超える恐れもある。このため、横流が起こった場合には、放電となる電池側のスィッチを遮断する方が充電という意味では効率が良く、かつ最大充電電流も抑えられ好ましい。 The sequence of switches will now be described. The idea here is to be able to charge the power that is the largest in the first 5 minutes or less. Further, as a constraint condition, the charging current of the capacity type battery pack 22 and the power type battery pack 21 should be less than a specified value. Here, the idea of the cross flow described in Patent Document 1 will be described. The cross current is a phenomenon in which a battery with a higher voltage is discharged to a battery with a lower battery voltage when the two battery voltages connected in parallel are not aligned. In this case, the current charged to the low battery voltage is larger than the current charged from the charger. In this case, in terms of heat loss, it means that the calorific value of the battery with low battery voltage, that is, the heat loss is higher than the charge when the battery is alone. And the battery current of low battery voltage is large, and there is also a possibility of exceeding the chargeable C rate. For this reason, when a cross current occurs, it is preferable to interrupt the switch on the battery side to be discharged in terms of charging, which is more efficient and suppresses the maximum charging current.
 次に、スィッチ遮断後は、接続された方の電池が充電されていき、電池電圧が高くなり、電池電圧が揃ってくる。電池電圧が揃った場合には、並列にしても横流が発生しなく、かつ2つの電池に充電した方がトータルで見た充電電力が大きいため、並列に戻す。以上の思想のフローを図3で説明する。 Next, after the switch is shut off, the connected battery is charged, the battery voltage is increased, and the battery voltage is equalized. If the battery voltages are equalized, no cross current will occur even if they are paralleled, and if the two batteries are charged, the charging power seen in total will be larger, so they will be returned in parallel. The flow of the above thought is explained in FIG.
 まずステップ31(両方のスィッチオン指令ステップ)で両方のスィッチをオンにする。次にステップ32(電流計測ステップ)にて容量型電池パック22とパワー型電池パック21の電流を計測する。そしてステップ33(横流判断)にて横流が発生したかどうかを判定し、横流が発生していないならば、ステップ34(充電終了判断)に処理を移し、横流が発生するとステップ35に処理を移す。ここで横流の定義は様々であるが、ここでは「全体として充電しているのにも関わらず、片方の電池パックが充電、もう片方の電池パックが放電」と定義する。ステップ33の横流の判断として、パワー型電池パック21、または容量型電池パック22のどちらかが放電であるとする。ステップ34は充電終了とする。この充電終了とは、ドライバーが充電を打ち切ったかまたは、満充電になった状態とする。ステップ34で、充電終了でないならステップ32に処理を移し、充電終了ならば図3のフローを終了する。 First, in step 31 (both switch on command steps), both switches are turned on. Next, in step 32 (current measurement step), the current of the capacitive battery pack 22 and the power battery pack 21 is measured. Then, in step 33 (judgement of cross current), it is determined whether or not cross current has occurred. If cross current has not occurred, the process proceeds to step 34 (judgement of charge end). . Here, the definition of the cross current is various, but here, it is defined as "the battery pack is charged while the battery pack is charged, and the other battery is discharged". As determination of the cross flow in step 33, it is assumed that either the power battery pack 21 or the capacity battery pack 22 is discharged. Step 34 ends charging. In this charge end, it is assumed that the driver has stopped charging or is fully charged. If it is determined in step 34 that the charging has not been completed, the process proceeds to step 32. If the charging is completed, the flow of FIG. 3 is ended.
 次にステップ35(放電となる電池パックのスィッチオフステップ)では、ステップ32で計測した電流を元に、放電している方の電池パックをスィッチオフとし、ステップ36に処理を移す。ステップ36(電池電流・電圧計測ステップ)では容量型電池パック22の電流、電圧とパワー型電池パック21の電流、電圧を計測しステップ37に処理を移す。 Next, at step 35 (switch-off step of the battery pack to be discharged), based on the current measured at step 32, the battery pack being discharged is switched off, and the process is transferred to step 36. In step 36 (battery current / voltage measurement step), the current and voltage of the capacitive battery pack 22 and the current and voltage of the power battery pack 21 are measured, and the process proceeds to step 37.
 ステップ37(横流発生判断)では、並列接続した際に、横流が発生するかしないかを判断し、横流が発生すると判断される場合には、ステップ31に処理を移し、そうでないならステップ38に処理を移す。横流判断は、並列接続した時の推定電流ip(パワー型電池パック21)、ic(容量型電池パック22)の符号が違うことで判断される。ip、icは、回路方程式より、パワー型電池パック21の直流抵抗rp、容量型電池パック22の直流抵抗rc、パワー型電池パック21の開放電圧(分極込み)vp、容量型電池パック22の開放電圧(分極込み)vcより式1として計算される。 In step 37 (judgement of occurrence of cross current), it is determined whether or not cross current is generated when connected in parallel, and if it is determined that cross current is generated, the process is transferred to step 31; Transfer the process. The cross current judgment is made by the difference in the signs of the estimated currents ip (power type battery pack 21) and ic (capacitance type battery pack 22) when connected in parallel. From the circuit equation, ip and ic indicate the direct current resistance rp of the power type battery pack 21, the direct current resistance rc of the capacitive type battery pack 22, the open circuit voltage (with polarization) vp of the power type battery pack 21 and the open type of the capacitive type battery pack 22 It is calculated as Expression 1 from voltage (polarization included) vc.
 R=rc×rp/(rc+rp)、Vb=(rc×vp+rp×vc)/(rp+rc)
 Ic=(Vb-Vc)/rc、Ip=(Vb-Vp)/rc                  …(式1)
 ここで、rc、 rpは予めテーブルで保持するか、前回スィッチオフとなるタイミングでの電流電圧差より推定した値を用いても良い。vp、vcは開放電圧(分極込み)のため、端子電圧より電流×直流抵抗として計算すれば良い。
R = rc × rp / (rc + rp), Vb = (rc × vp + rp × vc) / (rp + rc)
Ic = (Vb-Vc) / rc, Ip = (Vb-Vp) / rc (Equation 1)
Here, rc and rp may be stored in advance in a table or may be values estimated from the current / voltage difference at the previous switch off timing. Since vp and vc are open circuit voltages (including polarization), they may be calculated from the terminal voltage as current × DC resistance.
 次に、ステップ38(充電終了判断)にて充電終了かどうかを判断し、充電終了なら図3のフローは終了させ、そうでないならステップ36に処理を移す。 Next, it is judged at step 38 (judgement of charge end) whether or not the charge is ended. If the charge is ended, the flow of FIG. 3 is ended, otherwise the processing is shifted to step 36.
 なおステップ31からステップ34、ステップ35からステップ38は順番を入れ替えても良い。図3のフローは図1のECU14のプログラムとして実装されるかまたは、別途用意したコントローラ内部のプログラムとして実装する。 The order of steps 31 to 34 and steps 35 to 38 may be reversed. The flow of FIG. 3 is implemented as a program of the ECU 14 of FIG. 1 or implemented as a program in a separately prepared controller.
 以上のフローでは充電器への電流指令を絞らない場合であり、次に電流指令を積極的に制御するフローを記す。電流指令を絞った場合、小さな電圧差でも横流が発生し易くなるためスィッチ制御も重要な要素となる。この考え方としては、極力並列にしてできるだけ充電電流を最大化するように、かつは電流制限の値の低い容量型電池電流を最大充電電流となるようにする。この考え方を図4で説明する。 The above flow is the case where the current command to the charger is not restricted, and the flow for actively controlling the current command will be described next. When the current command is narrowed, cross current is easily generated even with a small voltage difference, and switch control is also an important factor. The idea is to maximize the charging current as parallel as possible, and to make the capacitive battery current with a low current limit value the maximum charging current. This concept is described in FIG.
 図4では、求めた容量型電池パック22の電流推定値およびパワー型電池パック21の電流推定値の和が充電器の最大電流を超えた場合、容量型電池パック22の開放電圧+容量型電池パック22の電流×容量型電池パック22の直流抵抗=パワー型電池パック21の開放電圧+パワー型電池パック21の電流×パワー型電池パック21の直流抵抗と最大電流=パワー型電池パック21の電流+容量型電池パック22の電流となる直線の交点としている。 In FIG. 4, when the sum of the estimated current of the capacitive battery pack 22 and the estimated current of the power battery pack 21 exceeds the maximum current of the charger, the open circuit voltage of the capacitive battery pack 22 + the capacitive battery Current of pack 22 × DC resistance of capacitive battery pack 22 = open circuit voltage of power battery pack 21 + current of power battery pack 21 × DC resistance of power battery pack 21 and maximum current = current of power battery pack 21 It is taken as the intersection of the straight line used as the electric current of + capacity type battery pack 22.
 図4は、横軸は容量型電池パック22の電流ic41、縦軸はパワー型電池パック21の電流ip42とした制約条件ic≦Icmax43、 ip≦Ipmax44、 並列時の電圧条件Vc+rcic=Vp+rpip45となる図を示したものである。41は容量型電池電流軸(+が充電側)、42はパワー型電池電流軸(+が充電側)、43は容量型電池パック22の最大電流、44はパワー型電池パック21の最大電流、45は電圧が等しくなる条件直線、46は電流合計直線、47は最大・横流制約条件領域、である。 In FIG. 4, the horizontal axis represents the current ic 41 of the capacitive battery pack 22, and the vertical axis represents the constraints ic ≦ Icmax 43 and ip ≦ Ipmax 44 with the current ip 42 of the power battery pack 21. Voltage condition Vc + rcic = Vp + in parallel It is a figure which becomes rpip45. 41 is a capacitive battery current axis (+ is the charge side), 42 is a power battery current axis (+ is the charge side), 43 is a maximum current of the capacitive battery pack 22, 44 is a maximum current of the power battery pack 21, 45 is a condition straight line where the voltage is equal, 46 is a current total straight line, and 47 is a maximum / crossflow restriction region.
 トータルの電流IはI=ic+ip46となるため、図4の制約条件のハッチング長方形47と電圧条件の交点48がIを最大化するポイントとなる。即ち、icを最大化するかまたは、ipを最大化するように電流指令を制御すれば、充電電流が最大化できる。どちらが最大化するかは、図4の交点48の値により判定して切り替えれば良い。充電器の電流Iに上限があった場合には、I=ic+ipとVc+rcic=Vp+rpipの交点が制約条件の長方形の最大・横流制約条件領域47の範囲にあるならば、両方のスィッチをオンにして充電器の最大電流Imaxを充電すれば良い。電流が負(放電となり横流)の解が出た場合には電流負となる側のスィッチを切り離せば良い。電池電圧が最大電圧Vmaxの場合には図4の制約条件長方形の最大・横流制約条件領域47がVc+rcic≦Vmax、Vp+rpip≦Vmaxとなるように調整すれば良いことになる。 Since the total current I is I = ic + ip 46, the intersection of the hatching rectangle 47 and the voltage condition of the constraint shown in FIG. 4 is the point at which I is maximized. That is, the charging current can be maximized by controlling the current command so as to maximize ic or ip. It may be determined based on the value of the intersection point 48 in FIG. 4 to switch which one is maximized. If the current I of the charger has an upper limit, the intersection of I = ic + ip and Vc + rcic = Vp + rpip is within the bounds of the rectangular maximum / crossflow constraint region 47 of the constraints, both The switch is turned on to charge the maximum current Imax of the charger. When the current is negative (discharge and cross flow), the switch on the current negative side may be disconnected. When the battery voltage is the maximum voltage Vmax, the maximum / crossflow restriction region 47 of the restriction condition rectangle of FIG. 4 may be adjusted to be Vc + rcic ≦ Vmax and Vp + rpip ≦ Vmax.
 以上のフローを図5で説明する。まずはステップ51(直流抵抗・開放電圧計測ステップ)にて、各容量型電池パック22、パワー型電池パック21の直流抵抗と開放電圧を測定する。この方法としては、まず各電池パックの電圧を測定し、次に両方の電池のスィッチをオンにして、充電器の電流を微小な値に設定した後の電流、電圧差から求める。ここで直流抵抗は予めテーブルで設定した値を用いても良い。 The above flow will be described with reference to FIG. First, in step 51 (DC resistance / open voltage measurement step), DC resistance and open voltage of each of the capacity type battery pack 22 and the power type battery pack 21 are measured. In this method, first, the voltage of each battery pack is measured, and then the switches of both batteries are turned on to determine the current of the charger from the current and voltage difference after setting the current to a minute value. Here, the DC resistance may use a value set in advance in a table.
 次に、ステップ52(各電池パック推定電流計算ステップ)にて、推定電流を計算する。まず式2として計算した、充電電流推定値ip_candとic_cand、式3として計算した充電電流推定値ip_cand2、 ic_cand2を用いる。式2の値は図4の制約条件である最大・横流制約条件領域47と電圧が等しくなる条件直線45の交点候補である。式3の値は電流合計直線46と電圧が等しくなる条件45の交点である。 Next, in step 52 (each battery pack estimated current calculation step), the estimated current is calculated. First, the charging current estimated values ip_cand and ic_cand calculated as Equation 2 and the charging current estimated values ip_cand2 and ic_cand2 calculated as Equation 3 are used. The value of Expression 2 is a candidate for an intersection of the condition line 45 where the voltage becomes equal to the maximum / crossflow restriction condition area 47 which is the restriction condition of FIG. 4. The value of Equation 3 is the point of intersection of the current total straight line 46 and the condition 45 where the voltage is equal.
 ip_cand =(Vc-Vp)/rp+rc ×min[Icmax, (Vmax-Vc)/rc]/rp 
 ic_cand=(Vp-Vc)/rc+rp×min(Ipmax, (Vmax-Vp)/rp)/rc      …(式2)
 Vc+rcic=Vp+rpip、Imax=ic+ipの交点をic_cand2, ip_cand2        …(式3)
 もしステップ53(充電器最大電流判断)でip_cand+ic_cand≦Imax、 ステップ54(容量型電池パック22の横流判断)でic_cand>0、ステップ56(パワー型電池パック21の横流判断)の判定で ip_cand>0となったならば、充電器の電流指令値をip_cand+ic_candとして、両方のスィッチをオンにすることになる。実際にはImaxの制限がかかるため、ステップ58(両電池の充電指令ステップ)の指令とする。ステップ58まででは、放電側となった電池パックのスィッチをオフにした後、再び容量型電池パック22とパワー型電池パック21を並列に繋いだ場合に、容量型電池パック22およびパワー型電池パック21の直流抵抗と電圧とにより容量型電池パック22およびパワー型電池パック21共に充電と見積もられる場合に、再び容量型電池パック22とパワー型電池パック21を容量型電池パックスィッチ24とパワー型電池パックスィッチ23を介して並列に繋いでいる。
ip_cand = (Vc-Vp) / rp + rc x min [Icmax, (Vmax-Vc) / rc] / rp
ic_cand = (Vp-Vc) / rc + rp × min (Ipmax, (Vmax-Vp) / rp) / rc (Equation 2)
Intersection points of Vc + rcic = Vp + rpip, Imax = ic + ip are ic_cand2, ip_cand2 (Equation 3)
If ip_cand + ic_cand max Imax at step 53 (charger maximum current determination), ic_cand> 0 at step 54 (capacitance battery pack 22 cross current determination), ip_cand at step 56 (power type battery pack 21 cross current determination) If> 0, both switches will be turned on with the current command value of the charger as ip_cand + ic_cand. In practice, since Imax is limited, the command in step 58 (charge command step for both batteries) is taken. Up to step 58, when the switch of the battery pack on the discharge side is turned off, the capacitive battery pack 22 and the power battery pack 21 are connected again in parallel again. When it is estimated that both the capacitive battery pack 22 and the power battery pack 21 are charged by the direct current resistance and the voltage 21, the capacitive battery pack 22 and the power battery pack 21 are again used as the capacitive battery pack switch 24 and the power battery It is connected in parallel via a pack switch 23.
 ステップ53では、容量型電池パック22とパワー型電池パック21を並列繋ぎにした場合の電流推定値として、パワー型電池パック21の電圧≦(複合蓄電システムの電圧上限-パワー型電池パック21の開放電圧)/パワー型電池パック21の直流抵抗の制約と容量型電池パック22の電圧≦(複合システムの電圧上限-容量型電池パック22の開放電圧)/容量型電池パック22の直流抵抗)および各電池の最大電流以下の制約との元、容量型電池パック22の開放電圧+容量型電池パック22の電流×容量型電池パック22の直流抵抗=パワー型電池パック21の開放電圧+パワー型電池パック21の電流×パワー型電池パック21の直流抵抗と容量型電池パック22の電流=容量型電池パック22の上限電流となる直線、または、パワー型電池パック21の電流=パワー型電池パック21の上限電流となる直線、のいずれかの交点としている。 In step 53, as the current estimated value when the capacitive battery pack 22 and the power battery pack 21 are connected in parallel, the voltage of the power battery pack 21 ≦ (upper limit of voltage of the complex storage system−open of the power battery pack 21 (Voltage) / restriction of direct current resistance of power type battery pack 21 and voltage of capacitive type battery pack 22 ≦ (upper limit voltage of complex system−open circuit voltage of capacitive type battery pack 22) / direct current resistance of capacitive type battery pack 22) and each Under limit of maximum current of the battery, open capacity of the battery pack 22 + current of the battery pack 22 × DC resistance of the battery pack 22 = open voltage of the battery pack 21 + powered battery pack A current of 21 × a direct current resistance of the power type battery pack 21 and a current of the capacity type battery pack 22 = a straight line which becomes an upper limit current of the capacity type battery pack 22 or a current of the power type battery pack 21 = an upper limit of the power type battery pack 21 Electricity It is an intersection of any of the straight lines that flow.
 もしステップ53でip_cand+ic_cand≦Imaxとなり、ステップ54で ic_cand≦0となったならば、ステップ55(パワー型電池パック21の充電ステップ)の容量型電池パック22をオフ、パワー型電池パック21をオン、充電器の電流指令をmin(Ipmax, (Vmax-Vp)/rp)とする。もしステップ53でip_cand+ic_cand≦Imaxとなり、 ステップ54で ic_cand>0、ステップ56でip_cand≦0となったならば、ステップ57(容量型電池パック22の充電ステップ)のパワー型電池パック21をオフ、容量型電池パック22をオン、充電器の電流指令をmin[Icmax, (Vmax-Vc)/rc]とする。 If ip_cand + ic_cand ≦ Imax in step 53 and if ic_cand ≦ 0 in step 54, the capacitive battery pack 22 in step 55 (the charging step of the power battery pack 21) is turned off, and the power battery pack 21 is On, set the current command of the charger to min (Ipmax, (Vmax-Vp) / rp). If it is determined in step 53 that ip_cand + ic_cand ≦ Imax, and if ic_cand> 0 in step 54 and ip_cand ≦ 0 in step 56, the power type battery pack 21 of step 57 (charging step of capacitive battery pack 22) is turned off. The capacitance type battery pack 22 is turned on, and the current command of the charger is set to min [Icmax, (Vmax-Vc) / rc].
 もしステップ53でip_cand+ic_cand>Imaxとなったならば、最大電流Imaxで充電器を設定するが、横流判定が必要となり、式3での充電電流候補より更に横流を判断する。この処理がステップ59(容量型電池パック22の横流判断)、ステップ501に相当する。 If it is determined in step 53 that ip_cand + ic_cand> Imax, the charger is set with the maximum current Imax, but the cross current determination is necessary, and the cross current is further determined from the charging current candidate in Equation 3. This process corresponds to step 59 (judgement of cross flow of the capacitive battery pack 22), step 501.
 もし、ic_cand2、 ip_cand2両方が制約条件長方形47内ならば、両方の電池パックをオンにして、充電器の電流指令をImaxとする。即ちステップ58でIc_cand2≦0となったならば、ステップ55の容量型電池パック22をオフ、パワー型電池パック21をオンにして、充電器の電流指令をmin[Ipmax, (Vmax-Vp)/rp]とする。もしステップ59でic_cand2>0、ステップ501でip_cand2≦0となったならば、ステップ57のパワー型電池パック21をオフ、容量型電池パック22をオン、充電器の電流指令をmin[Icmax, (Vmax-Vc)/rc]とする。 If both ic_cand2 and ip_cand2 are within the constraint rectangle 47, turn on both battery packs and let the charger current command be Imax. That is, if Ic_cand2 ≦ 0 in step 58, the capacity type battery pack 22 in step 55 is turned off and the power type battery pack 21 is turned on, and the current command of the charger is min [Ipmax, (Vmax−Vp) / rp]. If ic_cand2> 0 in step 59 and ip_cand2 ≦ 0 in step 501, the power type battery pack 21 is turned off, the capacity type battery pack 22 is turned on, and the current command of the charger is min [Icmax, It is set as Vmax-Vc) / rc].
 ステップ57、ステップ58、ステップ55では、容量型電池パック22とパワー型電池パック21を、容量型電池パックスィッチ24とパワー型電池パックスィッチ23を介して並列に繋ぐ複合蓄電システムにおいて、複合蓄電システムを充電器で充電する際に、充電器側に電流指令値を送る場合にて、容量型電池パック22とパワー型電池パック21の開放電圧値および直流抵抗値により、容量型電池パック22とパワー型電池パック21を並列繋ぎにした場合の電流推定値を求め、容量型電池パック22とパワー型電池パック21いずれの電流値推定も充電と見積もられるならば容量型電池パックスィッチ24およびパワー型電池パックスィッチ23をオンにして、電流指令値をmin(容量型電池パック22とパワー型電池パック21の電流推定値の和、充電器の最大充電電流)とし、もし容量型電池パック22とパワー型電池パック21のいずれかで放電となる電流推定値ならば、放電と推定される電池パック側のスィッチをオフとして充電電流指令値をmin(オンとなる電池パック側の最大電流値,(オンとなる電池パックの最大電圧-オンとなる電池パックの開放電圧)/オンとなる電池パック直流抵抗)と設定している。 In steps 57, 58 and 55, in the combined storage system in which the capacitive battery pack 22 and the powered battery pack 21 are connected in parallel via the capacitive battery pack switch 24 and the powered battery pack switch 23, the combined storage system When charging a current command value to the charger when charging with the charger, the capacitive battery pack 22 and the power are determined by the open circuit voltage value and the DC resistance value of the capacitive battery pack 22 and the power battery pack 21. If it is estimated that the current value estimation of either of the capacitive battery pack 22 and the power battery pack 21 can be estimated to be a charge, then the capacitive battery pack switch 24 and the power battery are determined. With the pack switch 23 turned on, let the current command value be min (sum of estimated values of the capacity type battery pack 22 and the power type battery pack 21, the maximum charging current of the charger), If it is an estimated current value that causes discharge in either the capacitive battery pack 22 or the power battery pack 21, the switch on the battery pack side estimated to be discharged is turned off and the charge current command value is min (battery pack turned on The maximum current value on the side is set as (maximum voltage of the battery pack to be turned on-open voltage of the battery pack to be turned on) / battery pack direct current resistance to be turned on.
 ステップ57、ステップ58、ステップ55終了後、ステップ502(充電終了判断)にて充電終了かどうかを判断する。充電が終了していないならステップ51に処理を戻し、終了ならば図5のフローを終了する。ステップ51に戻った場合での直流抵抗と開放電圧の測定は、スィッチの状態はそのままとして、電流電圧だけを測定し、前回スィッチ変化があった場合には電流、電圧差より直流抵抗を計算する。そうでないならば直流抵抗は前回の推定値もしくはテーブルで参照した値として開放電圧を電圧-直流抵抗×電流とする。 After completion of step 57, step 58 and step 55, it is determined in step 502 (judgement of charge end) whether or not the charge is ended. If the charging has not ended, the process returns to step 51. If the charging is ended, the flow of FIG. 5 is ended. When measuring DC resistance and open circuit voltage when returning to step 51, only the current voltage is measured without changing the state of the switch. If there is a change in the previous switch, DC resistance is calculated from the current and voltage difference. . Otherwise, the DC resistance is the previous estimated value or the value referred to in the table, and the open circuit voltage is taken as voltage-DC resistance × current.
 なおステップ55にて、パワー型電池の電流をmin[Ipmax, (Vmax-Vp)/rp]とする一定値制御の具体的方法について述べる。これは値min[Ipmax, (Vmax-Vp)/rp]とする制御になるが、これはIpmaxとするか定電圧Vmaxとする制御かとなる。前者の方は問題がないが、後者にて定電圧指令コマンドの無い充電器だとフィードバック制御、電流指令値=前回の電流指令値+Gain×(Vmax-パワー型電池電圧)とする。Gainは不安定にならない予め与えられた正の定数を用いる。 A concrete method of constant value control in which the current of the power type battery is set to be min [Ipmax, (Vmax-Vp) / rp] in step 55 will be described. This control is to set the value min [Ipmax, (Vmax−Vp) / rp], but this is control to set it to Ipmax or the constant voltage Vmax. In the former case, there is no problem. In the latter case, if the charger does not have a constant voltage command command, feedback control is performed. Current command value = previous current command value + Gain × (Vmax-power type battery voltage). Gain uses a predetermined positive constant which does not become unstable.
 同様にステップ57では、容量型電池パック22の電流をmin[Icmax, (Vmax-Vc)/rc]とする一定値制御でもIpmaxとするか定電圧Vmaxとする制御かとなる。前者の方は問題がないが、後者にて定電圧指令コマンドの無い充電器だとフィードバック制御、電流指令値=前回の電流指令値+Gain×(Vmax-容量型電池パック22の電圧)とする。Gainは不安定にならない予め与えられた正の定数を用いる。 Similarly, in step 57, the constant value control in which the current of the capacitive battery pack 22 is min [Icmax, (Vmax-Vc) / rc] is either Ipmax or control to be a constant voltage Vmax. In the former case, there is no problem, but in the latter case, if the charger does not have a constant voltage command command, feedback control is performed. Current command value = previous current command value + Gain × (Vmax-voltage of capacity type battery pack 22) . Gain uses a predetermined positive constant which does not become unstable.
 ステップ58では、充電器の電流指令でmin(ip_cand+ic_cand,Imax)とする制御となるが、各電池電流が最大値を超える可能性もある。この場合には「電流指令値=電流指令値前回値+Gain1×(パワー型電池パック21の電流最大値-パワー型電池パック21の電流測定値)+Gain2×(容量型電池パック22の-容量型電池パック22の電流測定値)としてフィードバック制御をかける。Gain1、 Gain2の値は不安定にならない予め与えられた正の定数を用いる。 In step 58, control is performed to set min (ip_cand + ic_cand, Imax) in the current command of the charger, but there is also a possibility that each battery current may exceed the maximum value. In this case, “current command value = current command value previous value + Gain 1 × (maximum current of power type battery pack 21−current measured value of power type battery pack 21) + Gain 2 × (−capacity of capacitive type battery pack 22) The feedback control is applied as the current measurement value of the battery pack 22. The values of Gain1 and Gain2 use predetermined positive constants which do not become unstable.
 最後に本特許における容量型電池パック22とパワー型電池パック21の定義を述べる。ここでは最大電流、トータルの容量[kWh]でわける。トータルの電池パック容量としては、容量型電池パック22>パワー型電池パック21容量となる関係とする。最大電流としては、トータルの容量型電池パック22の最大電流>トータルのパワー型電池パック21の最大電流とする。ここでトータルとは、1パックの最大電流が100Aだったとしても2並列ならば200Aと換算するという意味である。 Finally, the definitions of the capacitive battery pack 22 and the power battery pack 21 in the present patent will be described. Here, the maximum current and the total capacity [kWh] are divided. The total battery pack capacity has a relationship of: Capacitive battery pack 22> power battery pack 21 capacity. As the maximum current, the maximum current of the total capacity battery pack 22> the maximum current of the total power battery pack 21. Here, "total" means that if the maximum current of one pack is 100A, it is converted to 200A if two parallel.
 図1中に搭載されている電池部13内の電池は既存のEVに搭載されているオリビン鉄リチウムイオン電池やニッケル・マンガン・コバルトのリチウムイオンを用いても良いし、別途半固体のリチウムイオン電池、鉛電池、ニッケル水素電池を用いても良い。 The battery in the battery unit 13 mounted in FIG. 1 may be an olivine iron lithium ion battery or a nickel-manganese-cobalt lithium ion mounted on an existing EV, or a separate semi-solid lithium ion A battery, a lead battery, or a nickel hydrogen battery may be used.
10 電気自動車、11  モータジェネレータ、12 インバータ、13 電池部
14 ECU、15 通信線、16 急速充電器、17 充電コネクタ、18 電力線
21 パワー型電池パック、22 容量型電池パック
23 パワー型電池パックスィッチ、24 容量型電池パックスィッチ
10 electric car, 11 motor generator, 12 inverter, 13 battery part
14 ECU, 15 communication lines, 16 quick chargers, 17 charging connectors, 18 power lines
21 power type battery pack, 22 capacity type battery pack
23 Power Battery Pack Switch, 24 Capacity Battery Pack Switch

Claims (5)

  1.  容量型電池パックとパワー型電池パックを、容量型電池パックスィッチとパワー型電池パックスィッチを介して並列に繋ぐ複合蓄電システムにおいて、
     前記複合蓄電システムに充電をする際に、前記容量型電池パックスィッチおよび前記パワー型電池パックスィッチをオンとして充電を開始し、容量型電池パックまたはパワー型電池パックのどちらかに流れる電流が放電側になったときに、放電側となった電池パックのスィッチをオフにする複合蓄電システム。
    In a complex storage system in which a capacitive battery pack and a power battery pack are connected in parallel via a capacitive battery pack switch and a power battery pack switch,
    When charging the composite storage system, the capacitive battery pack switch and the power battery pack switch are turned on to start charging, and the current flowing to either the capacitive battery pack or the power battery pack is discharged. A combined storage system that turns off the switch of the battery pack that has become the discharge side when it becomes.
  2.  請求項1の複合蓄電システムにおいて、
     放電側となった電池パックのスィッチをオフにした後、再び前記容量型電池パックと前記パワー型電池パックを並列に繋いだ場合に、前記容量型電池パックおよび前記パワー型電池パックの直流抵抗と電圧とにより前記容量型電池パックおよび前記パワー型電池パック方共に充電と見積もられる場合に、再び前記容量型電池パックと前記パワー型電池パックを前記容量型電池パックスィッチと前記パワー型電池パックスィッチを介して並列に繋ぐ複合蓄電システム。
    In the combined storage system of claim 1,
    When the switch of the battery pack on the discharge side is turned off and the capacitive battery pack and the power battery pack are connected in parallel again, the direct current resistance of the capacitive battery pack and the power battery pack and When it is estimated that both the capacitive battery pack and the power battery pack are charged according to the voltage, the capacitive battery pack and the power battery pack are again used as the capacitive battery pack switch and the power battery pack switch. Complex power storage system connected in parallel through.
  3.  容量型電池パックとパワー型電池パックを、容量型電池パックスィッチとパワー型電池パックスィッチを介して並列に繋ぐ複合蓄電システムにおいて、
     前記複合蓄電システムを充電器で充電する際に、前記充電器側に電流指令値を送る場合にて、前記容量型電池パックと前記パワー型電池パックの開放電圧値および直流抵抗値により、前記容量型電池パックと前記パワー型電池パックを並列繋ぎにした場合の電流推定値を求め、 前記容量型電池パックと前記パワー型電池パックいずれの電流値推定も充電と見積もられるならば容量型電池パックスィッチおよびパワー型電池パックスィッチをオンにして、前記電流指令値をmin(前記容量型電池パックと前記パワー型電池パックの電流推定値の和、前記充電器の最大充電電流)とし、
     もし前記容量型電池パックと前記パワー型電池パックのいずれかで放電となる電流推定値ならば、放電と推定される電池パック側のスィッチをオフとして充電電流指令値をmin(オンとなる電池パック側の最大電流値,(オンとなる電池パックの最大電圧-オンとなる電池パックの開放電圧)/オンとなる電池パック直流抵抗)と設定する複合蓄電システム。
    In a combined storage system in which a capacitive battery pack and a powered battery pack are connected in parallel via a capacitive battery pack switch and a powered battery pack switch,
    When charging the composite storage system with a charger, when sending a current command value to the charger side, the capacity is determined according to the open circuit voltage value and DC resistance value of the capacity type battery pack and the power type battery pack. The current estimated value in the case of connecting the battery pack and the power pack in parallel is obtained, and if it is estimated that the current value estimation of either the capacity battery pack or the power pack is also charging, the capacity pack switch And turn on the power type battery pack switch, and let the current command value be min (sum of estimated current values of the capacity type battery pack and the power type battery pack, maximum charging current of the charger),
    If it is an estimated current value to be discharged by either the capacitive battery pack or the power battery pack, the switch on the battery pack side presumed to be discharged is turned off and the charge current command value is min (battery pack turned on Composite power storage system that sets the maximum current value on the side, (maximum voltage of the battery pack to be turned on-open voltage of the battery pack to be turned on) / battery pack direct current resistance to be turned on.
  4.  請求項3の複合蓄電システムにおいて、
     前記容量型電池パックと前記パワー型電池パックを並列繋ぎにした場合の電流推定値として、
     前記パワー型電池パックの電圧≦(前記複合蓄電システムの電圧上限-前記パワー型電池パックの開放電圧)/前記パワー型電池パックの直流抵抗の制約と前記容量型電池パックの電圧≦(前記複合蓄電システムの電圧上限-前記容量型電池パックの開放電圧)/前記容量型電池パック直流抵抗)および各電池の最大電流以下の制約との元、前記容量型電池パックの開放電圧+前記容量型電池パックの電流×前記容量型電池パックの直流抵抗=前記パワー型電池パックの開放電圧+前記パワー型電池パックの電流×前記パワー型電池パックの直流抵抗と前記容量型電池パックの電流=前記容量型電池パックの上限電流となる直線、または、前記パワー型電池パックの電流=前記パワー型電池パックの上限電流となる直線、のいずれかの交点とする複合蓄電システム。
    In the combined storage system of claim 3,
    As a current estimated value when the capacity type battery pack and the power type battery pack are connected in parallel,
    Voltage of the power type battery pack ≦ (upper limit voltage of the complex storage system−open voltage of the power type battery pack) / constraint of direct current resistance of the power type battery pack and voltage ≦ (capacitance of the complex type battery pack) Based on the upper voltage limit of the system-open voltage of the capacitive battery pack / DC resistance of the capacitive battery pack) and the restriction of less than the maximum current of each battery, open voltage of the capacitive battery pack + the capacitive battery pack Current × DC capacity of the capacity type battery pack = open voltage of the power type battery pack + current of the power type battery pack × DC capacity of the power type battery pack and current of the capacity type battery pack = capacity type battery A composite storage in which a straight line which is the upper limit current of the pack, or a current of the power type battery pack = a straight line which is the upper limit current of the power type battery pack System.
  5.  請求項4の複合蓄電システムにおいて、
     求めた前記容量型電池パックの電流推定値および前記パワー型電池パックの電流推定値の和が前記充電器の最大電流を超えた場合、前記容量型電池パックの開放電圧+前記容量型電池パックの電流×前記容量型電池パックの直流抵抗=前記パワー型電池パックの開放電圧+前記パワー型電池パックの電流×前記パワー型電池パックの直流抵抗と最大電流=前記パワー型電池パックの電流+前記容量型電池パックの電流となる直線の交点とする複合蓄電システム。
    In the combined storage system of claim 4,
    When the sum of the estimated current of the capacitive battery pack and the estimated current of the power battery pack exceeds the maximum current of the charger, the open circuit voltage of the capacitive battery pack + the capacity of the capacitive battery pack Current x DC resistance of the capacitive battery pack = open voltage of the power battery pack + current of the power battery pack x DC resistance of the power battery pack and maximum current = current of the power battery pack + the capacity Combined storage system, which is the intersection of the straight lines that are the current of the battery pack.
PCT/JP2018/037709 2017-11-13 2018-10-10 Combined electricity storage system WO2019093048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017217882A JP2021040354A (en) 2017-11-13 2017-11-13 Composite power storage system
JP2017-217882 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019093048A1 true WO2019093048A1 (en) 2019-05-16

Family

ID=66438267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037709 WO2019093048A1 (en) 2017-11-13 2018-10-10 Combined electricity storage system

Country Status (2)

Country Link
JP (1) JP2021040354A (en)
WO (1) WO2019093048A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228235A1 (en) * 2022-05-23 2023-11-30 三菱電機株式会社 Storage battery system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140065A (en) * 1995-11-10 1997-05-27 Sony Corp Secondary battery for parallel use
WO2012164630A1 (en) * 2011-06-03 2012-12-06 トヨタ自動車株式会社 Electricity storage system
JP2016012984A (en) * 2014-06-30 2016-01-21 日立化成株式会社 Cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140065A (en) * 1995-11-10 1997-05-27 Sony Corp Secondary battery for parallel use
WO2012164630A1 (en) * 2011-06-03 2012-12-06 トヨタ自動車株式会社 Electricity storage system
JP2016012984A (en) * 2014-06-30 2016-01-21 日立化成株式会社 Cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228235A1 (en) * 2022-05-23 2023-11-30 三菱電機株式会社 Storage battery system

Also Published As

Publication number Publication date
JP2021040354A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
CN109070761B (en) Switchable reservoir system for a vehicle
JP6419992B2 (en) Hybrid energy storage module system
US10523026B2 (en) Electric power supply system
EP2496437B1 (en) Vehicular electric power unit and method of controlling the same
US8427103B2 (en) Charging device for electric vehicle
JP5570782B2 (en) POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH THE SAME, AND CHARGING / DISCHARGE CONTROL METHOD FOR POWER SUPPLY DEVICE
CN103068620B (en) Elec. vehicle
JP5605436B2 (en) Electric vehicle and control method thereof
JP6853805B2 (en) Electric vehicle
US8768533B2 (en) Vehicle, communication system, and communication device
JP5660102B2 (en) Vehicle power supply
EP2442398B1 (en) AC current control of mobile battery chargers
JP2014143817A (en) Vehicular power system
US20130015700A1 (en) Communication device, communication system, and vehicle
JP2008220080A (en) Electric vehicle, charged state estimating method, and computer-readable storage medium recording program for making computer excute charged state estimating method
WO2011155014A1 (en) Power output control device for vehicle and power output control method for vehicle
JP2019161721A (en) Vehicular power supply system
JP5012962B2 (en) Vehicle power control device
JP2014023231A (en) Onboard charge control unit
CN110370962B (en) Vehicle-mounted charging system and automobile
JP6459277B2 (en) Series-parallel battery pack and series-parallel battery pack control method
JP2015180140A (en) Power supply system for vehicle
WO2011158088A2 (en) Electric power supply apparatus for vehicle, and control method thereof
WO2019093048A1 (en) Combined electricity storage system
JP5561114B2 (en) Storage device control device, vehicle equipped with the same, and storage device control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP