JP5012962B2 - Vehicle power control device - Google Patents

Vehicle power control device Download PDF

Info

Publication number
JP5012962B2
JP5012962B2 JP2010135221A JP2010135221A JP5012962B2 JP 5012962 B2 JP5012962 B2 JP 5012962B2 JP 2010135221 A JP2010135221 A JP 2010135221A JP 2010135221 A JP2010135221 A JP 2010135221A JP 5012962 B2 JP5012962 B2 JP 5012962B2
Authority
JP
Japan
Prior art keywords
control
power
circuit
vehicle
storage devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010135221A
Other languages
Japanese (ja)
Other versions
JP2012005173A (en
Inventor
遠齢 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010135221A priority Critical patent/JP5012962B2/en
Priority to PCT/IB2011/001312 priority patent/WO2011158086A2/en
Publication of JP2012005173A publication Critical patent/JP2012005173A/en
Application granted granted Critical
Publication of JP5012962B2 publication Critical patent/JP5012962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

この発明は、電気回路に並列に接続可能な複数の蓄電装置を備えた車両の電力制御に関する。   The present invention relates to power control for a vehicle including a plurality of power storage devices that can be connected in parallel to an electric circuit.

近年、環境に配慮した自動車として、蓄電装置に蓄積された電力でモータを駆動して走行する電動車両が実用化されている。一般的に、電動車両は、蓄電装置として、複数の電池セルを直列に接続して構成された電池パックを搭載している。したがって、電池パック中の電池セルを充電する際、各電池セルに内部抵抗のバラツキがあると、最大電圧を超える電池セルが発生するおそれがある。   In recent years, an electric vehicle that travels by driving a motor with electric power stored in a power storage device has been put to practical use as an environment-friendly vehicle. Generally, an electric vehicle is equipped with a battery pack configured by connecting a plurality of battery cells in series as a power storage device. Therefore, when the battery cells in the battery pack are charged, if each battery cell has a variation in internal resistance, a battery cell exceeding the maximum voltage may be generated.

この問題に関し、特開2009−232659号公報(特許文献1)には、バッテリ(電池パック)の各電池セルの充電開始電圧を内部抵抗の大きいほど低い値に設定し、充電開始電圧となるまで各電池セルを放電させる技術が開示されている。この特許文献1の技術によれば、各電池セルに内部抵抗のバラツキがあってもバッテリ充電時に電池セルが最大電圧を超えることを抑制できる。   Regarding this problem, Japanese Patent Application Laid-Open No. 2009-232659 (Patent Document 1) discloses that the charging start voltage of each battery cell of a battery (battery pack) is set to a lower value as the internal resistance increases, until the charging start voltage is reached A technique for discharging each battery cell is disclosed. According to the technique of Patent Document 1, even if each battery cell has a variation in internal resistance, it is possible to suppress the battery cell from exceeding the maximum voltage during battery charging.

特開2009−232659号公報JP 2009-232659 A

ところで、モータの動力で走行する車両において、走行可能な距離を伸ばすためには、蓄電装置の大容量化が必要となる。蓄電装置を大容量にするには、多数の電池パックを並列接続して使用することも考えられる。しかしながら、複数の電池パックを並列接続する場合、各電池パック間の電圧差が大きいと、高い電圧の電池パックから低い電圧の電池パックに向けて過大な電流が流れてしまうことがある。その結果、電池セルが劣化したり、電池パック間に設けられたスイッチ(リレーなど)やハーネスが破損したりするおそれがある。   By the way, in a vehicle that travels with the power of a motor, in order to extend the travelable distance, it is necessary to increase the capacity of the power storage device. In order to increase the capacity of the power storage device, it is conceivable to use a large number of battery packs connected in parallel. However, when a plurality of battery packs are connected in parallel, if a voltage difference between the battery packs is large, an excessive current may flow from a high voltage battery pack to a low voltage battery pack. As a result, the battery cell may be deteriorated, or a switch (such as a relay) or a harness provided between the battery packs may be damaged.

本発明は、上述の課題を解決するためになされたものであって、その目的は、電気回路に並列に接続可能な複数の蓄電装置(電池)を備えた車両において、複数の蓄電装置の電圧を均等化することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide voltages of a plurality of power storage devices in a vehicle including a plurality of power storage devices (batteries) that can be connected in parallel to an electric circuit. Is to equalize.

この発明に係る電力制御装置は、コンデンサを備えた電気回路と、コンデンサに並列に接続可能な複数の蓄電装置とを備えた車両の電力制御装置であって、複数の蓄電装置の正極と電気回路との間にそれぞれ設けられる第1の複数のスイッチと、複数の蓄電装置の負極と電気回路との間にそれぞれ設けられる第2の複数のスイッチと、第1および第2の複数のスイッチを制御する制御回路とを備える。制御回路は、複数の蓄電装置間の電圧差が所定値を超える場合、第1の複数のスイッチを導通状態に維持しかつ第2の複数のスイッチを交互に導通状態とする第1制御または第2の複数のスイッチを導通状態に維持しかつ第1の複数のスイッチを交互に導通状態とする第2制御を実行することによって、複数の蓄電装置のうちの電圧が高い蓄電装置の電力エネルギをコンデンサを介して電圧が低い蓄電装置に移動させる。   A power control device according to the present invention is a vehicle power control device including an electric circuit including a capacitor and a plurality of power storage devices that can be connected in parallel to the capacitor, the positive electrode and the electric circuit of the plurality of power storage devices A first plurality of switches provided between each of the first and second switches, a plurality of second switches provided between the negative electrodes of the plurality of power storage devices and the electric circuit, and the first and second plurality of switches. A control circuit. When the voltage difference between the plurality of power storage devices exceeds a predetermined value, the control circuit maintains the first plurality of switches in the conductive state and alternately turns on the second plurality of switches. By executing the second control that maintains the plurality of switches in the conductive state and alternately turns on the first plurality of switches, the power energy of the power storage device having a high voltage among the plurality of power storage devices is obtained. It is moved to a power storage device having a low voltage through a capacitor.

好ましくは、制御回路は、第1制御と第2制御とを所定周期で交互に実行する。
好ましくは、制御回路は、第1制御および第2制御のうちの一方の制御から他方の制御に切り替える場合には、一方の制御の停止後から所定期間は第1および第2の複数のスイッチを共に非導通状態とし、所定期間の経過後に他方の制御を実行する。
Preferably, the control circuit executes the first control and the second control alternately at a predetermined cycle.
Preferably, when the control circuit switches from one control of the first control and the second control to the other control, the control circuit sets the first and second switches for a predetermined period after the one control is stopped. Both are set in a non-conductive state, and the other control is executed after a predetermined period.

好ましくは、車両は、外部電源を用いて複数の蓄電装置を充電可能な車両である。電気回路は、外部電源の電力を複数の蓄電装置に充電可能な電力に変換する充電回路である。コンデンサは、充電回路で変換された電力を複数の蓄電装置に供給するための正極線および負極線の間に設けられる。   Preferably, the vehicle is a vehicle capable of charging a plurality of power storage devices using an external power source. The electric circuit is a charging circuit that converts electric power from an external power source into electric power that can be charged into a plurality of power storage devices. The capacitor is provided between a positive electrode line and a negative electrode line for supplying electric power converted by the charging circuit to the plurality of power storage devices.

好ましくは、制御回路は、充電回路を停止させた状態で第1制御または第2制御を実行する。   Preferably, the control circuit executes the first control or the second control with the charging circuit stopped.

好ましくは、車両は、モータの動力で走行可能な車両である。電気回路は、複数の蓄電装置の電力をモータを駆動可能な電力に変換する電力変換回路である。コンデンサは、複数の蓄電装置の電力を電力変換回路に供給するための正極線および負極線の間に設けられる。   Preferably, the vehicle is a vehicle capable of traveling with the power of a motor. The electric circuit is a power conversion circuit that converts electric power of a plurality of power storage devices into electric power that can drive a motor. The capacitor is provided between a positive electrode line and a negative electrode line for supplying power from the plurality of power storage devices to the power conversion circuit.

好ましくは、制御回路は、電力変換回路を停止させた状態で第1制御または第2制御を実行する。   Preferably, the control circuit executes the first control or the second control with the power conversion circuit stopped.

本発明によれば、電気回路に並列に接続可能な複数の蓄電装置を備えた車両において、複数の蓄電装置の電圧を均等化することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the vehicle provided with the some electrical storage apparatus which can be connected to an electric circuit in parallel, the voltage of a some electrical storage apparatus can be equalized.

車両の全体ブロック図である。1 is an overall block diagram of a vehicle. ECUの機能ブロック図である。It is a functional block diagram of ECU. ECUの処理手順を示すフローチャート(その1)である。It is a flowchart (the 1) which shows the process sequence of ECU. ECUの処理手順を示すフローチャート(その2)である。It is a flowchart (the 2) which shows the process sequence of ECU. 変数n,m,Xと、充電リレーR1,R2の変化態様を示す図である。It is a figure which shows the variable n, m, X, and the change aspect of charging relay R1, R2. ECUの処理手順を示すフローチャート(その3)である。It is a flowchart (the 3) which shows the process sequence of ECU.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、実施の形態1に従う電力制御装置を搭載した車両100の全体ブロック図である。   FIG. 1 is an overall block diagram of a vehicle 100 equipped with a power control apparatus according to the first embodiment.

図1を参照して、車両100は、第1電源110および第2電源110Aとで構成される電源装置と、駆動装置(電気負荷)であるPCU(Power Control Unit)120およびモータジェネレータ(MG)130と、動力伝達ギア140と、駆動輪150と、制御装置であるECU(Electronic Control Unit)300とを備える。   Referring to FIG. 1, vehicle 100 includes a power supply device including a first power supply 110 and a second power supply 110A, a PCU (Power Control Unit) 120 that is a drive device (electric load), and a motor generator (MG). 130, a power transmission gear 140, a drive wheel 150, and an ECU (Electronic Control Unit) 300 that is a control device.

なお、図1に示す車両100には、モータジェネレータが1つ設けられる構成が示されるが、モータジェネレータの数はこれに限定されず、モータジェネレータを複数設けてもよい。また、動力源として、モータジェネレータの他にエンジン(図示せず)を搭載してもよい。すなわち、本発明は、エンジンおよびモータジェネレータにより駆動力を発生するハイブリッド自動車、エンジンを搭載しない電気自動車および燃料電池自動車などを含めた電動車両全般に適用可能である。   1 shows a configuration in which one motor generator is provided, the number of motor generators is not limited to this, and a plurality of motor generators may be provided. In addition to the motor generator, an engine (not shown) may be mounted as a power source. That is, the present invention is applicable to all electric vehicles including hybrid vehicles that generate driving force by an engine and a motor generator, electric vehicles that do not have an engine, and fuel cell vehicles.

第1電源110は、電池B1と、システムメインリレーSMR1(以下、単に「SMR1」という)と、充電リレーR1とを含む。   First power supply 110 includes a battery B1, a system main relay SMR1 (hereinafter simply referred to as “SMR1”), and a charging relay R1.

電池B1は、充放電可能に構成される。電池B1は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。   Battery B1 is configured to be chargeable / dischargeable. The battery B1 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, and a storage element such as an electric double layer capacitor.

電池B1は、正極線PL1および負極線NL1を介してPCU120に接続される。そして、電池B1は、車両100の駆動力を発生させるための電力をPCU120に供給する。また、電池B1は、MG130で発電された電力を蓄電する。電池B1はたとえば200ボルト程度の電圧を出力する。   Battery B1 is connected to PCU 120 via positive electrode line PL1 and negative electrode line NL1. Battery B <b> 1 supplies power for generating driving force of vehicle 100 to PCU 120. Battery B1 stores the electric power generated by MG 130. Battery B1 outputs a voltage of about 200 volts, for example.

電池B1は、たとえば、複数の電池セルが直列に接続されて構成された電池パックである。そして、この直列接続された電池セルの途中に、サービスプラグSP1が直列に接続される。このサービスプラグSP1は、メンテナンス時などに強制的に回路を遮断するための安全スイッチとして機能し、たとえば、電池B1の外部の筐体(図示せず)を開放したときに接点が開放されるように構成される。   The battery B1 is, for example, a battery pack configured by connecting a plurality of battery cells in series. And service plug SP1 is connected in series in the middle of this battery cell connected in series. This service plug SP1 functions as a safety switch for forcibly shutting off the circuit at the time of maintenance or the like. For example, the contact is opened when an external housing (not shown) of the battery B1 is opened. Configured.

SMR1は、リレーSMR1P,SMR1R,SMR1Nと、抵抗RE1とを含む。リレーSMR1P,SMR1Nは、一方端が電池B1の正極および負極にそれぞれ接続され、他方端が第1電源110とPCU120とを結ぶ正極線PL1および負極線NL1にそれぞれ接続される。また、リレーSMR1Rは、直列に接続された抵抗RE1とともに、リレーSMR1Pに並列に接続される。そして、リレーSMR1P,SMR1R,SMR1Nは、ECU300からの制御信号SE1によってそれぞれ独立して制御され、電池B1とPCU120との間の接続と遮断とを切り替える。   SMR1 includes relays SMR1P, SMR1R, SMR1N, and resistor RE1. Relays SMR1P and SMR1N have one end connected to the positive electrode and the negative electrode of battery B1, respectively, and the other end connected to positive electrode line PL1 and negative electrode line NL1 connecting first power supply 110 and PCU 120, respectively. Relay SMR1R is connected in parallel to relay SMR1P together with resistor RE1 connected in series. Relays SMR1P, SMR1R, and SMR1N are independently controlled by a control signal SE1 from ECU 300, and switch between connection and disconnection between battery B1 and PCU 120.

なお、抵抗RE1は、SMR1をオンする(通電状態にする)際に、コンデンサC1を充電するために急激に流れる突入電流を低減するための減流抵抗として機能する。SMR1をオンする際は、まずリレーSMR1N、SMR1Rがオンされる。そして、低電流によってコンデンサC1が充電された後に、リレーSMR1PがオンされるとともにリレーSMR1Rがオフされる(非通電状態にされる)。   The resistor RE1 functions as a current reducing resistor for reducing an inrush current that flows suddenly to charge the capacitor C1 when the SMR1 is turned on (turned on). When turning on SMR1, relays SMR1N and SMR1R are first turned on. Then, after capacitor C1 is charged with a low current, relay SMR1P is turned on and relay SMR1R is turned off (deenergized).

充電リレーR1は、リレーR1P,R1Nを含む。リレーR1P,R1Nは、一方端が電池B1の正極および負極にそれぞれ接続され、かつ、他方端が第1電源110と充電装置200とを結ぶ正極線PL2および負極線NL2にそれぞれ接続される。そして、充電リレーR1は、ECU300からの制御信号SE2によってそれぞれ独立して制御され、電池B1と充電装置200との間の接続と遮断とを切り替える。   Charging relay R1 includes relays R1P and R1N. Relays R1P and R1N have one end connected to the positive electrode and the negative electrode of battery B1, respectively, and the other end connected to positive electrode line PL2 and negative electrode line NL2 connecting first power supply 110 and charging device 200, respectively. Charging relay R1 is independently controlled by control signal SE2 from ECU 300, and switches between connection and disconnection between battery B1 and charging device 200.

充電リレーR1は、外部電源500からの電力によって電池B1を充電する外部充電の場合にオンされる。なお、充電リレーR1は、第1電源110の外部に設けることも可能であるが、車両100の走行時などに、第1電源110の外側の充電経路に、正極線PL1および負極線NL1からの電圧が印加しないようにするために、第1電源110の内部に充電リレーR1を設けることが望ましい。   Charging relay R1 is turned on in the case of external charging in which battery B1 is charged with power from external power supply 500. The charging relay R1 can be provided outside the first power supply 110. However, when the vehicle 100 is running, the charging relay R1 is connected to the charging path outside the first power supply 110 from the positive line PL1 and the negative line NL1. In order to prevent the voltage from being applied, it is desirable to provide the charging relay R <b> 1 inside the first power supply 110.

第2電源110Aは、PCU120に対して第1電源110と並列に接続される。また、第2電源110Aは、充電装置200に対しても第1電源110と並列に接続される。第2電源110Aは、電池B2と、システムメインリレーSMR2(以下、単に「SMR2」という)と、充電リレーR2とを含む。SMR2は、リレーSMR2P,SMR2R,SMR2Nと、抵抗RE2とを含む。電池B2、リレーSMR2P,SMR2R,SMR2N、抵抗RE2、充電リレーR2の構成および機能は、それぞれ上述した電池B1、リレーSMR1P,SMR1R,SMR1N、抵抗RE1、充電リレーR1と同じである。リレーSMR2P,SMR2R,SMR2Nは、ECU300からの制御信号SE3によってそれぞれ独立して制御され、電池B2とPCU120との間の接続と遮断とを切り替える。充電リレーRは、ECU300からの制御信号SE4によってそれぞれ独立して制御され、電池B2と充電装置200との間の接続と遮断とを切り替える。 The second power supply 110 </ b> A is connected to the PCU 120 in parallel with the first power supply 110. The second power source 110 </ b> A is also connected to the charging device 200 in parallel with the first power source 110. Second power supply 110A includes a battery B2, a system main relay SMR2 (hereinafter simply referred to as “SMR2”), and a charging relay R2. SMR2 includes relays SMR2P, SMR2R, SMR2N, and resistor RE2. The configuration and function of battery B2, relays SMR2P, SMR2R, SMR2N, resistor RE2, and charging relay R2 are the same as those of battery B1, relays SMR1P, SMR1R, SMR1N, resistor RE1, and charging relay R1, respectively. Relays SMR2P, SMR2R, and SMR2N are independently controlled by a control signal SE3 from ECU 300 to switch between connection and disconnection between battery B2 and PCU 120. Charging relay R 2 is independently controlled by a control signal SE4 from ECU 300, switching between the blocking and the connection between the charging device 200 and the battery B2.

PCU120は、コンバータ121と、インバータ122と、コンデンサC1,C2とを含む。   PCU 120 includes a converter 121, an inverter 122, and capacitors C1 and C2.

コンバータ121は、正極線PL1および負極線NL1と、正極線HPLおよび負極線NL1とに接続される。コンバータ121は、ECU300からの制御信号PWCにより制御され、正極線PL1および負極線NL1と、正極線HPLおよび負極線NL1との間で電圧変換を行なう。   Converter 121 is connected to positive electrode line PL1 and negative electrode line NL1, and to positive electrode line HPL and negative electrode line NL1. Converter 121 is controlled by control signal PWC from ECU 300, and performs voltage conversion between positive electrode line PL1 and negative electrode line NL1, and positive electrode line HPL and negative electrode line NL1.

インバータ122は、正極線HPLおよび負極線NL1を介してコンバータ121に接続される。インバータ122は、ECU300からの制御信号PWIによって制御され、コンバータ121から供給される直流電力を、MG130を駆動するための交流電力に変換する。また、インバータ122は、MG130により発電された交流電力を、電池B1,B2の充電が可能な直流電力に変換する。   Inverter 122 is connected to converter 121 via positive line HPL and negative line NL1. Inverter 122 is controlled by control signal PWI from ECU 300 and converts the DC power supplied from converter 121 into AC power for driving MG 130. Inverter 122 also converts AC power generated by MG 130 into DC power that can charge batteries B1 and B2.

コンデンサC1は、正極線PL1および負極線NL1の間に接続され、正極線PL1および負極線NL1の間の電圧変動を低減する。コンデンサC2は、正極線HPLと負極線NL1との間に接続され、正極線HPLと負極線NL1との間の電圧変動を低減する。   Capacitor C1 is connected between positive line PL1 and negative line NL1, and reduces voltage fluctuation between positive line PL1 and negative line NL1. Capacitor C2 is connected between positive electrode line HPL and negative electrode line NL1, and reduces voltage fluctuation between positive electrode line HPL and negative electrode line NL1.

MG130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。   MG 130 is an AC rotating electric machine, for example, a permanent magnet type synchronous motor including a rotor in which permanent magnets are embedded.

MG130の出力トルクは、減速機や動力分割機構によって構成される動力伝達ギア140を介して駆動輪150に伝達されて、車両100を走行させる。MG130は、車両100の回生制動動作時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって電源装置(電池B1,B2)の充電電力に変換される。   The output torque of MG 130 is transmitted to drive wheel 150 via power transmission gear 140 configured by a speed reducer and a power split mechanism, and causes vehicle 100 to travel. MG 130 can generate power by the rotational force of drive wheel 150 during regenerative braking operation of vehicle 100. Then, the generated power is converted by the PCU 120 into charging power for the power supply devices (batteries B1 and B2).

さらに、車両100は、電圧センサ112,112Aを備える。電圧センサ112は、電池B1の電圧V1を検出する。電圧センサ112Aは、電池B1の電圧V2を検出する。これらの各センサは、検出結果をECU300に出力する。   Furthermore, the vehicle 100 includes voltage sensors 112 and 112A. The voltage sensor 112 detects the voltage V1 of the battery B1. Voltage sensor 112A detects voltage V2 of battery B1. Each of these sensors outputs a detection result to ECU 300.

ECU300は、いずれも図1には図示しないがCPU(Central Processing Unit)およびメモリを含み、メモリに記憶された情報や各センサ等からの信号に基づいて各機器を制御するための制御信号を生成する。ECU300は、生成した制御信号を各機器へ出力することによって車両100および各機器の制御を行なう。これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。   ECU 300 includes a CPU (Central Processing Unit) and a memory (not shown in FIG. 1), and generates a control signal for controlling each device based on information stored in the memory or a signal from each sensor or the like. To do. ECU 300 controls vehicle 100 and each device by outputting the generated control signal to each device. These controls are not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).

なお、図1においては、ECU300を1つのユニットとして示しているが、機能や制御対象に応じて2つ以上のユニットに分割してもよい。   In FIG. 1, ECU 300 is shown as one unit, but it may be divided into two or more units depending on the function and the control target.

さらに、車両100は、車両外部からの電力によって電池B1,B2を充電するための構成として、充電装置200と、インレット220とを含む。   Furthermore, vehicle 100 includes a charging device 200 and an inlet 220 as a configuration for charging batteries B1, B2 with electric power from outside the vehicle.

インレット220は、外部電源500からの交流電力を受けるために、車両100のボディに設けられる。インレット220には、充電ケーブル400の充電コネクタ410が接続される。そして、充電ケーブル400のプラグ420が、(たとえば、商用電源のような)外部電源500のコンセント510に接続されることによって、外部電源500からの交流電力が、充電ケーブル400の電線部430を介して車両100に伝達される。また、充電ケーブル400の電線部430には、外部電源500から車両100への電力の供給と遮断とを切り替えるための、遮断装置440が介挿される。   Inlet 220 is provided in the body of vehicle 100 in order to receive AC power from external power supply 500. A charging connector 410 of the charging cable 400 is connected to the inlet 220. Then, the plug 420 of the charging cable 400 is connected to the outlet 510 of the external power source 500 (for example, a commercial power source), so that the AC power from the external power source 500 passes through the electric wire portion 430 of the charging cable 400. Transmitted to the vehicle 100. In addition, an interruption device 440 for switching between supply and interruption of electric power from the external power supply 500 to the vehicle 100 is inserted in the electric wire portion 430 of the charging cable 400.

充電装置200は、充電回路210と、コンデンサC3,C4とを含む。
充電回路210は、正極線ACL1,ACL2を介して、インレット220に接続される。充電回路210は、正極線PL2および負極線NL2を介して、充電リレーR1に接続される。充電回路210は、正極線PL2から分岐する正極線および負極線NL2から分岐する負極線を介して、充電リレーR2にも接続される。
Charging device 200 includes a charging circuit 210 and capacitors C3 and C4.
Charging circuit 210 is connected to inlet 220 via positive lines ACL1 and ACL2. Charging circuit 210 is connected to charging relay R1 through positive line PL2 and negative line NL2. Charging circuit 210 is also connected to charging relay R2 via a positive line branched from positive line PL2 and a negative line branched from negative line NL2.

充電回路210は、ECU300からの制御信号PWEによって制御され、インレット220から供給される交流電力を、電池B1,B2の充電が可能な直流電力に変換する。   The charging circuit 210 is controlled by a control signal PWE from the ECU 300, and converts AC power supplied from the inlet 220 into DC power capable of charging the batteries B1 and B2.

コンデンサC3は、正極線PL2および負極線NL2の間に接続され、正極線PL2および負極線NL2の間の電圧変動を低減する。なお、コンデンサC3は通常走行時には使用されないため、コンデンサC3の蓄電可能容量は、コンデンサC1の蓄電可能容量よりも小さくすることができる。コンデンサC4は、正極線ACL1,ACL2の間に接続される。   Capacitor C3 is connected between positive line PL2 and negative line NL2, and reduces voltage fluctuation between positive line PL2 and negative line NL2. In addition, since the capacitor C3 is not used during normal driving, the chargeable capacity of the capacitor C3 can be made smaller than the chargeable capacity of the capacitor C1. Capacitor C4 is connected between positive lines ACL1 and ACL2.

ところで、電池B1,B2を長時間使用せずに放置した場合や電池B1,B2の一方を新品に交換した場合には、電池B1の電圧V1と電池B2の電圧V2との間に電圧差ΔVが生じる場合がある。この電圧差ΔVが許容値を越える状態で電池B1,B2を並列に接続すると電池B1,B2間の短絡が発生してしまう。   By the way, when the batteries B1 and B2 are left unused for a long time or when one of the batteries B1 and B2 is replaced with a new one, a voltage difference ΔV between the voltage V1 of the battery B1 and the voltage V2 of the battery B2. May occur. If the batteries B1 and B2 are connected in parallel with the voltage difference ΔV exceeding the allowable value, a short circuit between the batteries B1 and B2 occurs.

そこで、ECU300は、電圧差ΔVが所定値よりも大きい場合、充電リレーR1,R2を制御して電池B1の電圧V1と電池B2の電圧V2とを均等化する制御(以下、「均等化制御」という)を実行する。   Therefore, when voltage difference ΔV is larger than a predetermined value, ECU 300 controls charging relays R1 and R2 to equalize voltage V1 of battery B1 and voltage V2 of battery B2 (hereinafter referred to as “equalization control”). Execute).

図2は、ECU300の均等化制御に関する部分の機能ブロック図である。図2に示した各機能ブロックは、電子回路等によるハードウェア処理によって実現してもよいし、プログラムの実行等によるソフトウェア処理によって実現してもよい。   FIG. 2 is a functional block diagram of a portion related to equalization control of the ECU 300. Each functional block shown in FIG. 2 may be realized by hardware processing using an electronic circuit or the like, or may be realized by software processing such as execution of a program.

ECU300は、設定部310、制御部320とを備える。
設定部310は、変数n,m,Xを所定規則(後述)に従って設定し、変数m,Xを充電リレーR1,R2制御用のパラメータとして制御部320に出力する。以下では、変数n,m,Xをいずれも0以上の整数として説明する。変数m,Xの具体的な設定手法については図3、4を用いて後述する。
ECU 300 includes a setting unit 310 and a control unit 320.
Setting unit 310 sets variables n, m, and X in accordance with a predetermined rule (described later), and outputs variables m and X to control unit 320 as parameters for controlling charging relays R1 and R2. In the following description, the variables n, m, and X are all assumed to be integers of 0 or more. A specific method for setting the variables m and X will be described later with reference to FIGS.

制御部320は、変数m,X、電圧V1,V2を用いて、電圧V1と電圧V2とを均等化するように制御信号SE2,SE4を生成し、充電リレーR1,R2に出力する。充電リレーR1,R2の具体的な制御手法については後述する。   Control unit 320 uses variables m and X and voltages V1 and V2 to generate control signals SE2 and SE4 so as to equalize voltage V1 and voltage V2, and outputs them to charging relays R1 and R2. A specific control method of the charging relays R1 and R2 will be described later.

図3は、設定部310の機能(変数m,Xの設定)を実現するためのECU300の処理手順を示すフローチャートである。以下に示すフローチャートは所定周期で繰り返し実行される。また、以下に示すフローチャートの各ステップ(以下、ステップを「S」と略す)は、上述したようにハードウェア処理によって実現してもよいしソフトウェア処理によって実現してもよい。   FIG. 3 is a flowchart showing a processing procedure of ECU 300 for realizing the function of setting unit 310 (setting of variables m and X). The flowchart shown below is repeatedly executed at a predetermined cycle. In addition, each step of the flowchart shown below (hereinafter, “step” is abbreviated as “S”) may be realized by hardware processing as described above, or may be realized by software processing.

S10にて、ECU300は、変数nが上限値Kに達したか否かを判断する。
変数nが上限値Kにまだ達していない場合(S10にてNO)、ECU300は、S11にて変数nを「1」だけ増加させ、S12にて変数mの値を維持する。
In S10, ECU 300 determines whether or not variable n has reached upper limit K.
If variable n has not yet reached upper limit value K ( NO in S10), ECU 300 increases variable n by “1” in S11, and maintains the value of variable m in S12.

一方、変数nが上限値Kに達した場合(S10にてYES)、ECU300は、S13にて変数nを初期値である「0」にリセットし、S12にて変数mを「1」だけ増加させる。 On the other hand, if the variable n has reached the upper limit value K (YES at S10), ECU 300 resets the variable n to an initial value "0" at S13, increased by "1" the variable m at S12 Let

S12またはS14の処理後、ECU300は、S15にて、変数Xを「1」だけ増加させる。なお、変数n,m,Xの最新値は、ECU300内部のメモリに記憶される。   After the processing of S12 or S14, the ECU 300 increases the variable X by “1” in S15. Note that the latest values of the variables n, m, and X are stored in a memory inside the ECU 300.

図4は、制御部320の機能を実現するためのECU300の処理手順を示すフローチャートである。なお、図4に示すフローチャートは、所定の開始条件が成立した後に、所定周期で実行される。開始条件は、たとえば、外部充電が完了したという条件、あるいは、駆動システムを長期間停止した後に駆動システムの起動要求があったという条件にすることができる。いずれの場合であっても、充電回路210、コンバータ121、インバータ122を駆動させる必要はない。以下では、充電回路210、コンバータ121、インバータ122を停止させた状態で図4に示すフローチャートを実行するものとする。   FIG. 4 is a flowchart showing a processing procedure of ECU 300 for realizing the function of control unit 320. The flowchart shown in FIG. 4 is executed at a predetermined cycle after a predetermined start condition is satisfied. The start condition can be, for example, a condition that external charging is completed, or a condition that a drive system activation request is made after the drive system has been stopped for a long period of time. In any case, it is not necessary to drive the charging circuit 210, the converter 121, and the inverter 122. In the following, it is assumed that the flowchart shown in FIG. 4 is executed with the charging circuit 210, the converter 121, and the inverter 122 stopped.

S20にて、ECU300は、電圧V1と電圧V2との差の絶対値|V1−V2|が所定値V0を超える状態が一定時間継続したか否かを判断する。|V1−V2|>V0の状態が一定時間継続すると(S20にてYES)、処理はS21に移される。そうでないと(S20にてNO)、この処理は終了される。   In S20, ECU 300 determines whether or not the state in which absolute value | V1-V2 | of the difference between voltage V1 and voltage V2 exceeds predetermined value V0 has continued for a certain period of time. If the state of | V1-V2 |> V0 continues for a certain time (YES in S20), the process proceeds to S21. Otherwise (NO in S20), this process ends.

S21にて、ECU300は、変数mが増加したか否かを判断する。変数mが増加した場合(S21にてYES)、処理はS22に移される。変数mが増加していない場合(S21にてNO)、処理はS23に移される。   In S21, ECU 300 determines whether or not variable m has increased. If variable m has increased (YES in S21), the process proceeds to S22. If variable m has not increased (NO in S21), the process proceeds to S23.

S22にて、ECU300は、所定期間、リレーR1P,R1N,R2P,R2Nをすべてオフする。このS22の処理は、以降のS23〜S24の処理によって後述する第1制御と第2制御とを切り替える際に電池B1,B2間の短絡が生じるのを防止するために、一時的に電池B1,B2の双方を充電装置200から切り離す時間を設けるための処理である。   In S22, ECU 300 turns off all of relays R1P, R1N, R2P, R2N for a predetermined period. The process of S22 is temporarily performed in order to prevent a short circuit between the batteries B1 and B2 when switching between a first control and a second control, which will be described later, by the subsequent processes of S23 to S24. This is a process for providing a time for disconnecting both B2 from the charging device 200.

S23にて、ECU300は、変数mが奇数であるか否かを判断する。
変数mが奇数である場合(S23にてYES)、処理はS24〜S27に移される。
In S23, ECU 300 determines whether or not variable m is an odd number.
If variable m is an odd number (YES in S23), the process proceeds to S24 to S27.

S24にて、ECU300は、充電リレーR1,R2の正極側のリレーR1P,R2Pをオンする。   In S24, ECU 300 turns on relays R1P and R2P on the positive side of charging relays R1 and R2.

S25にて、ECU300は、変数Xが奇数であるか否かを判断する。変数Xが奇数である場合(S25にてYES)、処理はS26に移される。変数Xが奇数でない場合(S25にてNO)、処理はS27に移される。   In S25, ECU 300 determines whether or not variable X is an odd number. If variable X is an odd number (YES in S25), the process proceeds to S26. If variable X is not an odd number (NO in S25), the process proceeds to S27.

S26にて、ECU300は、充電リレーR1の負極側のリレーR1Nをオンし、充電リレーR2の負極側のリレーR2Nをオフする。この状態では、電池B1が充電装置200のコンデンサC3に接続されることになる。   In S26, ECU 300 turns on relay R1N on the negative side of charging relay R1, and turns off relay R2N on the negative side of charging relay R2. In this state, the battery B1 is connected to the capacitor C3 of the charging device 200.

S27にて、ECU300は、リレーR1Nをオフし、リレーR2Nをオンする。この状態では、電池B2が充電装置200のコンデンサC3に接続されることになる。   In S27, ECU 300 turns off relay R1N and turns on relay R2N. In this state, the battery B2 is connected to the capacitor C3 of the charging device 200.

一方、変数mが奇数でない場合(S23にてNO)、処理はS28〜S31に移される。   On the other hand, if variable m is not an odd number (NO in S23), the process proceeds to S28 to S31.

S28にて、ECU300は、充電リレーR1,R2の負極側のリレーR1N,R2Nをオンする。   In S28, ECU 300 turns on relays R1N and R2N on the negative side of charging relays R1 and R2.

S29にて、ECU300は、変数Xが奇数であるか否かを判断する。変数Xが奇数である場合(S29にてYES)、処理はS30に移される。変数Xが奇数でない場合(S29にてNO)、処理はS31に移される。   In S29, ECU 300 determines whether or not variable X is an odd number. If variable X is an odd number (YES in S29), the process proceeds to S30. If variable X is not an odd number (NO in S29), the process proceeds to S31.

S30にて、ECU300は、充電リレーR1の正極側のリレーR1Pをオンし、充電リレーR2の正極側のリレーR2Pをオフする。この状態では、電池B1が充電装置200のコンデンサC3に接続されることになる。   In S30, ECU 300 turns on relay R1P on the positive side of charging relay R1, and turns off relay R2P on the positive side of charging relay R2. In this state, the battery B1 is connected to the capacitor C3 of the charging device 200.

S31にて、ECU300は、充電リレーR1の正極側のリレーR1Pをオフし、充電リレーR2の正極側のリレーR2Pをオンする。この状態では、電池B2が充電装置200のコンデンサC3に接続されることになる。   In S31, ECU 300 turns off relay R1P on the positive side of charging relay R1, and turns on relay R2P on the positive side of charging relay R2. In this state, the battery B2 is connected to the capacitor C3 of the charging device 200.

図5は、均等化制御実行時の変数n,m,Xと、充電リレーR1,R2の変化態様を示す図である。なお、図5には、上限値Kを「5」とした場合を例示している。   FIG. 5 is a diagram illustrating how the variables n, m, and X and the charging relays R1 and R2 change during the equalization control. FIG. 5 illustrates a case where the upper limit K is “5”.

図5に示すように、変数nは所定周期で1づつ増加し、上限値「5」に達した時点で変数nは「0」に戻される。変数mは、変数nが上限値「5」に達する毎に1づつ増加する。変数Xは、変数nと同じ周期で1づつ増加する。ただし、変数Xには上限値は設けられてない。   As shown in FIG. 5, the variable n increases by 1 at a predetermined cycle, and when the upper limit value “5” is reached, the variable n is returned to “0”. The variable m increases by 1 every time the variable n reaches the upper limit “5”. The variable X increases by 1 with the same period as the variable n. However, the variable X has no upper limit.

変数mが奇数である場合(m=1、3、…)、ECU300は、正極側のリレーR1P,R2Pをオンに維持しつつ負極側のリレーR1N,R2Nを変数Xの増加周期で交互にオンする(リレーR1N,R2Nを相補的にオンオフさせる)。以下、この制御を「第1制御」という。   When the variable m is an odd number (m = 1, 3,...), The ECU 300 alternately turns on the negative relays R1N and R2N with the increasing period of the variable X while keeping the positive relays R1P and R2P on. (Relays R1N and R2N are complementarily turned on and off). Hereinafter, this control is referred to as “first control”.

変数mが奇数でない場合(m=0、2、4、…)、ECU300は、第1制御とは逆に、負極側のリレーR1N,R2Nをオンに維持しつつ、正極側のリレーR1P,R2Pを変数Xの増加周期で交互にオンする。以下、この制御を「第2制御」という。   When the variable m is not an odd number (m = 0, 2, 4,...), The ECU 300 maintains the negative relays R1N and R2N on and reverses the positive relays R1P and R2P, contrary to the first control. Are alternately turned on in increments of the variable X. Hereinafter, this control is referred to as “second control”.

第1制御または第2制御を実行することによって、充電装置200のコンデンサC3に対して、電池B1と電池B2とが変数Xの増加周期で交互に接続されることになる。これにより、電池B1,B2を並列接続することなく、電圧が高い方の電池の電力エネルギをコンデンサC3を介して電圧が低い方の電池に移動させることができる。たとえば、電圧V1が電圧V2よりも高い場合、電池B1とコンデンサC3との接続時に電池B1の電力エネルギがコンデンサC3に一時的に蓄えられ、電池B2とコンデンサC3との接続時にコンデンサC3の電力が電池B2に供給される。これにより、電池B1,B2間の短絡を防止しつつ、電圧V1と電圧V2との均等化を図ることができる。この際、充電回路210、コンバータ121、インバータ122を駆動させる必要はなく、リレーを制御するという比較的簡易な制御で電圧V1と電圧V2との均等化を図ることができる。   By executing the first control or the second control, the battery B1 and the battery B2 are alternately connected to the capacitor C3 of the charging apparatus 200 at an increasing period of the variable X. Thereby, the power energy of the battery with the higher voltage can be transferred to the battery with the lower voltage via the capacitor C3 without connecting the batteries B1 and B2 in parallel. For example, when the voltage V1 is higher than the voltage V2, the power energy of the battery B1 is temporarily stored in the capacitor C3 when the battery B1 and the capacitor C3 are connected, and the power of the capacitor C3 is stored when the battery B2 and the capacitor C3 are connected. It is supplied to the battery B2. Thereby, equalization with voltage V1 and voltage V2 can be achieved, preventing the short circuit between battery B1, B2. At this time, it is not necessary to drive the charging circuit 210, the converter 121, and the inverter 122, and the voltage V1 and the voltage V2 can be equalized by a relatively simple control of controlling the relay.

さらに、第1制御または第2制御の実行中は、正極側のリレーR1P,R2Pの組および負極側のリレーR1N,R2Nの組のうち、一方の組はオンオフ動作するが、他方の組はオンに維持される。そのため、双方の組をオンオフさせる場合に比べてリレーの動作回数が低減される。さらに、オンに維持される組は、変数mが増加する毎に切り替えられる。そのため、オンに維持される組をいずれか一方の組に固定する場合に比べてリレーの動作頻度が均等化される。このようにリレーの動作回数の低減および動作頻度の均等化を図る態様で各リレーを制御するため、各リレーの耐久性の低下を抑制することができる。   Further, during the execution of the first control or the second control, one of the pair of the positive side relays R1P and R2P and the pair of the negative side relays R1N and R2N operates on / off, while the other set is on. Maintained. Therefore, the number of relay operations is reduced as compared with the case where both sets are turned on and off. Furthermore, the set kept on is switched each time the variable m increases. Therefore, the operation frequency of the relay is equalized as compared with the case where the set maintained on is fixed to one of the sets. Since each relay is controlled in such a manner as to reduce the number of operation of the relay and equalize the operation frequency, it is possible to suppress a decrease in durability of each relay.

なお、第1制御と第2制御との切替時には、上述したように、正極側のリレーR1P,R2Pおよび負極側のリレーR1N,R2Nのいずれもがオフされるため、電池B1,B2の双方が一時的に充電装置200から切り離される。そのため、電池B1,B2間の短絡が防止される。   At the time of switching between the first control and the second control, as described above, since both the positive side relays R1P and R2P and the negative side relays R1N and R2N are turned off, both the batteries B1 and B2 are Temporarily disconnected from charging device 200. Therefore, a short circuit between the batteries B1 and B2 is prevented.

以上のように、本実施の形態に従うECU300は、正極側のリレーR1P,R2Pをオンに維持しつつ負極側のリレーR1N,R2Nを交互にオンする第1制御と、負極側のリレーR1N,R2Nをオンに維持しつつ正極側のリレーR1P,R2Pを交互にオンする第2制御とを、所定周期で(変数mが増加する毎に)切り替える。これにより、電圧が高い方の電池の電力エネルギをコンデンサC3を介して電圧が低い方の電池に移動させることができるので、電池B1,B2間の短絡を防止しつつ電圧V1と電圧V2との均等化を図ることができる。さらに、リレーの動作回数の低減および動作頻度の均等化が図られるため、各リレーの耐久性を向上させることができる。   As described above, ECU 300 according to the present embodiment maintains first positive relays R1P and R2P on, and first turns on negative relays R1N and R2N alternately, and negative relays R1N and R2N. Is switched on at a predetermined cycle (every time the variable m increases), while the second control for alternately turning on the positive-side relays R1P and R2P is maintained. As a result, the power energy of the battery having the higher voltage can be transferred to the battery having the lower voltage via the capacitor C3, so that the short circuit between the batteries B1 and B2 can be prevented and the voltage V1 and the voltage V2 can be reduced. Equalization can be achieved. Furthermore, since the number of relay operations can be reduced and the operation frequency can be equalized, the durability of each relay can be improved.

なお、並列接続可能な電池を3つ以上備えるようにしてもよい。この場合は、一方の極側の3つ以上のリレーをいずれもオンに維持しつつ、他方の極側の3つ以上のリレーを交互にオンすればよい。なお、「3つ以上のリレーを交互にオンする」とは、3つ以上のリレーのいずれか1つをオン(他をオフ)し、そのオンする1つのリレーを周期的に順番に切り替えているという意味である。   Note that three or more batteries that can be connected in parallel may be provided. In this case, three or more relays on the other pole side may be turned on alternately while keeping all three or more relays on one pole side on. “Turn on three or more relays alternately” means that one of three or more relays is turned on (the other is turned off), and the one relay to be turned on is periodically switched in order. It means that

[変形例]
上述の実施の形態では、充電装置200のコンデンサC3を介して電池B1,B2間のエネルギ移動を行なったが、PCU120のコンデンサC1を介して電池B1,B2間のエネルギ移動を行なうようにしてもよい。この場合、上述した図4の処理におけるリレーR1P,R2P,R1N,R2Nの各制御対象を、それぞれリレーSMR1P,SMR2P,SMR1N,SMR2Nに変更すればよい。
[Modification]
In the above-described embodiment, the energy transfer between the batteries B1 and B2 is performed via the capacitor C3 of the charging device 200. However, the energy transfer between the batteries B1 and B2 is performed via the capacitor C1 of the PCU 120. Good. In this case, the control targets of the relays R1P, R2P, R1N, and R2N in the processing of FIG. 4 described above may be changed to the relays SMR1P, SMR2P, SMR1N, and SMR2N, respectively.

図6は、実施の形態の変形例に従うECU300の処理手順を示すフローチャートである。なお、図6に示したステップのうち、前述の図4に示したステップと同じ番号を付しているステップについては、既に説明したため詳細な説明はここでは繰り返さない。   FIG. 6 is a flowchart showing a processing procedure of ECU 300 according to the modification of the embodiment. Of the steps shown in FIG. 6, the steps given the same numbers as the steps shown in FIG. 4 described above have already been described, and detailed description thereof will not be repeated here.

S22aにて、ECU300は、所定期間、リレーSMR1P,SMR2P,SMR1N,SMR2Nをすべてオフする。   In S22a, ECU 300 turns off all of relays SMR1P, SMR2P, SMR1N, and SMR2N for a predetermined period.

S24aにて、ECU300は、SMR1,SMR2の正極側のリレーSMR1P,SMR2Pをオンする。   In S24a, ECU 300 turns on relays SMR1P and SMR2P on the positive side of SMR1 and SMR2.

S26aにて、ECU300は、SMR1の負極側のリレーSMR1Nをオンし、SMR2の負極側のリレーSMR2Nをオフする。この状態では、電池B1がPCU120のコンデンサC1に接続される。   In S26a, ECU 300 turns on relay SMR1N on the negative side of SMR1, and turns off relay SMR2N on the negative side of SMR2. In this state, the battery B1 is connected to the capacitor C1 of the PCU 120.

S27aにて、ECU300は、リレーSMR1Nをオフし、リレーSMR2Nをオンする。この状態では、電池B2がPCU120のコンデンサC1に接続される。   In S27a, ECU 300 turns off relay SMR1N and turns on relay SMR2N. In this state, battery B2 is connected to capacitor C1 of PCU 120.

S28にて、ECU300は、SMR1,SMR2の負極側のリレーSMR1N,SMR2Nをオンする。 At S28 a, ECU 300 is, SMR1, the negative pole-side relay SMR1N of SMR2, turning on the SMR2N.

S30aにて、ECU300は、SMR1の正極側のリレーSMR1Pをオンし、SMR2の正極側のリレーSMR2Pをオフする。この状態では、電池B1がPCU120のコンデンサC1に接続される。   In S30a, ECU 300 turns on relay SMR1P on the positive side of SMR1, and turns off relay SMR2P on the positive side of SMR2. In this state, the battery B1 is connected to the capacitor C1 of the PCU 120.

S31aにて、ECU300は、SMR1の正極側のリレーSMR1Pをオフし、SMR2の正極側のリレーSMR2Pをオンする。この状態では、電池B2がPCU120のコンデンサC1に接続されることになる。   In S31a, ECU 300 turns off relay SMR1P on the positive side of SMR1, and turns on relay SMR2P on the positive side of SMR2. In this state, the battery B2 is connected to the capacitor C1 of the PCU 120.

このようにすれば、電圧が高い方の電池の電力エネルギをコンデンサC1を介して電圧が低い方の電池に移動させることができる。また、通常、コンデンサC1の蓄電可能容量はコンデンサC3の蓄電可能容量よりも大きい。そのため、コンデンサC3を用いる場合に比べて、電池B1,B2とコンデンサC1との間を流れる電流が大きくなり電力エネルギの移動速度が早くなるので、電圧V1と電圧V2との均等化を早期に図ることができる。   If it does in this way, the electric energy of a battery with a higher voltage can be moved to a battery with a lower voltage via capacitor C1. In general, the chargeable capacity of the capacitor C1 is larger than the chargeable capacity of the capacitor C3. Therefore, compared to the case where the capacitor C3 is used, the current flowing between the batteries B1, B2 and the capacitor C1 is increased and the moving speed of the power energy is increased, so that the voltage V1 and the voltage V2 are equalized at an early stage. be able to.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

100 車両、110 第1電源、110A 第2電源、112,112A 電圧センサ、120 PCU、121 コンバータ、122 インバータ、140 動力伝達ギア、150 駆動輪、200 充電装置、210 充電回路、220 インレット、300 ECU、310 設定部、320 制御部、400 充電ケーブル、410 充電コネクタ、420 プラグ、430 電線部、440 遮断装置、500 外部電源、510 コンセント、ACL1,ACL2,HPL,PL1,PL2 正極線、B1,B2 電池、C1,C2,C3,C4 コンデンサ、NL1,NL2 負極線、R1P,R1N,R2P,R2N、SMR1R,SMR1N,SMR2P,SMR2N リレー、R1,R2 充電リレー、RE1,RE2 抵抗、SMR1,SMR2 システムメインリレー、SP1 サービスプラグ。   100 vehicle, 110 first power source, 110A second power source, 112, 112A voltage sensor, 120 PCU, 121 converter, 122 inverter, 140 power transmission gear, 150 driving wheel, 200 charging device, 210 charging circuit, 220 inlet, 300 ECU , 310 setting unit, 320 control unit, 400 charging cable, 410 charging connector, 420 plug, 430 electric wire unit, 440 disconnection device, 500 external power supply, 510 outlet, ACL1, ACL2, HPL, PL1, PL2 positive line, B1, B2 Battery, C1, C2, C3, C4 capacitor, NL1, NL2 negative line, R1P, R1N, R2P, R2N, SMR1R, SMR1N, SMR2P, SMR2N relay, R1, R2 charging relay, RE1, RE2 resistance, SMR1, SMR2 system main relay, SP1 service plug.

Claims (7)

コンデンサを備えた電気回路と、前記コンデンサに並列に接続可能な複数の蓄電装置とを備えた車両の電力制御装置であって、
前記複数の蓄電装置の正極と前記電気回路との間にそれぞれ設けられる第1の複数のスイッチと、
前記複数の蓄電装置の負極と前記電気回路との間にそれぞれ設けられる第2の複数のスイッチと、
前記第1および第2の複数のスイッチを制御する制御回路とを備え、
前記制御回路は、前記複数の蓄電装置間の電圧差が所定値を超える場合、前記第1の複数のスイッチを導通状態に維持しかつ前記第2の複数のスイッチを交互に導通状態とする第1制御または前記第2の複数のスイッチを導通状態に維持しかつ前記第1の複数のスイッチを交互に導通状態とする第2制御を実行することによって、前記複数の蓄電装置のうちの電圧が高い蓄電装置の電力エネルギを前記コンデンサを介して電圧が低い蓄電装置に移動させる、車両の電力制御装置。
A power control apparatus for a vehicle, comprising: an electric circuit including a capacitor; and a plurality of power storage devices connectable in parallel to the capacitor,
A plurality of first switches provided between positive electrodes of the plurality of power storage devices and the electric circuit;
A plurality of second switches respectively provided between negative electrodes of the plurality of power storage devices and the electric circuit;
A control circuit for controlling the first and second plurality of switches,
The control circuit maintains the first plurality of switches in a conducting state and alternately turns the second plurality of switches into a conducting state when a voltage difference between the plurality of power storage devices exceeds a predetermined value. By performing one control or a second control that maintains the second plurality of switches in a conductive state and alternately turns on the first plurality of switches, the voltage of the plurality of power storage devices is increased. A power control apparatus for a vehicle that moves power energy of a high power storage device to a power storage device having a low voltage through the capacitor.
前記制御回路は、前記第1制御と前記第2制御とを所定周期で交互に実行する、請求項1に記載の車両の電力制御装置。   The power control apparatus for a vehicle according to claim 1, wherein the control circuit alternately executes the first control and the second control at a predetermined cycle. 前記制御回路は、前記第1制御および前記第2制御のうちの一方の制御から他方の制御に切り替える場合には、前記一方の制御の停止後から所定期間は前記第1および第2の複数のスイッチを共に非導通状態とし、前記所定期間の経過後に前記他方の制御を実行する、請求項2に記載の車両の電力制御装置。 In the case where the control circuit switches from one control of the first control and the second control to the other control, the first and second plurality of control circuits are provided for a predetermined period after the one control is stopped. The power control apparatus for a vehicle according to claim 2, wherein both the switches are set in a non-conductive state, and the other control is executed after the predetermined period has elapsed. 前記車両は、外部電源を用いて前記複数の蓄電装置を充電可能な車両であり、
前記電気回路は、前記外部電源の電力を前記複数の蓄電装置に充電可能な電力に変換する充電回路であり、
前記コンデンサは、前記充電回路で変換された電力を前記複数の蓄電装置に供給するための正極線および負極線の間に設けられる、請求項1〜3のいずれかに記載の車両の電力制御装置。
The vehicle is a vehicle that can charge the plurality of power storage devices using an external power source,
The electric circuit is a charging circuit that converts electric power of the external power source into electric power that can be charged to the plurality of power storage devices,
4. The vehicle power control device according to claim 1, wherein the capacitor is provided between a positive electrode line and a negative electrode line for supplying electric power converted by the charging circuit to the plurality of power storage devices. 5. .
前記制御回路は、前記充電回路を停止させた状態で前記第1制御または前記第2制御を実行する、請求項4に記載の車両の電力制御装置。   The power control apparatus for a vehicle according to claim 4, wherein the control circuit executes the first control or the second control in a state where the charging circuit is stopped. 前記車両は、モータの動力で走行可能な車両であり、
前記電気回路は、前記複数の蓄電装置の電力を前記モータを駆動可能な電力に変換する電力変換回路であり、
前記コンデンサは、前記複数の蓄電装置の電力を前記電力変換回路に供給するための正極線および負極線の間に設けられる、請求項1〜3のいずれかに記載の車両の電力制御装置。
The vehicle is a vehicle that can be driven by the power of a motor,
The electric circuit is a power conversion circuit that converts electric power of the plurality of power storage devices into electric power that can drive the motor,
4. The vehicle power control device according to claim 1, wherein the capacitor is provided between a positive electrode line and a negative electrode line for supplying electric power of the plurality of power storage devices to the power conversion circuit. 5.
前記制御回路は、前記電力変換回路を停止させた状態で前記第1制御または前記第2制御を実行する、請求項6に記載の車両の電力制御装置。   The power control apparatus for a vehicle according to claim 6, wherein the control circuit executes the first control or the second control in a state where the power conversion circuit is stopped.
JP2010135221A 2010-06-14 2010-06-14 Vehicle power control device Expired - Fee Related JP5012962B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010135221A JP5012962B2 (en) 2010-06-14 2010-06-14 Vehicle power control device
PCT/IB2011/001312 WO2011158086A2 (en) 2010-06-14 2011-06-13 Electric power control apparatus and electric power control method for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135221A JP5012962B2 (en) 2010-06-14 2010-06-14 Vehicle power control device

Publications (2)

Publication Number Publication Date
JP2012005173A JP2012005173A (en) 2012-01-05
JP5012962B2 true JP5012962B2 (en) 2012-08-29

Family

ID=44512991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135221A Expired - Fee Related JP5012962B2 (en) 2010-06-14 2010-06-14 Vehicle power control device

Country Status (2)

Country Link
JP (1) JP5012962B2 (en)
WO (1) WO2011158086A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737218B2 (en) * 2012-04-23 2015-06-17 トヨタ自動車株式会社 Vehicle power supply
JP6036236B2 (en) * 2012-12-03 2016-11-30 住友電気工業株式会社 Storage system and storage battery deterioration diagnosis method
DE102014200329A1 (en) * 2014-01-10 2015-07-16 Robert Bosch Gmbh Electrochemical energy storage and method for balancing
JP6303812B2 (en) * 2014-05-26 2018-04-04 トヨタ自動車株式会社 Power supply control device and power supply control method
JP7044671B2 (en) * 2018-09-07 2022-03-30 Fdk株式会社 Power storage device and charging method
JP7338437B2 (en) * 2018-12-11 2023-09-05 株式会社デンソー charging system
KR20220090168A (en) * 2020-12-22 2022-06-29 현대자동차주식회사 Electrical power control method and electrical power control apparatus for vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042901A (en) * 2000-07-19 2002-02-08 Honda Motor Co Ltd Capacity equalizing device for storage battery device
US6873134B2 (en) * 2003-07-21 2005-03-29 The Boeing Company Autonomous battery cell balancing system with integrated voltage monitoring
JP4868402B2 (en) * 2006-11-01 2012-02-01 独立行政法人 宇宙航空研究開発機構 Storage cell module with series / parallel switching equalization function
KR100908716B1 (en) * 2007-03-02 2009-07-22 삼성에스디아이 주식회사 Battery Management System and Its Driving Method
US8143855B2 (en) * 2008-02-15 2012-03-27 Atieva, Inc. Rechargeable split battery system
JP5131533B2 (en) 2008-03-25 2013-01-30 マツダ株式会社 Battery charge / discharge control method and charge / discharge control apparatus
WO2009128082A1 (en) * 2008-04-17 2009-10-22 Eran Ofek Dynamically configuring properties of battery packs
JP2009261168A (en) * 2008-04-18 2009-11-05 Calsonic Kansei Corp Power supply for vehicle
JP5228825B2 (en) * 2008-11-17 2013-07-03 トヨタ自動車株式会社 Vehicle power supply system and vehicle

Also Published As

Publication number Publication date
WO2011158086A3 (en) 2012-02-16
WO2011158086A2 (en) 2011-12-22
JP2012005173A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5012962B2 (en) Vehicle power control device
JP5672378B2 (en) Power supply system, vehicle equipped with the same, and control method of power supply system
CN102771029B (en) Vehicle
US10967746B2 (en) Vehicle
WO2013042243A1 (en) Vehicle power supply system
CN103221246A (en) Vehicle charging device
EP3068658A1 (en) Charging and discharging system and vehicle used therein
CN102712266A (en) Vehicle
JP2010124536A (en) Power supply system for vehicle and vehicle
WO2011155014A1 (en) Power output control device for vehicle and power output control method for vehicle
JP2011091894A (en) Vehicle power supply system, and vehicle mounted with the same
JP2019161721A (en) Vehicular power supply system
JP2011041386A (en) Vehicle and control method for vehicle
JP2015057009A (en) Vehicle
JP2020127297A (en) Vehicle power supply system
WO2013042244A1 (en) Vehicle power supply system
WO2011158088A2 (en) Electric power supply apparatus for vehicle, and control method thereof
CN103843219B (en) The power-supply system of motor vehicle and control method thereof
EP3068656A1 (en) Vehicle and charging and discharging system using vehicle
JP2012223043A (en) Power supply system for vehicle and vehicle including the same
WO2011099157A1 (en) Power supply system and vehicle equipped therewith
JP2017103950A (en) Power supply device
JP2016082691A (en) vehicle
JP2015035919A (en) Vehicle and control method of vehicle
JP5561114B2 (en) Storage device control device, vehicle equipped with the same, and storage device control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees