WO2019092937A1 - Crane system and crane control method - Google Patents

Crane system and crane control method Download PDF

Info

Publication number
WO2019092937A1
WO2019092937A1 PCT/JP2018/028575 JP2018028575W WO2019092937A1 WO 2019092937 A1 WO2019092937 A1 WO 2019092937A1 JP 2018028575 W JP2018028575 W JP 2018028575W WO 2019092937 A1 WO2019092937 A1 WO 2019092937A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
crane
rope
dimensional
crane system
Prior art date
Application number
PCT/JP2018/028575
Other languages
French (fr)
Japanese (ja)
Inventor
桃井 康行
小田井 正樹
家重 孝二
裕吾 及川
正木 良三
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2019092937A1 publication Critical patent/WO2019092937A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear

Definitions

  • the present invention relates to a crane system that controls a crane on which a load is suspended.
  • patent document 1 is disclosed as a method of suppressing the fall of working efficiency, however, ensuring safety
  • safety operation control means for causing the danger source to perform a safety operation for avoiding danger when the distance between the danger source and the protection object becomes equal to or less than a threshold value;
  • Space information output means for generating space information indicating the location of the protection target, and monitoring the distance between the danger source and the protection target based on the space information, the distance between the danger source and the protection target
  • a safety control system comprising: a drive control device which causes the danger source to perform a danger avoidance operation in response to approach to a threshold.
  • Patent Document 1 the execution of the danger avoidance operation is determined based only on the distance between the danger source and the protection target, and consideration is given to the hanging load shape, the obstacle shape, and the behavior such as load fluctuation. It was necessary to carry out a large evasive action taking into account the margin for that. In addition, it does not consider setting restrictions such as prohibiting a load from passing through a space where there is no protection target or limiting the height to which passing is permitted, and the freedom of crane operation There was not enough consideration for raising the degree.
  • the present invention has been made in view of such problems, and in view of work load shape, obstacle shape, behavior such as load deflection, and constraints of the entry prohibited area and passing height of the load, the work efficiency can be improved.
  • An object of the present invention is to provide a crane system capable of securing higher safety while suppressing deterioration.
  • a crane system for moving a suspended load suspended on a rope in a horizontal direction and a vertical direction, and a suspended load shape detecting means for detecting the shape of the suspended load
  • Suspension position detection means for detecting the three-dimensional position of the suspension load
  • obstacle information detection means for detecting the position and shape of the obstacle, the existence range of the obstacle, the suspension load and the rope can not enter
  • a three-dimensional environmental map updating means for updating the three-dimensional environmental map based on the three-dimensional environmental map recording the protected area, and the obstacle information outputted by the obstacle information detecting means, based on the three-dimensional environmental map
  • Two-dimensional environmental map generation means for generating a two-dimensional environmental map in which the suspended load and the area through which the rope can not pass are recorded in a height range through which the suspended load and the rope pass;
  • the suspended load or the rope is the obstacle according to the shape of the suspended load output by the means, the three-dimensional position of the suspended load output by the suspended load position detection means, and the two-
  • FIG. 1 is a system configuration diagram of a crane system according to a first embodiment. A figure explaining processing of a two-dimensional environment map generation part and a prediction part.
  • FIG. 6 is a system configuration diagram of a crane system of a second embodiment.
  • the crane system of the first embodiment will be described with reference to FIGS. 1 to 5. Note that this crane system predicts in real time the possibility of the occurrence of interference when the suspended load 8 moves regardless of whether the crane is operated by the operator or automatically operated by the system.
  • FIG. 1 is a view for explaining a configuration example of a crane controlled by the crane system of the present embodiment.
  • an overhead crane is illustrated as an example of a crane here, as long as the load 8 can be moved in three dimensions, you may combine the crane system of another kind of crane, and a present Example.
  • the crane 1 moves along a runway 2 provided along walls on both sides of a building (not shown), a girder 3 moving the upper surface of the runway 2 and a lower surface of the girder 3 It consists of a trolley 4 to do.
  • a hoist (not shown) is provided at the lower part of the trolley 4, and the hook 6 at the tip of the rope 5 is moved up and down by winding or lowering the rope 5 using this.
  • the hanging load 8 is suspended from the hook 6 directly or through a wire 7, and the lifting load 8 moves up and down as the hook 6 moves up and down.
  • the crane 1 moves the suspended load 8 in the horizontal direction by the movement of the girder 3 (hereinafter referred to simply as “travel”) and the movement of the trolley 4 (hereinafter referred to simply as “transverse”), and the hoisting machine
  • the load 8 can be vertically moved up and down.
  • FIG. 2 is a perspective view illustrating an obstacle avoidance method of the load 8 suspended on the crane 1.
  • Various obstacles 9 exist in the use environment of the crane 1.
  • the obstacle 9 is, for example, a device or a load placed on the floor, or a forklift for transporting the load.
  • FIG. 2 schematically shows the crane operation for moving the load 8 to the target position by passing above the obstacle 9 and is performed in the following steps (A) to (E).
  • the dotted line arrow corresponds to the crane operation before suspending the load 8
  • the solid line arrow and the broken arrow correspond to the crane operation after the load 8 is suspended.
  • the trolley 4 is moved immediately above the load 8 by traveling and traversing.
  • FIG. 3 is a top view illustrating another obstacle avoidance method for the load 8 suspended on the crane 1.
  • the obstacle 9 is low, and the load 8 can pass above the obstacle 9.
  • the load 8 can not pass above the obstacle 9 because the obstacle 9 is high. It shows.
  • traveling and crossing are combined as shown in (D1) to (D3) of FIG. 3, and the suspended load 8 is moved to the target position while avoiding the obstacle 9.
  • FIG. 4 is a diagram for explaining the system configuration of the crane system of the present embodiment.
  • the present crane system includes a suspended load shape detection unit 100, a suspended load position detection unit 101, an obstacle information detection unit 102, a three-dimensional environment map 103, and a three-dimensional environment map update unit 104. And a two-dimensional environment map generation unit 106, an interference prediction unit 107, and an avoidance operation execution unit 108.
  • the crane system includes an arithmetic unit such as a CPU, a main storage unit such as a semiconductor memory, an auxiliary storage unit such as a hard disk, and hardware such as a communication unit, and is recorded in the auxiliary storage unit.
  • Suspended load shape detection unit 100, suspended load position detection unit 101, and the like by the program executing the program stored in the main storage while referring to the database such as three-dimensional environment map 103 and two-dimensional environment map 105
  • the database such as three-dimensional environment map 103 and two-dimensional environment map 105
  • FIG. 4 The details of each of FIG. 4 will be specifically described below.
  • the suspended load shape detection unit 100 detects the shape of the suspended load 8 and can be realized by, for example, a three-dimensional laser distance sensor attached downward from the trolley 4.
  • the hanging load shape detection unit 100 can detect the shape of the hanging load 8 by moving the trolley 4 back and forth and right and left while the hanging load 8 is placed on the ground and measuring the surface shape of the hanging load 8.
  • the height of the lifting load 8 can also be detected from encoder information when the lifting load 8 is lifted and ground cut away from the ground.
  • the shape of the hanging load 8 may be obtained by numerical input by a worker or may be obtained by a link with a production management system or the like, in addition to detection by the hanging load shape detection unit 100.
  • the suspended load position detection unit 101 detects the three-dimensional position of the suspended load 8 in real time, and the distance from the end of the runway 2 to the girder 3 and the distance from the end of the girder 3 to the trolley 4 are laser distance sensors Measure the horizontal position of the representative position of the hanging load 8 directly below the trolley 4 in real time by measuring with, and measure the height of the representative position of the hanging load 8 from the ground from the encoder information of the hoist in real time . Further, the distance from the trolley 4 to the representative position of the hanging load 8 is directly measured in real time by a three-dimensional laser distance sensor attached to the trolley 4.
  • the hanging load position detection unit 101 detects in real time the representative position of the hanging load 8 whose one end is the runway 2, one end of the girder 3, and the height of the hoisting machine is the origin. Based on the shape of the hanging load 8 obtained by the load shape detection unit 100, the hanging position of the hanging load 8 is detected in real time.
  • the three-dimensional position of the hanging load 8 may be acquired by numerical input by an operator, or may be acquired by a link with a production management system or the like.
  • the obstacle information detection unit 102 detects in real time the position and shape of the obstacle 9 such as a device around the suspended load 8 or a load, and can be realized by a three-dimensional laser distance sensor attached downward to the trolley 4.
  • the three-dimensional environment map 103 is a database in which the existing range of the obstacle 9 present in the movable range of the crane 1 and the protected area 10 are recorded.
  • the three-dimensional environment map 103 is, for example, a height range in which the obstacle 9 is present at the XY coordinates and a height range in which the hanging load 8 and the rope 5 can not enter are stored as numerical data. It takes an editable form, etc. It is desirable that the three-dimensional environmental map 103 be prepared in advance from obstacle information obtained by moving the trolley 4 over the entire range of movement of the crane 1.
  • a protected area 10 or an area where it is desired to specify the height to be passed it can be set, for example, by editing the three-dimensional environment map 103 by a suspended load passing condition setting unit realized by software on a computer. It is good. Also, by using a facility information database that records the position and shape of the devices installed in the factory and a production management system that records the position and shape of the packages placed in the factory and using that information It is also possible to create a three-dimensional environmental map 103.
  • the three-dimensional environment map updating unit 104 updates the three-dimensional environment map 103 in real time based on the obstacle information output from the obstacle information detecting unit 102. Therefore, even when the obstacle 9 moves like a forklift, even when the device placed on the floor which is the obstacle 9 is added, removed, moved and the installation position is changed, Obstacle information on the three-dimensional environmental map 103 in real time.
  • the two-dimensional environment map generation unit 106 generates, from the three-dimensional environment map 103, a two-dimensional environment map 105 indicating an area through which the hanging load 8 and the rope 5 can pass in a height range where the hanging load 8 and the rope 5 pass. It is. The details of the method of generating the two-dimensional environment map 105 will be described later.
  • the interference prediction unit 107 detects the hanging load shape detected by the hanging load shape detection unit 100, the hanging load position detected by the hanging load position detection unit 101, and the two-dimensional environment map 105 generated by the two-dimensional environment map generation unit 106. Based on this, it is predicted whether an interference state in which the hanging load 8 or the rope 5 collides with the obstacle 9 or an interference state in which the hanging load 8 or the rope 5 enters the protection area 10 occurs.
  • the avoidance operation execution unit 108 causes the crane to perform the avoidance operation of the interference state with the obstacle 9 or the protection area 10, if necessary, based on the prediction result of the interference prediction unit 107.
  • the determination of the occurrence of the interference state is based on the shape and three-dimensional position of the hanging load 8 and the rope 5 and the information of the obstacle 9 and the protection area 10 recorded in the three-dimensional environment map 103. It can be determined by predicting whether it interferes with 9 or the protected area 10. However, since a large amount of calculation is required to perform this determination using a three-dimensional model, real-time determination can not be performed with a crane system using a general processing capacity computing device.
  • the two-dimensional environment map generation unit 106 generates a two-dimensional environment map 105 based on the three-dimensional environment map 103, and the interference prediction unit 107 using the two-dimensional environment map 105.
  • FIG. 5A shows a three-dimensional environment map 103
  • FIG. 5B shows a two-dimensional environment map 105.
  • information regarding the position and shape of the obstacle 9 (9a, 9b, 9c) and the protected area 10 (10a, 10b) is recorded as numerical data.
  • information about the installation position and height of the obstacles 9a and 9b installed on the floor is recorded, and the installation position and information about the obstacle 9c such as a cantilever beam protruding from the wall of the building are recorded.
  • Information such as length and thickness is recorded.
  • the two-dimensional environment map generation unit 106 generates a two-dimensional environment map 105 around the suspended load 8 shown in FIG. 5B based on the information of the three-dimensional environment map 103.
  • the periphery of the suspended load 8 is a predetermined range limited to the height at which the suspended load 8 and the rope 5 pass, and specifically, as in the region 110 in FIG. 5A, the rope It is a range that fits in a parallelepiped having a height from the upper end of 5 to the lowermost portion of the hanging load 8.
  • the reason why the two-dimensional environmental map 105 does not include the information below the suspended load 8 is that it does not hinder the movement of the suspended load 8 and the rope 5 even if the obstacle 9 exists at a lower position than the suspended load 8. This is because it is unnecessary to take into account when predicting interference.
  • the impassable areas 112a and 112b where ropes 8 and obstacles 9a and 9b are expected to collide are roped
  • An impassable area 112 c where collision between the obstacle 5 and the obstacle 9 c is predicted, and impassable areas 112 d and 112 e corresponding to the protected areas 10 a and 10 b are recorded as the impassable area 112.
  • the interference prediction unit 107 sequentially determines the possibility of the interference between the horizontal projection range 111 of the suspended load 8 and the impassable area 112 using the generated two-dimensional environment map 105. By performing this interference calculation based on the two-dimensional environment map 105, it is possible to greatly reduce the amount of calculation in the interference prediction unit 107 as compared to the case where the three-dimensional environment map 103 is used. Further, since the two-dimensional environment map 105 may be generated only in the vicinity of the suspended load 8, the amount of calculation can be reduced also by this.
  • the shape is not as in Patent Document 1 in which the shapes are not considered. There is no need to take a margin to That is, it is not necessary to largely avoid the obstacle 9 at the time of movement of the hanging load 8, and the deterioration of the working efficiency is suppressed. Furthermore, since the restrictions of the protected area 10 and the passing height are taken into consideration, it is possible to perform the interference determination in the more efficient route.
  • the avoidance operation execution unit 108 causes the crane 1 to perform an operation for avoiding the interference.
  • the interference avoidance operation there is a method of notifying the operator operating the crane of the possibility of interference by an alert or the like to urge the stop operation of the crane.
  • the system after informing the worker, there is also a method in which the system generates the avoidance path 120 of the obstacle 9 by using the two-dimensional environment map 105 and causes the crane to operate automatically. At this time, since the system acquires the shapes of the hanging load 8 and the obstacle 9, there is no need to generate an avoidance route larger than necessary, and the increase in moving time is minimized and the decrease in work efficiency is suppressed. can do.
  • the avoidance path generation in the two-dimensional environment the technique of JP 2009-223634 is known, and this may be applied to the avoidance path generation of the present embodiment.
  • the impassable area 112 and the bypass route 120 recorded in the two-dimensional environment map 105 are displayed as shown in FIG. 5B on a display unit such as the screen of the operation terminal connected to the present crane system. May be
  • a three-dimensional laser distance sensor attached downward to the trolley 4 was used as the suspended load shape detection unit 100 or the obstacle information detection unit 102, but instead, it was attached downward to the trolley 4 Similar operations can be realized using image information of a stereo camera or the like. Furthermore, even when using a camera in which the entire movable range of the crane 1 can be observed at a plurality of locations such as a ceiling of a building, it is possible to obtain information on the shape and three-dimensional position of the suspended load 8 and the obstacle 9 is there. In this case, it is possible to observe a blind spot area which can not be observed by the sensor attached to the trolley 4, and it is possible to further enhance the safety.
  • the information of the obstacle 9 around the suspended load 8 obtained from the three-dimensional laser distance sensor or stereo camera attached to the trolley 4 as the suspended load position detection unit 101 is estimated by matching with the three-dimensional environmental map. It is also good. Alternatively, it may be estimated by matching with obstacle information acquired using a two-dimensional laser distance sensor attached so as to scan horizontally at a horizontal horizontal height of the trolley and a two-dimensional environmental map at that height. .
  • the work efficiency can be improved while securing higher safety. It is possible to suppress the decrease.
  • FIG. 6 is a system configuration diagram of the crane system of the second embodiment, and a load fluctuation behavior detection unit 109 for measuring or estimating the load fluctuation behavior of the suspended load 8 is added to the crane system of the first embodiment shown in FIG. ing.
  • the run-out behavior of the hanging load 8 is measured by a three-dimensional laser distance sensor attached to the trolley 4, a stereo camera, a camera attached to a building ceiling or the like, which is also used as the hanging load shape detection unit 100 or the obstacle information detection unit 102. can do. Alternatively, it is also possible to construct a dynamic model of the crane and use it to estimate the behavior.
  • the interference prediction unit 107 of this embodiment performs interference prediction in consideration of the load fluctuation behavior. This can be taken into consideration by adding a load fluctuation amount to the position information of the hanging load 8 when obtaining the horizontal projection range 111 of the hanging load 8 when performing the interference determination using the two-dimensional environment map 105.
  • avoidance operation execution unit 108 of the present embodiment also causes the crane to perform the interference avoidance operation in consideration of the load fluctuation behavior.
  • the interference prediction and the avoidance operation are executed in consideration of the load runout behavior, and therefore, the operation is performed while securing higher safety than the configuration of the first embodiment. It is possible to suppress the decrease in efficiency.
  • the minimum height at which the load can pass is recorded in the three-dimensional environment map 103.
  • the interference prediction unit 107 of the present embodiment is the lowest at which the suspension load can be passed from the shape and position of the suspension 8 and the height of the bottom surface of the suspension 8 on the predicted traveling path of the suspension 8 It is judged whether there is a place where the height is high, and it is predicted that an interference state may occur if such a place exists.
  • the avoidance operation execution unit 108 of the present embodiment is based on the lowest possible load passing height on the predicted travel path of the load 8 recorded in the three-dimensional environment map 103.
  • the hoisting machine is wound up so that the height of the bottom surface of the load 8 becomes high, and after shortening the length of the rope 5, it moves past the obstacle 9.
  • the avoidance in the height direction can be easily realized, so that it is possible to suppress the decrease in work efficiency while securing higher safety.
  • a target route in which the hanging load 8 moves is generated from the target position input unit for inputting the target position of the hanging load 8 and the current position of the three-dimensional environment map 103 and the hanging load 8 and the input target position.
  • Target route generation unit is added.
  • the target position input unit displays, for example, a map as shown in FIG. 5 (b) showing the arrangement of the hanging load 8, the obstacle 9, the protection area 10, etc. on the screen of the separately provided operation terminal. Let's specify the position.
  • the target position may be designated by coordinates.
  • the information may be used by linking to a production management system in which the target position information of the hanging load 8 is recorded.
  • a function of recording the position of the hanging load 8 may be added, and the position information recorded by the function may be set as the call target position.
  • the target route generation after setting the target position is, for example, using the three-dimensional environment map 103 to acquire the lifting loadable minimum height on the straight route connecting from the current position to the target position, A path that moves linearly from the current position to the target position is generated by raising the height above the height. If a region that can not pass through is set, a route is created to avoid it. Note that the traveling and traversing operation and the lifting and lowering operation may be simultaneously performed in a range that does not interfere with the height range in which the vehicle can not pass.
  • a worker detection unit for detecting a worker is further added, and an interference state is also predicted when there is a possibility of passing above the worker detected by the worker detection unit in the interference prediction unit 107. Then, in the avoidance operation execution unit 108, the area above the worker is avoided and a path approaching to the worker by decelerating is generated to operate the crane.
  • the worker detection unit can be realized, for example, using a three-dimensional laser distance sensor attached downward to the trolley 4 used in the suspended load shape detection unit 100 and the obstacle information detection unit 102. Alternatively, it can be realized by using image information of a stereo camera attached to the trolley 4 or a camera installed on a building ceiling or the like. In the case of using image information, a helmet worn by a worker may be extracted as a feature point.
  • the safety of the operator can be taken into consideration, and the safety can be further improved.
  • the crane system of the present invention described using the above embodiments provides higher safety in consideration of the shape of the suspended load, the shape of the obstacle, the behavior such as load deflection, and the restricted area and passing height of the suspended load. It is possible to suppress the decrease in work efficiency while securing the flexibility.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the examples are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Other configurations can be added to, deleted from, and replaced with the configuration of each embodiment.
  • Reference Signs List 1 crane, 2 runways, 3 gards, 4 trolleys, 5 ropes, 6 hooks, 7 wires, 8 hanging loads, 9, 9a, 9b, 9c obstacles, 10, 10a, 10b protection areas, 100 hanging load shape detection units, 101 Hanging load position detection unit, 102 Obstacle information detection unit, 103 3D environment map, 104 3D environment map update unit, 105 2D environment map, 106 2D environment map generation unit, 107 interference prediction unit, 108 avoidance operation Execution part, 109 Load deflection behavior detection part, 110 Height range area where hanging load and rope pass, 111 Horizontal projection area of hanging load and rope, 112, 112a to 112d Non passing area, 120 Avoidance route

Abstract

The present invention considers the shape of a suspended load, the shape of an obstacle, behaviors such as load swaying, and suspended load no-entry zones and limits on passing height to prevent reduction in work efficiency while ensuring greater safety. Provided is a crane control method for moving a load suspended from a rope that involves: detecting the shape of the suspended load; detecting the three-dimensional position of the suspended load; detecting information on the position and shape of an obstacle; recording, on a three-dimensional environmental map, the range in which the obstacle is present and the protected zone where the suspended load and rope cannot enter; creating, on the basis of the three-dimensional environmental map, a two-dimensional environmental map whereon is recorded a zone impassable to the suspended load and rope in terms of the height range associated with the passage of the suspended load and rope; predicting, on the basis of the shape of the suspended load, the three-dimensional position of the suspended load, and the two-dimensional environmental map, the occurrence possibility of an interference state where the suspended load or the rope collides with the obstacle or an interference state where the suspended load and rope enter the protected zone; and operating the crane so as to avoid the interference state if the interference state is predicted.

Description

クレーンシステム、および、クレーンの制御方法Crane system and control method of crane
 本発明は、吊荷を吊り下げたクレーンを制御するクレーンシステムに関する。 The present invention relates to a crane system that controls a crane on which a load is suspended.
 近年、クレーンの熟練作業者の高齢化や、クレーン設置台数の増加による人手不足に伴い、クレーン業界では経験の浅い非熟練作業者が増加している。非熟練作業者によるクレーン操作は、障害物の位置や高さの見誤りや、吊荷の荷振れなどのクレーンの挙動予測の未熟さなどが原因で、熟練作業者のクレーン操作に比べ吊荷と障害物の衝突事故等のリスクが高くなりがちである。そのため、非熟練作業者は、衝突事故等を避けるべく、吊荷の移動中に障害物を大きく避ける回避動作が必要となり、安全性確保の代償として作業効率を下げざるを得なかった。 In recent years, with the aging of crane skilled workers and a shortage of labor due to an increase in the number of cranes installed, inexperienced workers in the crane industry are increasing. The crane operation by a non-skilled worker is suspended compared to the crane operation of a skilled worker due to misinterpretation of the position or height of an obstacle or the immaturity of the behavior prediction of the crane such as a load runout. And the risk of collisions with obstacles tend to be high. Therefore, in order to avoid a collision or the like, an unskilled worker needs an avoidance operation that largely avoids an obstacle while moving a suspended load, and has had to lower the work efficiency as a price for securing safety.
 これに対し、安全性を確保しながらも作業効率の低下を抑える方法として、例えば、特許文献1の技術が開示されている。 On the other hand, the technique of patent document 1 is disclosed as a method of suppressing the fall of working efficiency, however, ensuring safety | security.
特開2016-193473号公報JP, 2016-193473, A
 特許文献1の請求項1には「危険源と保護対象との距離が閾値以下になった場合に前記危険源に危険回避のための安全動作を行わせる安全動作制御手段と、前記危険源および前記保護対象の所在を示す空間情報を生成する空間情報出力手段と、前記空間情報に基づいて前記危険源と前記保護対象との距離を監視し、前記危険源と前記保護対象との距離の前記閾値への接近に応じて、前記危険源に危険回避動作を行わせる駆動制御装置とを具備することを特徴とする安全制御システム。」が開示されている。また、同文献の段落0015には「保護対象たる人体」と記載され、段落0048には「このクレーンは、重量物の吊り荷を吊って移動するものである。このため、本実施形態では、クレーン本体および吊り荷が危険源となる。」と記載されている。すなわち、同文献には、危険源であるクレーンや吊荷と保護対象である人体の距離が閾値以下なった場合に、クレーン等に停止や回避などの危険回避動作を行わせる技術が開示されている。 According to claim 1 of Patent Document 1, “safety operation control means for causing the danger source to perform a safety operation for avoiding danger when the distance between the danger source and the protection object becomes equal to or less than a threshold value; Space information output means for generating space information indicating the location of the protection target, and monitoring the distance between the danger source and the protection target based on the space information, the distance between the danger source and the protection target A safety control system comprising: a drive control device which causes the danger source to perform a danger avoidance operation in response to approach to a threshold. Further, paragraph 0015 of the same document describes “a human body to be protected”, and paragraph 0048 “This crane moves by suspending a heavy load for suspension. Therefore, in this embodiment, Crane body and suspended load become a source of danger. " That is, the same document discloses a technology for causing a crane or the like to perform a danger avoiding operation such as stopping or avoiding when the distance between a crane as a danger source and a suspended load and a human body to be protected becomes less than a threshold. There is.
 しかしながら、特許文献1の技術では、危険源と保護対象の距離のみに基づいて危険回避動作の実行を決定しており、吊荷形状や障害物形状や、荷振れなどの挙動などの考慮がなされておらず、その分のマージンを考慮した大きな回避行動を実行する必要があった。また、保護対象が存在しない空間を吊荷が通過するのを禁止したり、通過を許容する高さを制限したりなどの制約を設定したりすることについて考慮されておらず、クレーン運用の自由度を高めることについては十分に配慮されていなかった。 However, in the technology of Patent Document 1, the execution of the danger avoidance operation is determined based only on the distance between the danger source and the protection target, and consideration is given to the hanging load shape, the obstacle shape, and the behavior such as load fluctuation. It was necessary to carry out a large evasive action taking into account the margin for that. In addition, it does not consider setting restrictions such as prohibiting a load from passing through a space where there is no protection target or limiting the height to which passing is permitted, and the freedom of crane operation There was not enough consideration for raising the degree.
 本発明はこのような問題に鑑みてなされるものであり、吊荷形状や障害物形状、荷振れなどの挙動、吊荷の進入禁止領域や通過高さの制約を考慮して、作業効率の低下を抑制しつつ、より高い安全性を確保できるクレーンシステムを提供することを目的とする。 The present invention has been made in view of such problems, and in view of work load shape, obstacle shape, behavior such as load deflection, and constraints of the entry prohibited area and passing height of the load, the work efficiency can be improved. An object of the present invention is to provide a crane system capable of securing higher safety while suppressing deterioration.
 上記の課題を達成するために本発明のクレーンシステムは、ロープに吊り下げた吊荷を水平方向および垂直方向に移動させるものであって、前記吊荷の形状を検出する吊荷形状検出手段と、前記吊荷の三次元位置を検出する吊荷位置検出手段と、障害物の位置および形状を検出する障害物情報検出手段と、前記障害物の存在範囲および前記吊荷と前記ロープが進入できない保護領域を記録した三次元環境地図と、前記障害物情報検出手段が出力した障害物情報に基づき前記三次元環境地図を更新する三次元環境地図更新手段と、前記三次元環境地図に基づいて、前記吊荷および前記ロープが通過する高さ範囲で前記吊荷および前記ロープが通過不可能な領域を記録した二次元環境地図を生成する二次元環境地図生成手段と、前記吊荷形状検出手段が出力した前記吊荷の形状と、前記吊荷位置検出手段が出力した前記吊荷の三次元位置と、前記二次元環境地図とに基づいて、前記吊荷もしくは前記ロープが前記障害物と衝突する干渉状態、もしくは、前記吊荷および前記ロープが前記保護領域に進入する干渉状態が生じる可能性があるかを予測する干渉予測手段と、該干渉予測手段により干渉状態が予測されたときに、クレーンに干渉状態を回避する動作を行わせる回避動作実行手段と、を有するものとした。 In order to achieve the above object, a crane system according to the present invention is for moving a suspended load suspended on a rope in a horizontal direction and a vertical direction, and a suspended load shape detecting means for detecting the shape of the suspended load Suspension position detection means for detecting the three-dimensional position of the suspension load, obstacle information detection means for detecting the position and shape of the obstacle, the existence range of the obstacle, the suspension load and the rope can not enter A three-dimensional environmental map updating means for updating the three-dimensional environmental map based on the three-dimensional environmental map recording the protected area, and the obstacle information outputted by the obstacle information detecting means, based on the three-dimensional environmental map Two-dimensional environmental map generation means for generating a two-dimensional environmental map in which the suspended load and the area through which the rope can not pass are recorded in a height range through which the suspended load and the rope pass; The suspended load or the rope is the obstacle according to the shape of the suspended load output by the means, the three-dimensional position of the suspended load output by the suspended load position detection means, and the two-dimensional environmental map Interference prediction means for predicting whether a collision interference state or an interference state in which the load and the rope enter the protection area may occur, and when the interference prediction means predicts an interference state And evasion operation execution means for causing the crane to perform an operation to avoid the interference state.
 本発明によれば、吊荷形状や障害物形状、荷振れなどの挙動、吊荷の進入禁止領域や通過高さの制約を考慮して、作業効率の低下を抑制しつつ、より高い安全性を確保できるクレーンシステムを提供することができる。 According to the present invention, higher safety can be achieved while suppressing a decrease in work efficiency in consideration of the shape of the suspended load, the shape of the obstacle, the behavior such as load deflection, and the restricted area of the suspended load and the passing height. Can provide a crane system that can secure
実施例1のクレーンシステムが制御するクレーンの概略図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic of the crane which the crane system of Example 1 controls. クレーンに吊り下げた吊荷の障害物回避方法を例示する斜視図。The perspective view which illustrates the obstacle avoidance method of the suspended load suspended to the crane. クレーンに吊り下げた吊荷の他の障害物回避方法を例示する上面図。The top view which illustrates the other obstacle avoidance method of the suspended load suspended to the crane. 実施例1のクレーンシステムのシステム構成図。1 is a system configuration diagram of a crane system according to a first embodiment. 二次元環境地図生成部と予測部の処理を説明する図。A figure explaining processing of a two-dimensional environment map generation part and a prediction part. 実施例2のクレーンシステムのシステム構成図。FIG. 6 is a system configuration diagram of a crane system of a second embodiment.
 以下、本発明のクレーンシステムの実施例を、図面を用いて説明する。 Hereinafter, an embodiment of a crane system of the present invention will be described using the drawings.
 図1から図5を用いて、実施例1のクレーンシステムについて説明する。なお、このクレーンシステムは、クレーンが作業者によって操作されるか、システムによって自動操作されるかに拘わらず、吊荷8の移動時の干渉発生の可能性をリアルタイムに予測するものである。 The crane system of the first embodiment will be described with reference to FIGS. 1 to 5. Note that this crane system predicts in real time the possibility of the occurrence of interference when the suspended load 8 moves regardless of whether the crane is operated by the operator or automatically operated by the system.
 図1は、本実施例のクレーンシステムが制御対象とするクレーンの構成例を説明する図である。ここではクレーンの一例として天井クレーンを例示するが、吊荷8を三次元に移動させることができれば、他種のクレーンと本実施例のクレーンシステムを組み合わせても良い。 FIG. 1 is a view for explaining a configuration example of a crane controlled by the crane system of the present embodiment. Although an overhead crane is illustrated as an example of a crane here, as long as the load 8 can be moved in three dimensions, you may combine the crane system of another kind of crane, and a present Example.
 ここに示すように、クレーン1は、建屋(図示せず)の両側の壁に沿って設けられたランウェイ2と、このランウェイ2の上面を移動するガーダ3と、ガーダ3の下面に沿って移動するトロリ4から構成される。トロリ4の下部には図示しない巻上機(ホイスト)が設けられており、これを用いてロープ5を巻上げ、または、巻下げることで、ロープ5先端のフック6を昇降させる。このフック6に直接ないしはワイヤー7を介して吊荷8を吊り下げており、フック6の昇降に伴い、吊荷8が昇降する。すなわち、クレーン1は、ガーダ3の移動(以下、単に「走行」と称する)とトロリ4の移動(以下、単に「横行」と称する)により吊荷8を水平方向に移動させ、巻上機により吊荷8を垂直方向に昇降させることができる。 As shown here, the crane 1 moves along a runway 2 provided along walls on both sides of a building (not shown), a girder 3 moving the upper surface of the runway 2 and a lower surface of the girder 3 It consists of a trolley 4 to do. A hoist (not shown) is provided at the lower part of the trolley 4, and the hook 6 at the tip of the rope 5 is moved up and down by winding or lowering the rope 5 using this. The hanging load 8 is suspended from the hook 6 directly or through a wire 7, and the lifting load 8 moves up and down as the hook 6 moves up and down. That is, the crane 1 moves the suspended load 8 in the horizontal direction by the movement of the girder 3 (hereinafter referred to simply as “travel”) and the movement of the trolley 4 (hereinafter referred to simply as “transverse”), and the hoisting machine The load 8 can be vertically moved up and down.
 図2は、クレーン1に吊り下げた吊荷8の障害物回避方法を例示する斜視図である。クレーン1の使用環境には、様々な障害物9が存在する。この障害物9は、例えば、床に置かれた装置や荷物であったり、荷物を運搬中のフォークリフトであったりする。図2は、障害物9の上方を通過して吊荷8を目標位置まで移動させるクレーン動作を模式的に示したものであり、次の(A)から(E)の手順で行われる。なお、図2において、点線矢印は吊荷8を吊り下げる前のクレーン動作に対応しており、実線矢印と破線矢印は吊荷8を吊り下げた後のクレーン動作に対応している。
(A)走行・横行させてトロリ4を吊荷8の直上に移動させる。
(B)ロープ5を巻下げた後、作業者がフック6に吊荷8を直接ないしはワイヤー7を介して吊り下げる。
(C)ロープ5を巻上げ、吊荷8を障害物9に衝突しない高さまで上昇させる。
(D)走行・横行させて、吊荷8を障害物9の上方を通過させて目標位置上方まで移動させる。
(E)ロープ5を巻下げ、吊荷8を目標位置に降ろし、フック6から吊荷8を外す。
FIG. 2 is a perspective view illustrating an obstacle avoidance method of the load 8 suspended on the crane 1. Various obstacles 9 exist in the use environment of the crane 1. The obstacle 9 is, for example, a device or a load placed on the floor, or a forklift for transporting the load. FIG. 2 schematically shows the crane operation for moving the load 8 to the target position by passing above the obstacle 9 and is performed in the following steps (A) to (E). In addition, in FIG. 2, the dotted line arrow corresponds to the crane operation before suspending the load 8, and the solid line arrow and the broken arrow correspond to the crane operation after the load 8 is suspended.
(A) The trolley 4 is moved immediately above the load 8 by traveling and traversing.
(B) After lowering the rope 5, the operator suspends the hanging load 8 directly to the hook 6 or through the wire 7.
(C) Wind the rope 5 and raise the load 8 to a height at which the load 8 does not collide with the obstacle 9.
(D) Traveling and traversing, the load 8 is passed above the obstacle 9 and moved to the target position above.
(E) The rope 5 is lowered, the load 8 is lowered to the target position, and the load 8 is removed from the hook 6.
 このとき、破線矢印で示すように、(C)の巻上げと(D)の走行・横行は障害物9に衝突しない範囲で同時に行うことも可能である。また、(D)の走行・横行と(E)の巻下げも同様である。 At this time, as shown by the broken arrows, the winding of (C) and the traveling and traversing of (D) can be simultaneously performed in a range that does not collide with the obstacle 9. The same applies to traveling / crossing of (D) and lowering of (E).
 図3は、クレーン1に吊り下げた吊荷8の他の障害物回避方法を例示する上面図である。図2では、障害物9が低く、吊荷8は障害物9の上方を通過できたが、図3は、障害物9が高いため、吊荷8は障害物9の上方を通過できない状況を示している。このような場合には、図3の(D1)~(D3)のように走行と横行を組み合わせ、障害物9を回避して吊荷8を目標位置に移動させる。 FIG. 3 is a top view illustrating another obstacle avoidance method for the load 8 suspended on the crane 1. In FIG. 2, the obstacle 9 is low, and the load 8 can pass above the obstacle 9. However, in FIG. 3, the load 8 can not pass above the obstacle 9 because the obstacle 9 is high. It shows. In such a case, traveling and crossing are combined as shown in (D1) to (D3) of FIG. 3, and the suspended load 8 is moved to the target position while avoiding the obstacle 9.
 また、作業者が常駐していたり、吊荷8が落下した場合の被害が大きい装置が設置されていたりするなど、吊荷8やロープ5の進入を禁止したい保護領域10がある場合には、この保護領域10を回避するように、吊荷8を移動させる。 In addition, when there is a protection area 10 where you want to prohibit the entry of the hanging load 8 or the rope 5 such as when a worker is resident or a device that is highly damaged when the hanging load 8 falls is installed, The load 8 is moved so as to avoid the protected area 10.
 図4は、本実施例のクレーンシステムのシステム構成を説明する図である。ここに示すように、本クレーンシステムは、吊荷形状検出部100と、吊荷位置検出部101と、障害物情報検出部102と、三次元環境地図103と、三次元環境地図更新部104と、二次元環境地図105と、二次元環境地図生成部106と、干渉予測部107と、回避動作実行部108と、を有する。なお、このクレーンシステムは、CPU等の演算装置、半導体メモリ等の主記憶装置、ハードディスク等の補助記憶装置、および、通信装置などのハードウェアを備えたものであり、補助記憶装置に記録された三次元環境地図103や二次元環境地図105等のデータベースを参照しながら、主記憶装置に記憶されたプログラムを演算装置が実行することで、吊荷形状検出部100や吊荷位置検出部101等の各機能を実現するものであるが、このような周知動作は適宜省略して説明を進める。以下、図4の各々の詳細を具体的に説明する。 FIG. 4 is a diagram for explaining the system configuration of the crane system of the present embodiment. As shown here, the present crane system includes a suspended load shape detection unit 100, a suspended load position detection unit 101, an obstacle information detection unit 102, a three-dimensional environment map 103, and a three-dimensional environment map update unit 104. And a two-dimensional environment map generation unit 106, an interference prediction unit 107, and an avoidance operation execution unit 108. The crane system includes an arithmetic unit such as a CPU, a main storage unit such as a semiconductor memory, an auxiliary storage unit such as a hard disk, and hardware such as a communication unit, and is recorded in the auxiliary storage unit. Suspended load shape detection unit 100, suspended load position detection unit 101, and the like by the program executing the program stored in the main storage while referring to the database such as three-dimensional environment map 103 and two-dimensional environment map 105 However, such a known operation is omitted as appropriate, and the description will be made. The details of each of FIG. 4 will be specifically described below.
 吊荷形状検出部100は、吊荷8の形状を検出するものであり、例えばトロリ4から下向きに取り付けた三次元レーザー距離センサにより実現できる。吊荷8を地面に置いた状態でトロリ4を前後左右に移動させ、吊荷8の表面形状を計測することにより、吊荷形状検出部100は吊荷8の形状を検出できる。また、巻上機にエンコーダが付けられている場合には、吊荷8を上昇させ地面から離す地切りをした時のエンコーダ情報から吊荷8の高さを検出することもできる。なお、吊荷8の形状は、吊荷形状検出部100によって検出する以外にも、作業者による数値入力によって取得される場合や、生産管理システム等とのリンクによって取得される場合もある。 The suspended load shape detection unit 100 detects the shape of the suspended load 8 and can be realized by, for example, a three-dimensional laser distance sensor attached downward from the trolley 4. The hanging load shape detection unit 100 can detect the shape of the hanging load 8 by moving the trolley 4 back and forth and right and left while the hanging load 8 is placed on the ground and measuring the surface shape of the hanging load 8. In addition, when an encoder is attached to the hoisting machine, the height of the lifting load 8 can also be detected from encoder information when the lifting load 8 is lifted and ground cut away from the ground. The shape of the hanging load 8 may be obtained by numerical input by a worker or may be obtained by a link with a production management system or the like, in addition to detection by the hanging load shape detection unit 100.
 吊荷位置検出部101は、吊荷8の三次元位置をリアルタイムに検出するものであり、ランウェイ2の端からガーダ3までの距離と、ガーダ3の端からトロリ4までの距離をレーザー距離センサで計測することでトロリ4の真下にある吊荷8の代表位置の水平位置をリアルタイムに計測し、巻上機のエンコーダ情報から地面からの吊荷8の代表位置の高さをリアルタイムに計測する。また、トロリ4に付けられた三次元レーザー距離センサでトロリ4から吊荷8の代表位置までの距離をリアルタイムに直接測定する。吊荷位置検出部101は、このようにして、ランウェイ2の一端、ガーダ3の一端、巻上機の高さを原点とした吊荷8の代表位置をリアルタイムに検出し、この代表位置と吊荷形状検出部100で求めた吊荷8の形状に基づいて、吊荷8の吊下位置をリアルタイムに検出する。なお、吊荷8の三次元位置は、作業者による数値入力によって取得される場合や、生産管理システム等とのリンクによって取得される場合もある。 The suspended load position detection unit 101 detects the three-dimensional position of the suspended load 8 in real time, and the distance from the end of the runway 2 to the girder 3 and the distance from the end of the girder 3 to the trolley 4 are laser distance sensors Measure the horizontal position of the representative position of the hanging load 8 directly below the trolley 4 in real time by measuring with, and measure the height of the representative position of the hanging load 8 from the ground from the encoder information of the hoist in real time . Further, the distance from the trolley 4 to the representative position of the hanging load 8 is directly measured in real time by a three-dimensional laser distance sensor attached to the trolley 4. In this way, the hanging load position detection unit 101 detects in real time the representative position of the hanging load 8 whose one end is the runway 2, one end of the girder 3, and the height of the hoisting machine is the origin. Based on the shape of the hanging load 8 obtained by the load shape detection unit 100, the hanging position of the hanging load 8 is detected in real time. In addition, the three-dimensional position of the hanging load 8 may be acquired by numerical input by an operator, or may be acquired by a link with a production management system or the like.
 障害物情報検出部102は、吊荷8周辺の装置や荷物などの障害物9の位置および形状をリアルタイムに検出するものであり、トロリ4に下向きに取り付けた三次元レーザー距離センサにより実現できる。 The obstacle information detection unit 102 detects in real time the position and shape of the obstacle 9 such as a device around the suspended load 8 or a load, and can be realized by a three-dimensional laser distance sensor attached downward to the trolley 4.
 三次元環境地図103は、クレーン1可動範囲内に存在する障害物9の存在範囲と保護領域10を記録したデータベースである。三次元環境地図103は、例えばXY座標に対してその座標での障害物9の存在する高さ範囲や吊荷8やロープ5の進入できない高さ範囲を数値データとして保存したものであり、コンピュータなどで編集可能な形式をとる。この三次元環境地図103は、クレーン1可動範囲全域に亘りトロリ4を動かして得られる障害物情報から事前に作成しておくのが望ましい。さらに、保護領域10や通過する高さを指定したい領域がある場合には、例えばコンピュータ上のソフトウェアで実現される吊荷通過条件設定部により三次元環境地図103を編集することで設定できるようにしても良い。また、工場内に設置されている装置の位置・形状を記録した施設情報データベースや工場内に置かれている荷物の位置と形状を記録した生産管理システムとリンクして、その情報を用いることで三次元環境地図103を作成することも可能である。 The three-dimensional environment map 103 is a database in which the existing range of the obstacle 9 present in the movable range of the crane 1 and the protected area 10 are recorded. The three-dimensional environment map 103 is, for example, a height range in which the obstacle 9 is present at the XY coordinates and a height range in which the hanging load 8 and the rope 5 can not enter are stored as numerical data. It takes an editable form, etc. It is desirable that the three-dimensional environmental map 103 be prepared in advance from obstacle information obtained by moving the trolley 4 over the entire range of movement of the crane 1. Furthermore, if there is a protected area 10 or an area where it is desired to specify the height to be passed, it can be set, for example, by editing the three-dimensional environment map 103 by a suspended load passing condition setting unit realized by software on a computer. It is good. Also, by using a facility information database that records the position and shape of the devices installed in the factory and a production management system that records the position and shape of the packages placed in the factory and using that information It is also possible to create a three-dimensional environmental map 103.
 三次元環境地図更新部104は、障害物情報検出部102から出力される障害物情報に基づいて、三次元環境地図103をリアルタイムに更新するものである。これにより、障害物9がフォークリフトのように移動する場合であっても、障害物9である床に置かれた装置が追加、撤去、移動され設置位置が変更された場合であっても、それに関する障害物情報をリアルタイムに三次元環境地図103に反映させることができる。 The three-dimensional environment map updating unit 104 updates the three-dimensional environment map 103 in real time based on the obstacle information output from the obstacle information detecting unit 102. Thereby, even when the obstacle 9 moves like a forklift, even when the device placed on the floor which is the obstacle 9 is added, removed, moved and the installation position is changed, Obstacle information on the three-dimensional environmental map 103 in real time.
 二次元環境地図生成部106は、三次元環境地図103から吊荷8およびロープ5が通過する高さ範囲で吊荷8およびロープ5が通過可能な領域を示す二次元環境地図105を生成するものである。なお、この二次元環境地図105の生成方法の詳細は後述する。 The two-dimensional environment map generation unit 106 generates, from the three-dimensional environment map 103, a two-dimensional environment map 105 indicating an area through which the hanging load 8 and the rope 5 can pass in a height range where the hanging load 8 and the rope 5 pass. It is. The details of the method of generating the two-dimensional environment map 105 will be described later.
 干渉予測部107は、吊荷形状検出部100が検出した吊荷形状と、吊荷位置検出部101が検出した吊荷位置と、二次元環境地図生成部106が生成した二次元環境地図105に基づいて、吊荷8やロープ5が障害物9と衝突する干渉状態や、吊荷8やロープ5が保護領域10に進入する干渉状態が発生するかを予測するものである。 The interference prediction unit 107 detects the hanging load shape detected by the hanging load shape detection unit 100, the hanging load position detected by the hanging load position detection unit 101, and the two-dimensional environment map 105 generated by the two-dimensional environment map generation unit 106. Based on this, it is predicted whether an interference state in which the hanging load 8 or the rope 5 collides with the obstacle 9 or an interference state in which the hanging load 8 or the rope 5 enters the protection area 10 occurs.
 回避動作実行部108は、干渉予測部107の予測結果を踏まえ、必要な場合は、障害物9や保護領域10との干渉状態の回避動作をクレーンに実行させるものである。 The avoidance operation execution unit 108 causes the crane to perform the avoidance operation of the interference state with the obstacle 9 or the protection area 10, if necessary, based on the prediction result of the interference prediction unit 107.
 クレーンを動作させる際には、吊荷8やロープ5が障害物9と衝突したり保護領域10に進入したりするなどの干渉状態を避けなければならない。そのため、干渉状態が生じる恐れがあるかをリアルタイムに予測し、干渉状態の発生が予測された場合には、それを回避する動作を行う必要がある。干渉状態発生の判定は、吊荷8やロープ5の形状や三次元位置と、三次元環境地図103に記録された障害物9と保護領域10の情報から、吊荷8やロープ5が障害物9や保護領域10と干渉するか予測することで判定できる。しかし、三次元モデルを用いてこの判定を行うには多大な演算が必要となるため、一般的な処理能力の演算装置を用いたクレーンシステムでは、リアルタイムの判定を行うことができない。そこで、本実施例では、二次元環境地図生成部106にて、三次元環境地図103を基にした二次元環境地図105を生成しておき、その二次元環境地図105を用いて干渉予測部107での判定を行うことで、一般的な演算装置を用いた場合であっても、リアルタイムに干渉状態発生の判定を行うことができるようにした。 When operating the crane, it is necessary to avoid an interference state such as the load 8 or the rope 5 colliding with the obstacle 9 or entering the protection area 10. Therefore, it is necessary to predict in real time whether or not an interference state may occur, and when an occurrence of the interference state is predicted, it is necessary to perform an operation to avoid it. The determination of the occurrence of the interference state is based on the shape and three-dimensional position of the hanging load 8 and the rope 5 and the information of the obstacle 9 and the protection area 10 recorded in the three-dimensional environment map 103. It can be determined by predicting whether it interferes with 9 or the protected area 10. However, since a large amount of calculation is required to perform this determination using a three-dimensional model, real-time determination can not be performed with a crane system using a general processing capacity computing device. Therefore, in the present embodiment, the two-dimensional environment map generation unit 106 generates a two-dimensional environment map 105 based on the three-dimensional environment map 103, and the interference prediction unit 107 using the two-dimensional environment map 105. By performing the determination in the above, it is possible to determine the occurrence of an interference state in real time even when a general arithmetic device is used.
 次に、図5を用いて、二次元環境地図生成部106での二次元環境地図105の生成方法、および、それを用いた干渉予測部107での不具合予測方法を説明する。なお、図5(a)は三次元環境地図103、図5(b)は二次元環境地図105である。 Next, a method of generating the two-dimensional environment map 105 in the two-dimensional environment map generation unit 106 and a method of predicting a failure in the interference prediction unit 107 using the same will be described with reference to FIG. 5A shows a three-dimensional environment map 103, and FIG. 5B shows a two-dimensional environment map 105.
 図5(a)に示す三次元環境地図103には、障害物9(9a、9b、9c)および保護領域10(10a、10b)の、位置、形状に関する情報が数値データとして記録されている。例えば、床に設置した障害物9a、9bについては、その設置位置と高さ等の情報が記録されており、建屋の壁から突出した片持ち梁等の障害物9cについては、その設置位置と長さ、太さ等の情報が記録されている。なお、フォークリフトのように移動する障害物9が存在する場合は、その位置情報等がリアルタイムに三次元環境地図103に反映されるが、以下では、移動する障害物9が存在しない状況を例に説明を進める。 In the three-dimensional environment map 103 shown in FIG. 5A, information regarding the position and shape of the obstacle 9 (9a, 9b, 9c) and the protected area 10 (10a, 10b) is recorded as numerical data. For example, information about the installation position and height of the obstacles 9a and 9b installed on the floor is recorded, and the installation position and information about the obstacle 9c such as a cantilever beam protruding from the wall of the building are recorded. Information such as length and thickness is recorded. When there is an obstacle 9 moving like a forklift, the position information etc. is reflected on the three-dimensional environment map 103 in real time, but in the following, the situation where there is no moving obstacle 9 is taken as an example Advance the explanation.
 二次元環境地図生成部106では、三次元環境地図103の情報を基に、図5(b)に示す吊荷8の周辺の二次元環境地図105を生成する。ここでいう吊荷8の周辺とは、吊荷8とロープ5が通過する高さに限定した所定の範囲であり、具体的には、図5(a)中の領域110のように、ロープ5の上端から吊荷8の最下部までの高さの平行六面体に収まる範囲である。二次元環境地図105に吊荷8の下方の情報を含ませないのは、吊荷8よりも低い位置に障害物9が存在しても、吊荷8やロープ5の移動の障害とならないため、干渉予測時に考慮不要だからである。 The two-dimensional environment map generation unit 106 generates a two-dimensional environment map 105 around the suspended load 8 shown in FIG. 5B based on the information of the three-dimensional environment map 103. Here, the periphery of the suspended load 8 is a predetermined range limited to the height at which the suspended load 8 and the rope 5 pass, and specifically, as in the region 110 in FIG. 5A, the rope It is a range that fits in a parallelepiped having a height from the upper end of 5 to the lowermost portion of the hanging load 8. The reason why the two-dimensional environmental map 105 does not include the information below the suspended load 8 is that it does not hinder the movement of the suspended load 8 and the rope 5 even if the obstacle 9 exists at a lower position than the suspended load 8. This is because it is unnecessary to take into account when predicting interference.
 そして、この領域110のXY座標の各点に対して、障害物9の有無と保護領域10に該当するかを確認した後、その確認結果と通過高さの制約の有無との論理和を取り、吊荷8やロープ5が通過できない領域を抽出する。そして、これを通過不可領域112として記録し、他の領域を通過可能領域として記録した二次元環境地図105を生成する。この結果、例えば、図5(a)の三次元環境地図103に対応する二次元環境地図105には、吊荷8と障害物9a、9bの衝突が予測される通過不可領域112a、112b、ロープ5と障害物9cの衝突が予測される通過不可領域112c、保護領域10a、10bに対応する通過不可領域112d、112eが、通過不可領域112として記録される。 Then, for each point of the XY coordinates of this area 110, after confirming the presence or absence of the obstacle 9 and whether it falls under the protection area 10, the result of the confirmation and the presence or absence of the restriction of the passing height are taken. , The area where the hanging load 8 and the rope 5 can not pass is extracted. Then, this is recorded as the impassable area 112, and a two-dimensional environment map 105 is generated in which other areas are recorded as the impassable area. As a result, for example, in the two-dimensional environment map 105 corresponding to the three-dimensional environment map 103 in FIG. 5A, the impassable areas 112a and 112b where ropes 8 and obstacles 9a and 9b are expected to collide are roped An impassable area 112 c where collision between the obstacle 5 and the obstacle 9 c is predicted, and impassable areas 112 d and 112 e corresponding to the protected areas 10 a and 10 b are recorded as the impassable area 112.
 干渉予測部107では、生成された二次元環境地図105を用いて、吊荷8の水平投射範囲111と通過不可領域112の干渉の可能性を逐次判定する。この干渉演算を二次元環境地図105に基づいて行うことにより、三次元環境地図103を用いる場合に比べ、干渉予測部107での演算量を大きく低減させることが可能である。また、二次元環境地図105は吊荷8の近傍のみで生成すればよいため、これによっても演算量を低減させることができる。 The interference prediction unit 107 sequentially determines the possibility of the interference between the horizontal projection range 111 of the suspended load 8 and the impassable area 112 using the generated two-dimensional environment map 105. By performing this interference calculation based on the two-dimensional environment map 105, it is possible to greatly reduce the amount of calculation in the interference prediction unit 107 as compared to the case where the three-dimensional environment map 103 is used. Further, since the two-dimensional environment map 105 may be generated only in the vicinity of the suspended load 8, the amount of calculation can be reduced also by this.
 以上で説明した、本実施例の干渉予測方法では、吊荷8や障害物9の形状を考慮して干渉発生の可能性を演算するので、それらの形状を考慮しない特許文献1のように形状の余裕をみたマージンを取る必要はない。すなわち、吊荷8の移動時に障害物9を大きく回避させる必要はなく作業効率の悪化は抑制される。さらに、保護領域10や通過高さの制約を考慮しているので、より効率の良い経路での干渉判定が可能となる。 In the interference prediction method of the present embodiment described above, since the possibility of the occurrence of interference is calculated in consideration of the shapes of the suspended load 8 and the obstacle 9, the shape is not as in Patent Document 1 in which the shapes are not considered. There is no need to take a margin to That is, it is not necessary to largely avoid the obstacle 9 at the time of movement of the hanging load 8, and the deterioration of the working efficiency is suppressed. Furthermore, since the restrictions of the protected area 10 and the passing height are taken into consideration, it is possible to perform the interference determination in the more efficient route.
 干渉予測部107により干渉状態発生の可能性が予測されたときには、回避動作実行部108によりクレーン1に干渉を回避するための動作を行わせる。 When the possibility of the occurrence of the interference state is predicted by the interference prediction unit 107, the avoidance operation execution unit 108 causes the crane 1 to perform an operation for avoiding the interference.
 干渉回避動作の一例としては、クレーンを操作する作業者に干渉可能性をアラートなどで報知して、クレーンの停止操作を促す方法がある。また、別の例としては、作業者に干渉可能性を報知したうえで、クレーンシステムにより自動でクレーンを停止させる方法もある。さらには、作業者への報知後に、システムが、二次元環境地図105を用いて吊荷8が障害物9の回避経路120を生成してクレーンを自動的に動作させる方法もある。このとき、システムは、吊荷8と障害物9の形状を取得しているので、必要以上に大きな回避経路を生成する必要がなく、移動時間の増加を最小限に抑え作業効率の低下を抑制することができる。なお、二次元環境での回避経路生成としては、特開2009-223634号の技術が知られており、これを本実施例の回避経路生成に適用しても良い。 As an example of the interference avoidance operation, there is a method of notifying the operator operating the crane of the possibility of interference by an alert or the like to urge the stop operation of the crane. As another example, there is also a method of automatically stopping the crane by the crane system after notifying the operator of the possibility of interference. Furthermore, after informing the worker, there is also a method in which the system generates the avoidance path 120 of the obstacle 9 by using the two-dimensional environment map 105 and causes the crane to operate automatically. At this time, since the system acquires the shapes of the hanging load 8 and the obstacle 9, there is no need to generate an avoidance route larger than necessary, and the increase in moving time is minimized and the decrease in work efficiency is suppressed. can do. As the avoidance path generation in the two-dimensional environment, the technique of JP 2009-223634 is known, and this may be applied to the avoidance path generation of the present embodiment.
 また、二次元環境地図105に記録される通過不可領域112や回避経路120は、本クレーンシステムに接続された操作端末の画面などの表示部に、図5(b)の如く表示されるようにしてもよい。 In addition, the impassable area 112 and the bypass route 120 recorded in the two-dimensional environment map 105 are displayed as shown in FIG. 5B on a display unit such as the screen of the operation terminal connected to the present crane system. May be
 なお、以上の例では、吊荷形状検出部100や障害物情報検出部102として、トロリ4に下向きに取り付けた三次元レーザー距離センサを用いたが、これに代え、トロリ4に下向きに取り付けたステレオカメラなどの画像情報を用いても同様の動作が実現可能である。さらに、建屋の天井などの複数個所にクレーン1の可動範囲全域を観察可能に取り付けたカメラを用いても、吊荷8の形状や三次元位置、障害物9の情報を取得することは可能である。この場合には、トロリ4に取り付けたセンサでは観察できない死角領域の観察ができ、より安全性を高めることが可能となる。 In the above example, a three-dimensional laser distance sensor attached downward to the trolley 4 was used as the suspended load shape detection unit 100 or the obstacle information detection unit 102, but instead, it was attached downward to the trolley 4 Similar operations can be realized using image information of a stereo camera or the like. Furthermore, even when using a camera in which the entire movable range of the crane 1 can be observed at a plurality of locations such as a ceiling of a building, it is possible to obtain information on the shape and three-dimensional position of the suspended load 8 and the obstacle 9 is there. In this case, it is possible to observe a blind spot area which can not be observed by the sensor attached to the trolley 4, and it is possible to further enhance the safety.
 また、吊荷位置検出部101としてトロリ4に取り付けた三次元レーザー距離センサやステレオカメラから取得された吊荷8周辺の障害物9の情報を三次元環境地図とマッチングして推定するようにしてもよい。あるいは、トロリ水平高さで水平方向に走査するよう取り付けた二次元レーザー距離センサを用いて取得した障害物情報と、その高さでの二次元環境地図とマッチングして推定するようにしてもよい。 In addition, the information of the obstacle 9 around the suspended load 8 obtained from the three-dimensional laser distance sensor or stereo camera attached to the trolley 4 as the suspended load position detection unit 101 is estimated by matching with the three-dimensional environmental map. It is also good. Alternatively, it may be estimated by matching with obstacle information acquired using a two-dimensional laser distance sensor attached so as to scan horizontally at a horizontal horizontal height of the trolley and a two-dimensional environmental map at that height. .
 以上のように、本発明のクレーンシステムにより、吊荷形状や障害物形状、吊荷の進入禁止領域や通過高さの制約を考慮して、より高い安全性を確保しながらも、作業効率の低下を抑制することができる。 As described above, with the crane system of the present invention, in view of the shape of the suspended load, the shape of the obstacle, the restricted area of the suspended load and the restriction of the passing height, the work efficiency can be improved while securing higher safety. It is possible to suppress the decrease.
 次に、図6を用いて、本発明の実施例2のクレーンシステムを説明する。なお、実施例1との共通点は重複説明を省略する。 Next, a crane system according to a second embodiment of the present invention will be described with reference to FIG. The same points as in the first embodiment will not be repeatedly described.
 図6は実施例2のクレーンシステムのシステム構成図であり、図4に示した実施例1のクレーンシステムに、吊荷8の荷振れ挙動を計測もしくは推測する荷振れ挙動検出部109を付加している。 FIG. 6 is a system configuration diagram of the crane system of the second embodiment, and a load fluctuation behavior detection unit 109 for measuring or estimating the load fluctuation behavior of the suspended load 8 is added to the crane system of the first embodiment shown in FIG. ing.
 吊荷8の荷振れ挙動は、吊荷形状検出部100や障害物情報検出部102としても用いられる、トロリ4に取り付けた三次元レーザー距離センサやステレオカメラ、建屋天井などに取り付けたカメラにより計測することができる。または、クレーンの動力学モデルを構築し、それを用いて挙動を推定することも可能である。 The run-out behavior of the hanging load 8 is measured by a three-dimensional laser distance sensor attached to the trolley 4, a stereo camera, a camera attached to a building ceiling or the like, which is also used as the hanging load shape detection unit 100 or the obstacle information detection unit 102. can do. Alternatively, it is also possible to construct a dynamic model of the crane and use it to estimate the behavior.
 本実施例の干渉予測部107では、荷振れ挙動を加味して干渉予測を行う。これは二次元環境地図105を用いた干渉判定を行う時の吊荷8の水平投射範囲111を求める際に吊荷8の位置情報に荷振れ量を加えることで加味できる。 The interference prediction unit 107 of this embodiment performs interference prediction in consideration of the load fluctuation behavior. This can be taken into consideration by adding a load fluctuation amount to the position information of the hanging load 8 when obtaining the horizontal projection range 111 of the hanging load 8 when performing the interference determination using the two-dimensional environment map 105.
 また、本実施例の回避動作実行部108においても、荷振れ挙動を加味してクレーンに干渉回避の動作を行わせる。 Further, the avoidance operation execution unit 108 of the present embodiment also causes the crane to perform the interference avoidance operation in consideration of the load fluctuation behavior.
 以上のように、本実施例のクレーンシステムでは、荷振れ挙動も考慮して、干渉予測や回避動作が実行されるため、実施例1の構成よりも更に高い安全性を確保しながらも、作業効率の低下を抑制することができる。 As described above, in the crane system of the present embodiment, the interference prediction and the avoidance operation are executed in consideration of the load runout behavior, and therefore, the operation is performed while securing higher safety than the configuration of the first embodiment. It is possible to suppress the decrease in efficiency.
 次に、本発明の実施例3のクレーンシステムを説明する。なお、上述の実施例との共通点は重複説明を省略する。 Next, a crane system according to a third embodiment of the present invention will be described. The same points as those of the above-described embodiment will not be repeatedly described.
 本実施例では、三次元環境地図103に吊荷通過可能最低高さを記録している。これにより、本実施例の干渉予測部107は、吊荷8の形状・位置と、三次元環境地図103から、吊荷8の予測進行経路上に吊荷8の底面高さより吊荷通過可能最低高さが高い箇所が存在するか判断し、そのような箇所が存在する場合に干渉状態が生じる恐れがあると予測する。 In the present embodiment, the minimum height at which the load can pass is recorded in the three-dimensional environment map 103. As a result, the interference prediction unit 107 of the present embodiment is the lowest at which the suspension load can be passed from the shape and position of the suspension 8 and the height of the bottom surface of the suspension 8 on the predicted traveling path of the suspension 8 It is judged whether there is a place where the height is high, and it is predicted that an interference state may occur if such a place exists.
 そして、本実施例の回避動作実行部108は、吊荷8の巻上が可能な場合は、三次元環境地図103に記録された吊荷8の予測進行経路上の吊荷通過可能最低高さより吊荷8の底面高さが高くなるように巻上機を巻き上げ、ロープ5の長さを短くしてから、障害物9の上方を通過移動する。 Then, when the hoisting of the load 8 is possible, the avoidance operation execution unit 108 of the present embodiment is based on the lowest possible load passing height on the predicted travel path of the load 8 recorded in the three-dimensional environment map 103. The hoisting machine is wound up so that the height of the bottom surface of the load 8 becomes high, and after shortening the length of the rope 5, it moves past the obstacle 9.
 以上のように、本実施例のクレーンシステムにより、簡易に高さ方向の回避を実現することできるため、より高い安全性を確保しながらも、作業効率の低下を抑制することができる。 As described above, according to the crane system of the present embodiment, the avoidance in the height direction can be easily realized, so that it is possible to suppress the decrease in work efficiency while securing higher safety.
 次に、本発明の実施例4のクレーンシステムを説明する。なお、上述の実施例との共通点は重複説明を省略する。 Next, a crane system according to a fourth embodiment of the present invention will be described. The same points as those of the above-described embodiment will not be repeatedly described.
 本実施例では、吊荷8の目標位置を入力する目標位置入力部と、三次元環境地図103と吊荷8の現在位置と入力された目標位置とから吊荷8が移動する目標経路を生成する目標経路生成部を付加する。 In the present embodiment, a target route in which the hanging load 8 moves is generated from the target position input unit for inputting the target position of the hanging load 8 and the current position of the three-dimensional environment map 103 and the hanging load 8 and the input target position. Target route generation unit is added.
 目標位置入力部は、例えば別途設けた操作端末の画面に、吊荷8や障害物9、保護領域10等の配置を示した図5(b)のような地図を表示し、その上で目標位置を指定するようにする。または、目標位置を座標で指定するようにしてもよい。または、吊荷8の目標位置情報を記録した生産管理システムとリンクして、その情報を用いるようにしてもよい。または、吊荷8の位置を記録する機能を付加し、その機能により記録された位置情報を呼び出し目標位置としてもよい。 The target position input unit displays, for example, a map as shown in FIG. 5 (b) showing the arrangement of the hanging load 8, the obstacle 9, the protection area 10, etc. on the screen of the separately provided operation terminal. Let's specify the position. Alternatively, the target position may be designated by coordinates. Alternatively, the information may be used by linking to a production management system in which the target position information of the hanging load 8 is recorded. Alternatively, a function of recording the position of the hanging load 8 may be added, and the position information recorded by the function may be set as the call target position.
 目標位置を設定した後の目標経路生成は、例えば、三次元環境地図103を用いて現在位置から目標位置までを結ぶ直線経路上の吊荷通過可能最低高さを取得し、吊荷8をその高さ以上に上昇させて現在位置から目標位置までを直線で移動する経路を生成する。もし、この経路上に通過できない領域が設定されている場合には、それを回避する経路を生成する。なお、通過できない高さ範囲に干渉しない範囲で、走行・横行動作と昇降動作を同時行うようにしてもよい。 The target route generation after setting the target position is, for example, using the three-dimensional environment map 103 to acquire the lifting loadable minimum height on the straight route connecting from the current position to the target position, A path that moves linearly from the current position to the target position is generated by raising the height above the height. If a region that can not pass through is set, a route is created to avoid it. Note that the traveling and traversing operation and the lifting and lowering operation may be simultaneously performed in a range that does not interfere with the height range in which the vehicle can not pass.
 以上のように、本実施例のクレーンシステムにより、移動時間・距離を短い目標経路を生成することも可能となり、作業効率を向上させることができる。 As described above, with the crane system of this embodiment, it is also possible to generate a target route with a short travel time and distance, and work efficiency can be improved.
 次に、本発明の実施例5のクレーンシステムを説明する。なお、上述の実施例との共通点は重複説明を省略する。 Next, a crane system according to a fifth embodiment of the present invention will be described. The same points as those of the above-described embodiment will not be repeatedly described.
 本実施例では、作業者を検出する作業者検出部を更に付加しており、干渉予測部107において作業者検出部により検出された作業者の上方を通過する恐れがある場合も干渉状態と予測し、回避動作実行部108においては作業者上方の領域を回避および作業者に減速して接近する経路を生成しクレーンを動作させる。 In the present embodiment, a worker detection unit for detecting a worker is further added, and an interference state is also predicted when there is a possibility of passing above the worker detected by the worker detection unit in the interference prediction unit 107. Then, in the avoidance operation execution unit 108, the area above the worker is avoided and a path approaching to the worker by decelerating is generated to operate the crane.
 作業者検出部は、例えば、吊荷形状検出部100および障害物情報検出部102に使われているトロリ4に下向きに取り付けた三次元レーザー距離センサを使って実現することができる。または、トロリ4に取り付けたステレオカメラや、建屋天井などに設置したカメラなどの画像情報を用いることによっても実現できる。画像情報を用いる場合には、作業者が着用しているヘルメットなどを特徴点として抽出するようにすればよい。 The worker detection unit can be realized, for example, using a three-dimensional laser distance sensor attached downward to the trolley 4 used in the suspended load shape detection unit 100 and the obstacle information detection unit 102. Alternatively, it can be realized by using image information of a stereo camera attached to the trolley 4 or a camera installed on a building ceiling or the like. In the case of using image information, a helmet worn by a worker may be extracted as a feature point.
 本実施例のクレーンシステムにより、作業者の安全も考慮し、より安全性を向上させることができる。 With the crane system of this embodiment, the safety of the operator can be taken into consideration, and the safety can be further improved.
 以上の実施例を用いて説明した本発明のクレーンシステムにより、吊荷形状や障害物形状、荷振れなどの挙動、吊荷の進入禁止領域や通過高さの制約を考慮して、より高い安全性を確保しながらも、作業効率の低下を抑制することが可能となる。 The crane system of the present invention described using the above embodiments provides higher safety in consideration of the shape of the suspended load, the shape of the obstacle, the behavior such as load deflection, and the restricted area and passing height of the suspended load. It is possible to suppress the decrease in work efficiency while securing the flexibility.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成について、他の構成の追加、削除、置換をすることも可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. The examples are described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Other configurations can be added to, deleted from, and replaced with the configuration of each embodiment.
1 クレーン、2 ランウェイ、3 ガーダ、4 トロリ、5 ロープ、6 フック、7 ワイヤー、8 吊荷、9、9a、9b、9c 障害物、10、10a、10b 保護領域、100 吊荷形状検出部、101 吊荷位置検出部、102 障害物情報検出部、103 三次元環境地図、104 三次元環境地図更新部、105 二次元環境地図、106 二次元環境地図生成部、107 干渉予測部、108 回避動作実行部、109 荷振れ挙動検出部、110 吊荷およびロープが通過する高さ範囲領域、111 吊荷およびロープの水平投射領域、112、112a~112d 通過不可領域、120 回避経路 Reference Signs List 1 crane, 2 runways, 3 gards, 4 trolleys, 5 ropes, 6 hooks, 7 wires, 8 hanging loads, 9, 9a, 9b, 9c obstacles, 10, 10a, 10b protection areas, 100 hanging load shape detection units, 101 Hanging load position detection unit, 102 Obstacle information detection unit, 103 3D environment map, 104 3D environment map update unit, 105 2D environment map, 106 2D environment map generation unit, 107 interference prediction unit, 108 avoidance operation Execution part, 109 Load deflection behavior detection part, 110 Height range area where hanging load and rope pass, 111 Horizontal projection area of hanging load and rope, 112, 112a to 112d Non passing area, 120 Avoidance route

Claims (14)

  1.  ロープに吊り下げた吊荷を水平方向および垂直方向に移動させるクレーンシステムであって、
     障害物の位置および形状を検出する障害物情報検出手段と、
     前記障害物の存在範囲および前記吊荷と前記ロープが進入できない保護領域を記録した三次元環境地図と、
     前記障害物情報検出手段が出力した障害物情報に基づき前記三次元環境地図を更新する三次元環境地図更新手段と、
     前記三次元環境地図に基づいて、前記吊荷および前記ロープが通過する高さ範囲で前記吊荷および前記ロープが通過不可能な通過不可領域を記録した二次元環境地図を生成する二次元環境地図生成手段と、
     前記吊荷の形状と、前記吊荷の三次元位置と、前記二次元環境地図とに基づいて、前記吊荷もしくは前記ロープが前記障害物と衝突する干渉状態、もしくは、前記吊荷および前記ロープが前記保護領域に進入する干渉状態が生じる可能性があるかを予測する干渉予測手段
     を有することを特徴とするクレーンシステム。
    A crane system for moving a load suspended on a rope horizontally and vertically, comprising:
    Obstacle information detection means for detecting the position and shape of the obstacle;
    A three-dimensional environmental map recording the range of presence of the obstacle and the protected area to which the load and the rope can not enter;
    3D environment map updating means for updating the 3D environment map based on obstacle information output by the obstacle information detecting means;
    A two-dimensional environmental map that generates, based on the three-dimensional environmental map, a two-dimensional environmental map in which the suspended load and the rope can not pass through the suspended area in the height range through which the suspended load and the rope pass Generation means,
    An interference state in which the load or the rope collides with the obstacle, or the load and the rope, based on the shape of the load, the three-dimensional position of the load, and the two-dimensional environment map A crane system characterized by comprising: interference prediction means for predicting whether an interference state may occur that enters the protected area.
  2.  請求項1に記載のクレーンシステムにおいて、
     前記干渉予測手段により干渉状態が予測されたときに、クレーンに干渉状態を回避する動作を行わせる回避動作実行手段と、
     を有することを特徴とするクレーンシステム。
    In the crane system according to claim 1,
    An avoidance operation execution means for causing the crane to perform an operation to avoid the interference state when the interference state is predicted by the interference prediction means;
    The crane system characterized by having.
  3.  請求項1に記載のクレーンシステムにおいて、
     前記吊荷の形状を検出する吊荷形状検出手段と、
     前記吊荷の三次元位置を検出する吊荷位置検出手段とを有することを特徴とするクレーンシステム。
    In the crane system according to claim 1,
    A load shape detection means for detecting the shape of the load;
    And a load position detection means for detecting a three-dimensional position of the load.
  4.  請求項1に記載のクレーンシステムにおいて、
     前記三次元環境地図に対して前記吊荷が進入できない領域および前記吊荷が通過可能な最低高さを設定する吊荷通過条件設定手段を更に有することを特徴とするクレーンシステム。
    In the crane system according to claim 1,
    A crane system characterized by further comprising a load passing condition setting means for setting an area where the load can not enter the three-dimensional environmental map and a minimum height through which the load can pass.
  5.  請求項1に記載のクレーンシステムにおいて、
     前記三次元環境地図には吊荷通過可能最低高さが記録されており、
     前記干渉予測手段は、前記吊荷の形状と、前記吊荷の三次元位置と、前記三次元環境地図とに基づいて、
     前記吊荷の予測進行経路上に前記吊荷の底面高さより前記吊荷通過可能最低高さが高い箇所が存在する場合に、干渉状態が生じる可能性があると予測することを特徴とするクレーンシステム。
    In the crane system according to claim 1,
    In the three-dimensional environmental map, the minimum height at which the load can pass is recorded,
    The said interference prediction means is based on the shape of the said suspended load, the three-dimensional position of the said suspended load, and the said three-dimensional environmental map.
    A crane characterized in that it is predicted that an interference state may occur when there is a location on the predicted traveling route of the load which has the lowest loadable minimum height higher than the bottom height of the load. system.
  6.  請求項2に記載のクレーンシステムにおいて、
     前記吊荷の荷振れ挙動を計測もしくは推測する荷振れ挙動検出手段を更に有し、
     前記干渉予測手段は、前記荷振れ挙動検出手段が出力した荷振れ挙動を加味して干渉状
    態が生じる可能性があるかを予測し、
     前記回避動作実行手段は、前記荷振れ挙動検出手段が出力した荷振れ挙動を加味してク前記レーンに干渉状態を回避する動作を行わせることを特徴とするクレーンシステム。
    In the crane system according to claim 2,
    The apparatus further comprises load fluctuation behavior detection means for measuring or estimating the load fluctuation behavior of the suspended load,
    The interference prediction means predicts whether or not an interference state may occur, taking into consideration the load swing behavior outputted by the load swing behavior detection means,
    The crane system according to claim 1, wherein the avoidance operation execution means causes the lane to perform an operation to avoid an interference state in consideration of the load fluctuation behavior outputted by the load fluctuation behavior detection means.
  7.  請求項2に記載のクレーンシステムにおいて、
     前記干渉予測手段が干渉の発生を予測した場合、
     前記回避動作実行手段は操作者に干渉の可能性を報知することを特徴とするクレーンシステム。
    In the crane system according to claim 2,
    If the interference prediction means predicts the occurrence of interference:
    The crane system according to claim 1, wherein the avoidance operation execution means notifies an operator of the possibility of interference.
  8.  請求項7に記載のクレーンシステムにおいて、
     前記回避動作実行手段は、前記報知の後、前記クレーンを停止させることを特徴とするクレーンシステム。
    In the crane system according to claim 7,
    The crane system according to claim 1, wherein the avoidance operation execution means stops the crane after the notification.
  9.  請求項7に記載のクレーンシステムにおいて、
     前記回避動作実行手段は、前記報知の後、前記二次元環境地図を用いて前記通過不可領域を回避する経路を生成し、該経路に従って前記クレーンを動作させることを特徴とするクレーンシステム。
    In the crane system according to claim 7,
    The crane system according to claim 1, wherein the avoidance operation execution means generates a route avoiding the impassable area by using the two-dimensional environment map after the notification and operates the crane according to the route.
  10.  請求項7に記載のクレーンシステムにおいて、
     前記回避動作実行手段は、前記報知の後、前記三次元環境地図に記録された、前記吊荷の予測進行経路上の吊荷通過可能最低高さより前記吊荷の底面高さが高くなるように前記ロープを変更させることを特徴とするクレーンシステム。
    In the crane system according to claim 7,
    The avoidance operation execution means is configured to make the bottom surface height of the suspended load higher than the suspended loadable minimum height on the predicted traveling path of the suspended load recorded in the three-dimensional environment map after the notification. The crane system characterized by changing the said rope.
  11.  請求項1に記載のクレーンシステムにおいて、
     前記吊荷の目標位置を入力する目標位置入力手段と、
     前記三次元環境地図と、前記目標位置入力手段により入力された前記目標位置と、前記吊荷の現在位置に基づいて、前記吊荷が移動する目標経路を生成する目標経路生成手段と、
     を有することを特徴とするクレーンシステム。
    In the crane system according to claim 1,
    Target position input means for inputting a target position of the load;
    Target route generation means for generating a target route along which the suspended load moves, based on the three-dimensional environmental map, the target position inputted by the target position input device, and the current position of the suspended load;
    The crane system characterized by having.
  12.  請求項2に記載のクレーンシステムにおいて、
     前記二次元環境地図に記録された情報および前記吊荷の進行経路情報が表示される表示手段を有することを特徴とするクレーンシステム。
    In the crane system according to claim 2,
    A crane system comprising display means for displaying information recorded in the two-dimensional environmental map and traveling route information of the load.
  13.  請求項2に記載のクレーンシステムにおいて、
     作業者を検出する作業者検出手段を更に有し、
     前記干渉予測手段は、前記作業者検出手段により検出された作業者の上方を通過する可能性がある場合も干渉状態と予測し、
     前記回避動作実行手段は、前記作業者の上方の領域を回避および減速して接近する経路を生成しクレーンを動作させることを特徴とするクレーンシステム。
    In the crane system according to claim 2,
    It further comprises a worker detection means for detecting a worker,
    The interference prediction unit predicts an interference state also when there is a possibility of passing above the worker detected by the worker detection unit,
    The crane system according to claim 1, wherein the avoidance operation execution means generates a path approaching and decelerating by avoiding and decelerating an area above the worker to operate the crane.
  14.  ロープに吊り下げた吊荷を水平方向および垂直方向に移動させるクレーンの制御方法であって、
     前記吊荷の形状を検出し、
     前記吊荷の三次元位置を検出し、
     障害物の位置および形状の情報を検出し、
     前記障害物の存在範囲および前記吊荷と前記ロープが進入できない保護領域を三次元環境地図に記録し、
     前記三次元環境地図に基づいて、前記吊荷および前記ロープが通過する高さ範囲で前記吊荷および前記ロープが通過不可能な領域を記録した二次元環境地図を生成し、
     前記吊荷の形状と、前記吊荷の三次元位置と、前記二次元環境地図とに基づいて、前記吊荷もしくは前記ロープが前記障害物と衝突する干渉状態、もしくは、前記吊荷および前記ロープが前記保護領域に進入する干渉状態が生じる可能性があるかを予測ることを特徴とするクレーンの制御方法。
    A control method of a crane for moving a load suspended on a rope horizontally and vertically, comprising:
    Detect the shape of the load;
    Detect the three-dimensional position of the load;
    Detects obstacle position and shape information,
    The existence range of the obstacle and the protected area where the load and the rope can not enter are recorded in a three-dimensional environmental map,
    Based on the three-dimensional environmental map, a two-dimensional environmental map is generated in which the suspended load and the area through which the rope can not pass are recorded in the height range through which the suspended load and the rope pass.
    An interference state in which the load or the rope collides with the obstacle, or the load and the rope, based on the shape of the load, the three-dimensional position of the load, and the two-dimensional environment map The control method of the crane characterized by predicting whether the interference state which 3 enters into the said protection area may arise.
PCT/JP2018/028575 2017-11-13 2018-07-31 Crane system and crane control method WO2019092937A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-217944 2017-11-13
JP2017217944A JP7025896B2 (en) 2017-11-13 2017-11-13 Crane system and crane control method

Publications (1)

Publication Number Publication Date
WO2019092937A1 true WO2019092937A1 (en) 2019-05-16

Family

ID=66437617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028575 WO2019092937A1 (en) 2017-11-13 2018-07-31 Crane system and crane control method

Country Status (2)

Country Link
JP (1) JP7025896B2 (en)
WO (1) WO2019092937A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816090A1 (en) * 2019-10-30 2021-05-05 Schneider Electric Industries SAS Method for generating a trajectory for a hoisting appliance
CN113885484A (en) * 2021-08-13 2022-01-04 上海和夏新能源科技有限公司 Vehicle intelligent driving and ADAS test environment simulation device, system and test method
LU501953B1 (en) * 2021-09-18 2023-03-24 Eurocrane China Co Ltd High-accuracy method for controlling grabbing position of grab with radar feedback
LU501949B1 (en) * 2021-09-18 2023-03-24 Eurocrane China Co Ltd Automatic material handling control system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7130901B2 (en) * 2019-09-30 2022-09-06 株式会社日立プラントメカニクス Anti-collision device for cranes
JP7403270B2 (en) * 2019-10-09 2023-12-22 株式会社日立産機システム Hoisting machine, hoisting machine system, suspended load mass estimation device, and suspended load mass estimation method
CN110989603B (en) * 2019-12-13 2022-08-16 苏州大学应用技术学院 Crane carrying operation path planning method
JP7264839B2 (en) * 2020-02-03 2023-04-25 株式会社日立製作所 Installation control device and installation control method
CN111704038B (en) * 2020-07-13 2021-05-07 大连理工大学 Bridge crane path planning method considering obstacle avoidance
KR102485505B1 (en) * 2022-04-08 2023-01-06 반도호이스트크레인 주식회사 System And Method For Controlling Crane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151485A (en) * 1984-08-21 1986-03-13 鹿島建設株式会社 Method of detecting form of crane hung-load
JP2005092820A (en) * 2003-09-19 2005-04-07 Sony Corp Environment recognition apparatus and method, path planning apparatus and method, and robot apparatus
JP2007015814A (en) * 2005-07-07 2007-01-25 Mitsubishi Electric Corp Equipment carrying-in-and-out system
JP2007276996A (en) * 2006-04-12 2007-10-25 Ohbayashi Corp Jib operation monitoring device of construction machine, jib operation monitoring method of construction machine and operation monitoring system of construction machine
JP2008152380A (en) * 2006-12-14 2008-07-03 Toyohashi Univ Of Technology Conveyance method of overhead crane using laser pointer and overhead crane system
JP2017088330A (en) * 2015-11-11 2017-05-25 Jfeスチール株式会社 Automatic operation device and automatic operation method for indoor crane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151485A (en) * 1984-08-21 1986-03-13 鹿島建設株式会社 Method of detecting form of crane hung-load
JP2005092820A (en) * 2003-09-19 2005-04-07 Sony Corp Environment recognition apparatus and method, path planning apparatus and method, and robot apparatus
JP2007015814A (en) * 2005-07-07 2007-01-25 Mitsubishi Electric Corp Equipment carrying-in-and-out system
JP2007276996A (en) * 2006-04-12 2007-10-25 Ohbayashi Corp Jib operation monitoring device of construction machine, jib operation monitoring method of construction machine and operation monitoring system of construction machine
JP2008152380A (en) * 2006-12-14 2008-07-03 Toyohashi Univ Of Technology Conveyance method of overhead crane using laser pointer and overhead crane system
JP2017088330A (en) * 2015-11-11 2017-05-25 Jfeスチール株式会社 Automatic operation device and automatic operation method for indoor crane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIHIRO KANESHIGE, ET AL: "Autonomous Mobile Crane System Considering Obstacle Recognition and Optimal Path Planning", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS (SERIES C.), vol. 64, no. 618, February 1998 (1998-02-01), pages 487 - 494, XP055607835 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816090A1 (en) * 2019-10-30 2021-05-05 Schneider Electric Industries SAS Method for generating a trajectory for a hoisting appliance
US11795036B2 (en) 2019-10-30 2023-10-24 Schneider Electric Industries Sas Method for generating a trajectory for a hoisting appliance
CN113885484A (en) * 2021-08-13 2022-01-04 上海和夏新能源科技有限公司 Vehicle intelligent driving and ADAS test environment simulation device, system and test method
LU501953B1 (en) * 2021-09-18 2023-03-24 Eurocrane China Co Ltd High-accuracy method for controlling grabbing position of grab with radar feedback
LU501949B1 (en) * 2021-09-18 2023-03-24 Eurocrane China Co Ltd Automatic material handling control system

Also Published As

Publication number Publication date
JP7025896B2 (en) 2022-02-25
JP2019089612A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2019092937A1 (en) Crane system and crane control method
JP7207848B2 (en) Optical detection system for lift cranes
CN109095356B (en) Engineering machinery and operation space dynamic anti-collision method, device and system thereof
JP7396282B2 (en) Operation support module, image generation application, and work equipment
US9302890B1 (en) Crane control system and method
US10822208B2 (en) Crane 3D workspace spatial techniques for crane operation in proximity of obstacles
JP7396281B2 (en) Performance information server, client terminal, work equipment, performance information acquisition method, and performance information provision method
EP3309110B1 (en) Crane function performance enhancement for non-symmetrical outrigger arrangements
KR102369031B1 (en) APPARATUS FOR Real-Time MONITORING COLLISION PREVENTING OF CRANE AND CONTROL METHOD THEREOF
CN110054099B (en) Tower crane anti-collision display control method, control device, control system and storage medium
KR101826129B1 (en) System and method for control of gantry crane
KR20190078984A (en) Monitoring system for preventing lift objects collision against crane
CN105253775A (en) Tower crane jacking and balancing control system, method and device and tower crane
JP2003118981A (en) Crane approach alarm device
JP2021147139A (en) Automatic route setting system for tower crane
CN112744708A (en) Method for generating a trajectory for a lifting device
KR101927880B1 (en) Crane safety information providing system
JP6835026B2 (en) Rope runout detector
JP2019167221A (en) Climbing crane control method, building construction method, and discrimination method of suspended load for climbing crane
JP6321246B1 (en) Elevator maintenance work support system
KR20200100265A (en) A system for preventing collision between tower cranes using relative velocity and absolute velocity and a method of preventing collision between tower cranes using the same
EP3530607B1 (en) Crane 3d workspace spatial techniques for crane operation in proximity of obstacles
CN114180460A (en) Anti-collision protection method, controller and system for lifting appliance and shore bridge
CN114580993A (en) Automated inventory of a warehouse
WO2022244393A1 (en) Human-machine cooperative control system and human-machine cooperative control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876863

Country of ref document: EP

Kind code of ref document: A1