WO2019092858A1 - Combustion state determination system - Google Patents

Combustion state determination system Download PDF

Info

Publication number
WO2019092858A1
WO2019092858A1 PCT/JP2017/040643 JP2017040643W WO2019092858A1 WO 2019092858 A1 WO2019092858 A1 WO 2019092858A1 JP 2017040643 W JP2017040643 W JP 2017040643W WO 2019092858 A1 WO2019092858 A1 WO 2019092858A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
nox
concentration
nox removal
fuel
Prior art date
Application number
PCT/JP2017/040643
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 谷川
泰孝 和田
優 大内
直彦 谷口
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to JP2018507033A priority Critical patent/JP6357701B1/en
Priority to PCT/JP2017/040643 priority patent/WO2019092858A1/en
Publication of WO2019092858A1 publication Critical patent/WO2019092858A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion

Definitions

  • the present invention relates to a combustion state determination system.
  • high-temperature high-pressure steam is generated using the heat burned by burners using coal, natural gas, light oil, heavy oil, etc. as fuel.
  • Some boilers combine coal burners and natural gas burners to make multiple fuels available.
  • ammonia is used for denitrification and for adjusting the pH of boiler feed water.
  • Ammonia is stored in a pressurized and liquefied state in the ammonia tank, circulated in the coiled pipe immersed in the warm water heated in the vaporizer above, heated and vaporized in the accumulator, and pressure is stored in the accumulator. Is being delivered to the point of use of ammonia gas while stabilizing the
  • Patent Document 1 uses ammonia supplied to the NOx removal means to at least one of the combustor and the coal gasification furnace as a fuel to drive the turbine with a constant output. It discloses the coal gasification power plant to be introduced.
  • ammonia has a slower burning rate than fuel gas such as natural gas, so when ammonia gas is co-fired using an existing boiler for thermal power generation, ammonia is incompletely burned and not yet in exhaust gas. Fuel gas may remain. The presence of unburned ammonia gas in the exhaust gas leads to a decrease in combustion efficiency and also to the erosion of the ammonia, which affects the fluorine-based rubber packing and the like of the piping of the thermal power plant. In addition, ammonia is toxic, so if unburned ammonia gas is released to the atmosphere outside the thermal power plant, it becomes a problem. Therefore, when the ammonia is mixedly burned in the thermal power plant, it is necessary to determine how the ammonia fuel is burning.
  • an object of this invention is to provide the combustion state determination system which can determine the combustion state of the ammonia fuel in a boiler by a simple method.
  • the present invention has the following configuration.
  • a combustion facility having a burner for burning ammonia fuel and a boiler for co-firing the ammonia fuel with pulverized coal, and a NOx removal apparatus for NOx removal from the boiler, wherein the ammonia fuel in the boiler is An ammonia concentration detection means for detecting an ammonia concentration at the outlet of the boiler by hand analysis or a permanent installation device, and a NOx removal inlet NOx concentration which is an NOx concentration at the inlet of the NOx removal device.
  • the determination unit may determine that the ammonia fuel is completely burned.
  • the determination unit may determine that it has occurred.
  • the determination unit may determine that unburned ammonia fuel is generated and the unburned ammonia fuel causes a denitrification reaction in the boiler when.
  • FIG. 1 is a schematic view of a thermal power plant 1.
  • the thermal power generation facility 1 is a system capable of combusting ammonia gas, but is a co-fired power generation facility 1 capable of burning other than pulverized coal, oil, natural gas and ammonia gas such as BOG (boil off gas).
  • BOG snow off gas
  • the thermal power generation facility 1 is a gas fuel supply that supplies gaseous fuel other than ammonia gas through the ammonia gas supply facility 2, the ammonia gas fuel piping facility 3, the boiler 6, the denitration facility 90, and the gas fuel piping 170. It comprises a unit 70, a combustion state determination system 100, and a control unit 7 that controls the whole.
  • the ammonia gas supply facility 2 includes a storage tank 10, a vaporizer 20, an accumulator 30, an ammonia gas absorbing unit 80, and the like.
  • the ammonia gas absorbing unit 80 is a water storage tank for absorbing ammonia gas emitted from the blow valve 81 or the like provided in the ammonia gas supply facility 2 into water.
  • the storage tank 10 stores pressurized and liquefied liquid ammonia, and is connected to the vaporizer 20 through a pipe 110.
  • the pipe 110 is branched in two directions along the way.
  • a vaporizer start valve 11 and a vaporizer pressure control valve 12 for controlling the pressure in the vaporizer 20 are sequentially disposed from the upstream side.
  • a vaporizer bypass valve 13 is disposed in the other branched pipe 110b.
  • the vaporizer 20 heats and vaporizes the liquid ammonia supplied from the storage tank 10.
  • liquid ammonia is heated through the inside of a coiled pipe immersed in warm water and vaporized to be ammonia gas.
  • the downstream side of the vaporizer 20 is connected to the accumulator 30 via a pipe 120.
  • the pipe 120 is branched in two directions along the way.
  • An accumulator start valve 21 and an accumulator pressure control valve 22 for controlling the pressure in the accumulator 30 are sequentially disposed from the upstream side in one branched pipe 120 a.
  • An accumulator bypass valve 23 is disposed in the other branched pipe 120b.
  • the accumulator 30 is a device that accumulates ammonia gas and stabilizes the pressure.
  • a pipe 130 extends from the downstream side of the accumulator 30.
  • the pipe 130 is branched in two directions.
  • One branched pipe 132 is connected to the header 40.
  • the other branched pipe 131 is connected to the ammonia gas fuel pipe arrangement 3.
  • a pipe 140 is connected to the downstream side of the header 40, and the pipe 140 is connected to the NOx removal facility 90 via the NOx removal cutoff valve 41.
  • the pipe 140 is connected to the denitrification device 91.
  • Exhaust gas produced by combustion is sent from the boiler 6 to the denitration device 91 via the pipe 180, and when the denitration blocking valve 41 is open, the exhaust gas is used as an ammonia gas introduced from the pipe 140 as a reducing agent Nitrogen oxides in it are converted to harmless nitrogen gas and water.
  • Ammonia gas fuel piping system 3 As described above, the pipe 131 branched from the pipe 130 extending from the accumulator 30 is connected to the ammonia gas fuel pipe arrangement 3. A shutoff valve 31 is provided upstream of the pipe 131. On the downstream side of the shutoff valve 31, a purge pipe 133 extending from a purge gas supply unit 37 capable of flowing a purge gas such as nitrogen gas into the ammonia gas fuel piping installation 3 is connected via a purge valve 36.
  • the downstream side of the connection portion of the pipe 131 to which the purge pipe 133 is connected is branched in two directions.
  • a pressure control valve 32 is disposed in one of the branched pipes 131a.
  • a shutoff valve 33 is disposed in the other branched pipe 131b. The pipe 131 a and the pipe 131 b rejoin on the downstream side. The joined pipe 131 is connected to the flow meter 50 via the shutoff valve 34.
  • the flow meter 50 measures the flow rate of the gas flowing through the pipe 131.
  • a pipe 150 extends from the downstream side of the flow meter 50.
  • the piping 150 is branched in two directions along the way.
  • a flow control valve 51 is disposed in one of the branched pipes 150a.
  • a shutoff valve 52 is disposed in the other branched pipe 150b. The pipe 150 a and the pipe 150 b rejoin on the downstream side.
  • the downstream side of the joined pipe 150 is branched in two directions by the second connection portion 56.
  • One branched pipe is an ammonia gas outflow pipe 151 a, and is connected to the ammonia gas absorbing unit 80 of the ammonia gas supply facility 2 via an ammonia outflow blocking valve 55.
  • the ammonia gas absorbing unit 80 is a water storage tank, and dissolves ammonia gas in water.
  • a burner valve 53 is disposed in the other branched ammonia gas supply pipe 151b.
  • a cooling pipe 160 to which cooling air is introduced is connected via a cooling air valve 61.
  • the ammonia gas outflow pipe 151 a may be branched downstream of the burner valve 53.
  • the downstream side of the ammonia gas supply pipe 151 b is connected to the first connection portion 72 of the gas fuel pipe 170 extending from the gas fuel supply unit 70 to the burner 62 A of the boiler 6 via the shutoff valve 54.
  • the gas fuel supply unit 70 stores LNG (liquefied natural gas). When LNG is liquefied and stored, the LNG is vaporized by natural heat input from the outside, etc., and BOG off gas is generated.
  • the gas fuel pipe 170 is a pipe that sends the BOG as a fuel to the burner 62A.
  • the gas fuel pipe 170 is connected to the burner 62 A of the boiler 6 at the downstream side of the first connection portion 72.
  • a gas fuel pipe shutoff valve 71 is disposed upstream of the first connection portion 72 in the gas fuel pipe 170.
  • FIG. 2 is a view for explaining an arrangement example of the four stage burners 62.
  • coal pulverized coal
  • gas fuel is further supplied to the topmost four burners 62A.
  • the gas ring 171 provided at the tip of the gas fuel pipe 170 is arranged in a circular arc at the outermost part of each of the burners 62A, and five burner nozzles 172 are branched from the gas ring 171.
  • An injection port 173 is provided at the tip of 172.
  • ammonia is co-fired by injecting ammonia from one of the five injection ports 173 of the burner 62A located on the rightmost side in FIG.
  • the injection ports from which ammonia is injected are not limited to this, and other injection ports 173 may be used, and an arbitrary number of injection ports may be used.
  • the burners to which ammonia is mixedly fired are not limited to the burner 62A located on the rightmost side, but may be any number of burners 62A at any position.
  • combustion state determination system 100 In the combustion state determination system 100 according to the embodiment of the present invention, the ammonia concentration detection unit 101, the NOx removal inlet NOx concentration detection unit 102, the NOx removal outlet NOx concentration detection unit 103, the ammonia concentration detection unit 104 for NOx removal shown in FIG. A unit 105 is provided.
  • the ammonia concentration detection unit 101 detects the ammonia concentration at the outlet of the boiler 6 by hand analysis or a permanent installation device.
  • the NOx removal inlet NOx concentration detection unit 102 detects a NOx removal inlet NOx concentration, which is the NOx concentration at the inlet of the NOx removal device 91.
  • the NOx removal outlet NOx concentration detection unit 103 detects the NOx removal outlet NOx concentration, which is the NOx concentration at the outlet of the NOx removal apparatus 91.
  • the ammonia amount detection unit for NOx removal 104 detects the amount of ammonia for NOx removal that is injected into the NOx removal apparatus 91 based on the NOx concentration at the NOx removal outlet.
  • the determination unit 105 determines the combustion state of the ammonia fuel in the boiler 6 based on the ammonia concentration at the outlet of the boiler 6, the NOx removal inlet NOx concentration, the NOx removal outlet NOx concentration, and the ammonia amount for NOx removal injected into the inlet of the NOx removal device 91. Determine Note that, as shown in FIG. 1, the determination unit 105 can be provided as a component of the control unit 7.
  • FIG. 3 shows specific installation places of the ammonia concentration detection unit 101, the NOx removal inlet NOx concentration detection unit 102, the NOx removal outlet NOx concentration detection unit 103, and the ammonia concentration detection unit 104 for NOx removal.
  • the boiler 6 includes burners 62A to 62D and a furnace 63 as part of its components.
  • the furnace 63 has a substantially inverted U shape as a whole, and the outlet of the furnace 63 is connected to the pipe 180 after the combustion gas moves in the inverted U shape along the arrow in the drawing.
  • the burners 62A to 62D for burning pulverized coal, gas fuel, ammonia and the like in the vicinity of the burner zone of the furnace 63 are disposed.
  • the combustion gas After leaving the furnace 63, the combustion gas enters the pipe 180 as exhaust gas via the building wall, but detects the ammonia concentration at the outlet of the boiler 6 at a location near the building wall in the pipe 180.
  • the unit 101 is installed.
  • the pipe 180 is connected to the denitration device 91 after forming a substantially inverted U shape, but a denitration inlet NOx concentration detection unit 102 for detecting the NOx concentration at the inlet of the denitration device 91 is installed near the inlet of the denitration device 91 Be done.
  • the exhaust gas is denitrified by the denitrification apparatus 91 and then discharged from the denitrification apparatus 91 and directed to the air preheater. Will be installed.
  • the amount of ammonia to be injected into the denitration device 91 is determined based on the denitration outlet NOx concentration detected by the denitration outlet NOx concentration detection unit 103, this ammonia is immediately before the portion in the pipe 180 where the reverse U shape is formed. Infused.
  • the denitration ammonia amount detection unit 104 is installed at this injection point. In addition, the installation location of the ammonia amount detection part 104 for NOx removal is not restricted to this.
  • control unit 7 when the control unit 7 calculates the ammonia amount for denitrification, the control unit 7 includes the ammonia amount detecting unit 104 for denitrification as its component, and the ammonia amount detecting unit 104 for denitrification determines the ammonia amount for denitrification The calculated value of may be detected.
  • FIG. 4 is a flowchart showing the operation of the combustion state determination system 100
  • FIG. 5 is a determination table used in this operation.
  • step S1 the ammonia concentration detection unit 101 detects the ammonia concentration at the outlet of the boiler 6 by hand analysis or a permanent installation device.
  • step S2 the NOx removal inlet NOx concentration detection unit 102 detects the NOx removal inlet NOx concentration, which is the NOx concentration at the inlet of the NOx removal apparatus 91.
  • step S3 the NOx removal outlet NOx concentration detection unit 103 detects the NOx removal outlet concentration, which is the NOx concentration at the outlet of the NOx removal apparatus 91.
  • step S4 the amount of ammonia for denitrification detection is detected by the amount of denitrification ammonia detection unit 104.
  • step S5 based on the ammonia concentration at the outlet of the boiler 6, the NOx removal inlet NOx concentration, the NOx removal outlet NOx concentration, and the amount of ammonia for NOx removal injected into the inlet of the NOx removal apparatus 91 in the determination unit 105, FIG.
  • the combustion state of the ammonia fuel in the boiler 6 is determined by using the determination table.
  • the specific determination method is as follows.
  • the determination unit 105 determines that the ammonia fuel is completely burned in the boiler 6. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as the high evaluation.
  • the determination unit 105 generates ammonia fuel for the unburned portion in the boiler 6, and this ammonia fuel is a denitrification catalyst in the denitrification device 91. It is determined that a denitrification reaction has occurred. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as a medium evaluation.
  • the determination unit 105 generates ammonia fuel for the unburned part in the boiler 6, and this ammonia fuel is a denitration catalyst in the denitration device 91. It is determined that a denitrification reaction has occurred. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as the low evaluation.
  • Ammonia is not detected at the outlet of the boiler 6, the NOx concentration at the inlet of the NOx removal device 91 decreases, the NOx concentration at the outlet of the NOx removal device 91 temporarily decreases, and the NOx concentration near the above burners 62A to 62D.
  • the amount of ammonia for NOx removal decreases corresponding to the reduction of NOx concentration, as shown in line 5 of the judgment table of FIG.
  • Ammonia fuel is generated, and it is determined that this ammonia fuel causes non-catalytic denitrification reaction at a high temperature of 900 ° C. or more around the flame in the boiler 6.
  • the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as the high evaluation.
  • the concentration of NOx at the inlet of the denitration apparatus 91 is reduced, it is assumed that the concentration of NOx in the vicinity of the burners 62A to 62D is reduced due to the reduction reaction. Conversely, as the NOx concentration in the vicinity of the burners 62A to 62D decreases due to the reduction reaction, as described above, the NOx concentration at the inlet of the NOx removal apparatus 91 decreases.
  • the determination unit 105 When a small amount of ammonia is detected at the outlet of the boiler 6, the NOx concentration at the inlet of the NOx removal device 91 decreases, the NOx concentration at the outlet of the NOx removal device 91 temporarily decreases slightly, and the amount of ammonia for NOx removal decreases.
  • the determination unit 105 As shown in the sixth row of the determination table of FIG. 5, the determination unit 105 generates ammonia fuel for the unburned part in the boiler 6, and this ammonia fuel is generated around 900 of the flame in the boiler 6. It is determined that a non-catalytic denitration reaction has occurred at a high temperature of at least ° C. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as a medium evaluation.
  • the NOx concentration at the inlet of the denitrification apparatus 91 is reduced, so it is assumed that the NOx concentration in the vicinity of the burners 62A to 62D is reduced due to the reduction reaction. Conversely, as the NOx concentration in the vicinity of the burners 62A to 62D decreases due to the reduction reaction, as described above, the NOx concentration at the inlet of the NOx removal apparatus 91 decreases.
  • the determination unit 105 When a large amount of ammonia is detected at the outlet of the boiler 6, the NOx concentration at the inlet of the NOx removal device 91 decreases, the NOx concentration at the outlet of the NOx removal device 91 temporarily decreases significantly, and the amount of ammonia for NOx removal decreases significantly.
  • the determination unit 105 As shown in the seventh row of the determination table of FIG. 5, the determination unit 105 generates ammonia fuel for unburned fuel in the boiler 6, and this ammonia fuel is generated around 900 of zinc in the boiler 6 It is determined that a non-catalytic denitration reaction has occurred at a high temperature of at least ° C. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as the low evaluation.
  • the NOx concentration at the inlet of the denitrification apparatus 91 is reduced, so it is assumed that the NOx concentration in the vicinity of the burners 62A to 62D is reduced due to the reduction reaction. Conversely, as the NOx concentration in the vicinity of the burners 62A to 62D decreases due to the reduction reaction, as described above, the NOx concentration at the inlet of the NOx removal apparatus 91 decreases.
  • the reduction range is "small”. If the reduction is 5 ppm or more, the reduction range can be made “large”.
  • the decrease range is considered as “small” and decreased by 5 kg / h or more. It is possible to make the width "large”.
  • the ammonia concentration at the outlet of the boiler 6, the NOx concentration at the inlet of the denitrification apparatus 91, the NOx concentration at the outlet of the denitrification apparatus 91, and the amount of ammonia for denitrification injected into the inlet of the denitrification apparatus 91 The determination unit 105 determines the combustion state of the ammonia fuel in the boiler 6 based on the above.
  • the determination unit 105 determines that the ammonia fuel is completely burned in the boiler 6.
  • the NOx concentration at the inlet of the denitrification apparatus 91 is unchanged as compared with before the injection, and the NOx concentration at the outlet of the denitrification apparatus 91 and the ammonia amount for denitrification decrease.
  • the determination unit 105 determines that the unburned ammonia fuel has reacted with the NOx removal catalyst stored in the NOx removal apparatus 91.
  • the determination unit 105 determines that the minute ammonia fuel is generated and the unburned ammonia fuel causes a denitrification reaction in the boiler 6.
  • the combustion state of the ammonia fuel in the boiler 6 by a simple method.
  • the combustion state of the ammonia fuel is determined using a flame detection device that detects light of a certain frequency. You can not do it.
  • the combustion state of the ammonia fuel specifically, whether the ammonia fuel causes the oxidation reaction or the reduction reaction can be simplified simply by using the existing apparatus provided in the thermal power plant. It is possible to determine if it is happening. As a result, it becomes possible to set the mixed combustion rate of coal and ammonia which is different for each boiler to an optimal value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Provided is a combustion state determination system that can determine the state of combustion of ammonia fuel using a simple method. The state of combustion of ammonia fuel in a boiler 6 is determined on the basis of the concentration of ammonia at the boiler 6 outlet, the concentration of NOx at a denitrification device 91 inlet, the concentration of NOx at the denitrification device 91 outlet, and the amount of ammonia for denitrification used by the denitrification device 91.

Description

燃焼状態判定システムCombustion state determination system
 本発明は、燃焼状態判定システムに関する。 The present invention relates to a combustion state determination system.
 従来の火力発電所ボイラでは、石炭・天然ガス・軽油・重油等を燃料としてバーナで燃焼させた熱を利用して高温高圧蒸気を発生させる。ボイラによっては、石炭用バーナや天然ガスバーナを組み合わせ、複数の燃料を利用可能にしている。 In conventional thermal power plant boilers, high-temperature high-pressure steam is generated using the heat burned by burners using coal, natural gas, light oil, heavy oil, etc. as fuel. Some boilers combine coal burners and natural gas burners to make multiple fuels available.
 火力発電所では、脱硝用及びボイラ給水のpH調整用としてアンモニアが利用されている。アンモニアは、アンモニアタンクにおいて、加圧・液化された状態で貯留され、気化器において上記で加温した温水中に浸漬されたコイル状配管内を流通させて昇温して気化し、アキュムレータにおいて圧力を安定させつつ、アンモニアガスの利用箇所へ送ガスされている。 At a thermal power plant, ammonia is used for denitrification and for adjusting the pH of boiler feed water. Ammonia is stored in a pressurized and liquefied state in the ammonia tank, circulated in the coiled pipe immersed in the warm water heated in the vaporizer above, heated and vaporized in the accumulator, and pressure is stored in the accumulator. Is being delivered to the point of use of ammonia gas while stabilizing the
 これまで、火力発電所において、アンモニアを燃料として利用することは、一般的ではなかった。しかし、一般の火力発電では、上記のように化石燃料を利用しているため、二酸化炭素が発生し、地球温暖化が促進される。また、今後はカーボンクレジットといった形での費用負担が懸念される。そのため、炭素を含まないアンモニアを燃料として利用する方法が提案されている。 Until now, it has not been common to use ammonia as a fuel in a thermal power plant. However, in general thermal power generation, as described above, since fossil fuel is used, carbon dioxide is generated and global warming is promoted. In addition, there is concern about the cost burden in the form of carbon credit in the future. Therefore, a method of using carbon-free ammonia as a fuel has been proposed.
 例えば、特許文献1は、石炭の種類に拘わらず、一定の出力でタービンを駆動するため、燃焼器もしくは前記石炭ガス化炉の少なくともいずれか一方に、脱硝手段に供給されるアンモニアを、燃料として投入する石炭ガス化発電設備を開示している。 For example, regardless of the type of coal, Patent Document 1 uses ammonia supplied to the NOx removal means to at least one of the combustor and the coal gasification furnace as a fuel to drive the turbine with a constant output. It discloses the coal gasification power plant to be introduced.
特開2016-183640号公報JP, 2016-183640, A
 しかし、アンモニアは、天然ガス等の燃料ガスに比べて、燃焼速度が遅いため、既設の火力発電用ボイラを用いてアンモニアガスを混焼させた場合に、アンモニアが不完全燃焼され、排ガス中に未燃ガスが残る可能性がある。排ガス中の未燃アンモニアガスの存在は、燃焼効率の低下につながると共に、アンモニアには浸食性があるため、火力発電所の配管のフッ素系ゴムパッキン等に影響を与える。また、アンモニアには毒性があるため、未燃アンモニアガスが、仮に火力発電所外の大気に放出された場合には、問題となる。
 そのため、火力発電所においてアンモニアを混焼させた場合に、アンモニア燃料がどのように燃焼しているか、判定する必要がある。
However, ammonia has a slower burning rate than fuel gas such as natural gas, so when ammonia gas is co-fired using an existing boiler for thermal power generation, ammonia is incompletely burned and not yet in exhaust gas. Fuel gas may remain. The presence of unburned ammonia gas in the exhaust gas leads to a decrease in combustion efficiency and also to the erosion of the ammonia, which affects the fluorine-based rubber packing and the like of the piping of the thermal power plant. In addition, ammonia is toxic, so if unburned ammonia gas is released to the atmosphere outside the thermal power plant, it becomes a problem.
Therefore, when the ammonia is mixedly burned in the thermal power plant, it is necessary to determine how the ammonia fuel is burning.
 そこで、本発明は、簡便な手法でボイラ内のアンモニア燃料の燃焼状態を判定することが可能な、燃焼状態判定システムを提供することを目的とする。 Then, an object of this invention is to provide the combustion state determination system which can determine the combustion state of the ammonia fuel in a boiler by a simple method.
 前記目的を達成するため、本発明は、次に記載する構成を備えている。
 (1)アンモニア燃料を燃焼するバーナを有し前記アンモニア燃料を微粉炭と混焼させるボイラと、前記ボイラから排出される排ガスを脱硝する脱硝装置とを備える燃焼設備において、前記ボイラにおける前記アンモニア燃料の燃焼状態を判定する燃焼状態判定システムであって、前記ボイラの出口におけるアンモニア濃度を、手分析又は常設装置により検出するアンモニア濃度検出手段と、前記脱硝装置の入口におけるNOx濃度である脱硝入口NOx濃度を検出する第2のNOx濃度検出手段と、前記脱硝装置の出口におけるNOx濃度である脱硝出口NOx濃度を検出する第3のNOx濃度検出手段と、前記脱硝出口NOx濃度に基づいて前記脱硝装置に注入される、脱硝用アンモニア量を検出する脱硝用アンモニア量検出手段と、前記アンモニア濃度、前記脱硝入口NOx濃度、前記脱硝出口NOx濃度、及び前記脱硝用アンモニア量に基づいて、前記燃焼状態を判定する判定部とを備える燃焼状態判定システム。
In order to achieve the above object, the present invention has the following configuration.
(1) A combustion facility having a burner for burning ammonia fuel and a boiler for co-firing the ammonia fuel with pulverized coal, and a NOx removal apparatus for NOx removal from the boiler, wherein the ammonia fuel in the boiler is An ammonia concentration detection means for detecting an ammonia concentration at the outlet of the boiler by hand analysis or a permanent installation device, and a NOx removal inlet NOx concentration which is an NOx concentration at the inlet of the NOx removal device. The second NOx concentration detecting means for detecting the NOx concentration, the third NOx concentration detection means for detecting the NOx concentration at the outlet of the NOx removal device, and the NOx removal device based on the NOx concentration at the NOx removal outlet. Means for detecting the amount of ammonia for denitrification to be injected, which detects the amount of ammonia for denitrification; Ammonia concentration, the denitration inlet NOx concentration, the denitration outlet NOx concentration, and on the basis of the denitrification ammonia amount, the combustion state judging system comprising a determination unit for determining the combustion state.
 (2)前記燃焼状態判定システムにおいて、前記バーナから前記アンモニア燃料を注入後、注入以前に比較して、前記脱硝入口NOx濃度、前記脱硝出口NOx濃度、前記脱硝用アンモニア量に変化がなく、前記アンモニア濃度検出手段が検出した前記アンモニア濃度がゼロだった場合に、前記アンモニア燃料が完全燃焼したと前記判定部が判定してもよい。 (2) In the combustion state determination system, after the ammonia fuel is injected from the burner, the NOx removal inlet concentration, the NOx removal outlet concentration, and the ammonia amount for NOx removal do not change compared to before injection. When the ammonia concentration detected by the ammonia concentration detection means is zero, the determination unit may determine that the ammonia fuel is completely burned.
 (3)前記燃焼状態判定システムにおいて、前記バーナから前記アンモニア燃料を注入後、注入以前に比較して、前記脱硝入口NOx濃度に変化がなく、前記脱硝出口NOx濃度、前記脱硝用アンモニア量が低下し、前記アンモニア濃度検出手段が検出した前記アンモニア濃度が正の値だった場合に、未燃分アンモニア燃料が発生し、前記未燃分アンモニア燃料が、前記脱硝装置に格納された脱硝触媒と反応したと、前記判定部が判定してもよい。 (3) In the combustion state determination system, after the ammonia fuel is injected from the burner, the NOx removal inlet NOx concentration does not change compared to before injection, and the NOx removal outlet NOx concentration and the amount of ammonia for NOx removal decrease. If the ammonia concentration detected by the ammonia concentration detecting means is a positive value, unburned ammonia fuel is generated, and the unburned ammonia fuel reacts with the NOx removal catalyst stored in the NOx removal device. The determination unit may determine that it has occurred.
 (4)前記燃焼状態判定システムにおいて、前記バーナから前記アンモニア燃料を注入後、前記アンモニア燃料の注入以前に比較して、前記脱硝入口NOx濃度、前記脱硝出口NOx濃度、及び、前記脱硝用アンモニア量が低下した場合に、未燃分アンモニア燃料が発生し、前記未燃分アンモニア燃料が前記ボイラ内で脱硝反応を起こしたと、前記判定部が判定してもよい。 (4) In the combustion state determination system, after the ammonia fuel is injected from the burner, the NOx removal inlet NOx concentration, the NOx removal outlet NOx concentration, and the ammonia amount for NOx removal compared with before the injection of the ammonia fuel The determination unit may determine that unburned ammonia fuel is generated and the unburned ammonia fuel causes a denitrification reaction in the boiler when.
 本発明によれば、簡便な手法で、ボイラ内のアンモニア燃料の燃焼状態を判定することが可能となる。 According to the present invention, it is possible to determine the combustion state of ammonia fuel in a boiler by a simple method.
本発明の実施形態に係る燃焼状態判定システムと、当該燃焼状態判定システムが設置される発電設備の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the combustion state determination system which concerns on embodiment of this invention, and the power generation installation in which the said combustion state determination system is installed. 4段のバーナを説明する図である。It is a figure explaining a 4-stage burner. 本発明の実施形態に係る燃焼状態判定システムが備える各検出手段の設置箇所を示す配置図である。It is a layout which shows the installation location of each detection means with which the combustion state determination system which concerns on embodiment of this invention is provided. 本発明の実施形態に係る燃焼状態判定システムの動作を示すフローチャートである。It is a flow chart which shows operation of a combustion state judging system concerning an embodiment of the present invention. 本発明の実施形態に係る燃焼状態判定システムが用いる判定表である。It is a determination table which the combustion state determination system concerning the embodiment of the present invention uses.
 以下、本発明の実施形態について各図面を参照しながら詳述する。
〔1.発明の構成〕
 以下、本発明の実施形態に係る燃焼状態判定システム100の構成、及び、燃焼状態判定システム100を有する火力発電設備1の構成について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[1. Constitution of the Invention]
Hereinafter, the structure of the combustion state determination system 100 which concerns on embodiment of this invention, and the structure of the thermal-power-generation installation 1 which has the combustion state determination system 100 are demonstrated.
 図1は、火力発電設備1の概略図である。火力発電設備1は、アンモニアガスを燃焼可能なシステムであるが、微粉炭、油、天然ガスやBOG(boil off gas)等のアンモニアガス以外も燃焼可能な混焼発電設備1である。 FIG. 1 is a schematic view of a thermal power plant 1. The thermal power generation facility 1 is a system capable of combusting ammonia gas, but is a co-fired power generation facility 1 capable of burning other than pulverized coal, oil, natural gas and ammonia gas such as BOG (boil off gas).
 火力発電設備1は、アンモニアガス供給設備2と、アンモニアガス燃料用配管設備3と、ボイラ6と、脱硝設備90と、ガス燃料配管170を介してアンモニアガス以外のガス燃料を供給するガス燃料供給部70と、燃焼状態判定システム100と、これら全体を制御する制御部7等を備える。 The thermal power generation facility 1 is a gas fuel supply that supplies gaseous fuel other than ammonia gas through the ammonia gas supply facility 2, the ammonia gas fuel piping facility 3, the boiler 6, the denitration facility 90, and the gas fuel piping 170. It comprises a unit 70, a combustion state determination system 100, and a control unit 7 that controls the whole.
[アンモニアガス供給設備2]
 アンモニアガス供給設備2は、貯蔵タンク10と、気化器20と、アキュムレータ30と、アンモニアガス吸収部80等を備える。なお、アンモニアガス吸収部80は、アンモニアガス供給設備2に設けられたブロー弁81等から出るアンモニアガスを水中に吸収する貯水槽である。
[Ammonia gas supply facility 2]
The ammonia gas supply facility 2 includes a storage tank 10, a vaporizer 20, an accumulator 30, an ammonia gas absorbing unit 80, and the like. The ammonia gas absorbing unit 80 is a water storage tank for absorbing ammonia gas emitted from the blow valve 81 or the like provided in the ammonia gas supply facility 2 into water.
(貯蔵タンク10)
 貯蔵タンク10は、加圧されて液化された液体アンモニアを貯蔵するもので、配管110を介して気化器20に接続されている。配管110は、途中が2方向に分岐されている。分岐された一方の配管110aには、気化器起動弁11及び気化器20内の圧力を制御する気化器圧力調整弁12が上流側から順次配置されている。分岐された他方の配管110bには、気化器バイパス弁13が配置されている。
(Storage tank 10)
The storage tank 10 stores pressurized and liquefied liquid ammonia, and is connected to the vaporizer 20 through a pipe 110. The pipe 110 is branched in two directions along the way. In one branched pipe 110a, a vaporizer start valve 11 and a vaporizer pressure control valve 12 for controlling the pressure in the vaporizer 20 are sequentially disposed from the upstream side. A vaporizer bypass valve 13 is disposed in the other branched pipe 110b.
(気化器20)
 気化器20は、貯蔵タンク10から供給される液体アンモニアを加熱して気化させるものである。気化器20において液体アンモニアは、温水中に浸漬されたコイル状配管内を通って昇温されて気化され、アンモニアガスとなる。気化器20の下流側は、配管120を介してアキュムレータ30に接続されている。
 配管120は、途中が2方向に分岐されている。分岐された一方の配管120aには、アキュムレータ起動弁21、アキュムレータ30内の圧力を制御するアキュムレータ圧力調整弁22が上流側から順次配置されている。分岐された他方の配管120bには、アキュムレータバイパス弁23が配置されている。
(Vaporizer 20)
The vaporizer 20 heats and vaporizes the liquid ammonia supplied from the storage tank 10. In the vaporizer 20, liquid ammonia is heated through the inside of a coiled pipe immersed in warm water and vaporized to be ammonia gas. The downstream side of the vaporizer 20 is connected to the accumulator 30 via a pipe 120.
The pipe 120 is branched in two directions along the way. An accumulator start valve 21 and an accumulator pressure control valve 22 for controlling the pressure in the accumulator 30 are sequentially disposed from the upstream side in one branched pipe 120 a. An accumulator bypass valve 23 is disposed in the other branched pipe 120b.
(アキュムレータ30)
 アキュムレータ30は、アンモニアガスを蓄積し、圧力を安定させる装置である。アキュムレータ30の下流側からは配管130が延びている。配管130は、2方向に分岐されている。分岐された一方の配管132は、ヘッダー40に接続されている。分岐された他方の配管131は、アンモニアガス燃料用配管設備3に接続されている。
(Accumulator 30)
The accumulator 30 is a device that accumulates ammonia gas and stabilizes the pressure. A pipe 130 extends from the downstream side of the accumulator 30. The pipe 130 is branched in two directions. One branched pipe 132 is connected to the header 40. The other branched pipe 131 is connected to the ammonia gas fuel pipe arrangement 3.
[ヘッダー40]
 ヘッダー40の下流側には、配管140が接続され、配管140は、脱硝遮断弁41を介して脱硝設備90に接続されている。
[Header 40]
A pipe 140 is connected to the downstream side of the header 40, and the pipe 140 is connected to the NOx removal facility 90 via the NOx removal cutoff valve 41.
[脱硝設備90]
 脱硝設備90において、配管140は、脱硝装置91に接続されている。脱硝装置91には、ボイラ6から、配管180を経由して燃焼で生じた排ガスが送り込まれ、脱硝遮断弁41が開いている際に、配管140から流入されたアンモニアガスを還元剤として、排ガス中の窒素酸化物が無害な窒素ガスと水とに転換される。
[DeNOx Equipment 90]
In the denitrification equipment 90, the pipe 140 is connected to the denitrification device 91. Exhaust gas produced by combustion is sent from the boiler 6 to the denitration device 91 via the pipe 180, and when the denitration blocking valve 41 is open, the exhaust gas is used as an ammonia gas introduced from the pipe 140 as a reducing agent Nitrogen oxides in it are converted to harmless nitrogen gas and water.
[アンモニアガス燃料用配管設備3]
 上述のように、アキュムレータ30から延びる配管130から分岐した配管131は、アンモニアガス燃料用配管設備3に接続されている。配管131の上流側には遮断弁31が設けられている。遮断弁31の下流側には、窒素ガス等のパージガスをアンモニアガス燃料用配管設備3に流入可能なパージ用ガス供給部37から延びるパージ配管133が、パージ弁36を介して接続されている。
[Ammonia gas fuel piping system 3]
As described above, the pipe 131 branched from the pipe 130 extending from the accumulator 30 is connected to the ammonia gas fuel pipe arrangement 3. A shutoff valve 31 is provided upstream of the pipe 131. On the downstream side of the shutoff valve 31, a purge pipe 133 extending from a purge gas supply unit 37 capable of flowing a purge gas such as nitrogen gas into the ammonia gas fuel piping installation 3 is connected via a purge valve 36.
 配管131におけるパージ配管133が接続されている接続部よりも下流側は、2方向に分岐されている。分岐された一方の配管131aには、圧力調整弁32が配置されている。分岐された他方の配管131bには、遮断弁33が配置されている。配管131aと配管131bとは、下流側で再度合流している。合流した配管131は、遮断弁34を介して流量計50に接続されている。 The downstream side of the connection portion of the pipe 131 to which the purge pipe 133 is connected is branched in two directions. A pressure control valve 32 is disposed in one of the branched pipes 131a. A shutoff valve 33 is disposed in the other branched pipe 131b. The pipe 131 a and the pipe 131 b rejoin on the downstream side. The joined pipe 131 is connected to the flow meter 50 via the shutoff valve 34.
 流量計50は、配管131を流れるガスの流量を測定するものである。流量計50の下流側からは配管150が延びている。配管150は途中が2方向に分岐されている。分岐された一方の配管150aには、流量調整弁51が配置されている。分岐された他方の配管150bには、遮断弁52が配置されている。配管150aと配管150bとは、下流側で再度合流している。 The flow meter 50 measures the flow rate of the gas flowing through the pipe 131. A pipe 150 extends from the downstream side of the flow meter 50. The piping 150 is branched in two directions along the way. A flow control valve 51 is disposed in one of the branched pipes 150a. A shutoff valve 52 is disposed in the other branched pipe 150b. The pipe 150 a and the pipe 150 b rejoin on the downstream side.
 合流した配管150の下流側は、第2接続部56で2方向に分岐されている。
 分岐された一方の配管は、アンモニアガス流出配管151aであり、アンモニア流出遮断弁55を介して、アンモニアガス供給設備2のアンモニアガス吸収部80に接続されている。アンモニアガス吸収部80は、上述のように貯水槽であり、アンモニアガスを水に溶解させる。
 分岐された他方のアンモニアガス供給配管151bにはバーナ弁53が配置されている。配管150におけるバーナ弁53の下流側には、冷却空気が流入される冷却配管160が冷却空気弁61を介して接続されている。
 なお、アンモニアガス流出配管151aは、バーナ弁53の下流で分岐していてもよい。
 アンモニアガス供給配管151bの下流側は遮断弁54を介して、ガス燃料供給部70から、ボイラ6のバーナ62Aまで延びるガス燃料配管170の第1接続部72に接続されている。
The downstream side of the joined pipe 150 is branched in two directions by the second connection portion 56.
One branched pipe is an ammonia gas outflow pipe 151 a, and is connected to the ammonia gas absorbing unit 80 of the ammonia gas supply facility 2 via an ammonia outflow blocking valve 55. As described above, the ammonia gas absorbing unit 80 is a water storage tank, and dissolves ammonia gas in water.
A burner valve 53 is disposed in the other branched ammonia gas supply pipe 151b. On the downstream side of the burner valve 53 in the pipe 150, a cooling pipe 160 to which cooling air is introduced is connected via a cooling air valve 61.
The ammonia gas outflow pipe 151 a may be branched downstream of the burner valve 53.
The downstream side of the ammonia gas supply pipe 151 b is connected to the first connection portion 72 of the gas fuel pipe 170 extending from the gas fuel supply unit 70 to the burner 62 A of the boiler 6 via the shutoff valve 54.
[ガス燃料供給部70]
 ガス燃料供給部70には、LNG(液化天然ガス)が貯蔵されている。LNGを液化して貯蔵する場合に、外部からの自然入熱等によりLNGが気化してBOGガス(boil off gas)が発生する。本実施形態では、ガス燃料配管170は、このBOGを燃料としてバーナ62Aに送る配管である。
 ガス燃料配管170は、第1接続部72の下流側においてボイラ6のバーナ62Aに接続されている。ガス燃料配管170における第1接続部72の上流側には、ガス燃料配管遮断弁71が配置される。
[Gas fuel supply unit 70]
The gas fuel supply unit 70 stores LNG (liquefied natural gas). When LNG is liquefied and stored, the LNG is vaporized by natural heat input from the outside, etc., and BOG off gas is generated. In the present embodiment, the gas fuel pipe 170 is a pipe that sends the BOG as a fuel to the burner 62A.
The gas fuel pipe 170 is connected to the burner 62 A of the boiler 6 at the downstream side of the first connection portion 72. A gas fuel pipe shutoff valve 71 is disposed upstream of the first connection portion 72 in the gas fuel pipe 170.
[ボイラ6]
 ボイラ6には、バーナ62が複数段(本実施形態では高さ方向に4段(バーナ62A,62B,62C,62D)及び複数列(本実施形態ではそれぞれの段に4つずつ)配置されている。
 図2は4段のバーナ62の配置例を説明する図である。本実施形態では、4段のバーナ62A、62B、62C、62Dには、燃料として石炭貯蔵部75より石炭(微粉炭)が供給される。最上段の4つのバーナ62Aには、更に、ガス燃料が供給される。
[Boiler 6]
In the boiler 6, a plurality of stages of burners 62 (four stages in the height direction in the present embodiment ( burners 62A, 62B, 62C, 62D) and a plurality of rows (four in each stage in the present embodiment) are arranged There is.
FIG. 2 is a view for explaining an arrangement example of the four stage burners 62. As shown in FIG. In the present embodiment, coal (pulverized coal) is supplied as a fuel from the coal storage unit 75 to the four stages of burners 62A, 62B, 62C, 62D. Gas fuel is further supplied to the topmost four burners 62A.
[バーナ62]
 図2においては、バーナ62Aの各々の最外部に、上記のガス燃料配管170の先端に設けられたガスリング171が円弧状に配置され、ガスリング171から5本のバーナノズル172が分岐し、バーナノズル172の先端に噴射口173が備わる。更に、図2において最も右側に存在するバーナ62Aの5つの噴射口173のうち1つの噴射口173から、アンモニアが噴射されることにより、アンモニアが混焼される。なお、アンモニアが噴射される噴射口は、これには限られず、他の噴射口173であってもよく、任意の個数の噴射口であってもよい。また、アンモニアが混焼されるバーナは、最も右側に存在するバーナ62Aに限られず、任意の位置の任意の個数のバーナ62Aであってよい。
[Burner 62]
In FIG. 2, the gas ring 171 provided at the tip of the gas fuel pipe 170 is arranged in a circular arc at the outermost part of each of the burners 62A, and five burner nozzles 172 are branched from the gas ring 171. An injection port 173 is provided at the tip of 172. Further, ammonia is co-fired by injecting ammonia from one of the five injection ports 173 of the burner 62A located on the rightmost side in FIG. The injection ports from which ammonia is injected are not limited to this, and other injection ports 173 may be used, and an arbitrary number of injection ports may be used. Further, the burners to which ammonia is mixedly fired are not limited to the burner 62A located on the rightmost side, but may be any number of burners 62A at any position.
[燃焼状態判定システム100]
 本発明の実施形態に係る燃焼状態判定システム100は、図1に示す、アンモニア濃度検出部101、脱硝入口NOx濃度検出部102、脱硝出口NOx濃度検出部103、脱硝用アンモニア量検出部104、判定部105を備える。
[Combustion state determination system 100]
In the combustion state determination system 100 according to the embodiment of the present invention, the ammonia concentration detection unit 101, the NOx removal inlet NOx concentration detection unit 102, the NOx removal outlet NOx concentration detection unit 103, the ammonia concentration detection unit 104 for NOx removal shown in FIG. A unit 105 is provided.
 アンモニア濃度検出部101は、手分析又は常設装置により、ボイラ6の出口におけるアンモニア濃度を検出する。
 脱硝入口NOx濃度検出部102は、脱硝装置91の入口におけるNOx濃度である脱硝入口NOx濃度を検出する。
 脱硝出口NOx濃度検出部103は、脱硝装置91の出口におけるNOx濃度である脱硝出口NOx濃度を検出する。
 脱硝用アンモニア量検出部104は、脱硝出口NOx濃度に基づいて、脱硝装置91に注入される脱硝用アンモニア量を検出する。
 判定部105は、ボイラ6の出口におけるアンモニア濃度、脱硝入口NOx濃度、脱硝出口NOx濃度、及び脱硝装置91の入口に注入される脱硝用アンモニア量に基づいて、ボイラ6内におけるアンモニア燃料の燃焼状態を判定する。
 なお、図1に示すように、判定部105は、制御部7の構成要素として備わることが可能である。
The ammonia concentration detection unit 101 detects the ammonia concentration at the outlet of the boiler 6 by hand analysis or a permanent installation device.
The NOx removal inlet NOx concentration detection unit 102 detects a NOx removal inlet NOx concentration, which is the NOx concentration at the inlet of the NOx removal device 91.
The NOx removal outlet NOx concentration detection unit 103 detects the NOx removal outlet NOx concentration, which is the NOx concentration at the outlet of the NOx removal apparatus 91.
The ammonia amount detection unit for NOx removal 104 detects the amount of ammonia for NOx removal that is injected into the NOx removal apparatus 91 based on the NOx concentration at the NOx removal outlet.
The determination unit 105 determines the combustion state of the ammonia fuel in the boiler 6 based on the ammonia concentration at the outlet of the boiler 6, the NOx removal inlet NOx concentration, the NOx removal outlet NOx concentration, and the ammonia amount for NOx removal injected into the inlet of the NOx removal device 91. Determine
Note that, as shown in FIG. 1, the determination unit 105 can be provided as a component of the control unit 7.
 図3は、アンモニア濃度検出部101、脱硝入口NOx濃度検出部102、脱硝出口NOx濃度検出部103、及び脱硝用アンモニア量検出部104の具体的な設置箇所を示す。 FIG. 3 shows specific installation places of the ammonia concentration detection unit 101, the NOx removal inlet NOx concentration detection unit 102, the NOx removal outlet NOx concentration detection unit 103, and the ammonia concentration detection unit 104 for NOx removal.
 図3に示すように、ボイラ6は、その構成要素の一部として、バーナ62A~62D、及び火炉63を備える。火炉63は、全体として略逆U字状をなしており、図中矢印に沿って燃焼ガスが逆U字状に移動した後、火炉63の出口は、配管180に接続されている。火炉63の下方には、上記のように、火炉63のバーナーゾーン付近で微粉炭、ガス燃料、アンモニア等を燃焼するためのバーナ62A~62Dが配置されている。 As shown in FIG. 3, the boiler 6 includes burners 62A to 62D and a furnace 63 as part of its components. The furnace 63 has a substantially inverted U shape as a whole, and the outlet of the furnace 63 is connected to the pipe 180 after the combustion gas moves in the inverted U shape along the arrow in the drawing. Below the furnace 63, as described above, the burners 62A to 62D for burning pulverized coal, gas fuel, ammonia and the like in the vicinity of the burner zone of the furnace 63 are disposed.
 燃焼ガスは、火炉63から出た後、建屋壁を経由して、配管180に排ガスとして入るが、配管180中の建屋壁近傍の箇所に、ボイラ6の出口におけるアンモニア濃度を検出するアンモニア濃度検出部101が設置される。 After leaving the furnace 63, the combustion gas enters the pipe 180 as exhaust gas via the building wall, but detects the ammonia concentration at the outlet of the boiler 6 at a location near the building wall in the pipe 180. The unit 101 is installed.
 配管180は、略逆U字状をなしてから脱硝装置91に接続するが、脱硝装置91の入口近傍には、脱硝装置91の入口におけるNOx濃度を検出する脱硝入口NOx濃度検出部102が設置される。 The pipe 180 is connected to the denitration device 91 after forming a substantially inverted U shape, but a denitration inlet NOx concentration detection unit 102 for detecting the NOx concentration at the inlet of the denitration device 91 is installed near the inlet of the denitration device 91 Be done.
 排ガスは、脱硝装置91で脱硝された後、脱硝装置91から排出され、空気予熱器に向かうが、脱硝装置91の出口近傍には、脱硝出口NOx濃度を検出する脱硝出口NOx濃度検出部103が設置される。 The exhaust gas is denitrified by the denitrification apparatus 91 and then discharged from the denitrification apparatus 91 and directed to the air preheater. Will be installed.
 脱硝出口NOx濃度検出部103が検出した脱硝出口NOx濃度に基づいて、脱硝装置91に注入されるアンモニア量が定まるが、このアンモニアは、配管180中、略逆U字状となった箇所の直前で注入される。脱硝用アンモニア量検出部104は、この注入箇所に設置される。なお、脱硝用アンモニア量検出部104の設置箇所は、これには限られない。例えば、制御部7が脱硝用アンモニア量を算出する場合には、制御部7が、自身の構成要素として脱硝用アンモニア量検出部104を備え、脱硝用アンモニア量検出部104が、脱硝用アンモニア量の算出値を検出する構成としてもよい。 Although the amount of ammonia to be injected into the denitration device 91 is determined based on the denitration outlet NOx concentration detected by the denitration outlet NOx concentration detection unit 103, this ammonia is immediately before the portion in the pipe 180 where the reverse U shape is formed. Infused. The denitration ammonia amount detection unit 104 is installed at this injection point. In addition, the installation location of the ammonia amount detection part 104 for NOx removal is not restricted to this. For example, when the control unit 7 calculates the ammonia amount for denitrification, the control unit 7 includes the ammonia amount detecting unit 104 for denitrification as its component, and the ammonia amount detecting unit 104 for denitrification determines the ammonia amount for denitrification The calculated value of may be detected.
〔2.発明の動作〕
 以下、一部繰り返しとなるが、図4及び図5を参照することにより、本発明に係る燃焼状態判定システム100の動作について詳述する。図4は、燃焼状態判定システム100の動作を示すフローチャートであり、図5は、この動作で用いられる判定表である。
[2. Operation of the Invention]
Hereinafter, although partially repeated, the operation of the combustion state determination system 100 according to the present invention will be described in detail with reference to FIGS. 4 and 5. FIG. 4 is a flowchart showing the operation of the combustion state determination system 100, and FIG. 5 is a determination table used in this operation.
 ステップS1において、アンモニア濃度検出部101で、手分析又は常設装置により、ボイラ6出口のアンモニア濃度を検出する。
 ステップS2において、脱硝入口NOx濃度検出部102で、脱硝装置91の入口でのNOx濃度である脱硝入口NOx濃度を検出する。
 ステップS3において、脱硝出口NOx濃度検出部103で、脱硝装置91の出口でのNOx濃度である脱硝出口NOx濃度を検出する。
 ステップS4において、脱硝用アンモニア量検出部104で、脱硝用アンモニア量を検出する。
 ステップS5において、判定部105で、ボイラ6の出口におけるアンモニア濃度、脱硝入口NOx濃度、脱硝出口NOx濃度、及び脱硝装置91の入口に注入される脱硝用アンモニア量に基づいて、図5に記載の判定表を用いることにより、ボイラ6内におけるアンモニア燃料の燃焼状態を判定する。具体的な判定方法は、以下の通りである。
In step S1, the ammonia concentration detection unit 101 detects the ammonia concentration at the outlet of the boiler 6 by hand analysis or a permanent installation device.
In step S2, the NOx removal inlet NOx concentration detection unit 102 detects the NOx removal inlet NOx concentration, which is the NOx concentration at the inlet of the NOx removal apparatus 91.
In step S3, the NOx removal outlet NOx concentration detection unit 103 detects the NOx removal outlet concentration, which is the NOx concentration at the outlet of the NOx removal apparatus 91.
In step S4, the amount of ammonia for denitrification detection is detected by the amount of denitrification ammonia detection unit 104.
In step S5, based on the ammonia concentration at the outlet of the boiler 6, the NOx removal inlet NOx concentration, the NOx removal outlet NOx concentration, and the amount of ammonia for NOx removal injected into the inlet of the NOx removal apparatus 91 in the determination unit 105, FIG. The combustion state of the ammonia fuel in the boiler 6 is determined by using the determination table. The specific determination method is as follows.
 ボイラ6出口でアンモニアが検出されず、脱硝装置91入口でのNOx濃度が通常時と変化なく、脱硝装置91出口でのNOx濃度が通常時の設定値と変化なく、脱硝用アンモニア量に変化がない場合には、図5の判定表の第2行に示すように、判定部105は、ボイラ6内においてアンモニア燃料が完全燃焼したと判定する。更に、判定部105は、アンモニア燃料の燃焼状態の評価を高評価とする。 Ammonia is not detected at the outlet of the boiler 6, NOx concentration at the inlet of the NOx removal device 91 does not change from the normal time, NOx concentration at the outlet of the NOx removal device 91 does not change from the set value at normal time, and the ammonia amount for NOx removal changes If not, as shown in the second row of the determination table of FIG. 5, the determination unit 105 determines that the ammonia fuel is completely burned in the boiler 6. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as the high evaluation.
 ボイラ6出口でアンモニアが少量検出され、脱硝装置91入口でのNOx濃度が通常時と変化なく、脱硝装置91出口でのNOx濃度が一時的に小幅に低下し、脱硝用アンモニア量が小幅に低下した場合には、図5の判定表の第3行に示すように、判定部105は、ボイラ6内において未燃分のアンモニア燃料が発生し、このアンモニア燃料が、脱硝装置91内の脱硝触媒と反応し、脱硝反応が発生したと判定する。更に、判定部105は、アンモニア燃料の燃焼状態の評価を中評価とする。 A small amount of ammonia is detected at the outlet of the boiler 6, and the NOx concentration at the inlet of the NOx removal device 91 remains unchanged from the normal time, the NOx concentration at the outlet of the NOx removal device 91 temporarily decreases to a small width, and the amount of ammonia for NOx removal decreases to a small width In this case, as shown in the third row of the determination table of FIG. 5, the determination unit 105 generates ammonia fuel for the unburned portion in the boiler 6, and this ammonia fuel is a denitrification catalyst in the denitrification device 91. It is determined that a denitrification reaction has occurred. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as a medium evaluation.
 ボイラ6出口でアンモニアが多量検出され、脱硝装置91入口でのNOx濃度が通常時と変化なく、脱硝装置91出口でのNOx濃度が一時的に大幅に低下し、脱硝用アンモニア量が大幅に低下した場合には、図5の判定表の第4行に示すように、判定部105は、ボイラ6内において未燃分のアンモニア燃料が発生し、このアンモニア燃料が、脱硝装置91内の脱硝触媒と反応し、脱硝反応が発生したと判定する。更に、判定部105は、アンモニア燃料の燃焼状態の評価を低評価とする。 A large amount of ammonia is detected at the outlet of the boiler 6, and the NOx concentration at the inlet of the NOx removal device 91 remains unchanged from the normal time, the NOx concentration at the outlet of the NOx removal device 91 temporarily decreases significantly, and the amount of ammonia for NOx removal decreases significantly. In this case, as shown in line 4 of the determination table of FIG. 5, the determination unit 105 generates ammonia fuel for the unburned part in the boiler 6, and this ammonia fuel is a denitration catalyst in the denitration device 91. It is determined that a denitrification reaction has occurred. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as the low evaluation.
 ボイラ6出口でアンモニアが検出されず、脱硝装置91入口でのNOx濃度が低下し、脱硝装置91出口でのNOx濃度が一時的に低下し、また、上記のバーナ62A~62D近傍でのNOx濃度の低下に対応して、脱硝用アンモニア量が、NOx濃度の還元分低下した場合には、図5の判定表の第5行に示すように、判定部105は、ボイラ6内において未燃分のアンモニア燃料が発生し、このアンモニア燃料が、ボイラ6内の火炎の周りで、900℃以上の高温での無触媒脱硝反応を起こしたと判定する。更に、判定部105は、アンモニア燃料の燃焼状態の評価を高評価とする。なお、脱硝装置91入口でのNOx濃度が低下したことから、バーナ62A~62D近傍でのNOx濃度が還元反応により低下したことが想定される。逆に言えば、バーナ62A~62D近傍でのNOx濃度が還元反応によって低下した分、上記のように、脱硝装置91入口でのNOx濃度が低下する。 Ammonia is not detected at the outlet of the boiler 6, the NOx concentration at the inlet of the NOx removal device 91 decreases, the NOx concentration at the outlet of the NOx removal device 91 temporarily decreases, and the NOx concentration near the above burners 62A to 62D. When the amount of ammonia for NOx removal decreases corresponding to the reduction of NOx concentration, as shown in line 5 of the judgment table of FIG. Ammonia fuel is generated, and it is determined that this ammonia fuel causes non-catalytic denitrification reaction at a high temperature of 900 ° C. or more around the flame in the boiler 6. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as the high evaluation. Since the concentration of NOx at the inlet of the denitration apparatus 91 is reduced, it is assumed that the concentration of NOx in the vicinity of the burners 62A to 62D is reduced due to the reduction reaction. Conversely, as the NOx concentration in the vicinity of the burners 62A to 62D decreases due to the reduction reaction, as described above, the NOx concentration at the inlet of the NOx removal apparatus 91 decreases.
 ボイラ6出口でアンモニアが少量検出され、脱硝装置91入口でのNOx濃度が低下し、脱硝装置91出口でのNOx濃度が一時的に小幅に低下し、脱硝用アンモニア量が小幅に低下した場合には、図5の判定表の第6行に示すように、判定部105は、ボイラ6内において未燃分のアンモニア燃料が発生し、このアンモニア燃料が、ボイラ6内の火炎の周りで、900℃以上の高温での無触媒脱硝反応を起こしたと判定する。更に、判定部105は、アンモニア燃料の燃焼状態の評価を中評価とする。なお、判定表の第5行と同様に、脱硝装置91入口でのNOx濃度が低下したことから、バーナ62A~62D近傍でのNOx濃度が還元反応により低下したことが想定される。逆に言えば、バーナ62A~62D近傍でのNOx濃度が還元反応によって低下した分、上記のように、脱硝装置91入口でのNOx濃度が低下する。 When a small amount of ammonia is detected at the outlet of the boiler 6, the NOx concentration at the inlet of the NOx removal device 91 decreases, the NOx concentration at the outlet of the NOx removal device 91 temporarily decreases slightly, and the amount of ammonia for NOx removal decreases. As shown in the sixth row of the determination table of FIG. 5, the determination unit 105 generates ammonia fuel for the unburned part in the boiler 6, and this ammonia fuel is generated around 900 of the flame in the boiler 6. It is determined that a non-catalytic denitration reaction has occurred at a high temperature of at least ° C. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as a medium evaluation. As in the fifth row of the judgment table, the NOx concentration at the inlet of the denitrification apparatus 91 is reduced, so it is assumed that the NOx concentration in the vicinity of the burners 62A to 62D is reduced due to the reduction reaction. Conversely, as the NOx concentration in the vicinity of the burners 62A to 62D decreases due to the reduction reaction, as described above, the NOx concentration at the inlet of the NOx removal apparatus 91 decreases.
 ボイラ6出口でアンモニアが多量検出され、脱硝装置91入口でのNOx濃度が低下し、脱硝装置91出口でのNOx濃度が一時的に大幅に低下し、脱硝用アンモニア量が大幅に低下した場合には、図5の判定表の第7行に示すように、判定部105は、ボイラ6内において未燃分のアンモニア燃料が発生し、このアンモニア燃料が、ボイラ6内の亜鉛の周りで、900℃以上の高温での無触媒脱硝反応を起こしたと判定する。更に、判定部105は、アンモニア燃料の燃焼状態の評価を低評価とする。なお、判定表の第5行と同様に、脱硝装置91入口でのNOx濃度が低下したことから、バーナ62A~62D近傍でのNOx濃度が還元反応により低下したことが想定される。逆に言えば、バーナ62A~62D近傍でのNOx濃度が還元反応によって低下した分、上記のように、脱硝装置91入口でのNOx濃度が低下する。 When a large amount of ammonia is detected at the outlet of the boiler 6, the NOx concentration at the inlet of the NOx removal device 91 decreases, the NOx concentration at the outlet of the NOx removal device 91 temporarily decreases significantly, and the amount of ammonia for NOx removal decreases significantly. As shown in the seventh row of the determination table of FIG. 5, the determination unit 105 generates ammonia fuel for unburned fuel in the boiler 6, and this ammonia fuel is generated around 900 of zinc in the boiler 6 It is determined that a non-catalytic denitration reaction has occurred at a high temperature of at least ° C. Furthermore, the determination unit 105 sets the evaluation of the combustion state of the ammonia fuel as the low evaluation. As in the fifth row of the judgment table, the NOx concentration at the inlet of the denitrification apparatus 91 is reduced, so it is assumed that the NOx concentration in the vicinity of the burners 62A to 62D is reduced due to the reduction reaction. Conversely, as the NOx concentration in the vicinity of the burners 62A to 62D decreases due to the reduction reaction, as described above, the NOx concentration at the inlet of the NOx removal apparatus 91 decreases.
 なお、図5に記載の判定表において、例えば、脱硝装置91出口でのNOx濃度が、判定表1行目に示す基準値(Base)より0~5ppm低下した場合に、低下幅を「小」とし、5ppm以上低下した場合に、低下幅を「大」とすることが可能である。また、脱硝用アンモニア量が、判定表1行目に示す基準値(Base)より、0~5kg/h低下した場合に、低下幅を「小」とし、5kg/h以上低下した場合に、低下幅を「大」とすることが可能である。 In the determination table shown in FIG. 5, for example, when the NOx concentration at the outlet of the NOx removal apparatus 91 is reduced by 0 to 5 ppm from the reference value (Base) shown in the first determination table, the reduction range is "small". If the reduction is 5 ppm or more, the reduction range can be made “large”. In addition, when the amount of ammonia for NOx removal is reduced by 0 to 5 kg / h from the reference value (Base) shown in the first judgment table, the decrease range is considered as “small” and decreased by 5 kg / h or more. It is possible to make the width "large".
〔3.発明の効果〕
 上記のように、本発明においては、ボイラ6の出口におけるアンモニア濃度、脱硝装置91の入口におけるNOx濃度、脱硝装置91の出口におけるNOx濃度、及び脱硝装置91の入口に注入される脱硝用アンモニア量に基づいて、判定部105が、ボイラ6内におけるアンモニア燃料の燃焼状態を判定する。
[3. Effect of the invention〕
As described above, in the present invention, the ammonia concentration at the outlet of the boiler 6, the NOx concentration at the inlet of the denitrification apparatus 91, the NOx concentration at the outlet of the denitrification apparatus 91, and the amount of ammonia for denitrification injected into the inlet of the denitrification apparatus 91 The determination unit 105 determines the combustion state of the ammonia fuel in the boiler 6 based on the above.
 より具体的には、バーナ62からアンモニア燃料を注入後、注入以前に比較して、脱硝装置91の入口におけるNOx濃度、脱硝装置91の出口におけるNOx濃度、脱硝用アンモニア量に変化がなく、ボイラ6の出口において、アンモニアが検出されなかった場合に、アンモニア燃料がボイラ6内において完全燃焼したと、判定部105が判定する。 More specifically, after the ammonia fuel is injected from the burner 62, the NOx concentration at the inlet of the NOx removal device 91, the NOx concentration at the outlet of the NOx removal device 91, and the amount of ammonia for NOx removal do not change compared to before injection. When the ammonia is not detected at the outlet 6, the determination unit 105 determines that the ammonia fuel is completely burned in the boiler 6.
 また、バーナ62からアンモニア燃料を注入後、注入以前に比較して、脱硝装置91の入口におけるNOx濃度に変化がなく、脱硝装置91の出口におけるNOx濃度、脱硝用アンモニア量が低下し、ボイラ6の出口において、アンモニアが検出された場合に、未燃分アンモニア燃料が発生し、この未燃分アンモニア燃料が、脱硝装置91に格納された脱硝触媒と反応したと、判定部105が判定する。 In addition, after the ammonia fuel is injected from the burner 62, the NOx concentration at the inlet of the denitrification apparatus 91 is unchanged as compared with before the injection, and the NOx concentration at the outlet of the denitrification apparatus 91 and the ammonia amount for denitrification decrease. When ammonia is detected at the outlet, the unburned ammonia fuel is generated, and the determination unit 105 determines that the unburned ammonia fuel has reacted with the NOx removal catalyst stored in the NOx removal apparatus 91.
 また、バーナ62からアンモニア燃料を注入後、注入以前に比較して、脱硝装置91の入口におけるNOx濃度、脱硝装置91の出口におけるNOx濃度、及び、脱硝用アンモニア量が低下した場合に、未燃分アンモニア燃料が発生し、この未燃分アンモニア燃料がボイラ6内で脱硝反応を起こしたと、判定部105が判定する。 In addition, after the ammonia fuel is injected from the burner 62, the NOx concentration at the inlet of the NOx removal device 91, the NOx concentration at the outlet of the NOx removal device 91, and the amount of ammonia for NOx removal decrease compared to before injection. The determination unit 105 determines that the minute ammonia fuel is generated and the unburned ammonia fuel causes a denitrification reaction in the boiler 6.
 これにより、簡便な手法で、ボイラ6内でのアンモニア燃料の燃焼状態を判定することが可能となる。
 とりわけ、ボイラ6内において、微粉炭による炎の炎色とアンモニアの炎色とは近似しているため、一定の周波数の光を検知するような火炎検知装置を用いてアンモニア燃料の燃焼状態を判定することはできない。この点、本発明によれば、火力発電所に備わる既存の装置を利用することにより、簡便に、アンモニア燃料の燃焼状態、具体的には、アンモニア燃料が酸化反応を起こしているのか、還元反応を起こしているのかを判定することが可能となる。これにより、延いては、各ボイラによって異なる石炭とアンモニアとの混焼率を最適値に設定することが可能となる。
Thereby, it is possible to determine the combustion state of the ammonia fuel in the boiler 6 by a simple method.
In particular, since the flame color of the pulverized coal and the flame color of ammonia are similar in the boiler 6, the combustion state of the ammonia fuel is determined using a flame detection device that detects light of a certain frequency. You can not do it. In this respect, according to the present invention, the combustion state of the ammonia fuel, specifically, whether the ammonia fuel causes the oxidation reaction or the reduction reaction can be simplified simply by using the existing apparatus provided in the thermal power plant. It is possible to determine if it is happening. As a result, it becomes possible to set the mixed combustion rate of coal and ammonia which is different for each boiler to an optimal value.
 1  発電設備
 2  アンモニアガス供給設備
 3  アンモニアガス燃料用配管設備
 6  ボイラ
 7  制御部
 10  貯蔵タンク
 11  気化器起動弁
 12  気化器圧力調整弁
 13  気化器バイパス弁
 20  気化器
 21  アキュムレータ起動弁
 22  アキュムレータ圧力調整弁
 23  アキュムレータバイパス弁
 30  アキュムレータ
 31、33、34、52、54  遮断弁
 32  圧力調整弁
 36  パージ弁
 37  パージ用ガス供給部
 40  ヘッダー
 50  流量計
 51  流量調整弁
 53  バーナ弁
 55  アンモニア流出遮断弁
 60A  バーナ
 61  冷却空気弁
 62 62A 62B 62C 62D  ガスバーナ
 70  ガス燃料供給部
 71  ガス燃料配管遮断弁
 72  第1接続部
 80  アンモニアガス吸収部
 90  脱硝設備
 100 燃焼状態判定システム
 101 アンモニア濃度検出部
 102 脱硝入口NOx濃度検出部
 103 脱硝出口NOx濃度検出部
 104 脱硝用アンモニア量検出部
 105 判定部
 110、110a、110b、120、120a、120b、130、131、131a、131b、132、140、150、150a、150b  配管
 133 パージ配管
 151a アンモニアガス流出配管
 151b アンモニア供給配管
 160 冷却配管
 170 ガス燃料配管
 171 ガスリング
 172 バーナノズル
 173 噴射口
Reference Signs List 1 power generation facility 2 ammonia gas supply facility 3 piping system for ammonia gas fuel 6 boiler 7 control unit 10 storage tank 11 carburetor start valve 12 carburetor pressure control valve 13 carburetor bypass valve 20 carburetor 21 accumulator start valve 22 accumulator pressure adjustment Valve 23 Accumulator bypass valve 30 Accumulator 31, 33, 34, 52, 54 Cutoff valve 32 Pressure control valve 36 Purge valve 37 Gas supply for purge 40 Header 50 Flow meter 51 Flow control valve 53 Burner valve 55 Ammonia outflow cut off valve 60A Burner 61 Cooling Air Valve 62 62A 62B 62C 62D Gas Burner 70 Gas Fuel Supply Unit 71 Gas Fuel Pipe Cutoff Valve 72 First Connection Unit 80 Ammonia Gas Absorber 90 Denitration Equipment 100 Combustion State Determination System 101 A Ammonia concentration detection unit 102 denitration inlet NOx concentration detection unit 103 denitration outlet NOx concentration detection unit 104 denitration ammonia amount detection unit 105 determination unit 110, 110a, 110b, 120, 120a, 120b, 130, 131, 131a, 131b, 132, 140, 150, 150a, 150b Piping 133 Purge piping 151a Ammonia gas outflow piping 151b Ammonia supply piping 160 Cooling piping 170 Gas fuel piping 171 Gas ring 172 Burner nozzle 173 Injection port

Claims (4)

  1.  アンモニア燃料を燃焼するバーナを有し前記アンモニア燃料を微粉炭と混焼させるボイラと、前記ボイラから排出される排ガスを脱硝する脱硝装置とを備える燃焼設備において、前記ボイラにおける前記アンモニア燃料の燃焼状態を判定する燃焼状態判定システムであって、
     前記ボイラの出口におけるアンモニア濃度を、手分析又は常設装置により検出するアンモニア濃度検出手段と、
     前記脱硝装置の入口におけるNOx濃度である脱硝入口NOx濃度を検出する第2のNOx濃度検出手段と、
     前記脱硝装置の出口におけるNOx濃度である脱硝出口NOx濃度を検出する第3のNOx濃度検出手段と、
     前記脱硝出口NOx濃度に基づいて前記脱硝装置に注入される、脱硝用アンモニア量を検出する脱硝用アンモニア量検出手段と、
     前記アンモニア濃度、前記脱硝入口NOx濃度、前記脱硝出口NOx濃度、及び前記脱硝用アンモニア量に基づいて、前記燃焼状態を判定する判定部とを備える燃焼状態判定システム。
    In a combustion facility including a boiler having a burner for burning ammonia fuel, and a boiler for co-firing the ammonia fuel with pulverized coal, and a NOx removal apparatus for NOx removal from exhaust gas from the boiler, the combustion state of the ammonia fuel in the boiler is A combustion state determination system for determining
    Ammonia concentration detection means for detecting the ammonia concentration at the outlet of the boiler by manual analysis or a permanent installation device;
    Second NOx concentration detecting means for detecting NOx concentration at the inlet of the NOx removal apparatus, which is NOx concentration at the inlet of the NOx removal apparatus;
    Third NOx concentration detection means for detecting NOx concentration at the outlet of the NOx removal apparatus, which is NOx concentration at the outlet of the NOx removal apparatus;
    A denitration ammonia amount detection means for detecting the amount of denitration ammonia to be injected into the denitration device based on the denitration outlet NOx concentration;
    A determination unit that determines the combustion state based on the ammonia concentration, the NOx removal inlet NOx concentration, the NOx removal outlet NOx concentration, and the ammonia amount for NOx removal.
  2.  前記バーナから前記アンモニア燃料を注入後、注入以前に比較して、前記脱硝入口NOx濃度、前記脱硝出口NOx濃度、前記脱硝用アンモニア量に変化がなく、前記アンモニア濃度検出手段が検出した前記アンモニア濃度がゼロだった場合に、前記アンモニア燃料が完全燃焼したと前記判定部が判定する、請求項1に記載の燃焼状態判定システム。 After injecting the ammonia fuel from the burner, there is no change in the NOx removal inlet NOx concentration, the NOx removal outlet NOx concentration, and the ammonia amount for NOx removal compared with before the injection, and the ammonia concentration detected by the ammonia concentration detection means The combustion state determination system according to claim 1, wherein the determination unit determines that the ammonia fuel is completely burned, when is zero.
  3.  前記バーナから前記アンモニア燃料を注入後、注入以前に比較して、前記脱硝入口NOx濃度に変化がなく、前記脱硝出口NOx濃度、前記脱硝用アンモニア量が低下し、前記アンモニア濃度検出手段が検出した前記アンモニア濃度が正の値だった場合に、未燃分アンモニア燃料が発生し、前記未燃分アンモニア燃料が、前記脱硝装置に格納された脱硝触媒と反応したと、前記判定部が判定する、請求項1又は2に記載の燃焼状態判定システム。 After the ammonia fuel was injected from the burner, the NOx removal inlet NOx concentration did not change compared to before injection, and the NOx removal outlet NOx concentration and the amount of ammonia for NOx removal decreased, and the ammonia concentration detection means detected If the ammonia concentration is a positive value, unburned ammonia fuel is generated, and the judgment unit determines that the unburned ammonia fuel has reacted with the NOx removal catalyst stored in the NOx removal device. The combustion state determination system according to claim 1.
  4.  前記バーナから前記アンモニア燃料を注入後、前記アンモニア燃料の注入以前に比較して、前記脱硝入口NOx濃度、前記脱硝出口NOx濃度、及び、前記脱硝用アンモニア量が低下した場合に、未燃分アンモニア燃料が発生し、前記未燃分アンモニア燃料が前記ボイラ内で脱硝反応を起こしたと、前記判定部が判定する、請求項1~3のいずれか1項に記載の燃焼状態判定システム。 After the ammonia fuel is injected from the burner, the concentration of NOx at the NOx removal inlet, the NOx concentration at the NOx removal outlet, and the ammonia amount for NOx removal decrease compared to before the injection of the ammonia fuel, and the unburned ammonia The combustion state determination system according to any one of claims 1 to 3, wherein the determination unit determines that fuel is generated and the unburned ammonia fuel causes a denitrification reaction in the boiler.
PCT/JP2017/040643 2017-11-10 2017-11-10 Combustion state determination system WO2019092858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018507033A JP6357701B1 (en) 2017-11-10 2017-11-10 Combustion state judgment system
PCT/JP2017/040643 WO2019092858A1 (en) 2017-11-10 2017-11-10 Combustion state determination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/040643 WO2019092858A1 (en) 2017-11-10 2017-11-10 Combustion state determination system

Publications (1)

Publication Number Publication Date
WO2019092858A1 true WO2019092858A1 (en) 2019-05-16

Family

ID=62904949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040643 WO2019092858A1 (en) 2017-11-10 2017-11-10 Combustion state determination system

Country Status (2)

Country Link
JP (1) JP6357701B1 (en)
WO (1) WO2019092858A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246054A (en) * 1999-03-03 2000-09-12 Hitachi Zosen Corp Method for controlling amount of feeding of ammonia in denitrification apparatus
JP2016041990A (en) * 2014-08-18 2016-03-31 東洋エンジニアリング株式会社 Heat generating device including boiler
JP2016183641A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Power generating facility
JP2016183839A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Pulverized coal firing boiler and power generation facility
JP2016183840A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Power generation facility
JP2016223649A (en) * 2015-05-27 2016-12-28 一般財団法人電力中央研究所 Boiler device and power generating facility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246054A (en) * 1999-03-03 2000-09-12 Hitachi Zosen Corp Method for controlling amount of feeding of ammonia in denitrification apparatus
JP2016041990A (en) * 2014-08-18 2016-03-31 東洋エンジニアリング株式会社 Heat generating device including boiler
JP2016183641A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Power generating facility
JP2016183839A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Pulverized coal firing boiler and power generation facility
JP2016183840A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Power generation facility
JP2016223649A (en) * 2015-05-27 2016-12-28 一般財団法人電力中央研究所 Boiler device and power generating facility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Implementation Results and Patent Filing for Ammonia Co-Firing Test in Mizushima Power Station No. 2", JAPAN SCIENCE AND TECHNOLOGY AGENCY (JST), 8 September 2017 (2017-09-08), Retrieved from the Internet <URL:http://www.energia.co.jp/press/2017/10697.html> [retrieved on 20171128] *

Also Published As

Publication number Publication date
JP6357701B1 (en) 2018-07-18
JPWO2019092858A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6296216B1 (en) Combustion apparatus and combustion method
JP4979615B2 (en) Combustor and fuel supply method for combustor
US9708983B2 (en) Gas turbine with sequential combustion arrangement
US20170254270A1 (en) Gas turbine engine system
JP2011074917A (en) System and method using low emission gas turbine cycle with partial air separation
JP6461502B2 (en) Gas turbine emission control system and method
JP5063538B2 (en) Gas turbine fuel supply method
JP2020112280A (en) Boiler device and thermal power generation facility, capable of carrying out mixed combustion of ammonia
JP7227827B2 (en) Combustion device
JP2001041454A (en) Fuel jet nozzle for normal and emergency use
CA2653861C (en) Combustion systems and processes for burning fossil fuel with reduced nitrogen oxide emissions
CA2692666C (en) Systems for staged combustion of air and fuel
JP6332578B1 (en) Combustion method
JP2007107401A (en) Gas supply device for thermal power generation installation
JP6536041B2 (en) Combustion system
WO2019092858A1 (en) Combustion state determination system
JP6319526B1 (en) Power generation equipment
US10386061B2 (en) Method and apparatus for firetube boiler and ultra low NOx burner
JP6304462B1 (en) Power generation equipment
JP4926915B2 (en) Method and apparatus for preventing backfire of partially premixed burner
KR100573310B1 (en) Combustion system of mixing gas
US20240019118A1 (en) Burner, System, and Method for Hydrogen-Enhanced Pulverized Coal Ignition
Geipel et al. Adaptive NOx control on refinery gas in industrial gas turbines
JP5877138B2 (en) Gas turbine combustor and fuel supply method for gas turbine combustor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507033

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931147

Country of ref document: EP

Kind code of ref document: A1