WO2019091410A1 - 电弧漏电保护装置 - Google Patents

电弧漏电保护装置 Download PDF

Info

Publication number
WO2019091410A1
WO2019091410A1 PCT/CN2018/114413 CN2018114413W WO2019091410A1 WO 2019091410 A1 WO2019091410 A1 WO 2019091410A1 CN 2018114413 W CN2018114413 W CN 2018114413W WO 2019091410 A1 WO2019091410 A1 WO 2019091410A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
signal
leakage
power supply
protection device
Prior art date
Application number
PCT/CN2018/114413
Other languages
English (en)
French (fr)
Inventor
马锋
双兵
周磊
祁芬芬
向乐
伯纳德珍-巴普蒂斯特
田西蒙
Original Assignee
施耐德电气工业公司
马锋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施耐德电气工业公司, 马锋 filed Critical 施耐德电气工业公司
Priority to GB2007536.2A priority Critical patent/GB2583200A/en
Priority to AU2018363443A priority patent/AU2018363443A1/en
Publication of WO2019091410A1 publication Critical patent/WO2019091410A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers

Definitions

  • Embodiments of the present disclosure relate to an arc leakage protection device.
  • arcing i.e., electrical discharge
  • Such undesired arcs that occur in power lines are generally referred to as arc faults.
  • arc protection devices are usually provided in the power supply line.
  • the trip mechanism that operates the arc protection device disconnects the power supply line from the power source.
  • Arc faults can generally be classified into series arc faults, parallel arc faults, grounded arc faults, and the like. Among them, the fault caused by the leakage of the line can also be attributed to one of the grounding arc faults in a certain sense.
  • the current arc protection device especially in the case of leakage of the line, cannot meet the requirements for personal safety protection due to the disadvantages of large tripping threshold and long tripping time.
  • Embodiments of the present disclosure provide an arc leakage protection device.
  • the arc leakage protection device includes: an arc signal acquisition unit coupled to a phase line of the power supply line to acquire a first electrical signal in the power supply line; a leakage signal acquisition unit coupled to a phase line and a neutral line of the power supply line Obtaining a second electrical signal in the power supply line; a detecting unit coupled to the arc signal acquiring unit and the leakage signal acquiring unit, and configured to identify an arc fault signal in the power supply line according to the first electrical signal, And identifying a leakage fault signal in the power supply line based on the second electrical signal; and an execution unit coupled to the detection unit and configured to open a switch located in the power supply line in response to the arc fault signal, and A switch located in the power supply line is disconnected in response to the leakage fault signal.
  • the arc leakage protection device With the arc leakage protection device according to the present disclosure, it is possible to significantly improve the detection of a failure caused by line leakage, and to greatly reduce the trip response time, thereby being able to satisfy the requirements for personal safety protection.
  • the arc leakage protection device according to the present disclosure, it is possible to simultaneously provide effective protection against leakage faults while satisfying the protection against arc faults, thereby subtly integrating the conventional arc protection device and the leakage protection device.
  • the detection unit further includes a filter, a processor, and a data store.
  • the filter is configured to filter the first electrical signal and/or the second electrical signal.
  • the processor is configured to identify the arc fault signal based on the filtered first electrical signal or to identify the leakage fault signal based on the filtered second electrical signal and to generate a drive signal for driving the execution unit.
  • the data store is configured to store parameters for identification.
  • the processor is configured to drive the execution unit to open a switch located in the power supply line when an arc fault signal or a leakage fault signal is identified.
  • the processor is further configured to determine a type of fault that caused the switch to open.
  • the arc leakage protection device further includes a pre-processing unit.
  • the pre-processing unit is coupled between the arc signal acquisition unit and the detection unit and is configured to filter and/or amplify a second electrical signal acquired by the leakage signal acquisition unit.
  • the arc leakage protection device further includes a test unit.
  • the test unit is configured to test the functionality of the detection unit and the execution unit.
  • the test unit further includes a test button and an electronic switch.
  • the test button is coupled to the detection unit, the detection unit generating a test signal in response to triggering of the test button.
  • the electronic switch is configured to be turned on in response to a test signal generated by the detection unit to generate an analog leakage signal in the power supply line.
  • the arc leakage protection device further includes a fault indicator.
  • the fault indicator further includes an LED indicator.
  • the LED indicator indicates the type of fault by the blinking frequency or by the number of flashes per unit time.
  • the arc leakage protection device further includes an auxiliary power source coupled to at least one of the arc signal acquisition unit, the leakage signal acquisition unit, and the detection unit.
  • FIG. 1 illustrates a system architecture diagram of an arc leakage protection device 100 in accordance with an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of a test unit 110 of an arc leakage protection device 100 in accordance with an embodiment of the present disclosure
  • the term "comprise” and its various variants are to be understood as open-ended terms, which mean “including but not limited to”.
  • the term “based on” should be understood to mean “based at least in part.”
  • the term “one embodiment” should be taken to mean “at least one embodiment.”
  • the term “another embodiment” is to be understood as “at least one other embodiment.”
  • the terms “first,” “second,” and the like may refer to different or identical objects. Clear or implied definitions of other terms may also be included below. Unless otherwise stated, the meaning of the terms is consistent in the context of the present disclosure.
  • arc protection devices for arc faults and leakage protection devices for leakage faults are usually provided in the distribution boxes of the power supply lines, respectively.
  • the arc protection device and the leakage protection device are disposed independently of each other.
  • the main purpose of arc protection is to disconnect the circuit in the event of a fault arc, thereby avoiding damage to the load due to overpressure or overcurrent, while reducing the risk of fire. Since the conventional arc protection device has a large trip threshold and a long trip time, the arc protection device is not suitable for personal safety.
  • Leakage protection is often used to cut off the line current loop in case of leakage in equipment or lines, thus avoiding human body electric shock.
  • the inventors have noted that the detection of grounding arc faults in arc protection devices can in principle also be applied to the detection of leakage faults. Based on this knowledge, the inventor skillfully extended the function of leakage protection on the basis of the arc protection device, so that the arc leakage protection device thus obtained can combine the functions of arc protection and leakage protection, and simultaneously satisfy AFDD (Arc Fault). Detection Device) Standard and RCD (Residual Current Device) standards.
  • AFDD Arc Fault
  • RCD Residual Current Device
  • FIG. 1 shows a system architecture diagram of an arc leakage protection device 100 in accordance with an embodiment of the present disclosure.
  • the arc leakage protection device 100 includes an arc signal acquisition unit 101, a detection unit 102, and an execution unit 103.
  • the arc signal acquisition unit 101 is typically coupled to the phase line L of the power supply line 112 to obtain a first electrical signal of the power supply line 112.
  • the two-wire system illustrated in FIG. 1 is merely exemplary, and the arc leakage protection device 100 in accordance with the present disclosure is also applicable to other types of power supply systems, such as three-phase four-wire systems.
  • the "first electrical signal” and "second electrical signal” referred to herein are for convenience of description only, and are not intended to limit the signal.
  • the arc signal acquisition unit 101 can be, for example, a current transformer or a voltage transformer.
  • the first electrical signal can be, for example, a current or a voltage.
  • the detection unit 102 is coupled to the arc signal acquisition unit 101 and is capable of identifying an arc fault signal in the power supply line 112 based on the first electrical signal acquired by the arc signal acquisition unit 101.
  • the execution unit 103 is coupled to the detection unit 102 and is capable of disconnecting the switch 113 located in the power supply line 112 in response to the arc fault signal detected by the detection unit 102, thereby turning off the power supply to the load to avoid the load being overvoltaged or Damaged by overcurrent.
  • the arc leakage protection device 100 further includes a leakage signal acquisition unit 104.
  • the leakage signal acquisition unit 104 is coupled to the phase line L and the neutral line N of the power supply line 112 to obtain a second electrical signal of the power supply line 112, such as an unbalanced signal in the power supply line 112.
  • the secondary side of the zero-sequence current transformer does not generate an induced electromotive force, so that an unbalanced signal is not obtained in the power supply line 112.
  • the current sum of the phase line L and the neutral line N on the primary side of the zero-sequence current transformer is not equal to zero, and the secondary side of the zero-sequence current transformer generates an induced electromotive force, thereby An unbalanced signal can be obtained in the power supply line 112.
  • the two-wire system illustrated in FIG. 1 is merely exemplary, and the arc leakage protection device 100 in accordance with the present disclosure is also applicable to other types of power supply systems, such as three-phase four-wire systems.
  • the arc leakage protection device 100 further includes a pre-processing unit 106.
  • the pre-processing unit 106 is coupled between the leakage signal acquisition unit 104 and the detection unit 102.
  • the second electrical signal or the unbalanced signal acquired by the leakage signal acquisition unit 104 is filtered and/or amplified by the pre-processing unit 106. In this way, the detection accuracy of the unbalanced signal can be improved.
  • the second electrical signal or the pre-processed second electrical signal is then transmitted to the detection unit 102.
  • the detection unit 102 thus identifies a leakage fault signal in the power supply line 112.
  • the drive execution unit 103 turns off the switch 113 located in the power supply line 112 to implement the leakage protection.
  • the common detection unit 102 can be used to identify the arc fault signal and the leakage fault signal and use the common execution unit 103 to disconnect the power supply line, so that the arc leakage protection device according to the present disclosure has both the arc protection and the leakage protection function. .
  • the arc protection device and the leakage protection device that are currently separately configured can be replaced by the arc leakage protection device according to the present disclosure, thereby saving volume and optimizing the space occupied by the distribution box, while saving manufacturing costs.
  • arc leakage protection device 100 also includes an auxiliary power source 105.
  • the auxiliary power source 105 can be coupled to at least one of the arc signal acquisition unit 101, the leakage signal acquisition unit 104, and the detection unit 102 to provide these units with low voltage power supplies required for operation, such as the operating voltages required for these units. For example, 5V, 12V, 24V, and the like.
  • detection unit 102 can further include filter 107, processor 108, and data store 109.
  • the filter 107 may be, for example, a band pass filter configured to filter the first electrical signal or the second electrical signal to eliminate interference signals in the first electrical signal or the second electrical signal to improve fault detection accuracy.
  • the processor 108 identifies an arc fault signal or a leakage fault signal from, for example, an algorithm stored in firmware based on the filtered first electrical signal or second electrical signal. When the processor 108 recognizes the fault signal, a drive signal is generated to drive the execution unit 103 to open the switch located in the power supply line.
  • the data store 109 is configured to store parameters for fault detection, such as comparison thresholds for identifying different fault types.
  • processor 108 may also determine the type of fault based on different fault identification algorithms, such as algorithms including series arc faults, parallel arc faults, ground arc faults, leakage arc faults, and the like, while identifying the fault signal.
  • different fault identification algorithms such as algorithms including series arc faults, parallel arc faults, ground arc faults, leakage arc faults, and the like, while identifying the fault signal.
  • arc leakage protection device 100 also includes a fault indicator 111. In this way, it is possible to indicate to the user or the maintenance person the type of failure or the cause of the malfunction that causes the switch 113 to be opened or tripped, thereby facilitating corresponding measures for the malfunction occurring in the power supply line 112.
  • the fault indicator 111 can include an LED indicator.
  • the detecting unit 102 issues different control signals to the LED indicators according to the determined fault type, thereby causing the LED indicators to indicate the type of fault, for example, by the blinking frequency or by the number of flashes per unit time.
  • the fault type may include, but is not limited to, the following types: a string arc trip fault, an arc trip fault, a leakage trip fault, an overvoltage trip fault, and an internal fault detection of the device. In this way, it is possible to make it easy for the user or maintenance personnel to determine the cause of the malfunction that caused the trip.
  • the arc leakage protection device 100 further includes a test unit 110.
  • the test unit 110 can be used to test the functionality of the detection unit 102 and the execution unit 103. After the test unit 110 is manually triggered, the arc leakage protection device 100 is tested, for example, with respect to the arc protection function and the leakage protection function, respectively, to meet the requirements of AFDD and RCD, respectively.
  • FIG. 2 shows a schematic diagram of a test unit 110 of an arc leakage protection device 100 in accordance with an embodiment of the present disclosure.
  • the test unit 110 mainly includes a test button 201 and an electronic switch 202.
  • the detecting unit 102 or the processor 108 recognizes the test enable signal and starts the test.
  • a self-test (not shown) of the arc detecting circuit portion is performed, and when the arc detecting circuit portion is successfully tested, the leakage detecting circuit portion is inspected.
  • the self-test of the arc detection circuit can be carried out in a known manner, and will not be described herein. The inspection of the leakage detecting circuit portion will be described below only in conjunction with FIG.
  • the processor 108 sends a test signal to the electronic switch 202.
  • the electronic switch 202 can be, for example, a transistor whose emitter is, for example, connected to a virtual ground of a circuit board, and the collector is connected to the power supply line 112 via a resistor 203, which is connected to the phase line L in the example of FIG.
  • the base of the electronic switch 202 receives the test signal from the processor 108, the electronic switch 202 is turned on, thereby forming a test loop between the phase line L, the resistor 203, the electronic switch 202, and the ground to simulate the occurrence.
  • Resistor 203 is here used to limit the current flowing through electronic switch 203 for protection.
  • the unbalanced signal thus obtained can also be referred to as an analog leakage signal.
  • the execution unit 103 includes, for example, an electronic switching device 204 and a trip coil 205. If the detecting unit 102 sends a driving signal to the electronic switching device 204 of the execution unit 103 according to the acquired analog leakage signal and drives the trip coil 205 to be turned off at the power supply line switch 113, the leakage detecting circuit portion is tested normally.
  • the leak detecting circuit portion tests abnormally.
  • the detecting unit 102 can issue a control signal to the fault indicator 111 such that the fault indicator 111 indicates the internal fault detection of the apparatus, for example, by the blinking frequency or by the number of blinks per unit time.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

电弧漏电保护装置(100),包括:电弧信号获取单元(101),被耦合到供电线路(112)的相线(L)以获取供电线路(112)中的第一电气信号;漏电信号获取单元(104),被耦合到供电线路(112)的相线(L)和中性线(N)以获取供电线路(112)中的第二电气信号;检测单元(102),被耦合到电弧信号获取单元(101)和漏电信号获取单元(104),并且被配置为根据第一电气信号识别供电线路(112)中的电弧故障信号,以及根据第二电气信号识别供电线路(112)中的漏电故障信号;以及执行单元(103),被耦合到检测单元(102),并且被配置为响应于电弧故障信号而断开位于供电线路(112)中的开关(113),以及响应于漏电故障信号而断开位于供电线路(112)中的开关(113)。

Description

电弧漏电保护装置
相关申请的交叉引用
本申请要求申请日为2017年11月7日、申请号为201721476089.4的中国实用新型专利申请的优先权。
技术领域
本公开的实施例涉及一种电弧漏电保护装置。
背景技术
在供电线路中,由于各种原因可能会出现电弧、即放电,其中一些电弧是不期望的甚至是危险的。这类在供电线路中出现的非意愿的电弧一般被称为电弧故障。
为防止电弧故障造成损害,在供电线路中通常配备有电弧保护装置。当电弧保护装置检测到指示电弧故障的信号时,则操作电弧保护装置的脱扣机构使供电线路从电源断开。
电弧故障通常可以分为串联电弧故障、并联电弧故障、接地电弧故障等。其中,因为线路漏电而引起的故障在某种意义上说也可以归属为接地电弧故障的其中一种。
然而,目前的电弧保护装置尤其在线路发生漏电的情况下,由于脱扣阀值较大、脱扣时间较长等缺点,不能满足对于人身安全保护的要求。
发明内容
本公开的实施例提供了一种电弧漏电保护装置。该电弧漏电保护装置包括:电弧信号获取单元,被耦合到供电线路的相线以获取该供电线路中的第一电气信号;漏电信号获取单元,被耦合到该供 电线路的相线和中性线以获取该供电线路中的第二电气信号;检测单元,被耦合到该电弧信号获取单元和该漏电信号获取单元,并且被配置为根据该第一电气信号识别该供电线路中的电弧故障信号,以及根据该第二电气信号识别该供电线路中的漏电故障信号;以及执行单元,被耦合到该检测单元,并且被配置为响应于该电弧故障信号而断开位于该供电线路中的开关,以及响应于该漏电故障信号而断开位于该供电线路中的开关。
通过根据本公开的电弧漏电保护装置,能够明显改善对因线路漏电而引起的故障的检测,并大幅度缩减脱扣响应时间,从而能够满足对人身安全保护的要求。
此外,通过根据本公开的电弧漏电保护装置,能够在满足对电弧故障保护的前提下,同时提供对漏电故障的有效保护,从而将传统的电弧保护装置与漏电保护装置巧妙地集成为一体。
在一些实施例中,该检测单元进一步包括滤波器、处理器和数据存储器。滤波器被配置为对该第一电气信号和/或该第二电气信号进行滤波处理。处理器被配置为根据经滤波的第一电气信号以识别电弧故障信号或根据经滤波的第二电气信号以识别漏电故障信号,并生成用于驱动所述执行单元的驱动信号。数据存储器被配置为存储用于识别的参数。
在一些实施例中,所述处理器被配置为当识别到电弧故障信号或漏电故障信号时,驱动所述执行单元断开位于所述供电线路中的开关。
在一些实施例中,该处理器还被配置为确定导致所述开关断开的故障类型。
在一些实施例中,该电弧漏电保护装置还包括预处理单元。该预处理单元被耦合到该电弧信号获取单元与该检测单元之间,并且被配置为对由该漏电信号获取单元所获取的第二电气信号进行滤波和/或放大。
在一些实施例中,该电弧漏电保护装置还包括测试单元。该测 试单元被配置为测试该检测单元和该执行单元的功能性。
在一些实施例中,该测试单元进一步包括测试按钮和电子开关。该测试按钮被耦合到该检测单元,该检测单元响应于该测试按钮的触发而生成测试信号。该电子开关被配置为响应于该检测单元所生成的测试信号而导通以在该供电线路中生成模拟漏电信号。
在一些实施例中,该电弧漏电保护装置还包括故障指示器。
在一些实施例中,该故障指示器进一步包括LED指示灯。该LED指示灯通过闪烁频率或通过单位时间内的闪烁次数指示故障类型。
在一些实施例中,该电弧漏电保护装置还包括辅助电源,被耦接到该电弧信号获取单元、该漏电信号获取单元和该检测单元中的至少一者。
附图说明
通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的附图标记通常表示相同的部件。
图1示出了根据本公开的实施例的电弧漏电保护装置100的系统架构图;
图2示出了根据本公开的实施例的电弧漏电保护装置100的测试单元110的原理图;
具体实施方式
以下结合一些实施例更详细地阐释本公开的技术方案。应当理解,这些实施例仅是为了更好地说明和理解本公开,而不是对本公开的限制。本领域技术人员在以下给出的实施例的基础上,可以对实施例的特征进行任意的组合和调整,这些都应当属于本公开的保护范围。
在本公开中,术语“包括”及其各种变体应理解为开放式术语,其表示“包括但不限于”。术语“基于”应理解为“至少部分地基 于”。术语“一个实施例”应理解为“至少一个实施例”。术语“另一实施例”应理解为“至少一个其它实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下文中还可能包括对其他术语的明确或隐含的定义。除非另有说明,术语的含义在本公开的上下文中是一致的。
目前,通常在供电线路的配电箱中分别设置有用于针对电弧故障的电弧保护装置和用于针对漏电故障的漏电保护装置。电弧保护装置和漏电保护装置被彼此独立的设置。
电弧保护的主要目的是在发生故障电弧时及时断开电路,从而避免负载由于过压或过流而损坏,同时减低引起火灾的风险。由于常规的电弧保护装置具有较大的脱扣阈值和较长的脱扣时间,导致电弧保护装置不适合保护人身安全。
漏电保护则常用于在设备或者线路中发生漏电时,及时切断线路电流回路,从而避免人体触电。
发明人注意到,电弧保护装置中对接地电弧故障的检测原则上也可以适用于漏电故障的检测。基于该认知,发明人巧妙地在电弧保护装置的基础上扩展了漏电保护的功能,使得由此得到的电弧漏电保护装置能够兼具电弧保护和漏电保护的功能,并同时满足AFDD(Arc Fault Detection Device)标准和RCD(Residual Current Device)标准。
图1示出了根据本公开的实施例的电弧漏电保护装置100的系统架构图。为实现电弧保护的功能,电弧漏电保护装置100包括电弧信号获取单元101、检测单元102以及执行单元103。
电弧信号获取单元101通常被耦合到供电线路112的相线L上,以获取供电线路112的第一电气信号。应当注意,图1中示出的双线系统仅仅是示例性的,根据本公开的电弧漏电保护装置100也适用于其他类型的供电系统,例如三相四线系统。还应当注意,本文中提到的“第一电气信号”和“第二电气信号”仅仅是出于便于描述的目的,而不是对信号的限定。在此,电弧信号获取单元101例 如可以是电流互感器或电压互感器。相应地,第一电气信号例如可以是电流或电压。
检测单元102被耦合到电弧信号获取单元101,并且能够根据由电弧信号获取单元101获取的第一电气信号识别供电线路112中的电弧故障信号。
执行单元103被耦合到检测单元102,并且能够响应由检测单元102检测的电弧故障信号而断开位于供电线路112中的开关113,从而关断对负载的电源供应,以避免负载由于过压或过流而损坏。
根据本公开的实施例,电弧漏电保护装置100还包括漏电信号获取单元104。漏电信号获取单元104被耦合到供电线路112的相线L和中性线N,以获取供电线路112的第二电气信号,例如是供电线路112中的不平衡信号。漏电信号获取单元104例如可以是零序电流互感器。在供电线路112工作正常时,即没有发生漏电或触电的情况下,通过零序电流互感器一次侧的电流的和基本上等于零,即IN+IL=0。此时零序电流互感器二次侧不产生感应电动势,因此不会获取到供电线路112中存在不平衡信号。在供电线路112发生漏电或触电的情况下,通过零序电流互感器一次侧的相线L和中性线N的电流和不等于零,此时零序电流互感器二次侧产生感应电动势,从而可以获取到供电线路112中存在不平衡信号。应当理解,应当注意,图1中示出的双线系统仅仅是示例性的,根据本公开的电弧漏电保护装置100也适用于其他类型的供电系统,例如三相四线系统。
可选地,在某些实施例中,电弧漏电保护装置100还包括预处理单元106。预处理单元106被耦合到漏电信号获取单元104与检测单元102之间。由漏电信号获取单元104所获取的第二电气信号或者说不平衡信号被预处理单元106滤波和/或放大。通过这种方式,可以提高对不平衡信号的检测精确度。
第二电气信号或者经预处理的第二电气信号然后被传输到检测单元102。检测单元102由此识别供电线路112中的漏电故障信号。 当检测单元102识别到漏电故障信号时,驱动执行单元103断开位于供电线路112中的开关113以实现漏电保护。
通过这种方式,能够使用共同的检测单元102识别电弧故障信号和漏电故障信号并使用共同的执行单元103断开供电线路,使得根据本公开的电弧漏电保护装置同时具备电弧保护和漏电保护的功能。由此,可以由根据本公开的电弧漏电保护装置取代目前单独配置的电弧保护装置和漏电保护装置,从而节省体积并优化对配电箱的占用空间,同时可以节省制造成本。
在某些实施例中,电弧漏电保护装置100还包括辅助电源105。该辅助电源105可以被耦接到电弧信号获取单元101、漏电信号获取单元104和检测单元102中的至少一者,从而为这些单元提供工作所需的低压电源,诸如这些单元所需的工作电压,例如5V、12V、24V等。
在某些实施例中,检测单元102可以进一步包括滤波器107、处理器108和数据存储器109。滤波器107例如可以是带通滤波器,其被配置为对第一电气信号或第二电气信号进行滤波处理,从而消除第一电气信号或第二电气信号中的干扰信号以提高故障检测精确度。处理器108根据经滤波的第一电气信号或第二电气信号通过例如存储在固件中的算法识别电弧故障信号或漏电故障信号。当处理器108识别到故障信号时,则生成驱动信号以驱动执行单元103断开位于供电线路中的开关。数据存储器109被配置为存储用于故障检测的参数,例如是用于识别不同故障类型的比较阈值。
在某些实施例中,处理器108还可以根据不同的故障识别算法、例如包括串联电弧故障、并联电弧故障、接地电弧故障、漏电电弧故障等的算法在识别到故障信号的同时确定故障类型。
在某些实施例中,电弧漏电保护装置100还包括故障指示器111。通过这种方式,能够向用户或维修人员指示导致开关113断开或者说脱扣的故障类型或者故障原因,从而便于针对供电线路112中出现的故障做出相应地措施。
在某些实施例中,故障指示器111可以包括LED指示灯。检测单元102根据所确定的故障类型向LED指示灯发出不同的控制信号,从而使LED指示灯例如通过闪烁频率或者通过单位时间内的闪烁次数来指示故障类型。故障类型例如可以包括但不限于以下类型:串弧脱扣故障、并弧脱扣故障、漏电脱扣故障、过压脱扣故障、装置内部检测故障。通过这种方式,能够使用户或维修人员非常容易地确定造成脱扣的故障原因。
在某些实施例中,电弧漏电保护装置100还包括测试单元110。该测试单元110可以被用于测试检测单元102和执行单元103的功能性。当测试单元110被手动触发后,使电弧漏电保护装置100例如分别关于电弧保护功能和漏电保护功能进行测试,以分别满足AFDD和RCD的要求。
图2示出了根据本公开的实施例的电弧漏电保护装置100的测试单元110的原理图。在图2所示的示例中,测试单元110主要包括测试按钮201和电子开关202。当用户按下测试按钮201后,检测单元102或者说处理器108识别到测试启动信号并启动测试。首先进行电弧检测回路部分的自检(未示出),当电弧检测回路部分测试成功后进行漏电检测回路部分的检查。在此对电弧检测回路的自检可以采用已知的方式,在此不做赘述。以下仅结合图2阐述对漏电检测回路部分的检查。
如图2所示,在开始测试漏电检测回路部分后,处理器108向电子开关202发出测试信号。电子开关202例如可以是晶体管,其发射极例如连接到电路板的虚拟地极上,并且集电极经电阻器203连接到供电线路112,在图2的示例中被连接到相线L上。当电子开关202的基极接收到处理器108发出的测试信号后,使得电子开关202导通,从而在相线L、电阻器203、电子开关202以及地极之间形成测试回路,以模拟发生漏电的情况。电阻器203在此被用于限制流过电子开关203的电流,以起到保护作用。
在这种情况下,由于相线L中的一部分电流流过测试回路,使 得通过漏电信号获取单元104或者说零序电流互感器一次侧的电流和不等于零,从而感测到不平衡信号。这样得到的不平衡信号也可称为模拟漏电信号。
在图2的示例中,执行单元103例如包括电子开关器件204和脱扣线圈205。如果检测单元102根据所获取的模拟漏电信号而向执行单元103的电子开关器件204发出驱动信号并驱动脱扣线圈205断开位于供电线路开关113,则漏电检测回路部分测试正常。
如果检测单元102没有发出驱动信号,或者执行单元103没有响应驱动信号而执行断开操作,则漏电检测回路部分测试异常。在异常情况下,检测单元102可以向故障指示器111发出控制信号,使得故障指示器111例如通过闪烁频率或者通过单位时间内的闪烁次数来指示装置内部检测故障。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种电弧漏电保护装置(100),其特征在于,包括:
    电弧信号获取单元(101),被耦合到供电线路(112)的相线(L)以获取所述供电线路(112)中的第一电气信号;
    漏电信号获取单元(104),被耦合到所述供电线路(112)的相线(L)和中性线(N)以获取所述供电线路(112)中的第二电气信号;
    检测单元(102),被耦合到所述电弧信号获取单元(101)和所述漏电信号获取单元(104),并且被配置为根据所述第一电气信号识别所述供电线路(112)中的电弧故障信号,以及根据所述第二电气信号识别所述供电线路(112)中的漏电故障信号;以及
    执行单元(103),被耦合到所述检测单元(102),并且被配置为响应于所述电弧故障信号而断开位于所述供电线路(112)中的开关(113),以及响应于所述漏电故障信号而断开位于所述供电线路(112)中的开关(113)。
  2. 根据权利要求1所述的电弧漏电保护装置(100),其特征在于,所述检测单元(102)进一步包括:
    滤波器(107),被配置为对所述第一电气信号和/或所述第二电气信号进行滤波处理;
    处理器(108),被配置为根据经滤波的第一电气信号以识别电弧故障信号或根据经滤波的第二电气信号以识别漏电故障信号,并生成用于驱动所述执行单元(103)的驱动信号;以及
    数据存储器(109),被配置为存储用于识别的参数。
  3. 根据权利要求2所述的电弧漏电保护装置(100),其特征在于,所述处理器(108)被配置为当识别到电弧故障信号或漏电故障信号时,驱动所述执行单元(103)断开位于所述供电线路(112)中的开关(113)。
  4. 根据权利要求2所述的电弧漏电保护装置(100),其特征在 于,所述处理器(108)还被配置为确定导致所述开关(113)断开的故障类型。
  5. 根据权利要求1所述的电弧漏电保护装置(100),其特征在于,还包括:
    预处理单元(106),被耦合到所述漏电信号获取单元(104)与所述检测单元(102)之间,并且被配置为对由所述漏电信号获取单元(104)所获取的第二电气信号进行滤波和/或放大。
  6. 根据权利要求1至5中任一项所述的电弧漏电保护装置(100),其特征在于,还包括:
    测试单元(110),被配置为测试所述检测单元(102)和所述执行单元(103)的功能性。
  7. 根据权利要求6所述的电弧漏电保护装置(100),其特征在于,所述测试单元(110)进一步包括:
    测试按钮(201),被耦合到所述检测单元(102),所述检测单元(102)响应于所述测试按钮(201)的触发而生成测试信号;以及
    电子开关(202),被配置为响应于所述检测单元(102)所生成的测试信号而导通以在所述供电线路(112)中生成模拟漏电信号。
  8. 根据权利要求4所述的电弧漏电保护装置(100),其特征在于,所述电弧漏电保护装置(100)还包括故障指示器(111)。
  9. 根据权利要求8所述的电弧漏电保护装置(100),其特征在于,所述故障指示器(111)进一步包括LED指示灯,所述LED指示灯通过闪烁频率或通过单位时间内的闪烁次数指示所述故障类型。
  10. 根据权利要求1至5中任一项所述的电弧漏电保护装置(100),其特征在于,还包括:
    辅助电源(105),被耦接到所述电弧信号获取单元(101)、所述漏电信号获取单元(104)和所述检测单元(102)中的至少一者。
PCT/CN2018/114413 2017-11-07 2018-11-07 电弧漏电保护装置 WO2019091410A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2007536.2A GB2583200A (en) 2017-11-07 2018-11-07 ARC leakage protection device
AU2018363443A AU2018363443A1 (en) 2017-11-07 2018-11-07 Arc leakage protection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721476089.4 2017-11-07
CN201721476089.4U CN207381953U (zh) 2017-11-07 2017-11-07 电弧漏电保护装置

Publications (1)

Publication Number Publication Date
WO2019091410A1 true WO2019091410A1 (zh) 2019-05-16

Family

ID=62335390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114413 WO2019091410A1 (zh) 2017-11-07 2018-11-07 电弧漏电保护装置

Country Status (4)

Country Link
CN (1) CN207381953U (zh)
AU (1) AU2018363443A1 (zh)
GB (1) GB2583200A (zh)
WO (1) WO2019091410A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207381953U (zh) * 2017-11-07 2018-05-18 施耐德电气工业公司 电弧漏电保护装置
EP3985708A1 (en) * 2020-10-16 2022-04-20 ABB Schweiz AG Current breaker device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203054158U (zh) * 2013-01-05 2013-07-10 绵阳和瑞电子有限公司 一种具有工作状态指示的电弧故障检测装置
CN203929969U (zh) * 2013-12-19 2014-11-05 施耐德电气工业公司 电弧故障检测装置
US8995098B2 (en) * 2011-10-14 2015-03-31 True-Safe Technologies, Inc. Miswire protection and annunciation of system conditions for arc fault circuit interrupters and other wiring devices
CN106549358A (zh) * 2016-11-04 2017-03-29 珠海格力电器股份有限公司 电路故障的检测控制装置及家用电器
CN106899000A (zh) * 2015-12-21 2017-06-27 天津市鸿远电气股份有限公司 一种带故障电弧的防漏电断路器
CN207381953U (zh) * 2017-11-07 2018-05-18 施耐德电气工业公司 电弧漏电保护装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995098B2 (en) * 2011-10-14 2015-03-31 True-Safe Technologies, Inc. Miswire protection and annunciation of system conditions for arc fault circuit interrupters and other wiring devices
CN203054158U (zh) * 2013-01-05 2013-07-10 绵阳和瑞电子有限公司 一种具有工作状态指示的电弧故障检测装置
CN203929969U (zh) * 2013-12-19 2014-11-05 施耐德电气工业公司 电弧故障检测装置
CN106899000A (zh) * 2015-12-21 2017-06-27 天津市鸿远电气股份有限公司 一种带故障电弧的防漏电断路器
CN106549358A (zh) * 2016-11-04 2017-03-29 珠海格力电器股份有限公司 电路故障的检测控制装置及家用电器
CN207381953U (zh) * 2017-11-07 2018-05-18 施耐德电气工业公司 电弧漏电保护装置

Also Published As

Publication number Publication date
CN207381953U (zh) 2018-05-18
AU2018363443A1 (en) 2020-06-18
GB202007536D0 (en) 2020-07-01
GB2583200A (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US10931096B2 (en) Systems and methods for actuating a transformer neutral blocking system
US6246556B1 (en) Electrical fault detection system
CN104332946B (zh) 一种接地故障保护电路及接地故障断路器
US8717721B2 (en) High impedance fault isolation system
KR101454203B1 (ko) 저전류 아크 검출 시스템
JP2008502294A (ja) 航空機に適用可能な回路不均衡検出及び回路断続器並びにそのパッケージング
KR101336067B1 (ko) 전력계통 이상 표시장치
WO2019091410A1 (zh) 电弧漏电保护装置
CN108183462A (zh) 用于电器设备的电气保护装置及电器设备
KR101402046B1 (ko) 디지털 누전차단기
KR101840288B1 (ko) 누전차단기
US9928980B2 (en) Method of electricity leakage detection and prevention of electrical equipment's outer surface and system thereof
CN107765138B (zh) 一种电网监测系统
US20100134306A1 (en) Ground Fault Circuit Interrupter With End-Of-Life Indicator
KR200440531Y1 (ko) 누전 차단기
KR102211163B1 (ko) 부하와 차단기 사이의 전류량을 감지하는 비접촉 관통형 센서모듈
US11063419B2 (en) GFCI with capacitive power supply circuit
JP3602904B2 (ja) 絶縁監視装置の警報検出試験装置
KR20210119637A (ko) 누전 및 감전보호 기능을 구비한 콘센트
KR200411835Y1 (ko) 감전보호기의 회로
KR20190069862A (ko) 무정전 전원 장치용 변압기의 보호 장치
KR20160060407A (ko) 발전소 변압기 고전압측 상별 전류측정을 통한 개방위상상태 검출 시스템 및 그 방법
CA2503472A1 (en) Electrical fault detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202007536

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20181107

ENP Entry into the national phase

Ref document number: 2018363443

Country of ref document: AU

Date of ref document: 20181107

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18876904

Country of ref document: EP

Kind code of ref document: A1