WO2019091154A1 - 一种用于nfc近场通信的控制电路和智能卡 - Google Patents

一种用于nfc近场通信的控制电路和智能卡 Download PDF

Info

Publication number
WO2019091154A1
WO2019091154A1 PCT/CN2018/098333 CN2018098333W WO2019091154A1 WO 2019091154 A1 WO2019091154 A1 WO 2019091154A1 CN 2018098333 W CN2018098333 W CN 2018098333W WO 2019091154 A1 WO2019091154 A1 WO 2019091154A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
radio frequency
control circuit
antenna
near field
Prior art date
Application number
PCT/CN2018/098333
Other languages
English (en)
French (fr)
Inventor
陈柳章
Original Assignee
深圳市文鼎创数据科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市文鼎创数据科技有限公司 filed Critical 深圳市文鼎创数据科技有限公司
Publication of WO2019091154A1 publication Critical patent/WO2019091154A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the solution belongs to the technical field of NFC communication, and particularly relates to a control circuit and a smart card for NFC near field communication.
  • NFC Near Field Communication
  • RFID contactless radio frequency identification
  • NFC near field communication technology is commonly used in smart cards.
  • battery power is generally used to solve the problem of power taking, resulting in loss and waste of battery power, and shortening the service life of the product.
  • the embodiment of the present invention provides a control circuit and a smart card for NFC near field communication, which aims to solve the problem of power consumption of the battery in the prior art, which causes loss and waste of battery power, and shortens the service life of the product.
  • the problem is a problem of power consumption of the battery in the prior art, which causes loss and waste of battery power, and shortens the service life of the product. The problem.
  • a first aspect of an embodiment of the present solution provides a control circuit for NFC near field communication, including at least one antenna, a voltage processing module, a control module, a gate switch module, and a preset number of radio frequency communication modules.
  • the antenna is respectively connected to the voltage processing module and the strobe switch module, and the control module is respectively connected with the voltage processing module and the strobe switch module, and the strobe switch module is connected with the radio frequency communication module.
  • the antenna acquires radio energy from an external NFC device by electromagnetic induction coupling and outputs an alternating current to a voltage processing module.
  • the voltage processing module processes the alternating current into a direct current supply voltage and outputs it to the control module to supply power to the control module; the control module outputs a switch control signal.
  • the strobe switch module turns on or off the connection of the corresponding RF communication module and the corresponding antenna according to the switch control signal; when the RF communication module is connected to the antenna, the RF communication module performs the antenna and the NFC device through the antenna Radio frequency communication.
  • the strobe switch module turns on a connection between an RF communication module and an antenna according to the switch control signal, and the remaining RF communication modules and the antenna are in a disconnected state.
  • control circuit for NFC near field communication includes an antenna that receives the RF signal transmitted by the NFC device and forwards the RF signal to the corresponding RF communication module through the Gating Switch module.
  • control circuit for NFC near field communication includes the same number of antennas as the RF communication module, all of the antennas are connected to the gate switch module, and the gate switch module is turned on or off according to the switch control signal.
  • a radio frequency communication module is connected to a corresponding one of the antennas.
  • control circuit for NFC near field communication includes the same number of antennas as the RF communication module, the gate switch module includes the same number of switch units as the RF communication module, and one antenna is connected to one switch unit and one switch The unit is connected to a radio frequency communication module.
  • the switch unit includes an electronic switch tube.
  • the voltage processing module includes a rectifying unit, a stabilizing unit, and a voltage converting unit that are sequentially connected.
  • the rectifying unit receives the alternating current for rectification processing and outputs direct current, the voltage stabilizing unit regulates the direct current, and the voltage converting unit converts the stabilized direct current into a supply voltage required by the control module.
  • the first end and the second end of the antenna are respectively connected to the first input end and the second input end of the rectifying unit, and the first output end and the second output end of the rectifying unit are respectively regulated
  • the first end and the second end of the unit are connected one by one, and the first end and the second end of the voltage stabilizing unit are also connected to the voltage conversion unit.
  • the rectifying unit includes a first diode, a second diode, a third diode, and a fourth diode.
  • the anode of the first diode is coupled to the cathode of the second diode to form a first input end of the rectifying unit, and the anode of the third diode is coupled with the cathode of the fourth diode to form a second input of the rectifying unit
  • the cathode of the first diode is connected to the cathode of the third diode to form a first output end of the rectifying unit, and the anode of the second diode and the anode of the fourth diode are connected to the ground and form a rectification The second output of the unit.
  • the voltage stabilizing unit includes a Zener diode and a filter capacitor.
  • the cathode of the Zener diode is connected to the first end of the filter capacitor to form a first end of the voltage stabilizing unit, and the anode of the Zener diode and the second end of the filter capacitor are connected to form a second end of the voltage stabilizing unit.
  • the voltage stabilizing unit comprises a linear regulator.
  • control circuit for NFC near field communication further includes a filtering module connected between the antenna and the gate switch module, and the filter module is configured to filter out interference signals in the radio frequency communication.
  • control circuit for NFC near field communication further includes a human interaction module, the human interaction module is connected to the control module, and the human interaction module receives the user instruction and forwards to the control module, so that the control module outputs corresponding switch control.
  • the signal; the human interaction module also receives the switch status signal fed back by the control module and outputs the signal.
  • the antenna is a planar coil antenna.
  • a second aspect of an embodiment of the present solution provides a smart card comprising a control circuit for NFC near field communication as described above.
  • the antenna acquires radio energy from an external NFC device by electromagnetic induction coupling and outputs an alternating current to a voltage processing module.
  • the voltage processing module processes the alternating current into a direct current supply voltage and outputs it to the control module to supply power to the control module; the control module outputs a switch control signal.
  • the strobe switch module turns on or off the connection of the corresponding RF communication module and the corresponding antenna according to the switch control signal; when the RF communication module is connected to the antenna, the RF communication module performs the antenna and the NFC device through the antenna Radio frequency communication.
  • the charging can be realized, the internal power taking problem of the smart card is solved, the battery is not required to be additionally configured, the device in the product is reduced, the hardware circuit is simplified, and the cost of the product is reduced. It also realizes a smart card with multiple RF communication functions, which can switch between multiple RF communication modes and can be applied to various occasions.
  • FIG. 1 is a block diagram showing the structure of a control circuit for NFC near field communication provided by an embodiment of the present solution
  • FIG. 2 is a schematic structural diagram of a module of a control circuit for NFC near field communication provided by an embodiment of the present solution
  • FIG. 3 is a schematic structural diagram of a circuit of a control circuit for NFC near field communication provided by an embodiment of the present solution.
  • FIG. 1 and FIG. 2 show a structure of a control circuit 100 for NFC near field communication according to an embodiment of the present embodiment. For convenience of description, only parts related to the embodiment of the present solution are shown. as follows:
  • a control circuit 100 for NFC near field communication includes at least one antenna 110, a voltage processing module 120, a control module 130, a strobe switch module 140, and A preset number of radio frequency communication modules 150.
  • the antenna 110 is connected to the voltage processing module 120 and the strobe switch module 140 respectively.
  • the control module 130 is connected to the voltage processing module 120 and the strobe switch module 140 respectively, and the strobe switch module 140 is connected to the radio frequency communication module 150.
  • the antenna 110 acquires radio energy from the external NFC device 200 by electromagnetic induction coupling and outputs the alternating current to the voltage processing module 120.
  • the voltage processing module 120 processes the alternating current into a direct current supply voltage and outputs the same to the control module 130 to supply power to the control module 130.
  • the control module 130 outputs a switch control signal to the strobe switch module 140.
  • the strobe switch module 140 turns on or off the connection of the corresponding radio frequency communication module 150 and the corresponding antenna 110 according to the switch control signal; when the radio frequency communication module 150 and the antenna 110 When turned on, the radio frequency communication module 150 performs radio frequency communication with the NFC device 200 through the antenna 110.
  • antenna 110 is a planar coil antenna.
  • control circuit 100 for NFC near field communication can be applied to a smart card product.
  • the antenna 110 is wirelessly taken from the NFC device 200 by electromagnetic induction, thereby powering the control module 130.
  • the smart card when the smart card is read by the NFC device 200, the smart card can be charged, and the internal of the smart card product is solved. Power take-off problem, no need to configure the battery, reduce the device in the product, simplify the hardware circuit and reduce the cost of the product.
  • the gating switch module 140 turns on the connection of one radio frequency communication module 150 to one antenna 110 according to the switch control signal, and the remaining radio frequency communication modules 150 and the antenna 110 are in a disconnected state.
  • the control module 130 controls the switching of the gating switch module 140, so that the antenna 110 can be connected to different radio frequency communication modules 150, and at the same time, one antenna 110 can only be connected to one radio frequency communication module 150, and other radio frequencies.
  • the communication module 150 does not work. Not only does a smart card have multiple radio frequency communication functions (and can switch between multiple radio frequency communication modes), but also multiple radio frequency communication modules 150 on one smart card do not interfere with each other, and can be applied to various types. For example, the smart card has both a bus card function and a bank card function.
  • the control module 130 outputs a switch control signal to the strobe switch module 140, and the strobe switch module 140 turns on or off the connection between the corresponding radio frequency communication module 150 and the corresponding antenna 110 according to the switch control signal, thereby Implement different RF communication functions.
  • the strobe switch module 140 can include a single-pole multi-throw switch. Except for the required RF communication module 150 being connected to the corresponding antenna 110, the other RF communication modules 150 are in a floating state, so that the RF communication and the wireless power are not taken. Cause any impact.
  • the process of the control module 130 controlling the action of the gating switch module 140 specifically includes:
  • control module 130 When the power is turned on, the control module 130 enters an active state, and all the radio frequency communication modules 150 and the antenna 110 are in a disconnected state.
  • control module 130 When the control module 130 receives the user instruction, the control module 130 outputs a corresponding switch control signal to the strobe switch module 140 according to the user instruction, so that one antenna 110 is connected to the designated radio frequency communication module 150.
  • the control circuit 100 for NFC near field communication includes an antenna 110 that receives a radio frequency signal transmitted by an NFC device and forwards the radio frequency signal through the gating switch module 140. To the corresponding RF communication module 150.
  • the gating switch module 140 includes a multiplexed switch.
  • This embodiment is applicable to the manner in which the control module 130 controls the switching of the gating switch module 140 in an application scenario in which only one antenna 110 is used, and the respective communication functions are realized through multiple communication modules, and the multiple communication modes can be switched arbitrarily. It also solves the problem that mutual communication interference and energy are absorbed between the plurality of antennas 110 to avoid communication conflicts.
  • control circuit 100 for NFC near field communication includes the same number of antennas 110 as the radio frequency communication module 150, all of which are connected to the gating switch module 140, and the gating switch module 140 is according to the switch.
  • the control signal turns on or disconnects the corresponding one of the RF communication modules 150 from the corresponding one of the antennas 110.
  • the control circuit 100 for NFC near field communication includes the same number of antennas 110 as the radio frequency communication module 150, and the gating switch module 140 includes the same number as the radio frequency communication module 150.
  • the switch unit 141, one antenna 110 is connected to one switch unit 141 and one switch unit 141 is connected to a radio frequency communication module 150.
  • any one of the antennas 110 is connected to the voltage processing module 120, and obtains radio energy from the external NFC device 200 by electromagnetic induction coupling and outputs AC power to the voltage processing module 120 to control the voltage processing module 120.
  • Module 130 is powered.
  • the switch unit 141 may be an electronic switch tube, such as a triode, a MOS tube, or the like.
  • This embodiment is applicable to an application scenario with multiple antennas 110.
  • the gating switch module 140 switches between different communication modules, and the control process is simple and easy to implement.
  • FIG. 3 shows a circuit structure of a control circuit 100 for NFC near field communication provided by an embodiment of the present embodiment. For convenience of description, only parts related to the embodiment of the present solution are shown, which are described in detail as follows:
  • the antenna 110 is a planar coil antenna T1.
  • the planar coil antenna T1 obtains AC power from the NFC device 200 (for example, a card reader) by electromagnetic induction.
  • the voltage processing module 120 includes a rectifying unit 121, a voltage stabilizing unit 122, and a voltage converting unit 123 that are sequentially connected.
  • the rectifying unit 121 receives the alternating current and performs rectification processing, and outputs direct current.
  • the voltage stabilizing unit 122 regulates the direct current, and the voltage converting unit 123 converts the stabilized direct current into a power supply voltage required by the control module 130.
  • the first end and the second end of the planar coil antenna T1 are respectively connected to the first input end and the second input end of the rectifying unit 121 in one-to-one correspondence, and the first output end and the second end of the rectifying unit 121 are respectively connected.
  • the output ends are respectively connected to the first end and the second end of the voltage stabilizing unit 122, and the first end and the second end of the voltage stabilizing unit 122 are also connected to the voltage converting unit 123.
  • the antenna 110 receives AC energy from the external NFC device 200 by electromagnetic induction coupling, and the AC power is output. Since the AC power cannot be directly applied to the internal module of the smart card, the AC power needs to be processed.
  • the alternating current is transmitted to the rectifying unit 121, and the rectifying unit 121 rectifies the alternating current and outputs the direct current.
  • the direct current is further stabilized by the voltage stabilization processing of the voltage stabilizing unit 122 and the voltage conversion processing of the voltage converting unit 123.
  • the supply voltage is used to power the control module 130.
  • the rectifying unit 121 includes a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4.
  • the anode of the first diode D1 and the cathode of the second diode D2 are connected to form a first input end of the rectifying unit 121, and the anode of the third diode D3 is connected with the cathode of the fourth diode D4 to form a rectification.
  • the second input end of the unit 121, the cathode of the first diode D1 and the cathode of the third diode D3 are connected to form a first output end of the rectifying unit 121, and the anode and the fourth diode of the second diode D2
  • the anode of the tube D4 is commonly connected to ground and forms a second output of the rectifying unit 121.
  • the alternating current output from the antenna 110 passes through a rectifier bridge circuit composed of the first diode D1, the second diode D2, the third diode D3, and the fourth diode D4, and converts the alternating current into direct current.
  • the voltage stabilizing unit 122 includes a Zener diode D5 and a filter capacitor C1.
  • the cathode of the Zener diode D5 and the first end of the filter capacitor C1 are connected to form a first end of the voltage stabilization unit 122, and the anode of the Zener diode D5 and the second end of the filter capacitor C1 are connected to form a second voltage stabilization unit 122. end.
  • the rectifying unit 121 outputs a direct current to the voltage stabilizing unit 122.
  • the Zener diode D5 is set in the voltage stabilizing unit 122 to limit the voltage of the direct current.
  • the voltage stabilizing unit 122 transmits the stabilized direct current power to the voltage converting unit 123 to obtain a required voltage value output.
  • the voltage stabilizing unit 122 includes a linear regulator.
  • the linear regulator is LDO (Low Dropout) Regulator) Low dropout linear regulator.
  • the control circuit 100 for NFC near field communication further includes a filtering module 160.
  • the filtering module 160 is connected between the antenna 110 and the strobe switch module 140.
  • the filtering module 160 Used to filter out interference signals in RF communications.
  • the filtering module 160 includes a second filter capacitor C2.
  • the control circuit 100 for NFC near field communication further includes a human interaction module 170, the human interaction module 170 is connected to the control module 130, and the human interaction module 170 receives the user instruction and Forwarding to the control module 130 to cause the control module 130 to output a corresponding switch control signal; the manual interaction module 170 also receives the switch state signal fed back by the control module 130 and outputs it.
  • a human interaction module 170 the human interaction module 170 is connected to the control module 130, and the human interaction module 170 receives the user instruction and Forwarding to the control module 130 to cause the control module 130 to output a corresponding switch control signal; the manual interaction module 170 also receives the switch state signal fed back by the control module 130 and outputs it.
  • the human interaction module 170 includes a touch display.
  • the human interaction module 170 includes an input unit and an output display unit.
  • the input unit includes an input device such as a button
  • the output display unit includes a display device such as a display.
  • the embodiment of the present solution also provides a smart card comprising the control circuit 100 for NFC near field communication as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

一种用于NFC近场通信的控制电路和智能卡,其中,控制电路包括至少一个天线、电压处理模块、控制模块、选通开关模块和预设数量的射频通信模块,天线从外部的NFC设备获取无线电能并输出交流电至电压处理模块,电压处理模块将交流电处理为直流的供电电压给控制模块供电;控制模块输出开关控制信号至选通开关模块,选通开关模块根据开关控制信号导通或者断开对应的射频通信模块与对应的天线的连接;当射频通信模块与天线导通时,射频通信模块通过天线与NFC设备进行射频通信。本方案解决了智能卡的内部取电问题,无需额外配置电池,简化了硬件电路,智能卡还具有多种射频通信功能,能够在多种射频通信方式之间切换,可以应用于多种场合。

Description

一种用于NFC近场通信的控制电路和智能卡 技术领域
本方案属于NFC通信技术领域,尤其涉及一种用于NFC近场通信的控制电路和智能卡。
背景技术
近场通信(Near Field Communication,NFC)是一种短距高频的无线电技术,NFC近场通信技术是由非接触式射频识别(RFID)及互联互通技术整合演变而来,在单一芯片上结合感应式读卡器、感应式卡片和点对点的功能,能在短距离内与兼容设备进行识别和数据交换。NFC近场通信技术通常应用于智能卡中。
在现有的NFC通信产品中一般通过电池供电来解决取电的问题,造成电池电量的损耗与浪费,使产品使用年限缩短。
技术问题
鉴于此,本方案实施例提供了一种用于NFC近场通信的控制电路和智能卡,旨在解决现有技术中通过电池供电来取电,造成电池电量的损耗与浪费,使产品使用年限缩短的问题。
技术解决方案
本方案实施例的第一方面提供了一种用于NFC近场通信的控制电路,包括至少一个天线、电压处理模块、控制模块、选通开关模块和预设数量的射频通信模块。
天线分别与电压处理模块和选通开关模块连接,控制模块分别与电压处理模块和选通开关模块连接,选通开关模块与射频通信模块连接。
天线通过电磁感应耦合方式从外部的NFC设备获取无线电能并输出交流电至电压处理模块,电压处理模块将交流电处理为直流的供电电压并输出至控制模块以给控制模块供电;控制模块输出开关控制信号至选通开关模块,选通开关模块根据开关控制信号导通或者断开对应的射频通信模块与对应的天线的连接;当射频通信模块与天线导通时,射频通信模块通过天线与NFC设备进行射频通信。
在一个实施例中,选通开关模块根据开关控制信号导通一个射频通信模块与一个天线的连接,其余的射频通信模块与天线均处于连接断开状态。
在一个实施例中,用于NFC近场通信的控制电路包括一个天线,天线接收NFC设备发送的射频信号并通过选通开关模块将射频信号转发至对应的射频通信模块。
在一个实施例中,用于NFC近场通信的控制电路包括与射频通信模块数量相同的天线,所有的天线均与选通开关模块连接,选通开关模块根据开关控制信号导通或者断开对应的一个射频通信模块与对应的一个天线的连接。
在一个实施例中,用于NFC近场通信的控制电路包括与射频通信模块数量相同的天线,选通开关模块包括与射频通信模块数量相同的开关单元,一个天线对应连接一个开关单元且一个开关单元对应连接一个射频通信模块。
在一个实施例中,开关单元包括电子开关管。
在一个实施例中,电压处理模块包括依次连接的整流单元、稳压单元和电压转换单元。
整流单元接收交流电进行整流处理后输出直流电,稳压单元对直流电进行稳压,电压转换单元将稳压后的直流电转换为控制模块所需的供电电压。
在一个实施例中,天线的第一端和第二端分别与整流单元的第一输入端和第二输入端一一对应连接,整流单元的第一输出端和第二输出端分别与稳压单元的第一端和第二端一一对应连接,稳压单元的第一端和第二端还与电压转换单元连接。
在一个实施例中,整流单元包括第一二极管、第二二极管、第三二极管和第四二极管。
第一二极管的阳极与第二二极管的阴极共接形成整流单元的第一输入端,第三二极管的阳极与第四二极管的阴极共接形成整流单元的第二输入端,第一二极管的阴极与第三二极管的阴极共接形成整流单元的第一输出端,第二二极管的阳极与第四二极管的阳极共接于地并形成整流单元的第二输出端。
在一个实施例中,稳压单元包括齐纳二极管和滤波电容。
齐纳二极管的阴极与滤波电容的第一端共接形成稳压单元的第一端,齐纳二极管的阳极与滤波电容的第二端共接形成稳压单元的第二端。
在一个实施例中,稳压单元包括线性稳压器。
在一个实施例中,用于NFC近场通信的控制电路还包括滤波模块,滤波模块连接在天线和选通开关模块之间,滤波模块用于滤除射频通信中的干扰信号。
在一个实施例中,用于NFC近场通信的控制电路还包括人工交互模块,人工交互模块与控制模块连接,人工交互模块接收用户指令并转发至控制模块,以使控制模块输出相应的开关控制信号;人工交互模块还接收控制模块反馈的开关状态信号并进行输出。
在一个实施例中,天线为平面线圈式天线。
本方案实施例的第二方面提供了一种智能卡,包括如上所述的用于NFC近场通信的控制电路。
有益效果
天线通过电磁感应耦合方式从外部的NFC设备获取无线电能并输出交流电至电压处理模块,电压处理模块将交流电处理为直流的供电电压并输出至控制模块以给控制模块供电;控制模块输出开关控制信号至选通开关模块,选通开关模块根据开关控制信号导通或者断开对应的射频通信模块与对应的天线的连接;当射频通信模块与天线导通时,射频通信模块通过天线与NFC设备进行射频通信。智能卡在使用NFC设备读卡时,便可以实现充电,解决了智能卡的内部取电问题,无需额外配置电池,减少了产品中的器件,简化了硬件电路,降低了产品的成本。还实现了一张智能卡具有多种射频通信功能,能够在多种射频通信方式之间切换,可以应用于多种场合。
附图说明
为了更清楚地说明本方案实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本方案的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本方案的一个实施例提供的用于NFC近场通信的控制电路的模块结构示意图;
图2为本方案的一个实施例提供的用于NFC近场通信的控制电路的模块结构示意图;
图3为本方案的一个实施例提供的用于NFC近场通信的控制电路的电路结构示意图。
本发明的实施方式
为了使本技术领域的人员更好地理解本方案,下面将结合本方案实施例中的附图,对本方案实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本方案一部分的实施例,而不是全部的实施例。基于本方案中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本方案保护的范围。
本方案的说明书和权利要求书及上述附图中的术语“包括”以及其他任何变形,是指“包括但不限于”,意图在于覆盖不排他的包含。此外,术语“第一”和“第二”等是用于区别不同对象,而非用于描述特定顺序。
以下结合具体附图对本方案的实现进行详细地描述。
图1和图2示出了本方案一实施例所提供的一种用于NFC近场通信的控制电路100的结构,为了便于说明,仅示出了与本方案实施例相关的部分,详述如下:
如图1和图2所示,本方案实施例所提供的一种用于NFC近场通信的控制电路100,包括至少一个天线110、电压处理模块120、控制模块130、选通开关模块140和预设数量的射频通信模块150。
天线110分别与电压处理模块120和选通开关模块140连接,控制模块130分别与电压处理模块120和选通开关模块140连接,选通开关模块140与射频通信模块150连接。
天线110通过电磁感应耦合方式从外部的NFC设备200获取无线电能并输出交流电至电压处理模块120,电压处理模块120将交流电处理为直流的供电电压并输出至控制模块130以给控制模块130供电;控制模块130输出开关控制信号至选通开关模块140,选通开关模块140根据开关控制信号导通或者断开对应的射频通信模块150与对应的天线110的连接;当射频通信模块150与天线110导通时,射频通信模块150通过天线110与NFC设备200进行射频通信。
在一个实施例中,天线110为平面线圈式天线。
在本方案实施例中,用于NFC近场通信的控制电路100可以应用于智能卡产品中。
本实施例通过天线110以电磁感应的方式从NFC设备200处无线取电,从而给控制模块130供电,例如,智能卡在使用NFC设备200读卡时,便可以实现充电,解决了智能卡产品的内部取电问题,无需额外配置电池,减少了产品中的器件,简化了硬件电路,降低了产品的成本。
在一个实施例中,选通开关模块140根据开关控制信号导通一个射频通信模块150与一个天线110的连接,其余的射频通信模块150与天线110均处于连接断开状态。
本实施例通过控制模块130控制选通开关模块140切换,从而使天线110能够接通不同的射频通信模块150,并且在同一时刻,一个天线110只能与一个射频通信模块150接通,其他射频通信模块150不工作。不仅实现了一张智能卡具有多种射频通信功能(且能够在多种射频通信方式之间切换),又使得一个智能卡上的多个射频通信模块150之间不会相互干扰,可以应用于多种场合,例如,智能卡同时具有公交卡功能和银行卡功能等。
在本方案实施例中,控制模块130输出开关控制信号至选通开关模块140,选通开关模块140根据开关控制信号导通或者断开对应的射频通信模块150与对应的天线110的连接,从而实现不同的射频通信功能。选通开关模块140可以包括单刀多掷开关,除了所需的射频通信模块150与对应的天线110连接以外,其他的射频通信模块150均处于悬空的状态,从而不会对射频通信和无线取电造成任何影响。
在具体应用中,控制模块130控制选通开关模块140动作的过程具体包括:
1)上电时,控制模块130进入工作状态,所有的射频通信模块150与天线110均处于连接断开的状态。
2)当控制模块130接收到用户指令时,控制模块130根据用户指令输出相应的开关控制信号至选通开关模块140,以使一个天线110与指定的射频通信模块150接通。
如图1所示,在本方案的一个实施例中,用于NFC近场通信的控制电路100包括一个天线110,天线110接收NFC设备发送的射频信号并通过选通开关模块140将射频信号转发至对应的射频通信模块150。
在本方案的一个实施例中,选通开关模块140包括多路选择开关。
本实施例适用于在只有一个天线110的应用场景下,通过控制模块130控制选通开关模块140切换的方式,通过多种通信模块实现各自的通信功能,多路通信方式之间可以任意切换,还解决了多个天线110之间会存在相互的通信干扰及能量被吸收的问题,避免出现通信冲突的情况。
在一个实施例中,用于NFC近场通信的控制电路100包括与射频通信模块150数量相同的天线110,所有的天线110均与选通开关模块140连接,选通开关模块140根据所述开关控制信号导通或者断开对应的一个射频通信模块150与对应的一个天线110的连接。
如图2所示,在本方案的一个实施例中,用于NFC近场通信的控制电路100包括与射频通信模块150数量相同的天线110,选通开关模块140包括与射频通信模块150数量相同的开关单元141,一个天线110对应连接一个开关单元141且一个开关单元141对应连接一个射频通信模块150。
在本实施例中,其中任意一个天线110与电压处理模块120连接,并通过电磁感应耦合方式从外部的NFC设备200获取无线电能并输出交流电至电压处理模块120,以使电压处理模块120给控制模块130供电。
在一个实施例中,开关单元141可以是电子开关管,例如,三极管、MOS管等。
本实施例适用于具有多个天线110的应用场景,通过选通开关模块140在不同的通信模块之间切换,控制过程简单,易实现。
图3示出了本方案一实施例所提供的用于NFC近场通信的控制电路100的电路结构,为了便于说明,仅示出了与本方案实施例相关的部分,详述如下:
如图3所示,在本方案的一个实施例中,天线110为平面线圈式天线T1。
平面线圈式天线T1从NFC设备200(例如读卡器)中通过电磁感应取得交流电能。
如图3所示,在本方案的一个实施例中,电压处理模块120包括依次连接的整流单元121、稳压单元122和电压转换单元123。
整流单元121接收交流电进行整流处理后输出直流电,稳压单元122对直流电进行稳压,电压转换单元123将稳压后的直流电转换为控制模块130所需的供电电压。
在本实施例中,平面线圈式天线T1的第一端和第二端分别与整流单元121的第一输入端和第二输入端一一对应连接,整流单元121的第一输出端和第二输出端分别与稳压单元122的第一端和第二端一一对应连接,稳压单元122的第一端和第二端还与电压转换单元123连接。
在本实施例中,天线110通过电磁感应耦合方式从外部的NFC设备200获取无线电能后输出的是交流电,由于交流电不能直接应用在智能卡的内部模块中,因此需要对交流电进行处理。本实施例中交流电传输至整流单元121,整流单元121将交流电进行整流处理后输出直流电,直流电再经过稳压单元122的稳压处理以及电压转换单元123的电压转换处理后转为稳定且大小合适的供电电压,该供电电压用于给控制模块130供电。
如图3所示,在本方案的一个实施例中,整流单元121包括第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4。
第一二极管D1的阳极与第二二极管D2的阴极共接形成整流单元121的第一输入端,第三二极管D3的阳极与第四二极管D4的阴极共接形成整流单元121的第二输入端,第一二极管D1的阴极与第三二极管D3的阴极共接形成整流单元121的第一输出端,第二二极管D2的阳极与第四二极管D4的阳极共接于地并形成整流单元121的第二输出端。
本实施例中,天线110输出的交流电经过第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4组成的整流桥电路,将交流电转换为直流电。
如图3所示,在本方案的一个实施例中,稳压单元122包括齐纳二极管D5和滤波电容C1。
齐纳二极管D5的阴极与滤波电容C1的第一端共接形成稳压单元122的第一端,齐纳二极管D5的阳极与滤波电容C1的第二端共接形成稳压单元122的第二端。
本实施例中,整流单元121输出直流电至稳压单元122,为防止直流电的电压过高对后级电路中的器件造成损坏,在稳压单元122中设置齐纳二极管D5对直流电的电压进行限制,以保护后级电路中的器件。稳压单元122再将稳压后的直流电传输至电压转换单元123得到所需要的电压值输出。
在一个实施例中,稳压单元122包括线性稳压器。
在具体应用中,线性稳压器为LDO(Low Dropout Regulator)低压差线性稳压器。
如图3所示,在本方案的一个实施例中,用于NFC近场通信的控制电路100还包括滤波模块160,滤波模块160连接在天线110和选通开关模块140之间,滤波模块160用于滤除射频通信中的干扰信号。
如图3所示,滤波模块160包括第二滤波电容C2。
如图3所示,在本方案的一个实施例中,用于NFC近场通信的控制电路100还包括人工交互模块170,人工交互模块170与控制模块130连接,人工交互模块170接收用户指令并转发至控制模块130,以使控制模块130输出相应的开关控制信号;人工交互模块170还接收控制模块130反馈的开关状态信号并进行输出。
在一个实施例中,人工交互模块170包括触摸显示屏。
在一个实施例中,人工交互模块170包括输入单元和输出显示单元。
在具体应用中,输入单元包括按键等输入设备,输出显示单元包括显示器等显示设备。
本方案实施例还提供了一种智能卡,包括如上所述的用于NFC近场通信的控制电路100。
综上所述,以上实施例仅用以说明本方案的技术方案,而非对其限制;尽管参照前述实施例对本方案进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本方案各实施例技术方案的精神和范围。

Claims (15)

  1. 一种用于NFC近场通信的控制电路,其特征在于,包括至少一个天线、电压处理模块、控制模块、选通开关模块和预设数量的射频通信模块;
    所述天线分别与所述电压处理模块和所述选通开关模块连接,所述控制模块分别与所述电压处理模块和所述选通开关模块连接,所述选通开关模块与所述射频通信模块连接;
    所述天线通过电磁感应耦合方式从外部的NFC设备获取无线电能并输出交流电至所述电压处理模块,所述电压处理模块将所述交流电处理为直流的供电电压并输出至所述控制模块以给所述控制模块供电;所述控制模块输出开关控制信号至所述选通开关模块,所述选通开关模块根据所述开关控制信号导通或者断开对应的所述射频通信模块与对应的所述天线的连接;当所述射频通信模块与所述天线导通时,所述射频通信模块通过所述天线与所述NFC设备进行射频通信。
  2. 如权利要求1所述的用于NFC近场通信的控制电路,其特征在于,所述选通开关模块根据所述开关控制信号导通一个所述射频通信模块与一个所述天线的连接,其余的所述射频通信模块与所述天线均处于连接断开状态。
  3. 如权利要求1所述的用于NFC近场通信的控制电路,其特征在于,所述控制电路包括一个天线,所述天线接收所述NFC设备发送的射频信号并通过所述选通开关模块将所述射频信号转发至对应的所述射频通信模块。
  4. 如权利要求1所述的用于NFC近场通信的控制电路,其特征在于,所述控制电路包括与所述射频通信模块数量相同的天线,所有的所述天线均与所述选通开关模块连接,所述选通开关模块根据所述开关控制信号导通或者断开对应的一个所述射频通信模块与对应的一个所述天线的连接。
  5. 如权利要求1所述的用于NFC近场通信的控制电路,其特征在于,所述控制电路包括与所述射频通信模块数量相同的天线,所述选通开关模块包括与所述射频通信模块数量相同的开关单元,一个所述天线对应连接一个所述开关单元且一个所述开关单元对应连接一个所述射频通信模块。
  6. 如权利要求5所述的用于NFC近场通信的控制电路,其特征在于,所述开关单元包括电子开关管。
  7. 如权利要求1至6任一项所述的用于NFC近场通信的控制电路,其特征在于,所述电压处理模块包括依次连接的整流单元、稳压单元和电压转换单元;
    所述整流单元接收所述交流电进行整流处理后输出直流电,所述稳压单元对所述直流电进行稳压,所述电压转换单元将稳压后的所述直流电转换为所述控制模块所需的供电电压。
  8. 如权利要求7所述的用于NFC近场通信的控制电路,其特征在于,所述天线的第一端和第二端分别与所述整流单元的第一输入端和第二输入端一一对应连接,所述整流单元的第一输出端和第二输出端分别与所述稳压单元的第一端和第二端一一对应连接,所述稳压单元的第一端和第二端还与所述电压转换单元连接。
  9. 如权利要求7所述的用于NFC近场通信的控制电路,其特征在于,所述整流单元包括第一二极管、第二二极管、第三二极管和第四二极管;
    所述第一二极管的阳极与所述第二二极管的阴极共接形成所述整流单元的第一输入端,所述第三二极管的阳极与所述第四二极管的阴极共接形成所述整流单元的第二输入端,所述第一二极管的阴极与所述第三二极管的阴极共接形成所述整流单元的第一输出端,所述第二二极管的阳极与所述第四二极管的阳极共接于地并形成所述整流单元的第二输出端。
  10. 如权利要求7所述的用于NFC近场通信的控制电路,其特征在于,所述稳压单元包括齐纳二极管和滤波电容;
    所述齐纳二极管的阴极与所述滤波电容的第一端共接形成所述稳压单元的第一端,所述齐纳二极管的阳极与所述滤波电容的第二端共接形成所述稳压单元的第二端。
  11. 如权利要求7所述的用于NFC近场通信的控制电路,其特征在于,所述稳压单元包括线性稳压器。
  12. 如权利要求1所述的用于NFC近场通信的控制电路,其特征在于,还包括滤波模块,所述滤波模块连接在所述天线和所述选通开关模块之间,所述滤波模块用于滤除所述射频通信中的干扰信号。
  13. 如权利要求1所述的用于NFC近场通信的控制电路,其特征在于,还包括人工交互模块,所述人工交互模块与所述控制模块连接,所述人工交互模块接收用户指令并转发至所述控制模块,以使所述控制模块输出相应的所述开关控制信号;所述人工交互模块还接收所述控制模块反馈的开关状态信号并进行输出。
  14. 如权利要求1所述的用于NFC近场通信的控制电路,其特征在于,所述天线为平面线圈式天线。
  15. 一种智能卡,其特征在于,包括如权利要求1至14任一项所述的用于NFC近场通信的控制电路。
PCT/CN2018/098333 2017-11-10 2018-08-02 一种用于nfc近场通信的控制电路和智能卡 WO2019091154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711106753.0A CN107911147B (zh) 2017-11-10 2017-11-10 一种用于nfc近场通信的控制电路和智能卡
CN201711106753.0 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019091154A1 true WO2019091154A1 (zh) 2019-05-16

Family

ID=61844905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098333 WO2019091154A1 (zh) 2017-11-10 2018-08-02 一种用于nfc近场通信的控制电路和智能卡

Country Status (2)

Country Link
CN (1) CN107911147B (zh)
WO (1) WO2019091154A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3098908A1 (fr) * 2019-07-19 2021-01-22 Continental Automotive Gmbh Capteur sans contact pour véhicule automobile

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107911147B (zh) * 2017-11-10 2020-05-19 深圳市文鼎创数据科技有限公司 一种用于nfc近场通信的控制电路和智能卡
CN108901061A (zh) * 2018-05-31 2018-11-27 深圳市文鼎创数据科技有限公司 一种nfc装置
CN108649814A (zh) * 2018-06-13 2018-10-12 深圳市文鼎创数据科技有限公司 智能卡、智能卡控制方法、装置及设备
GB2575685B (en) * 2018-07-20 2020-11-18 Drayson Tech Europe Ltd Circuitry for use in smart cards and other applications
CN109510324A (zh) * 2018-12-19 2019-03-22 上海科世达-华阳汽车电器有限公司 一种汽车及其人机交互装置
WO2021092891A1 (zh) * 2019-11-15 2021-05-20 深圳市汇顶科技股份有限公司 供电系统、受电系统、电子烟的主机和烟弹
CN113067604B (zh) * 2020-01-02 2022-08-30 深圳市文鼎创数据科技有限公司 Nfc访问控制电路及nfc装置
CN111641437B (zh) * 2020-05-28 2021-06-18 Oppo(重庆)智能科技有限公司 近场通信与无线充电天线模组及电子装置
CN115085770B (zh) * 2021-03-15 2023-07-28 上海复旦微电子集团股份有限公司 无源nfc接口及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177228A (zh) * 2011-12-26 2013-06-26 国民技术股份有限公司 一种智能卡工作方法及智能卡
US20150244427A1 (en) * 2011-05-17 2015-08-27 Samsung Electronics Co., Ltd. Apparatus and method for using near field communication and wireless power transmission
CN104932676A (zh) * 2014-03-17 2015-09-23 黄议德 以无电池方式控制电子设备行动的设备和方法及其用途
CN106855955A (zh) * 2015-12-09 2017-06-16 北京握奇智能科技有限公司 一种共用nfc天线的新型ic卡
CN107911147A (zh) * 2017-11-10 2018-04-13 深圳市文鼎创数据科技有限公司 一种用于nfc近场通信的控制电路和智能卡

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207638657U (zh) * 2017-11-10 2018-07-20 深圳市文鼎创数据科技有限公司 一种用于nfc近场通信的控制电路和智能卡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150244427A1 (en) * 2011-05-17 2015-08-27 Samsung Electronics Co., Ltd. Apparatus and method for using near field communication and wireless power transmission
CN103177228A (zh) * 2011-12-26 2013-06-26 国民技术股份有限公司 一种智能卡工作方法及智能卡
CN104932676A (zh) * 2014-03-17 2015-09-23 黄议德 以无电池方式控制电子设备行动的设备和方法及其用途
CN106855955A (zh) * 2015-12-09 2017-06-16 北京握奇智能科技有限公司 一种共用nfc天线的新型ic卡
CN107911147A (zh) * 2017-11-10 2018-04-13 深圳市文鼎创数据科技有限公司 一种用于nfc近场通信的控制电路和智能卡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3098908A1 (fr) * 2019-07-19 2021-01-22 Continental Automotive Gmbh Capteur sans contact pour véhicule automobile

Also Published As

Publication number Publication date
CN107911147A (zh) 2018-04-13
CN107911147B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2019091154A1 (zh) 一种用于nfc近场通信的控制电路和智能卡
JP6585258B2 (ja) 非接触給電システム
JP6110236B2 (ja) 受電装置及び非接触給電システム
US20140139180A1 (en) Wireless power receiver for increased charging efficiency
KR102106476B1 (ko) 무선 전력 수신기
KR20150057783A (ko) 무선 충전 장치 및 방법
CN105191063A (zh) 用于检测无线电力网络中的无线电力接收器的差分负载检测方法和无线电力发送器
US10218225B2 (en) Wireless power transfer gate-drive power reduction
KR102145903B1 (ko) 무선 충전 시스템의 충전 제어 장치 및 방법
CN104641536A (zh) 无线电力输送单元、电子装置和控制无线电力输送单元的方法
US9859950B2 (en) Wireless power receiver with magnetic data transaction capability
CN105846499A (zh) 一种无线充电装置和无线充电系统
US11012119B2 (en) NFC arrangement
WO2020052461A1 (zh) 一种智能卡和智能卡的电源切换电路
CN207638657U (zh) 一种用于nfc近场通信的控制电路和智能卡
KR101876431B1 (ko) Ess 기능과 페이퍼 배터리로 이루어진 nfc·rfid 무선전자카드용 스마트충전장치
CN205622278U (zh) 一种无线充电装置和无线充电系统
CN109193889A (zh) 无线充电系统
CN210780943U (zh) 具有控制功能的手机壳
KR20140067443A (ko) 무선 전력 수신기
JP2014053026A (ja) Ic付き電子媒体およびic付き電子媒体システム
KR101694520B1 (ko) 루프 안테나 및 그의 스위칭 방법
CN114844530A (zh) 无源nfc接口和无源nfc设备
KR20150116407A (ko) 수동형 rfid 칩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875211

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18875211

Country of ref document: EP

Kind code of ref document: A1