WO2019091039A1 - 一种便携式太赫兹光谱仪 - Google Patents

一种便携式太赫兹光谱仪 Download PDF

Info

Publication number
WO2019091039A1
WO2019091039A1 PCT/CN2018/081123 CN2018081123W WO2019091039A1 WO 2019091039 A1 WO2019091039 A1 WO 2019091039A1 CN 2018081123 W CN2018081123 W CN 2018081123W WO 2019091039 A1 WO2019091039 A1 WO 2019091039A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
module
terahertz spectrometer
mirror
Prior art date
Application number
PCT/CN2018/081123
Other languages
English (en)
French (fr)
Inventor
彭世昌
丁庆
冯军正
Original Assignee
深圳市太赫兹科技创新研究院有限公司
深圳市太赫兹系统设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹科技创新研究院有限公司, 深圳市太赫兹系统设备有限公司 filed Critical 深圳市太赫兹科技创新研究院有限公司
Publication of WO2019091039A1 publication Critical patent/WO2019091039A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic

Definitions

  • This invention relates to terahertz time domain spectrometers, and more particularly to a portable terahertz spectrometer.
  • Terahertz spectroscopy has unique advantages over imaging techniques over other spectral analysis and imaging techniques. Compared with X-rays, terahertz radiation does not cause material damage and photoionization; terahertz wave penetration is stronger than radio waves; terahertz waves can directly obtain sample thickness and refraction compared to infrared bands. Rate, absorption coefficient. Based on this, terahertz waves have shown strong application prospects in the field of food safety.
  • the existing terahertz spectrometers including the beam splitting module, the delay module, and the optical turning module, are separately provided and have complete functions, but have the problems of large size and heavy weight.
  • a small portable terahertz spectrometer comprising a terahertz spectrometer assembly and a housing for securing a terahertz spectrometer assembly; a terahertz spectrometer assembly comprising:
  • a beam splitting module for dividing incident light into pump light and probe light
  • a delay module is disposed on the optical path where the probe light is located, and adjusts a delay of a time signal between the pump light and the probe light;
  • the optical turning module is configured to turn the pump light and the probe light outputted by the splitting module to output the two paths of the pump light and the detecting light to the corresponding output device respectively;
  • the housing comprises a component fixing device, and the component fixing device respectively fixes the beam splitting module, the delay module and the optical turning module.
  • the component securing means comprises an optical plate and an optical holder, wherein the optical plate is used to secure the position of the optical holder and the optical holder is placed on the optical plate.
  • the optical holder includes at least one of a holder, a support table, an adjustment frame, and a groove.
  • the position or number of optical holders is adapted to the preset optical path.
  • the delay module includes a fast sweep unit and/or a slow sweep unit.
  • the delay module when the delay module includes a fast sweep unit and a slow sweep unit, the fast sweep unit includes a voice coil motor and a mirror, and the slow sweep unit includes a step motor, wherein the voice coil of the quick sweep unit The motor is mounted on the stepper motor of the slow sweep unit.
  • the optical turning module comprises at least one of a mirror, a transmitting mirror, and a coupler.
  • the optical turning module includes a mirror and a coupler on the optical path where the pump light is located, and the center positions of the mirror and the coupler are on parallel lines.
  • the optical turning module includes two mirrors for turning the probe light, a mirror for coupling the probe light, and a coupler for receiving the coupled light path.
  • the central position of the coupling mirror and the coupler coupling the optical path are on parallel lines.
  • the beam splitting module comprises a half wave plate and a polarization beam splitting cube.
  • the above small portable terahertz spectrometer fixes the beam splitting module, the delay module and the optical turning module inside the casing through the component fixing device provided in the casing, thereby ensuring the accuracy of the incident light transmission path, thereby improving the stability of the optical path, and simultaneously improving the stability of the optical path.
  • the housing integrates the modules and integrates them into the casing to reduce the space occupied by each module. It has the functions of easy assembly, integral and movable, and realizes the portable function.
  • the optical turning module can reduce the required optical equipment and reduce the cost.
  • FIG. 1 is an overall optical path diagram of a portable terahertz spectrometer according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a housing according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a component fixing device in a housing according to an embodiment of the present invention.
  • an embodiment of the present invention provides a portable terahertz spectrometer, a small portable terahertz spectrometer comprising a housing 70 and a terahertz spectrometer assembly 10.
  • the housing 70 is a support rod frame for each component for fixing the terahertz spectrometer assembly 10, and a component fixing device 710 is provided in the housing 70.
  • the terahertz spectrometer assembly 10 includes a light source 100, a beam splitting module 200, a delay module 300, an optical turning module 400, an output device 500, and a processing module 600.
  • the light source 100 is disposed corresponding to the beam splitting module 200.
  • the housing 70 is made of an insulating material, and includes an air cushion type shockproof table 720 and a component fixing device 710 .
  • the component fixing device 710 is placed on the air cushion type shockproof table 720 .
  • the air cushion type anti-vibration table 720 is used for anti-vibration; the component fixing device 710 is configured to respectively fix the beam splitting module 200, the delay module 300, and the optical turning module 400.
  • the component fixing device 710 includes an optical plate 711 for fixing the position of the optical holder 712, and an optical holder 712 for fixing the components included in the module, and the optical holder 712 is placed. On the optical plate 711.
  • the housing 70 is also provided with a display (not shown) and a control window (not shown) for analysis and operation.
  • the optical holder 712 includes at least one of a fixing frame, a support table, an adjustment frame, and a groove.
  • the optical fixture 712 selects an adjustment frame 7121 , a support base 7122 , a recess 7123 , an adjustment frame 7121 , and a support base 7122 for fixing the beam splitting module 200 and the optical transition module 400 .
  • Each of the components, the recess 7123 is used to fix each component in the delay module 300.
  • the seal ring can be used for the seal design.
  • the housing 70 is an important component of a small portable terahertz spectrometer, which ensures that the internal optical path is not disturbed, provides a confined space (reduces the moisture in the air, the influence of dust on the detection result), and ensures the accuracy of the transmission path of the optical path), Easy to assemble, repair, etc., at the same time play the role of installation, transmission, positioning, protection, beautification, and indication.
  • the housing 70 integrates the components and enters the instrumentation to make the spectrometer integrated and movable.
  • the light source 100 is configured to provide femtosecond pulsed light.
  • the light source 100 is an external device with respect to the housing 70, and the light source 100 is mounted at the light input port of the housing 70.
  • the fiber collimator 210 corresponds to the light source 100, and ensures that light emitted by the light source 100 is transmitted to the free space via the optical fiber.
  • the attenuating sheet 220 is fixedly mounted on the optical flat plate 711 inside the casing 70 based on the adjusting frame 7121.
  • the distance between the attenuator 220 and the fiber collimator 210 can be adjusted, and only the optical path of the attenuator 220 and the fiber collimator 210 can be coaxial.
  • the half wave plate 230 is used to arbitrarily change the polarization direction of the pulsed light, and the half wave plate 230 corresponds to the attenuation plate 220 and is placed corresponding to the polarization beam splitting cube 240.
  • the combination of the half wave plate 230 and the polarization splitting cube 240 allows the polarization direction of the pulsed light to be arbitrarily changed by changing the angle of the half wave plate 230, thereby changing the power ratio of the two split light pulses.
  • the polarization beam splitting cube 240 is composed of two right-angle prisms and is plated with a dielectric film at the intersection, reflecting s-polarized (vertically polarized light pulses) and transmitting p-polarized (horizonically polarized light pulses).
  • the half wave plate 230 is placed on the adjustment frame 7121, and the adjustment frame 7121 is placed on the optical plate 711 inside the casing 70.
  • the polarization splitting cube 240 is placed on the support table 7122.
  • the half wave plate 230 or the polarization splitting cube 240 can be moved on the optical plate 711, and only the center points of the two are in a straight line. Just fine.
  • the distance between the terahertz radiation device and the detection end of the terahertz detection device is satisfied by moving the stepping motor, and the signal point is searched by precise scanning.
  • the voice coil motor is mounted on the stepping motor. After the signal is found, the voice coil motor is turned on to perform a fast sweep mode, thereby adjusting the delay line.
  • the delay module 300 is fixed to the optical plate 711 by a recess 7123.
  • the stepping motor and the voice coil motor are combined. After the precise scanning of the stepping motor, the signal point is determined, the voice coil motor is quickly scanned, the sampling speed and the sampling efficiency are improved, and the signal quality of the spectrometer is improved overall.
  • the output device 500 includes a terahertz radiation device and a terahertz detection device.
  • the terahertz radiation device receives the light pulse and radiates the terahertz under the driving voltage; the terahertz detecting device generates a weak current signal driven by the terahertz pulse by receiving the terahertz radiated by the radiation device and receiving the light pulse.
  • the terahertz radiation device and the terahertz detection device are external devices relative to the housing 70 and are placed at the light output port of the housing 70. among them:
  • the terahertz radiation device includes a photoconductive antenna and a bias voltage, and the bias voltage is connected to the photoconductive antenna.
  • the photoconductive antenna is a strip antenna formed by depositing a plurality of layers of InGaAs on the InP substrate, and the optical pulse radiation emitted by the light source 100 generates photogenerated carriers in the middle of the antenna gap and is driven by the bias voltage. Radiation out of terahertz.
  • the bias voltage should not exceed 120V or it will break through the antenna.
  • the photoconductive antenna is a multi-layer InGaAs deposited on an InP substrate to form a strip antenna having a width of 100 ⁇ m.
  • the terahertz detecting device includes a photoconductive antenna which is a multi-layered InGaAs deposited on an InP substrate to form a butterfly-shaped dipole antenna having a certain length.
  • a weak current signal is generated by the terahertz pulse.
  • the optical folding module 400 is configured to convert the pump light and the probe light.
  • the optical folding module 400 is disposed between the beam splitting module 200 and the output device 500 to ensure that the two lights output by the beam splitting module 200 are output to the corresponding output device 500. on.
  • the optical folding module 400 includes at least one of a mirror, a transmission mirror, and a coupler.
  • the light emitted by the light source 100 is split into two light pulses, that is, pump light and probe light, through the polarization splitting cube 240.
  • a first mirror 4020 and a first fiber coupler 4021 are provided on the optical path of the pump light.
  • a second mirror 4010, a third mirror 4011, a fourth mirror 4012, and a second fiber coupler 4013 are provided on the optical path of the probe light.
  • the pump light is coupled to the first fiber coupler 4021 via a coupled first mirror 4020 for transmission to the terahertz radiation device.
  • the first mirror 4020 and the first fiber coupler 4021 are fixedly placed on the optical plate 711 by the adjusting frame 7121, and the first mirror 4020 and the first fiber coupler 4021 can be moved according to design requirements, and only the first mirror is required. 4020 may be parallel to the center position of the corresponding first fiber coupler 4021. Of course, according to the design requirements, the number of mirrors can be increased or the mirror can be added. It is only necessary to ensure that the pump light emitted by the polarization splitting cube 240 is concentrated and transmitted to the first fiber coupler 4021, so that the light is transmitted from the free space to the space. In the fiber.
  • the detecting light is reflected by the second mirror 4010 and the third mirror 4011 in sequence, so that the detecting light is collimated parallel to the moving direction of the motor in the delay module 300, and the detecting light is reflected by the built-in mirror 330 of the delay module 300 to detect
  • the light is reversely transmitted, and the reflected light reflected back does not substantially follow the optical path offset of the motor, and the coupled fourth mirror 4012 is coupled into the second fiber coupler 4013 for transmission to the terahertz detecting device.
  • the second mirror 4010, the third mirror 4011, the fourth mirror 4012, and the second fiber coupler 4013 are fixedly placed on the optical plate 711 by the adjusting frame 7121, and the fourth mirror 4012 and the second fiber coupler 4013 are secured.
  • the center position is on a parallel line.
  • the number of mirrors can be moved or increased according to the design requirements, or the mirrors can be added. It is only necessary to ensure that the probe light emitted by the polarization beam splitting cube 240 is concentrated and transmitted to the second fiber coupler 4013, while ensuring the detection light.
  • the collimation is parallel to the direction of motion of the motor within the delay module 300.
  • the processing module 600 is configured to perform a corresponding processing on the current signal output by the output device 500 to finally display the terahertz pulse signal.
  • the processing module 600 includes a preamplifier, a lock-in amplifier, an ADC data acquisition card, and a PC end, and the processing module 600 is placed outside the housing 70.
  • the light source 100 is a fiber laser having a laser wavelength of 1560 nm and radiating light pulses having a pulse width of less than 100 fs, a power of more than 100 mW, and a repetition frequency of 100 MHz.
  • the light source 100 emits a horizontally polarized light pulse, which is transmitted to the fiber collimator 210 via the optical fiber to realize conversion of the horizontally polarized light pulse transmission medium.
  • the horizontally polarized light pulse sequentially passes through the attenuator 210, the half wave plate 220, and the polarization beam splitter 230, adjusts the angle of the half wave plate 220, changes the polarization direction of the incident light pulse, and the incident light pulse undergoes polarization splitting.
  • the device is divided into two mutually perpendicular light pulses.
  • the polarization beam splitter transmits horizontally polarized light and reflects vertically polarized light. Therefore, the vertically polarized light is pump light and the horizontally polarized light is probe light.
  • the pump light is coupled via a coupled first mirror 4020 into the first fiber coupler 4021 for transmission to the terahertz radiation device for driving terahertz driven by a bias voltage within the terahertz radiation device.
  • the detecting light is reflected by the second mirror 4010 and the third mirror 4011 in sequence, so that the detecting light is collimated parallel to the moving direction of the motor in the delay module 300, and the detecting light is reflected by the built-in mirror 330 of the delay module 300 to detect In the reverse direction of light transmission, the reflected light reflected back does not substantially follow the optical path offset of the motor, and the coupled fourth mirror 4012 is coupled into the second fiber coupler 4013 for transmission to the detecting end of the terahertz detecting device to detect the optical radiation.
  • the photo-generated carriers are generated in the middle of the dipole antenna gap, and the terahertz pulse generated by the terahertz radiation device is received, and a weak current signal is generated under the driving of the terahertz pulse, and the current signal is processed by the processing module 600 to finally display too Hertz pulse signal.
  • the fiber collimator 210, the attenuator 220, the half wave plate 230, the polarization beam splitter 230, the module 300, the associated mirror and the fiber coupler are all fixed on the optical plate 711 in the housing 70. The light pulse radiated therefrom is more stable, and the problem of light deflection caused by the jitter of the laser output source due to the movement of the instrument is avoided.
  • a second embodiment of the present invention provides a portable terahertz spectrometer, which is substantially the same as the terahertz spectrometer of the first embodiment, except that the half wave plate 230 and the polarization beam splitting cube 240 are removed, and the composition is changed.
  • the buncher is replaced.
  • the beam splitter is an optical component with a fixed splitting ratio. If you want to change the splitting ratio, you can directly change the beam splitter with different splitting ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种小型便携式太赫兹光谱仪,包括太赫兹光谱仪组件和用于固定太赫兹光谱仪组件的壳体。太赫兹光谱仪组件包括:用于将入射光分为泵浦光和探测光的分束模块、调节泵浦光和探测光之间时间信号的延迟的延迟模块,用于转折泵浦光和探测光的光学转折模块。壳体包括:元器件固定装置,固定装置分别固定分束模块、延迟模块、光学转折模块,保证入射光传输路径的准确性,进而提升光路的稳定性,同时壳体将各模块整合,集成于壳体内,减小各模块所占空间,具有易装配、整体、可移动等作用,实现便携的功能。

Description

一种便携式太赫兹光谱仪 技术领域
本发明涉及太赫兹时域光谱仪,特别是涉及一种便携式太赫兹光谱仪。
背景技术
太赫兹光谱与成像技术相比于其他光谱分析和成像技术具有独特的优势。相比于X射线,太赫兹辐射不会引起物质损伤及光致电离;相比于无线电波,太赫兹波穿透能力强;相比于红外波段,太赫兹波能够直接获取样品的厚度、折射率、吸收系数。基于此,太赫兹波在食品安全领域展现出强大的应用前景。
现有的太赫兹光谱仪,包括分束模块、延迟模块、光学转折模块,各模块分开设置,功能齐全,但存在体型大且笨重的问题。
发明内容
基于此,有必要针对现有的太赫兹光谱仪存在体型大且笨重的问题,提供一种便携式太赫兹光谱仪。
一种小型便携式太赫兹光谱仪,包括太赫兹光谱仪组件和用于固定太赫兹光谱仪组件的壳体;太赫兹光谱仪组件包括:
分束模块,用于将入射光分为泵浦光和探测光;
延迟模块,设置在探测光所在光路,调节泵浦光和探测光之间时间信号的延迟;
光学转折模块,用于转折分束模块输出的泵浦光和探测光,使泵浦光和探测光两路光分别输出至对应输出装置上;
壳体,包括元器件固定装置,元器件固定装置分别固定分束模块、延迟模块、光学转折模块。
在其中一个实施例中,元器件固定装置包括光学平板和光学固定器,其中光学平板用于固定光学固定器的位置,光学固定器放置于光学平板上。
在其中一个实施例中,光学固定器包括固定架、支撑台、调整架、凹槽中的至少一种。
在其中一个实施例中,光学固定器的位置或数量与预设光路相适应。
在其中一个实施例中,延迟模块包括快扫单元和/或慢扫单元。
在其中一个实施例中,当所述延迟模块包括快扫单元和慢扫单元时,所述快扫单元包括音圈电机和反射镜,慢扫单元包括步进电机,其中快扫单元的音圈电机安装于慢扫单元的步进电机之上。
在其中一个实施例中,光学转折模块包括反射镜、透射镜、耦合器中的至少一种。
在其中一个实施例中,泵浦光所在光路上,所述光学转折模块包括一个反射镜和一个耦合器,所述反射镜和所述耦合器的中心位置处在平行线上。
在其中一个实施例中,探测光所在光路上,所述光学转折模块包括两个用于转折探测光的反射镜,一个用于耦合探测光的反射镜和一个用于接收耦合光路的耦合器,所述具有耦合作用的反射镜和耦合光路的耦合器的中心位置处在平行线上。
在其中一个实施例中,分束模块包括二分之一波片和偏振分束立方体。
上述小型便携式太赫兹光谱仪,通过壳体内设的元器件固定装置将分束模块、延迟模块、光学转折模块固定在壳体内部,保证入射光传输路径的准确性,进而提升光路的稳定性,同时壳体将各模块整合,集成于壳体内,减小各模块所占空间,具有易装配、整体、可移动等作用,实现便携的功能。同时光学转折模块进可能减少所需光学器材,减少成本。
附图说明
图1为本发明实施例的便携式太赫兹光谱仪整体光路图;
图2为本发明实施例的壳体结构示意图;
图3为本发明实施例的壳体内元器件固定装置结构示意图。
具体实施方式
请参见图1和图2所示,本发明实施例提供一种便携式太赫兹光谱仪,小型便携式太赫兹光谱仪,包括壳体70和太赫兹光谱仪组件10。壳体70为各元器件的支撑杆框架,用于固定太赫兹光谱仪组件10,在壳体70内设有元器件固 定装置710。太赫兹光谱仪组件10包括光源100、分束模块200、延迟模块300、光学转折模块400、输出装置500、处理模块600。其中,光源100与分束模块200对应放置,分束模块200用于将入射光分为泵浦光和探测光,延迟模块300设置在探测光所在光路,调节泵浦光和探测光之间时间信号的延迟;光学转折模块400设置于分束模块200和输出模块500之间,用于转折分束模块200输出的泵浦光和探测光,使两束光输出至对应输出装置500上。输出装置500包括太赫兹辐射装置和太赫兹探测装置探测端。
请参见图2和图3所示,该壳体70材质为绝缘材质,包括气垫式防震台720和元器件固定装置710元器件固定装置710放置于气垫式防震台720上。气垫式防震台720,用于防震;元器件固定装置710,用于分别固定分束模块200、延迟模块300、光学转折模块400。其中元器件固定装置710包括光学平板711、光学固定器712,其中光学平板711用于固定光学固定器712的位置,光学固定器712用于固定上述模块所包含的元器件,光学固定器712放置于光学平板711上。当然,根据设计需要,壳体70外部还设有显示(图中未画出)和控制窗口(图中未画出),用于分析和操作。
该光学固定器712包括固定架、支撑台、调整架、凹槽中的至少一种。
请参见图3所示,在本实施例中,光学固定器712选用调整架7121、支撑台7122、凹槽7123,调整架7121、支撑台7122用于固定分束模块200和光学转折模块400中的各元器件,凹槽7123用于固定延迟模块300中的各元器件。
根据设计需要,由于太赫兹波对于水分比较敏感,在样品检测中需要干燥的环境,因此可采用密封圈进行密封设计。
壳体70是小型便携式太赫兹光谱仪的重要组成部分,具有保证内部光路不受干扰、提供密闭空间(减少空气中的水分、粉尘对检测结果的影响),保证光路的传输路径的准确性)、易装配、维修等作用,同时起到安装、传动、定位、防护、美化、和指示的功能。壳体70使各元器件进行整合,进入仪器化,使光谱仪进入整体化、可移动化。
该光源100,用于提供飞秒脉冲光。光源100相对壳体70属外部设备,光源100安装置于壳体70光输入口处。
优选地,激光器波长为1560nm,脉宽80fs,重复频率100MHZ,输出功率大于100mW。目前,飞秒激光器技术成熟,已经有成熟的商家可以直接购买,常见的厂商有TOPTICA以及menlosystem。
该分束模块200,用于将光源100发射出的光分成两束光,两束光分别为泵浦光和探测光,两束光的功率比可以根据需要任意改变,其中,分束模块200与光源100相对应放置,保证光源100发出的光脉冲进入分束模块200。分束模块200包括光纤准直器210、衰减片220、二分之一波片230、偏振分束立方240。分束模块200内的各元器件基于光学固定器712固定放置于壳体70内部。其中:
该光纤准直器210与光源100相对应,保证光源100发出的光经由光纤传输到自由空间。
在本实施例中,光纤准直器210基于调整架7121,固定放置于壳体70内部的光学平板711上。
该衰减片220用于衰减光源100发射的光脉冲的光功率,避免光源100发出光脉冲的光功率过大,造成器件损坏,其中衰减片220与光纤准直器210相对应放置。
在本实施例中,衰减片220基于调整架7121,固定放置于壳体70内部的光学平板711上。当然根据设计需要,可调整衰减片220和光纤准直器210之间的距离,只需保证衰减片220和光纤准直器210的光路同轴即可。
该二分之一波片230用于任意改变脉冲光的偏振方向,二分之一波片230与衰减片220相对应,并与偏振分束立方240相对应放置。二分之一波片230和偏振分束立方240相结合,通过改变二分之一波片230的角度可以任意改变脉冲光的偏振方向,从而改变两分束光脉冲的功率比例。其中偏振分束立方240是由两个直角棱镜组成,并在交接处镀有介质膜,反射s偏振(垂直偏振光脉冲),透射p偏振(水平偏振光脉冲)。
在本实施例中,二分之一波片230放置在调整架7121上,调整架7121放置在壳体70内部的光学平板711上。偏振分束立方240放置于支撑台7122上,同理根据设计需要,可以在光学平板711上移动二分之一波片230或偏振分束立方240,只需保证二者中心点在一条直线上即可。
该延迟模块300通过时间延时使泵浦光和探测光之间具有可调时间延迟,延迟模块300设置在探测光所在光路。延迟模块300包括快扫单元310或慢扫单元320。其中快扫单元310包括音圈电机和反射镜,反射镜安装在音圈电机上,音圈电机用于提高扫描速度,反射镜实现探测光的180度转折。慢扫单元320包括步进电机,用于精确扫描。
在本实施例中,通过移动步进电机满足太赫兹辐射装置和太赫兹探测装置探测端之间的间距,经过精确扫描寻找信号点。其中音圈电机安装在步进电机上,待找到信号后开启音圈电机进行快扫模式,进而调节延迟线。延迟模块300通过凹槽7123固定在光学平板711上。
步进电机和音圈电机相结合,经过步进电机的精确扫描,确定信号点后,进行音圈电机的快速扫描,提高采样速度和采样效率,整体提高光谱仪的信号品质。
该输出装置500包括太赫兹辐射装置和太赫兹探测装置。太赫兹辐射装置接收光脉冲,并在驱动电压驱动下辐射太赫兹;太赫兹探测装置通过接收辐射装置所辐射的太赫兹并接收光脉冲,在太赫兹脉冲的驱动下产生微弱的电流信号。太赫兹辐射装置和太赫兹探测装置相对壳体70属外置设备,放置于壳体70光输输出口处。其中:
该太赫兹辐射装置包括光电导天线和偏置电压,偏置电压与光电导天线相连接。其中光电导天线是由多层InGaAs沉积在InP衬底上形成一定宽度的带状天线,当光源100发射出的光脉冲辐射在天线间隙中间产生光生载流子,并在偏置电压的驱动下辐射出太赫兹。其中偏置电压不要超过120V否则会击穿天线。
优选地,光电导天线是由多层InGaAs沉积在InP衬底上形成宽度100微米的带状天线。
该太赫兹探测装置包括光电导天线,光电导天线是由多层InGaAs沉积在InP衬底上形成一定长的蝴蝶状偶极天线。当光源100辐射在偶极天线间隙中间产生光生载流子,同时接受太赫兹脉冲,在太赫兹脉冲的驱动下产生微弱的电流信号。
优选地,光电导天线是由多层InGaAs沉积在InP衬底上形成25微米长的蝴蝶状偶极天线,天线间隙10微米。
该光学转折模块400,用于转折泵浦光和探测光光,光学转折模块400设置在分束模块200和输出装置500之间,保证分束模块200输出的两路光输出至对应输出装置500上。光学转折模块400包括反射镜、透射镜、耦合器中的至少一种。
在本实施例中,光源100发出的光经过偏振分束立方240分为两束光脉冲,即泵浦光和探测光。在泵浦光的光路上,设有第一反射镜4020、第一光纤耦合器4021。在探测光的光路上,设有第二反射镜4010、第三反射镜4011、第四反射镜4012、第二光纤耦合器4013。泵浦光经过一个耦合作用的第一反射镜4020耦合进入第一光纤耦合器4021传输至太赫兹辐射装置。
其中第一反射镜4020、第一光纤耦合器4021通过调整架7121固定放置在光学平板711上,可以根据设计需要移动第一反射镜4020、第一光纤耦合器4021,只需保证第一反射镜4020与对应第一光纤耦合器4021的中心位置处在平行线上即可。当然根据设计需要,可以增加反射镜数量或增加设透视镜,只需保证经偏振分束立方240射出的泵浦光汇聚传输至第一光纤耦合器4021上即可,保证光由自由空间传输至光纤中。
探测光依次经过第二反射镜4010和第三反射镜4011反射,使得探测光较准直的平行于延时模块300内的电机运动方向,探测光经过延时模块300内置反射镜330反射,探测光反向传输,反射回的探测光基本不随电机往返运动而发生光路偏移,经过耦合作用的第四反射镜4012耦合进入第二光纤耦合器4013传输至太赫兹探测装置。
其中第二反射镜4010、第三反射镜4011、第四反射镜4012、第二光纤耦合器4013通过调整架7121固定放置在光学平板711上,保证第四反射镜4012、第二光纤耦合器4013的中心位置处在平行线上。当然根据设计需要,可以根据设计需要移动或增加反射镜数量或增加设透视镜,只需保证经偏振分束立方240射出的探测光汇聚传输至第二光纤耦合器4013上,同时保证探测光较准直的平行于延时模块300内的电机运动方向即可。
该处理模块600,用于将输出装置500输出的电流信号经过相应处理最终显示出太赫兹脉冲信号。处理模块600包括前置放大器、锁相放大器、ADC数据采集卡、PC端,处理模块600放置于壳体70外部。
在本施例中,光源100为光纤激光器,激光器波长为1560nm,辐射出脉宽小于100fs、功率大于100mW、重复频率100MHz的光脉冲。
本实施例小型便携式太赫兹光谱仪在工作时,光源100发射出水平偏振光脉冲,经光纤传输至光纤准直器210,实现水平偏振光脉冲传输介质的转换。水平偏振光脉冲依次经过衰减片210、二分之一波片220、偏振分束器230,调节二分之一波片220的角度,改变入射光脉冲的偏振方向,入射光脉冲经过偏振分束器后分为两束相互垂直的光脉冲,偏振分束器透射水平偏振光,反射垂直偏振光,因此,垂直偏振光为泵浦光,水平偏振光为探测光。
泵浦光经过一个耦合作用的第一反射镜4020耦合进入第一光纤耦合器4021传输至太赫兹辐射装置,在太赫兹辐射装置内偏置电压的驱动下用来产生太赫兹。
探测光依次经过第二反射镜4010和第三反射镜4011反射,使得探测光较准直的平行于延时模块300内的电机运动方向,探测光经过延时模块300内置反射镜330反射,探测光反向传输,反射回的探测光基本不随电机往返运动而发生光路偏移,经过耦合作用的第四反射镜4012耦合进入第二光纤耦合器4013传输至太赫兹探测装置探测端,探测光辐射在偶极天线间隙中间产生光生载流子,同时接受来自太赫兹辐射装置产生的太赫兹脉冲,在太赫兹脉冲的驱动下产生微弱的电流信号,电流信号经处理模块600相应处理最终显示出太赫兹脉冲信号。其中光纤准直器210、衰减片220、二分之一波片230,偏振分束器230、模块300、相关反射镜及光纤耦合器均固定在壳体70内的光学平板711上成为一体,使得从此处辐射的光脉冲更加稳定,避免了由于仪器挪动导致激光输出源头抖动带来的光线偏折的问题。
本发明第二实施例提供一种便携式太赫兹光谱仪,与实施例一所述太赫兹光谱仪大体相同,不同之处在于,将二分之一波片230、偏振分束立方240去掉,换成分束器代替。其中分束器为固定分束比的光学元件,若想改变分束比,直 接更换不同分束比的分束器即可。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种小型便携式太赫兹光谱仪,其特征在于,包括太赫兹光谱仪组件和用于固定太赫兹光谱仪组件的壳体;所述太赫兹光谱仪组件包括:
    分束模块,用于将入射光分为泵浦光和探测光;
    延迟模块,设置在探测光所在光路,调节泵浦光和探测光之间时间信号的延迟;
    光学转折模块,用于转折分束模块输出的泵浦光和探测光,使泵浦光和探测光分别输出至对应输出装置上;
    壳体,包括元器件固定装置,所述元器件固定装置分别固定所述分束模块、所述延迟模块、所述光学转折模块。
  2. 根据权利要求1所述的小型便携式太赫兹光谱仪,其特征在于,所述元器件固定装置包括光学平板和光学固定器,其中所述光学平板用于固定光学固定器的位置,光学固定器放置于光学平板上。
  3. 根据权利要求2所述的小型便携式太赫兹光谱仪,其特征在于,所述光学固定器包括固定架、支撑台、调整架、凹槽中的至少一种。
  4. 根据权利要求2所述的小型便携式太赫兹光谱仪,其特征在于,所述光学固定器的位置或数量与预设光路相适应。
  5. 根据权利要求1所述的小型便携式太赫兹光谱仪,其特征在于,所述延迟模块包括快扫单元和/或慢扫单元。
  6. 根据权利要求5所述的小型便携式太赫兹光谱仪,其特征在于,当所述延迟模块包括快扫单元和慢扫单元时,所述快扫单元包括音圈电机和反射镜,所述慢扫单元包括步进电机,快扫单元的音圈电机安装于慢扫单元的步进电机之上。
  7. 根据权利要求1所述的小型便携式太赫兹光谱仪,其特征在于,所述光学转折模块包括反射镜、透射镜、耦合器中的至少一种。
  8. 根据权利要求7所述的小型便携式太赫兹光谱仪,其特征在于,所述泵浦光所在光路上,所述光学转折模块包括一个反射镜和一个耦合器,所述反射镜和所述耦合器的中心位置处在平行线上。
  9. 根据权利要求7所述的小型便携式太赫兹光谱仪,其特征在于,所述探测光所在光路上,所述光学转折模块包括两个用于转折探测光的反射镜,一个用于耦合探测光的反射镜和一个用于接收耦合光路的耦合器,所述具有耦合作用的反射镜和耦合光路的耦合器的中心位置处在平行线上。
  10. 根据权利要求1所述的小型便携式太赫兹光谱仪,其特征在于,所述分束模块包括二分之一波片和偏振分束立方体。
PCT/CN2018/081123 2017-11-10 2018-03-29 一种便携式太赫兹光谱仪 WO2019091039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711105686.0A CN107917757A (zh) 2017-11-10 2017-11-10 一种便携式太赫兹光谱仪
CN201711105686.0 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019091039A1 true WO2019091039A1 (zh) 2019-05-16

Family

ID=61895406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081123 WO2019091039A1 (zh) 2017-11-10 2018-03-29 一种便携式太赫兹光谱仪

Country Status (2)

Country Link
CN (1) CN107917757A (zh)
WO (1) WO2019091039A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556688A (zh) * 2019-09-28 2019-12-10 北京航空航天大学合肥创新研究院 一种太赫兹产生装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572186B (zh) * 2018-07-23 2024-06-07 中国工程物理研究院激光聚变研究中心 半导体瞬态x射线非线性光学效应测试装置及其测试方法
CN113256869A (zh) * 2021-04-16 2021-08-13 深圳市华讯方舟光电技术有限公司 一种纸币的检测方法与太赫兹光谱仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248100A (ja) * 2006-03-14 2007-09-27 Hitachi Ltd テラへルツ装置
CN201662531U (zh) * 2010-01-14 2010-12-01 首都师范大学 小型太赫兹时域光谱仪
CN106290228A (zh) * 2016-08-09 2017-01-04 上海拓领光电科技有限公司 一种配件组合式太赫兹时域光谱系统
CN106323907A (zh) * 2016-08-09 2017-01-11 上海拓领光电科技有限公司 一种光纤耦合太赫兹时域光谱测试系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345031A (zh) * 2013-07-31 2015-02-11 深圳先进技术研究院 一种扫描太赫兹时域光谱的光学装置、控制装置和系统
CN104422702A (zh) * 2013-08-30 2015-03-18 深圳先进技术研究院 一种基于太赫兹检测角膜水分的方法
CN107144545A (zh) * 2017-06-09 2017-09-08 深圳市太赫兹科技创新研究院 全光纤式太赫兹时域光谱仪
CN107167241A (zh) * 2017-07-07 2017-09-15 上海朗研光电科技有限公司 太赫兹光谱成像系统及其快速扫描方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248100A (ja) * 2006-03-14 2007-09-27 Hitachi Ltd テラへルツ装置
CN201662531U (zh) * 2010-01-14 2010-12-01 首都师范大学 小型太赫兹时域光谱仪
CN106290228A (zh) * 2016-08-09 2017-01-04 上海拓领光电科技有限公司 一种配件组合式太赫兹时域光谱系统
CN106323907A (zh) * 2016-08-09 2017-01-11 上海拓领光电科技有限公司 一种光纤耦合太赫兹时域光谱测试系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556688A (zh) * 2019-09-28 2019-12-10 北京航空航天大学合肥创新研究院 一种太赫兹产生装置

Also Published As

Publication number Publication date
CN107917757A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
CN104568819A (zh) 一种全光纤透反射一体式太赫兹时域光谱系统
US3458259A (en) Interferometric system
WO2019091039A1 (zh) 一种便携式太赫兹光谱仪
WO2018054182A1 (zh) 延时线装置及太赫兹时域光谱仪系统
US11199495B2 (en) Terahertz full polarization state detection spectrometer
CN105784634A (zh) 垂直入射同时测透射和反射的太赫兹时域光谱仪
CN104897610B (zh) 一种旋转棱镜式多组份痕量气体浓度测量装置
CN106323907A (zh) 一种光纤耦合太赫兹时域光谱测试系统
WO2018223728A1 (zh) 全光纤式太赫兹时域光谱仪
CN109406441A (zh) 太赫兹时域光谱仪
CN211955982U (zh) 一种高精度连续可调的稳定输出激光功率衰减装置
CN112326588A (zh) 一种太赫兹时域光谱仪
CN117470780B (zh) 一种可实时获取琼斯矩阵的广义太赫兹时域椭偏检测系统
CN113394647B (zh) 一种基于线偏压位置的太赫兹波相位调控系统
CN209590278U (zh) 一种激光成像雷达
CN108931495A (zh) 太赫兹时域光谱同步测量系统与方法
CN103344574B (zh) 有机薄膜光增益性能测试装置
CN218847408U (zh) 一种太赫兹光纤光谱仪小型手持式检测探头装置及系统
JP4091214B2 (ja) テラヘルツ波分光器
CN217954260U (zh) 一种小型太赫兹样品仓测试模块
CN208026605U (zh) 一种小型化的太赫兹时域光谱仪装置
CN110854653A (zh) 一种基于非线性光学整流过程的宽带太赫兹光源
CN211527779U (zh) 一种固体隙fp标准具的测试装置
CN110806385B (zh) 一种光腔衰荡光谱测量装置以及系统
CN219552251U (zh) 太赫兹光纤光谱仪光学传输组件、小型检测探头及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875622

Country of ref document: EP

Kind code of ref document: A1