WO2019090953A1 - 水处理装置、光触媒处理机构及其处理方法 - Google Patents
水处理装置、光触媒处理机构及其处理方法 Download PDFInfo
- Publication number
- WO2019090953A1 WO2019090953A1 PCT/CN2017/120069 CN2017120069W WO2019090953A1 WO 2019090953 A1 WO2019090953 A1 WO 2019090953A1 CN 2017120069 W CN2017120069 W CN 2017120069W WO 2019090953 A1 WO2019090953 A1 WO 2019090953A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- container
- cavity
- photocatalyst
- intake pipe
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 158
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 50
- 230000007246 mechanism Effects 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title abstract description 33
- 241000195493 Cryptophyta Species 0.000 claims abstract description 34
- 230000001699 photocatalysis Effects 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000012495 reaction gas Substances 0.000 claims abstract description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 46
- 229910052759 nickel Inorganic materials 0.000 claims description 23
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 17
- 244000005700 microbiome Species 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- 230000001590 oxidative effect Effects 0.000 claims description 10
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 claims description 7
- 238000004070 electrodeposition Methods 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 3
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 abstract description 18
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 abstract description 18
- 230000001954 sterilising effect Effects 0.000 abstract description 17
- 230000002147 killing effect Effects 0.000 abstract description 12
- 239000006227 byproduct Substances 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 230000000711 cancerogenic effect Effects 0.000 abstract description 5
- 231100000315 carcinogenic Toxicity 0.000 abstract description 5
- 239000007789 gas Substances 0.000 abstract description 5
- 230000003647 oxidation Effects 0.000 abstract description 5
- 150000001649 bromium compounds Chemical class 0.000 abstract 1
- 230000008569 process Effects 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 238000004659 sterilization and disinfection Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 14
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000013032 photocatalytic reaction Methods 0.000 description 7
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 5
- 230000002353 algacidal effect Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 239000011575 calcium Substances 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 239000008239 natural water Substances 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 235000020682 bottled natural mineral water Nutrition 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
- C02F2305/023—Reactive oxygen species, singlet oxygen, OH radical
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Definitions
- the invention relates to the technical field of water treatment, in particular to a water treatment device, a photocatalyst treatment mechanism and a treatment method thereof.
- microorganisms and algae are usually used as the guiding basis for the selection of water treatment process.
- the control effect of microorganisms and algae is enhanced, and the control measures of microorganisms and algae are generally They are placed in the front part of the water treatment process, that is, as a process part of the pre-treatment process, after proper pre-treatment, they are then taken into the subsequent water treatment process for further water treatment to achieve the final product water quality requirements.
- the pre-treatment pre-stage processes widely used in current water treatment processes are: pool/wells – booster pumps – chlorination (sodium hypochlorite or calcium hypochlorite or chlorine dioxide).
- chlorination sodium hypochlorite or calcium hypochlorite or chlorine dioxide.
- chlorination process is used to sterilize and remove algae from the water source, the concentration of the solution is higher, and the bromide in the water is also converted into a highly toxic carcinogenic by-product, bromate.
- bromate exceeded the standard (national control standard value is ⁇ 10ppb), which seriously endangers the health of humans and animals. It also increases the complexity of subsequent processing, project investment and operating costs.
- the concentration is low and the risk of exceeding the standard is high. Poor stability and potential hazards.
- the chlorination process has a certain effect on the sterilization and algae removal of the water source, for the natural mineral water and the mountain spring water, the chlorine-containing disinfectant belongs to the intrinsic component of the non-natural water, and belongs to the artificial medicament, which is prohibited by the state. Process method. Therefore, its scope of application is narrower and only applicable to non-natural drinking water and industrial water treatment.
- a photocatalyst processing mechanism comprising:
- a container for storing water, a water inlet and a water outlet penetrating through an inner wall and an outer wall of the container, and an exhaust port on the container An inner wall and an outer wall of the container, the exhaust port being for exhausting;
- the ultraviolet generating component includes a controller and an ultraviolet lamp, the controller is disposed outside the container, the ultraviolet lamp is received in the container, and the controller is configured to control opening and closing of the ultraviolet lamp;
- An intake pipe having one end extending into the container, the intake pipe being provided with an air inlet for introducing a reaction gas into the container;
- a photocatalyst assembly comprising a carrier and a photocatalytic material supported on the carrier, the photocatalytic material being used to catalyze a reaction gas introduced from the intake pipe and water in the container
- the water molecules react to form hydroxyl radicals with oxidizing power.
- the carrier is a foamed nickel mesh
- the photocatalytic material is nano titanium dioxide
- the nano titanium dioxide is formed on the foamed nickel mesh by electrodeposition to form a supported nano titanium dioxide photocatalyst assembly.
- the foamed nickel mesh deposited with the nano-titanium dioxide partitions the container into a first cavity and a second cavity, one end of the inlet pipe extending into the first cavity,
- the intake pipe is provided with a plurality of spaced-apart air inlets, and the ultraviolet lamp is located in the second cavity.
- one end of the inlet pipe extends into the foamed nickel mesh such that at least one of the inlets is located inside the foamed nickel mesh;
- the air inlet is located below the water inlet.
- the water inlet is opened below the side wall of the first cavity, and the water outlet is opened above the side wall of the second cavity.
- the number of the photocatalyst components is two, and the two photocatalyst components divide the container into a first cavity, a second cavity, and a third cavity, the second cavity Located between the first cavity and the third cavity, the intake pipe includes a first intake pipe and a second intake pipe, and one end of the first intake pipe extends into the first cavity, One end of the second intake pipe extends into the third cavity, and the ultraviolet lamp is located in the second cavity.
- the water inlet is opened below the side wall of the first cavity, and the water outlet is opened above the side wall of the third cavity.
- the ultraviolet generating component further includes a sleeve and a meter, the ultraviolet lamp is a low pressure ultraviolet lamp, and the sleeve is located in the container and sleeved outside the ultraviolet lamp, the meter Located outside the container.
- a water treatment device comprising:
- the booster pump is configured to pump water in the water tank into a container in the photocatalyst processing mechanism.
- a method for processing a photocatalyst processing mechanism includes the following steps:
- Water is introduced into the container through the water inlet;
- the photocatalytic material supported on the carrier catalyzes the reaction gas to react with the moisture of the water in the container to form a hydroxyl radical having an oxidizing power, and the hydroxyl radical is used to decompose the organic substances and inorganic substances harmful to the human body in the water in the container, and kill Microorganisms and algae in water;
- the sterilized and algae-killing water is discharged through the water outlet.
- the above water treatment device, photocatalyst processing mechanism and processing method thereof have at least the following advantages:
- the water is introduced into the container through the water inlet, and the controller controls the ultraviolet lamp to open to generate ultraviolet rays, and the reaction gas is introduced into the container through the air inlet of the air inlet tube, and the photocatalytic material supported on the carrier catalyzes the reaction gas and the water in the container.
- Water molecules react to produce hydroxyl radicals with oxidizing power. Hydroxyl radicals can decompose almost all organic substances and some inorganic substances harmful to human body and the environment. They have strong bactericidal action and have a strong killing effect on algae. It can efficiently decompose bromate produced by oxidation of bromide and bromate present in water itself, and has a wide range of application and no carcinogenic by-products of bromate.
- Figure 1 is a schematic view of a water treatment device in an embodiment
- FIG. 2 is a schematic view of the photocatalyst processing mechanism of FIG. 1;
- FIG. 3 is a flow chart showing a processing method of a photocatalyst processing mechanism in an embodiment.
- a water treatment device 10 in an embodiment is mainly used for treating water of a water source, so that the content of microorganisms and algae in the water source meets the qualified standard, and is used as an effective resource for rational use, for example, as municipal water, packaging. Drinking water, mineral water, industrial production water or agricultural irrigation water, etc.
- the water treatment device 10 includes a water tank 100, a boost pump 200, and a photocatalyst treatment mechanism 300.
- the booster pump 200 is in communication with the water tank 100 and is located between the water tank 100 and the photocatalyst processing mechanism 300.
- the booster pump 200 pumps the water in the water tank 100 into the photocatalyst processing mechanism 300 for processing.
- the photocatalyst processing mechanism 300 includes a container 310 , an ultraviolet generating component 320 , an air intake pipe 330 , and a photocatalyst component 340 .
- the container 310 is used for storing water, and the booster pump 200 pumps the water in the water tank 100 into the container 310. After a series of reactions in the container 310, the microorganisms and algae content in the water are qualified.
- the water inlet 311 and the water outlet 312 of the inner wall and the outer wall of the container 310 are opened on the side wall of the container 310.
- the water inlet 311 corresponds to the water inlet pipe, and water is introduced into the container 310 through the water inlet 311.
- the water outlet 312 corresponds to the water outlet pipe for discharging the water after sterilization and algicidal discharge to the container 310.
- the ultraviolet generating component 320 includes a controller 321, an ultraviolet lamp 322, a sleeve 323, and a meter (not shown).
- the controller 321 is disposed outside the container 310, the ultraviolet lamp 322 is received in the container 310, and the controller 321 is used to control the ultraviolet lamp. Opening and closing of 322.
- the sleeve 323 is located in the container 310 and sleeved outside the ultraviolet lamp 322.
- the sleeve 323 can be a high-purity quartz sleeve, so that the outer wall of the sleeve 323 is smooth and the transmittance is high, which is beneficial to improving the penetration efficiency of ultraviolet rays. , thereby increasing the photocatalytic rate.
- the sleeve 323 may be made of other materials as long as the outer wall is smooth and the light transmittance is high.
- the meter is located outside of the container 310.
- the meter can be an online meter for online control.
- the meter can also be a separate meter that is offline.
- the ultraviolet lamp 322 Due to the use of higher doses of ultraviolet light or high pressure, medium pressure ultraviolet light for sterilization, the ultraviolet lamp 322 has high energy consumption and large thermal energy release, which easily leads to Ca 2+ , Mg 2+ , Sr 2+ and Ba 2+ in the raw water.
- the hardness ionic component deposits scale on the outer wall of the high-purity quartz sleeve which is smooth outside the ultraviolet lamp 322 (commonly known as “scale”), and the ultraviolet ray penetrating performance of the quartz sleeve after scale formation is greatly reduced, thereby greatly reducing the ultraviolet algae removal effect.
- the outer wall of the casing becomes very rough, and it is easy to adhere to bacteria and algae, forming microbial slime, and microorganisms such as bacteria are breeding and breeding. If medium-pressure ultraviolet light is used for natural water source sterilization and algae removal, the nitrate will be converted into a highly toxic carcinogenic nitrite with a conversion efficiency of 25-80%, which often causes the risk of nitrite exceeding the standard.
- the ultraviolet lamp 322 is a low-pressure ultraviolet lamp, and the low-pressure ultraviolet lamp can effectively reduce the power consumption and reduce the surface temperature of the outer wall of the lamp tube and the sleeve 323, thereby preventing Ca 2+ and Mg in the water.
- the hardness ionic components such as 2+ , Sr 2+ and Ba 2+ deposit scale on the outer wall of the outer sleeve 323 of the ultraviolet lamp 322, thereby reducing the risk of scale formation and forming microbial slime, and on the other hand, completely reducing the formation of nitrite. risk.
- the intake pipe 330 extends into the container 310.
- the intake pipe 330 is provided with an air inlet 331 for introducing a reaction gas into the container 310.
- the reaction gas may be air, oxygen or ozone.
- a very low concentration of ozone such as 0.1-0.3 ppm or even lower to achieve a good sterilization and algicidal effect.
- air can be introduced into the container 310 through the air inlet 331, such as sterile oil-free compressed air or oxygen.
- a plurality of spaced-apart intake ports 331 are defined in the intake pipe 330.
- One end of the intake pipe 330 extends into the foamed nickel mesh such that at least one of the intake ports 331 is located inside the foamed nickel mesh.
- An exhaust port 313 is opened in the container 310.
- the exhaust port 313 extends through the inner wall and the outer wall of the container 310, and the exhaust port 313 is used for exhausting.
- the exhaust port 313 may be opened at the top wall of the container 310 to discharge excess air, oxygen, or ozone.
- the exhaust port 313 can also be opened at the top of the side wall of the container 310, and the function of the exhaust can also be achieved.
- the photocatalyst assembly 340 includes a carrier and a photocatalytic material supported on the carrier, and the photocatalytic material is used for catalysis to cause oxygen in the ozone, oxygen or air introduced from the intake pipe 330 and water in the container 310.
- the reaction of water molecules produces hydroxyl radicals ( ⁇ OH - ) with oxidizing power. Hydroxyl radicals can decompose almost all organic substances and some inorganic substances harmful to the human body and the environment, which not only accelerates the reaction, but also applies the laws of nature. Resulting in waste of resources and the formation of additional pollution.
- the carrier may be a foamed nickel mesh, because the foamed nickel mesh has a large specific surface area and stable properties, and is an ideal carrier for a photocatalytic material.
- the photocatalytic material may be nano titanium dioxide (TiO 2 ), and the nano titanium dioxide is supported on the foam nickel net by an electrodeposition technique to form a supported nano titanium dioxide photocatalyst assembly 340.
- nano-titanium dioxide catalyzes the reaction of ozone, oxygen or oxygen in the air, which is introduced into the intake pipe 330, with water molecules in the water to generate highly oxidizing hydroxyl radicals under the action of ultraviolet rays.
- Hydroxyl radicals have a strong bactericidal effect, and the efficiency can be increased by 60 to 95% compared to ultraviolet sterilization alone. It also has a very strong killing effect on algae. Compared with UV-based algae removal alone, the efficiency can be increased by 78 to 98%, which greatly reduces the processing load and equipment investment of the subsequent treatment process, and also reduces the generation of odor.
- the photocatalytic reaction can efficiently decompose the bromate produced by the oxidation of bromide and the bromate in the water source itself, and the decomposition efficiency is 30-85%, which greatly reduces the risk of subsequent equipment investment and excessive bromate. Combined with a reasonable water treatment process, the product's hydrobromide content is controlled to within 10 ppb.
- the photocatalytic reaction can decompose the algal toxin produced by endotoxin and algae, and the decomposition efficiency is about 83-96.5%, which greatly reduces the toxicity and reduces the generation of water odor.
- the intake port 331 is located below the water inlet 311, and the intake port 331 is located at the bottom of the container 310. Therefore, when the gas is introduced into the container 310 through the gas inlet 331, the water body can be disturbed to form a turbulent flow, which can greatly increase the surface contact area between the microorganisms and the algae particles and the photocatalyst assembly 340, thereby increasing the reaction probability and thereby increasing the ratio. The effect of sterilization and algae killing. At the same time, it is also effective to prevent the killed microorganisms and algae from sinking at the bottom of the container 310, or adhere to the photocatalyst assembly 340 to form a microbial mucosa, which is processed and removed by the water flow into the latter stage water treatment process.
- the number of photocatalyst assemblies 340 is two, and the two photocatalyst assemblies 340 divide the container 310 into a first cavity 310a, a second cavity 310b, and a third cavity 310c, and the second cavity 310b is located. Between the first cavity 310a and the third cavity 310c. Since the carrier is a foamed nickel mesh, the first cavity 310a, the second cavity 310b, and the third cavity 310c are in communication.
- the intake pipe 330 includes a first intake pipe and a second intake pipe. One end of the first intake pipe extends into the first cavity 310a, one end of the second intake pipe extends into the third cavity 310c, and the ultraviolet lamp 322 is located at the second. Inside the cavity 310b.
- the water inlet 311 is opened below the side wall of the first cavity 310a, and the water outlet 312 is opened above the side wall of the third cavity 310c. Therefore, the oblique hydrodynamic flow direction of the left lower and upper right is formed, and the reaction time of photocatalytic sterilization and algae killing is prolonged by increasing the length of the water flow process, thereby greatly enhancing the effects of sterilization and algae killing.
- the first cavity 310a forms a left reaction chamber
- the third cavity 310c forms a right reaction chamber
- the water after the photocatalytic reaction in the left reaction chamber flows to the right reaction chamber and flows through the photocatalyst assembly 340. Further reaction, thus increasing the effect of sterilization and algae killing.
- the foamed nickel mesh deposited with nano titanium dioxide separates the container into a first cavity and a second cavity, one end of the inlet pipe extends into the first cavity, and the inlet pipe is provided with a plurality of intervals.
- the air inlet is provided, and the ultraviolet lamp is located in the second cavity.
- One end of the intake pipe extends into the foamed nickel mesh so that at least one air inlet is located inside the foamed nickel mesh, and when the gas is introduced, the water corresponding to the foamed nickel mesh also causes turbulence.
- the water inlet is opened below the side wall of the first cavity, and the water outlet is opened above the sidewall of the second cavity. Therefore, the oblique hydrodynamic flow direction of the left lower and upper right is formed, and the reaction time of photocatalytic sterilization and algae killing is prolonged by increasing the length of the water flow process, thereby greatly enhancing the effects of sterilization and algae killing.
- the photocatalyst processing mechanism 300 further includes a drain valve 350 disposed at the bottom of the container 310.
- the drain valve 350 may be opened, the water in the container 310 is discharged, and the photocatalyst assembly 340 or the take-out sleeve 323 is replaced for cleaning.
- the water treatment device 10 in the embodiment may further include a rear processing mechanism, and the rear processing mechanism is mainly used to process the water treated by the photocatalyst processing mechanism 300, and is mainly used as a filter intercepting sludge, mechanical particle impurities, and suspended matter. Colloids, macromolecular organics, etc., can also be used to remove the microbial corpses, algae and microflora killed by the photocatalyst treatment mechanism 300 in the previous process, and it is also used as an auxiliary treatment mechanism for microbial and algae control.
- the water treatment device 10 and the photocatalytic treatment mechanism 300 have at least the following advantages:
- the water is introduced into the container 310 through the water inlet 311, and the controller 321 controls the ultraviolet lamp 322 to open to generate ultraviolet rays, and air, oxygen or ozone is introduced into the container 310 through the air inlet 331 of the intake pipe 330, and the photocatalyst supported on the carrier is catalyzed.
- the material catalyzes the reaction of oxygen in the ozone, oxygen or air with the water molecules of the water in the container 310 to produce an oxidizing hydroxyl radical, which can decompose almost all organic substances and some inorganic substances harmful to the human body and the environment. It has a strong bactericidal effect and has a very strong killing effect on algae. It can efficiently decompose the bromate produced by the oxidation of bromide and the bromate present in the water. It has a wide range of application and no carbamate-induced carcinogenesis. Sex by-products are produced.
- a method for processing a photocatalyst processing mechanism including the following steps:
- step S110 water is introduced into the container 310 through the water inlet 311.
- the water inlet 311 corresponds to an inlet pipe, and one end of the inlet pipe communicates with the water tank 100, and the water in the water tank 100 is introduced into the container 310 through the water inlet 311 through the booster pump 200.
- the reaction gas is introduced into the container 310 through the intake port 331 of the intake pipe 330.
- the reaction gas may be ozone, oxygen or air.
- ozone oxygen
- air can be introduced into the container 310 through the air inlet 331, such as sterile oil-free compressed air or oxygen.
- the ultraviolet lamp 322 is turned on to generate ultraviolet rays.
- the ultraviolet lamp 322 is located inside the container 310, and the ultraviolet lamp 322 is turned on to generate ultraviolet rays.
- the ultraviolet lamp 322 is a low-pressure ultraviolet lamp 322.
- the low-pressure ultraviolet lamp 322 can effectively reduce the power consumption and reduce the surface temperature of the outer wall of the lamp tube and the sleeve 323, thereby preventing Ca 2+ and Mg in the water.
- the hardness ionic components such as 2+ , Sr 2+ and Ba 2+ deposit scale on the outer wall of the outer sleeve 323 of the ultraviolet lamp 322, thereby reducing the risk of scale formation and forming microbial slime, and on the other hand, completely reducing the formation of nitrite. risk.
- Step S140 the photocatalytic material supported on the carrier catalyzes the reaction of oxygen in the ozone, oxygen or air with the moisture of the water in the container 310 to generate a hydroxyl radical having an oxidizing power, and the hydroxyl radical is used to decompose the water in the container 310.
- Harmful organic and inorganic substances in the human body kill microorganisms and algae in the water. It not only accelerates the response, but also applies the laws of nature without causing waste of resources and the formation of additional pollution.
- the carrier may be a foamed nickel mesh, because the foamed nickel mesh has a large specific surface area and stable properties, and is an ideal carrier for a photocatalytic material.
- the photocatalytic material may be nano titanium dioxide (TiO 2 ), and the nano titanium dioxide is supported on the foam nickel net by an electrodeposition technique to form a supported nano titanium dioxide photocatalyst assembly 340.
- nano-titanium dioxide catalyzes the reaction of ozone, oxygen or oxygen in the air, which is introduced into the intake pipe 330, with water molecules in the water to generate highly oxidizing hydroxyl radicals under the action of ultraviolet rays.
- Hydroxyl radicals have a strong bactericidal effect, and the efficiency can be increased by 60 to 95% compared to ultraviolet sterilization alone. It also has a very strong killing effect on algae. Compared with UV-based algae removal alone, the efficiency can be increased by 78 to 98%, which greatly reduces the processing load and equipment investment of the subsequent treatment process, and also reduces the generation of odor.
- the photocatalytic reaction can efficiently decompose the bromate produced by the oxidation of bromide and the bromate in the water source itself, and the decomposition efficiency is 30-85%, which greatly reduces the risk of subsequent equipment investment and excessive bromate. Combined with a reasonable water treatment process, the product's hydrobromide content is controlled to within 10 ppb.
- the photocatalytic reaction can decompose the algal toxin produced by endotoxin and algae, and the decomposition efficiency is about 83-96.5%, which greatly reduces the toxicity and reduces the generation of water odor.
- step S150 the sterilized and algae-killing water is discharged through the water outlet 312.
- the water inlet 311 is located at the bottom of the left side wall of the container 310, and the water outlet 312 is located at the top of the right side wall, forming an oblique hydrodynamic flow direction of the left lower and upper right, and prolonging the photocatalytic sterilization and algicidal by increasing the length of the water flow process.
- the reaction time greatly enhances the effects of sterilization and algae killing.
- the above treatment method is suitable for the control of microorganisms and algae in most water sources, and has a wide range of applications. No harmful or polluting by-products are formed in the whole process, and no other artificial agents need to be added. It is especially suitable for natural mineral water, natural water, packaged water and municipal drinking water, which are sensitive to indicators such as nitrite and bromate. Water treatment system project.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
一种水处理装置(10)、光触媒处理机构(300)及其处理方法,通过进水口(311)向容器(310)内通入水,控制器(321)控制紫外灯(322)开启产生紫外线,通过进气管(330)的进气口(331)向容器(310)内通入反应气体,负载于载体上的光催化材料催化反应气体与容器(310)内的水的水分子产生反应生产具有氧化力的羟基自由基,羟基自由基几乎可分解所有对人体和环境有害的有机物质和部分无机物质,具有很强的杀菌作用,对藻类也具有非常强的杀灭作用,能够高效分解因溴化物氧化而产生的溴酸盐及水中本身存在的溴酸盐,适用范围较广且无溴酸盐致癌性副产物产生。
Description
本发明涉及水处理技术领域,特别是涉及一种水处理装置、光触媒处理机构及其处理方法。
微生物和藻类作为最基本的控制指标通常用作水处理工艺流程选择的指导依据,为降低后段水处理工艺设备的处理负荷,增强系统对微生物和藻类的控制效果,微生物和藻类的控制措施一般都放在水处理工艺流程的前段,即作为预处理工艺前段的一个工艺环节,经过适当预处理后进入后续水处理工艺环节进行进一步水质处理以达到最终产品水水质要求。
目前水处理工艺中广泛采用的预处理前段工艺有:水池/水井–增压泵–加氯(次氯酸钠或者次氯酸钙或者二氧化氯)。然而如果单纯采用加氯的工艺对水源进行杀菌和除藻时,投加浓度较高,同时也会将水中的溴化物转化成毒性较强的致癌性副产物——溴酸盐。在很多项目中特别是水源中溴化物或者溴酸盐本底值较高的水源,均出现溴酸盐超标的现象(国家控制标准值为<10ppb),严重危害到人畜的身体健康。也增加了后续处理工艺的复杂性、项目投资及运行成本。但是浓度低了,微生物超标的风险又很高。稳定性差、存在的隐患较大。
而且,虽然采用加氯工艺对水源进行杀菌和除藻也有一定效果,但是对于天然矿泉水和山泉水而言,含氯消毒剂它属于非天然水中的固有成分,属于人工药剂,是国家明令禁止的工艺方法。因此它的适用范围更窄,仅适用于非天然饮用水及工业水处理范畴。
发明内容
基于此,有必要针对上述技术问题,提供一种适用范围较广且无溴酸盐致癌性副产物产生的水处理装置、光触媒处理机构及其处理方法。
一种光触媒处理机构,包括:
容器,用于储水,所述容器的侧壁上开设有贯穿所述容器的内壁与外壁的进水口及出水口,所述容器上还开设有排气口,所述排气口贯穿所述容器的内壁与外壁,所述排气口用于排气;
紫外线产生组件,包括控制器及紫外灯,所述控制器设置于所述容器外,所述紫外灯收容于所述容器内,所述控制器用于控制所述紫外灯的开闭;
进气管,一端伸入所述容器内,所述进气管上开设有进气口,所述进气口用于向所述容器内通入反应气体;及
光触媒组件,包括载体及光催化材料,所述光催化材料负载于所述载体上,所述光催化材料用于起催化作用,使从所述进气管通入的反应气体与容器内的水的水分子反应生成具有氧化力的羟基自由基。
在其中一个实施例中,所述载体为泡沫镍网,所述光催化材料为纳米二氧化钛,所述纳米二氧化钛通过电沉积方式负载形成在所述泡沫镍网上,形成固载型纳米二氧化钛光触媒组件。
在其中一个实施例中,沉积有所述纳米二氧化钛的所述泡沫镍网将所述容器分隔成第一腔体及第二腔体,所述进气管的一端伸入所述第一腔体内,所述进气管上开设有多个间隔设置的进气口,所述紫外灯位于所述第二腔体内。
在其中一个实施例中,所述进气管的一端伸入所述泡沫镍网中使至少一所述进气口位于泡沫镍网的内部;和/或
所述进气口位于所述进水口的下方。
在其中一个实施例中,所述进水口开设于所述第一腔体的侧壁的下方,所述出水口开设于所述第二腔体的侧壁的上方。
在其中一个实施例中,所述光触媒组件的数量为两个,两个所述光触媒组件将所述容器分隔成第一腔体、第二腔体及第三腔体,所述第二腔体位于所述第一腔体与所述第三腔体之间,所述进气管包括第一进气管及第二进气管,所述第一进气管的一端伸入所述第一腔体内,所述第二进气管的一端伸入所述第三腔体内,所述紫外灯位于所述第二腔体内。
在其中一个实施例中,所述进水口开设于所述第一腔体的侧壁的下方,所述出水口开设于所述第三腔体的侧壁的上方。
在其中一个实施例中,所述紫外线产生组件还包括套管及仪表,所述紫外灯为低压紫外灯,所述套管位于所述容器内且套设于所述紫外灯外,所述仪表位于所述容器外。
一种水处理装置,包括:
水箱;
增压泵,与所述水箱相连通;及
如以上任意一项所述的光触媒处理机构,所述增压泵用于将所述水箱中的水泵入所述光触媒处理机构中的容器内。
一种光触媒处理机构的处理方法,包括以下步骤:
通过进水口向容器内通入水;
通过进气管的进气口向容器内通入反应气体;
开启紫外灯,以产生紫外线;
负载于载体上的光催化材料催化反应气体与容器内的水的水分反应生成具有氧化力的羟基自由基,羟基自由基用于分解容器内的水中对人体有害的有机物质及无机物质,杀灭水中的微生物和藻类;
经过杀菌和杀藻的水通过出水口排出。
上述水处理装置、光触媒处理机构及其处理方法至少具有以下优点:
通过进水口向容器内通入水,控制器控制紫外灯开启产生紫外线,通过进气管的进气口向容器内通入反应气体,负载于载体上的光催化材料催化反应气体与容器内的水的水分子产生反应生产具有氧化力的羟基自由基,羟基自由基几乎可分解所有对人体和环境有害的有机物质和部分无机物质,具有很强的杀菌作用,对藻类也具有非常强的杀灭作用,能够高效分解因溴化物氧化而产生的溴酸盐及水中本身存在的溴酸盐,适用范围较广且无溴酸盐致癌性副产物产生。
图1为一实施方式中的水处理装置的示意图;
图2为图1中的光触媒处理机构的示意图;
图3为一实施方式中的光触媒处理机构的处理方法的流程示意图。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
请参阅图1,一实施方式中的水处理装置10,主要用于处理水源的水,使水源中的微生物和藻类含量达到合格标准,以作为有效资源加以合理利用,如用作市政用水、包装饮用水、矿泉水、工业生产用水或农业灌溉水等等。具体到本实施方式中,水处理装置10包括水箱100、增压泵200和光触媒处理机构300。增压泵200与水箱100相连通,且位于水箱100与光触媒处理机构300之 间,增压泵200将水箱100中的水泵入光触媒处理机构300中进行处理。
请一并参阅图2,具体到本实施方式中,光触媒处理机构300包括容器310、紫外线产生组件320、进气管330及光触媒组件340。容器310用于储水,增压泵200将水箱100中的水泵入容器310中,在容器310内经过一系列反应后使水中的微生物和藻类含量达到合格标准。
容器310的侧壁上开设有贯穿容器310的内壁与外壁的进水口311及出水口312,进水口311与进水管相对应,通过进水口311向容器310内通入水。出水口312与出水管相对应,用于将经过杀菌与杀藻后的水排出容器310。
紫外线产生组件320包括控制器321、紫外灯322、套管323及仪表(图未示),控制器321设置于容器310外,紫外灯322收容于容器310内,控制器321用于控制紫外灯322的开闭。套管323位于容器310内且套设于紫外灯322外,套管323可以为高纯石英套管,因此套管323的外壁光滑,且透光率较高,有利于提高紫外线的穿透效率,从而提高光催化率。当然,在其它的实施方式中,套管323还可以为其它材料制成,只要能够外壁光滑且透光率较高的功能即可。仪表位于容器310外,例如,仪表可以为在线仪表,以实现在线控制。当然,在其它的实施方式中,仪表也可以为离线的单独仪表。
由于采用较高剂量的紫外线或者高压、中压紫外线进行杀菌时,紫外灯322的能耗高,释放的热能大,容易导致原水中Ca
2+、Mg
2+、Sr
2+及Ba
2+等硬度离子成分在紫外灯322外光滑的高纯石英套管外壁上沉积结垢(俗称“水垢”),结垢形成后的石英套管的紫外线穿透性能大幅降低,从而紫外线除藻效果大幅降低;同时套管外壁也变得非常粗糙,容易粘附细菌、藻类,形成微生物粘泥,细菌等微生物大量滋生繁殖。如果采用中压紫外线用于天然水水源杀菌和除藻,还会将硝酸盐转化成毒性较强的致癌性亚硝酸盐,转化效率为25~80%,经常会造成亚硝酸盐超标的风险。
因此,具体到本实施方式中,紫外灯322为低压紫外灯,采用低压紫外灯一方面可以有效降低电能消耗,降低灯管及套管323外壁的表面温度,从而防止水中的Ca
2+、Mg
2+、Sr
2+及Ba
2+等硬度离子成分在紫外灯322外套管323的外壁 上沉积结垢,减少结垢风险和形成微生物粘泥,另一方面也可以完全降低亚硝酸盐生成的风险。
进气管330的一端伸入容器310内,进气管330上开设有进气口331,进气口331用于向容器310内通入反应气体。具体地,反应气体可以为空气、氧气或臭氧。利用光催化反应优越的杀菌和杀藻性能,仅需投加很低浓度的臭氧如0.1-0.3ppm甚至更低即可达到很好的杀菌和杀藻效果。对于水质较好的水源,则可以通过进气口331向容器310内通入空气,例如无菌无油的压缩空气或氧气。进气管330上开设有多个间隔分布的进气口331,进气管330的一端伸入泡沫镍网中使至少一进气口331位于泡沫镍网的内部。
容器310上开设有排气口313,排气口313贯穿容器310的内壁与外壁,排气口313用于排气。具体地,排气口313可以开在容器310的顶壁,以排出多余的空气、氧气或臭氧。当然,在其它的实施方式中,排气口313也可以开在容器310的侧壁的顶部,也能实现排气的功能。
光触媒组件340包括载体及光催化材料,光催化材料负载于载体上,光催化材料用于其催化作用,使从进气管330通入的臭氧、氧气或空气中的氧气与容器310内的水的水分子反应生成具有氧化力的羟基自由基(·OH
-),羟基自由基几乎可分解所有对人体和环境有害的有机物质及部分无机物质,不仅能加速反应,也能运用自然界的定律,不造成资源浪费与附加污染的形成。
具体到本实施方式中,载体可以为泡沫镍网,因为泡沫镍网的比表面积大,性质稳定,是一种理想的光催化材料的载体。光催化材料可以为纳米二氧化钛(TiO
2),利用电沉积技术将纳米二氧化钛负载形成于泡沫镍网上,形成固载型纳米二氧化钛光触媒组件340。纳米二氧化钛作为高效催化剂在紫外线的作用下催化进气管330通入的臭氧、氧气或空气中的氧气与水中的水分子反应产生极具氧化力的羟基自由基。
羟基自由基具有很强的杀菌消毒作用,相对于单独使用紫外线杀菌来说,效率可以提高60~95%。对藻类也具有非常强的杀灭作用,比单独使用紫外线除藻来说,效率可以提高78~98%,大大减轻了后续处理工艺的处理负荷和设备投 资,也能减少异味的产生。
加之光催化反应能高效分解因溴化物氧化而产生的溴酸盐以及水源水中本身的溴酸盐,分解效率为30-85%,大大降低后续设备投资及溴酸盐超标的风险。结合后续合理的水处理工艺,可确保产品水溴酸盐含量控制在10ppb之内。利用光催化反应能能分解内毒素和藻类产生的藻毒素,分解效率约为83-96.5%,大大降低其毒性,减轻水体异味的产生。
进气口331位于进水口311的下方,且进气口331位于容器310的底部。因此,在进气口331向容器310内通入气体时,可以对水体进行扰动,形成紊流,可大大增加微生物与藻类颗粒与光触媒组件340的表面接触面积,以增大反应几率,从而提高杀菌和杀藻的效果。同时也能有效防止被杀死的微生物和藻类沉降在容器310底部,或者粘附在光触媒组件340上形成微生物粘膜,让其随水流进入后段水处理工艺进行处理去除。
具体到本实施方式中,光触媒组件340的数量为两个,两个光触媒组件340将容器310分隔成第一腔体310a、第二腔体310b及第三腔体310c,第二腔体310b位于第一腔体310a与第三腔体310c之间。由于载体为泡沫镍网,因此第一腔体310a、第二腔体310b及第三腔体310c相连通。进气管330包括第一进气管及第二进气管,第一进气管的一端伸入第一腔体310a内,第二进气管的一端伸入第三腔体310c内,紫外灯322位于第二腔体310b内。
进水口311开设于第一腔体310a的侧壁的下方,出水口312开设于第三腔体310c的侧壁的上方。因此,形成了左下进、右上出的斜向流体力学流向,通过增加水流流程长度来延长光催化杀菌和杀藻的反应时间,大大增强了杀菌和杀藻的效果。而且本实施方式中,第一腔体310a形成了左反应室,第三腔体310c形成了右反应室,在左反应室经过光催化反应后的水流向右反应室,流过光触媒组件340时,进一步反应,因此增大了杀菌和杀藻的效果。
当然,在其它的实施方式中,沉积有纳米二氧化钛的泡沫镍网将容器分隔成第一腔体及第二腔体,进气管的一端伸入第一腔体内,进气管上开设有多个间隔设置的进气口,紫外灯位于第二腔体内。进气管的一端伸入泡沫镍网中使 至少一进气口位于泡沫镍网的内部,通入气体时,使泡沫镍网对应的水也产生紊流现象。
当容器被分隔成第一腔体及第二腔体时,此时进水口开设于第一腔体的侧壁的下方,出水口开设于第二腔体的侧壁的上方。因此,形成了左下进、右上出的斜向流体力学流向,通过增加水流流程长度来延长光催化杀菌和杀藻的反应时间,大大增强了杀菌和杀藻的效果。
具体到本实施方式中,光触媒处理机构300还包括排水阀350,排水阀350设置于容器310的底部。当需要更换光触媒组件340或者清洗套管323时,可以打开排水阀350,将容器310内的水排出后更换光触媒组件340或取出套管323进行清洗。
当然,本实施方式中的水处理装置10还可以包括后段处理机构,后段处理机构主要用于处理经过光触媒处理机构300处理过的水,主要用作过滤拦截淤泥、机械颗粒杂质、悬浮物、胶体、大分子有机物等,也同时可将前段工艺中光触媒处理机构300杀灭的微生物尸体、藻类及菌团一并过滤去除,它也作为微生物和藻类控制的辅助处理机构。
上述水处理装置10及光触媒处理机构300至少具有以下优点:
通过进水口311向容器310内通入水,控制器321控制紫外灯322开启产生紫外线,通过进气管330的进气口331向容器310内通入空气、氧气或臭氧,负载于载体上的光催化材料催化臭氧、氧气或空气中的氧气与容器310内的水的水分子产生反应生产具有氧化力的羟基自由基,羟基自由基几乎可分解所有对人体和环境有害的有机物质和部分无机物质,具有很强的杀菌作用,对藻类也具有非常强的杀灭作用,能够高效分解因溴化物氧化而产生的溴酸盐及水中本身存在的溴酸盐,适用范围较广且无溴酸盐致癌性副产物产生。
请参阅图3,还提供一种光触媒处理机构的处理方法,包括以下步骤:
步骤S110,通过进水口311向容器310内通入水。进水口311处对应有进水管,进水管的一端与水箱100相连通,通过增压泵200将水箱100中的水经过进水口311通入容器310内。
步骤S120,通过进气管330的进气口331向容器310内通入反应气体。具体地,反应气体可以为臭氧、氧气或空气。利用光催化反应优越的杀菌和杀藻性能,仅需投加很低浓度的臭氧如0.1-0.3ppm甚至更低即可达到很好的杀菌和杀藻效果。对于水质较好的水源,则可以通过进气口331向容器310内通入空气,例如无菌无油的压缩空气或氧气。
步骤S130,开启紫外灯322,以产生紫外线。紫外灯322位于容器310内部,紫外灯322开启后产生紫外线。具体到本实施方式中,紫外灯322为低压紫外灯322,采用低压紫外灯322一方面可以有效降低电能消耗,降低灯管及套管323外壁的表面温度,从而防止水中的Ca
2+、Mg
2+、Sr
2+及Ba
2+等硬度离子成分在紫外灯322外套管323的外壁上沉积结垢,减少结垢风险和形成微生物粘泥,另一方面也可以完全降低亚硝酸盐生成的风险。
需要说明的是,步骤S110、S120、S130之间的顺序可以相互调换,并不做任何限定。
步骤S140,负载于载体上的光催化材料催化臭氧、氧气或空气中的氧气与容器310内的水的水分反应生成具有氧化力的羟基自由基,羟基自由基用于分解容器310内的水中对人体有害的有机物质及无机物质,杀灭水中的微生物和藻类。不仅能加速反应,也能运用自然界的定律,不造成资源浪费与附加污染的形成。
具体到本实施方式中,载体可以为泡沫镍网,因为泡沫镍网的比表面积大,性质稳定,是一种理想的光催化材料的载体。光催化材料可以为纳米二氧化钛(TiO
2),利用电沉积技术将纳米二氧化钛负载形成于泡沫镍网上,形成固载型纳米二氧化钛光触媒组件340。纳米二氧化钛作为高效催化剂在紫外线的作用下催化进气管330通入的臭氧、氧气或空气中的氧气与水中的水分子反应产生极具氧化力的羟基自由基。
羟基自由基具有很强的杀菌消毒作用,相对于单独使用紫外线杀菌来说,效率可以提高60~95%。对藻类也具有非常强的杀灭作用,比单独使用紫外线除藻来说,效率可以提高78~98%,大大减轻了后续处理工艺的处理负荷和设备投 资,也能减少异味的产生。
加之光催化反应能高效分解因溴化物氧化而产生的溴酸盐以及水源水中本身的溴酸盐,分解效率为30-85%,大大降低后续设备投资及溴酸盐超标的风险。结合后续合理的水处理工艺,可确保产品水溴酸盐含量控制在10ppb之内。利用光催化反应能能分解内毒素和藻类产生的藻毒素,分解效率约为83-96.5%,大大降低其毒性,减轻水体异味的产生。
步骤S150,经过杀菌和杀藻的水通过出水口312排出。进水口311位于容器310的左侧壁底部,出水口312位于右侧壁的顶部,形成了左下进、右上出的斜向流体力学流向,通过增加水流流程长度来延长光催化杀菌和杀藻的反应时间,大大增强了杀菌和杀藻的效果。
上述处理方法适用于绝大部分水源水中的微生物和藻类控制,适用范围广泛。整个工艺过程无任何有害或有污染的副产物生成,且无需添加其他人工药剂,特别适用于天然矿泉水、天然水、包装水及市政饮用水等对亚硝酸盐、溴酸盐等指标敏感的水处理系统项目。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种光触媒处理机构,其特征在于,包括:容器,用于储水,所述容器的侧壁上开设有贯穿所述容器的内壁与外壁的进水口及出水口,所述容器上还开设有排气口,所述排气口贯穿所述容器的内壁与外壁,所述排气口用于排气;紫外线产生组件,包括控制器及紫外灯,所述控制器设置于所述容器外,所述紫外灯收容于所述容器内,所述控制器用于控制所述紫外灯的开闭;进气管,一端伸入所述容器内,所述进气管上开设有进气口,所述进气口用于向所述容器内通入反应气体;及光触媒组件,包括载体及光催化材料,所述光催化材料负载于所述载体上,所述光催化材料用于起催化作用,使从所述进气管通入的反应气体与容器内的水的水分子反应生成具有氧化力的羟基自由基。
- 根据权利要求1所述的光触媒处理机构,其特征在于,所述载体为泡沫镍网,所述光催化材料为纳米二氧化钛,所述纳米二氧化钛通过电沉积方式负载形成在所述泡沫镍网上,形成固载型纳米二氧化钛光触媒组件。
- 根据权利要求2所述的光触媒处理机构,其特征在于,沉积有所述纳米二氧化钛的所述泡沫镍网将所述容器分隔成第一腔体及第二腔体,所述进气管的一端伸入所述第一腔体内,所述进气管上开设有多个间隔设置的进气口,所述紫外灯位于所述第二腔体内。
- 根据权利要求3所述的光触媒处理机构,其特征在于,所述进气管的一端伸入所述泡沫镍网中使至少一所述进气口位于泡沫镍网的内部;和/或所述进气口位于所述进水口的下方。
- 根据权利要求3所述的光触媒处理机构,其特征在于,所述进水口开设于所述第一腔体的侧壁的下方,所述出水口开设于所述第二腔体的侧壁的上方。
- 根据权利要求2所述的光触媒处理机构,其特征在于,所述光触媒组件的数量为两个,两个所述光触媒组件将所述容器分隔成第一腔体、第二腔体及第三腔体,所述第二腔体位于所述第一腔体与所述第三腔体之间,所述进气管 包括第一进气管及第二进气管,所述第一进气管的一端伸入所述第一腔体内,所述第二进气管的一端伸入所述第三腔体内,所述紫外灯位于所述第二腔体内。
- 根据权利要求6所述的光触媒处理机构,其特征在于,所述进水口开设于所述第一腔体的侧壁的下方,所述出水口开设于所述第三腔体的侧壁的上方。
- 根据权利要求1至7中任意一项所述的光触媒处理机构,其特征在于,所述紫外线产生组件还包括套管及仪表,所述紫外灯为低压紫外灯,所述套管位于所述容器内且套设于所述紫外灯外,所述仪表位于所述容器外。
- 一种水处理装置,其特征在于,包括:水箱;增压泵,与所述水箱相连通;及如权利要求1至8中任意一项所述的光触媒处理机构,所述增压泵用于将所述水箱中的水泵入所述光触媒处理机构中的容器内。
- 一种光触媒处理机构的处理方法,其特征在于,包括以下步骤:通过进水口向容器内通入水;通过进气管的进气口向容器内通入反应气体;开启紫外灯,以产生紫外线;负载于载体上的光催化材料催化反应气体与容器内的水的水分反应生成具有氧化力的羟基自由基,羟基自由基用于分解容器内的水中对人体有害的有机物质及无机物质,杀灭水中的微生物和藻类;经过杀菌和杀藻的水通过出水口排出。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711099230.8A CN107915273B (zh) | 2017-11-09 | 2017-11-09 | 水处理装置、光触媒处理机构及其处理方法 |
CN201711099230.8 | 2017-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019090953A1 true WO2019090953A1 (zh) | 2019-05-16 |
Family
ID=61895375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/120069 WO2019090953A1 (zh) | 2017-11-09 | 2017-12-29 | 水处理装置、光触媒处理机构及其处理方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107915273B (zh) |
WO (1) | WO2019090953A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108862540A (zh) * | 2018-07-10 | 2018-11-23 | 春笋新科技(深圳)有限公司 | 一种智能太阳能洗车房循环水净化系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2232035Y (zh) * | 1995-08-18 | 1996-07-31 | 同济大学 | 固定膜光催化氧化水质深度净化器 |
CN1412122A (zh) * | 2001-10-11 | 2003-04-23 | 深圳清华大学研究院 | 绿色光能净水方法及其装置 |
CN101062800A (zh) * | 2007-04-19 | 2007-10-31 | 浙江大学 | 一种光催化污水处理装置 |
JP2009214041A (ja) * | 2008-03-11 | 2009-09-24 | Maeda Shoji:Kk | 浄化装置及び浄化槽 |
CN103288167A (zh) * | 2013-06-25 | 2013-09-11 | 湖南大学 | 有机膨润土与TiO2联合预处理垃圾渗滤液的方法 |
CN205442712U (zh) * | 2016-03-04 | 2016-08-10 | 厦门华厦学院 | 一种水体纯化器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207537184U (zh) * | 2017-11-09 | 2018-06-26 | 广州达意隆包装机械股份有限公司 | 水处理装置及其光触媒处理机构 |
-
2017
- 2017-11-09 CN CN201711099230.8A patent/CN107915273B/zh active Active
- 2017-12-29 WO PCT/CN2017/120069 patent/WO2019090953A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2232035Y (zh) * | 1995-08-18 | 1996-07-31 | 同济大学 | 固定膜光催化氧化水质深度净化器 |
CN1412122A (zh) * | 2001-10-11 | 2003-04-23 | 深圳清华大学研究院 | 绿色光能净水方法及其装置 |
CN101062800A (zh) * | 2007-04-19 | 2007-10-31 | 浙江大学 | 一种光催化污水处理装置 |
JP2009214041A (ja) * | 2008-03-11 | 2009-09-24 | Maeda Shoji:Kk | 浄化装置及び浄化槽 |
CN103288167A (zh) * | 2013-06-25 | 2013-09-11 | 湖南大学 | 有机膨润土与TiO2联合预处理垃圾渗滤液的方法 |
CN205442712U (zh) * | 2016-03-04 | 2016-08-10 | 厦门华厦学院 | 一种水体纯化器 |
Also Published As
Publication number | Publication date |
---|---|
CN107915273B (zh) | 2019-11-26 |
CN107915273A (zh) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lanao et al. | Inactivation of Clostridium perfringens spores and vegetative cells by photolysis and TiO2 photocatalysis with H2O2 | |
Lanao et al. | Inactivation of Enterococcus sp. by photolysis and TiO2 photocatalysis with H2O2 in natural water | |
WO2010035421A1 (ja) | 水処理装置 | |
Ishaq et al. | Disinfection methods | |
CN101372369A (zh) | 一种水的紫外光催化消毒与氯消毒联用的消毒方法 | |
Rodríguez-Chueca et al. | Inactivation of Escherichia coli in fresh water with advanced oxidation processes based on the combination of O 3, H 2 O 2, and tio 2. Kinetic modeling | |
CN109231610A (zh) | 多波长uv-led灯带协同氯水处理装置及处理方法 | |
US20210139357A1 (en) | Apparatus and process for water treatment | |
CN103503922A (zh) | 一种用于医院污水消毒的消毒粉剂 | |
Semenov et al. | Device for germicidal disinfection of drinking water by using ultraviolet radiation | |
WO2019090953A1 (zh) | 水处理装置、光触媒处理机构及其处理方法 | |
Yin et al. | Technologies for bHRPs and risk control | |
CN111056701A (zh) | 用于病死畜禽无害处理的废水复合消毒工艺 | |
Daneshvar et al. | Photocatalytic disinfection of water polluted by Pseudomonas aeruginosa | |
CN207537184U (zh) | 水处理装置及其光触媒处理机构 | |
Arya et al. | Visible and solar light photocatalytic disinfection of bacteria by N-doped TiO2 | |
Paggiaro et al. | Disinfection of Water by Chlorine, Peracetic Acid, Ultraviolet and Solar Radiations: A Review | |
CN112811684A (zh) | 一种高效超声波纳米光催化水质消毒器 | |
JPH10155887A (ja) | 空気及び水の殺菌・浄化方法並びにその装置 | |
RU173571U1 (ru) | Устройство для обеззараживания питьевой воды в быту ультрафиолетовым излучением | |
JPH03165889A (ja) | 残留殺菌剤の除去方法 | |
JP5819135B2 (ja) | 水処理方法および水処理装置 | |
Mecha et al. | 14 Inactivation of Waterborne Pathogens in Municipal Wastewater Using Ozone | |
CN205740682U (zh) | 一种玻璃钢地理式污水处理设备 | |
CN205773502U (zh) | 一种废水处理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17931482 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/09/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17931482 Country of ref document: EP Kind code of ref document: A1 |