WO2019090941A1 - 智能眼镜 - Google Patents

智能眼镜 Download PDF

Info

Publication number
WO2019090941A1
WO2019090941A1 PCT/CN2017/119460 CN2017119460W WO2019090941A1 WO 2019090941 A1 WO2019090941 A1 WO 2019090941A1 CN 2017119460 W CN2017119460 W CN 2017119460W WO 2019090941 A1 WO2019090941 A1 WO 2019090941A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
smart glasses
triboelectric
processing module
power generation
Prior art date
Application number
PCT/CN2017/119460
Other languages
English (en)
French (fr)
Inventor
王珊
徐传毅
Original Assignee
纳智源科技(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳智源科技(唐山)有限责任公司 filed Critical 纳智源科技(唐山)有限责任公司
Publication of WO2019090941A1 publication Critical patent/WO2019090941A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids

Definitions

  • the present invention relates to the field of smart wearables, and in particular to a smart eyewear.
  • smart glasses are gradually entering the public eye as an emerging smart device.
  • Smart glasses take advantage of the portability of wearable devices and integrate intelligent operation modules to enable intelligent operation such as receiving information, wireless control, and taking photos or videos.
  • intelligent operation modules to enable intelligent operation such as receiving information, wireless control, and taking photos or videos.
  • smart glasses are gradually being accepted and used by the public.
  • the inventors have found that at least the following problems exist in the prior art: the existing smart glasses are mostly complicated in structure, thereby causing the overall size thereof to be too large, causing inconvenience to the user wearing and using; At the same time, the existing smart glasses can not be compatible with the traditional glasses, which leads to the production cost is too high, and can not be effectively promoted and applied.
  • the object of the present invention is to provide a smart glasses for solving the problems of complicated structure of the smart glasses and high production cost in the prior art.
  • a smart glasses includes: a lens body, at least one sensor, and a signal processing module; wherein the sensor is disposed at a contactable portion of the lens body and the human skin, and the sensor outputs according to a preset motion of the human body.
  • the signal processing module is embedded in the lens body, and is electrically connected to the sensor for receiving and processing the sensing signal, and controls the smart glasses to perform corresponding operations according to the processed sensing signal.
  • a sensor is disposed on a contactable portion of the lens body and the human skin to effectively sense a preset action of the human body to obtain a corresponding sensing signal, and the sensing signal is received by setting a signal processing module. Processing to control the smart glasses to perform corresponding operations.
  • the sensor of the invention has the advantages of simple structure, convenient setting, and corresponding intelligent operation according to the preset action of the human body, which greatly simplifies the structure of the smart glasses and reduces the production cost. It can be seen that the invention can solve the problems of complicated structure and high production cost of the smart glasses in the prior art, and the smart glasses are simple in structure, low in cost and convenient in use, and are suitable for mass production.
  • FIG. 1 is a schematic structural view of a smart glasses provided by the present invention.
  • FIG. 2 is a schematic structural view of another smart glasses provided by the present invention.
  • FIG. 3 is a schematic structural view of another smart glasses provided by the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a frictional electric sensor provided on a lens body according to the present invention.
  • FIG. 5 is a schematic cross-sectional view showing another frictional electric sensor disposed on a lens body according to the present invention.
  • FIG. 6 is a schematic cross-sectional view showing another frictional electric sensor provided on a lens body according to the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another frictional electric sensor provided on a lens body according to the present invention.
  • FIG. 8 is a schematic cross-sectional view showing another frictional electric sensor disposed on a lens body according to the present invention.
  • FIG. 9 is a cross-sectional view showing another frictional electric sensor provided on a lens body according to the present invention.
  • the present invention provides a smart eyeglass comprising: a lens body 110, a sensor 100, and a signal processing module (not shown).
  • the lens body 110 can use various types of glasses such as conventional glasses, sports glasses, or diving glasses, which is not limited by the present invention.
  • Figures 1-3 illustrate several alternative eyeglass bodies.
  • the structure of the eyeglass body shown in FIG. 1 and FIG. 2 is a conventional eyeglass structure
  • the eyeglass body structure shown in FIG. 3 is a sports eyeglass or a diving eyeglass structure.
  • the sensor 100 is a triboelectric sensor or a piezoelectric sensor or a triboelectric and piezoelectric hybrid sensor, wherein the piezoelectric sensor is a PVDF piezoelectric film sensor, a PZT piezoelectric ceramic sensor, a PTFE piezoelectric electret sensor, and a zinc oxide nanometer. Any of a line piezoelectric sensor, a zinc oxide nanocrystalline piezoelectric sensor, and a zinc oxide nano-array piezoelectric sensor.
  • the sensor 100 is disposed at a contactable portion of the lens body and the human skin for sensing the human body motion and outputting the sensing signal to the signal processing module.
  • the contactable parts include: a contactable part of the temple on the body of the lens and a contact surface of the human skin, a contactable part of the nose pad and the human skin, and/or a contactable part of the frame and the human skin.
  • the positions of the above-mentioned respective contactable parts can be referred to the corresponding positions shown in FIGS. 1-3 (the corresponding shaded positions in FIGS. 1-3).
  • FIG. 1 to FIG. 3 are only schematic.
  • each contactable portion on the lens body 110 can be set by a person skilled in the art according to actual conditions.
  • the invention is not limited thereto.
  • the contactable parts of the conventional glasses are set to the corresponding positions shown in FIGS. 1 and 2. Since the frame is generally not in contact with the wearer's skin during the wearing process of the conventional glasses, the contactable parts of the conventional glasses include: the contactable portion of the temple on the lens body 110 with the human skin, and the contact between the nose pad and the human skin. Part.
  • the glasses body 110 is sports glasses or diving glasses, since the elastic glasses 111 (as shown in FIG.
  • the glasses body 110 is fixed to the user's head by the elastic band 111, so that the frame is fixed.
  • the upper part of the area is in contact with the skin around the wearer's eye, so there is a contactable part with the human skin on the frame of the sports glasses or the diving glasses, so that for the sports glasses or the diving glasses, the frame and the human skin can be
  • the sensor 100 is disposed on the accessible portion.
  • the lens body selected in the present invention adopts a conventional type of eyeglass body structure, which not only can ensure the simplicity and lightness of the lens body 110 in structure, but also effectively reduce the production cost.
  • the sensor 100 selects a triboelectric sensor 120.
  • the triboelectric sensor 120 includes a first electrode layer 121 and a first power generation layer 122.
  • the first power generation layer 122 forms a friction interface with human skin. .
  • the first electrode layer 121 and the first power generation layer 122 are stacked on the contactable portion of the lens body 110 and the human skin, and the first power generation layer 122 is disposed on the side in contact with the human skin for use with human skin.
  • the contact friction generates an induced charge;
  • the first electrode layer 121 is disposed between the first power generation layer 122 and the lens body 110, and the first electrode layer 121 is provided with at least one signal output end.
  • the signal output end is connected to the wire, and the induced charge is output as a sensing signal to the signal processing module through the wire.
  • the triboelectric sensor 120 when the frictional electric sensor 120 is disposed on the lens body 110, the triboelectric sensor 120 may be disposed in an in-line manner at a contactable portion of the lens body 110 and the human skin.
  • the built-in arrangement can better protect the internal structure of the sensor and effectively reduce the lateral wear caused by the friction between the sensor and foreign materials.
  • the triboelectric sensor 120 is disposed on the lens body 110 in an in-line manner, wherein the frictional electric sensor 120 has a depth of inset less than or equal to the thickness of the triboelectric sensor to make the outer surface of the first power generation layer 122 Better contact with human skin.
  • a support structure 130 may be further disposed between the contactable portion of the lens body 110 and the triboelectric sensor 120, and the triboelectric sensor 120 is disposed on the support structure 130.
  • the support structure 130 may be a convex structure disposed on the contactable portion of the lens body for filling the distance between the human skin and the contactable portion on the lens body to increase the contact pressure between the friction surface of the friction electric sensor and the human skin. And the contact area, thereby effectively improving the intensity of the sensing signal output by the triboelectric sensor.
  • the support structure 130 can be disposed in a manner as shown in FIG. 5, and the shape and thickness of the support structure 130 can be set by a person skilled in the art according to actual conditions, which is not limited by the present invention.
  • the manner in which the piezoelectric sensor or the triboelectric and piezoelectric hybrid sensors are provided with the support structure 130 is similar to the manner in which the frictional electric sensor is provided with the support structure, and details are not described herein again.
  • the triboelectric sensor described above forms a friction interface by the human skin and the power generation layer and rubs against each other to generate an induced charge, and outputs an electrical signal (ie, a sensing signal) through the wire.
  • the triboelectric sensor 120 can also be disposed as follows.
  • FIG. 6 shows a schematic structural view of a triboelectric sensor 120 in which a polymer and an electrode layer are rubbed.
  • the triboelectric sensor 120 includes: a stacked arrangement. An electrode layer 121, a first power generation layer 122, and a second electrode layer 123.
  • the second electrode layer 123 is disposed on a side close to the skin of the human body, and forms a friction interface with the first power generation layer 122.
  • the second electrode layer 123 is separated from the first power generation layer 122 by an external force and frictionally generates an induced charge and outputs an electric signal through the wire.
  • at least one of the two opposite faces forming the friction interface is provided with a micro-nano structure to enhance the friction effect.
  • triboelectric sensor 120 is a sensor that rubs polymer and polymer.
  • the triboelectric sensor 120 includes a first electrode layer 121, a first power generation layer 122, a second power generation layer (not shown), and a second electrode layer 123.
  • the second electrode layer 123 is disposed on a side close to the human skin, and the second power generation layer forms a friction interface with the first power generation layer 122.
  • the second power generation layer is in contact with the first power generation layer 122 by an external force to generate an induced charge and output an electrical signal through the wire.
  • at least one of the two opposite faces forming the friction interface is provided with a micro-nano structure to enhance the friction effect.
  • the structure of the triboelectric sensor 120 may be a triboelectric sensor provided with an intervening film layer or an intervening electrode layer in addition to the above two alternative arrangements.
  • the intervening film layer or the intervening electrode layer forms a friction interface with the first power generation layer 122 and the second power generation layer, respectively.
  • the working principle is as follows: when the triboelectric sensor 120 with the intervening film layer or the intervening electrode layer is subjected to an external force, the first power generation layer 122 and the second power generation layer respectively contact the intervening film layer to generate an induced charge and output electricity through the wire.
  • the signal, or the first power generation layer 122 and the second power generation layer are respectively in contact with the intervening electrode layer to generate an induced charge and output an electrical signal through the wire.
  • at least one of the two opposite faces forming the friction interface is provided with a micro-nano structure to enhance the friction effect.
  • the triboelectric sensor 120 preferably includes only one electrode (ie, a single electrode form), that is, only one electrode is provided as an output electrode in the triboelectric sensor 120 (in the form of a polymer and
  • the polymer friction sensor is exemplified: the second electrode layer 123 or the first electrode layer 121 is omitted, and only one electrode layer is included, thereby reducing the electrode lead and avoiding inconvenience caused by excessive electrode lead, thereby realizing reduction of the electrode. Leads, simplified structure.
  • the support block 170 may further be disposed at one end between the two friction interfaces of the frictional electric sensor 120 to form a cantilever beam friction.
  • Electric sensor Specifically, as shown in Figs. 8 and 9, the cantilever type triboelectric sensor has a first end and a second end, and the support block 170 is disposed at the first end of the triboelectric sensor 120.
  • the first end and the second end are specifically two ends of the cross section of the triboelectric sensor 120, and the two are substantially opposite.
  • the first end may also be regarded as a second end, and the second end.
  • Can also be seen as the first end. 8 and 9 show a structural schematic view in which a support block 170 is provided on a frictional electric sensor in which a polymer and an electrode layer are rubbed to constitute a cantilever-type triboelectric sensor.
  • the cantilever beam type frictional electric sensor is provided with one end of the support block 170 to form a fixed end, and the other end forms a free end. Under the external force, the free end of the second electrode layer 123 can generate friction with the first power generation layer 122 to generate an induced charge.
  • the electrical signal is output through the wire.
  • the embedded depth of the cantilever beam type frictional electric sensor is less than or equal to the thickness of the cantilever beam type frictional electric sensor, so that the free end of the cantilever beam type frictional electric sensor can receive an external force and is combined with another frictional force by an external force. Inductive charge is produced and an electrical signal is output through the wire.
  • the other arrangement of the cantilever-type triboelectric sensor on the lens body 110 is similar to the arrangement of the triboelectric sensor 120 that is not provided with the polymer and electrode layers of the cantilever beam on the lens body 110, and details are not described herein again.
  • the first power generation layer 122 and the second power generation layer are a polymer polymer insulation layer, and the material thereof is selected from the group consisting of PDMS (polydimethylsiloxane), silica gel, polyimide film, aniline formaldehyde resin film, and poly Formaldehyde film, ethyl cellulose film, polyamide film, melamine formaldehyde film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly neighbor Diallyl phthalate film, fiber sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon 25-dimensional film, polymethyl film, A Acrylate film, polyvinyl alcohol film, polyvinyl alcohol film, polyester film, polyisobutylene film, polyurethane flexible sponge film, polyethylene terephthalate film, polyvinyl
  • the material used for the first electrode layer 121 is selected from a metal or an alloy.
  • the material used for the second electrode layer 123 is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy.
  • the manner in which the piezoelectric sensor or the triboelectric and piezoelectric hybrid sensor are disposed on the lens body is similar to the manner in which the frictional electric sensor for rubbing the polymer and the electrode layer is disposed on the lens body.
  • the frictional electric sensor for rubbing the polymer and the electrode layer is disposed on the lens body.
  • the triboelectric sensor 120 can be disposed in an in-line manner at a contactable portion of the lens body 110 and the human skin.
  • the embedded depth of each type of sensor described above ranges from 200 to 3000 microns.
  • FIG. 6 is a schematic diagram showing the embedded structure of the frictional electric sensor 120 on the lens body. As shown in FIG. 6, the embedded depth of the triboelectric sensor 120 is equal to the thickness of the triboelectric sensor such that the outer surface of the triboelectric layer 123 is in the same plane as the outer surface of the spectacle body.
  • the outer layer of the side close to the human skin may further be provided with an encapsulation layer 150 to protect the internal structure of the triboelectric sensor and prevent triboelectric
  • the internal structure of the sensor is affected by external moisture and other factors, resulting in reduced accuracy of the generator sensor.
  • the encapsulation layer 150 may be wrapped on the outer surface of the triboelectric sensor or on the outermost surface of the contactable portion to protect the internal structure of the triboelectric sensor and prevent the internal structure of the triboelectric sensor from being externally The influence of factors such as moisture causes a decrease in the accuracy of the triboelectric sensor.
  • the material of the encapsulation layer 150 is a flexible material, preferably a PDMS film, and the outer surface thereof can also form a micro-nano structure by sanding, thereby improving the friction effect while ensuring the lens body has lightness.
  • the manner in which the piezoelectric sensor or the triboelectric and piezoelectric hybrid sensors are provided with the encapsulation layer is similar to the manner in which the triboelectric sensor is provided with the encapsulation layer, and details are not described herein again.
  • the second electrode layer 123 or the second power generation layer and the second electrode layer 123 may be disposed on the encapsulation layer to make the second A gap is formed between the power generation layer and the first power generation layer or the second electrode layer and the first power generation layer. This arrangement is more conducive to the contact separation of the friction interface, so that the electrical signal output by the sensor is stronger.
  • an elastic member 160 may be disposed between the lens body 110 and the first electrode layer 121, and the elastic member 160 is embedded in the eyeglass body. As shown in Figure 7.
  • the number of the elastic members 160 is preferably plural, and is preferably symmetrically arranged between the lens body and the first electrode layer 121.
  • the elastic element 160 can effectively increase the contact separation speed between the friction interfaces of the sensor, thereby effectively increasing the sensitivity of the frictional electric sensor and further improving the accuracy of the sensor output sensing signal.
  • the piezoelectric sensor or the triboelectric sensor in which the triboelectric and piezoelectric hybrid sensors are provided with the elastic element is similar in the manner in which the elastic element is disposed, and will not be described herein.
  • the above-mentioned sensor has the characteristics of simple structure, light weight and small volume, by providing a sensor on the lens body, not only can the body's motion information be generated according to the preset motion of the human body, but also the human body motion information can be obtained.
  • the glasses maintain a small volume and quality, simplifying the structure of the smart glasses, making them lighter and more aesthetically pleasing.
  • the triboelectric sensor 120 After generating the sensing signal, the triboelectric sensor 120 outputs the sensing signal to the signal processing module through the connected wires.
  • the signal processing module is embedded in the lens body and electrically connected to the sensor for collecting and processing the sensing signal output by the sensor, and controlling the smart glasses to perform corresponding intelligent operations according to the processing result.
  • the signal processing module can be embedded in the frame or the temple of the lens body 110 and electrically connected to the sensor through the wire to receive the sensing signal output by the sensor through the wire.
  • the wires can be arranged along the inside of the frame, so that the smart glasses can be light and beautiful in appearance, and can also effectively protect the wires and prevent the wires from being used. In the process, the wear and the like occur due to friction with the outside world, thereby affecting the sensitivity and accuracy of the sensing signal transmission.
  • the signal processing module is configured to receive and process the sensing signal output by the sensor, and control the smart glasses to perform corresponding intelligent operations according to the processing result.
  • the specific process may be: determining the sensing signals output by each of the received at least one sensor. Whether the peak value is greater than or equal to the preset threshold value (the preset threshold value may be a voltage threshold value, etc.), and if yes, indicating that the intensity of the sensing signal is sufficient, the smart glasses are controlled to perform corresponding operations. If no, it indicates that the sensing signal strength is too weak, and the corresponding operation is not performed on the smart glasses.
  • the size of the preset threshold may be set by a person skilled in the art according to actual conditions, which is not limited by the present invention. In the above manner, the validity of the sensing signal can be judged to ensure the accuracy of the corresponding operation of the smart glasses.
  • the voltage peak threshold is set to V 0
  • the voltage peak of the received sensing signal is V X
  • the sensing signal of the output is determined to be valid
  • V X ⁇ V 0 the output is determined.
  • the sensing signal is invalid.
  • different voltage peak thresholds are respectively set for different types of smart glasses products designed to make The processing result of the sensing signal is more accurate.
  • the magnitude of the voltage peak threshold is specifically determined according to structural features such as the size, shape, and type of the lens body, and is correspondingly set according to structural features such as the size and type of the sensor disposed on the lens body.
  • the specific value of the voltage peak threshold is not limited by personnel.
  • the signal processing module detects the number of times the peak value of the sensing signal of each sensor in the preset time interval is greater than or equal to a preset threshold, if the number of times is the same as the preset number of times, Control the smart glasses to perform the corresponding operations.
  • a preset threshold when counting the number of times of the preset threshold, it can be realized by setting a counter in the sensor.
  • the preset time interval and the preset threshold may be set by a person skilled in the art according to actual conditions, which is not limited by the present invention.
  • the above detection process is suitable for detecting eye movements of the human eye. For example, if the preset time interval is T, if the left eye of the human eye is set twice, the photographing operation is performed.
  • the signal processing module detects that the peak value of the sensing signal output by the sensor is greater than a preset threshold. , at this time, count 1 time.
  • the peak value of the sensor signal output by the sensor is detected to be greater than the preset threshold value in T time, then the count is counted again based on the above count, and the count is 2 times, then the center is
  • the control module controls the smart glasses to perform corresponding photographing operations.
  • the signal processing module is further configured to: determine whether the peak value of the sensing signal of the at least one of the left and right sides of the lens body 110 is greater than Or equal to the preset threshold, that is, whether the left and right eyes of the user perform the preset action at the same time, for example, the user performs the left and right eye blinking actions, and the sensor signal should be simultaneously outputted on the symmetrically set sensor. If the determination result is YES, the smart glasses are controlled to perform corresponding operations according to the generation order of the sensing signals of the left and right sensors.
  • a corresponding controller may be disposed in the signal processing module for determining a sequence of generation of the received sensing signals.
  • the specific implementation manner in which the controller determines the order of generating the sensing signals can be set by a person skilled in the art according to actual conditions, which is not limited by the present invention.
  • the number of the sensors is at least two, they may be symmetrically or asymmetrically disposed on the lens body, and the signal processing module is further configured to: determine whether the peaks of the sensing signals of the at least two sensors are all greater than or equal to a preset threshold. If it is determined that the user's teeth are engaged to perform a preset action, the sensing signals should be simultaneously outputted on at least two of the sensors. If the determination result is yes, the smart glasses are controlled to perform corresponding operations according to the electrical signals simultaneously output by the at least two sensors.
  • the receiving time interval between two adjacent sensing signals is greater than a preset time interval threshold, and if the determination result is yes, determining that the sensing signal is valid, and processing the sensing signal And the corresponding processing signal is input; if the judgment result is no, it is determined that the sensing signal is invalid, and the sensing signal is not processed.
  • the time interval threshold is set to T 0
  • the time interval of the received sensing signal is T X
  • the sensing signal of the output is determined to be valid
  • T X ⁇ V 0 the output is determined.
  • the sensing signal is invalid.
  • the voltage peak threshold and the time interval threshold may be set by a person skilled in the art according to actual conditions, which is not limited by the present invention.
  • intelligent operations There are a variety of optional types of intelligent operations mentioned above. Several optional intelligent operations are listed below, including: intelligent operations related to image acquisition operations, voice intelligent operations, and wireless interactive operations.
  • an image acquisition module is further disposed on the smart glasses.
  • the image processing module is electrically connected to the signal processing module, and is configured to perform a corresponding image acquisition operation according to the processing instruction output by the signal processing module, and output the acquired image data to the signal processing module, where the signal processing module can also be used to:
  • the image data output by the image acquisition module is stored.
  • the image acquisition module can select a miniature camera such as a pinhole camera.
  • the camera 180 can be disposed at the nose bridge position on the lens body, as shown in FIG. 1 , FIG. 2 and FIG. 3 .
  • the camera 180 is connected to the signal processing module.
  • the camera 180 When receiving the processing instruction output by the signal processing module, the camera 180 performs a corresponding image capturing operation according to the processing instruction.
  • the processing instruction includes: a photographing instruction, a camera instruction, and a stop instruction
  • the corresponding image collection operation includes: a photographing operation, a photographing operation, and a stop operation.
  • the user may set a processing instruction corresponding to the preset action according to his own habits or needs.
  • the user can set the signal processing module to issue a photographing instruction when the left eye blinks twice to control the camera 180 to perform the photographing operation; when the right eye blinks twice, the signal processing module issues an image capturing instruction to control the camera 180 to perform the photographing operation.
  • the signal processing module issues a stop command to control the camera 180 to stop the current photographing operation or the imaging operation, and the like.
  • the signal processing module is further configured to: output a corresponding human heart rate signal according to the received sensing signal output by the sensor, wherein the smart glasses further comprise: a heart rate display, configured to receive and display the human body.
  • Heart rate signal receives the sensing signal output by the sensor disposed at the artery of the human head, and outputs a corresponding human heart rate signal according to the intensity and frequency of the sensing signal.
  • the counter may be further set in the signal processing module to effectively monitor the heart rate of the human body by counting the number of heart beats per minute of the human body, and output the above-mentioned counted human heart rate signal to the heart rate display to display the corresponding human heart rate signal.
  • the voice processing module may be further configured on the smart glasses for recording voice data, similar to the image operation process described above. Specifically, the voice processing module takes the voice data of the user and outputs the voice data to the signal processing module. Therefore, the signal processing module can also be used to store the voice data output by the voice processing module.
  • the voice processing module may be configured as a microphone 190.
  • the microphone 190 can be disposed on the frame of the lens body. As shown in FIG. 2, the microphone 190 is disposed at the upper right corner of the frame of the lens body to implement a corresponding recording function.
  • the wireless transceiver module can be further configured to perform information interaction with the external device, similar to the above-mentioned image operation process.
  • the wireless transceiver module is connected to the signal processing module and configured to output a corresponding signal in the signal processing module to the external connection device, and simultaneously receive the signal sent by the external connection device and send the signal to the signal processing module.
  • the wireless transceiver module may be a related wireless transceiver module such as a Bluetooth transceiver device.
  • the signal input end and the output end of the Bluetooth transceiver device are respectively connected to the input end and the input end of the signal processor, and can exchange information with the external device having the Bluetooth transceiving function. For example, it is connected with Bluetooth in the mobile phone to implement corresponding image information and interaction of voice information.
  • a corresponding monitoring module is set to monitor the degree of visual fatigue of the user. When the user has a high degree of fatigue, a corresponding reminder signal is sent to remind the user to rest, and the like.
  • the above-mentioned modules may be separate modules or integrated in the same module, which is not limited by the present invention.
  • the smart glasses provided by the present invention, by providing sensors on the contactable parts of the lens body and the human skin, the human body action is effectively sensed and the corresponding sensing signals are acquired, and the sensing signal is received and processed by setting the signal processing module.
  • the sensor has the characteristics of small size and light weight, it can effectively reduce the overall size of the smart glasses, making the smart glasses more portable.
  • the sensor of the invention has simple structure and convenient setting, and can also effectively monitor the movement of the human body, greatly simplifying the structure of the smart glasses and reducing the production cost of the smart glasses.
  • the present invention can solve the problems of complicated structure and high production cost of the smart glasses in the prior art, and the smart glasses are simple in structure, low in cost, convenient in use, and suitable for mass production.
  • the invention also sets a corresponding testing process to determine the validity and accuracy of the sensing signal, and further ensures the accuracy of the working process of the smart glasses.
  • the various modules and circuits mentioned in the present invention are circuits implemented by hardware. Although some of the modules and circuits integrate software, the present invention protects the hardware circuits of the functions corresponding to the integrated software, not just the hardware circuits. It is the software itself.

Abstract

一种智能眼镜,包括:眼镜本体(110)、至少一个传感器(100)、信号处理模块;传感器(100)设置在眼镜本体(110)与人体皮肤的可接触部位,传感器(100)根据人体预设动作输出传感信号;信号处理模块内嵌在眼镜本体(110)中,与传感器(100)电连接,用于接收并处理传感信号,并根据处理后的传感信号,控制智能眼镜执行对应的操作。该智能眼镜不仅能够根据人体预设动作来执行对应的智能操作,而且结构简单,成本低廉,适合大规模生产。

Description

智能眼镜
相关申请的交叉参考
本申请要求于2017年11月7日提交中国专利局、申请号为201711084932.9、名称为“一种智能眼镜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及智能可穿戴领域,具体涉及一种智能眼镜。
背景技术
目前,智能眼镜作为一种新兴的智能设备正在逐步进入公众视野。智能眼镜利用可佩戴设备的便携性,通过集成多种智能操作模块来实现接收信息、无线控制、拍摄照片或视频等智能操作。随着智能眼镜实用性和娱乐性的不断增强,智能眼镜正逐步被公众接受并使用。
在实现本发明实施例的过程中,发明人发现现有技术中至少存在如下问题:现有的智能眼镜大多结构复杂,由此导致其整体尺寸过大,给用户的佩戴和使用造成诸多不便;同时,现有的智能眼镜无法与传统的眼镜相互兼容,进而导致其生产成本过高,无法得到有效的推广应用。
发明内容
本发明的目的是针对现有技术的缺陷,提供了一种智能眼镜,用于解决现有技术中智能眼镜结构复杂以及生产成本过高的问题。
依据本发明的一个方面,提供了一种智能眼镜,包括:眼镜本体、至少一个传感器、信号处理模块;其中,传感器设置在眼镜本体与人体皮肤的可接触部位,传感器根据人体预设动作输出传感信号;信号处理模块内嵌在眼镜本体中,与传感器电连接,用于接收并处理传感信号,并根据处理后的传感信号控制智能眼镜执行对应的操作。
在本发明提供的智能眼镜中,通过在眼镜本体与人体皮肤的可接触部位 上设置传感器来有效感应人体预设动作获取对应的传感信号,通过设置信号处理模块对上述传感信号进行接收和处理来控制智能眼镜执行对应的操作。其中,本发明中的传感器结构简单,设置方便,同时还能根据人体预设动作执行对应的智能操作,大大简化了智能眼镜的结构,降低了生产成本。由此可见,本发明能够解决现有技术中智能眼镜结构复杂以及生产成本过高的问题,使智能眼镜结构简单、成本低廉且使用方便,适合大规模生产。
附图说明
图1为本发明提供的一种智能眼镜的结构示意图;
图2为本发明提供的另一种智能眼镜的结构示意图;
图3为本发明提供的另一种智能眼镜的结构示意图;
图4为本发明提供的在眼镜本体上设置的一种摩擦电传感器的剖面示意图;
图5为本发明提供的在眼镜本体上设置的另一种摩擦电传感器的剖面示意图;
图6为本发明提供的在眼镜本体上设置的另一种摩擦电传感器的剖面示意图;
图7为本发明提供的在眼镜本体上设置的另一种摩擦电传感器的剖面示意图;
图8为本发明提供的在眼镜本体上设置的另一种摩擦电传感器的剖面示意图;
图9为本发明提供的在眼镜本体上设置的另一种摩擦电传感器的剖面示意图。
具体实施方式
为充分了解本发明之目的、特征及功效,借由下述具体的实施方式,对本发明做详细说明,但本发明并不仅仅限于此。
本发明提供了一种智能眼镜,包括:眼镜本体110、传感器100、及信 号处理模块(图中未示出)。其中,眼镜本体110可以采用常规眼镜、运动眼镜或者潜水眼镜等多种类型的眼镜,本发明对此不作限定。图1-图3示出了几种可选的眼镜本体。其中,图1和图2所示的眼镜本体的结构为常规眼镜结构,图3所示的眼镜本体结构为运动眼镜或潜水眼镜结构。
传感器100为摩擦电传感器或压电传感器或摩擦电和压电混合传感器,其中,所述压电传感器为PVDF压电薄膜传感器、PZT压电陶瓷传感器、PTFE压电驻极体传感器、氧化锌纳米线压电传感器、氧化锌纳米晶压电传感器、氧化锌纳米驻阵列压电传感器中的任一种。
传感器100设置在眼镜本体与人体皮肤的可接触部位,用于感应人体动作并输出传感信号至信号处理模块。其中,上述可接触部位包括:眼镜本体上镜腿与人体皮肤的可接触部位、鼻托与人体皮肤的可接触部位和/或镜框与人体皮肤的可接触部位。具体地,上述各个可接触部位的位置可参见图1-图3中所示的对应位置(图1-图3中对应的阴影位置)。在这里,要说明的是,图1-图3所示的位置仅仅是示意性的,具体实施中,各个可接触部位在眼镜本体110上的具体位置可以由本领域技术人员根据实际情况进行设置,本发明对此不作限定。其中,常规眼镜的可接触部位设置参见图1和图2所示的对应位置。由于常规眼镜在佩戴过程中,镜框一般与佩戴者的皮肤不产生接触,因此常规眼镜的可接触部位包括:眼镜本体110上镜腿与人体皮肤的可接触部位、以及鼻托与人体皮肤的可接触部位。当眼镜本体110为运动眼镜或潜水眼镜时,由于运动眼镜和潜水眼镜上可设置有弹性带111(如图3所示),其眼镜本体110通过弹性带111固定在使用者头部,使镜框上的部分区域与佩戴者眼部周围的皮肤接触,因此在运动眼镜或潜水眼镜的镜框上存在与人体皮肤的可接触部位,因此对运动眼镜或潜水眼镜而言,可以在其镜框与人体皮肤的可接触部位上设置传感器100。其中,本发明中选用的眼镜本体采用传统类型眼镜本体结构,其不仅能够在结构上保证眼镜本体110的简单轻便,同时还有效降低了生产成本。
请参阅图4和图5,传感器100选用摩擦电传感器120,摩擦电传感器120包括:层叠设置的第一电极层121和第一发电层122,其中,第一发电层122与人体皮肤构成摩擦界面。具体地,第一电极层121和第一发电层122层叠设置在眼镜本体110与人体皮肤的可接触部位上,并且第一发电层122 设置在与人体皮肤接触的一侧,用于与人体皮肤接触摩擦产生感应电荷;第一电极层121设置在第一发电层122与眼镜本体110之间,第一电极层121上设置有至少一个信号输出端。其中,上述信号输出端与导线相连,感应电荷被作为传感信号通过导线输出至信号处理模块。
具体地,在眼镜本体110上设置摩擦电传感器120时,可以将摩擦电传感器120以内嵌的方式设置在在眼镜本体110与人体皮肤的可接触部位。内嵌的设置方式能够更好地保护传感器的内部结构,有效减少传感器与外界物质摩擦时产生的横向磨损。如图4所示,摩擦电传感器120以内嵌的方式设置在在眼镜本体110上,其中,摩擦电传感器120内嵌深度小于或等于摩擦电传感器的厚度,以使第一发电层122的外表面与人体皮肤较好接触。或者,在眼镜本体110上设置摩擦电传感器120时,还可以在眼镜本体110的可接触部位和摩擦电传感器120之间进一步设置支撑结构130,摩擦电传感器120设置在支撑结构130上。具体地,支撑结构130可以为设置在眼镜本体的可接触部位上的凸起结构,用于填补人体皮肤与眼镜本体上可接触部位的距离,以增加摩擦电传感器摩擦面与人体皮肤的接触压力和接触面积,从而有效提升摩擦电传感器输出的传感信号强度。具体实施中,支撑结构130的设置方式可以如图5所示,支撑结构130的形状及厚度可以由本领域技术人员根据实际情况进行设置,本发明对此不作限定。
进一步地,压电传感器或者摩擦电和压电混合传感器设置支撑结构130的方式摩擦电传感器设置支撑结构的方式类似,此处不再赘述。
其中,上述所介绍的摩擦电传感器由人体皮肤和发电层共同形成摩擦界面并相互摩擦来产生感应电荷,通过导线输出电信号(即传感信号)。具体实施中,当不以人体皮肤形成摩擦界面时,摩擦电传感器120还可以通过如下方式进行设置。
具体地,图6示出了一种聚合物和电极层摩擦的摩擦电传感器120的结构示意图,如图6所示,在一种可选的方式中,摩擦电传感器120包括:层叠设置的第一电极层121、第一发电层122以及第二电极层123。其中,第二电极层123设置在靠近人体皮肤的一侧,与第一发电层122共同形成摩擦界面。摩擦电传感器120受到外力作用时,第二电极层123在外力作用下与 第一发电层122产生接触分离并摩擦生成感应电荷并通过导线输出电信号。其中,上述形成摩擦界面的两个相对面中的至少一个面上设置有微纳结构,以提升摩擦效果。
在另一种可选的方式中,摩擦电传感器120为聚合物和聚合物摩擦的传感器。其中,摩擦电传感器120包括:层叠设置的第一电极层121、第一发电层122、第二发电层(图未示意)及第二电极层123。其中,第二电极层123设置在靠近人体皮肤的一侧,第二发电层与第一发电层122形成摩擦界面。摩擦电传感器120受到外力作用时,第二发电层在外力作用下与第一发电层122产生接触分离生成感应电荷并通过导线输出电信号。其中,上述形成摩擦界面的两个相对面中的至少一个面上设置有微纳结构,以提升摩擦效果。
可选地,摩擦电传感器120的结构除上述两种可选的设置方式之外,其还可以为设置有居间薄膜层或居间电极层的摩擦电传感器。其中,居间薄膜层或居间电极层分别与第一发电层122和第二发电层形成摩擦界面。其工作原理为:当设有居间薄膜层或者居间电极层的摩擦电传感器120受到外力作用时,第一发电层122和第二发电层分别与居间薄膜层接触摩擦生成感应电荷并通过导线输出电信号,或者第一发电层122和第二发电层分别与居间电极层接触摩擦生成感应电荷并通过导线输出电信号。其中,上述形成摩擦界面的两个相对面中的至少一个面上设置有微纳结构,以提升摩擦效果。
另外,为了进一步简化电路结构,减少引线的数量,摩擦电传感器120优选只包含一个电极的形式(即单电极形式),即仅在摩擦电传感器120中设置一个电极为输出电极(以聚合物和聚合物摩擦的传感器为例:省略第二电极层123或第一电极层121,仅仅包括一个电极层),以此来减少电极引线,避免因电极引线过多带来的不便,从而实现减少电极引线、简化结构的效果。
其中,当摩擦电传感器120中的第一发电层122不与人体皮肤形成摩擦界面时,摩擦电传感器120的两个摩擦界面之间的一端还可以进一步设置支撑块170,以构成悬臂梁式摩擦电传感器。具体地,如图8和图9所示,悬臂梁式摩擦电传感器具有第一端和第二端,上述支撑块170设置在摩擦电传 感器120的第一端。其中,上述第一端和第二端具体为摩擦电传感器120横截面的两端,二者在实质上是相对的,具体实施中,上述第一端也可以看作第二端,第二端也可以看作第一端。其中,图8和图9示出了在聚合物和电极层摩擦的摩擦电传感器上设置支撑块170以构成悬臂梁式摩擦电传感器的结构示意图。悬臂梁式摩擦电传感器上设置有支撑块170的一端构成固定端,另一端形成自由端,在外力作用下,第二电极层123的自由端能够与第一发电层122产生摩擦生成感应电荷并通过导线输出电信号。具体实施中,悬臂梁式摩擦电传感器的内嵌深度小于等于悬臂梁式摩擦电传感器的厚度,以使悬臂梁式摩擦电传感器中的自由端能够接受外力并在外力作用下与另一摩擦界面生产感应电荷并通过导线输出电信号。悬臂梁式摩擦电传感器在眼镜本体110上的其它设置方式与未设置悬臂梁的聚合物和电极层摩擦的摩擦电传感器120在眼镜本体110上的设置方式类似,此处不再赘述。
其中,上述第一发电层122和第二发电层为高分子聚合物绝缘层,其材料选自PDMS(聚二甲基硅氧烷)、硅胶、聚酰亚胺薄膜、苯胺甲醛树脂薄膜、聚甲醛薄膜、乙基纤维素薄膜、聚酰胺薄膜、三聚氰胺甲醛薄膜、聚乙二醇丁二酸酯薄膜、纤维素薄膜、纤维素乙酸酯薄膜、聚己二酸乙二醇酯薄膜、聚邻苯二甲酸二烯丙酯薄膜、纤维海绵薄膜、再生海绵薄膜、聚氨酯弹性体薄膜、苯乙烯丙烯共聚物薄膜、苯乙烯丁二烯共聚物薄膜、人造纤25维薄膜、聚甲基薄膜,甲基丙烯酸酯薄膜、聚乙烯醇薄膜、聚乙烯醇薄膜、聚酯薄膜、聚异丁烯薄膜、聚氨酯柔性海绵薄膜、聚对苯二甲酸乙二醇酯薄膜、聚乙烯醇缩丁醛薄膜、甲醛苯酚薄膜、氯丁橡胶薄膜、丁二烯丙烯共聚物薄膜、天然橡胶薄膜、聚丙烯腈薄膜、丙烯腈氯乙烯薄膜和聚乙烯丙二酚碳酸盐薄膜中的任意一种。
第一电极层121所用材料选自金属或合金。第二电极层123所用材料选自铟锡氧化物、石墨烯、银纳米线膜、金属或合金。
其中,压电传感器或摩擦电与压电混合传感器在眼镜本体上的设置方式与上述关于聚合物和电极层摩擦的摩擦电传感器在眼镜本体上的设置方式类似,具体可参见上述关于聚合物和电极层摩擦的摩擦电传感器在眼镜本体上的设置的相关描述,此处不再赘述。
下面介绍上述不以人体皮肤形成摩擦界面的摩擦电传感器120在眼镜本体上的设置方式:其中,摩擦电传感器120可以以内嵌的方式设置在在眼镜本体110与人体皮肤的可接触部位。具体实施中,上述各类型的传感器的内嵌深度范围在200-3000微米。其中,图6示出了一种摩擦电传感器120在眼镜本体上的内嵌结构示意图。如图6所示,摩擦电传感器120的内嵌深度与摩擦电传感器的厚度相等,以使摩擦发电层123的外表面与眼镜本体的外表面在同一平面内。
进一步地,当摩擦电传感器为不与人体皮肤形成摩擦层的传感器类型时,靠近人体皮肤的一侧的外表面上还可以进一步设置封装层150,以保护摩擦电传感器的内部结构,防止摩擦电传感器内部结构受到外部潮气等因素影响而导致发电机传感器的准确性降低。另外,可选地,封装层150可以包裹在摩擦电传感器的外表面,或者设置在可接触部位的最外侧的表面,以同样起到保护摩擦电传感器内部结构,防止摩擦电传感器内部结构受到外部潮气等因素影响而导致摩擦电传感器的准确性降低的作用。其中,上述封装层150的材料为柔性材料,优选PDMS薄膜,其外部表面还可以通过打磨的形式形成微纳结构,在保证眼镜本体具备轻巧性的同时提高摩擦效果。
进一步地,压电传感器或者摩擦电和压电混合传感器设置封装层的方式摩擦电传感器设置封装层的方式类似,此处不再赘述。
进一步地,以图6和图7为例,当摩擦电传感器120设置有封装层时,第二电极层123或者第二发电层和第二电极层123可以设置在封装层上,以使第二发电层和第一发电层或者第二电极层和第一发电层之间形成间隙,这种设置方式更利于摩擦界面的接触分离,使传感器输出的电信号更强。
另外,为了增加摩擦电传感器的灵敏度,还可以在眼镜本体110与第一电极层121之间设置弹性元件160,弹性元件160内嵌在眼镜本体内。如图7所示。其中,上述弹性元件160的数量优选为多个,并优选对称排布在眼镜本体与第一电极层121之间。弹性元件160能够有效增加传感器摩擦界面之间的接触分离速度,从而有效增加摩擦电传感器的灵敏度,进一步提升传感器输出传感信号的准确性。
进一步地,压电传感器或者摩擦电和压电混合传感器设置弹性元件的方 式摩擦电传感器设置弹性元件的方式类似,此处不再赘述。
由于上述传感器具有结构简单、质量轻以及体积小的特点,因此通过在眼镜本体上设置传感器,不仅能够根据人体预设动作并生成对应的传感信号,以获取人体动作信息,同时还能使智能眼镜保持较小的体积和质量,简化智能眼镜结构,使其更加轻便和美观。摩擦电传感器120在生成传感信号后,将上述传感信号通过连接的导线输出至信号处理模块。
信号处理模块内嵌在眼镜本体中,与传感器电相连,用于收集并处理传感器输出的传感信号,并根据处理结果控制智能眼镜执行对应的智能操作。信号处理模块可以内嵌在眼镜本体110的镜框或镜腿中,并通过导线与传感器电连接,以通过导线接收传感器输出的传感信号。具体实施中,在设置上述导线时,可以将上述导线沿镜框内部进行设置,这样不仅能够使智能眼镜在外观上显得轻便和美观,同时也能够对导线起到有效的保护作用,防止导线在使用过程中因与外界摩擦而出现磨损等状况,从而影响传感信号传输的灵敏性与准确性。
其中,信号处理模块用于接收并处理传感器输出的传感信号,并根据处理结果控制智能眼镜执行对应的智能操作。
具体地,为了保证智能眼镜控制的准确性,信号处理模块在对至少一个传感信号进行处理时,其具体过程可以为:判断接收到的至少一个传感器中的每个传感器输出的传感信号的峰值是否大于或等于预设阈值(预设阈值可以为电压阈值等),若是,则说明传感信号的强度足够,则控制智能眼镜执行对应的操作。若否,则说明传感信号强度太弱,则不对智能眼镜执行对应的操作。其中,上述预设阈值的大小可以由本领域技术人员根据实际情况进行设置,本发明对此不作限定。通过上述方式能够对传感信号的有效性进行判断,以确保智能眼镜执行对应操作的准确性。
例如,设置电压峰值阈值为V 0,接收到的传感信号的电压峰值为V X,当V X>V 0时,判定输出的传感信号有效;V X<V 0时,则判定输出的传感信号无效。其中,由于电压峰值阈值受到眼镜本体本身的结构特征以及传感器本身的结构特征的影响,因此具体实施中,针对所设计的不同类型的智能眼镜产品,分别对应设置不同的电压峰值阈值,以使对传感信号的处理结果更加准确。 也就是说,具体实施中,电压峰值阈值的大小具体根据眼镜本体的尺寸、形状和类型等结构特征,并结合设置于眼镜本体上的传感器的尺寸以及类型等结构特征来对应设置,本领域技术人员对电压峰值阈值的具体数值不作限定。
其中,在确定传感器输出的信号类型时,信号处理模块分别检测每个传感器在预设的时间间隔内的传感信号的峰值大于等于预设阈值的次数,若该次数与预设次数相同,则控制智能眼镜执行对应的操作。其中,在对上述预设阈值的次数进行计数时,可以通过在传感器中设置计数器来实现。上述预设时间间隔以及预设阈值可以由本领域技术人员根据实际情况进行设置,本发明对此不作限定。具体实施中,上述检测过程适用于检测人眼眨眼动作。例如,若预设时间间隔为T,若设置人眼左眼眨两次则执行拍照操作,当人眼左眼眨动一次时,信号处理模块检测传感器输出的传感信号的峰值大于预设阈值,则此时计数1次,当检测到T时间内传感器再次输出的传感信号的峰值大于预设阈值,则此时在上述计数基础上再次计数,此时计数为2次,则此时中央控制模块控制智能眼镜执行对应的拍照操作。
当传感器的数量至少为两个,并且至少两个传感器在眼镜本体上对称设置,则信号处理模块进一步用于:分别判断眼镜本体110左右两侧中的至少一个传感器的传感信号的峰值是否大于或等于预设阈值,即判断用户的左右两眼是否同时执行预设动作,例如,用户执行左右眼眨眼动作,此时对称设置的传感器上应同时输出传感信号。若判断结果为是,则根据左右两侧传感器的传感信号的生成顺序控制智能眼镜执行对应的操作。具体实施中,可以在信号处理模设置对应的控制器,用于判断接收到的传感信号的生成顺序。其中,控制器判断传感信号的生成顺序的具体实现方式可以由本领域技术人员根据实际情况进行设置,本发明对此不作限定。
当传感器的数量至少为两个,可以对称或不对称设置在眼镜本体上,信号处理模块进一步用于:判断至少两个传感器的传感信号的峰值是否均大于或等于预设阈值。如判断用户的牙齿扣合执行预设动作,当至少两个传感器上应同时输出传感信号。若判断结果为是,则根据至少两个传感器同时输出的电信号控制智能眼镜执行对应的操作。
可选地,还可以通过判断两个相邻的传感信号之间的接收时间间隔是否 大于预设的时间间隔阈值,若判断结果为是,则判定传感信号有效,对传感信号进行处理并输对应的处理信号;若判断结果为否,则判定传感信号无效,不对传感信号进行处理。例如,设置时间间隔阈值为T 0,接收到的传感信号的时间间隔为T X,当T X>T 0时,判定输出的传感信号有效;当T X<V 0时,则判定输出的传感信号无效。
在这里,要说明的是,上述电压峰值阈值以及时间间隔阈值可以由本领域技术人员根据实际情况进行设置,本发明对此不作限定。
上述智能操作的可选类型可以有多种,下面来列举几种可选的智能操作,其中包括:图像采集操作、语音智能操作以及无线交互操作等相关的智能操作。
以图像采集为例,具体地,为了实现图像采集功能,智能眼镜上进一步设置有图像采集模块。其中,图像采集模块与信号处理模块电连接,用于根据信号处理模块输出的处理指令执行对应的图像采集操作,并将获取的图像数据输出至信号处理模块,则信号处理模块还可以用于:存储图像采集模块输出的图像数据。具体实施中,图像采集模块可以选用针孔摄像头等微型摄像头。其中,摄像头180可以设置在眼镜本体上的鼻梁位置处,如图1、图2以及图3所示。摄像头180与信号处理模块相连,当接收到信号处理模块输出的处理指令时,摄像头180根据上述处理指令执行对应的图像采集操作。具体实施中,上述处理指令包括:拍照指令、摄像指令以及停止指令,则对应的图像采集操作包括:拍照操作、摄像操作以及停止操作。
具体实施中,用户可以根据自己的习惯或需要设置与预设动作对应的处理指令。例如,用户可以设置当左眼眨眼两次时,信号处理模块发出拍照指令,以控制摄像头180执行拍照操作;当右眼眨眼两次时,信号处理模块发出摄像指令,以控制摄像头180执行摄像操作;当按照左眼到右眼的顺序分别眨眼一次时,信号处理模块发出停止指令,以控制摄像头180停止当前的拍照操作或摄像操作,等等。
其中,与上述实现图像操作过程类似地,信号处理模块进一步用于:根据接收到的传感器输出的传感信号输出对应的人体心率信号,则智能眼镜进一步包括:心率显示器,用于接收并显示人体心率信号。具体实施中,信号 处理模块接收设置在人体头部动脉处的传感器输出的传感信号,并根据传感信号强度和频率输出对应的人体心率信号。例如,可以在信号处理模块中进一步设置计数器,通过对人体每分钟的心跳次数进行计数来有效监测人体心率,并将上述计数所得的人体心率信号输出至心率显示器以显示对应的人体心率信号。
其中,与上述实现图像操作过程类似地,智能眼镜上可以进一步设置语音处理模块,用于录存语音数据。具体地,语音处理模块录取用户的语音数据,并将录取的语音数据输出至信号处理模块,因此信号处理模块还可以用于存储语音处理模块输出的语音数据。具体实施中,上述语音处理模块可以设置为麦克风190。其中,麦克风190可以设置在眼镜本体的镜框上,如图2所示,麦克风190设置在眼镜本体镜框的右上角,以实现对应的录音功能。
其中,与上述实现图像操作过程类似地,智能眼镜上还可以进一步设置无线收发模块,用于与外部设备进行信息交互。其中,上述无线收发模块与信号处理模块相连,用于将信号处理模块中的对应信号输出给外部连接设备,同时接收外部连接设备发出的信号并发送给信号处理模块。具体实施中,无线收发模块可以为蓝牙收发装置等相关的无线收发模块。其中,蓝牙收发装置的信号输入端和输出端分别与信号处理器的输入端和输入端相连,其可以与外部含有蓝牙收发功能的装置进行信息交互。例如与手机中的蓝牙连接,以实现对应的图像信息以及语音信息的交互。
在这里,要说明的是,上述所介绍智能操作仅仅是示例性的,具体实施中,本领域技术人员还可以根据实际情况设置更多对应模块来实现对应的智能操作功能。例如,设置对应的监测模块来监测用户的视疲劳程度,当用户视疲劳程度较高时,发出对应的提醒信号以提醒用户休息,等等。其中,上述各个模块可以是单独的模块,也可以集成在同一模块中,本发明对此不作限定。
在本发明提供的智能眼镜中,通过在眼镜本体与人体皮肤的可接触部位上设置传感器来有效感应人体动作并获取对应的传感信号,通过设置信号处理模块对上述传感信号进行接收和处理来控制智能眼镜执行对应的智能操作。其中,由于传感器具有体积小、使用轻便的特点,因此能够有效减小智能眼镜的整体尺寸,使智能眼镜使用时更为轻便。本发明中的传感器结构简 单,设置方便,同时还能有效实现针对人体动作的监测,大大简化了智能眼镜的结构并降低了智能眼镜的生产成本。因此,本发明能够解决现有技术中智能眼镜结构复杂以及生产成本过高的问题,使智能眼镜结构简单、成本低廉且使用方便,适合大规模生产。同时,本发明还设定了对应的测试过程来判定传感信号的有效性与准确性,进一步保证智能眼镜工作过程的准确性。
本发明中所提到的各种模块、电路均为由硬件实现的电路,虽然其中某些模块、电路集成了软件,但本发明所要保护的是集成软件对应的功能的硬件电路,而不仅仅是软件本身。
本领域技术人员应该理解,附图或实施例中所示的装置结构仅仅是示意性的,表示逻辑结构。其中作为分离部件显示的模块可能是或者可能不是物理上分开的,作为模块显示的部件可能是或者可能不是物理模块。
最后,需要注意的是:以上列举的仅是本发明的具体实施例子,当然本领域的技术人员可以对本发明进行改动和变型,倘若这些修改和变型属于本发明权利要求及其等同技术的范围之内,均应认为是本发明的保护范围。

Claims (19)

  1. 一种智能眼镜,其特征在于,包括:眼镜本体、至少一个传感器、信号处理模块;其中,
    所述传感器设置在所述眼镜本体与人体皮肤的可接触部位,所述传感器根据人体预设动作输出传感信号;
    所述信号处理模块内嵌在所述眼镜本体中,与所述传感器电连接,用于接收并处理所述传感信号,并根据处理后的传感信号,控制所述智能眼镜执行对应的操作。
  2. 根据权利要求1所述的智能眼镜,其特征在于,所述传感器为摩擦电传感器或压电传感器或摩擦电和压电混合传感器;
    其中,所述压电传感器为PVDF压电薄膜传感器、PZT压电陶瓷传感器、PTFE压电驻极体传感器、氧化锌纳米线压电传感器、氧化锌纳米晶压电传感器、氧化锌纳米驻阵列压电传感器中的任一种。
  3. 根据权利要求2所述的智能眼镜,其特征在于,所述摩擦电传感器包括层叠设置的第一电极层和第一发电层,所述第一电极层上设置有至少一个信号输出端。
  4. 根据权利要求3所述的智能眼镜,其特征在于,所述第一发电层与人体皮肤构成摩擦界面。
  5. 根据权利要求3所述的智能眼镜,其特征在于,所述摩擦电传感器进一步包括:层叠设置在所述第一发电层之上的第二电极层;其中,所述第二电极层与所述第一发电层构成摩擦界面。
  6. 根据权利要求3所述的智能眼镜,其特征在于,所述摩擦电传感器进一步包括:层叠设置在所述第一发电层之上的第二发电层和第二电极层;其中,所述第二发电层与所述第一发电层构成摩擦界面。
  7. 根据权利要求6所述的智能眼镜,其特征在于,所述摩擦电传感器进一步包括:设置在所述第一发电层与第二发电层之间的居间薄膜层或居间电极层。
  8. 根据权利要求2所述的智能眼镜,其特征在于,所述传感器内嵌在 所述眼镜本体与人体皮肤的可接触部位,内嵌深度为200-3000微米。
  9. 根据权利要求2所述的智能眼镜,其特征在于,所述智能眼镜还包括:设置在所述眼镜本体与所述摩擦电传感器或压电传感器或摩擦电和压电混合传感器之间的弹性元件,所述弹性元件内嵌在所述眼镜本体中。
  10. 根据权利要求1所述的智能眼镜,其特征在于,所述可接触部位和所述传感器之间进一步设置有支撑结构,所述传感器设置在所述支撑结构上。
  11. 根据权利要求5-7任一所述的智能眼镜,其特征在于,所述摩擦界面之间进一步设置有支撑块,所述摩擦电传感器具有第一端和第二端,所述支撑块设置在所述摩擦电传感器的第一端。
  12. 根据权利要求2-7任一项所述的智能眼镜,其特征在于,所述可接触部位上进一步设置有封装层。
  13. 根据权利要求1所述的智能眼镜,其特征在于,所述可接触部位包括:眼镜本体上镜腿与人体皮肤的可接触部位、鼻托与人体皮肤的可接触部位和/或镜框与人体皮肤的可接触部位。
  14. 根据权利要求1所述的智能眼镜,其特征在于,所述信号处理模块判断接收到的传感信号的峰值是否大于或等于预设阈值,若是,则控制所述智能眼镜执行对应的操作。
  15. 根据权利要求1所述的智能眼镜,其特征在于,所述信号处理模块进一步用于:分别检测每个传感器在预设的时间间隔内的传感信号的峰值大于或等于预设阈值的次数;若该次数与预设次数相同,则控制所述智能眼镜执行对应的操作。
  16. 根据权利要求1所述的智能眼镜,其特征在于:所述传感器数量至少为两个,所述至少两个传感器在所述眼镜本体上对称设置,所述信号处理模块进一步用于:判断所述眼镜本体左右两侧中至少一侧的各个传感器的传感信号的峰值是否大于或等于预设阈值,若判断结果为是,则根据左右两侧传感器的传感信号的生成顺序控制所述智能眼镜执行对应的操作。
  17. 根据权利要求1所述的智能眼镜,其特征在于,所述预设动作至少 包括:眨眼、和/或牙齿叩合动作。
  18. 根据权利要求17所述的智能眼镜,其特征在于,所述智能眼镜进一步包括:图像采集模块,与所述信号处理模块电相连,用于根据所述信号处理模块输出的处理指令执行对应的图像采集操作;其中,所述处理指令包括拍照指令、摄像指令以及停止指令;所述图像采集操作包括:拍照操作、摄像操作以及停止操作。
  19. 根据权利要求1所述的智能眼镜,其特征在于,所述信号处理模块进一步用于:根据所述传感器输出的传感信号输出对应的人体心率信号,则所述智能眼镜进一步包括:心率显示器,用于接收并显示所述人体心率信号或所述智能眼镜进一步包括:语音处理模块,用于录存语音数据或所述眼镜本体上进一步包括:无线收发模块,所述无线收发模块与所述信号处理模块相连,用于与外部设备进行信息交互。
PCT/CN2017/119460 2017-11-07 2017-12-28 智能眼镜 WO2019090941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711084932.9A CN108693660A (zh) 2017-11-07 2017-11-07 一种智能眼镜
CN201711084932.9 2017-11-07

Publications (1)

Publication Number Publication Date
WO2019090941A1 true WO2019090941A1 (zh) 2019-05-16

Family

ID=63844037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119460 WO2019090941A1 (zh) 2017-11-07 2017-12-28 智能眼镜

Country Status (2)

Country Link
CN (1) CN108693660A (zh)
WO (1) WO2019090941A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112181137A (zh) * 2020-09-11 2021-01-05 东南大学 眨眼识别装置、控制装置、识别方法及控制方法
CN115778570B (zh) * 2023-02-09 2023-06-27 岱川医疗(深圳)有限责任公司 一种内窥镜检测方法、控制装置及检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258040A1 (en) * 2006-05-08 2007-11-08 Benjamin James Randall Safety glasses incorporating monitoring systems
CN104142583A (zh) * 2014-07-18 2014-11-12 广州市香港科大霍英东研究院 一种具有眨眼检测功能的智能眼镜及实现方法
CN205232060U (zh) * 2015-11-23 2016-05-11 纳智源科技(唐山)有限责任公司 生理监测传感带、生理监测床垫、监测系统
CN105739127A (zh) * 2016-05-06 2016-07-06 京东方科技集团股份有限公司 智能眼镜及眼疲劳识别方法
CN205787441U (zh) * 2016-05-30 2016-12-07 浙江海洋大学 一种具有定位提示功能的智能眼镜
CN106707547A (zh) * 2016-11-22 2017-05-24 全普光电科技(上海)有限公司 智能眼镜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210811043U (zh) * 2016-01-22 2020-06-23 周常安 穿戴式生理活动感测装置及感测系统
CN106611481B (zh) * 2016-11-02 2018-12-25 纳智源科技(唐山)有限责任公司 疲劳驾驶监控装置及可穿戴设备
CN207867169U (zh) * 2017-11-07 2018-09-14 纳智源科技(唐山)有限责任公司 一种智能眼镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070258040A1 (en) * 2006-05-08 2007-11-08 Benjamin James Randall Safety glasses incorporating monitoring systems
CN104142583A (zh) * 2014-07-18 2014-11-12 广州市香港科大霍英东研究院 一种具有眨眼检测功能的智能眼镜及实现方法
CN205232060U (zh) * 2015-11-23 2016-05-11 纳智源科技(唐山)有限责任公司 生理监测传感带、生理监测床垫、监测系统
CN105739127A (zh) * 2016-05-06 2016-07-06 京东方科技集团股份有限公司 智能眼镜及眼疲劳识别方法
CN205787441U (zh) * 2016-05-30 2016-12-07 浙江海洋大学 一种具有定位提示功能的智能眼镜
CN106707547A (zh) * 2016-11-22 2017-05-24 全普光电科技(上海)有限公司 智能眼镜

Also Published As

Publication number Publication date
CN108693660A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
KR102227836B1 (ko) 아이웨어 상에서의 멀티 터치 상호작용 기법
JP6426589B2 (ja) 眼電位検出装置、眼電位検出方法、アイウエア及びフレーム
US20160284363A1 (en) Voice activity detection technologies, systems and methods employing the same
CN103873997B (zh) 电子设备和声音采集方法
EP3521911B1 (en) Device adapted to eyeglasses
US20230188880A1 (en) Wearable devices
WO2019090941A1 (zh) 智能眼镜
US11089416B1 (en) Sensors for determining don/doff status of a wearable device
JP7280953B2 (ja) 電子コンタクトレンズにおける動的老視矯正法
CN205899176U (zh) 穿戴式生理监测装置
CN108401129A (zh) 基于穿戴式设备的视频通话方法、装置、终端及存储介质
Matthies et al. Capglasses: Untethered capacitive sensing with smart glasses
Wahl et al. Personalizing 3D-printed smart eyeglasses to augment daily life
CN110366388A (zh) 信息处理方法、信息处理装置以及程序
CN109960032A (zh) 一种基于太阳能的可除尘ar智能眼镜
CN207867169U (zh) 一种智能眼镜
CN206117950U (zh) 运动头戴式电子设备
CN206057715U (zh) 具生理讯号撷取功能的眼镜组合、眼镜结构及结合模块
CN208621861U (zh) 一种在手机上观看血压心率的测量眼镜
EP3112927A1 (en) A vision monitoring module fixed on a spectacle frame
US11874958B2 (en) Eye detection methods and devices
CN216145034U (zh) 可穿戴设备及其佩戴件
TWI610656B (zh) 穿戴式生理監測裝置
TWM600598U (zh) 睡眠感測系統
CN207148459U (zh) 一种智能眼镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931183

Country of ref document: EP

Kind code of ref document: A1