WO2019090703A1 - 标定装置 - Google Patents

标定装置 Download PDF

Info

Publication number
WO2019090703A1
WO2019090703A1 PCT/CN2017/110485 CN2017110485W WO2019090703A1 WO 2019090703 A1 WO2019090703 A1 WO 2019090703A1 CN 2017110485 W CN2017110485 W CN 2017110485W WO 2019090703 A1 WO2019090703 A1 WO 2019090703A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
hole
area
positioning
calibration device
Prior art date
Application number
PCT/CN2017/110485
Other languages
English (en)
French (fr)
Inventor
唐佩福
王锟
王利峰
郝明
张�浩
崔兴邦
Original Assignee
唐佩福
王锟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐佩福, 王锟 filed Critical 唐佩福
Priority to PCT/CN2017/110485 priority Critical patent/WO2019090703A1/zh
Publication of WO2019090703A1 publication Critical patent/WO2019090703A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis

Definitions

  • the present invention relates to the field of medical device technology, and in particular to a calibration device for an optical positioning tracking system.
  • Image-guided surgical navigation therapy systems typically include medical imaging devices (such as computed tomography CT, C-arm or MRI), positioning devices (such as positioning cameras, electromagnetic locators or optical localization tracking systems) and surgery Treatment equipment such as instruments. During the operation, under the guidance of the positioning device, the doctor accurately delivers the surgical instrument tracked and positioned by the positioning device to the designated position inside the human body to treat the lesion.
  • medical imaging devices such as computed tomography CT, C-arm or MRI
  • positioning devices such as positioning cameras, electromagnetic locators or optical localization tracking systems
  • surgery Treatment equipment such as instruments.
  • embodiments of the present disclosure provide a calibration device for accurately calibrating a surgical instrument.
  • a calibration apparatus comprising:
  • An instrument calibration area disposed on the body
  • the instrument calibration area includes at least two of the following calibration areas:
  • the hole calibration area comprising a cylindrical hole
  • the cone calibration area including a tapered hole having a predetermined cone angle and a predetermined depth
  • the sphere calibration area comprising a sphere mounted on the body
  • the probe calibration zone comprising a through hole extending through at least one face of the body
  • the positioning robot end assembly calibration area abuts the end assembly of the positioning robot.
  • the hole calibration zone comprises at least two cylindrical holes having different diameters.
  • the hole calibration zone includes more than three cylindrical holes, the three or more cylindrical holes being arranged in a ring shape in order of diameter.
  • the cylindrical bore is a cylindrical through bore extending through at least one face of the body.
  • the tapered bore is sized to match the specified size of the probe.
  • the diameter of the sphere is in the range of 1 mm to 100 mm.
  • the positioning robot end assembly calibration zone includes a base that is sized to match the size of the end assembly of the positioning robot.
  • the calibration device further includes a docking station disposed on the body.
  • the docking base is disposed on a first side of the body, the hole calibration area, the cone calibration area, the sphere calibration area, and the probe calibration area are disposed in the On the second side of the body, the first side and the second side are different surfaces of the body.
  • the positioning robot end assembly calibration zone is disposed on a third side of the body, the third face being a surface of the body that is different from the first face and the second face.
  • the first face and the second face are opposite faces of the body.
  • the docking base includes a triangular boss including opposite upper and lower surfaces and three sides connecting the upper surface and the lower surface, the upper surface ratio The lower surface is closer to the body, and both the upper surface and the lower surface have a triangular shape, and an area of the upper surface is larger than an area of the lower surface.
  • the positioning marker comprises at least three marker balls, the marker pellets being fixed relative to the body.
  • the calibration device further includes a viewing window formed on a side of the body.
  • Embodiments of the present invention provide a universal calibration device that enables rapid calibration of surgical instruments of different sizes.
  • FIG. 1 is a perspective view of a calibration device in accordance with an exemplary embodiment of the present disclosure
  • FIG. 2 is a top plan view of a calibration device in accordance with an exemplary embodiment of the present disclosure
  • FIG. 3 is a side view of a calibration device in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 4 is a perspective view of another perspective of a calibration device, in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 5 is a bottom view of a calibration device in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 6 is a front view of a calibration device according to an exemplary embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of a calibration device in accordance with an exemplary embodiment of the present disclosure.
  • first the terms “first”, “second”, etc. may be used herein to describe various components, components, elements, regions, layers, and/or portions, but these components, components, components, regions, layers And/or parts should not be limited by these terms. Instead, these terms are used to distinguish one component, component, component, region, layer and/or portion from another.
  • a first component, a first component, a first component, a first region, a first layer, and/or a first portion discussed below may be referred to as a second component, a second component, a second component, a second region The second layer and/or the second portion, without departing from the teachings of the present disclosure.
  • the directional terms “upper”, “lower”, “left”, “right”, “first direction”, “second direction”, “third direction”, etc. are used. It is understood that the directional term is only used to indicate a relative positional relationship, and when the absolute position of the object to be described is changed, the relative positional relationship may also change accordingly.
  • the direction of the insertion direction of the bone fixation needle may be referred to by the "first direction” with reference to the actual orientation of use of the locking device.
  • the "second direction” means a direction perpendicular to the insertion direction of the bone fixation needle
  • the “third direction” means a direction perpendicular to the first direction and the second direction.
  • the surgical navigation system is widely used in various surgical operations, such as orthopedics, neurosurgery, spinal neurosurgery, etc., and is also used for minimally invasive surgery such as chest and abdomen, tissue biopsy and puncture.
  • the surgical navigation system can register the three-dimensional image data acquired by the imaging device with the patient position in the actual space through the positioning system, and obtain real-time three-dimensional display of the surgical instrument in the image space by real-time tracking of the surgical instrument marking points in the actual space, and assist The doctor performs precise surgical procedures.
  • the surgical navigation system can employ optical-based surgical navigation techniques. In order to more specifically describe the technical idea of the present invention, an embodiment of the present invention will be described by taking an optical-based surgical navigation technique as an example. However, those skilled in the art should understand that the technical idea of the present invention can also be used. In other types of surgical navigation technology.
  • the term "positioning mark” may be either an active positioning mark or a passive positioning mark herein.
  • the active positioning mark may include a flag ball mounted with a light emitting diode, and the light emitted by the infrared light emitting diode may be collected by an optical device such as a camera;
  • the passive positioning mark may include a plurality of flag balls, and the plurality of flag balls reflect Light emitted by other devices that can be collected by optical devices such as cameras.
  • a calibration device 1 for surgical navigation may include a body 2, a positioning mark 4 disposed on the body 2, and a body disposed on the body 2 on the instrument calibration area.
  • the instrument calibration area may include at least two of the following calibration areas: a hole calibration area, the hole calibration area may include a cylindrical hole 6; a cone hole calibration area, the cone hole
  • the calibration zone may include a tapered bore 7 having a predetermined taper angle and a predetermined depth; a sphere calibration zone, which may include a sphere 8 mounted on the body 2; a probe calibration zone, the probe calibration zone A through hole 9 penetrating at least one face of the body; and a positioning robot end assembly calibration zone 10, the positioning robot end component
  • the calibration area interfaces with the end assembly of the positioning robot for surgical navigation.
  • the hole calibration zone may comprise at least two cylindrical holes 6 having different diameters.
  • the hole calibration area may include three or more cylindrical holes 6, which are arranged in a ring shape in order of diameter. As shown in FIG. 2, the hole calibration area may include a plurality of cylindrical holes 6, the plurality of cylindrical holes 6 having different diameters, and the plurality of cylindrical holes 6 may be arranged in a ring shape in order of diameter. At the center of the ring, a cylindrical hole 6 is also formed. The diameter of the centrally located cylindrical bore 6 may be different from the diameter of the other cylindrical bore 6 surrounding it.
  • a plurality of holes having different diameter specifications can be utilized in a space, so that a plurality of cylindrical surgical instruments (for example, intramedullary nails, etc.) having different size specifications (for example, a front end diameter) can be calibrated.
  • cylindrical surgical instruments for example, intramedullary nails, etc.
  • size specifications for example, a front end diameter
  • Figure 7 shows a cross-sectional view of a calibration device according to an embodiment of the invention, which, as shown in Figure 7, may be a cylindrical through-hole extending through at least one face of the body.
  • the at least one face comprises the upper surface of the body 2.
  • the tapered hole 7 may have a predetermined taper angle and a predetermined depth.
  • the tapered bore 7 can be used to calibrate a surgical instrument having a pointed end.
  • the cone calibration zone can be used to calibrate a device that has a suitable diameter and a pointed tip in the calibration area of the hole. Specifically, after the surgical instrument having the pointed end is mounted with the positioning mark, the pointed end is placed in the tapered hole 7, and then rotated or tilted at least 3 positions around the apex angle of the tapered hole 7 to be calibrated, specifically The calibration process will be described in more detail below.
  • the tapered hole 7 may be disposed on the upper surface of the body 2. That is, the tapered hole 7 and the cylindrical hole 6 are arranged on the same surface of the body 2.
  • the tapered bore 7 may be sized to match a prescribed size of a surgical instrument (eg, a probe).
  • a surgical instrument eg, a probe
  • the sphere calibration area may include a sphere 8 mounted on the main body 2, and the sphere calibration area may calibrate a hollow instrument with a spherical end.
  • the positioning marker may be mounted on the hollow instrument, and then The hollow end of the instrument is snapped onto the sphere and calibrated by rotating or tilting the sphere 8 at least 3 positions.
  • the diameter of the sphere 8 may be in the range of 1 mm to 100 mm, and in particular, the diameter of the sphere 8 may be in the range of 5 mm to 10 mm.
  • the ball 8 may be disposed on the upper surface of the body 2. That is, the sphere 8 is disposed on the same surface of the body 2 as the tapered hole 7 and the cylindrical hole 6. For example, the sphere 8 can pass through a cylindrical shape
  • the base is mounted on the upper surface of the body 2.
  • the probe calibration area may include a through hole 9 penetrating at least one face of the body 2.
  • the through hole 9 penetrates the upper surface of the body 2 and extends into a portion of the lower surface of the body 2.
  • the probe calibration zone can be used to calibrate the probe.
  • the probe generally has a relatively long length, and after the probe is inserted into the through hole 9, the position of the end of the probe relative to the positioning mark on the probe can be calibrated by means of the calibration device.
  • the positioning robot end assembly calibration area 10 can include a base 12 that interfaces with an end assembly of a positioning robot for surgical navigation, the size of the base 12 and the end assembly of the positioning robot. The dimensions match.
  • the end assembly of the positioning robot is mounted on the base 12 of the calibration end of the positioning robot, so that the positional relationship of the end assembly of the positioning robot relative to the base 12 can be calibrated, and then the end assembly of the positioning robot can be known by a certain conversion. Installed in the relative position behind the positioning robot arm.
  • the positioning robot end assembly calibration zone 10 is disposed on one side of the body 2.
  • the calibration device may include at least two of a hole calibration area, a cone calibration area, a sphere calibration area, a probe calibration area, and a positioning robot end component calibration area, that is, the calibration apparatus may include a hole calibration area and a cone hole.
  • the calibration zone, the sphere calibration zone, the probe calibration zone, and any combination of at least two calibration zones in the calibration component of the positioning robot end component may include a hole calibration zone and a cone calibration zone, or may include a sphere calibration zone And the probe calibration area, or may include a hole calibration area and a positioning end portion of the positioning robot.
  • embodiments of the present invention provide a universal calibration device capable of quickly calibrating surgical instruments of different specifications.
  • the calibration device according to the embodiment of the present invention by setting at least two different calibration zones, multiple instruments can be simultaneously calibrated, thereby avoiding the problem of requiring multiple calibration devices when operating one operation, and simplifying A variety of algorithms are needed to calibrate various instruments, thus providing valuable surgical time for the doctor.
  • the calibration device 1 may further include a docking base 3 disposed on the main body 2.
  • the docking base 3 is disposed on a lower surface of the body 2.
  • the docking base 3 may include a triangular boss 32 including an opposite upper surface 321 and a lower surface 322 and three connecting the upper surface and the lower surface a side surface 324, the upper surface 321 is closer to the main body 2 than the lower surface 322, the upper surface 321 and the lower surface 322 each have a triangular shape, and the upper surface 321 has an area larger than the lower surface The area of surface 322. As shown in FIG. 5, the projection of the lower surface 322 on the body 2 completely falls into the upper surface 321.
  • the calibration device 1 when the calibration device 1 is used for orthopedic surgery, the calibration device 1 needs to be mounted on the resetting robot, and the platform of the resetting robot is provided with a triangular groove that is matched with the triangular boss 32.
  • the lower surface 322 of the triangular boss 32 is magnetically fixed to the triangular groove.
  • the positioning mark 4 of the calibration device 1 may include at least three marker balls 42, as shown in FIG. 4, the position of the marker ball 42 relative to the body 2.
  • the calibration device 1 is provided with six marker balls 42, wherein three marker balls 42 are disposed on one side, and the other three marker balls are disposed on the other side, as shown in FIG. And 3 are shown.
  • the three marker balls set on the same side are not collinear, so that a plane can be determined.
  • the position of the calibration device in the positioning robot coordinate system can be determined.
  • the marker ball 42 can be mounted to the body 2 through the base 41, as shown in FIG.
  • the calibration device 1 may further include an observation window 5 which may be formed on the side of the main body 2. Through the observation window, the operator can see whether the end of the instrument inserted in the calibration area of the hole and the calibration area of the probe reaches the bottom end, thereby ensuring the accuracy of the calibration.
  • the marker ball 42 is mounted on the main body 2, and then the calibration device 1 is mounted on the reset robot via the docking base 3, for example, on the reset platform of the reset robot.
  • the optical positioning device is capable of detecting the marker ball 42 in real time to determine the three-dimensional coordinates of the marker ball 42 relative to the positioning device (eg, the positioning robot), thereby enabling mapping of the realistic robot position to the position of the navigation virtual space robot.
  • Calibration of the various instruments can then be performed using the calibration device 1.
  • various conversions between coordinate systems are involved.
  • the conversion process involves the operation of the matrix.
  • the matrix used is generally a 4 ⁇ 4 matrix.
  • a cylindrical surgical instrument such as an intramedullary nail is calibrated using a hole calibration area of the calibration device 1.
  • the goal of calibration of a cylindrical surgical instrument is to determine the front end of the cylindrical surgical instrument relative to the cylinder
  • the position of the end of the surgical instrument, during the actual operation, the marker ball is generally installed at the end of the instrument, that is, the target of the calibration is to determine the coordinate matrix of the front end of the cylindrical surgical instrument under the navigation space to realize its reality.
  • the mapping of space and navigation space A marker ball is attached to the end of the intramedullary nail, and then a hole having the same diameter as the tip end of the intramedullary nail is selected, and the intramedullary nail is inserted into the hole.
  • the positioning device can obtain the coordinates of the calibration tool in the positioning device coordinate system, which is recorded as the matrix B.
  • the positioning device can obtain the coordinates of the front end of the intramedullary nail in the positioning device coordinate system, which is recorded as the matrix T.
  • the position of the cylindrical hole 6 in the calibration area of the hole is determined in the calibration tool coordinate system, it is fixed, that is, its coordinate can be recorded as the matrix PB.
  • the coordinate PT of the front end of the intramedullary nail in its own coordinate system can be converted, specifically:
  • B*T -1 can represent the conversion matrix of the calibration tool coordinate system to the surgical instrument coordinate system.
  • the positioning robot is calibrated using a calibration area of the positioning robot end assembly.
  • the goal of the positioning robot calibration is to determine the coordinate matrix of the end assembly of the positioning robot under the robot's own standard.
  • the calibration tool 1 interfaces with the end assembly of the robot, ie the matrix of the known end assembly of the robot in the calibration tool coordinate system is A.
  • the matrix F of the calibration tool 1 under the optical positioning tracking system can be obtained, and the matrix C of the marker ball on the robot (ie, the positioning robot itself) under the optical positioning tracking system is located.
  • a cone-shaped calibration zone is used to calibrate a sharp-pointed instrument.
  • the surgical instrument having the pointed front end (referred to as "tip) is mounted with the positioning mark, the tip is placed in the tapered hole 7, and then the tip is not moved at a fixed point, and the surgical instrument is rotated around the apex angle of the tapered hole 7. Or calibrate after tilting at least 3 positions.
  • the spatial parameter matrix is M
  • the position of the tip relative to the positioning mark is M tip , so the following derivation can be made:
  • T tip is There is no known space vector of the tip to be sought, and T tip includes pinpoint coordinate information.
  • T tip is finally determined by least squares method to determine the tip of the surgical instrument in its own coordinate system. coordinate of.
  • the calibration process of the spherical calibration area for calibrating the surgical instrument is similar to the calibration process of the calibration area of the cone, and will not be described herein.

Abstract

一种标定装置(1),其包括主体(2)、设置在主体(2)上的定位标志(4)以及设置在主体(2)上的器械标定区。器械标定区包括下列标定区中的至少两种:孔洞标定区、锥洞标定区、球体标定区、探针标定区和定位机器人末端组件标定区(10)。

Description

标定装置 技术领域
本发明涉及医疗器械技术领域,特别地,涉及一种用于光学定位跟踪系统的标定装置。
背景技术
基于图像引导的手术导航治疗系统一般包括医学成像设备(如计算机断层扫描设备CT、C型臂或核磁共振成像设备MRI)、定位设备(如定位相机、电磁定位仪或光学定位跟踪系统)和手术器械等治疗设备。在手术过程中,医生在定位设备的引导下,将由定位设备跟踪定位的手术器械准确地送达人体内部指定位置,对病灶进行治疗。
然而,在导航手术中,通常会因定位标志发生微动或者手术器械发生轻微形变,导致出现手术器械无法识别或者是手术器械精度出现偏差的情况,另外,还存在一些不确定手术器械的尺寸数据是否精确的情况。因此,如何给手术器械尤其是其尖端精确定位是手术导航系统的一个关键问题。
发明内容
为了解决上述技术问题,本公开的实施例提供一种标定装置,用以精确标定手术器械。
根据本公开的一个方面,提供一种标定装置,包括:
主体;
设置在所述主体上的定位标志;以及
设置在所述主体上的器械标定区,
所述器械标定区包括下列标定区中的至少两种:
孔洞标定区,所述孔洞标定区包括圆柱形孔洞;
锥洞标定区,所述锥洞标定区包括具有预定锥角和预定深度的锥形孔洞;
球体标定区,所述球体标定区包括安装在所述主体上的球体;
探针标定区,所述探针标定区包括贯穿所述主体的至少一个面的贯通孔;和
定位机器人末端组件标定区,所述定位机器人末端组件标定区对接定位机器人的末端组件。
根据一些实施例,所述孔洞标定区包括至少两个具有不同直径的圆柱形孔洞。
根据一些实施例,所述孔洞标定区包括三个以上的圆柱形孔洞,所述三个以上的圆柱形孔洞按照直径大小的顺序呈环形排列。
根据一些实施例,所述圆柱形孔洞为贯穿所述主体的至少一个面的圆柱形贯通孔。
根据一些实施例,所述锥形孔洞的尺寸与探针的规定尺寸相匹配。
根据一些实施例,所述球体的直径位于1mm-100mm的范围内。
根据一些实施例,所述定位机器人末端组件标定区包括一底座,所述底座的尺寸与所述定位机器人的末端组件的尺寸相匹配。
根据一些实施例,所述标定装置还包括设置在所述主体上的快接底座。
根据一些实施例,所述快接底座设置在所述主体的第一面上,所述孔洞标定区、所述锥洞标定区、所述球体标定区和所述探针标定区设置在所述主体的第二面上,所述第一面和所述第二面为所述主体不同的表面。
根据一些实施例,所述定位机器人末端组件标定区设置在所述主体的第三面上,所述第三面为所述主体的不同于所述第一面和所述第二面的表面。
根据一些实施例,所述第一面和所述第二面为所述主体的相对的表面。
根据一些实施例,所述快接底座包括三角形凸台,所述三角形凸台包括相对的上表面和下表面以及连接所述上表面与所述下表面的三个侧面,所述上表面比所述下表面更靠近所述主体,所述上表面和所述下表面均呈三角形形状,并且所述上表面的面积大于所述下表面的面积。
根据一些实施例,所述定位标志包括至少三个标志小球,所述标志小球相对于所述主体的位置固定。
根据一些实施例,所述标定装置还包括观察窗,所述观察窗形成在所述主体的侧面上。
本发明的实施例提供了一种通用的标定装置,能够对不同规格的手术器械进行快速地标定。
附图说明
通过下文中参照附图对本公开所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
图1是根据本公开的示例性实施例的标定装置的透视图;
图2是根据本公开的示例性实施例的标定装置的俯视图;
图3是根据本公开的示例性实施例的标定装置的侧视图;
图4是根据本公开的示例性实施例的标定装置的另一视角的透视图;
图5是根据本公开的示例性实施例的标定装置的仰视图;
图6是根据本公开的示例性实施例的标定装置的主视图;以及
图7是根据本公开的示例性实施例的标定装置的剖视图。
需要说明的是,各附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另有明确说明,本公开实施例的附图中各结构的尺寸和比例均不代表实际的尺寸和比例。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。
需要说明的是,虽然术语“第一”、“第二”等可以在此用于描述各种部件、构件、元件、区域、层和/或部分,但是这些部件、构件、元件、区域、层和/或部分不应受到这些术语限制。而是,这些术语用于将一个部件、构件、元件、区域、层和/或部分与另一个相区分。因而,例如,下面讨论的第一部件、第一构件、第一元件、第一区域、第一层和/或第一部分可以被称为第二部件、第二构件、第二元件、第二区域、第二层和/或第二部分,而不背离本公开的教导。
另外,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者部件涵盖出现在该词后面列举的元件或者部件及其等同,而不排除其他元件或者部件。“连接” 或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在本公开中,为了描述方便,使用了方向性术语“上”、“下”、“左”、“右”、“第一方向”、“第二方向”、“第三方向”等,应理解的是,所述方向性术语仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。例如,在描述根据本公开实施例的骨固定针的锁定装置时,可以参照所述锁定装置实际的使用方位,用“第一方向”表示平行于所述骨固定针的插入方向的方向,用“第二方向”表示垂直于所述骨固定针的插入方向的方向,用“第三方向”表示垂直于所述第一方向和所述第二方向的方向。
应该理解的是,手术导航系统广泛地应用在各种外科手术中,例如骨科、神经外科、脊椎神经外科等,同时也用于胸腹部、组织活检穿刺等微创手术。手术导航系统能够通过定位系统将成像设备获取得到的三维图像数据与实际空间的病人位置进行注册,通过对实际空间中手术器械标记点的实时跟踪,获得手术器械在图像空间的实时三维显示,辅助医生进行精确地手术操作。手术导航系统可以采用基于光学的手术导航技术。为了更具体地说明本发明的技术构思,在本文中,以基于光学的手术导航技术为例描述本发明的实施例,然而,本领域技术人员应该理解的是,本发明的技术构思也可以用于其它类型的手术导航技术中。
除非另有说明,在本文中,术语“定位标志”可以是主动式定位标志,也可以是被动式定位标志。例如,主动式定位标志可以包括安装有发光二极管的标志小球,该红外发光二极管发出的光能够被摄像机等光学装置采集;被动式定位标志可以包括多个标志小球,该多个标志小球反射其它装置发出的光,该反射的光能够被摄像机等光学装置采集。
根据本发明的一个示例性实施例,结合图1-3所示,一种用于手术导航的标定装置1可以包括主体2、设置在所述主体2上的定位标志4以及设置在所述主体2上的器械标定区。
如图1和图2所示,所述器械标定区可以包括下列标定区中的至少两种:孔洞标定区,所述孔洞标定区可以包括圆柱形孔洞6;锥洞标定区,所述锥洞标定区可以包括具有预定锥角和预定深度的锥形孔洞7;球体标定区,所述球体标定区可以包括安装在所述主体2上的球体8;探针标定区,所述探针标定区可以包括贯穿所述主体的至少一个面的贯通孔9;和定位机器人末端组件标定区10,所述定位机器人末端组件 标定区对接用于手术导航的定位机器人的末端组件。
根据一个示例性实施例,所述孔洞标定区可以包括至少两个具有不同直径的圆柱形孔洞6。根据另一个示例性的实施例,所述孔洞标定区可以包括三个以上的圆柱形孔洞6,所述三个以上的圆柱形孔洞6按照直径大小的顺序呈环形排列。如图2所示,所述孔洞标定区可以包括多个圆柱形孔洞6,多个圆柱形孔洞6的直径均不相同,多个圆柱形孔洞6可以按照直径大小的顺序呈环形排列,在该环形的中心,还形成有一个圆柱形孔洞6。该位于中心的圆柱形孔洞6的直径可以与环绕它的其它圆柱形孔洞6的直径均不相同。通过这样的排列方式,可以充分利用空间设置多个具有不同直径规格的孔洞,从而能够对多种具有不同尺寸规格(例如前端直径)的圆柱形手术器械(例如髓内钉等)进行标定。
图7示出了根据本发明实施例的标定装置的剖视图,如图7所示,所述圆柱形孔洞6可以为贯穿所述主体的至少一个面的圆柱形贯通孔。在图7所示的实施例中,该至少一个面包括主体2的上表面。
如图7所示,锥形孔洞7可以具有预定的锥角和预定的深度。在示例性的实施例中,锥形孔洞7可以用来标定具有尖的末端的手术器械。例如,所述锥洞标定区可以用来标定在孔洞标定区找不到合适直径、末端为尖的器械。具体地,将具有尖的末端的手术器械安装定位标志后,将尖的末端置于锥形孔洞7中,然后围绕锥形孔洞7的顶角旋转或倾斜至少3个位置后进行标定,具体的标定过程将在下文中更详细地描述。
返回参照图1和图2,所述锥形孔洞7可以布置在主体2的上表面上。即,锥形孔洞7与圆柱形孔洞6布置在主体2的同一表面上。
根据本发明的示例性实施例,所述锥形孔洞7的尺寸可以与手术器械(例如探针)的规定尺寸相匹配。
参照图1,所述球体标定区可以包括安装在所述主体2上的球体8,所述球体标定区可以标定末端为球形的空心器械,具体地,可以将定位标志安装在空心器械上,然后将器械的空心末端卡在球体上,围绕球体8旋转或倾斜至少3个位置后进行标定,具体的标定过程将在下文中更详细地描述。
根据本发明的示例性实施例,所述球体8的直径可以位于1mm-100mm的范围内,特别地,所述球体8的直径可以位于5mm-10mm的范围内。
在图示的实施例中,所述球体8可以布置在主体2的上表面上。即,球体8与锥形孔洞7和圆柱形孔洞6布置在主体2的同一表面上。例如,球体8可以通过圆柱形 底座安装在主体2的上表面上。
根据本发明的示例性实施例,所述探针标定区可以包括贯穿所述主体2的至少一个面的贯通孔9。参照图7,贯通孔9贯穿主体2的上表面,并且延伸至主体2的下表面的一部分中。所述探针标定区可以用于标定探针。探针一般具有较长的长度,将探针插入贯通孔9后,借助该标定装置,可以标定出探针的末端相对于探针上的定位标志的位置信息。
参照图1和图3,所述定位机器人末端组件标定区10可以包括一底座12,所述底座12对接用于手术导航的定位机器人的末端组件,所述底座12的尺寸与定位机器人的末端组件的尺寸相匹配。将定位机器人的末端组件安装于定位机器人末端执行器标定区的底座12上,即可标定出定位机器人的末端组件相对于底座12的位置关系,再通过一定的换算就可以知道定位机器人的末端组件安装在定位机器人手臂后的相对位置。在图示的实施例中,所述定位机器人末端组件标定区10设置在主体2的一个侧面上。
在图示的实施例中,虽然同时示出了孔洞标定区、锥洞标定区、球体标定区、探针标定区和定位机器人末端组件标定区,但是,应该理解的是,在本发明的其它实施例中,标定装置可以包括孔洞标定区、锥洞标定区、球体标定区、探针标定区和定位机器人末端组件标定区中的至少两种,即,标定装置可以包括孔洞标定区、锥洞标定区、球体标定区、探针标定区和定位机器人末端组件标定区中的至少两种标定区的任意组合,例如,标定装置可以包括孔洞标定区和锥洞标定区,或可以包括球体标定区和探针标定区,或可以包括孔洞标定区和定位机器人末端组件标定区。
针对目前手术器械的种类繁多,因手术用途不同而有不同的规格,不同厂家生产的手术器械规格也不一致,差异主要体现在针体的长度、直径,以及针尖的形状有斜切和轴对称两种形态等问题,本发明的实施例提供了一种通用的标定装置,能够对不同规格的手术器械进行快速地标定。在根据本发明实施例的标定装置中,通过设置至少两种不同的标定区,可以同时对多种器械进行标定,避免了在操作一台手术时需要配备多个标定装置的问题,而且还简化了各种标定各种器械时需要进行的各种算法,从而为医生争取到了宝贵的手术时间。
如图4所示,根据本发明的示例性实施例,所述标定装置1还可以包括设置在所述主体2上的快接底座3。在图示的实施例中,所述快接底座3设置在所述主体2的下表面上。
根据一个示例性的实施例,所述快接底座3可以包括三角形凸台32,所述三角形凸台32包括相对的上表面321和下表面322以及连接所述上表面与所述下表面的三个侧面324,所述上表面321比所述下表面322更靠近所述主体2,所述上表面321和所述下表面322均呈三角形形状,并且所述上表面321的面积大于所述下表面322的面积。如图5所示,所述下表面322在所述主体2上的投影完全落入所述上表面321中。
例如,在将标定装置1用于骨科手术时,需要将标定装置1安装在复位机器人上,复位机器人的平台上设置有与所述三角形凸台32相匹配的上大下小的三角形凹槽,三角形凸台32的下表面322与三角形凹槽通过磁性固定。通过这样的配合方式,可以实现标定装置与复位机器人的快速对接,从而进一步为医生争取到了宝贵的手术时间。
作为一个示例,标定装置1的定位标志4可以包括至少三个标志小球42,如图4所示,所述标志小球42相对于所述主体2的位置固定。在图示的实施例中,标定装置1上设置有6个标志小球42,其中3个标志小球42设置在一个侧面上,另外3个标志小球设置在另一个侧面上,如图1和3所示。设置在同一个侧面上的3个标志小球不共线,从而可以确定一个平面。在标定过程中,通过计算标志小球相对于定位机器人的位置,就可以确定标定装置在定位机器人坐标系中的位置。
根据一个示例性的实施例,标志小球42可以通过底座41安装于主体2上,如图1所示。
如图6所示,标定装置1还可以包括观察窗5,所述观察窗5可以形成在所述主体2的侧面上。通过观察窗,操作者可以看到插于孔洞标定区和探针标定区的器械末端有没有到达最底端,从而可以确保标定的精确性。
下面,结合上述标定装置的结构,描述使用该标定装置标定各种器械的工作过程。
首先,将标志小球42安装在主体2上,然后将标定装置1通过快接底座3安装在复位机器人上,例如安装在复位机器人的复位平台上。光学定位设备能够实时探测标志小球42,以确定标志小球42相对于定位设备(例如定位机器人)的三维坐标,从而实现现实机器人位置与导航虚拟空间机器人位置的映射。
然后,可以使用标定装置1进行各种器械的标定。在进行标定时,涉及到坐标系之间的各种换算,换算过程涉及矩阵的运算,如无特别说明,其中使用的矩阵一般均为4×4的矩阵。
例如,使用标定装置1的孔洞标定区对例如髓内钉的圆柱形手术器械进行标定。对例如髓内钉的圆柱形手术器械标定的目标是确定圆柱形手术器械的前端相对于圆柱 形手术器械的末端的位置,实际手术过程中,一般会在器械的末端安装标志小球,也就是说,标定的目标是确定圆柱形手术器械的前端在导航空间下的坐标矩阵,实现其现实空间和导航空间的映射。在髓内钉的末端安装标志小球,然后选择与该髓内钉的前端直径相同的直径的孔洞,将髓内钉插入该孔洞中。通过定位设备的光学定位跟踪系统,即,通过采集标定装置的标志小球发出的光或反射的光,定位设备可以得到标定工具在定位设备坐标系下的坐标,记为矩阵B。髓内钉的前端插入对应的孔洞后,定位设备可以得到髓内钉的前端在定位设备坐标系下的坐标,记为矩阵T。而孔洞标定区的圆柱形孔洞6在标定工具坐标系下的位置一经确定,就是固定不变的,即其坐标可以记为矩阵PB。
根据上述关系,可以换算出髓内钉的前端在其自身坐标系下的坐标PT,具体为:
PT=B*T-1*PB,
其中,B*T-1可以表示标定工具坐标系到手术器械坐标系的转换矩阵。
需要说明的是,所述探针标定区用来标定探针等手术器械的标定过程与此类似,在此不再赘述。
再例如,使用定位机器人末端组件标定区对定位机器人进行标定。定位机器人标定的目标是确定定位机器人的末端组件在机器人自身标系下的坐标矩阵。由于标定时,标定工具1与机器人的末端组件对接,即已知机器人的末端组件在标定工具坐标系下的矩阵为A。根据光学定位跟踪系统,可以获得标定工具1在光学定位跟踪系统下的矩阵F,定位机器人上的标志小球(即定位机器人本身)在光学定位跟踪系统下的矩阵C。根据上述关系,可以换算出机器人的末端组件在机器人自身坐标系下的矩阵D为:D=A*F*C-1
再例如,使用锥洞标定区对前端为尖的器械进行标定。将具有尖的前端(简称为“尖端”)的手术器械安装定位标志后,将尖端置于锥形孔洞7中,然后尖端在一固定点不动,手术器械围绕锥形孔洞7的顶角旋转或倾斜至少3个位置后进行标定。
将尖端抵在一固定点上不动,旋转手术器械。在旋转过程中,采集定位标志的空间参数矩阵Mj,j=1,2,3……n,n为采集次数。假设尖端抵触的固定点在定位设备下的空间参数矩阵是M,尖端相对于定位标志的位置是Mtip,于是可以进行如下推导:
Figure PCTCN2017110485-appb-000001
Figure PCTCN2017110485-appb-000002
Figure PCTCN2017110485-appb-000003
于是:RjTtip+Tj=Rj+1Ttip+Tj+1,从而得到:
(Rj-Rj+1)*Ttip=(Tj+1-Tj)。
其中,Rj和Rj+1表征空间参数矩阵Mj和Mj+1中的旋转分量,Tj和Tj+1表征参数矩阵Mj和Mj+1中的平移分量,Ttip是未知待求的尖端的空间向量,Ttip中包括有针尖坐标信息。通过采集n次空间参数矩阵Mj,可以建立一个包含有3*(n-1)个方程的方程组,利用最小二乘法最终确定Ttip,从而确定出手术器械的尖端在其自身坐标系中的坐标。
需要说明的是,所述球体标定区用来标定手术器械的标定过程与锥洞标定区的标定过程类似,在此不再赘述。
对于本公开的实施例,还需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种标定装置,包括:
    主体;
    设置在所述主体上的定位标志;以及
    设置在所述主体上的器械标定区,
    其特征在于,所述器械标定区包括下列标定区中的至少两种:
    孔洞标定区,所述孔洞标定区包括圆柱形孔洞;
    锥洞标定区,所述锥洞标定区包括具有预定锥角和预定深度的锥形孔洞;
    球体标定区,所述球体标定区包括安装在所述主体上的球体;
    探针标定区,所述探针标定区包括贯穿所述主体的至少一个面的贯通孔;和
    定位机器人末端组件标定区,所述定位机器人末端组件标定区对接定位机器人的末端组件。
  2. 根据权利要求1所述的标定装置,其特征在于,所述孔洞标定区包括至少两个具有不同直径的圆柱形孔洞。
  3. 根据权利要求1或2所述的标定装置,其特征在于,所述孔洞标定区包括三个以上的圆柱形孔洞,所述三个以上的圆柱形孔洞按照直径大小的顺序呈环形排列。
  4. 根据权利要求1-3中任一项所述的标定装置,其特征在于,所述圆柱形孔洞为贯穿所述主体的至少一个面的圆柱形贯通孔。
  5. 根据权利要求1-4中任一项所述的标定装置,其特征在于,所述锥形孔洞的尺寸与探针的规定尺寸相匹配。
  6. 根据权利要求1-5中任一项所述的标定装置,其特征在于,所述球体的直径位于1mm-100mm的范围内。
  7. 根据权利要求1-6中任一项所述的标定装置,其特征在于,所述定位机器人末端组件标定区包括一底座,所述底座的尺寸与所述定位机器人的末端组件的尺寸相匹配。
  8. 根据权利要求1-7中任一项所述的标定装置,其特征在于,所述标定装置还包括设置在所述主体上的快接底座。
  9. 根据权利要求8所述的标定装置,其特征在于,所述快接底座设置在所述主体的第一面上,所述孔洞标定区、所述锥洞标定区、所述球体标定区和所述探针标定区设置在所述主体的第二面上,所述第一面和所述第二面为所述主体不同的表面。
  10. 根据权利要求9所述的标定装置,其特征在于,所述定位机器人末端组件标定区设置在所述主体的第三面上,所述第三面为所述主体的不同于所述第一面和所述第二面的表面。
  11. 根据权利要求9或10所述的标定装置,其特征在于,所述第一面和所述第二面为所述主体的相对的表面。
  12. 根据权利要求8-11中任一项所述的标定装置,其特征在于,所述快接底座包括三角形凸台,所述三角形凸台包括相对的上表面和下表面以及连接所述上表面与所述下表面的三个侧面,所述上表面比所述下表面更靠近所述主体,所述上表面和所述下表面均呈三角形形状,并且所述上表面的面积大于所述下表面的面积。
  13. 根据权利要求1-12中任一项所述的标定装置,其特征在于,所述定位标志包括至少三个标志小球,所述标志小球相对于所述主体的位置固定。
  14. 根据权利要求1-13中任一项所述的标定装置,其特征在于,所述标定装置还包括观察窗,所述观察窗形成在所述主体的侧面上。
PCT/CN2017/110485 2017-11-10 2017-11-10 标定装置 WO2019090703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110485 WO2019090703A1 (zh) 2017-11-10 2017-11-10 标定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110485 WO2019090703A1 (zh) 2017-11-10 2017-11-10 标定装置

Publications (1)

Publication Number Publication Date
WO2019090703A1 true WO2019090703A1 (zh) 2019-05-16

Family

ID=66438710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110485 WO2019090703A1 (zh) 2017-11-10 2017-11-10 标定装置

Country Status (1)

Country Link
WO (1) WO2019090703A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7643862B2 (en) * 2005-09-15 2010-01-05 Biomet Manufacturing Corporation Virtual mouse for use in surgical navigation
WO2010077008A2 (ko) * 2008-12-31 2010-07-08 주식회사 사이버메드 수술용 항법 장치용 도구의 교정 방법
CN202288472U (zh) * 2011-10-11 2012-07-04 新博医疗技术有限公司 一种用于医学图像导航系统的标定模
CN103006335A (zh) * 2013-01-06 2013-04-03 新博医疗技术有限公司 一种手术导航用的通用标定模及标定方法
WO2016058078A1 (en) * 2014-10-17 2016-04-21 Synaptive Medical (Barbados) Inc. Calibration apparatus for a medical tool
CN206063214U (zh) * 2016-07-01 2017-04-05 华南理工大学 一种光学手术导航手术器械标定装置
CN107802347A (zh) * 2017-11-10 2018-03-16 唐佩福 标定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7643862B2 (en) * 2005-09-15 2010-01-05 Biomet Manufacturing Corporation Virtual mouse for use in surgical navigation
WO2010077008A2 (ko) * 2008-12-31 2010-07-08 주식회사 사이버메드 수술용 항법 장치용 도구의 교정 방법
CN202288472U (zh) * 2011-10-11 2012-07-04 新博医疗技术有限公司 一种用于医学图像导航系统的标定模
CN103006335A (zh) * 2013-01-06 2013-04-03 新博医疗技术有限公司 一种手术导航用的通用标定模及标定方法
WO2016058078A1 (en) * 2014-10-17 2016-04-21 Synaptive Medical (Barbados) Inc. Calibration apparatus for a medical tool
CN206063214U (zh) * 2016-07-01 2017-04-05 华南理工大学 一种光学手术导航手术器械标定装置
CN107802347A (zh) * 2017-11-10 2018-03-16 唐佩福 标定装置

Similar Documents

Publication Publication Date Title
US11547497B2 (en) Attachments for tracking handheld implements
JP6646713B2 (ja) 定位アクセスデバイス及び方法
US7953470B2 (en) Method, device and navigation aid for navigation during medical interventions
EP2320809B1 (en) A device for manipulating a bone or bone fragment or a surgical instrument, tool or implant and a method for positioning such a device
US20050228270A1 (en) Method and system for geometric distortion free tracking of 3-dimensional objects from 2-dimensional measurements
US20070093709A1 (en) Surgical navigation markers
US20050222793A1 (en) Method and system for calibrating deformed instruments
CN111714206A (zh) 神经导航配准和机器人轨迹引导系统及相关方法和装置
US11737833B2 (en) Bone screw and instruments for probing position of bone screw
US20220361959A1 (en) System and Method for Computation of Coordinate System Transformations
US20170245781A1 (en) Smart drill, jig, and method of orthopedic surgery
CN114650785A (zh) 装置的机器人定位
US20200345430A1 (en) Generic depth indicator for surgical navigational tools
US10682126B2 (en) Phantom to determine positional and angular navigation system error
WO2013053103A1 (zh) 手术器械方向校准参数和作用方向的确定方法及校准工具
CN209107577U (zh) 标定装置
CN107802347B (zh) 标定装置
EP3733112A1 (en) System for robotic trajectory guidance for navigated biopsy needle
WO2019090703A1 (zh) 标定装置
US20200297451A1 (en) System for robotic trajectory guidance for navigated biopsy needle, and related methods and devices
WO2023003745A1 (en) Instrument bourne position sensing system for precision 3d guidance and methods of surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931639

Country of ref document: EP

Kind code of ref document: A1