WO2019088775A1 - 발광다이오드를 이용한 조명장치 - Google Patents

발광다이오드를 이용한 조명장치 Download PDF

Info

Publication number
WO2019088775A1
WO2019088775A1 PCT/KR2018/013282 KR2018013282W WO2019088775A1 WO 2019088775 A1 WO2019088775 A1 WO 2019088775A1 KR 2018013282 W KR2018013282 W KR 2018013282W WO 2019088775 A1 WO2019088775 A1 WO 2019088775A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting diode
present
unit
Prior art date
Application number
PCT/KR2018/013282
Other languages
English (en)
French (fr)
Inventor
신서용
부녹하이
팜탄투안
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Publication of WO2019088775A1 publication Critical patent/WO2019088775A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • Embodiments of the present invention relate to a lighting device using a light emitting diode.
  • LEDs Light-emitting diodes
  • an illumination device using LED has an advantage that it does not cause environmental pollution because it does not use mercury or discharge gas like a fluorescent lamp.
  • Figure 1 is a photograph of a typical LED illumination device.
  • LEDs have not been used in lighting devices requiring high uniformity due to their semi-spherical radiation pattern.
  • outdoor light such as LED street lamp collects light in a desired form by installing a lens on a cover of a luminaire, but the distribution of light formed by a conventional circular lens is mostly circular, and the luminance difference between the central part and the peripheral part is large.
  • the lighting range is wide, the effect is good, and the angle of illumination is also large in the side direction in which the road is spread.
  • the lighting range should be small in order to prevent waste of electric power and to prevent light pollution in the surroundings.
  • the LED street lamp with the circular lens is installed with a plurality of luminaire in the direction in which the road spreads, so as to obtain sufficient illumination effect.
  • Figure 2 shows the approaches applied for improving the luminescence pattern of a single LED.
  • LED lighting devices based on LED arrays focus on calculating and optimizing the position, brightness, direction of light, etc. of the LEDs. Although high optical efficiency can be achieved by applying the secondary optical element to the LED array, the secondary optical element is not applied to the lighting device using the LED array due to the complexity of the calculation and the difficulty of the analysis.
  • an illumination device using a light emitting diode capable of being integrated, energy efficient, highly functional, cost effective and uniformly dispersing light.
  • Embodiments of the present invention provide a light source that can be integrated with an LED in the form of a chip-on-board (COB) by using a simple secondary optical element, provides energy efficient, highly functional, cost- There is provided a lighting apparatus using a light emitting diode capable of emitting light.
  • COB chip-on-board
  • One embodiment of the present invention provides a semiconductor device comprising: a substrate; A light emitting diode array including a plurality of light emitting diodes arranged at predetermined intervals on the substrate; A collimator unit for converting light emitted from the light emitting diode array into parallel light to form a first patterned light; And a diffusing unit for diffusing the first pattern light into light having a predetermined radiation angle to form a third pattern light.
  • a light emitting diode capable of integrating with a LED using a simple secondary optical element, capable of providing energy efficient, highly functional, cost effective and highly uniform light
  • Figure 1 is a photograph of a typical LED illumination device.
  • Figure 2 shows the approaches applied for improving the luminescence pattern of a single LED.
  • FIG. 3 (a) is a structural view of a lighting apparatus using a light emitting diode according to an embodiment of the present invention
  • FIG. 3 (b) is a view for explaining a lighting apparatus using a light emitting diode It is a conceptual diagram.
  • FIG. 4 illustrates a light emission pattern in a case where a collimator unit and a diffusion unit are not used in a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • FIG. 5 is a diagram for designing a collimator unit of an illumination device using a light emitting diode according to an embodiment of the present invention.
  • FIG. 6 illustrates a light emission pattern in a case where only a collimator portion of an illumination device using a light emitting diode according to an embodiment of the present invention is applied.
  • FIG. 7 is a view for explaining a diffusion unit of a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • FIG. 8 illustrates a radiation pattern of a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • FIG. 9 shows a simulation environment of a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • FIG. 10 shows a simulation result using an illumination device using a light emitting diode according to an embodiment of the present invention.
  • FIG. 11 is a graph illustrating light efficiency and uniformity calculated by changing the number of diffuser grooves included in a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • FIG. 12 illustrates an environment in which a lighting apparatus using a light emitting diode according to an embodiment of the present invention can be applied.
  • FIG. 13 illustrates an environment in which a lighting apparatus using a light emitting diode according to an embodiment of the present invention can be applied.
  • FIG. 14 illustrates a light distribution on a road when an illumination device using a light emitting diode according to an embodiment of the present invention is applied.
  • the first, second, i), ii), a), b) and the like can be used.
  • Such a code is intended to distinguish the constituent element from other constituent elements, and the nature of the constituent element, the order or the order of the constituent element is not limited by the code. It is also to be understood that when a component is referred to as being “comprising” or “comprising,” it should be understood that it is not intended to exclude other components, it means.
  • FIG. 3 (a) is a structural view of a lighting apparatus using a light emitting diode according to an embodiment of the present invention
  • FIG. 3 (b) is a view for explaining a lighting apparatus using a light emitting diode It is a conceptual diagram.
  • the illumination device 300 using the light emitting diode includes a substrate 310, a light emitting diode array 320, a collimator unit 330, and a diffusion unit 340.
  • the substrate 310 may comprise a rigid printed circuit board made of a rigid material and capable of supporting other components, and a flexible printed circuit board made of a soft material and capable of flexing. On the substrate 310, a plurality of light emitting diode arrays 320 and a plurality of electric / electronic components for driving them may be mounted. In addition, various structures for emitting heat generated in the light emitting diode array 320 may be mounted. Further, the substrate 310 may be a semiconductor substrate. The substrate 310 may be a wafer formed of a single material such as silicon (Si) and germanium (Ge) wafers, or a compound wafer composed of at least two materials.
  • Si silicon
  • Ge germanium
  • the substrate 310 may be formed of a single crystal wafer such as a silicon single crystal wafer.
  • the substrate 310 is not limited to monocrystalline wafers, and various types of wafers, such as epitaxial wafers, polished wafers, annealed wafers, bonded wafers, . ≪ / RTI >
  • the epitaxial wafer means a wafer in which a material is crystal-grown on a single crystal silicon substrate.
  • the light emitting diode array 320 includes at least one light emitting diode.
  • the light emitting diode is a semiconductor device unlike conventional analog illumination, so that it is easy to control.
  • the light emitting diode array 320 may include a plurality of light emitting diodes arranged in one row or may include a plurality of light emitting diodes arranged in a matrix form. In some situations, the light emitting diode array 320 may include a plurality of light emitting diodes that are non-uniformly disposed.
  • the arrangement of the light emitting diode array 320 according to an embodiment of the present invention may be changed according to the structure of the collimator unit 330 or the diffusion unit 340 described later.
  • the substrate 310 may be made of transparent synthetic resin, quartz, glass, or the like.
  • FIG. 4 illustrates a light emission pattern in a case where a collimator unit and a diffusion unit are not used in a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • light emitted from a light emitting diode included in the light emitting diode array 320 typically has a radiation angle of several to several tens of degrees.
  • the radiation angle of the light emitting diode may be varied depending on the structure of the light emitting surface, the material (refractive index) forming the light emitting diode, and the like.
  • the radiation angle may be narrow or wide depending on the use of the light emitting diode.
  • the collimator unit 330 collects the light emitted from the light emitting diode array 320 and converts the light shape so that the light can be converged in parallel or in one place.
  • the collimator unit 330 may be manufactured by forming a mirror or lens having a parabolic shape and disposing a point source at a focus thereof. However, when the light emitted from the LED having a wide radiation angle is to be converted into light traveling in parallel, the collimator unit 330 can be formed using a plano-convex lens or the like .
  • FIG. 5 is a diagram for designing a collimator unit of an illumination device using a light emitting diode according to an embodiment of the present invention.
  • the collimator unit 330 of the illumination device 300 using the light emitting diode may be formed using a plurality of plano-convex lenses.
  • the plano-convex lens has a plane of incidence and has an exit surface of a curved surface.
  • a portion denoted by Plano-surface shown in FIG. 5 (a) is an incident surface of a plano-convex lens, and a portion denoted by a freeform curve is an exit surface of a plano-convex lens.
  • Plane-convex lens is a light emitting diode of the light emitting diodes in the array 320, the radiation angle ⁇ n, the plane from the light-emitting diode - the distance is d 0, the plane to the convex lens-in of the positive lens thickness d 1, the refractive index of air n 0 , the refractive index n 1 of the plano-convex lens, and the like.
  • Plane-convex lens is assuming that the x-axis, that is, a circle symmetrical with respect to a straight line connecting the OB 0, located on one O point of the light emitting diode that is included in the LED array 320, has an angle of incidence ⁇ n plane - A ray incident on the convex lens can be represented by OA n .
  • the ray OA n is refracted to a ray A n B n at a point A n on the plane of incidence of the plane-convex lens.
  • Equation (1) the angle of incidence and the angle of incidence at the boundary between two media having different refractive indexes.
  • n 0 is the refractive index of the medium 0, that is, air
  • n 1 is the refractive index of the plano-convex lens. Since the individual light emitting diodes included in the light emitting diode array 320 in terms of plano-convex lenses operate as point light sources, each light emitting diode forms a spherical wavefront. When a light ray having a spherical wavefront is refracted by an exit surface of a plane-convex lens, a light ray having a spherical wavefront becomes a light ray having a plane wavefront. The light beams from all the individual light emitting diodes included in the light emitting diode array 320 have the same light path from each light source to the wave front. This can be expressed by Equation (2) according to the law of conservation of light path.
  • OA 0 is an incident ray in a direction parallel to the x axis
  • a 0 B 0 represents a ray refracted at an incident surface boundary of a plane-convex lens.
  • the light beam in the case where the incident angle is 0 ° goes straight.
  • the material used to form the plano-convex lens is PMMA (poly (methyl methacrylate)).
  • the collimator part 330 can be formed by disposing individual plano-convex lenses designed and formed in this manner in a matrix form.
  • the collimator unit 330 included in the illumination device 300 using the light emitting diode according to an embodiment of the present invention includes 10 x 10, i.e., 100 plane-convex lenses.
  • FIG. 6 illustrates a light emission pattern in a case where only a collimator portion of an illumination device using a light emitting diode according to an embodiment of the present invention is applied.
  • the light emitted from the light emitting diode array 320 passes through the collimator unit 330 and is changed to parallel light.
  • FIG. 7 is a view for explaining a diffusion unit of a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • the diffusion unit 340 of the illumination device 300 using the light emitting diode performs a function of uniformly diffusing light from the collimator unit 330.
  • the light emitted from the light emitting diode array 320 is light spreading with a wide radiation angle.
  • the collimator unit 330 receives the spreading light having a wide radiation angle and changes the light into parallel light.
  • the diffusing unit 340 uniformly diffuses the light passing through the collimator unit 330 into the parallel light.
  • the diffusing portion 340 may include a linear Fresnel lens to diffuse uniformly light with respect to the illumination plane.
  • a linear Fresnel lens can transmit parallel traveling light along one direction to a desired point.
  • the linear Fresnel lens is formed by a plurality of grooves, and each groove has a shape of a small convex lens.
  • This small convex lens forms a focus on the focal distance of the convex lens and diffuses the light evenly away from it, for example on the illumination plane. Accordingly, the parallel traveling light passing through both the linear Fresnel lens uniformly diffusing in one direction, e.g., the x-axis direction, and the linear Fresnel lens uniformly diffusing in the other direction, e.g., the y- And spread evenly on the plane formed by the axis.
  • Each of the two linear Fresnel lenses may include N and M grooves of a predetermined shape, and may be formed in a shape corresponding to the shape of the LED array 320 and the collimator portion 330 The shape of the linear Fresnel lens may also vary.
  • the collimator unit 330 will also be arranged in a two-dimensional planar shape, and formed of two linear Fresnel lenses
  • the diffusion portion 340 may also be arranged in a two-dimensional planar shape.
  • the groove shape of the linear Fresnel lens can be designed using a simultaneous multiple surface (SMS) technique.
  • a L B L be the leftmost ray included in the linear Fresnel lens
  • a R B R be the rightmost ray
  • R R be the ray in the illumination plane.
  • the ray A L B L at the far left will reach the left side of the groove and will be refracted to reach R '.
  • the ray A R B R reaches the right side of the groove and will be refracted to reach R.
  • Both of these rays intersect at focus F.
  • All the rays between these two rays will converge at the focus F.
  • All rays between these two rays will pass through focus F and reach the plane of illumination.
  • All rays condensed at the focus F must also satisfy the spectral conservation law, so that the coordinates of all the points existing on the surface of the groove can be calculated according to Equation (3).
  • n 0 and n 1 are the refractive index of air and the refractive index of the material forming the Fresnel lens, respectively.
  • FIG. 8 illustrates a radiation pattern of a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • FIG. 9 shows a simulation environment of a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • the illumination device 300 using a light emitting diode is manufactured in a planar shape with a size of 100 mm x 100 mm and a distance from the illumination device 300 using the light emitting diode to the illumination plane is 3 m, Is assumed to be 3 m ⁇ 3 m.
  • the individual light emitting diodes included in the light emitting diode array 320 generate light corresponding to a light flux of 50 lm in total, and the light emitting diode array 320 generates light corresponding to a total light flux of 5000 lm.
  • the material for the Fresnel lens forming the diffusing portion 340 was also selected as PMMA.
  • Luminous efficiency and uniformity are the most important performance indices in the lighting, and the design parameters of the linear Fresnel lens have the greatest influence on these performance indices.
  • the size and shape of the groove determine the light efficiency and uniformity of the entire illumination device. Accordingly, the light efficiency and uniformity of the illumination device 300 using the light emitting diode were calculated while varying the number of grooves formed in the linear Fresnel lens of the diffusion portion 340.
  • FIG. 10 shows a simulation result using an illumination device using a light emitting diode according to an embodiment of the present invention.
  • 10 (a), 10 (b) and 10 (c) show the uniformity of light calculated in the illumination plane when the number of grooves is 10, 20 and 30, respectively.
  • the uniformity of light was calculated using Equation (3).
  • the light efficiency is simply calculated as a ratio of the luminous flux of the illumination plane to the total luminous flux of the light emitting diode array 320.
  • FIG. 11 is a graph illustrating light efficiency and uniformity calculated by changing the number of diffuser grooves included in a lighting apparatus using a light emitting diode according to an embodiment of the present invention.
  • the Fresnel reflection loss occurs at the boundary between all media. That is, the Fresnel reflection loss in the illumination device 300 using the light emitting diode according to the embodiment of the present invention occurs on the surface of the collimator part 330 and the surface of the diffusion part 340. Therefore, in consideration of light efficiency and uniformity, it is necessary to appropriately adjust the number of grooves.
  • the collimator portion 330 of the lighting device 300 using the light emitting diode according to the embodiment of the present invention The formed light has a radiation angle of 7.5 degrees, so that light traveling from the collimator part 330 reaches the diffusion part 340, and some loss occurs.
  • FIG. 12 illustrates an environment in which a lighting apparatus using a light emitting diode according to an embodiment of the present invention can be applied.
  • FIG. 12C By using the light emitting device 300 using the light emitting diode according to the embodiment of the present invention, a uniform light distribution as shown in FIG. 12C can be obtained.
  • the light shown in (d) of FIG. 12 shows the light distribution when a typical fluorescent lamp is used.
  • FIG. 13 illustrates an environment in which a lighting apparatus using a light emitting diode according to an embodiment of the present invention can be applied.
  • FIG. 13 (b) shows an example in which a typical street light is used
  • FIG. 13 (c) shows an example in which a lighting device 300 using a light emitting diode according to an embodiment of the present invention is used. do.
  • the illumination device 300 using the light emitting diode according to an embodiment of the present invention can provide uniform light even on an asymmetric illumination plane.
  • FIG. 14 illustrates a light distribution on a road when an illumination device using a light emitting diode according to an embodiment of the present invention is applied.
  • FIG. 14 (b) when a typical street light is used, the distribution of light reaching the road is uneven, and when the lighting device 300 using the light emitting diode according to the embodiment of the present invention is used , And the distribution of light reaching the road is also relatively uniform (Fig. 14 (a)).

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 발광다이오드를 이용한 조명장치에 관한 것으로서, 기판, 기판 상에 기 설정된 간격으로 배치된 복수의 발광다이오드를 포함하는 발광다이오드 어레이, 발광다이오드 어레이로부터 방출된 빛을 평행한 빛으로 변환하여 제1 패턴광을 형성하는 콜리메이터부, 및 제1 패턴광을 기 설정된 방사각을 갖는 빛으로 분산시켜 제3 패턴광을 형성하는 확산부로 구성되며, 단순한 2차 광학 요소를 이용하여, LED와 집적화가 가능하고, 에너지 효율적이고, 기능성이 높으며, 비용효율적이면서도 균일성이 높은 빛을 제공할 수 있다.

Description

발광다이오드를 이용한 조명장치
본 발명의 실시예들은 발광다이오드를 이용한 조명장치에 관한 것이다.
이하에 기술되는 내용은 단순히 본 발명에 따른 실시예들과 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.
발광다이오드(light-emitting diode; LED)는 낮은 소비 전력, 높은 휘도, 긴 수명 등의 여러 가지 장점을 지니고 있어 조명을 비롯한 다양한 용도의 광원(light source)으로 그 영역을 점점 넓혀가고 있다. 또한, LED를 이용한 조명장치는 형광등과 같이 수은이나 방전용 가스를 사용하지 않으므로 환경오염을 유발하지 않는다는 장점을 지닌다.
도 1은 통상적인 LED 조명장치의 사진이다.
이러한 여러 가지 장점들에도 불구하고, LED는 구에 가까운 방사 패턴(semi-spherical radiation pattern)으로 인해, 높은 균일성을 요구하는 조명장치에는 사용되지 못하고 있다.
통상적으로 LED 가로등과 같은 실외등은 등기구의 커버에 렌즈를 설치함으로써 원하는 형태로 빛을 모으지만, 종래의 원형 렌즈가 형성하는 빛의 분포는 대부분 원형이며, 그 중심부와 주변부의 휘도 차이가 크다. 또한, 실제 응용에서는 방향에 따라 조명 범위를 별도로 조절해야 하는 경우가 많다. 예를 들어, 도로 조명의 경우, 도로가 펼쳐진 나란한 방향으로는 조명 범위가 넓고 효과가 좋아야 하고 조명 각도 역시 커야 바람직하다. 그러나 도로의 방향과 수직을 이루는 방향으로는 전기의 낭비를 막고 주변에 빛공해가 발생하지 않도록 하기 위해 조명 범위가 작아야 한다. 또한, 원형 렌즈가 부착된 LED 가로등은 도로가 펼쳐지는 방향으로 여러 개의 등기구를 설치하여 충분한 조명효과를 보고자 하는 것이 일반적이다.
도 2 단일 LED의 발광 패턴 개선을 위해 적용된 방안들을 도시한다.
전술한 바와 같은 LED 빛의 불균일성 문제를 해결하기 위해, 다양한 2차 광학 요소(secondary optical element)를 활용한 방안들이 고안되었다. 그러나 2차 광학 요소를 고려한 조명장치의 경우, 단일 LED의 경우를 고려하여 설계되는 것이 대부분이다. 또한, 이러한 조명장치의 설계는 대부분 복잡한 계산을 수반한다. 이러한 고도의 계산은 렌즈의 디자인을 복잡하게 만들 뿐만 아니라, 렌즈의 제작성을 떨어뜨림과 동시에 렌즈의 제작 비용을 증가시킨다. 덧붙여, 조명장치에 단일 LED를 이용하는 경우, 넓은 공간으로의 활용을 위해 많은 LED 모듈을 사용하여야 한다. 이와 같은, 단일 LED의 이용으로 인한 문제점을 극복하기 위해 LED 어레이를 이용한 LED 조명장치가 개발되기에 이르렀다.
LED 어레이에 기반한 대부분의 LED 조명장치들은 LED의 위치, 밝기, 발광방향 등의 계산과 최적화에 초점을 두고 있다. LED 어레이에 2차 광학 요소를 적용함으로써 높은 광효율을 달성할 수 있음에도 불구하고, 계산의 복잡성 및 분석의 어려움 등으로 인해 LED 어레이를 이용한 조명장치에는 2차 광학 요소를 적용하지 않고 있다.
따라서, 집적화가 가능하고, 에너지 효율적이고, 기능성이 높고 비용효과적이면서도 균일하게 빛을 분산시킬 수 있는 발광다이오드를 이용한 조명장치가 필요하다.
본 발명의 실시예들은 단순한 2차 광학 요소를 이용함으로써, COB(chip-on-board) 형태의 LED와 집적화가 가능하고, 에너지 효율적이고, 기능성이 높으며, 비용효율적이면서도 균일성이 높은 빛을 제공할 수 있는 발광다이오드를 이용한 조명장치를 제공하는 데에 주된 목적이 있다.
본 발명의 일 실시예는 기판; 상기 기판 상에 기 설정된 간격으로 배치된 복수의 발광다이오드를 포함하는 발광다이오드 어레이; 상기 발광다이오드 어레이로부터 방출된 빛을 평행한 빛으로 변환하여 제 1 패턴광을 형성하는 콜리메이터부; 및 상기 제 1 패턴광을 기 설정된 방사각을 갖는 빛으로 분산시켜 제 3 패턴광을 형성하는 확산부를 포함하는 것을 특징으로 하는 발광다이오드를 이용한 조명장치를 제공한다.
본 발명의 일 실시예에 따르면, 단순한 2차 광학 요소를 이용하여, LED와 집적화가 가능하고, 에너지 효율적이고, 기능성이 높으며, 비용효율적이면서도 균일성이 높은 빛을 제공할 수 있는 발광다이오드를 이용한 조명장치를 제공할 수 있는 효과가 있다.
도 1은 통상적인 LED 조명장치의 사진이다.
도 2 단일 LED의 발광 패턴 개선을 위해 적용된 방안들을 도시한다.
도 3의 (a)는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 구조도이며, 도 3의 (b)는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치를 설명하기 위한 개념도이다.
도 4는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치에서 콜리메이터부와 확산부가 적용되지 않은 경우의 빛 방사 패턴을 도시한다.
도 5는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 콜리메이터부를 설계하기 위한 도면이다.
도 6은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 콜리메이터부만 적용된 경우의 빛 방사 패턴을 도시한다.
도 7은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 확산부를 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 방사 패턴을 도시한다.
도 9는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 시뮬레이션 환경을 도시한다.
도 10은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치를 이용한 시뮬레이션 결과를 도시한다.
도 11은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치에 포함된 확산부 그루브 개수를 변화시키면서 계산한 광효율 및 균일성을 나타내는 그래프이다.
도 12는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치가 적용될 수 있는 환경을 도시한다.
도 13은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치가 적용될 수 있는 환경을 도시한다.
도 14는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치가 적용된 경우, 도로 상에서의 빛 분포를 도시한다.
이하, 본 발명의 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예들을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예들의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
본 발명에 따른 실시예들의 구성요소를 설명하는 데 있어서 제 1, 제 2, i), ii), a), b) 등의 부호를 사용할 수 있다. 이러한 부호는 그 구성요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 부호에 의해 해당 구성요소의 본질 또는 차례 또는 순서 등이 한정되지 않는다. 또한, 명세서에서 어떤 부분이 어떤 구성요소를 '포함' 또는 '구비'한다고 할 때, 이는 명시적으로 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하, 첨부도면을 참조하여 본 발명의 실시예들에 따른 발광다이오드를 이용한 조명장치를 설명하면 다음과 같다.
도 3의 (a)는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 구조도이며, 도 3의 (b)는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치를 설명하기 위한 개념도이다.
본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)는 기판(310), 발광다이오드 어레이(320), 콜리메이터부(330) 및 확산부(340)를 포함한다.
기판(310)은 딱딱한 재질로 만들어져 다른 부품들을 지지할 수 있는 경성 인쇄회로기판 및 부드러운 재질로 만들어져 휘어질 수 있는 연성 인쇄회로기판을 포함할 수 있다. 기판(310) 상에는 발광다이오드 어레이(320) 및 이들을 구동하기 위한 다수의 전기·전자부품들이 실장될 수 있다. 그 외에도 발광다이오드 어레이(320)에서 발생하는 열을 방출하기 위한 각종 구조물들이 실장될 수 있다. 또한, 기판(310)은 반도체 기판일 수 있다. 기판(310)은 실리콘(Si) 및 게르마늄(Ge) 웨이퍼(wafer)와 같이 단일 물질로 형성된 웨이퍼 또는 적어도 둘 이상의 물질로 구성된 화합물 웨이퍼로 형성될 수 있다. 또한, 기판(310)은 실리콘 단결정 웨이퍼와 같은 단결정(single crystal) 웨이퍼로 형성될 수 있다. 그러나 기판(310)은 단결정 웨이퍼에 한정되지 않고, 에피택셜(epitaxial) 웨이퍼, 연마가공된(polished) 웨이퍼, 열처리된(annealed) 웨이퍼, 접합(bonded) 웨이퍼 등 다양한 종류의 웨이퍼들이 기판(310)으로 이용될 수 있다. 여기서, 에피택셜 웨이퍼는 단결정 실리콘 기판 상에 물질을 결정 성장시킨 웨이퍼를 의미한다.
발광다이오드 어레이(320)는 적어도 하나의 발광다이오드를 포함한다. 발광다이오드는 종래의 아날로그 조명과는 달리 반도체 소자이기 때문에 제어가 쉽다. 발광다이오드 어레이(320)는 하나의 열로 배치된 다수의 발광다이오드를 포함할 수도 있고, 매트릭스 형태로 배치된 다수의 발광다이오드를 포함할 수도 있다. 상황에 따라서는, 발광다이오드 어레이(320)는 불균일하게 배치된 다수의 발광다이오드를 포함할 수도 있다. 본 발명의 일 실시예에 따른 발광다이오드 어레이(320)는 후술하는 콜리메이터부(330) 또는 확산부(340)의 구조에 따라 그 배치가 달라질 수도 있다. 발광다이오드 어레이(320)로부터 방출하는 빛을 투과시키기 위해, 기판(310)은 투명한 재질의 합성수지, 석영 또는 유리 등을 이용하여 제작될 수 있다.
도 4는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치에서 콜리메이터부와 확산부가 적용되지 않은 경우의 빛 방사 패턴을 도시한다.
도 4에 도시한 바와 같이, 통상적으로, 발광다이오드 어레이(320)에 포함된 발광다이오드로부터 방출되는 빛은 수 내지 수십°의 방사각을 갖는다. 발광다이오드의 방사각은 발광면의 구조, 발광다이오드를 형성하는 물질(굴절률) 등에 의해 달라질 수 있으며, 발광다이오드의 용도에 맞춰, 방사각을 좁게 형성할 수도 있고, 넓게 형성할 수도 있다.
콜리메이터부(330)는 발광다이오드 어레이(320)로부터 방출되는 빛을 모아서 평행하게 또는 한 곳에 수렴할 수 있도록 빛 형상을 변환하는 역할을 수행한다. 콜리메이터부(330)는 포물선 형상을 갖는 거울 또는 렌즈를 형성하고, 그 초점에 점 광원(point source)을 배치함으로써 제작될 수 있다. 그러나 넓은 방사각을 갖는 LED로부터 방출되어 진행하는 빛을 평행하게 진행하는 빛으로 변환해야 하는 경우에는, 평면-볼록 렌즈(plano-convex lens) 등을 이용하여 콜리메이터부(330)를 형성할 수 있다.
도 5는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 콜리메이터부를 설계하기 위한 도면이다.
본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)의 콜리메이터부(330)는 복수의 평면-볼록 렌즈를 이용하여 형성될 수 있다. 평면-볼록 렌즈는 평면의 입사면을 갖고, 곡면의 출사면을 갖는다. 도 5의 (a)에 도시한 Plano-surface로 표기된 부분이 평면-볼록 렌즈의 입사면이고, Freeform curve로 표기된 부분이 평면-볼록 렌즈의 출사면이다.
평면-볼록 렌즈는 발광다이오드 어레이(320)에 포함된 발광다이오드의 방사각 αn, 발광다이오드로부터 평면-볼록 렌즈까지의 거리인 d0, 평면-볼록 렌즈의 두께인 d1, 공기의 굴절률 n0, 평면-볼록 렌즈의 굴절률 n1 등을 고려하여 계산된다.
평면-볼록 렌즈는 x축, 즉 OB0를 잇는 직선을 중심으로 원대칭이며, 발광다이오드 어레이(320)에 포함된 하나의 발광다이오드가 O 지점에 위치한다고 가정하면, 입사각 αn를 갖고 평면-볼록 렌즈에 입사되는 광선을 OAn로 나타낼 수 있다. 광선 OAn는 평면-볼록 렌즈의 입사 평면 상의 한 지점 An에서 광선 AnBn으로 굴절된다. 스넬의 법칙(Snell's law)에 따르면, 굴절률이 다른 두 매질 경계에서의 입사 각도와 출사 각도는 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2018013282-appb-M000001
여기서, n0는 매질 0, 즉, 공기의 굴절률이고, n1는 평면-볼록 렌즈의 굴절률이다. 평면-볼록 렌즈의 관점에서 발광다이오드 어레이(320)에 포함된 개별 발광다이오드는 점 광원으로 동작하기 때문에, 각각의 발광다이오드는 구형 파면(wavefront)을 형성한다. 구형 파면을 갖는 광선이 평면-볼록 렌즈의 출사면에 의해 굴절되면, 구형 파면을 갖는 광선은 평면 파면을 갖는 광선이 된다. 발광다이오드 어레이(320)에 포함된 모든 개별 발광다이오드에 의한 광선들은 각 광원으로부터 파면까지 모두 동일한 광경로를 갖는다. 이는 광경로 보존법칙에 따라, 수학식 2와 같이 나타낼 수 있다.
Figure PCTKR2018013282-appb-M000002
여기서, OA0는 x축과 나란한 방향으로의 입사 광선이고, A0B0는 평면-볼록 렌즈의 입사면 경계에서 굴절된 광선을 나타낸다. 입사 각도가 0°인 경우의 광선은 직진한다. OA0 = d0이며, 이는 발광다이오드 어레이(320)에 포함된 하나의 발광다이오드로부터 평면-볼록 렌즈의 입사면까지의 거리를 나타낸다. A0B0 = d1이며, 이는 평면-볼록 렌즈의 전체 두께를 나타낸다.
평면-볼록 렌즈의 출사면 상에 존재하는 모든 지점들은 수학식 1과 수학식 2를 이용하여 계산될 수 있다. 따라서, 이러한 모든 지점들의 좌표를 통해 평면-볼록 렌즈의 출사면을 구할 수 있다. 도 5의 (b)는 전술한 방법을 이용하여 계산한 평면-볼록 렌즈를 도시한다.
본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)에 적용되는 평면-볼록 렌즈에 대한 설계 파라미터들은 표 1에 도시하였다.
Figure PCTKR2018013282-appb-T000001
평면-볼록 렌즈를 형성하는데 사용된 물질은 PMMA(Poly(methyl methacrylate)이다. 이러한 방법으로 설계되어 형성된 개별 평면-볼록 렌즈를 매트릭스 형태로 배치하여 콜리메이터부(330)를 형성할 수 있다.
본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)에 포함되는 콜리메이터부(330)는 10 × 10, 즉 100개의 평면-볼록 렌즈를 포함하여 형성된다.
도 6은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 콜리메이터부만 적용된 경우의 빛 방사 패턴을 도시한다.
도 6에 도시한 바와 같이, 발광다이오드 어레이(320)로부터 방출된 빛이 콜리메이터부(330)를 통과함으로써, 평행하게 진행하는 빛으로 변경되었음을 알 수 있다.
도 7은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 확산부를 설명하기 위한 도면이다.
본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)의 확산부(340)는 콜리메이터부(330)로부터의 빛을 균일하게 확산시키는 역할을 수행한다. 발광다이오드 어레이(320)에서 방출된 빛은 넓은 방사각을 갖고 퍼지는 빛이다. 콜리메이터부(330)는 넓은 방사각을 갖고 퍼지는 빛을 받아 평행하게 진행하는 빛으로 변경한다. 확산부(340)는 콜리메이터부(330)를 통과하면서 평행하게 진행하는 빛으로 변경된 빛을 받아 균일하게 확산시킨다.
특히, 조명 평면에 대하여 균일한 빛으로 확산시키기 위해서 확산부(340)는 선형 프레넬 렌즈(linear Fresnel lens)를 포함할 수 있다.
선형 프레넬 렌즈는 평행하게 진행하는 빛을 일 방향을 따라 원하는 지점으로 보낼 수 있다. 선형 프레넬 렌즈는 다수의 그루브에 의해 형성되며, 각 그루브는 작은 볼록 렌즈의 형상을 갖는다. 이 작은 볼록 렌즈는 볼록 렌즈의 초점 거리에 초점을 형성하고, 그보다 멀리 떨어진 곳, 예컨대, 조명 평면 상에는 빛을 균일하게 확산시킨다. 따라서, 일 방향, 예컨대 x축 방향으로 균일하게 확산시키는 선형 프레넬 렌즈와 다른 일 방향, 예컨대 y축 방향으로 균일하게 확산시키는 선형 프레넬 렌즈를 모두 통과한 평행하게 진행하는 빛은 x축과 y축이 이루는 평면 상에 골고루 퍼지게 된다.
서로 수직이 되도록 겹쳐진 두 개의 선형 프레넬 렌즈에 평행하게 진행하는 빛을 입사시키면, 이 평행하게 진행하는 빛은 균일한 빛으로 분산된다. 본 발명의 일 실시예에 따른 두 개의 선형 프레넬 렌즈 각각은 N 및 M 개의 기 설정된 형상의 그루브를 포함하여 형성될 수 있으며, 발광다이오드 어레이(320) 및 콜리메이터부(330)의 형상에 따라 각 선형 프레넬 렌즈의 형상 또한 달라질 수 있다. 예컨대, 발광다이오드 어레이(320)가 정사각형의 매트릭스 형태로 배치된 다수의 발광다이오드를 포함한다면, 콜리메이터부(330) 또한 2차원 평면 형상으로 배치될 것이며, 두 개의 선형 프레넬 렌즈를 포함하여 형성되는 확산부(340) 또한 2차원 평면 형상으로 배치될 수 있다. 여기서, 선형 프레넬 렌즈의 그루브 형상은 SMS(simultaneous multiple surface) 기법을 이용하여 설계될 수 있다.
선형 프레넬 렌즈에 포함되는 가장 좌측에서의 광선을 ALBL, 가장 우측에서의 광선을 ARBR, 그리고 조명 평면에서 광선을 RR'이라고 가정하자. 가장 좌측에서의 광선 ALBL는 그루브의 좌측에 도달하고, 굴절되어 R'에 도달할 것이다. 광선 ARBR는 그루브의 우측에 도달하고, 굴절되어 R에 도달할 것이다. 이 두 광선들은 모두 초점 F에서 교차한다. 그리고 이 두 광선 사이의 모든 광선들은 초점 F에 모일 것이다. 이 두 광선 사이의 모든 광선들은 초점 F를 지나고 조명 평면에 도달할 것이다. 초점 F에 집광되는 모든 광선들 또한 광경로 보존 법칙을 만족하여야 하므로 수학식 3에 따라 그루브의 표면에 존재하는 모든 점들의 좌표를 계산할 수 있다.
Figure PCTKR2018013282-appb-M000003
여기서, n0 및 n1 각각은 공기의 굴절률 및 프레넬 렌즈를 이루는 물질의 굴절률이다.
도 8은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 방사 패턴을 도시한다.
본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)는 확산부(340)에 포함되는 프레넬 렌즈의 조건을 변경함으로써, 조명 평면 상에 대칭이 되는 빛을 제공할 수도 있고, 일 방향으로 훨씬 멀리 퍼지는 빛을 제공할 수도 있다.
도 9는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치의 시뮬레이션 환경을 도시한다.
본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)는 100 mm × 100 mm 크기의 평면형으로 제작되었으며, 발광다이오드를 이용한 조명장치(300)로부터 조명 평면까지의 거리는 3 m, 조평 평면의 면적은 3 m × 3 m로 가정하였다. 발광다이오드 어레이(320)에 포함된 개별 발광다이오드는 총 50 lm의 광속에 해당하는 빛을 생성하여, 발광다이오드 어레이(320)는 총 5000 lm의 광속에 해당하는 빛을 생성한다. 확산부(340)를 형성하는 프레넬 렌즈를 위한 물질 또한 PMMA를 선택하였다. 광효율과 균일성이 조명에서 가장 중요한 성능 지수이고, 이러한 성능 지수에 가장 큰 영향을 미치는 것이 선형 프레넬 렌즈의 설계 변수이다. 특히, 그루브의 크기 및 형상이 전체 조명장치의 광효율과 균일성을 좌우한다고 해도 과언이 아니다. 따라서, 확산부(340)의 선형 프레넬 렌즈에 형성된 그루브 개수를 다양하게 변경시키면서 발광다이오드를 이용한 조명장치(300)의 광효율과 균일성을 계산하였다.
도 10은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치를 이용한 시뮬레이션 결과를 도시한다.
도 10의 (a), 도 10의 (b) 및 도 10의 (c)는 각각 그루브의 개수가 10, 20 및 30인 경우의 조명 평면에서 계산된 빛의 균일성을 도시한다. 빛의 균일성은 수학식 3을 이용하여 계산하였다.
Figure PCTKR2018013282-appb-M000004
광효율은 단순히 발광다이오드 어레이(320)의 총 광속에 대한 조명 평면의 광속의 비율로 계산하였다.
도 11은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치에 포함된 확산부 그루브 개수를 변화시키면서 계산한 광효율 및 균일성을 나타내는 그래프이다.
도 11에 도시한 바와 같이, 그루브 개수가 증가할수록 조명장치(300)에서 생성되는 빛의 균일성도 높아진다. 그러나 그루브 개수가 증가하면서 조명장치(300)의 광효율은 감소한다. 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)의 광효율을 감소시키는 요인은 크게 두 가지이다. 하나는 프레넬 반사 손실이고, 나머지 하나는 기하학적 형상에 의한 손실이다. 프레넬 반사 손실은 모든 매질 사이의 경계에서 발생한다. 즉, 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)에서의 프레넬 반사 손실은 콜리메이터부(330)의 표면 및 확산부(340)의 표면에서 발생한다. 따라서, 광효율과 균일성을 고려하여, 그루브의 개수를 적절히 조절할 필요가 있다.
확산부(340)에 도달하는 빛이 완벽히 평행하다면, 기하학적 형상에 의한 손실이 존재하지 않을 것이지만, 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)의 콜리메이터부(330)에 의해 형성된 빛은 7.5°의 방사각을 가지며, 이에 따라 콜리메이터부(330)로부터 진행하는 빛이 확산부(340)에 도달하면서, 일부 손실이 발생한다.
도 12는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치가 적용될 수 있는 환경을 도시한다.
본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)를 이용하면, 도 12의 (c)에 도시한 바와 같은 균일한 빛 분포를 얻을 수 있다. 도 12의 (d)에 도시한 빛은, 통상적인 형광등을 이용한 경우의 빛 분포를 도시한다.
도 13은 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치가 적용될 수 있는 환경을 도시한다.
도 13의 (b)는 통상적인 가로등을 이용한 경우의 예를 도시하며, 도 13의 (c)는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)를 이용한 경우의 예를 도시한다. 전술한 바와 같이, 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)는 비대칭 조명 평면에도 균일한 빛을 제공할 수 있다.
도 14는 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치가 적용된 경우, 도로 상에서의 빛 분포를 도시한다.
도 14의 (b)에서도 확인할 수 있듯이, 통상적인 가로등을 이용한 경우, 도로 상에 도달하는 빛의 분포가 불균일하며, 본 발명의 일 실시예에 따른 발광다이오드를 이용한 조명장치(300)를 이용한 경우, 도로 상에 도달하는 빛의 분포 또한 상대적으로 균일하다(도 14의 (a)).
이상의 설명은 본 발명에 따른 실시예들의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명에 따른 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 따른 실시예들은 본 실시예들의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예들에 의하여 본 실시예들의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명에 따른 실시예들의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명에 따른 실시예들의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
(부호의 설명)
300: 발광다이오드를 이용한 조명장치
310: 기판
320: 발광다이오드 어레이
330: 콜리메이터부
340: 확산부
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2017년 11월 03일 한국에 출원한 특허출원번호 제10-2017-0145811 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하며 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (8)

  1. 기판;
    상기 기판 상에 기 설정된 간격으로 배치된 복수의 발광다이오드를 포함하는 발광다이오드 어레이;
    상기 발광다이오드 어레이로부터 방출된 빛을 평행한 빛으로 변환하여 제 1 패턴광을 형성하는 콜리메이터부; 및
    상기 제 1 패턴광을 기 설정된 방사각을 갖는 빛으로 분산시켜 제 3 패턴광을 형성하는 확산부
    를 포함하는 것을 특징으로 하는 발광다이오드를 이용한 조명장치.
  2. 제 1 항에 있어서,
    상기 콜리메이터부는,
    상기 발광다이오드 어레이에 포함된 발광다이오드의 위치에 대응되는 위치에 형성된 렌즈를 포함하는 것을 특징으로 하는 발광다이오드를 이용한 조명장치.
  3. 제 2 항에 있어서,
    상기 콜리메이터부는,
    상기 발광다이오드 어레이에 포함된 발광다이오드의 개수만큼의 평면-볼록 렌즈(plano-convex lens)를 포함하여 형성되는 것을 특징으로 하는 발광다이오드를 이용한 조명장치.
  4. 제 3 항에 있어서,
    상기 콜리메이터부는 상기 발광다이오드의 표면으로부터 기 설정된 거리에 위치하도록 설정되고, 상기 확산부는 상기 콜리메이터부로부터 기 설정된 거리만큼 떨어지도록 형성되는 것을 특징으로 하는 발광다이오드를 이용한 조명장치.
  5. 제 4 항에 있어서,
    상기 확산부는,
    상기 제 1 패턴광을 제 1 방향으로 분산시켜 제 2 패턴광을 형성하는 제 1 확산부 및 상기 제 2 패턴광을 제 2 방향으로 분산시켜 상기 제 3 패턴광을 형성하는 제 2 확산부를 포함하는 것을 특징으로 하는 발광다이오드를 이용한 조명장치.
  6. 제 5 항에 있어서,
    상기 제 1 확산부 및 상기 제 2 확산부 각각은,
    N 및 M 개의 기 설정된 형상의 그루브를 포함하여 형성되는 평면형 프레넬 렌즈인 것을 특징으로 하는 발광다이오드를 이용한 조명장치(여기서, N 및 M은 각각 1 이상의 자연수).
  7. 제 6 항에 있어서,
    상기 제 1 방향 및 상기 제 2 방향은 서로 수직인 것을 특징으로 하는 발광다이오드를 이용한 조명장치.
  8. 제 7 항에 있어서,
    상기 제 1 확산부에 형성된 그루브의 개수 및 상기 제 2 확산부에 형성된 그루브의 개수를 곱한 값은 적어도 상기 발광다이오드의 개수보다 크도록 설정되는 것을 특징으로 하는 발광다이오드를 이용한 조명장치.
PCT/KR2018/013282 2017-11-03 2018-11-02 발광다이오드를 이용한 조명장치 WO2019088775A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170145811A KR20190050423A (ko) 2017-11-03 2017-11-03 발광다이오드를 이용한 조명장치
KR10-2017-0145811 2017-11-03

Publications (1)

Publication Number Publication Date
WO2019088775A1 true WO2019088775A1 (ko) 2019-05-09

Family

ID=66333575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013282 WO2019088775A1 (ko) 2017-11-03 2018-11-02 발광다이오드를 이용한 조명장치

Country Status (2)

Country Link
KR (1) KR20190050423A (ko)
WO (1) WO2019088775A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259653A (ja) * 2004-03-15 2005-09-22 Harison Toshiba Lighting Corp 照明装置
KR101233631B1 (ko) * 2011-04-22 2013-02-15 현동훈 다중 확장이 가능한 플레이트타입 멀티 콜리메이터 광학계
KR101460155B1 (ko) * 2008-01-15 2014-11-10 삼성전자주식회사 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
JP2017033927A (ja) * 2015-07-30 2017-02-09 日亜化学工業株式会社 面光源装置、及び、透過型表示装置
KR20170111618A (ko) * 2016-03-29 2017-10-12 엘지이노텍 주식회사 조명 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259653A (ja) * 2004-03-15 2005-09-22 Harison Toshiba Lighting Corp 照明装置
KR101460155B1 (ko) * 2008-01-15 2014-11-10 삼성전자주식회사 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
KR101233631B1 (ko) * 2011-04-22 2013-02-15 현동훈 다중 확장이 가능한 플레이트타입 멀티 콜리메이터 광학계
JP2017033927A (ja) * 2015-07-30 2017-02-09 日亜化学工業株式会社 面光源装置、及び、透過型表示装置
KR20170111618A (ko) * 2016-03-29 2017-10-12 엘지이노텍 주식회사 조명 모듈

Also Published As

Publication number Publication date
KR20190050423A (ko) 2019-05-13

Similar Documents

Publication Publication Date Title
JP4870950B2 (ja) 光放射用光源ユニット及びそれを用いた面状発光装置
US8371714B2 (en) Fresnel LED lens and LED assembly thereof
US20120106144A1 (en) Led tube lamp
US20090279311A1 (en) Illumination device
US20100061105A1 (en) Convex-fresnel led lens and led assembly thereof
WO2014014249A1 (ko) 비대칭 자유곡면 수식을 적용한 엘이디 광확산렌즈
GB2479142A (en) Illumination Apparatus
CN109642717B (zh) 聚光灯
CN101886764A (zh) Led面光源装置
WO2013039317A2 (ko) 아이시클형 확산유닛을 적용한 엘이디 조명 엔진
RU2431878C2 (ru) Источник света со светоизлучающей матрицей и собирающей оптикой
WO2017116002A1 (ko) 발광 장치, 이 장치를 포함하는 광학 모듈, 및 이 모듈을 포함하는 차량
CN108027110A (zh) 照明装置
KR101804969B1 (ko) Led 등기구용 렌즈 모듈
KR20100108246A (ko) 조명장치
CN201401725Y (zh) 菲涅尔发光二极管镜片及其所构成的发光二极管组件
WO2019088775A1 (ko) 발광다이오드를 이용한 조명장치
WO2013066048A1 (en) Optical sheet and lighting device including the same
WO2016099195A1 (ko) 확산렌즈 구조체 및 이를 포함하는 발광 장치
WO2018174323A1 (ko) 계단형 도파로를 기반으로 하는 복합 태양광 조명 시스템 및 방법
KR101040377B1 (ko) 엘이디 조명 장치
CN205103540U (zh) 用于曝光的光源模块单元及包括该光源模块单元的曝光装置
WO2013009039A2 (en) Lighting device
WO2019088457A1 (ko) 광학렌즈
US20150109807A1 (en) Vehicle lighting device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873555

Country of ref document: EP

Kind code of ref document: A1