WO2019088123A1 - Coated metallic sheet and manufacturing method for coated metallic sheet - Google Patents

Coated metallic sheet and manufacturing method for coated metallic sheet Download PDF

Info

Publication number
WO2019088123A1
WO2019088123A1 PCT/JP2018/040384 JP2018040384W WO2019088123A1 WO 2019088123 A1 WO2019088123 A1 WO 2019088123A1 JP 2018040384 W JP2018040384 W JP 2018040384W WO 2019088123 A1 WO2019088123 A1 WO 2019088123A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
metal plate
coated metal
glass transition
resin
Prior art date
Application number
PCT/JP2018/040384
Other languages
French (fr)
Japanese (ja)
Inventor
史生 柴尾
邦彦 東新
敬士 二葉
亜暢 小林
石塚 清和
岡田 克己
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201880070229.9A priority Critical patent/CN111278648B/en
Priority to JP2019525038A priority patent/JP6624346B2/en
Priority to KR1020207013532A priority patent/KR102425956B1/en
Priority to MX2020004253A priority patent/MX2020004253A/en
Publication of WO2019088123A1 publication Critical patent/WO2019088123A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/098Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09D161/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a coated metal sheet and a method of manufacturing the coated metal sheet.
  • Priority is claimed on Japanese Patent Application No. 2017-209460, filed Oct. 30, 2017, the content of which is incorporated herein by reference.
  • a coated metal plate coated with a coating film is used for automobiles, home appliances, building materials, civil engineering, machines, furniture, containers, etc., instead of conventional painted products to which painting is applied after processing. It has become like that.
  • Such a coated metal sheet is generally cut and applied after the paint is applied to the metal sheet.
  • a coated metal sheet is mainly used as an exterior material, it is often exposed to various solvents and chemicals, and thus often has solvent resistance and chemical resistance. Because they are exterior materials, they are usually colored and painted, and there are many coated metal plates, and the film thickness of such a coating is relatively thick because of the hiding property for color tone.
  • a metal-coated metal plate in which the appearance of the metal plate as the substrate is designed as it is, it is necessary to apply a clear coating containing no color pigment. In such a case, by reducing the film thickness of the clear coating film, the coated metal plate becomes excellent in metal appearance. Also, from the viewpoints of productivity and commerce, the thinner the film thickness of the clear coating film, the better.
  • Patent Document 1 discloses a coating method technology of a metal plate for coating a paint containing a solvent-soluble fluorine resin as a main component.
  • Patent Document 2 the processability, the stain resistance, and the scratch resistance are obtained by the coating film using the polyester resin having a high glass transition temperature, the polyester resin having a low glass transition temperature, and the aminoformaldehyde resin.
  • the art of a coated metal plate excellent in resistance and chemical resistance is disclosed.
  • Patent Document 3 a polyacrylic resin is applied to the upper layer, and a polyester resin is applied to the lower layer, and a technique of precoated metal excellent in stain resistance, chemical resistance, weather resistance and processability is disclosed. It is done.
  • Patent Document 4 discloses the technology of a coated metal plate which is excellent in processability, corrosion resistance (especially end face corrosion resistance), chemical resistance, etc. by a coating film obtained by mixing a specific polyurethane resin and a polyester resin. It is done.
  • the technique of the metal plate which is excellent in bending workability is disclosed by the following patent document 5 by the coating film which the melamine resin particle which is 50 nm or less in particle diameter disperse
  • Patent Document 6 discloses, in a coating film using an aminoblast resin such as melamine resin, a technology for concentrating the aminoblast resin on the surface layer of the coating film.
  • Japanese Patent Application Laid-Open No. 5-111675 Japanese Patent Application Laid-Open No. 7-331167 Japanese Patent Application Laid-Open No. 7-313929 Japan JP 2013-213281 Japanese Patent Application Laid-Open No. 2005-53002 Japanese Patent Application Laid-Open No. 2006-175815
  • the polyacrylic resin used by the technique of the said patent document 3 is inferior to workability, and when the coating film currently disclosed by the said patent document 3 is made into a clear coating film, barrier property is enough. Furthermore, it has poor chemical resistance.
  • the coating film disclosed in Patent Document 4 has insufficient barrier properties and is further inferior in chemical resistance.
  • the coating film is inferior in solvent resistance.
  • Patent Documents 1 to 6 do not disclose a technique for obtaining a coated metal plate excellent in metal appearance, chemical resistance and solvent resistance while suppressing the manufacturing cost.
  • an object of the present invention is to provide a coated metal sheet which is excellent in metal appearance, chemical resistance and solvent resistance, which is suppressed in manufacturing cost. And providing a method for producing such a coated metal sheet.
  • the present inventors formed a resin coating film including a first portion having a urethane bond skeleton and a second portion having a triazine ring skeleton on at least one surface of a metal plate.
  • a coated metal plate according to an aspect of the present invention comprises a metal plate and a first coating film located on at least one side of the metal plate and containing a resin, the first coating film comprising It has a first site having a urethane bond skeleton and a second site having a triazine ring skeleton.
  • the glass transition temperature of the first coating is 85 ° C. or more and 170 ° C. or less.
  • the second site When the second site is stained with osmium oxide and observed at a magnification of 100,000 using a transmission electron microscope, the second site is a dispersed second site in which particles having a number average particle diameter of 5 to 20 nm are dispersed, and A concentrated second portion is observed which is present at a depth of 15 nm from the surface of one coating film and in which particles having a number average particle diameter of 5 nm or more are not observed.
  • the coated metal plate according to the above (1) is characterized in that the N concentration N1 at a depth position of 0.2 ⁇ m from the surface of the first coating film from the interface between the first coating film and the metal plate
  • the ratio N1 / N2 to the N concentration N2 at the depth position of 0.2 ⁇ m on the first coating film side may be 1.2 or more.
  • the first coating film may have a plurality of the concentrated second portions.
  • the coated metal plate according to any one of the above (1) to (3) further comprises a second coating film between the first coating film and the metal plate;
  • the glass transition temperature may be equal to or less than the glass transition temperature of the first coating film.
  • the second coating film may contain a resin and have a urethane bond skeleton.
  • the second coating film may contain a resin and may have an epoxy group.
  • the second coating film may contain a resin and have a siloxane bond.
  • the second coating film is any one selected from the group consisting of P, V, Ti, Si and Zr. The above elements may be included.
  • the glass transition temperature of the first coating is higher by at least 5 ° C. than the glass transition temperature of the second coating. It is also good.
  • the film thickness of the second coating film may be 0.5 ⁇ m or more and 15 ⁇ m or less.
  • the film thickness of the first coating film may be 0.5 ⁇ m or more and 15 ⁇ m or less.
  • at least one of the first coating film and the second coating film may contain a colorant.
  • the second coating film may contain a black pigment as a colorant.
  • a texture may be formed on at least one surface of the metal plate.
  • a method of producing a coated metal sheet according to another aspect of the present invention is a method of producing a coated metal sheet having a predetermined first coating on at least one surface of a metal sheet, the method comprising the steps of First, a polyurethane resin (a) containing an anionic functional group and having a glass transition temperature of 75 ° C. to 160 ° C. on one side, a triazine ring-containing water-soluble curing agent (b), and an aqueous solvent A paint is applied, and the first paint film is formed by heating the metal plate to which the first paint is applied.
  • the triazine ring-containing water-soluble curing agent (b) may be a melamine resin containing an imino group.
  • the first paint contains the content (Wa) of the polyurethane resin (a) with respect to the total solid content and the total solid content.
  • the total content (Wa) + (Wb) of the content (Wb) of the triazine ring-containing water-soluble curing agent (b) satisfies the following formula (I), and the above with respect to the total solid content
  • the ratio (Wb) / (Wa) of the content (Wa) of the polyurethane resin (a) and the content (Wb) of the triazine ring-containing water soluble curing agent (b) to the total solid content is as follows: You may satisfy Formula (II).
  • the second paint may be applied on at least one side of the metal plate, and the second paint film may be formed by heating the metal plate coated with the second paint.
  • the glass transition temperature of the polyurethane resin (c) may be 5 ° C.
  • FIGS. 1A to 3 the overall configuration of a coated metal plate according to an embodiment of the present invention will be described.
  • 1A and 1B are explanatory views schematically showing an example of the structure of a coated metal plate according to the present embodiment
  • FIGS. 2A and 2B are other views of the structure of the coated metal plate according to the present embodiment
  • It is an explanatory view showing an example typically.
  • FIG. 3 is an explanatory view for explaining an upper-layer coating film of the coated metal sheet according to the present embodiment.
  • the coated metal plate 1 which concerns on this embodiment has the upper-layer coating film 13 as a 1st coating film on the single side
  • the upper layer coating film 13 may be provided on both sides of the metal plate 11, or the upper layer coating film 13 and the lower layer coating 15 may be provided on both sides of the metal plate 11.
  • the structure of the coated metal plate 1 which concerns on this embodiment is not limited to the structure shown to FIG. 1A-FIG. 2B,
  • the upper-layer coating film 13 and the lower-layer coating film on one side of the metal plate 11 A configuration in which the upper coating 13 or the lower coating 15 is provided on the other surface of the metal plate 11 is also feasible.
  • the upper layer coating film 13 which is an example of the first coating film has a first portion having a urethane bond skeleton (hereinafter also referred to as "urethane portion”) and a second portion having a triazine ring skeleton (hereinafter also referred to as "triazine portion”) And the resin coating film containing.
  • the glass transition temperature of the upper-layer coating film 13 is 80 degreeC or more and 170 degrees C or less.
  • the second part having a triazine ring skeleton is stained with osmium oxide and observed with a transmission electron microscope at a magnification of 100,000 times, the number average particle diameter is 5 nm.
  • the dispersed second portion (symbol 101 in FIG. 3) in which the above particles are dispersed, and a position from the surface of the upper layer coating film 13 to a depth of 15 nm, particles with a number average particle diameter of 5 nm or more are not observed Both of the concentrated second part (symbol 103 in FIG. 3) are present.
  • the coated metal plate 1 according to the present embodiment can be a coated metal plate having excellent metal appearance, chemical resistance and solvent resistance, without using an expensive resin such as a fluorocarbon resin, etc., by the above configuration. .
  • the reason is presumed as follows.
  • the urethane portion needs to have a relatively high glass transition temperature.
  • the upper layer coating film 13 is formed, a high cohesive force is generated in the urethane portion because the urethane portion has a high glass transition temperature.
  • the triazine moiety is not condensed alone, the triazine moiety is dispersed in the urethane moiety, and the urethane moiety and the triazine moiety are more easily bound.
  • a three-dimensional network structure is formed by bonding the highly solvent resistant triazine moiety to the urethane moiety.
  • the upper layer coating 13 has an increased barrier property (i.e., chemical resistance).
  • the glass transition temperature of the upper coating film 13 is set to 80 ° C. or more and 170 ° C. or less.
  • the triazine moiety forms a domain in the upper layer coating 13 and disperses in a granular form (reference numeral 101 in FIG. 3), and by thickening the surface layer of the upper layer coating 13 to form a concentrated portion 103,
  • the triazine moiety having high solvent resistance enhances the solvent resistance of the upper coating film 13.
  • the urethane portion and the triazine portion are likely to be preferentially bonded, as schematically shown in FIG.
  • the finely divided particulate triazine portion (hereinafter, also referred to as “triazine particulate matter 101”) is in a state of being concentrated in the surface layer of the upper layer coating film 13. From this point as well, the solvent resistance of the upper coating 13 is further improved.
  • micronized particulate triazine moiety (triazine particulate matter 101) is concentrated in the surface layer of the upper layer coating film 13, light scattering by the triazine moiety is suppressed, and as a result, the transparency of the upper layer coating film 13 is improved.
  • the gloss of the underlying metal plate 11 is easily visible from the outside. Thereby, in the coated metal plate 1 which concerns on this embodiment, a metal external appearance also improves.
  • the coated metal plate 1 according to the present embodiment has the above-described configuration, and without using an expensive resin such as a fluorine resin, it has a metal appearance, chemical resistance, and solvent resistance. It is estimated that it is excellent in sex.
  • the coated metal plate 1 In the coated metal plate 1 according to the present embodiment, various generally known metal plates can be used as the metal plate 11. Specifically, as the metal plate 11, for example, various metal plates and alloy plates such as steel plate, stainless steel plate, aluminum plate, aluminum alloy plate, titanium plate, copper plate and the like can be mentioned. In the coated metal plate 1 according to the present embodiment, various types of plating (not shown) may be applied to the surface of the metal plate 11. The type of plating is not particularly limited, and examples thereof include zinc plating, aluminum plating, copper plating, nickel plating, alloy plating of these, and the like.
  • the metal plate 11 is a plated steel sheet
  • there is a tendency to be inferior in chemical resistance so the effect of improving the chemical resistance by providing the upper coating 13 becomes more effective.
  • the plated steel plate used as the metal plate 11 is not particularly limited, and a galvanized steel plate, an electrogalvanized steel plate, a zinc-nickel alloy plated steel plate, a molten alloyed galvanized steel plate, an aluminum plated steel plate, an aluminum-zinc Generally known various plated steel plates such as alloyed plated steel plates and stainless steel plates can be applied.
  • a zinc-based plated steel sheet as the metal plate 11 is more preferable because the corrosion resistance is further improved.
  • the zinc-based plated steel sheet refers to zinc, such as zinc-plated galvanized steel sheet, zinc-nickel alloy plated steel sheet, hot-dip galvanized galvanized steel sheet, aluminum-zinc alloy coated steel sheet, etc. It refers to a plated steel plate in which an alloy with a metal is plated on the surface of the steel plate.
  • the galvanized steel sheet may be any of a galvanized steel sheet, an electrogalvanized steel sheet, and the like.
  • the surface of the metal plate 11 is textured, roughened, streaked (hairline), woven (satin), squared (hammer), etc. , And various textures may be formed.
  • the texture as described above is formed on the surface of the metal plate 11 Also, the metallic feeling recalled by such texture is easily visible from the outside.
  • the upper layer coating film 13 of the coated metal plate 1 has, as mentioned earlier, a urethane portion (a first portion having a urethane bond skeleton) and a triazine portion (a second portion having a triazine ring skeleton) And a resin coating film containing
  • part contained in the upper layer coating film 13 is demonstrated.
  • the urethane bond frame which the urethane part in the upper layer coating film 13 has can be confirmed by analyzing the upper layer coating film 13 by Fourier transform infrared spectroscopy and detecting the vibration peak attributed to the urethane bond. .
  • the triazine ring skeleton of the triazine moiety is a skeleton derived from the triazine ring contained in the melamine resin. That is, the triazine moiety is a moiety derived from the triazine ring contained in the melamine resin.
  • the triazine moiety was stained with osmium oxide as described earlier with reference to FIG. 3 and observed with a transmission electron microscope at a magnification of 100,000 to find particles with a number average particle diameter of 5 to 20 nm.
  • the second part of the dispersion type in which the particles are dispersed and the second part of the concentrated type which is present at a depth of 15 nm from the surface of the upper layer coating 13 and in which particles with a number average particle diameter of 5 nm or more are not observed Be done.
  • the concentration portion 103 has a range of positions from the surface layer of the upper layer coating film 13 to the depth d (15 nm) toward the metal plate 11 side. It exists inside.
  • the phrase “the triazine moiety is concentrated in the surface layer of the upper layer coating film 13” means a particulate triazine moiety (ie, triazine particles on the surface side of the upper layer coating film 13 opposite to the interface with the metal plate 11). It is shown that the object 101) is unevenly distributed in layers. That is, it is indicated that the region of the granular triazine site which is unevenly distributed in the layer constitutes the surface layer of the upper coating film 13.
  • the triazine moiety is unevenly distributed in a layer form the concentrated portion 103
  • the average concentration (average content) of the triazine moiety in the region where the triazine moiety is unevenly distributed is other than the uneven distribution portion. It means that it is 1.2 times or more of the average concentration of the triazine site in the region.
  • the triazine moiety according to the present embodiment is dispersed in particles of a number average particle diameter of 5 nm to 20 nm in the upper layer coating film 13 (in other words, the number average particle diameter of triazine particles 101 is 5 nm to 20 nm) And the surface layer within a depth of 15 nm from the surface of the upper layer coating film 13 (in other words, the depth d in FIG. 3 is 15 nm or less).
  • the triazine moiety is concentrated in the surface layer within a depth of 15 nm from the surface of the upper layer coating film 13 is unevenly distributed in a layer on the surface side of the upper layer coating film 13 opposite to the interface with the metal plate 11 It shows that the region of the particulate triazine site is present within 15 nm in depth from the surface of the upper layer coating 13. That is, it is shown that the region of the granular triazine site which is unevenly distributed in the layer constitutes the surface layer of the upper layer coating film 13 and has a thickness of 15 nm or less.
  • the number average particle size of the particulate triazine moiety i.e., triazine particulates 101
  • chemical resistance may decrease.
  • the number average particle size of the triazine site dispersed in the granular form exceeds 20 nm, the metallic appearance and the chemical resistance penetration of the coated metal plate 1 are lowered, or the metallic appearance, the chemical penetration and the processability are lowered. There is something to do.
  • the processability of the coated metal sheet 1 is lowered, a crack or the like occurs in the upper layer coating film 13 and the chemical resistance and the solvent resistance are also lowered.
  • the number average particle diameter of the triazine moiety (triazine particle 101) dispersed in the particles is more preferably 5 nm or more and 15 nm or less from the viewpoint of metal appearance, chemical permeability and solvent resistance.
  • the metal appearance and the solvent resistance may be lowered.
  • the particulate triazine portion is concentrated from the surface of the upper layer coating 13 to a depth of more than 15 nm (that is, the depth where the concentrated portion 103 is present is more than 15 nm from the surface of the upper layer coating 13)
  • the processability may be reduced.
  • a crack or the like occurs in the upper layer coating film 13 and the chemical resistance and the solvent resistance are also lowered.
  • a plurality of thickening portions 103 be formed in the upper layer coating film 13.
  • the barrier property is further improved, and suitable chemical resistance can be obtained.
  • the heating method in the upper layer coating film forming process described later is important. This point will be described later.
  • the N concentration N1 at a depth position of 0.2 ⁇ m from the surface of the upper layer coating 13 and the upper layer coating 13 from the interface between the upper layer coating 13 and the metal plate 11 N1 / N2 which is a ratio to the N concentration N2 at a depth position of 0.2 ⁇ m on the side is 1.2 or more.
  • N1 / N2 is 1.5 or more and 10 or less.
  • part in the upper layer coating film 13 are demonstrated.
  • the upper coating 13 to be analyzed is dyed with osmium oxide.
  • part in the upper layer coating film 13 is selectively dyed.
  • a coating film dyed with osmium oxide is cut along a film thickness direction using a microtome, a focused ion beam processing apparatus or the like to prepare a coating film sample whose cross section can be observed.
  • the thin film sample is observed at 100,000 ⁇ magnification using a transmission electron microscope. In this observation, the triazine site in the thin film sample is observed black in the STEM-BF (bright field) image and white in the STEM-HAADF (dark field) image.
  • part in the upper layer coating film 13 can be confirmed by the above analysis methods.
  • the triazine moiety in the upper coating film 13 is subjected to analysis of the coating film by energy dispersive X-ray spectroscopy or Fourier transform infrared spectroscopy to detect nitrogen and osmium, or to be attributed to a triazine ring It can also be confirmed by detecting a vibration peak.
  • the thickness of the region in which the particulate triazine moiety is concentrated is measured by the following method Value.
  • a thin film sample is observed at a magnification of 100,000 times by a transmission electron microscope to obtain a STEM-BF (bright field) image.
  • the obtained STEM-BF (bright field) image is binarized with, for example, the threshold 120.
  • the thickness of a layered region observed black from the surface of the upper layer coating film 13 is measured at any 20 locations, and the average value thereof is measured in the region where the triazine moiety is concentrated.
  • the position where the thickening portion 103 exists is to focus on the position of the lower end (the interface on the metal plate 11 side) of the thickness of the thickening portion 103 obtained as described above in the binarized image. Can be identified.
  • region observed in black in layer form is confirmed from the surface of the upper-layer coating film 13, it is considered that the granular triazine site
  • the number average particle diameter of the particulate triazine portion (the number average particle diameter of the triazine particles 101) is a value measured by the following method.
  • the thin film sample is observed at 500,000 ⁇ magnification by a transmission electron microscope to obtain a STEM-BF (bright field) image.
  • the obtained STEM-BF (bright field) image is binarized with, for example, the threshold 120.
  • calculation of the equivalent circle diameter is performed at 20 arbitrarily selected granular regions, and the average value thereof is determined as the number average particle diameter of the granular triazine portion.
  • the average concentration of the triazine moiety concentrated on the surface side of the upper layer coating 13 can be measured as follows. That is, the distribution in the depth direction of the N element concentration from the surface layer side to the metal plate direction of the upper layer coating film 13 is measured, and the N element concentration N1 at a position of 0.2 ⁇ m from the outermost layer, the metal plate or the lower layer The ratio N1 / N2 of the concentration of the N element to N2 at a position 0.2 ⁇ m on the surface side from the boundary with the coating film is determined. Elemental analysis in the direction of depth can be examined by a known method, for example, using Glow Discharge Optical Emission Spectroscopy (GD-OES), Auger Electron Spectroscopy (AES), etc. It is possible.
  • GD-OES Glow Discharge Optical Emission Spectroscopy
  • AES Auger Electron Spectroscopy
  • the glass transition temperature (Tg) of the upper coating film 13 is 85 ° C. or more and 170 or less.
  • the glass transition temperature of the upper layer coating 13 is less than 85 ° C., the chemical resistance of the coated metal sheet 1 is reduced.
  • the glass transition temperature of the upper layer coating film 13 exceeds 170 ° C., the processability of the coated metal sheet 1 is reduced.
  • the glass transition temperature of the upper layer coating film 13 is preferably 100 ° C. or more and 170 ° C. or less, more preferably 110 ° C. or more, from the viewpoint of chemical resistance and solvent resistance (particularly, chemical resistance penetration). It is 165 ° C. or less.
  • the glass transition temperature of the upper layer coating film 13 is more than the glass transition temperature of the lower layer coating film 15.
  • the adhesion between the upper coating film 13 and the lower coating film 15 is reduced, and the chemical resistance is lowered. There is.
  • the glass transition temperature of the upper layer coating film 13 is higher than the glass transition temperature of the lower layer coating film 15 by 5 ° C. or more.
  • the difference between the glass transition temperature of the upper layer coating film 13 and the lower layer coating film 15 and the glass transition temperature is 5 ° C. or more, the adhesion between the upper layer coating film 13 and the lower layer coating film 15 is further improved. It becomes easier to improve the quality.
  • the glass transition temperature of the upper layer coating film 13 is more preferably higher than the glass transition temperature of the lower layer coating film 15 in the range of 10 ° C. to 50 ° C.
  • the glass transition temperature of the upper coating film 13 is higher by 10 ° C. or more than the glass transition temperature of the lower coating film 15, chemical resistance can be easily enhanced.
  • the glass transition temperature of the upper layer coating film 13 is higher than the glass transition temperature of the lower layer coating film 15 in the range of 50 ° C. or less, the decrease in the coating film hardness is easily suppressed.
  • the glass transition temperature (Tg) is a value measured by the following method. First, the coating film to be measured is peeled off or scraped to prepare a measurement sample. And a glass transition point temperature is calculated
  • DSC method differential scanning calorimetry
  • the upper-layer coating film 13 does not have a silica.
  • the chemical resistance of the upper coating film 13 is deteriorated.
  • the upper layer coating film 13 does not have at least one metal complex compound selected from zinc, aluminum and titanium.
  • At least one metal complex compound selected from zinc, aluminum and titanium for example, zinc stearate, zinc gluconate, zinc picolinate, zinc citrate, zinc acetylacetonate, aluminum acetate, aluminum stearate ,
  • the lower layer coating film 15 is not particularly limited, and polyurethane resin, epoxy resin, acrylic resin, polyester resin, phenol resin, polyolefin resin, alkyd resin, Well-known resin coating films, such as melamine resin and silicone resin, can be applied.
  • resin coating film it is also possible to use known additives such as a silane coupling agent.
  • the lower layer coating film 15 has at least a first portion (hereinafter also referred to as a "urethane portion") having a urethane bond skeleton from the viewpoint of metal appearance, chemical resistance and solvent resistance.
  • a first portion hereinafter also referred to as a "urethane portion”
  • it further comprises a moiety having at least one of an epoxy group and a siloxane bond skeleton (hereinafter, the moiety having an epoxy group is also referred to as “epoxy moiety” and the moiety having a siloxane bond skeleton is also referred to as “siloxane moiety”). It is preferable that it is such a resin coating film.
  • the lower coating film 15 preferably contains a compound having at least one element selected from the group consisting of P, V, Ti, Si and Zr in addition to the above urethane site. .
  • the urethane portion when the urethane portion further has an anionic functional group, the dispersibility of the urethane portion in the aqueous medium (water-based paint) is improved, and the film forming property of the lower layer coating 15 is enhanced.
  • the adhesion to the metal plate 11 is improved, and the barrier property (that is, chemical resistance) of the lower coating film 15 is enhanced.
  • the chemical resistance of the lower coating film 15 is also improved by including a urethane portion and at least one of an epoxy group and a siloxane bond skeleton.
  • the lower coating film 15 as a resin coating film having at least a urethane portion, the transparency of the lower coating film 15 is improved, and the metal appearance also becomes good.
  • compounds having at least one element selected from the group consisting of P, V, Ti, Si and Zr generally function as a rust inhibitor in general, but Such compounds may be contained.
  • the corrosion resistance of the coated metal sheet 1 can be further improved.
  • the urethane bond skeleton of the urethane moiety is a skeleton derived from a polyurethane resin. That is, the urethane moiety is a moiety derived from a polyurethane resin, and can be further referred to as a moiety which may have an anionic functional group.
  • the epoxy moiety having an epoxy group is a moiety derived from an epoxy resin. That is, the epoxy group of the epoxy site is an epoxy group residue which did not react with the urethane site derived from the polyurethane resin.
  • the siloxane bond skeleton of the siloxane moiety is a skeleton derived from a silicone resin having a siloxane bond or a silane coupling agent capable of forming a siloxane bond.
  • the urethane bond skeleton of the urethane moiety in the lower coating film 15, the epoxy group of the epoxy moiety, and the siloxane bond skeleton of the siloxane moiety are coated with the lower layer by energy dispersive X-ray spectroscopy or Fourier transform infrared spectroscopy.
  • the film 15 can be analyzed to confirm the element constituting the corresponding bond or functional group or the vibration peak attributed to the corresponding bond or functional group. Further, the presence of a compound having at least one element selected from the group consisting of P, V, Ti, Si and Zr in the lower coating film 15 causes such a compound to be obtained by energy dispersive X-ray spectroscopy. It can be confirmed by whether or not the contained element is detected.
  • the glass transition temperature of the lower coating film 15 is preferably equal to or less than the glass transition temperature of the upper coating film 13.
  • the glass transition temperature of the lower coating film 15 is more preferably in the range of 80 ° C. or more and 170 or less and not more than the glass transition temperature of the upper coating film 13.
  • the chemical resistance may decrease.
  • the glass transition temperature of the lower coating film 15 exceeds 170 ° C., the processability may be lowered.
  • the lower coating film 15 may be cracked and the like, and the chemical resistance and the solvent resistance may also be lowered.
  • the glass transition temperature of the lower coating film 15 is more preferably equal to or less than the glass transition temperature of the upper coating film 13 from the viewpoints of chemical resistance and solvent resistance (in particular, chemical resistance penetration). It is in the range of ° C to 170 ° C.
  • the film thickness of the above upper layer coating film 13 is 0.5 micrometer or more and 15 micrometers or less.
  • the film thickness of the upper layer coating film 13 is less than 0.5 ⁇ m, the chemical resistance of the coated metal plate 1 may decrease.
  • the film thickness of the upper layer coating film 13 exceeds 15 ⁇ m, the transparency of the upper layer coating film 13 may be reduced and the metal appearance may be reduced.
  • the film thickness of the upper layer coating film 13 is more preferably 1 ⁇ m or more and 10 ⁇ m or less from the viewpoint of metal appearance and chemical resistance permeability.
  • the film thickness of the lower coating film 15 is preferably 0.5 ⁇ m to 15 ⁇ m. .
  • the film thickness of the lower coating film 15 is more preferably more than 1.0 ⁇ m and 15 ⁇ m or less.
  • the upper coating film 13 and / or the lower coating film 15 as described above may contain a colorant.
  • a coloring agent By incorporating a coloring agent into the upper coating 13 and / or the lower coating 15, the color tone of the product can be adjusted, and it becomes possible to apply to various applications.
  • the color pigment is a black pigment
  • the chemical resistance may be lowered.
  • Such a decrease in chemical resistance is considered to be due to the fact that the black pigment in the upper layer coating film 13 facilitates the penetration of chemicals.
  • the black pigment concentration in the lower coating film 15 is not particularly limited, but is preferably 0.5% by mass or more and 20% by mass or less based on the total solid content of the lower coating film 15, for example. .
  • coloring may be insufficient.
  • the black pigment concentration in the lower coating film 15 exceeds 20% by mass, chemical resistance and corrosion resistance may be reduced.
  • the upper layer coating film 13 is a polyurethane resin (a) having a glass transition temperature of 75 ° C. or more and 160 ° C. or less and a triazine ring-containing water soluble curing agent It is preferable that it is a resin coating film (For example, the resin coating film containing the crosslinked material of a polyurethane resin and a water-soluble melamine resin) which hardened the upper layer coating material containing water-soluble melamine resin (b) and an aqueous solvent.
  • the resin coating film formed from the upper layer paint has a glass transition temperature of 85 ° C. or more and 170 ° C.
  • the water-soluble melamine resin (b) is in the form of particles dispersed in the upper layer coating film 13 and those in which the water-soluble melamine resin (b) is concentrated on the surface side of the upper layer coating film 13.
  • the glass transition temperature of the said polyurethane resin (a) is the polyurethane resin which the lower layer coating film 15 as follows contains. It is preferable that it is more than the glass transition temperature of (c).
  • the polyester resin is inferior in chemical resistance to the polyurethane resin, so it is necessary to increase the film thickness of the upper layer coating film in order to obtain the same chemical resistance. .
  • the film thickness of the upper layer coating film is increased, it is not preferable because a desired metal appearance can not be obtained in the case of forming a clear coating film.
  • the lower layer coating film 15 is specifically a glass transition of the polyurethane resin (a) of the upper layer coating film 13 in glass transition temperature.
  • a polyurethane resin (c) having a temperature or less an epoxy resin (d), a silane coupling agent (e), and P, V, Ti, Si and Zr
  • a resin coating film obtained by curing a lower layer coating containing at least one of a rust inhibitor (f) containing an aqueous solvent and an aqueous solvent for example, a resin coating film containing a crosslinked product of a polyurethane resin (c) and an epoxy resin (d)
  • coated metal plate 1 which concerns on this embodiment was demonstrated in detail.
  • the coated metal plate 1 according to the embodiment as described above can be used for automobiles, home appliances, building materials, civil engineering, machines, furniture, containers, and the like.
  • FIG. 4 is a flow chart showing an example of the flow of the method of producing a coated metal sheet according to the present embodiment.
  • the method of manufacturing the coated metal plate includes a texture forming step (step S101) of forming a predetermined texture on the surface of the metal plate 11 as necessary, as shown in FIG. 4 as an example, and a metal plate as necessary.
  • a lower coating film forming step (step S103) for forming the lower coating film 15 on the upper layer 11 and an upper coating film forming step (step S105) for forming the upper coating film 13 on the metal plate 11 or the lower coating film 15; Have.
  • the texture forming step and the lower layer coating forming step may be carried out as required.
  • step S105 is implemented among the three steps shown in FIG.
  • the upper layer coating film forming step includes a polyurethane resin (a) having an anionic functional group and having a glass transition temperature of 75 ° C. or more and 160 ° C. or less, and a water soluble melamine resin (b) which is a triazine ring-containing water soluble curing agent
  • a polyurethane resin (a) having an anionic functional group and having a glass transition temperature of 75 ° C. or more and 160 ° C. or less
  • a water soluble melamine resin (b) which is a triazine ring-containing water soluble curing agent
  • the upper coating film 13 is formed by coating the lower coating film 15) and heating and cooling the metal plate coated with the upper coating material.
  • the method for producing a coated metal sheet according to the present embodiment is the coated metal sheet according to the present embodiment (that is, a coated metal sheet excellent in metal appearance, chemical resistance, and solvent resistance) by the above-described method. Can be manufactured while suppressing costs. The reason is guessed as follows.
  • the melamine resin is less compatible with the polyurethane resin and thus hardly coexists with the polyurethane resin.
  • the self-condensed particles become larger, a phenomenon occurs in which the melamine resin is concentrated on the surface layer of the coating film.
  • the method for producing a coated metal sheet according to the present embodiment by employing the polyurethane resin (a) containing an anionic functional group, the polyurethane resin (a) and the triazine ring-containing in an aqueous medium
  • the water-soluble melamine resin (b) which is a water-soluble curing agent, is uniformly mixed and coexistent.
  • the upper layer paint in such a state is formed on the metal plate 11 (or on the lower layer coating film 15) and heated, the self-shrinkage of the water-soluble melamine resin (b) is suppressed, and the water-soluble melamine resin (b)
  • the reaction with the polyurethane resin (a) will occur preferentially.
  • the polyurethane resin (a) when vaporization (drying) of the aqueous solvent proceeds by heating, the polyurethane resin (a) is in a molten state.
  • the viscosity is increased because the glass transition temperature is as high as 75 ° C. or more and 160 ° C. or less.
  • high cohesion is generated and the diffusion speed of the melamine resin (b) is decreased.
  • the self-shrinkage of the water-soluble melamine resin (b) is suppressed, and the reaction between the water-soluble melamine resin (b) and the polyurethane resin (a) is preferentially generated.
  • the melamine resin (b) having low compatibility with the polyurethane resin (a) is concentrated to the surface layer of the coating film, the self-shrinkage of the water-soluble melamine resin (b) is suppressed, and the polyurethane resin (a) React preferentially with
  • the reaction product of the water-soluble melamine resin (b) reacted with the polyurethane resin (a) in the upper layer coating film 13 And the reaction product resulting from the self-shrinkage of the water-soluble melamine resin (b) coexist.
  • the upper layer coating 13 is dispersed in the form of particles and the upper layer coating 13 is concentrated in the surface layer.
  • the polyurethane resin (a) has a high cohesive force, so that the reaction between the water-soluble melamine resin (b) and the polyurethane resin (a) It occurs preferentially. Therefore, the micronized particulate water-soluble melamine resin (b) is concentrated in the surface layer of the upper layer coating film 13 to form a concentrated portion 103 as shown in FIG.
  • the micronized particulate water-soluble melamine resin (b) which was not concentrated, forms the triazine particulates 101 as shown in FIG.
  • the lower coating film 15 is formed using a polyurethane resin (c) having a glass transition temperature of 80 ° C. to 160 ° C. and a glass transition temperature lower than that of the polyurethane resin (a).
  • a polyurethane resin (c) having a glass transition temperature of 80 ° C. to 160 ° C. and a glass transition temperature lower than that of the polyurethane resin (a).
  • the high adhesion between the upper coating 13 and the lower coating 15 can be realized.
  • the polyurethane resin (a) containing an anionic functional group the dispersibility of the urethane portion in the aqueous medium (water-based paint) is improved, and as a result, the film forming property of the upper coating 13 is enhanced. High adhesion between the coating 13 and the lower coating 15 is realized.
  • the method of producing a coated metal sheet according to the present embodiment is a coated metal sheet according to the present embodiment (that is, a coated metal sheet excellent in metal appearance, chemical resistance and solvent resistance) Can be manufactured at low cost.
  • the upper layer coating film forming step first, an upper coating, which is an example of the first coating, is prepared.
  • the upper layer paint contains a polyurethane resin (a), a water soluble melamine resin (b) which is a triazine ring-containing water soluble curing agent, and an aqueous solvent.
  • the polyurethane resin (a) is a polyurethane resin containing an anionic functional group and having a glass transition temperature of 75 ° C. or more and 160 ° C. or less.
  • the glass transition temperature of the polyurethane resin (a) is the polyurethane resin used for the lower coating film 15 It is preferable that it is more than the glass transition temperature of (c).
  • a polyurethane resin having a urethane bond for example, a high glass transition Point temperature polyester resins are difficult to manufacture.
  • a polyurethane resin having a high glass transition temperature has a very high melt viscosity, it is difficult to coat (form a coated film) unless a paint dispersed in an aqueous medium is used. For this reason, by providing the anionic functional group to the polyurethane resin, it becomes possible to disperse in the aqueous medium together with the water-soluble melamine resin.
  • the polyurethane resin (a) is, for example, polyvalent such as ethylene glycol, propylene glycol, diethylene glycol, 1,6-hexanediol, neopentyl glycol, triethylene glycol, bisphenol hydroxypropyl ether, glycerin, trimethylolethane, trimethylolpropane and the like.
  • polyurethane resin (a) for example, polyether polyurethane resin (polyurethane resin having a polyether skeleton), polyester polyurethane resin (polyurethane resin having a polyester skeleton), polyether polyester polyurethane resin (polyether skeleton and polyester skeleton) Polyurethane resin etc. is preferable. Coatings using these polyurethane resins are likely to have improved chemical resistance and solvent resistance.
  • the polyether polyurethane resin, the polyester polyurethane resin, and the polyether polyester polyurethane resin can be obtained by using at least one of a polyether polyol and a polyester polyol as polyhydric alcohols.
  • the polyether polyols are, for example, polyethylene glycol, polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene glycol and copolymers thereof.
  • polyester polyols include, for example, dibasic acids such as terephthalic acid, isophthalic acid, adipic acid, azelaic acid, sebacic acid or dialkyl esters of dibasic acids, ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, neopentyl glycol Glycols such as 1,6-hexane glycol, 3-methyl-1,5-pentanediol, 3,3'-dimethyl alcohol heptane, polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene ether glycol and the like It can be obtained by reaction.
  • the polyester polyol can be obtained, for example, by ring-opening polymerization of lactones such as polycaprolactone, polyvalerolactone, poly ( ⁇ -methyl- ⁇ -valerolactone) and the like.
  • the glass transition temperature of the polyurethane resin (a) is 75 ° C. or more and 160 ° C. or less. If the glass transition temperature of the polyurethane resin (a) is less than 75 ° C., the chemical resistance will decrease. On the other hand, when the glass transition temperature of the polyurethane resin (a) exceeds 160 ° C., the processability is lowered. When the processability is lowered, the upper coating film 13 is cracked and the like, and the chemical resistance and the solvent resistance are also lowered.
  • the glass transition temperature of the polyurethane resin (a) is preferably 100 ° C. or more and 160 ° C. or less from the viewpoints of chemical resistance and solvent resistance (particularly, chemical resistance permeability).
  • the glass transition temperature of various resins including the above-mentioned polyester resin can be measured according to the differential scanning calorimetry (DSC method) of the plastic transition temperature measurement method (JIS K 7121 1987).
  • water-soluble melamine resin (b) As the water-soluble melamine resin (b) which is a triazine ring-containing water-soluble curing agent, generally known water-soluble melamine resins (imino-type melamine resin, methylol-type melamine resin, completely alkyl etherified melamine resin, etc.) may be used it can. Examples of commercially available water-soluble melamine resins include water-soluble melamine resins such as those manufactured by Nippon Carbide, Ornex, and DIC.
  • the water-soluble melamine resin (b) as described above it is particularly preferable to use a melamine resin containing an imino group (imino-type melamine resin).
  • a melamine resin containing an imino group By using a melamine resin containing an imino group, the particulate water-soluble melamine resin is easily concentrated in the surface layer of the upper layer coating film 13, so that the solvent resistance can be more easily improved.
  • water solubility shows that the dissolution amount of the object substance with respect to 100 mass parts of water of 25 degreeC is 5 mass parts or more (preferably 10 mass parts or more).
  • the colorant to be dispersed in the upper layer paint containing the components as described above is not particularly limited, and known colorants can be appropriately used.
  • a colorant for example, various inorganic pigments such as titanium oxide, zinc oxide, calcium carbonate, aluminum oxide, barium sulfate, aluminum, iron oxide, copper-chromium composite oxide, carbon black, cyanine, quinacridone, etc.
  • various organic pigments of the above, various dyes and the like can be used.
  • the colorant to be used is a black pigment such as carbon black or a metal oxide exhibiting black color
  • the chemical resistance may decrease, so the concentration in the upper layer paint is limited or dispersed in the lower layer paint. It is preferable to disperse in the lower layer paint.
  • the type of carbon black dispersed in the upper layer paint is not particularly limited, and for example, known carbon blacks such as furnace black, ketjen black, acetylene black, channel black and the like can be used.
  • the particle size of the carbon black used is not particularly limited as long as there is no problem in the dispersibility in the paint, the quality of the coating film, and the paintability, but the primary particle size of about 10 to 120 nm is used Cheap.
  • the primary particle size of 10 to 120 nm is used Cheap.
  • the type of metal oxide exhibiting black color is not particularly limited, and, for example, known black pigments such as triiron tetraoxide and copper-chromium composite oxide can be used.
  • aqueous solvent examples include water or a mixed solution of water and a lower alcohol. Such an aqueous solvent may contain 50% by mass or more (preferably 80% by mass or more) of water.
  • a solvent typified by an organic solvent it is not preferable because the melamine particles are dispersed and present in the coating film and the surface is not concentrated.
  • an aqueous solvent is used. It is possible to concentrate melamine particles on the surface without using an amine compound.
  • distilled water ion exchange water, ultrapure water, ultrafiltered water, etc.
  • ion exchange water ion exchange water
  • ultrapure water ultrafiltered water
  • C1-C4 alcohol such as methanol, ethanol, butanol, isopropyl alcohol etc.
  • the content (Wa, unit: mass%) of the polyurethane resin (a) to the total solid content and the content (Wb) of the water-soluble melamine resin (b) to the total solid content The total content (Wa) + (Wb) of (unit: mass%) satisfies the following formula (11), and the content (Wa) of the polyurethane resin (a) and the water solubility
  • the ratio (Wb) / (Wa) of the content (Wb) of the melamine resin (b) preferably satisfies the following formula (13). 90 mass% ⁇ (Wa) + (Wb) ⁇ 100 mass% formula (11) 0 ⁇ (Wb) / (Wa) ⁇ 1 formula (13)
  • the total content (Wa) + (Wb) satisfies the following formula (15), and the ratio (Wb) / (Wa) is as follows: It is more preferable to satisfy the equation (17) of 95 mass% ⁇ (Wa) + (Wb) ⁇ 100 mass% formula (15) 0.1 ⁇ (Wb) / (Wa) ⁇ 0.3 formula (17)
  • the upper layer paint preferably does not have silica.
  • the upper layer coating film 13 contains silica, and as a result, the chemical resistance of the upper layer coating film 13 is deteriorated.
  • the upper layer paint preferably does not have at least one metal complex compound selected from zinc, aluminum and titanium.
  • At least one metal complex compound selected from zinc, aluminum and titanium for example, zinc stearate, zinc gluconate, zinc picolinate, zinc citrate, zinc acetylacetonate, aluminum acetate, aluminum stearate ,
  • the method of forming (coating) the upper layer coating on the metal plate 11 or the lower layer coating 15 in the upper layer coating forming step is not particularly limited, and, for example, a roll coating method, a ringer roll coating method, an air spray Well-known film-forming methods (coating method), such as a method, an airless spray method, an immersion method, can be utilized.
  • a roll coating method such as a method, an airless spray method, an immersion method
  • film formation is performed in a continuous coating line called a coil coating line or sheet coating line, complete with a film forming apparatus (coating apparatus) for performing these known film forming methods (coating methods)
  • the coating operation efficiency is good and a large amount It is more preferable because production is possible.
  • the method for cooling the upper layer coating film 13 after heating is not particularly limited, but for example, a known method such as water cooling (spray, submersion, etc.), air cooling (spray of nitrogen gas, etc.), etc. can do.
  • heating is performed under the condition that the heating time from the heating start to the highest reaching temperature is 1 second to 30 seconds, and from the highest reaching temperature to 30 ° C. It is preferable to form the upper coating film 13 by cooling under the condition that the cooling time is 0.1 seconds or more and 5 seconds or less.
  • the heating time and the cooling time are measured by detecting the temperature of the metal plate with a thermocouple.
  • the self-shrinkage of the water-soluble melamine resin (b) is further suppressed, and 0.1 as described above
  • the cooling is performed in a short time of 2 seconds to 5 seconds, the diffusion of the water-soluble melamine resin (b) is suppressed.
  • the water-soluble melamine resin (b) reacted with the polyurethane resin (a) forms a domain, and is dispersed in the upper layer coating 13 in particles having a number average particle diameter of 5 nm to 20 nm. It tends to be in the state of being concentrated in the surface layer within 15 nm in depth from the surface of. For this reason, in the coated metal plate 1 manufactured, the metal appearance, the chemical resistance and the solvent resistance can be further easily improved.
  • the heating time is less than 1 second, the reaction between the polyurethane resin (a) and the water-soluble melamine resin (b) may be insufficient and the chemical resistance and the solvent resistance may be lowered.
  • the heating time exceeds 30 seconds, the water-soluble melamine resin (b) tends to be self-condensed, the self-condensed particles become large, and the phenomenon occurs that the film is concentrated to the surface layer. In the coated metal plate 1, the metal appearance and the chemical resistance may decrease.
  • the cooling time is less than 0.1 seconds
  • the upper layer coating film 13 may be cracked as a result of rapid cooling.
  • the cooling time exceeds 5 seconds, diffusion of the water-soluble melamine resin (b) occurs, and the metal appearance and chemical resistance permeability may decrease in the manufactured coated metal plate 1.
  • the heating time is preferably 1 second or more and 20 seconds or less from the viewpoint of metal appearance, chemical resistance, and solvent resistance. Moreover, it is preferable that cooling time is 0.1 second or more and 2 seconds or less from the same viewpoint.
  • the maximum reaching temperature and the holding time thereof are not particularly limited, and may be, for example, 0.1, after appropriately setting the maximum reaching temperature to be the boiling point or more of the aqueous solvent according to the aqueous solvent used.
  • the holding time may be set in the range of seconds to 5 seconds.
  • the concentrated portion 103 is also formed at depth positions other than the surface layer.
  • the lower layer coating-film formation process in the manufacturing method of the coated metal plate which concerns on this embodiment is demonstrated.
  • the lower coating film forming step is not particularly limited, and a known lower coating is used as an example of the second coating, and the lower coating 15 is formed by a known method. It can be formed.
  • the lower coating film forming step contains an anionic functional group, and the glass transition temperature is not higher than the glass transition temperature of the polyurethane resin (a)
  • the lower layer paint containing at least one of the rust preventive agent (f) and the aqueous solvent is formed into a film and heated on at least one surface of the metal plate 11 and then cooled to form the lower layer coating film 15 Is preferred.
  • the glass transition temperature of the polyurethane resin (c) is preferably equal to or less than the glass transition temperature of the polyurethane resin (a).
  • the glass transition temperature of the polyurethane resin (c) is equal to or lower than the glass transition temperature of the polyurethane resin (a)
  • the adhesion between the lower coating 15 and the upper coating 13 is improved, and the chemical resistance is further improved. It will be easier.
  • the glass transition temperature of the polyurethane resin (c) is a value within the range of 80 ° C. or more and 160 ° C. or less, and less than or equal to the glass transition temperature of the polyurethane resin (a) (preferably, the glass transition temperature of the polyurethane resin (a) It is more preferable that the temperature is lower than 5 ° C.). If the glass transition temperature of the polyurethane resin (c) is less than 80 ° C., the chemical resistance may decrease. On the other hand, when the glass transition temperature of the polyurethane resin (c) exceeds 160 ° C., the processability may be lowered. When the processability is lowered, the lower coating film 15 is cracked and the like, and the chemical resistance and the solvent resistance are also lowered.
  • the glass transition temperature of the polyurethane resin (c) is preferably in the range of 100 ° C. or more and 160 ° C. or less from the viewpoints of chemical resistance and solvent resistance (in particular, in terms of chemical resistance).
  • the polyurethane resin (c) may be a polyurethane resin containing a polyurethane resin having a glass transition temperature of 80 ° C. to 160 ° C. and a polyurethane resin having a glass transition temperature of 20 ° C. to 60 ° C.
  • chemical resistance can be further improved.
  • polyurethane resin (c) the various polyurethane resin illustrated by the polyurethane resin (a) can be mentioned.
  • Epoxy resin (d) examples include bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, aliphatic epoxy resin and the like. Among these resins, since the aliphatic epoxy resin is hardly discolored by baking, it is particularly preferable to use as the epoxy resin (d).
  • epoxy resins (d) are not particularly limited, and various commercially available epoxy resins (d) can be used, and the glass transition temperature is within the above range. It is possible to synthesize such a thing by itself and use it appropriately.
  • the silane coupling agent (e) is not particularly limited, and various known silane coupling agents can be used.
  • a silane coupling agent for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (amino) Ethyl) -3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, bis (trimethoxysilylpropyl) amine, 3-glycidoxypropyltrimethoxysilane, 3-glylic Examples thereof include cidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane
  • a rust inhibitor containing at least one element selected from the group consisting of P, V, Ti, Si and Zr as a rust inhibitor (f) is used. It is possible to use.
  • the corrosion resistance of the lower coating film 15 can be improved by incorporating the rust inhibitor (f) in the lower coating material.
  • P-containing compounds that function as antirust agents (f) include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and the like, salts thereof, and aminotri (methylene phosphonic acid ), Phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylene phosphonic acid), diethylene triamine penta (methylene phosphonic acid) and salts thereof, organic phosphoric acids such as phytic acid, and salts thereof Etc. can be mentioned.
  • phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and the like, salts thereof, and aminotri (methylene phosphonic acid )
  • Phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylene phosphonic acid), di
  • V which functions as a rust inhibitor (f) for example, vanadium pentoxide, metavanadic acid, ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride, vanadium trioxide, vanadium dioxide, vanadium oxysulfate, Examples thereof include vanadium oxyacetylacetonate, vanadium acetylacetonate, vanadium trichloride, phosphorus vanadomolybdic acid and the like.
  • an organic compound having at least one functional group selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, a primary to tertiary amino group, an amide group, a phosphoric acid group and a phosphonic acid group in a pentavalent vanadium compound A salt of oxovanadium cation and an inorganic acid anion such as hydrochloric acid, nitric acid, phosphoric acid or sulfuric acid, or an organic acid anion such as formic acid, acetic acid, propionic acid, butyric acid or oxalic acid
  • chelates of vanadyl compounds with organic acids such as vanadyl glycolate and vanadyl dehydroascorbate can be used.
  • Ti-containing compound which functions as a rust inhibitor (f) examples include, for example, titanium oxalate potassium, titanyl sulfate, titanium chloride, titanium lactate, titanium isopropoxide, isopropyl titanate, titanium ethoxide, titanium 2-ethyl oxide -1-Hexanolate, tetraisopropyl titanate, tetra-n-butyl titanate, titania sol, titanium hydrofluoric acid or salts thereof and the like can be mentioned.
  • Examples of compounds containing Si that function as antirust agents include Snowtex C, Snowtex O, Snowtex N, Snowtex S, Snowtex UP, Snowtex PS-M, and Snowtex PS-L.
  • Colloidal silica such as Snowtex 20, Snowtex 30, Snowtex 40 (all manufactured by Nissan Chemical Industries, Ltd.), Adelite AT-20N, Adelite AT-20A, Adelight AT-20Q (both manufactured by Asahi Denka Kogyo Co., Ltd.)
  • aerosols such as Aerosil 50, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil MOX 80, Aerosil MOX 170 (all manufactured by Nippon Aerosil Co., Ltd.) and the like.
  • Zr which functions as an antirust agent (f) for example, zirconyl nitrate, zirconyl acetate, zirconyl sulfate, ammonium zirconium carbonate, potassium zirconium carbonate, sodium zirconium carbonate, zirconium acetate, zirconium hydrofluoric acid or the same Salt etc. can be mentioned.
  • the colorant to be dispersed in the lower layer paint containing the components as described above is not particularly limited as in the case of the upper layer paint, and known materials can be suitably used.
  • a coloring agent for example, various inorganic pigments such as titanium oxide, zinc oxide, calcium carbonate, aluminum oxide, barium sulfate, aluminum, iron oxide, carbon black and the like, various organic pigments such as cyanine and quinacridone, Various dyes and the like can be used.
  • aqueous solvent water, a mixed solution of water and a lower alcohol, or the like can be used as in the above-mentioned upper layer paint.
  • the aqueous solvent preferably contains 50% by mass or more (preferably 80% by mass or more) of water.
  • distilled water ion exchange water, ultrapure water, ultrafiltered water, etc.
  • ion exchange water ion exchange water
  • ultrapure water ultrafiltered water
  • C1-C4 alcohol such as methanol, ethanol, butanol, isopropyl alcohol etc.
  • the content of the polyurethane resin (c), the epoxy resin (d), the silane coupling agent (e) and the rust inhibitor (f) as described above is not particularly limited, and the lower coating film 15
  • the content of each component may be appropriately determined in accordance with the characteristics to be obtained.
  • the content of the polyurethane resin (c) can be in the range of 30 to 95% by mass
  • the content of the epoxy resin (d) can be in the range of 1 to 5% by mass It is possible.
  • the content of the silane coupling agent (e) can be, for example, in the range of 10 to 40% by mass
  • the content of the antirust agent (f) is, for example, in the range of 1 to 15% by mass It is possible to do inside.
  • the content of each component is within the above range so that the total content of these polyurethane resin (c), epoxy resin (d), silane coupling agent (e) and rust inhibitor (f) is 100% by mass. It may be determined appropriately.
  • the upper layer paint and the lower layer paint may contain known additives such as a wax, a leveling agent, an antifoamer, a thickener, a dispersant, etc. Good. That is, in the coated metal sheet according to the present embodiment, the upper coating film 11 and the lower coating film 15 may contain any of these known additives.
  • the surface of the metal sheet 11 to which the upper layer paint as described above is applied is, as required, textured, roughened, streaks (hair lines), weaves (satins), squares Various textures such as (hammer) may be formed.
  • the method and apparatus for forming the various textures as described above are not particularly limited, and various known ones can be appropriately used.
  • Example shown below is only an example of the manufacturing method of the coating metal plate which concerns on this invention, and a coating metal plate only, and the manufacturing method of the coating metal plate which concerns on this invention, and a coating metal plate is limited to the following example. It is not something to be done.
  • the plating adhesion amount of ZL was 20 g / m 2 per one side, and the amount of nickel in the plating layer was 12% by mass. Moreover, the plating adhesion amount of GI, SD, GL, and ZAM was 60 g / m 2 per one side, respectively. The plating adhesion amount of GA was 45 g / m 2 per one side. The plating adhesion amount of EG was 20 g / m 2 per one side.
  • the reaction liquid was cooled to 40 ° C., and then 20.00 g of triethylamine (boiling point 89 ° C.) was added to obtain an acetonitrile solution of a polyurethane prepolymer. 300 g of this solution is dispersed in 70. 00 g of water using a homodisper to form an emulsion, the solution is kept at 40 ° C., 21 g of ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane as a chain extender, and ethylenediaminehydrazine The chain extension reaction was carried out by adding 18 g of monohydrate.
  • the acetonitrile used at the time of polyurethane prepolymer synthesis was distilled off at 50 ° C. under a reduced pressure of 150 mmHg to obtain a self-made polyurethane resin B.
  • the triethylamine used as a raw material is removed at the refinement
  • the upper layer paint and the lower layer paint were respectively manufactured by using the materials shown in Tables 1 to 7 and mixing predetermined amounts of each material with water according to the description of Table 8 and Table 9.
  • the main resin-2 was blended at a ratio of 15 parts by mass with respect to 100 parts by mass of the main resin-1.
  • the lower layer paint manufactured as mentioned above was each coated with a roll coater so as to obtain a predetermined film thickness with a dry film thickness.
  • the film of the lower layer paint is heated (dried) under the condition that the maximum temperature of the metal plate reaches 150 ° C and the heating time from the start of heating to the maximum temperature is 10 seconds Cured).
  • the coated metal plate was sprayed with water by a spray, and water cooling was performed under the condition that the cooling time from the maximum reaching temperature to 30 ° C. was 1 second.
  • attainment temperature at the time of a heating was 1 second.
  • the upper layer paint manufactured as mentioned above was each coated with a roll coater so as to have a predetermined film thickness with a dry film thickness.
  • the film temperature of the upper layer paint is heated (dry-cured) under the condition that the maximum temperature of the metal plate reaches 230 ° C and the heating time from the start of heating to the maximum temperature is 10 seconds. did.
  • One second after reaching the highest reaching temperature spray the water onto the painted metal plate with a spray, and one second after reaching the highest reaching temperature, wipe the water onto the painted metal plate with a spray.
  • Water cooling was performed under the condition that the cooling time from the highest temperature to 30 ° C. was 1 second.
  • attainment temperature at the time of a heating was 1 second.
  • the composition of the upper-layer coating film and the lower-layer coating film was analyzed about the sample of each manufactured coated metal plate. Specifically, the upper coating film and the lower coating film constituting site (urethane bond skeleton (UB), triazine ring skeleton (TR), epoxy group (EP), presence of siloxane bond (silane) derived from silane coupling agent)
  • the coating film was analyzed using a Fourier transform infrared spectrophotometer (FT-IR, PerkinElmer Frontier), and it was judged based on whether or not the vibration peak shown below was observed. When it was done, it described in the table as "presence".
  • Urethane bond backbone (UB): 1540cm -1 are observed in the vicinity of the N-H vibrational peak of bending vibration, and the vibration peak triazine ring skeleton of C O stretching vibration is observed near 1730cm -1 (TR): 1550,1450,815Cm -1 vibrational peak epoxy group derived from triazine ring observed in the vicinity (EP): 910cm -1 from epoxy groups observed in the vicinity of the vibration peak siloxane bond: 1050 cm -1 Si observed in the vicinity Peak of -O-Si stretching vibration
  • the thickness (depth of concentration) of the concentrated portion present in the surface layer, and the number average particle diameter (particle diameter) of the particulate triazine portion (water soluble melamine resin) ) Were each measured.
  • an N concentration N1 at a depth of 0.2 ⁇ m from the surface of the first coating and an N concentration N2 at a depth of 0.2 ⁇ m from the interface between the first coating and the metal plate on the first coating side The ratio of N1 / N2 (concentration factor) was measured according to the method described above.
  • the glass transition temperature (Tg) of each coating film was measured according to the method described above for each of the manufactured coated metal sheet samples.
  • the coated metal sheet corresponding to the example of the present invention is excellent in metal appearance, chemical resistance, solvent resistance and processability. .
  • the processability is lowered compared to the other examples, and the processing is performed. It can be seen that the chemical resistance and the solvent resistance decrease when the In addition, when the glass transition temperature of the lower coating film 15 is higher than the glass transition temperature of the upper coating film 13 (Example 146), it can be seen that the chemical resistance is inferior to that of the other examples.
  • the commercially available resin, silane coupling agent and rust inhibitor used to form the upper layer coating film and the lower layer coating film are as follows.
  • Polyurethane resin for upper layer coating film Polyurethane resin 4 in Test Example 1
  • Polyurethane resin for lower layer coating Polyurethane resin 3 in Test Example 1
  • Water-soluble melamine resin Melamine resin 2 in Test Example 1
  • Epoxy resin Epoxy resin 1 in Test Example 1
  • Silane Coupling Agent Silane Coupling Agent 1 in Test Example 1
  • Rust inhibitor Rust inhibitor 2 in Test Example 1
  • Wax Chemipearl S100 (Mitsui Chemical Co., Ltd.)
  • the upper layer paint was prepared by mixing predetermined amounts of the above-mentioned polyurethane resin, melamine resin and wax in the composition according to Table 11, respectively.
  • the lower layer paint was prepared by mixing predetermined amounts of the above-mentioned polyurethane resin, epoxy resin, silane coupling agent, rust inhibitor and coloring agent in the composition according to Table 11, respectively.
  • the lower layer paint produced as described above was coated by a roll coater to a dry film thickness of 0.5 ⁇ m.
  • the film of the lower layer paint is heated (dried) under the condition that the maximum reached plate temperature of the metal plate is 150 ° C and the heating time from the start of heating to the maximum reached temperature is 5 seconds Cured).
  • the coated metal plate was sprayed with water by a spray, and water cooling was performed under the condition that the cooling time from the maximum reaching temperature to 30 ° C. was 1 second.
  • attainment temperature at the time of a heating was 1 second.
  • the upper layer paint produced as described above was coated by a roll coater to a dry film thickness of 10 ⁇ m.
  • the film temperature of the upper layer paint is heated (dry-cured) under the condition that the maximum temperature of the metal plate reaches 230 ° C and the heating time from the start of heating to the maximum temperature is 10 seconds. did.
  • One second after reaching the highest reaching temperature spray the water onto the painted metal plate with a spray, and one second after reaching the highest reaching temperature, wipe the water onto the painted metal plate with a spray.
  • Water cooling was performed under the condition that the cooling time from the highest temperature to 30 ° C. was 1 second.
  • attainment temperature at the time of a heating was 1 second.
  • the total content (Wa) + (Wb) of the polyurethane resin (a) and the water-soluble melamine resin (b) used in the upper layer coating film 13 is 90 mass% or more and 100 mass It turns out that the chemical-resistance permeability of the manufactured coated metal plate improves more because it becomes% or less and ratio (Wb) / (Wa) becomes more than 0 and 1 or less.
  • the upper layer paint 3 in Test Example 1 was used as the upper layer paint, and the lower layer paint 8 in Test Example 1 was used as the lower layer paint.
  • the lower layer paint produced as described above was coated by a roll coater to a dry film thickness of 1.0 ⁇ m.
  • the film of the lower layer paint is heated (dried) under the condition that the maximum reached plate temperature of the metal plate is 150 ° C and the heating time from the start of heating to the maximum reached temperature is 5 seconds Cured).
  • the coated metal plate was sprayed with water by a spray, and water cooling was performed under the condition that the cooling time from the maximum reaching temperature to 30 ° C. was 1 second.
  • attainment temperature at the time of a heating was 1 second.
  • the upper layer paint produced as described above was coated with a roll coater to a dry film thickness of 8 ⁇ m.
  • the induction heating furnace blown with hot air, the upper layer of the metal plate so that the heating time from the start of heating to the maximum reaching temperature and the holding time at 40 to 100 ° C become the conditions shown in Table 12
  • the paint film was heated (dried and cured).
  • the coated metal plate was sprayed with water by spraying, and water cooling was carried out under the condition that the cooling time from the maximum reaching temperature to 30 ° C. was the time shown in Table 12.
  • attainment temperature at the time of a heating was 1 second.
  • the heating time from the heating start to the highest reaching temperature is heated under the condition of 1 second to 30 seconds, and the cooling time from the highest reaching temperature to 30 ° C.
  • the obtained coated metal sheet is excellent in metal appearance, chemical resistance, processability and solvent resistance, in particular, It was excellent in chemical resistance.
  • a plurality of concentrated layers are provided in the first coating film produced by the method of holding at a temperature of 40 to 100 ° C. for 1 to 20 seconds, and then heating to 200 ° C. for 1 to 10 seconds, and then cooling. It was formed (Examples 315, 316, 317). When a plurality of concentrated layers were formed on the first coating, all of the metal appearance, chemical resistance, processability and solvent resistance were excellent.
  • FIGS. 5A-5D show cross-sectional TEM images of the upper coating film 13 of Example 303
  • FIG. 5 B shows the upper coating film 13 of Example 303 stained with osmium oxide as a TEM- It shows an elemental mapping image of osmium when observed by EDX.
  • FIG. 5C is an enlarged view of a central portion of the upper coating film 13 in the cross-sectional TEM image in FIG. 5A.
  • black particles appear in the cross-sectional TEM image.
  • FIG. 5D is an enlarged view of one such black granular material.
  • the regions corresponding to FIGS. 5C and 5D are confirmed in FIG. 5B, it can be seen that the elements of osmium are dispersed in such regions. Therefore, it can be understood that the portion of the dispersed osmium corresponds to the triazine particles 101. That is, it can be seen that the black particles in FIGS. 5C and 5D are triazine particles 101.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Coating With Molten Metal (AREA)

Abstract

The coated metallic sheet according to the present invention has a metallic sheet and a fat-containing first coating film which is disposed at least on one surface of the metallic sheet, wherein: the first coating film has a first region having a urethane linkage backbone and a second region having a triazine ring backbone; the first coating film has a glass transition temperature of 85-170°C; and when the second region is stained with osmium oxide and observed with a transmission-type electron microscope in a magnification ratio of 100,000, a dispersive second region in which particles having a number average particle diameter not less than 5 nm are dispersed and a concentrated second region in which such particles having a number average particle diameter not less than 5 nm are not found, are observed.

Description

塗装金属板及び塗装金属板の製造方法Painted metal plate and method of manufacturing painted metal plate
 本発明は、塗装金属板及び塗装金属板の製造方法に関する。
 本願は、2017年10月30日に、日本に出願された特願2017-209460号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a coated metal sheet and a method of manufacturing the coated metal sheet.
Priority is claimed on Japanese Patent Application No. 2017-209460, filed Oct. 30, 2017, the content of which is incorporated herein by reference.
 加工後に塗装が施される従来の塗装製品に代わって、自動車用、家電用、建材用、土木用、機械用、家具用、容器用等に、塗膜を被覆した塗装金属板が使用されるようになってきている。かかる塗装金属板は、金属板に対して塗料を塗装した後に切断され、プレス成形されることが一般的である。 A coated metal plate coated with a coating film is used for automobiles, home appliances, building materials, civil engineering, machines, furniture, containers, etc., instead of conventional painted products to which painting is applied after processing. It has become like that. Such a coated metal sheet is generally cut and applied after the paint is applied to the metal sheet.
 塗装金属板は、主に外装材として用いられるため、様々な溶剤や薬品に晒されることから、耐溶剤性、耐薬品性を有していることが多い。外装材であるために、通常は着色塗装された塗装金属板が多く、色調のための隠ぺい性のために、かかる塗膜の膜厚は、比較的厚い。一方、基材である金属板の外観をそのまま意匠とした金属調の塗装金属板の場合、着色顔料を含まないクリア塗装を施す必要がある。かかる場合、クリア塗膜の膜厚を薄くすることで、塗装金属板は、金属外観に優れようになる。また、生産性、商業性の観点においても、クリア塗膜の膜厚は、薄い方が優れている。 Since a coated metal sheet is mainly used as an exterior material, it is often exposed to various solvents and chemicals, and thus often has solvent resistance and chemical resistance. Because they are exterior materials, they are usually colored and painted, and there are many coated metal plates, and the film thickness of such a coating is relatively thick because of the hiding property for color tone. On the other hand, in the case of a metal-coated metal plate in which the appearance of the metal plate as the substrate is designed as it is, it is necessary to apply a clear coating containing no color pigment. In such a case, by reducing the film thickness of the clear coating film, the coated metal plate becomes excellent in metal appearance. Also, from the viewpoints of productivity and commerce, the thinner the film thickness of the clear coating film, the better.
 一般に、耐薬品性として、塗膜が薬品により劣化又は変色しないことが求められる。しかしながら、塗膜の膜厚が薄い場合には、塗膜が薬品で劣化するよりも、薬品がめっき界面まで浸透してめっきを溶解することが問題となる。着色塗装の場合には、金属が薬品によって変色しても外観異常とはならず、金属の溶解が進行して腐食生成物が生成し、生成した腐食生成物によって塗膜が膨れる状態になって、外観異常となる。一方、クリア塗装の場合、金属が変色した時点で外観異常とみなされる。つまり、クリア塗装では、薬品成分が金属に到達しないことが必要となる。かかる特性は、耐薬品浸透性と呼ばれている。 In general, chemical resistance is required to prevent the coating from being deteriorated or discolored by chemicals. However, when the film thickness of the coating film is thin, it is more problematic that the chemical penetrates to the plating interface to dissolve the plating than the coating film is deteriorated by the chemical. In the case of a colored coating, even if the metal is discolored by chemicals, the appearance does not become abnormal, the dissolution of the metal proceeds and a corrosion product is formed, and the coating is expanded by the generated corrosion product. , Looks abnormal. On the other hand, in the case of clear coating, the appearance is considered abnormal when the metal is discolored. That is, in clear coating, it is necessary that the chemical component does not reach the metal. Such property is called chemical resistance.
 耐薬品性に優れる塗装金属板については、従来、何例か報告されている。
 例えば、以下の特許文献1には、溶剤可溶型フッ素樹脂を主成分とする塗料を塗装する金属板の塗装方法技術が開示されている。
Several examples of coated metal plates having excellent chemical resistance have been reported.
For example, Patent Document 1 below discloses a coating method technology of a metal plate for coating a paint containing a solvent-soluble fluorine resin as a main component.
 また、以下の特許文献2には、高ガラス転移点温度のポリエステル樹脂、低ガラス転移点温度のポリエステル樹脂、及び、アミノホルムアルデヒド樹脂を用いた塗膜により、加工性、耐汚染性、耐疵付性及び耐薬品性に優れた塗装金属板の技術が開示されている。 Further, in Patent Document 2 below, the processability, the stain resistance, and the scratch resistance are obtained by the coating film using the polyester resin having a high glass transition temperature, the polyester resin having a low glass transition temperature, and the aminoformaldehyde resin. The art of a coated metal plate excellent in resistance and chemical resistance is disclosed.
 また、以下の特許文献3には、上層にポリアクリル樹脂を塗装するとともに、下層にポリエステル樹脂を塗装し、耐汚染性、耐薬品性、耐候性及び加工性に優れたプレコートメタルの技術が開示されている。 In addition, in the following Patent Document 3, a polyacrylic resin is applied to the upper layer, and a polyester resin is applied to the lower layer, and a technique of precoated metal excellent in stain resistance, chemical resistance, weather resistance and processability is disclosed. It is done.
 また、以下の特許文献4には、特定のポリウレタン樹脂とポリエステル樹脂とを混合した塗膜により、加工性、耐食性(特に端面耐食性)、及び、耐薬品性等に優れる塗装金属板の技術が開示されている。 In addition, Patent Document 4 below discloses the technology of a coated metal plate which is excellent in processability, corrosion resistance (especially end face corrosion resistance), chemical resistance, etc. by a coating film obtained by mixing a specific polyurethane resin and a polyester resin. It is done.
 また、以下の特許文献5には、粒径が50nm以下であるメラミン樹脂粒子が分散した塗膜により、曲げ加工性に優れる金属板の技術が開示されている。 Moreover, the technique of the metal plate which is excellent in bending workability is disclosed by the following patent document 5 by the coating film which the melamine resin particle which is 50 nm or less in particle diameter disperse | distributed.
 また、以下の特許文献6には、メラミン樹脂等のアミノブラスト樹脂を用いた塗膜において、アミノブラスト樹脂を塗膜の表層に濃化させる技術が開示されている。 Further, Patent Document 6 below discloses, in a coating film using an aminoblast resin such as melamine resin, a technology for concentrating the aminoblast resin on the surface layer of the coating film.
日本国特開平5-111675号公報Japanese Patent Application Laid-Open No. 5-111675 日本国特開平7-331167号公報Japanese Patent Application Laid-Open No. 7-331167 日本国特開平7-313929号公報Japanese Patent Application Laid-Open No. 7-313929 日本国特開2013-213281号公報Japan JP 2013-213281 日本国特開2005-53002号公報Japanese Patent Application Laid-Open No. 2005-53002 日本国特開2006-175815号公報Japanese Patent Application Laid-Open No. 2006-175815
 しかしながら、上記特許文献1の技術で用いられているフッ素樹脂は高価であり、産業上好ましくない。 However, the fluorine resin used by the technique of the said patent document 1 is expensive, and industrially unpreferable.
 上記特許文献2のように溶剤系塗料を用いた塗膜形成において架橋剤であるメラミン樹脂の自己縮合反応を利用する事が示唆されているものもある。しかし、そこに開示されているのはバリア層形成に必要な表面濃化のための条件も考慮されていない。また、表面濃化のためにアミン化合物の添加することも開示されているが、その効果は生成したメラミン自己縮合粒子の分布密度に影響する程度のものである。従って、これらの条件から得られる塗膜の構造は、塗膜内に50~100μm程度の粗大な自己縮合物の粒子が分散しており、該粒子の分布密度としての表面濃化が認められる程度のものであり、塗膜の耐薬品浸透性向上効果は限定的なものであった。 There are some which are suggested to utilize the self condensation reaction of the melamine resin which is a crosslinking agent in the coat formation using a solvent system paint like the above-mentioned patent documents 2. However, what is disclosed therein does not take into consideration the conditions for surface thickening necessary for barrier layer formation. Moreover, although addition of an amine compound for surface concentration is also disclosed, the effect is a grade which affects the distribution density of the generated melamine self-condensing particles. Therefore, the coating film structure obtained from these conditions is such that coarse self-condensing particles of about 50 to 100 μm are dispersed in the coating film, and the surface concentration as the distribution density of the particles is observed. The chemical resistance improvement effect of the coating film is limited.
 上記特許文献3の技術で用いられているポリアクリル樹脂は、加工性に劣るものであり、上記特許文献3に開示されている塗膜をクリア塗膜とした場合には、バリア性が十分ではなく、更には、耐薬品浸透性に劣る。 The polyacrylic resin used by the technique of the said patent document 3 is inferior to workability, and when the coating film currently disclosed by the said patent document 3 is made into a clear coating film, barrier property is enough. Furthermore, it has poor chemical resistance.
 上記特許文献4に開示されている塗膜は、バリア性が十分ではなく、更には、耐薬品浸透性に劣る。 The coating film disclosed in Patent Document 4 has insufficient barrier properties and is further inferior in chemical resistance.
 上記特許文献5の技術ようにメラミン樹脂粒子が塗膜中に分散している場合、かかる塗膜は、耐溶剤性に劣るものとなる。 When the melamine resin particles are dispersed in the coating film as in the technique of Patent Document 5, the coating film is inferior in solvent resistance.
 上記特許文献6に開示されている技術では、塗膜中のメラミン樹脂粒子の粒径が大きく、バリア性が十分ではなく、更には、耐薬品浸透性に劣る。 In the technique disclosed in Patent Document 6, the particle size of the melamine resin particles in the coating is large, the barrier property is not sufficient, and furthermore, the chemical permeation resistance is inferior.
 以上のように、上記特許文献1~特許文献6では、製造コストを抑制しつつ、金属外観、耐薬品浸透性及び耐溶剤性に優れた塗装金属板を得る技術は、開示されていない。 As described above, Patent Documents 1 to 6 do not disclose a technique for obtaining a coated metal plate excellent in metal appearance, chemical resistance and solvent resistance while suppressing the manufacturing cost.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、製造コストの抑制された、金属外観、耐薬品浸透性及び耐溶剤性により優れる塗装金属板と、かかる塗装金属板の製造方法と、を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a coated metal sheet which is excellent in metal appearance, chemical resistance and solvent resistance, which is suppressed in manufacturing cost. And providing a method for producing such a coated metal sheet.
 本発明者らは、上記課題について鋭意検討した結果、金属板の少なくとも片面上に、ウレタン結合骨格を有する第一部位と、トリアジン環骨格を有する第二部位と、を含む樹脂塗膜を形成し、かかる樹脂塗膜のガラス転移温度と、樹脂塗膜中における第二部位の存在状態と、を適切に制御することで、製造コストを抑えつつ、金属外観、耐薬品浸透性及び耐溶剤性により優れる塗装金属板を製造可能であることに想到した。
 かかる知見に基づき完成された本発明の要旨は、以下の通りである。
As a result of intensive studies on the above problems, the present inventors formed a resin coating film including a first portion having a urethane bond skeleton and a second portion having a triazine ring skeleton on at least one surface of a metal plate. By controlling the glass transition temperature of the resin coating film and the existence state of the second portion in the resin coating film appropriately, the production cost can be suppressed, and the metal appearance, the chemical permeability and the solvent resistance can be suppressed. It was conceived to be able to manufacture an excellent coated metal sheet.
The summary of the present invention completed based on such findings is as follows.
(1)本発明の一態様に係る塗装金属板は、金属板と、前記金属板の少なくとも片面上に位置し、樹脂を含有する第一塗膜と、を備え、前記第一塗膜は、ウレタン結合骨格を有する第一部位と、トリアジン環骨格を有する第二部位と、を有する。前記第一塗膜のガラス転移温度は、85℃以上170℃以下である。前記第二部位を酸化オスミウムで染色し、透過型電子顕微鏡を用いて10万倍の倍率で観察すると、個数平均粒径5~20nmの粒子が分散している分散型第二部位と、前記第一塗膜の表面から深さ15nmまでの位置に存在し、個数平均粒径5nm以上の粒子が観察されない濃化型第二部位と、が観察される。
(2)上記(1)に記載の塗装金属板は、前記第一塗膜の表面から0.2μmの深さ位置におけるN濃度N1の、前記第一塗膜と前記金属板との界面から前記第一塗膜側に0.2μmの深さ位置におけるN濃度N2に対する比率であるN1/N2が1.2以上であってもよい。
(3)上記(1)又は(2)に記載の塗装金属板は、前記第一塗膜が、複数の前記濃化型第二部位を有してもよい。
(4)上記(1)~(3)の何れか一態様に係る塗装金属板は、前記第一塗膜と前記金属板との間に第二塗膜を更に備え、前記第二塗膜のガラス転移温度は、前記第一塗膜のガラス転移温度以下であってもよい。
(5)上記(4)に記載の塗装金属板では、前記第二塗膜が、樹脂を含有し、かつ、ウレタン結合骨格を有してもよい。
(6)上記(4)又は(5)に記載の塗装金属板では、前記第二塗膜が、樹脂を含有し、かつ、エポキシ基を有してもよい。
(7)上記(4)~(6)の何れか一態様に係る塗装金属板では、前記第二塗膜が、樹脂を含有し、かつ、シロキサン結合を有してもよい。
(8)上記(4)~(7)の何れか一態様に係る塗装金属板では、前記第二塗膜に、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素が含まれてもよい。
(9)上記(4)~(8)の何れか一態様に係る塗装金属板では、前記第一塗膜のガラス転移温度が、前記第二塗膜のガラス転移温度よりも5℃以上高くてもよい。
(10)上記(4)~(9)の何れか一態様に係る塗装金属板では、前記第二塗膜の膜厚が、0.5μm以上15μm以下であってもよい。
(11)上記(1)~(10)の何れか一態様に係る塗装金属板では、前記第一塗膜の膜厚が、0.5μm以上15μm以下であってもよい。
(12)上記(4)~(11)の何れか一態様に係る塗装金属板では、前記第一塗膜及び前記第二塗膜の少なくとも何れか一方が、着色剤を含有してもよい。
(13)上記(4)~(12)の何れか一態様に係る塗装金属板では、前記第二塗膜が着色剤として黒色顔料を含有してもよい。
(14)上記(1)~(13)の何れか一態様に係る塗装金属板では、前記金属板の少なくとも一方の表面に、テクスチャが形成されていてもよい。
(1) A coated metal plate according to an aspect of the present invention comprises a metal plate and a first coating film located on at least one side of the metal plate and containing a resin, the first coating film comprising It has a first site having a urethane bond skeleton and a second site having a triazine ring skeleton. The glass transition temperature of the first coating is 85 ° C. or more and 170 ° C. or less. When the second site is stained with osmium oxide and observed at a magnification of 100,000 using a transmission electron microscope, the second site is a dispersed second site in which particles having a number average particle diameter of 5 to 20 nm are dispersed, and A concentrated second portion is observed which is present at a depth of 15 nm from the surface of one coating film and in which particles having a number average particle diameter of 5 nm or more are not observed.
(2) The coated metal plate according to the above (1) is characterized in that the N concentration N1 at a depth position of 0.2 μm from the surface of the first coating film from the interface between the first coating film and the metal plate The ratio N1 / N2 to the N concentration N2 at the depth position of 0.2 μm on the first coating film side may be 1.2 or more.
(3) In the coated metal sheet according to (1) or (2), the first coating film may have a plurality of the concentrated second portions.
(4) The coated metal plate according to any one of the above (1) to (3) further comprises a second coating film between the first coating film and the metal plate; The glass transition temperature may be equal to or less than the glass transition temperature of the first coating film.
(5) In the coated metal plate according to (4), the second coating film may contain a resin and have a urethane bond skeleton.
(6) In the coated metal plate according to (4) or (5), the second coating film may contain a resin and may have an epoxy group.
(7) In the coated metal plate according to any one of the above (4) to (6), the second coating film may contain a resin and have a siloxane bond.
(8) In the coated metal plate according to any one of the above (4) to (7), the second coating film is any one selected from the group consisting of P, V, Ti, Si and Zr. The above elements may be included.
(9) In the coated metal plate according to any one of the above (4) to (8), the glass transition temperature of the first coating is higher by at least 5 ° C. than the glass transition temperature of the second coating. It is also good.
(10) In the coated metal plate according to any one of the above (4) to (9), the film thickness of the second coating film may be 0.5 μm or more and 15 μm or less.
(11) In the coated metal plate according to any one of the above (1) to (10), the film thickness of the first coating film may be 0.5 μm or more and 15 μm or less.
(12) In the coated metal plate according to any one of the above (4) to (11), at least one of the first coating film and the second coating film may contain a colorant.
(13) In the coated metal plate according to any one of the above (4) to (12), the second coating film may contain a black pigment as a colorant.
(14) In the coated metal plate according to any one of the above (1) to (13), a texture may be formed on at least one surface of the metal plate.
(15)本発明の別の一態様に係る塗装金属板の製造方法は、金属板の少なくとも片面上に所定の第一塗膜を有する塗装金属板の製造方法であって、前記金属板の少なくとも片面上に、アニオン性官能基を含みガラス転移温度が75℃以上160℃以下であるポリウレタン樹脂(a)と、トリアジン環含有水溶性硬化剤(b)と、水系溶媒と、を含有する第一塗料を塗装し、前記第一塗料の塗布された前記金属板を加熱することで前記第一塗膜を形成する。
(16)上記(15)に記載の塗装金属板の製造方法では、前記トリアジン環含有水溶性硬化剤(b)が、イミノ基を含むメラミン樹脂であってもよい。
(17)上記(15)又は(16)に記載の塗装金属板の製造方法では、前記第一塗料は、全固形分に対する前記ポリウレタン樹脂(a)の含有量(Wa)と、全固形分に対する前記トリアジン環含有水溶性硬化剤(b)の含有量(Wb)と、の合計含有量(Wa)+(Wb)が、下記の式(I)を満足し、かつ、前記全固形分に対する前記ポリウレタン樹脂(a)の含有量(Wa)と、前記全固形分に対する前記トリアジン環含有水溶性硬化剤(b)の含有量(Wb)と、の比率(Wb)/(Wa)が、下記の式(II)を満足してもよい。
  90質量%≦(Wa)+(Wb)≦100質量% ・・・式(I)
  0<(Wb)/(Wa)≦1          ・・・式(II)
(18)上記(15)~(17)の何れか一態様に係る塗装金属板の製造方法は、前記金属板と前記第一塗膜との間に所定の第二塗膜を更に有する塗装金属板の製造方法であって、前記第一塗料の塗装に先立ち、ガラス転移温度が前記ポリウレタン樹脂(a)のガラス転移温度以下であるポリウレタン樹脂(c)と、エポキシ樹脂(d)、シランカップリング剤(e)、並びに、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素を含有する防錆剤(f)の少なくとも何れかと、水系溶媒と、を含有する第二塗料を、前記金属板の少なくとも片面上に塗装し、当該第二塗料の塗布された前記金属板を加熱することで前記第二塗膜を形成してもよい。
(19)上記(18)に記載の塗装金属板の製造方法では、前記ポリウレタン樹脂(c)のガラス転移温度は、前記ポリウレタン樹脂(a)のガラス転移温度よりも5℃以上低くてもよい。
(20)上記(15)~(19)の何れか一態様に係る塗装金属板の製造方法では、前記第一塗膜を形成する際に、前記第一塗料の塗布された金属板の加熱開始から最高到達温度までの加熱時間が1秒以上30秒以下となるように、前記第一塗料の塗布された金属板を加熱し、前記最高到達温度から30℃までの冷却時間が0.1秒以上5秒以下となるように、前記第一塗料の塗布された金属板を冷却してもよい。
(21)上記(20)に記載の塗装金属板の製造方法では、前記加熱において、40~100℃の温度で1~20秒保持した後、1~10秒の前記加熱時間で200℃超まで加熱してもよい。
(15) A method of producing a coated metal sheet according to another aspect of the present invention is a method of producing a coated metal sheet having a predetermined first coating on at least one surface of a metal sheet, the method comprising the steps of First, a polyurethane resin (a) containing an anionic functional group and having a glass transition temperature of 75 ° C. to 160 ° C. on one side, a triazine ring-containing water-soluble curing agent (b), and an aqueous solvent A paint is applied, and the first paint film is formed by heating the metal plate to which the first paint is applied.
(16) In the method for producing a coated metal sheet according to (15), the triazine ring-containing water-soluble curing agent (b) may be a melamine resin containing an imino group.
(17) In the method of producing a coated metal sheet according to (15) or (16), the first paint contains the content (Wa) of the polyurethane resin (a) with respect to the total solid content and the total solid content. The total content (Wa) + (Wb) of the content (Wb) of the triazine ring-containing water-soluble curing agent (b) satisfies the following formula (I), and the above with respect to the total solid content The ratio (Wb) / (Wa) of the content (Wa) of the polyurethane resin (a) and the content (Wb) of the triazine ring-containing water soluble curing agent (b) to the total solid content is as follows: You may satisfy Formula (II).
90 mass% ≦ (Wa) + (Wb) ≦ 100 mass% Formula (I)
0 <(Wb) / (Wa) ≦ 1 formula (II)
(18) The method for producing a coated metal plate according to any one of the above (15) to (17), further comprising a coated metal further having a predetermined second coating film between the metal plate and the first coating film. It is a manufacturing method of board, Comprising: Prior to coating of said 1st paint, polyurethane resin (c) whose glass transition temperature is below the glass transition temperature of said polyurethane resin (a), epoxy resin (d), silane coupling Agent (e), and at least one of a rust inhibitor (f) containing at least one element selected from the group consisting of P, V, Ti, Si and Zr, and an aqueous solvent The second paint may be applied on at least one side of the metal plate, and the second paint film may be formed by heating the metal plate coated with the second paint.
(19) In the method of producing a coated metal sheet according to (18), the glass transition temperature of the polyurethane resin (c) may be 5 ° C. or more lower than the glass transition temperature of the polyurethane resin (a).
(20) In the method of producing a coated metal sheet according to any one of the above (15) to (19), when the first coating film is formed, the heating start of the metal sheet to which the first paint is applied The metal plate to which the first paint is applied is heated so that the heating time from the temperature to the maximum reaching temperature is 1 second to 30 seconds, and the cooling time from the maximum reaching temperature to 30 ° C. is 0.1 seconds The metal plate coated with the first paint may be cooled so as to be 5 seconds or less.
(21) In the method of producing a coated metal sheet according to (20), after holding at a temperature of 40 to 100 ° C. for 1 to 20 seconds in the heating, to 200 ° C. or more in the heating time of 1 to 10 seconds. It may be heated.
 以上説明したように本発明によれば、製造コストの抑制された、金属外観、耐薬品浸透性及び耐溶剤性により優れる塗装金属板を得ることが可能となる。 As described above, according to the present invention, it is possible to obtain a coated metal sheet which is excellent in metal appearance, chemical resistance and solvent resistance, of which the manufacturing cost is suppressed.
本発明の実施形態に係る塗装金属板の構造の一例を模式的に示した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which showed typically an example of the structure of the coating metal plate which concerns on embodiment of this invention. 同実施形態に係る塗装金属板の構造の一例を模式的に示した説明図である。It is explanatory drawing which showed typically an example of the structure of the coating metal plate which concerns on the embodiment. 同実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。It is explanatory drawing which showed typically another example of the structure of the coating metal plate which concerns on the embodiment. 同実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。It is explanatory drawing which showed typically another example of the structure of the coating metal plate which concerns on the embodiment. 同実施形態に係る塗装金属板の上層塗膜について説明するための説明図である。It is explanatory drawing for demonstrating the upper-layer coating film of the coating metal plate which concerns on the embodiment. 同実施形態に係る塗装金属板の製造方法の流れの一例を説明するための流れ図である。It is a flowchart for demonstrating an example of the flow of the manufacturing method of the coated metal plate which concerns on the embodiment. 試験例3の上層塗膜を透過型電子顕微鏡で観察した際の顕微鏡画像である。It is a microscope image at the time of observing the upper layer coating film of Experiment 3 with a transmission electron microscope. 試験例3の上層塗膜を透過型電子顕微鏡で観察した際のオスミウムの元素マッピング画像である。It is an elemental mapping image of osmium at the time of observing the upper layer coating film of Experiment 3 with a transmission electron microscope. 試験例3の上層塗膜を透過型電子顕微鏡で観察した際の顕微鏡画像である。It is a microscope image at the time of observing the upper layer coating film of Experiment 3 with a transmission electron microscope. 試験例3の上層塗膜を透過型電子顕微鏡で観察した際の顕微鏡画像である。It is a microscope image at the time of observing the upper layer coating film of Experiment 3 with a transmission electron microscope. 濃化部が複数形成されている場合の上層塗膜について説明するための説明図である。It is explanatory drawing for demonstrating the upper-layer coating film in case multiple concentration parts are formed.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. In the present specification and the drawings, components having substantially the same functional configuration will be assigned the same reference numerals and redundant description will be omitted.
(塗装金属板の全体構成とその概要について)
 まず、図1A~図3を参照しながら、本発明の実施形態に係る塗装金属板の全体構成について説明する。図1A及び図1Bは、本実施形態に係る塗装金属板の構造の一例を模式的に示した説明図であり、図2A及び図2Bは、本実施形態に係る塗装金属板の構造の他の一例を模式的に示した説明図である。図3は、本実施形態に係る塗装金属板の上層塗膜について説明するための説明図である。
(About the whole constitution and the outline of the painted metal plate)
First, referring to FIGS. 1A to 3, the overall configuration of a coated metal plate according to an embodiment of the present invention will be described. 1A and 1B are explanatory views schematically showing an example of the structure of a coated metal plate according to the present embodiment, and FIGS. 2A and 2B are other views of the structure of the coated metal plate according to the present embodiment It is an explanatory view showing an example typically. FIG. 3 is an explanatory view for explaining an upper-layer coating film of the coated metal sheet according to the present embodiment.
 本実施形態に係る塗装金属板1は、図1Aに模式的に示したように、母材となる金属板11の片面上に、第一塗膜として上層塗膜13を有したものである。また、図1Bに模式的に示したように、金属板11と上層塗膜13との間に、第二塗膜として下層塗膜15が設けられていてもよい。 The coated metal plate 1 which concerns on this embodiment has the upper-layer coating film 13 as a 1st coating film on the single side | surface of the metal plate 11 used as a base material, as typically shown to FIG. 1A. Further, as schematically shown in FIG. 1B, a lower coating film 15 may be provided between the metal plate 11 and the upper coating film 13 as a second coating film.
 また、図2A及び図2Bに模式的に示したように、本実施形態に係る塗装金属板1においては、上層塗膜13が金属板11の両面に設けられていてもよいし、上層塗膜13及び下層塗膜15が金属板11の両面に設けられていてもよい。 Further, as schematically shown in FIGS. 2A and 2B, in the coated metal plate 1 according to the present embodiment, the upper layer coating film 13 may be provided on both sides of the metal plate 11, or the upper layer coating film 13 and the lower layer coating 15 may be provided on both sides of the metal plate 11.
 なお、本実施形態に係る塗装金属板1の構成は、図1A~図2Bに示した構成に限定されるものではなく、例えば、金属板11の片面上に、上層塗膜13及び下層塗膜15が設けられており、かつ、金属板11のもう一方の面上に、上層塗膜13又は下層塗膜15が設けられているような構成も、実現可能である。 In addition, the structure of the coated metal plate 1 which concerns on this embodiment is not limited to the structure shown to FIG. 1A-FIG. 2B, For example, the upper-layer coating film 13 and the lower-layer coating film on one side of the metal plate 11 A configuration in which the upper coating 13 or the lower coating 15 is provided on the other surface of the metal plate 11 is also feasible.
 第一塗膜の一例である上層塗膜13は、ウレタン結合骨格を有する第一部位(以下「ウレタン部位」とも称する。)と、トリアジン環骨格を有する第二部位(以下「トリアジン部位」とも称する。)と、を含む樹脂塗膜である。また、上層塗膜13のガラス転移温度は、80℃以上170℃以下である。
 更に、図3に模式的に示したように、トリアジン環骨格を有する第二部位は、酸化オスミウムで染色し、透過型電子顕微鏡を用いて10万倍の倍率で観察すると、個数平均粒径5nm以上の粒子が分散している分散型第二部位(図3における符号101)と、上層塗膜13の表面から深さ15nmまでの位置に存在し、個数平均粒径5nm以上の粒子が観察されない濃化型第二部位(図3における符号103)との双方が存在している。
The upper layer coating film 13 which is an example of the first coating film has a first portion having a urethane bond skeleton (hereinafter also referred to as "urethane portion") and a second portion having a triazine ring skeleton (hereinafter also referred to as "triazine portion") And the resin coating film containing. Moreover, the glass transition temperature of the upper-layer coating film 13 is 80 degreeC or more and 170 degrees C or less.
Furthermore, as schematically shown in FIG. 3, the second part having a triazine ring skeleton is stained with osmium oxide and observed with a transmission electron microscope at a magnification of 100,000 times, the number average particle diameter is 5 nm. The dispersed second portion (symbol 101 in FIG. 3) in which the above particles are dispersed, and a position from the surface of the upper layer coating film 13 to a depth of 15 nm, particles with a number average particle diameter of 5 nm or more are not observed Both of the concentrated second part (symbol 103 in FIG. 3) are present.
 本実施形態に係る塗装金属板1は、上記のような構成により、フッ素樹脂等の高価な樹脂を用いることなく、金属外観、耐薬品浸透性、及び、耐溶剤性に優れる塗装金属板となる。この理由は、次のように推測される。 The coated metal plate 1 according to the present embodiment can be a coated metal plate having excellent metal appearance, chemical resistance and solvent resistance, without using an expensive resin such as a fluorocarbon resin, etc., by the above configuration. . The reason is presumed as follows.
 まず、上層塗膜13のガラス転移温度を80℃以上170℃以下とするには、ウレタン部位が相当の高ガラス転移温度を有している必要がある。ウレタン部位が高ガラス転移温度を有することで、上層塗膜13を形成する際、ウレタン部位には高い凝集力が生まれる。その結果、トリアジン部位が単独で縮合せず、トリアジン部位がウレタン部位中に分散し、かつ、ウレタン部位とトリアジン部位とが優先的に結合し易くなる。耐溶剤性の高いトリアジン部位がウレタン部位と結合することで、3次元網目構造が形成されるようになる。その結果、上層塗膜13は、バリア性(すなわち、耐薬品浸透性)が高まることとなる。このような特性を得るために、本実施形態では、上層塗膜13のガラス転移温度を、80℃以上170℃以下とする。 First, in order to set the glass transition temperature of the upper layer coating film 13 to 80 ° C. or more and 170 ° C. or less, the urethane portion needs to have a relatively high glass transition temperature. When the upper layer coating film 13 is formed, a high cohesive force is generated in the urethane portion because the urethane portion has a high glass transition temperature. As a result, the triazine moiety is not condensed alone, the triazine moiety is dispersed in the urethane moiety, and the urethane moiety and the triazine moiety are more easily bound. A three-dimensional network structure is formed by bonding the highly solvent resistant triazine moiety to the urethane moiety. As a result, the upper layer coating 13 has an increased barrier property (i.e., chemical resistance). In order to obtain such characteristics, in the present embodiment, the glass transition temperature of the upper coating film 13 is set to 80 ° C. or more and 170 ° C. or less.
 また、トリアジン部位が、上層塗膜13中でドメインを形成し、粒状に分散する(図3における符号101)と共に、上層塗膜13の表層に濃化して濃化部103を形成することで、高い耐溶剤性を有するトリアジン部位により、上層塗膜13の耐溶剤性が高まる。しかも、上述したように、上層塗膜13を形成する際にウレタン部位に高い凝集力が生じると、ウレタン部位とトリアジン部位とが優先的に結合し易くなり、図3に模式的に示したように、微小化した粒状のトリアジン部位(以下、「トリアジン粒状物101」ともいう。)が上層塗膜13の表層に濃化した状態となる。かかる点からも、上層塗膜13の耐溶剤性が更に向上することとなる。 In addition, the triazine moiety forms a domain in the upper layer coating 13 and disperses in a granular form (reference numeral 101 in FIG. 3), and by thickening the surface layer of the upper layer coating 13 to form a concentrated portion 103, The triazine moiety having high solvent resistance enhances the solvent resistance of the upper coating film 13. Moreover, as described above, when a high cohesive force is generated in the urethane portion when forming the upper layer coating film 13, the urethane portion and the triazine portion are likely to be preferentially bonded, as schematically shown in FIG. Then, the finely divided particulate triazine portion (hereinafter, also referred to as “triazine particulate matter 101”) is in a state of being concentrated in the surface layer of the upper layer coating film 13. From this point as well, the solvent resistance of the upper coating 13 is further improved.
 そして、微小化した粒状のトリアジン部位(トリアジン粒状物101)が上層塗膜13の表層に濃化した状態となると、トリアジン部位による光散乱が抑制される結果、上層塗膜13の透明性が向上し、下地の金属板11の光沢感が外部から視認され易くなる。これにより、本実施形態に係る塗装金属板1では、金属外観も向上する。 Then, when the micronized particulate triazine moiety (triazine particulate matter 101) is concentrated in the surface layer of the upper layer coating film 13, light scattering by the triazine moiety is suppressed, and as a result, the transparency of the upper layer coating film 13 is improved. The gloss of the underlying metal plate 11 is easily visible from the outside. Thereby, in the coated metal plate 1 which concerns on this embodiment, a metal external appearance also improves.
 以上概略を説明したように、本実施形態に係る塗装金属板1は、上記のような構成により、フッ素樹脂等の高価な樹脂を用いることなく、金属外観、耐薬品浸透性、及び、耐溶剤性に優れると推測される。 As described above, the coated metal plate 1 according to the present embodiment has the above-described configuration, and without using an expensive resin such as a fluorine resin, it has a metal appearance, chemical resistance, and solvent resistance. It is estimated that it is excellent in sex.
 以下、本実施形態に係る塗装金属板1の各構成について、詳細に説明する。 Hereinafter, each structure of the coating metal plate 1 which concerns on this embodiment is demonstrated in detail.
<金属板11について>
 本実施形態に係る塗装金属板1において、金属板11としては、一般に公知の各種の金属板を用いることができる。具体的には、かかる金属板11として、例えば、鋼板、ステンレス鋼板、アルミ板、アルミ合金板、チタン板、銅板等といった、各種の金属板や合金板を挙げることができる。本実施形態に係る塗装金属板1において、金属板11の表面には、各種のめっき(図示せず。)が施されていてもよい。めっきの種類としては、特に限定されるものではないが、例えば、亜鉛めっき、アルミめっき、銅めっき、ニッケルめっき、これらの合金めっき等が挙げられる。
<About metal plate 11>
In the coated metal plate 1 according to the present embodiment, various generally known metal plates can be used as the metal plate 11. Specifically, as the metal plate 11, for example, various metal plates and alloy plates such as steel plate, stainless steel plate, aluminum plate, aluminum alloy plate, titanium plate, copper plate and the like can be mentioned. In the coated metal plate 1 according to the present embodiment, various types of plating (not shown) may be applied to the surface of the metal plate 11. The type of plating is not particularly limited, and examples thereof include zinc plating, aluminum plating, copper plating, nickel plating, alloy plating of these, and the like.
 特に、金属板11がめっき鋼板の場合、耐薬品浸透性に劣る傾向があるため、上層塗膜13を設けることによる耐薬品浸透性の向上効果がより有効となる。 In particular, in the case where the metal plate 11 is a plated steel sheet, there is a tendency to be inferior in chemical resistance, so the effect of improving the chemical resistance by providing the upper coating 13 becomes more effective.
 金属板11として用いられるめっき鋼板としては、特に限定されるものではなく、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、亜鉛-ニッケル合金めっき鋼板、溶融合金化亜鉛めっき鋼板、アルミめっき鋼板、アルミ-亜鉛合金化めっき鋼板、ステンレス鋼板等といった、一般に公知の各種のめっき鋼板を適用できる。特に、金属板11として亜鉛系めっき鋼板を用いると、耐食性がより向上するため、より好適である。ここで、亜鉛系めっき鋼板とは、亜鉛をめっきした亜鉛めっき鋼板、亜鉛-ニッケル合金めっき鋼板、溶融合金化亜鉛めっき鋼板、アルミ-亜鉛合金化めっき鋼板等といった、亜鉛、又は、亜鉛と他の金属との合金が鋼板表面にめっきされた、めっき鋼板のことを指す。亜鉛系めっき鋼板は、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板等のいずれであってもよい。 The plated steel plate used as the metal plate 11 is not particularly limited, and a galvanized steel plate, an electrogalvanized steel plate, a zinc-nickel alloy plated steel plate, a molten alloyed galvanized steel plate, an aluminum plated steel plate, an aluminum-zinc Generally known various plated steel plates such as alloyed plated steel plates and stainless steel plates can be applied. In particular, using a zinc-based plated steel sheet as the metal plate 11 is more preferable because the corrosion resistance is further improved. Here, the zinc-based plated steel sheet refers to zinc, such as zinc-plated galvanized steel sheet, zinc-nickel alloy plated steel sheet, hot-dip galvanized galvanized steel sheet, aluminum-zinc alloy coated steel sheet, etc. It refers to a plated steel plate in which an alloy with a metal is plated on the surface of the steel plate. The galvanized steel sheet may be any of a galvanized steel sheet, an electrogalvanized steel sheet, and the like.
 また、かかる金属板11の表面には、本実施形態に係る塗装金属板1の意匠性をより向上させるために、梨地、荒らし、筋目(ヘアライン)、布目(サテン)、槌目(ハンマー)等といった、各種のテクスチャが形成されていてもよい。本実施形態に係る塗装金属板1では、上記のような構成により上層塗膜13の透明性が向上していることから、金属板11の表面に上記のようなテクスチャを形成した場合であっても、かかるテクスチャにより想起される金属感が、外部から視認され易くなる。 Moreover, in order to improve the designability of the coated metal plate 1 according to the present embodiment, the surface of the metal plate 11 is textured, roughened, streaked (hairline), woven (satin), squared (hammer), etc. , And various textures may be formed. In the coated metal plate 1 according to the present embodiment, since the transparency of the upper layer coating film 13 is improved by the above-described configuration, the texture as described above is formed on the surface of the metal plate 11 Also, the metallic feeling recalled by such texture is easily visible from the outside.
<上層塗膜13について>
 本実施形態に係る塗装金属板1が有する上層塗膜13は、先だって言及したように、ウレタン部位(ウレタン結合骨格を有する第一部位)と、トリアジン部位(トリアジン環骨格を有する第二部位)と、を含む樹脂塗膜である。
<About the upper layer coating film 13>
The upper layer coating film 13 of the coated metal plate 1 according to the present embodiment has, as mentioned earlier, a urethane portion (a first portion having a urethane bond skeleton) and a triazine portion (a second portion having a triazine ring skeleton) And a resin coating film containing
 以下に、上層塗膜13に含まれる各部位について、説明する。
 上層塗膜13中のウレタン部位が有するウレタン結合骨格は、フーリエ変換赤外分光法により上層塗膜13を分析して、ウレタン結合に帰属される振動ピークを検出することで、確認することができる。
Below, each site | part contained in the upper layer coating film 13 is demonstrated.
The urethane bond frame which the urethane part in the upper layer coating film 13 has can be confirmed by analyzing the upper layer coating film 13 by Fourier transform infrared spectroscopy and detecting the vibration peak attributed to the urethane bond. .
 トリアジン部位のトリアジン環骨格は、メラミン樹脂に含まれるトリアジン環に由来する骨格である。つまり、トリアジン部位は、メラミン樹脂に含まれるトリアジン環に由来する部位である。 The triazine ring skeleton of the triazine moiety is a skeleton derived from the triazine ring contained in the melamine resin. That is, the triazine moiety is a moiety derived from the triazine ring contained in the melamine resin.
 トリアジン部位は、先だって図3を参照しながら言及したように、トリアジン部位を酸化オスミウムで染色し、透過型電子顕微鏡を用いて10万倍の倍率で観察すると、個数平均粒径5~20nmの粒子が分散している分散型第二部位と、上層塗膜13の表面から深さ15nmまでの位置に存在し、個数平均粒径5nm以上の粒子が観察されない濃化型第二部位と、が観察される。 The triazine moiety was stained with osmium oxide as described earlier with reference to FIG. 3 and observed with a transmission electron microscope at a magnification of 100,000 to find particles with a number average particle diameter of 5 to 20 nm. The second part of the dispersion type in which the particles are dispersed and the second part of the concentrated type which is present at a depth of 15 nm from the surface of the upper layer coating 13 and in which particles with a number average particle diameter of 5 nm or more are not observed Be done.
 ここで、本実施形態に係る濃化部103は、図3に模式的に示したように、上層塗膜13の表層から金属板11側に向かって深さd(15nm)までの位置の範囲内に存在している。
 なお、「トリアジン部位が上層塗膜13の表層に濃化している」とは、金属板11との界面とは反対側の上層塗膜13の表面側に、粒状のトリアジン部位(すなわち、トリアジン粒状物101)が層状に偏在していることを示す。つまり、層状に偏在した粒状のトリアジン部位の領域が、上層塗膜13の表層を構成していることを示す。
 ここで、「トリアジン部位が層状に偏在して濃化部103を形成している」とは、トリアジン部位が偏在している領域におけるトリアジン部位の平均濃度(平均含有量)が、偏在部分以外の領域におけるトリアジン部位の平均濃度の1.2倍以上となっていることをいう。
Here, as schematically shown in FIG. 3, the concentration portion 103 according to the present embodiment has a range of positions from the surface layer of the upper layer coating film 13 to the depth d (15 nm) toward the metal plate 11 side. It exists inside.
The phrase “the triazine moiety is concentrated in the surface layer of the upper layer coating film 13” means a particulate triazine moiety (ie, triazine particles on the surface side of the upper layer coating film 13 opposite to the interface with the metal plate 11). It is shown that the object 101) is unevenly distributed in layers. That is, it is indicated that the region of the granular triazine site which is unevenly distributed in the layer constitutes the surface layer of the upper coating film 13.
Here, "the triazine moiety is unevenly distributed in a layer form the concentrated portion 103" means that the average concentration (average content) of the triazine moiety in the region where the triazine moiety is unevenly distributed is other than the uneven distribution portion. It means that it is 1.2 times or more of the average concentration of the triazine site in the region.
 ここで、本実施形態に係るトリアジン部位は、上層塗膜13中において、個数平均粒径5nm以上20nmの粒状で分散し(換言すれば、トリアジン粒状物101の個数平均粒径が5nm以上20nm以下であり)、かつ、上層塗膜13の表面から深さ15nm以内の表層に濃化している(換言すれば、図3における深さdは、15nm以下である)。 Here, the triazine moiety according to the present embodiment is dispersed in particles of a number average particle diameter of 5 nm to 20 nm in the upper layer coating film 13 (in other words, the number average particle diameter of triazine particles 101 is 5 nm to 20 nm) And the surface layer within a depth of 15 nm from the surface of the upper layer coating film 13 (in other words, the depth d in FIG. 3 is 15 nm or less).
 ここで、トリアジン部位が上層塗膜13の表面から深さ15nm以内の表層に濃化しているとは、金属板11との界面とは反対側の上層塗膜13の表面側に層状に偏在した粒状のトリアジン部位の領域が、上層塗膜13の表面から深さ15nm以内に存在していることを示す。つまり、層状に偏在した粒状のトリアジン部位の領域が、上層塗膜13の表層を構成し、かつ厚みが15nm以下であることを示している。 Here, that the triazine moiety is concentrated in the surface layer within a depth of 15 nm from the surface of the upper layer coating film 13 is unevenly distributed in a layer on the surface side of the upper layer coating film 13 opposite to the interface with the metal plate 11 It shows that the region of the particulate triazine site is present within 15 nm in depth from the surface of the upper layer coating 13. That is, it is shown that the region of the granular triazine site which is unevenly distributed in the layer constitutes the surface layer of the upper layer coating film 13 and has a thickness of 15 nm or less.
 粒状のトリアジン部位(すなわち、トリアジン粒状物101)の個数平均粒径が5nm未満である場合、耐薬品浸透性が低下することがある。一方、粒状に分散したトリアジン部位の個数平均粒径が20nmを超える場合、塗装金属板1の金属外観及び耐薬品浸透性が低下したり、金属外観、耐薬品浸透性及び加工性が低下したりすることがある。ここで、塗装金属板1の加工性が低下した場合には、上層塗膜13に割れ等が生じ、耐薬品浸透性及び耐溶剤性も低下することとなる。粒状に分散したトリアジン部位(トリアジン粒状物101)の個数平均粒径は、金属外観、耐薬品浸透性及び耐溶剤性の観点から、より好ましくは、5nm以上15nm以下である。 If the number average particle size of the particulate triazine moiety (i.e., triazine particulates 101) is less than 5 nm, chemical resistance may decrease. On the other hand, when the number average particle size of the triazine site dispersed in the granular form exceeds 20 nm, the metallic appearance and the chemical resistance penetration of the coated metal plate 1 are lowered, or the metallic appearance, the chemical penetration and the processability are lowered. There is something to do. Here, when the processability of the coated metal sheet 1 is lowered, a crack or the like occurs in the upper layer coating film 13 and the chemical resistance and the solvent resistance are also lowered. The number average particle diameter of the triazine moiety (triazine particle 101) dispersed in the particles is more preferably 5 nm or more and 15 nm or less from the viewpoint of metal appearance, chemical permeability and solvent resistance.
 また、粒状のトリアジン部位が上層塗膜13の表層に濃化していない場合(すなわち、濃化部103が存在しない場合)には、金属外観及び耐溶剤性が低下することがある。更に、粒状のトリアジン部位が上層塗膜13の表面から深さ15nmを超えて濃化している場合(すなわち、濃化部103が存在している深さが、上層塗膜13の表面から15nm超過である場合)には、加工性が低下することがある。塗装金属板1の加工性が低下した場合には、上層塗膜13に割れ等が生じ、耐薬品浸透性及び耐溶剤性も低下することとなる。 In addition, when the granular triazine moiety is not concentrated in the surface layer of the upper layer coating film 13 (that is, when the concentrated portion 103 is not present), the metal appearance and the solvent resistance may be lowered. Furthermore, when the particulate triazine portion is concentrated from the surface of the upper layer coating 13 to a depth of more than 15 nm (that is, the depth where the concentrated portion 103 is present is more than 15 nm from the surface of the upper layer coating 13) In the case of (1), the processability may be reduced. In the case where the processability of the coated metal sheet 1 is lowered, a crack or the like occurs in the upper layer coating film 13 and the chemical resistance and the solvent resistance are also lowered.
 図6に示すように、上層塗膜13において濃化部103が複数形成されていることが好ましい。濃化部103が複数形成されていることでバリア性がより一層向上し、好適な耐薬品性を得ることができる。濃化部103を形成するためには、後述する上層塗膜形成工程での加熱方法が重要である。この点については後述する。 As shown in FIG. 6, it is preferable that a plurality of thickening portions 103 be formed in the upper layer coating film 13. By forming a plurality of concentrated portions 103, the barrier property is further improved, and suitable chemical resistance can be obtained. In order to form the thickened portion 103, the heating method in the upper layer coating film forming process described later is important. This point will be described later.
 ここで、本実施形態に係る上層塗膜13において、上層塗膜13の表面から0.2μmの深さ位置におけるN濃度N1と、上層塗膜13と金属板11との界面から上層塗膜13側に0.2μmの深さ位置におけるN濃度N2との比率であるN1/N2が1.2以上である。
 N1/N2を1.2以上とすることで、より確実に、金属外観及び耐溶剤性を向上させることが可能となる。N1/N2は、より好ましくは、1.5以上10以下である。
Here, in the upper layer coating 13 according to the present embodiment, the N concentration N1 at a depth position of 0.2 μm from the surface of the upper layer coating 13 and the upper layer coating 13 from the interface between the upper layer coating 13 and the metal plate 11 N1 / N2 which is a ratio to the N concentration N2 at a depth position of 0.2 μm on the side is 1.2 or more.
By setting N1 / N2 to 1.2 or more, the metal appearance and the solvent resistance can be more reliably improved. More preferably, N1 / N2 is 1.5 or more and 10 or less.
 続いて、上層塗膜13中におけるトリアジン部位の各種分析方法について説明する。
 まず、分析対象である上層塗膜13を、酸化オスミウムで染色する。これにより、上層塗膜13中のトリアジン部位が、選択的に染色される。次に、ミクロトーム、集束イオンビーム加工装置等を利用して、酸化オスミウムで染色した塗膜を膜厚方向に沿って切断し、断面が観察できる塗膜試料を作製する。続いて、透過型電子顕微鏡を用いて薄膜試料を倍率10万倍で観察する。この観察において、薄膜試料中におけるトリアジン部位は、STEM-BF(明視野)画像では黒く観察され、STEM-HAADF(暗視野)画像では白く観察される。
Then, the various analysis methods of the triazine site | part in the upper layer coating film 13 are demonstrated.
First, the upper coating 13 to be analyzed is dyed with osmium oxide. Thereby, the triazine site | part in the upper layer coating film 13 is selectively dyed. Next, a coating film dyed with osmium oxide is cut along a film thickness direction using a microtome, a focused ion beam processing apparatus or the like to prepare a coating film sample whose cross section can be observed. Subsequently, the thin film sample is observed at 100,000 × magnification using a transmission electron microscope. In this observation, the triazine site in the thin film sample is observed black in the STEM-BF (bright field) image and white in the STEM-HAADF (dark field) image.
 上記のような分析方法により、上層塗膜13中のトリアジン部位を確認できる。なお、上層塗膜13中のトリアジン部位は、エネルギー分散型X線分光法、又は、フーリエ変換赤外分光法で塗膜を分析して、窒素とオスミウムを検出したり、トリアジン環に帰属される振動ピークを検出したりすることでも確認できる。 The triazine site | part in the upper layer coating film 13 can be confirmed by the above analysis methods. The triazine moiety in the upper coating film 13 is subjected to analysis of the coating film by energy dispersive X-ray spectroscopy or Fourier transform infrared spectroscopy to detect nitrogen and osmium, or to be attributed to a triazine ring It can also be confirmed by detecting a vibration peak.
 粒状のトリアジン部位が濃化している領域の厚み(すなわち、層状に偏在した粒状のトリアジン部位の領域である濃化部(濃化型第二部位)103の厚み)は、次の方法により測定される値である。上述のように、透過型電子顕微鏡により薄膜試料を倍率10万倍で観察して、STEM-BF(明視野)画像を得る。得られたSTEM-BF(明視野)画像を、例えば閾値120で2値化する。そして、得られた2値化画像において、上層塗膜13の表面から黒く観察される層状の領域の厚みを任意の20箇所測定し、その平均値を粒状のトリアジン部位が濃化している領域の厚みとして算出する。また、濃化部103が存在している位置は、2値化画像において、上記のようにして得られた濃化部103の厚みの下端(金属板11側の界面)の位置に着目することで、特定することができる。なお、上層塗膜13の表面から層状に黒く観察される領域が確認されたとき、粒状のトリアジン部位が上層塗膜13の表層に濃化しているとみなす。 The thickness of the region in which the particulate triazine moiety is concentrated (that is, the thickness of the concentrated portion (thickened second region) 103 which is the region of the particulate triazine moiety unevenly distributed in the layer) is measured by the following method Value. As described above, a thin film sample is observed at a magnification of 100,000 times by a transmission electron microscope to obtain a STEM-BF (bright field) image. The obtained STEM-BF (bright field) image is binarized with, for example, the threshold 120. Then, in the obtained binarized image, the thickness of a layered region observed black from the surface of the upper layer coating film 13 is measured at any 20 locations, and the average value thereof is measured in the region where the triazine moiety is concentrated. Calculated as thickness. In addition, the position where the thickening portion 103 exists is to focus on the position of the lower end (the interface on the metal plate 11 side) of the thickness of the thickening portion 103 obtained as described above in the binarized image. Can be identified. In addition, when the area | region observed in black in layer form is confirmed from the surface of the upper-layer coating film 13, it is considered that the granular triazine site | part is concentrated in the surface layer of the upper-layer coating film 13.
 また、粒状のトリアジン部位の個数平均粒径(トリアジン粒状物101の個数平均粒径)は、次の方法により測定される値である。上述のように、透過型電子顕微鏡により薄膜試料を倍率50万倍で観察して、STEM-BF(明視野)画像を得る。得られたSTEM-BF(明視野)画像を、例えば閾値120で2値化する。そして、得られた2値化画像において、黒く観察される粒状の領域の円相当径を、式:円相当径=2(面積/π)0.5により算出する。なお、かかる式中の「面積」は、黒く観察される粒状の領域の面積を示す。そして、この円相当径の算出を、任意に選択した粒状の領域20箇所で行い、その平均値を、粒状のトリアジン部位の個数平均粒径として求める。 Further, the number average particle diameter of the particulate triazine portion (the number average particle diameter of the triazine particles 101) is a value measured by the following method. As described above, the thin film sample is observed at 500,000 × magnification by a transmission electron microscope to obtain a STEM-BF (bright field) image. The obtained STEM-BF (bright field) image is binarized with, for example, the threshold 120. Then, in the obtained binarized image, the equivalent circle diameter of the granular region observed black is calculated by the equation: equivalent circle diameter = 2 (area / π) 0.5. Note that “area” in the formula indicates the area of a granular region observed black. Then, calculation of the equivalent circle diameter is performed at 20 arbitrarily selected granular regions, and the average value thereof is determined as the number average particle diameter of the granular triazine portion.
 また、上層塗膜13の表層側に濃化しているトリアジン部位の平均濃度は、以下のようにして測定することができる。すなわち、上層塗膜13の表層側から金属板方向へのN元素濃度の深さ方向の分布を測定し、最表層からの距離が0.2μmの位置におけるN元素濃度N1と、金属板又は下層塗膜との境界から表層側0.2μmの位置におけるN元素濃度とN2との比率であるN1/N2を求める。
 深さ方向の元素分析は、公知の方法で調べることができ、例えば、高周波グロー放電分光分析(GD-OES:Glow Discharge Optical Emission Spectroscopy)、オージェ電子分光法(AES:AugerElectron Spectroscopy)等を用いて実施可能である。
Further, the average concentration of the triazine moiety concentrated on the surface side of the upper layer coating 13 can be measured as follows. That is, the distribution in the depth direction of the N element concentration from the surface layer side to the metal plate direction of the upper layer coating film 13 is measured, and the N element concentration N1 at a position of 0.2 μm from the outermost layer, the metal plate or the lower layer The ratio N1 / N2 of the concentration of the N element to N2 at a position 0.2 μm on the surface side from the boundary with the coating film is determined.
Elemental analysis in the direction of depth can be examined by a known method, for example, using Glow Discharge Optical Emission Spectroscopy (GD-OES), Auger Electron Spectroscopy (AES), etc. It is possible.
 次に、上層塗膜13のガラス転移温度(Tg)について説明する。
 上層塗膜13のガラス転移温度は、85℃以上170以下である。上層塗膜13のガラス転移点温度が85℃未満である場合には、塗装金属板1の耐薬品浸透性が低下する。一方、上層塗膜13のガラス転移点温度が170℃を超える場合には、塗装金属板1の加工性が低下する。塗装金属板1の加工性が低下すると、上層塗膜13に割れ等が生じ、耐薬品浸透性及び耐溶剤性も低下することとなる。上層塗膜13のガラス転移温度は、耐薬品浸透性及び耐溶剤性の観点(特に耐薬品浸透性の観点)から、好ましくは、100℃以上170℃以下であり、より好ましくは、110℃以上165℃以下である。 
Next, the glass transition temperature (Tg) of the upper coating film 13 will be described.
The glass transition temperature of the upper coating film 13 is 85 ° C. or more and 170 or less. When the glass transition temperature of the upper layer coating 13 is less than 85 ° C., the chemical resistance of the coated metal sheet 1 is reduced. On the other hand, when the glass transition temperature of the upper layer coating film 13 exceeds 170 ° C., the processability of the coated metal sheet 1 is reduced. When the processability of the coated metal sheet 1 is reduced, cracking or the like occurs in the upper layer coating film 13 and the chemical resistance and the solvent resistance are also reduced. The glass transition temperature of the upper layer coating film 13 is preferably 100 ° C. or more and 170 ° C. or less, more preferably 110 ° C. or more, from the viewpoint of chemical resistance and solvent resistance (particularly, chemical resistance penetration). It is 165 ° C. or less.
 また、本実施形態に係る塗装金属板1が下層塗膜15を有する場合、上層塗膜13のガラス転移温度は、下層塗膜15のガラス転移温度以上であることが好ましい。上層塗膜13のガラス転移温度が下層塗膜15のガラス転移温度未満である場合には、上層塗膜13と下層塗膜15との密着性が低下して、耐薬品浸透性が低下する場合がある。 Moreover, when the coated metal plate 1 which concerns on this embodiment has the lower layer coating film 15, it is preferable that the glass transition temperature of the upper layer coating film 13 is more than the glass transition temperature of the lower layer coating film 15. When the glass transition temperature of the upper coating film 13 is less than the glass transition temperature of the lower coating film 15, the adhesion between the upper coating film 13 and the lower coating film 15 is reduced, and the chemical resistance is lowered. There is.
 一方、上層塗膜13のガラス転移温度は、下層塗膜15のガラス転移温度よりも5℃以上高いことが好ましい。上層塗膜13のガラス転移温度と下層塗膜15とガラス転移温度の差が5℃以上となることで、上層塗膜13と下層塗膜15との密着性がより一層良好となり、耐薬品浸透性が更に向上し易くなる。 On the other hand, it is preferable that the glass transition temperature of the upper layer coating film 13 is higher than the glass transition temperature of the lower layer coating film 15 by 5 ° C. or more. When the difference between the glass transition temperature of the upper layer coating film 13 and the lower layer coating film 15 and the glass transition temperature is 5 ° C. or more, the adhesion between the upper layer coating film 13 and the lower layer coating film 15 is further improved. It becomes easier to improve the quality.
 また、上層塗膜13のガラス転移温度は、下層塗膜15のガラス転移温度よりも10℃以上50℃以下の範囲で高いことがより好ましい。上層塗膜13のガラス転移温度が下層塗膜15のガラス転移温度よりも10℃以上高くなることで、耐薬品浸透性が高まり易くなる。一方、上層塗膜13のガラス転移温度が下層塗膜15のガラス転移温度よりも50℃以下の範囲で高くなることで、塗膜硬度の低下が抑制され易くなる。 Further, the glass transition temperature of the upper layer coating film 13 is more preferably higher than the glass transition temperature of the lower layer coating film 15 in the range of 10 ° C. to 50 ° C. When the glass transition temperature of the upper coating film 13 is higher by 10 ° C. or more than the glass transition temperature of the lower coating film 15, chemical resistance can be easily enhanced. On the other hand, when the glass transition temperature of the upper layer coating film 13 is higher than the glass transition temperature of the lower layer coating film 15 in the range of 50 ° C. or less, the decrease in the coating film hardness is easily suppressed.
 ここで、ガラス転移点温度(Tg)は、次に示す方法により測定される値である。まず、測定対象となる塗膜を剥離又は削りとり、測定試料を作製する。そして、測定試料を用いて、プラスチックの転移温度測定方法(JIS K7121 1987)の示差走査熱量測定(DSC法)に準じて、ガラス転移点温度を求める。 Here, the glass transition temperature (Tg) is a value measured by the following method. First, the coating film to be measured is peeled off or scraped to prepare a measurement sample. And a glass transition point temperature is calculated | required according to the differential scanning calorimetry (DSC method) of the transition temperature measurement method (JISK7121 1987) of plastics using a measurement sample.
 上層塗膜13は、シリカを有さないことが好ましい。上層塗膜13がシリカを有すると、上層塗膜13の耐薬品性が劣化するためである。
 同様の理由から、上層塗膜13は亜鉛、アルミニウム及びチタンから選ばれる少なくとも1種の金属錯化合物を有さないことが好ましい。ここで、亜鉛、アルミニウム及びチタンから選ばれる少なくとも1種の金属錯化合物としては、例えば、ステアリン酸亜鉛、グルコン酸亜鉛、ピコリン酸亜鉛、クエン酸亜鉛、亜鉛アセチルアセトネート、酢酸アルミニウム、ステアリン酸アルミニウム、アルミニウムエチレート、アルミニウムイソプロピレート、アルミニウムトリイソポロキシド、アルミニウムエチルアセトアセテートジ゛イソプロピレート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリス(アセチルアセテート)、アルミニウムオキサイドイソプロポキサイドトリマー、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンブトキシドダイマー、チタンテトラー2-エチルヘキソキシド、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジオクチロキシビス(オクチレングリコレート)、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンジイソプロポキシビス(トリエタノールアミネート)、チタンラクテートアンモニウム塩、チタンラクテート、ポリヒドロキシチタンステアレート等が挙げられる。
It is preferable that the upper-layer coating film 13 does not have a silica. When the upper coating film 13 has silica, the chemical resistance of the upper coating film 13 is deteriorated.
For the same reason, it is preferable that the upper layer coating film 13 does not have at least one metal complex compound selected from zinc, aluminum and titanium. Here, as at least one metal complex compound selected from zinc, aluminum and titanium, for example, zinc stearate, zinc gluconate, zinc picolinate, zinc citrate, zinc acetylacetonate, aluminum acetate, aluminum stearate , Aluminum ethylate, aluminum isopropylate, aluminum triisopoloxide, aluminum ethylacetoacetate diisopropiolate, aluminum trisethylacetoacetate, aluminum tris (acetylacetate), aluminum oxide isopropoxide trimer, titanium tetraisopropoxide, Titanium tetranormal butoxide, titanium butoxide dimer, titanium tetra-2-ethylhexoxide, titanium diisopropoxy bis (acetyl Cetonate), titanium tetraacetylacetonate, titanium dioctyloxybis (octylene glycolate), titanium diisopropoxy bis (ethyl acetoacetate), titanium diisopropoxy bis (triethanol aminate), titanium lactate ammonium salt, titanium Lactate, polyhydroxy titanium stearate and the like can be mentioned.
<下層塗膜15について>
 本実施形態に係る塗装金属板1において、下層塗膜15は、特に制限はなく、ポリウレタン系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリオレフィン系樹脂、アルキド系樹脂、メラミン樹脂、シリコーン樹脂等といった、周知の樹脂塗膜を適用することができる。また、かかる樹脂塗膜を形成する際に、シランカップリング剤等の公知の添加剤を用いることも可能である。
<About the lower layer film 15>
In the coated metal plate 1 according to the present embodiment, the lower layer coating film 15 is not particularly limited, and polyurethane resin, epoxy resin, acrylic resin, polyester resin, phenol resin, polyolefin resin, alkyd resin, Well-known resin coating films, such as melamine resin and silicone resin, can be applied. In addition, when forming such a resin coating film, it is also possible to use known additives such as a silane coupling agent.
 これら樹脂塗膜の中でも、金属外観、耐薬品浸透性、及び、耐溶剤性の観点から、下層塗膜15は、ウレタン結合骨格を有する第一部位(以下「ウレタン部位」とも称する。)を少なくとも有し、エポキシ基及びシロキサン結合骨格の少なくとも何れかを有する部位(以下、エポキシ基を有する部位を「エポキシ部位」、シロキサン結合骨格を有する部位を「シロキサン部位」とも称する。)を好ましくは更に含有するような、樹脂塗膜であることが好ましい。また、下層塗膜15は、上記のようなウレタン部位に加えて、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素を有する化合物を含有することが好ましい。 Among these resin coating films, the lower layer coating film 15 has at least a first portion (hereinafter also referred to as a "urethane portion") having a urethane bond skeleton from the viewpoint of metal appearance, chemical resistance and solvent resistance. Preferably, it further comprises a moiety having at least one of an epoxy group and a siloxane bond skeleton (hereinafter, the moiety having an epoxy group is also referred to as “epoxy moiety” and the moiety having a siloxane bond skeleton is also referred to as “siloxane moiety”). It is preferable that it is such a resin coating film. The lower coating film 15 preferably contains a compound having at least one element selected from the group consisting of P, V, Ti, Si and Zr in addition to the above urethane site. .
 ここで、ウレタン部位が更にアニオン性官能基を有することで、水系媒体(水系塗料)に対するウレタン部位の分散性が向上し、下層塗膜15の造膜性が高まることで、下層塗膜15と金属板11との密着性が良好となり、下層塗膜15のバリア性(すなわち、耐薬品浸透性)が高まる。 Here, when the urethane portion further has an anionic functional group, the dispersibility of the urethane portion in the aqueous medium (water-based paint) is improved, and the film forming property of the lower layer coating 15 is enhanced. The adhesion to the metal plate 11 is improved, and the barrier property (that is, chemical resistance) of the lower coating film 15 is enhanced.
 また、ウレタン部位と、エポキシ基及びシロキサン結合骨格の少なくとも何れかと、を含むことでも、下層塗膜15の耐薬品浸透性が向上する。また、下層塗膜15を、ウレタン部位を少なくとも有する樹脂塗膜とすることで、下層塗膜15の透明性が向上し、金属外観も良好となる。 The chemical resistance of the lower coating film 15 is also improved by including a urethane portion and at least one of an epoxy group and a siloxane bond skeleton. In addition, by forming the lower coating film 15 as a resin coating film having at least a urethane portion, the transparency of the lower coating film 15 is improved, and the metal appearance also becomes good.
 また、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素を有する化合物は、一般的に防錆剤として機能することが多いが、下層塗膜15中にかかる化合物を含有させてもよい。下層塗膜15にかかる化合物を含有させることで、塗装金属板1の耐食性を更に向上させることが可能となる。 In addition, compounds having at least one element selected from the group consisting of P, V, Ti, Si and Zr generally function as a rust inhibitor in general, but Such compounds may be contained. By including such a compound in the lower coating film 15, the corrosion resistance of the coated metal sheet 1 can be further improved.
 次に、下層塗膜15に含まれる各部位について説明する。
 ウレタン部位が有していると好ましいアニオン性官能基としては、例えば、カルボン酸基(カルボキシ基)、スルホン酸基(スルホ基)等を挙げることができる。一方、ウレタン部位のウレタン結合骨格は、ポリウレタン樹脂に由来する骨格である。すなわち、ウレタン部位は、ポリウレタン樹脂に由来する部位であり、更に、アニオン性官能基を有しうる部位と言える。
Next, each part contained in the lower layer coating film 15 will be described.
As a preferable anionic functional group which a urethane site has, a carboxylic acid group (carboxy group), a sulfonic acid group (sulfo group), etc. can be mentioned, for example. On the other hand, the urethane bond skeleton of the urethane moiety is a skeleton derived from a polyurethane resin. That is, the urethane moiety is a moiety derived from a polyurethane resin, and can be further referred to as a moiety which may have an anionic functional group.
 エポキシ基を有するエポキシ部位は、エポキシ樹脂に由来する部位である。つまり、エポキシ部位のエポキシ基は、ポリウレタン樹脂に由来するウレタン部位と反応しなかった、エポキシ基残基である。また、シロキサン部位のシロキサン結合骨格は、シロキサン結合を有するシリコーン樹脂、又は、シロキサン結合を生成しうるシランカップリング剤に由来する骨格である。 The epoxy moiety having an epoxy group is a moiety derived from an epoxy resin. That is, the epoxy group of the epoxy site is an epoxy group residue which did not react with the urethane site derived from the polyurethane resin. In addition, the siloxane bond skeleton of the siloxane moiety is a skeleton derived from a silicone resin having a siloxane bond or a silane coupling agent capable of forming a siloxane bond.
 下層塗膜15中におけるウレタン部位のウレタン結合骨格と、エポキシ部位のエポキシ基と、シロキサン部位のシロキサン結合骨格と、は、エネルギー分散型X線分光法、又は、フーリエ変換赤外分光法で下層塗膜15を分析し、対応する結合もしくは官能基を構成する元素を検出するか、又は、対応する結合もしくは官能基に帰属される振動ピークを検出することで、確認することができる。また、下層塗膜15中におけるP、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素を有する化合物の存在は、エネルギー分散型X線分光法により、かかる化合物に含有される元素が検出されるか否かにより、確認することが可能である。 The urethane bond skeleton of the urethane moiety in the lower coating film 15, the epoxy group of the epoxy moiety, and the siloxane bond skeleton of the siloxane moiety are coated with the lower layer by energy dispersive X-ray spectroscopy or Fourier transform infrared spectroscopy. The film 15 can be analyzed to confirm the element constituting the corresponding bond or functional group or the vibration peak attributed to the corresponding bond or functional group. Further, the presence of a compound having at least one element selected from the group consisting of P, V, Ti, Si and Zr in the lower coating film 15 causes such a compound to be obtained by energy dispersive X-ray spectroscopy. It can be confirmed by whether or not the contained element is detected.
 続いて、下層塗膜15のガラス転移温度について説明する。
 下層塗膜15のガラス転移温度は、上層塗膜13のガラス転移温度以下であることが好ましい。下層塗膜15のガラス転移温度は、より好ましくは、80℃以上170以下の範囲内であり、かつ、上層塗膜13のガラス転移温度以下である。下層塗膜15のガラス転移点温度が80℃未満である場合には、耐薬品浸透性が低下することがある。一方、下層塗膜15のガラス転移点温度が170℃を超える場合には、加工性が低下することがある。加工性が低下すると、下層塗膜15に割れ等が生じ、耐薬品浸透性及び耐溶剤性も低下することがある。下層塗膜15のガラス転移温度は、耐薬品浸透性及び耐溶剤性の観点(特に耐薬品浸透性の観点)から、より好ましくは、上層塗膜13のガラス転移温度以下であり、かつ、100℃以上170℃以下の範囲内である。
Subsequently, the glass transition temperature of the lower coating film 15 will be described.
The glass transition temperature of the lower coating film 15 is preferably equal to or less than the glass transition temperature of the upper coating film 13. The glass transition temperature of the lower coating film 15 is more preferably in the range of 80 ° C. or more and 170 or less and not more than the glass transition temperature of the upper coating film 13. When the glass transition temperature of the lower coating film 15 is less than 80 ° C., the chemical resistance may decrease. On the other hand, when the glass transition temperature of the lower coating film 15 exceeds 170 ° C., the processability may be lowered. When the processability is lowered, the lower coating film 15 may be cracked and the like, and the chemical resistance and the solvent resistance may also be lowered. The glass transition temperature of the lower coating film 15 is more preferably equal to or less than the glass transition temperature of the upper coating film 13 from the viewpoints of chemical resistance and solvent resistance (in particular, chemical resistance penetration). It is in the range of ° C to 170 ° C.
<上層塗膜13及び下層塗膜15の膜厚について>
 本実施形態に係る塗装金属板1において、上記のような上層塗膜13の膜厚は、0.5μm以上15μm以下であることが好ましい。上層塗膜13の膜厚が0.5μm未満である場合には、塗装金属板1の耐薬品浸透性が低下することがある。一方、上層塗膜13の膜厚が15μmを超える場合には、上層塗膜13の透明性が低下して、金属外観が低下することがある。上層塗膜13の膜厚は、金属外観及び耐薬品浸透性の観点から、より好ましくは、1μm以上10μm以下である。
<About the film thickness of the upper coating 13 and the lower coating 15>
In the coated metal plate 1 which concerns on this embodiment, it is preferable that the film thickness of the above upper layer coating film 13 is 0.5 micrometer or more and 15 micrometers or less. When the film thickness of the upper layer coating film 13 is less than 0.5 μm, the chemical resistance of the coated metal plate 1 may decrease. On the other hand, when the film thickness of the upper layer coating film 13 exceeds 15 μm, the transparency of the upper layer coating film 13 may be reduced and the metal appearance may be reduced. The film thickness of the upper layer coating film 13 is more preferably 1 μm or more and 10 μm or less from the viewpoint of metal appearance and chemical resistance permeability.
 また、本実施形態に係る塗装金属板1において、上層塗膜13に加えて下層塗膜15を設けた場合に、下層塗膜15の膜厚は、0.5μm以上15μm以下であることが好ましい。下層塗膜15の膜厚を0.5μm以上15μm以下とすることで、金属外観を維持しつつ、耐薬品浸透性を更に向上させることが可能となる。下層塗膜15の膜厚は、耐薬品浸透性の観点から、より好ましくは、1.0μm超過15μm以下である。 In addition, in the coated metal plate 1 according to the present embodiment, when the lower coating film 15 is provided in addition to the upper coating film 13, the film thickness of the lower coating film 15 is preferably 0.5 μm to 15 μm. . By setting the film thickness of the lower coating film 15 to 0.5 μm or more and 15 μm or less, it is possible to further improve the chemical resistance while maintaining the metal appearance. From the viewpoint of chemical resistance, the film thickness of the lower coating film 15 is more preferably more than 1.0 μm and 15 μm or less.
<上層塗膜13及び/又は下層塗膜15中の着色剤について>
 本実施形態に係る塗装金属板1において、上記のような上層塗膜13及び/又は下層塗膜15は、着色剤を含有してもよい。上層塗膜13及び/又は下層塗膜15に対して着色剤を含有させることによって、製品の色調を調整でき、多種多様な用途に適用することが可能となる。
Regarding Colorant in Upper Coating 13 and / or Lower Coating 15
In the coated metal plate 1 according to the present embodiment, the upper coating film 13 and / or the lower coating film 15 as described above may contain a colorant. By incorporating a coloring agent into the upper coating 13 and / or the lower coating 15, the color tone of the product can be adjusted, and it becomes possible to apply to various applications.
 ここで、上記着色顔料が黒色顔料である場合、下層塗膜15に分散させることが好ましい。上層塗膜13に黒色顔料を分散させると、耐薬品性が低下する場合があるからである。このような耐薬品性の低下は、上層塗膜13中の黒色顔料が薬品を浸透させやすくするためと考えられる。下層塗膜15中の黒色顔料濃度としては、特に限定されるものではないが、例えば、下層塗膜15の全固形分に対して、0.5質量%以上20質量%以下であることが好ましい。下層塗膜15中の黒色顔料濃度が0.5質量%未満である場合には、着色が不十分となる可能性がある。一方、下層塗膜15中の黒色顔料濃度が20質量%を超える場合には、耐薬品性や耐食性が低下する場合がある。 Here, when the color pigment is a black pigment, it is preferable to be dispersed in the lower coating film 15. When the black pigment is dispersed in the upper coating film 13, the chemical resistance may be lowered. Such a decrease in chemical resistance is considered to be due to the fact that the black pigment in the upper layer coating film 13 facilitates the penetration of chemicals. The black pigment concentration in the lower coating film 15 is not particularly limited, but is preferably 0.5% by mass or more and 20% by mass or less based on the total solid content of the lower coating film 15, for example. . When the black pigment concentration in the lower coating film 15 is less than 0.5% by mass, coloring may be insufficient. On the other hand, when the black pigment concentration in the lower coating film 15 exceeds 20% by mass, chemical resistance and corrosion resistance may be reduced.
<上層塗膜13及び下層塗膜15の具体的な構成について>
 本実施形態に係る塗装金属板1において、上層塗膜13は、具体的には、ガラス転移温度が75℃以上160℃以下であるポリウレタン樹脂(a)と、トリアジン環含有水溶性硬化剤である水溶性メラミン樹脂(b)と、水系溶媒と、を含有する上層塗料を硬化した樹脂塗膜(例えば、ポリウレタン樹脂と水溶性メラミン樹脂との架橋物を含む樹脂塗膜)であることがよい。かかる上層塗料から形成された樹脂塗膜は、全体として、ガラス転移温度が85℃以上170℃以下となる。この際、水溶性メラミン樹脂(b)は、上層塗膜13中に粒状に分散しているものと、上層塗膜13の表面側に濃化しているものと、が存在する。また、上層塗膜13と金属板11との間に、更に下層塗膜15が設けられる場合、上記ポリウレタン樹脂(a)のガラス転移温度は、下記のような下層塗膜15が含有するポリウレタン樹脂(c)のガラス転移温度以上であることが好ましい。
Regarding Specific Configurations of Upper Coating 13 and Lower Coating 15
Specifically, in the coated metal plate 1 according to the present embodiment, the upper layer coating film 13 is a polyurethane resin (a) having a glass transition temperature of 75 ° C. or more and 160 ° C. or less and a triazine ring-containing water soluble curing agent It is preferable that it is a resin coating film (For example, the resin coating film containing the crosslinked material of a polyurethane resin and a water-soluble melamine resin) which hardened the upper layer coating material containing water-soluble melamine resin (b) and an aqueous solvent. The resin coating film formed from the upper layer paint has a glass transition temperature of 85 ° C. or more and 170 ° C. or less as a whole. At this time, the water-soluble melamine resin (b) is in the form of particles dispersed in the upper layer coating film 13 and those in which the water-soluble melamine resin (b) is concentrated on the surface side of the upper layer coating film 13. Moreover, when the lower layer coating film 15 is further provided between the upper layer coating film 13 and the metal plate 11, the glass transition temperature of the said polyurethane resin (a) is the polyurethane resin which the lower layer coating film 15 as follows contains. It is preferable that it is more than the glass transition temperature of (c).
 ポリウレタン樹脂の代わりにポリエステル樹脂を用いた場合には、ポリエステル樹脂はポリウレタン樹脂よりも耐薬品性が劣るので、同等の耐薬品性を得るためには上層塗膜の膜厚を厚くする必要がある。上層塗膜の膜厚が厚くなってしまうと、クリア塗膜とした場合に、所望の金属外観が得られないため、好ましくない。 When a polyester resin is used instead of the polyurethane resin, the polyester resin is inferior in chemical resistance to the polyurethane resin, so it is necessary to increase the film thickness of the upper layer coating film in order to obtain the same chemical resistance. . When the film thickness of the upper layer coating film is increased, it is not preferable because a desired metal appearance can not be obtained in the case of forming a clear coating film.
 また、本実施形態に係る塗装金属板1に対して下層塗膜15を設ける場合、下層塗膜15は、具体的には、ガラス転移温度が上層塗膜13のポリウレタン樹脂(a)のガラス転移温度以下であるポリウレタン樹脂(c)と、エポキシ樹脂(d)、シランカップリング剤(e)、並びに、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素を含有する防錆剤(f)の少なくとも何れかと、水系溶媒と、を含有する下層塗料を硬化した樹脂塗膜(例えばポリウレタン樹脂(c)及びエポキシ樹脂(d)の架橋物を含む樹脂塗膜、ポリウレタン樹脂(c)とエポキシ樹脂(d)とシランカップリング剤(e)との架橋物を含む樹脂塗膜、ポリウレタン樹脂(c)とエポキシ樹脂(d)とシランカップリング剤(e)との架橋物と防錆剤(f)と含む樹脂塗膜、ポリウレタン樹脂(c)とシランカップリング剤(e)との架橋物を含む樹脂塗膜、ポリウレタン樹脂(c)とシランカップリング剤(e)の架橋物と防錆剤(f)とを含む樹脂塗膜、ポリウレタン樹脂(c)と防錆剤(f)とを含む樹脂塗膜・・・等)で構成されていることがよい。 Moreover, when providing the lower layer coating film 15 with respect to the coated metal plate 1 which concerns on this embodiment, the lower layer coating film 15 is specifically a glass transition of the polyurethane resin (a) of the upper layer coating film 13 in glass transition temperature. Any one or more elements selected from the group consisting of a polyurethane resin (c) having a temperature or less, an epoxy resin (d), a silane coupling agent (e), and P, V, Ti, Si and Zr A resin coating film obtained by curing a lower layer coating containing at least one of a rust inhibitor (f) containing an aqueous solvent and an aqueous solvent (for example, a resin coating film containing a crosslinked product of a polyurethane resin (c) and an epoxy resin (d) A resin coating film containing a crosslinked product of a polyurethane resin (c), an epoxy resin (d) and a silane coupling agent (e), a polyurethane resin (c), an epoxy resin (d) and a silane coupling agent (e) of Resin coating film containing a bridge and rust inhibitor (f), resin coating film containing a crosslinked product of polyurethane resin (c) and silane coupling agent (e), polyurethane resin (c) and silane coupling agent (e) And the like, and a resin coating film containing the cross-linked product of (1) and the rust inhibitor (f), a resin coating film containing the polyurethane resin (c) and the rust inhibitor (f), and the like.
 以上、本実施形態に係る塗装金属板1について、詳細に説明した。
 以上説明したような、実施形態に係る塗装金属板1は、自動車用、家電用、建材用、土木用、機械用、家具用、容器用等に利用することが可能である。
In the above, the coated metal plate 1 which concerns on this embodiment was demonstrated in detail.
The coated metal plate 1 according to the embodiment as described above can be used for automobiles, home appliances, building materials, civil engineering, machines, furniture, containers, and the like.
(塗装金属板の製造方法について)
 続いて、図4を参照しながら、本実施形態に係る塗装金属板の製造方法について、詳細に説明する。図4は、本実施形態に係る塗装金属板の製造方法の流れの一例を示した流れ図である。
(About the manufacturing method of the painted metal plate)
Then, the manufacturing method of the coated metal plate which concerns on this embodiment is demonstrated in detail, referring FIG. FIG. 4 is a flow chart showing an example of the flow of the method of producing a coated metal sheet according to the present embodiment.
 本実施形態に係る塗装金属板の製造方法は、所定の金属板11の少なくとも片面上に、
少なくとも上層塗膜13を有する塗装金属板1の製造方法である。この塗装金属板の製造方法は、図4に一例を示したように、必要に応じて金属板11の表面に所定のテクスチャを形成するテクスチャ形成工程(ステップS101)と、必要に応じて金属板11上に下層塗膜15を形成する下層塗膜形成工程(ステップS103)と、金属板11又は下層塗膜15上に上層塗膜13を形成する上層塗膜形成工程(ステップS105)と、を有する。
In the method of manufacturing a coated metal plate according to the present embodiment, on at least one side of a predetermined metal plate 11,
This is a method of producing a coated metal sheet 1 having at least the upper coating film 13. The method of manufacturing the coated metal plate includes a texture forming step (step S101) of forming a predetermined texture on the surface of the metal plate 11 as necessary, as shown in FIG. 4 as an example, and a metal plate as necessary. A lower coating film forming step (step S103) for forming the lower coating film 15 on the upper layer 11 and an upper coating film forming step (step S105) for forming the upper coating film 13 on the metal plate 11 or the lower coating film 15; Have.
 ここで、テクスチャ形成工程及び下層塗膜形成工程は、必要に応じて実施されればよく、例えば、テクスチャ等を有しない金属板11上に上層塗膜13が形成されている塗装金属板1を製造する際には、図4に示した3つの工程のうち、ステップS105のみが実施される。 Here, the texture forming step and the lower layer coating forming step may be carried out as required. For example, the coated metal plate 1 in which the upper layer coating 13 is formed on the metal plate 11 having no texture etc. When manufacturing, only step S105 is implemented among the three steps shown in FIG.
 図4に示した塗装金属板の製造方法において、最も重要な工程は、上層塗膜形成工程(ステップS105)である。かかる上層塗膜形成工程は、アニオン性官能基を含み、ガラス転移温度が75℃以上160℃以下であるポリウレタン樹脂(a)と、トリアジン環含有水溶性硬化剤である水溶性メラミン樹脂(b)と、水系溶媒と、を含有する上層塗料(かかる上層塗料は、第一塗料の一例である。)を、金属板11上(金属板11上に下層塗膜15が形成されている場合には、下層塗膜15上)に塗装し、かかる上層塗料の塗布された金属板を加熱及び冷却することで、上層塗膜13を形成する工程である。 In the method of producing a coated metal sheet shown in FIG. 4, the most important step is the upper layer film forming step (step S105). The upper layer coating film forming step includes a polyurethane resin (a) having an anionic functional group and having a glass transition temperature of 75 ° C. or more and 160 ° C. or less, and a water soluble melamine resin (b) which is a triazine ring-containing water soluble curing agent In the case where the lower layer coating film 15 is formed on the metal plate 11 (upper layer coating material is an example of the first coating material. The upper coating film 13 is formed by coating the lower coating film 15) and heating and cooling the metal plate coated with the upper coating material.
 本実施形態に係る塗装金属板の製造方法は、上記のような手法により、本実施形態に係る塗装金属板(すなわち、金属外観、耐薬品浸透性、及び耐溶剤性に優れた塗装金属板)を、コストを抑制しつつ、製造することができる。その理由は、次の通り推測される。 The method for producing a coated metal sheet according to the present embodiment is the coated metal sheet according to the present embodiment (that is, a coated metal sheet excellent in metal appearance, chemical resistance, and solvent resistance) by the above-described method. Can be manufactured while suppressing costs. The reason is guessed as follows.
 まず、一般的に、ポリウレタン樹脂と水溶性メラミン樹脂とを含む塗料により塗膜を形成する際に、メラミン樹脂は、ポリウレタン樹脂との相溶性に劣ることからポリウレタン樹脂と共存し難く、メラミン樹脂の自己縮合粒が大きくなると共に、メラミン樹脂が塗膜の表層に濃化する現象が生じる。 First, in general, when forming a coating film with a paint containing a polyurethane resin and a water-soluble melamine resin, the melamine resin is less compatible with the polyurethane resin and thus hardly coexists with the polyurethane resin. As the self-condensed particles become larger, a phenomenon occurs in which the melamine resin is concentrated on the surface layer of the coating film.
 これに対して、本実施形態に係る塗装金属板の製造方法では、アニオン性官能基を含むポリウレタン樹脂(a)を採用することにより、水系媒体中で、ポリウレタン樹脂(a)と、トリアジン環含有水溶性硬化剤である水溶性メラミン樹脂(b)と、が均一に混合され、共存した状態となる。かかる状態の上層塗料を、金属板11上(又は、下層塗膜15上)に成膜して加熱すると、水溶性メラミン樹脂(b)の自己収縮が抑制され、水溶性メラミン樹脂(b)とポリウレタン樹脂(a)との反応が優先的に生じるようになる。更に、加熱により水系溶媒の気化(乾燥)が進行すると、ポリウレタン樹脂(a)は、溶融状態となる。ポリウレタン樹脂(a)が溶融状態になると、ガラス転移温度が75℃以上160℃以下と高いために粘度が増加する結果、高い凝集力が生まれて、メラミン樹脂(b)の拡散速度が低下する。これにより、水溶性メラミン樹脂(b)の自己収縮が抑制され、水溶性メラミン樹脂(b)とポリウレタン樹脂(a)との反応が優先的に生じるようになる。 On the other hand, in the method for producing a coated metal sheet according to the present embodiment, by employing the polyurethane resin (a) containing an anionic functional group, the polyurethane resin (a) and the triazine ring-containing in an aqueous medium The water-soluble melamine resin (b), which is a water-soluble curing agent, is uniformly mixed and coexistent. When the upper layer paint in such a state is formed on the metal plate 11 (or on the lower layer coating film 15) and heated, the self-shrinkage of the water-soluble melamine resin (b) is suppressed, and the water-soluble melamine resin (b) The reaction with the polyurethane resin (a) will occur preferentially. Furthermore, when vaporization (drying) of the aqueous solvent proceeds by heating, the polyurethane resin (a) is in a molten state. When the polyurethane resin (a) is in a molten state, the viscosity is increased because the glass transition temperature is as high as 75 ° C. or more and 160 ° C. or less. As a result, high cohesion is generated and the diffusion speed of the melamine resin (b) is decreased. Thereby, the self-shrinkage of the water-soluble melamine resin (b) is suppressed, and the reaction between the water-soluble melamine resin (b) and the polyurethane resin (a) is preferentially generated.
 このように、ポリウレタン樹脂(a)との相溶性が低いメラミン樹脂(b)は、塗膜の表層へ濃化しつつも、水溶性メラミン樹脂(b)の自己収縮が抑えられ、ポリウレタン樹脂(a)と優先的に反応する。ただ、水溶性メラミン樹脂(b)の自己収縮が完全に抑制されるわけではないため、上層塗膜13中には、ポリウレタン樹脂(a)と反応した水溶性メラミン樹脂(b)の反応生成物と、水溶性メラミン樹脂(b)が自己収縮した結果生じる反応生成物と、が共存することとなる。その結果、水溶性メラミン樹脂(b)に由来する部位は、上層塗膜13中に粒状に分散したものと、上層塗膜13の表層に濃化したものと、が存在するようになる。しかも、上述したように、上層塗膜13が形成される際には、ポリウレタン樹脂(a)に高い凝集力が生じることで、水溶性メラミン樹脂(b)とポリウレタン樹脂(a)との反応が優先的に生じる。そのため、微小化した粒状の水溶性メラミン樹脂(b)が上層塗膜13の表層に濃化して、図3に示したような濃化部103が形成されるとともに、上層塗膜13の表層に濃化しなかった、微小化した粒状の水溶性メラミン樹脂(b)が、図3に示したようなトリアジン粒状物101を形成する。 Thus, while the melamine resin (b) having low compatibility with the polyurethane resin (a) is concentrated to the surface layer of the coating film, the self-shrinkage of the water-soluble melamine resin (b) is suppressed, and the polyurethane resin (a) React preferentially with However, since the self-shrinkage of the water-soluble melamine resin (b) is not completely suppressed, the reaction product of the water-soluble melamine resin (b) reacted with the polyurethane resin (a) in the upper layer coating film 13 And the reaction product resulting from the self-shrinkage of the water-soluble melamine resin (b) coexist. As a result, in the region derived from the water-soluble melamine resin (b), the upper layer coating 13 is dispersed in the form of particles and the upper layer coating 13 is concentrated in the surface layer. Moreover, as described above, when the upper layer coating film 13 is formed, the polyurethane resin (a) has a high cohesive force, so that the reaction between the water-soluble melamine resin (b) and the polyurethane resin (a) It occurs preferentially. Therefore, the micronized particulate water-soluble melamine resin (b) is concentrated in the surface layer of the upper layer coating film 13 to form a concentrated portion 103 as shown in FIG. The micronized particulate water-soluble melamine resin (b), which was not concentrated, forms the triazine particulates 101 as shown in FIG.
 また、下層塗膜15を設ける際には、ガラス転移温度が80℃以上160℃以下であり、かつ、ポリウレタン樹脂(a)よりもガラス転移温度が低いポリウレタン樹脂(c)を用いて下層塗膜15を形成することで、上層塗膜13と下層塗膜15との間の高い密着性を実現することができる。更に、アニオン性官能基を含むポリウレタン樹脂(a)を採用することによっても、水系媒体(水系塗料)に対するウレタン部位の分散性が向上する結果、上層塗膜13の造膜性が高まって、上層塗膜13と下層塗膜15との間の高い密着性が実現される。 When the lower coating film 15 is provided, the lower coating film is formed using a polyurethane resin (c) having a glass transition temperature of 80 ° C. to 160 ° C. and a glass transition temperature lower than that of the polyurethane resin (a). By forming 15, the high adhesion between the upper coating 13 and the lower coating 15 can be realized. Furthermore, by adopting the polyurethane resin (a) containing an anionic functional group, the dispersibility of the urethane portion in the aqueous medium (water-based paint) is improved, and as a result, the film forming property of the upper coating 13 is enhanced. High adhesion between the coating 13 and the lower coating 15 is realized.
 以上、概要を説明したように、本実施形態に係る塗装金属板の製造方法は、本実施形態に係る塗装金属板(すなわち、金属外観、耐薬品浸透性及び耐溶剤性に優れた塗装金属板)を、コストを抑制しつつ製造することができると推測される。 As described above, as described in outline, the method of producing a coated metal sheet according to the present embodiment is a coated metal sheet according to the present embodiment (that is, a coated metal sheet excellent in metal appearance, chemical resistance and solvent resistance) Can be manufactured at low cost.
 以下、本実施形態に係る塗装金属板の製造方法について、詳細に説明する。 Hereinafter, the manufacturing method of the coated metal plate which concerns on this embodiment is demonstrated in detail.
<上層塗膜形成工程について>
 図4に示した流れとは逆になるが、以下では、まず、上層塗膜形成工程について詳細に説明する。
 上層塗膜形成工程では、まず、第一塗料の一例である上層塗料を準備する。上層塗料は、ポリウレタン樹脂(a)と、トリアジン環含有水溶性硬化剤である水溶性メラミン樹脂(b)と、水系溶媒と、を含有する。
<About the upper layer film formation process>
Although it is the reverse of the flow shown in FIG. 4, the upper layer coating film forming step will be described in detail below.
In the upper coating film forming step, first, an upper coating, which is an example of the first coating, is prepared. The upper layer paint contains a polyurethane resin (a), a water soluble melamine resin (b) which is a triazine ring-containing water soluble curing agent, and an aqueous solvent.
[ポリウレタン樹脂(a)について]
 ポリウレタン樹脂(a)は、アニオン性官能基を含み、かつ、ガラス転移温度が75℃以上160℃以下であるポリウレタン樹脂である。また、本実施形態に係る塗装金属板において、上層塗膜13だけでなく下層塗膜15を形成する場合には、ポリウレタン樹脂(a)のガラス転移温度は、下層塗膜15に用いられるポリウレタン樹脂(c)のガラス転移温度以上であることが好ましい。
[Polyurethane resin (a)]
The polyurethane resin (a) is a polyurethane resin containing an anionic functional group and having a glass transition temperature of 75 ° C. or more and 160 ° C. or less. In addition, in the coated metal sheet according to the present embodiment, when not only the upper coating film 13 but also the lower coating film 15 is formed, the glass transition temperature of the polyurethane resin (a) is the polyurethane resin used for the lower coating film 15 It is preferable that it is more than the glass transition temperature of (c).
 なお、先だって言及したような上層塗膜13における高ガラス転移点温度(85℃以上170℃以下)を得るためには、ウレタン結合を有するポリウレタン樹脂を用いることが適しており、例えば、高ガラス転移点温度のポリエステル樹脂は、製造が困難である。また、高ガラス転移点温度のポリウレタン樹脂は、溶融粘度が非常に高いため、水系媒体に分散させた塗料を使用しないと、塗装(塗膜を形成)することは困難である。このため、ポリウレタン樹脂にアニオン性官能基を付与することによって、水溶性メラミン樹脂とともに水系媒体中に分散が可能となる。 In order to obtain a high glass transition temperature (85 ° C. or more and 170 ° C. or less) in the upper coating film 13 as mentioned above, it is suitable to use a polyurethane resin having a urethane bond, for example, a high glass transition Point temperature polyester resins are difficult to manufacture. In addition, since a polyurethane resin having a high glass transition temperature has a very high melt viscosity, it is difficult to coat (form a coated film) unless a paint dispersed in an aqueous medium is used. For this reason, by providing the anionic functional group to the polyurethane resin, it becomes possible to disperse in the aqueous medium together with the water-soluble melamine resin.
 ポリウレタン樹脂(a)は、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコール、ビスフェノールヒドロキシプロピルエーテル、グリセリン、トリメチロールエタン、トリメチロールプロパン等の多価アルコール類と、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート等のジイソシアネート化合物と、を反応させ、更にジアミン等で鎖延長し、水分散化させる等することで、得ることができる。 The polyurethane resin (a) is, for example, polyvalent such as ethylene glycol, propylene glycol, diethylene glycol, 1,6-hexanediol, neopentyl glycol, triethylene glycol, bisphenol hydroxypropyl ether, glycerin, trimethylolethane, trimethylolpropane and the like. It is obtained by reacting an alcohol with a diisocyanate compound such as hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate and the like, and further chain extension with a diamine or the like to achieve water dispersion or the like. Can.
 かかるポリウレタン樹脂(a)としては、例えば、ポリエーテルポリウレタン樹脂(ポリエーテル骨格を有するポリウレタン樹脂)、ポリエステルポリウレタン樹脂(ポリエステル骨格を有するポリウレタン樹脂)、ポリエーテルポリエステルポリウレタン樹脂(ポリエーテル骨格及びポリエステル骨格を有するポリウレタン樹脂)等が好適である。これらポリウレタン樹脂を使用した塗膜は、耐薬品浸透性及び耐溶剤性が向上し易い。 As such polyurethane resin (a), for example, polyether polyurethane resin (polyurethane resin having a polyether skeleton), polyester polyurethane resin (polyurethane resin having a polyester skeleton), polyether polyester polyurethane resin (polyether skeleton and polyester skeleton) Polyurethane resin etc. is preferable. Coatings using these polyurethane resins are likely to have improved chemical resistance and solvent resistance.
 ポリエーテルポリウレタン樹脂、ポリエステルポリウレタン樹脂、及び、ポリエーテルポリエステルポリウレタン樹脂は、多価アルコール類として、ポリエーテルポリオール、ポリエステルポリオールの少なくとも一方を使用することで、得ることができる。
 ポリエーテルポリオールは、例えば、ポリエチレングリコール、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリテトラメチレングリコール及びこれらの共重合体がある。
 また、ポリエステルポリオールは、例えば、テレフタル酸、イソフタル酸、アジピン酸、アゼライン酸、セバチン酸等の二塩基酸又は二塩基酸のジアルキルエステルと、エチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6-ヘキサングリコール、3-メチル-1,5-ペンタンジオール、3,3’-ジメチロ-ルヘプタン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリテトラメチレンエーテルグリコール等のグリコール類と、を反応させることで、得ることができる。
 また、ポリエステルポリオールは、例えば、ポリカプロラクトン、ポリバレロラクトン、ポリ(β-メチル-γ-バレロラクトン)等のラクトン類を開環重合することで、得ることができる。
The polyether polyurethane resin, the polyester polyurethane resin, and the polyether polyester polyurethane resin can be obtained by using at least one of a polyether polyol and a polyester polyol as polyhydric alcohols.
The polyether polyols are, for example, polyethylene glycol, polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene glycol and copolymers thereof.
Also, polyester polyols include, for example, dibasic acids such as terephthalic acid, isophthalic acid, adipic acid, azelaic acid, sebacic acid or dialkyl esters of dibasic acids, ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, neopentyl glycol Glycols such as 1,6-hexane glycol, 3-methyl-1,5-pentanediol, 3,3'-dimethyl alcohol heptane, polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene ether glycol and the like It can be obtained by reaction.
The polyester polyol can be obtained, for example, by ring-opening polymerization of lactones such as polycaprolactone, polyvalerolactone, poly (β-methyl-γ-valerolactone) and the like.
 ポリウレタン樹脂(a)のガラス転移温度は、75℃以上160℃以下である。ポリウレタン樹脂(a)のガラス転移温度が75℃未満である場合、耐薬品浸透性が低下する。一方、ポリウレタン樹脂(a)のガラス転移温度が160℃を超える場合には、加工性が低下する。加工性が低下すると、上層塗膜13に割れ等が生じ、耐薬品浸透性及び耐溶剤性も低下する。ポリウレタン樹脂(a)のガラス転移温度は、耐薬品浸透性及び耐溶剤性の観点(特に耐薬品浸透性の観点)から、好ましくは100℃以上160℃以下である。 The glass transition temperature of the polyurethane resin (a) is 75 ° C. or more and 160 ° C. or less. If the glass transition temperature of the polyurethane resin (a) is less than 75 ° C., the chemical resistance will decrease. On the other hand, when the glass transition temperature of the polyurethane resin (a) exceeds 160 ° C., the processability is lowered. When the processability is lowered, the upper coating film 13 is cracked and the like, and the chemical resistance and the solvent resistance are also lowered. The glass transition temperature of the polyurethane resin (a) is preferably 100 ° C. or more and 160 ° C. or less from the viewpoints of chemical resistance and solvent resistance (particularly, chemical resistance permeability).
 ここで、上記ポリエステル樹脂をはじめとする各種樹脂のガラス転移温度は、プラスチックの転移温度測定方法(JIS K7121 1987)の示差走査熱量測定(DSC法)に準じて測定することができる。 Here, the glass transition temperature of various resins including the above-mentioned polyester resin can be measured according to the differential scanning calorimetry (DSC method) of the plastic transition temperature measurement method (JIS K 7121 1987).
[水溶性メラミン樹脂(b)について]
 トリアジン環含有水溶性硬化剤である水溶性メラミン樹脂(b)としては、一般に公知の水溶性メラミン樹脂(イミノ型メラミン樹脂、メチロール型メラミン樹脂、完全アルキルエーテル化メラミン樹脂等)を使用することができる。市販の水溶性メラミン樹脂としては、例えば、日本カーバイド社製、オルネクス社製、DIC社製等の水溶性メラミン樹脂が挙げられる。
[About water soluble melamine resin (b)]
As the water-soluble melamine resin (b) which is a triazine ring-containing water-soluble curing agent, generally known water-soluble melamine resins (imino-type melamine resin, methylol-type melamine resin, completely alkyl etherified melamine resin, etc.) may be used it can. Examples of commercially available water-soluble melamine resins include water-soluble melamine resins such as those manufactured by Nippon Carbide, Ornex, and DIC.
 上記のような水溶性メラミン樹脂(b)として、特に、イミノ基を含むメラミン樹脂(イミノ型メラミン樹脂)を用いることが好ましい。イミノ基を含むメラミン樹脂を使用することで、粒状の水溶性メラミン樹脂が上層塗膜13の表層に濃化し易くなるため、耐溶剤性がより向上し易くなる。 As the water-soluble melamine resin (b) as described above, it is particularly preferable to use a melamine resin containing an imino group (imino-type melamine resin). By using a melamine resin containing an imino group, the particulate water-soluble melamine resin is easily concentrated in the surface layer of the upper layer coating film 13, so that the solvent resistance can be more easily improved.
 なお、「水溶性」とは、25℃の水100質量部に対する対象物質の溶解量が、5質量部以上(好ましくは10質量部以上)であることを示す。 In addition, "water solubility" shows that the dissolution amount of the object substance with respect to 100 mass parts of water of 25 degreeC is 5 mass parts or more (preferably 10 mass parts or more).
[着色剤について]
 上記のような成分を含有する上層塗料に分散される着色剤としては、特に限定されるものではなく、公知のものを適宜使用することが可能である。このような着色剤として、例えば、酸化チタン、酸化亜鉛、炭酸カルシウム、酸化アルミニウム、硫酸バリウム、アルミニウム、酸化鉄、銅・クロム複合酸化物、カーボンブラック等の各種の無機顔料や、シアニン、キナクリドン等の各種の有機顔料や、各種の染料等を用いることができる。
[About coloring agent]
The colorant to be dispersed in the upper layer paint containing the components as described above is not particularly limited, and known colorants can be appropriately used. As such a colorant, for example, various inorganic pigments such as titanium oxide, zinc oxide, calcium carbonate, aluminum oxide, barium sulfate, aluminum, iron oxide, copper-chromium composite oxide, carbon black, cyanine, quinacridone, etc. Various organic pigments of the above, various dyes and the like can be used.
 用いる着色剤がカーボンブラックや黒色を呈する金属酸化物等の黒色顔料である場合には、耐薬品性が低下する可能性があるため、上層塗料中における濃度を限定するか、下層塗料に分散させることが好ましく、下層塗料中に分散させることがより好ましい。 If the colorant to be used is a black pigment such as carbon black or a metal oxide exhibiting black color, the chemical resistance may decrease, so the concentration in the upper layer paint is limited or dispersed in the lower layer paint. It is preferable to disperse in the lower layer paint.
 上層塗料中に分散させるカーボンブラックの種類としては、特に制限されるものではなく、例えば、ファーネスブラック、ケッチェンブラック、アセチレンブラック、チャンネルブラック等といった、公知のカーボンブラックを使用することができる。 The type of carbon black dispersed in the upper layer paint is not particularly limited, and for example, known carbon blacks such as furnace black, ketjen black, acetylene black, channel black and the like can be used.
 使用するカーボンブラックの粒子径は、塗料中での分散性や塗膜品質、塗装性に問題がない範囲であれば、特に制約はないが、一次粒子径が10~120nm程度のものが使用しやすい。特に、耐薬品性や耐食性が求められる場合には、一次粒子径が10~50nmのものを用いることが好ましい。これらのカーボンブラックは、塗料中に分散する過程で凝集が起こるため、一次粒子径のまま分散することは一般的に難しい。すなわち、実際には、一次粒子径よりも大きな粒子径を持った二次粒子形態で、塗料中に存在する。かかる上層塗料中においても、同様の形態で存在する。 The particle size of the carbon black used is not particularly limited as long as there is no problem in the dispersibility in the paint, the quality of the coating film, and the paintability, but the primary particle size of about 10 to 120 nm is used Cheap. In particular, when chemical resistance or corrosion resistance is required, it is preferable to use one having a primary particle diameter of 10 to 50 nm. It is generally difficult to disperse these carbon blacks as they are the primary particle size, because aggregation occurs in the process of dispersing in a paint. That is, in practice, it is present in the paint in the form of secondary particles having a particle size larger than the primary particle size. The same form exists in such upper layer paint.
 黒色を呈する金属酸化物の種類としては、特に制限はないが、例えば、四酸化三鉄や銅・クロム複合酸化物等といった、公知の黒色顔料を使用することができる。 The type of metal oxide exhibiting black color is not particularly limited, and, for example, known black pigments such as triiron tetraoxide and copper-chromium composite oxide can be used.
[水系溶媒について]
 水系溶媒としては、水、又は、水と低級アルコールとの混合液等が挙げられる。かかる水系溶媒は、水を50質量%以上(好ましくは80質量%以上)含有することがよい。
 溶媒として有機系溶剤に代表される溶剤を用いると、塗膜中でメラミン粒子が分散して存在するだけで、表面濃化しないため好ましくない。前述したように、溶剤系塗料を用いて形成された塗膜でメラミンを表層濃化させるためには、溶剤系塗料中にアミン化合物が含まれることが必要であるが、本実施形態では水系溶媒を用いているため、アミン化合物を用いずにメラミン粒子を表層濃化させることが可能となっている。
[About aqueous solvent]
Examples of the aqueous solvent include water or a mixed solution of water and a lower alcohol. Such an aqueous solvent may contain 50% by mass or more (preferably 80% by mass or more) of water.
When a solvent typified by an organic solvent is used as the solvent, it is not preferable because the melamine particles are dispersed and present in the coating film and the surface is not concentrated. As described above, in order to concentrate the surface layer of melamine in a coating film formed using a solvent-based paint, it is necessary that the solvent-based paint contain an amine compound, but in the present embodiment, an aqueous solvent is used. It is possible to concentrate melamine particles on the surface without using an amine compound.
 水としては、蒸留水、イオン交換水、超純水、又は、限外濾過水等を挙げることができる。また、低級アルコールとしては、メタノール、エタノール、ブタノール、イソプロピルアルコール等といった、炭素数1以上4以下のアルコールを挙げることができる。 As water, distilled water, ion exchange water, ultrapure water, ultrafiltered water, etc. can be mentioned. Moreover, as a lower alcohol, C1-C4 alcohol, such as methanol, ethanol, butanol, isopropyl alcohol etc., can be mentioned.
[含有量について]
 上記のような成分を含有する上層塗料において、全固形分に対するポリウレタン樹脂(a)の含有量(Wa,単位:質量%)と、全固形分に対する水溶性メラミン樹脂(b)の含有量(Wb,単位:質量%)と、の合計含有量(Wa)+(Wb)は、以下の式(11)を満足し、かつ、上記ポリウレタン樹脂(a)の含有量(Wa)と、上記水溶性メラミン樹脂(b)の含有量(Wb)と、の比率(Wb)/(Wa)は、以下の式(13)を満足することが好ましい。
  90質量%≦(Wa)+(Wb)≦100質量% ・・・式(11)
  0<(Wb)/(Wa)≦1          ・・・式(13)
[About the content]
In the upper layer paint containing the components as described above, the content (Wa, unit: mass%) of the polyurethane resin (a) to the total solid content and the content (Wb) of the water-soluble melamine resin (b) to the total solid content The total content (Wa) + (Wb) of (unit: mass%) satisfies the following formula (11), and the content (Wa) of the polyurethane resin (a) and the water solubility The ratio (Wb) / (Wa) of the content (Wb) of the melamine resin (b) preferably satisfies the following formula (13).
90 mass% ≦ (Wa) + (Wb) ≦ 100 mass% formula (11)
0 <(Wb) / (Wa) ≦ 1 formula (13)
 ここで、上記式(11)において、合計含有量(Wa)+(Wb)が90質量%未満である場合には、塗装金属板1の金属外観、耐薬品浸透性及び耐溶剤性が低下することがある。また、上記式(13)において、比率(Wb)/(Wa)が1を超える場合には、水溶性メラミン樹脂(b)が過剰となり、塗装金属板1の加工性が低下することがある。加工性が低下すると、上層塗膜13に割れ等が生じ、耐薬品浸透性及び耐溶剤性も低下する。  Here, in the above formula (11), when the total content (Wa) + (Wb) is less than 90% by mass, the metal appearance, the chemical resistance and the solvent resistance of the coated metal sheet 1 are lowered. Sometimes. Moreover, in said Formula (13), when ratio (Wb) / (Wa) exceeds 1, water-soluble melamine resin (b) may become excess and the workability of the coating metal plate 1 may fall. When the processability is lowered, the upper coating film 13 is cracked and the like, and the chemical resistance and the solvent resistance are also lowered.
 金属外観、耐薬品浸透性及び耐溶剤性の観点から、合計含有量(Wa)+(Wb)は、以下の式(15)を満足し、かつ、比率(Wb)/(Wa)は、以下の式(17)を満足することが、より好ましい。
  95質量%≦(Wa)+(Wb)≦100質量% ・・・式(15)
  0.1≦(Wb)/(Wa)≦0.3      ・・・式(17)
From the viewpoint of metal appearance, chemical permeability and solvent resistance, the total content (Wa) + (Wb) satisfies the following formula (15), and the ratio (Wb) / (Wa) is as follows: It is more preferable to satisfy the equation (17) of
95 mass% ≦ (Wa) + (Wb) ≦ 100 mass% formula (15)
0.1 ≦ (Wb) / (Wa) ≦ 0.3 formula (17)
 上層塗料は、シリカを有さないことが好ましい。上層塗料がシリカを有すると上層塗膜13にシリカが含まれることとなり、その結果、上層塗膜13の耐薬品性が劣化するためである。
 同様の理由から、上層塗料は亜鉛、アルミニウム及びチタンから選ばれる少なくとも1種の金属錯化合物を有さないことが好ましい。ここで、亜鉛、アルミニウム及びチタンから選ばれる少なくとも1種の金属錯化合物としては、例えば、ステアリン酸亜鉛、グルコン酸亜鉛、ピコリン酸亜鉛、クエン酸亜鉛、亜鉛アセチルアセトネート、酢酸アルミニウム、ステアリン酸アルミニウム、アルミニウムエチレート、アルミニウムイソプロピレート、アルミニウムトリイソポロキシド、アルミニウムエチルアセトアセテートジ゛イソプロピレート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリス(アセチルアセテート)、アルミニウムオキサイドイソプロポキサイドトリマー、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンブトキシドダイマー、チタンテトラー2-エチルヘキソキシド、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジオクチロキシビス(オクチレングリコレート)、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンジイソプロポキシビス(トリエタノールアミネート)、チタンラクテートアンモニウム塩、チタンラクテート、ポリヒドロキシチタンステアレート等が挙げられる。
The upper layer paint preferably does not have silica. When the upper layer coating material contains silica, the upper layer coating film 13 contains silica, and as a result, the chemical resistance of the upper layer coating film 13 is deteriorated.
For the same reason, the upper layer paint preferably does not have at least one metal complex compound selected from zinc, aluminum and titanium. Here, as at least one metal complex compound selected from zinc, aluminum and titanium, for example, zinc stearate, zinc gluconate, zinc picolinate, zinc citrate, zinc acetylacetonate, aluminum acetate, aluminum stearate , Aluminum ethylate, aluminum isopropylate, aluminum triisopoloxide, aluminum ethylacetoacetate diisopropiolate, aluminum trisethylacetoacetate, aluminum tris (acetylacetate), aluminum oxide isopropoxide trimer, titanium tetraisopropoxide, Titanium tetranormal butoxide, titanium butoxide dimer, titanium tetra-2-ethylhexoxide, titanium diisopropoxy bis (acetyl Cetonate), titanium tetraacetylacetonate, titanium dioctyloxybis (octylene glycolate), titanium diisopropoxy bis (ethyl acetoacetate), titanium diisopropoxy bis (triethanol aminate), titanium lactate ammonium salt, titanium Lactate, polyhydroxy titanium stearate and the like can be mentioned.
[成膜方法(塗布方法)について]
 上層塗膜形成工程において、金属板11又は下層塗膜15上に上層塗料を成膜(塗布)する方法は、特に制限されるものではなく、例えば、ロールコート法、リンガーロールコート法、エアースプレー法、エアーレススプレー法、浸漬法等の周知の成膜方法(塗布方法)を利用することができる。また、これらの周知の成膜方法(塗布方法)を実施する成膜装置(塗布装置)を完備した、コイルコーティングライン、シートコーティングラインと呼ばれる連続塗装ラインで成膜すると、塗装作業効率が良く大量生産が可能であるため、より好適である。
[About the film forming method (coating method)]
The method of forming (coating) the upper layer coating on the metal plate 11 or the lower layer coating 15 in the upper layer coating forming step is not particularly limited, and, for example, a roll coating method, a ringer roll coating method, an air spray Well-known film-forming methods (coating method), such as a method, an airless spray method, an immersion method, can be utilized. In addition, if film formation is performed in a continuous coating line called a coil coating line or sheet coating line, complete with a film forming apparatus (coating apparatus) for performing these known film forming methods (coating methods), the coating operation efficiency is good and a large amount It is more preferable because production is possible.
[加熱方法(焼付け方法)及び冷却方法について]
 上層塗膜形成工程において、金属板11又は下層塗膜15上に上層塗料を成膜(塗布)した後、上層塗料の膜を加熱する方法は、特に制限されるものではないが、例えば、熱風オーブン、直火型オーブン、遠赤外線オーブン、誘導加熱型オーブン等といった、一般に公知の装置を利用することができる。上層塗料の膜を加熱することにより、上層塗料の膜中に存在する水系溶媒が乾燥し、その後、ポリウレタン樹脂(a)と水溶性メラミン樹脂(b)とが反応して、上層塗膜13が形成される。
[About heating method (baking method) and cooling method]
There is no particular limitation on the method of heating the film of the upper layer coating after the upper layer coating is formed (coated) on the metal plate 11 or the lower layer coating 15 in the upper layer coating film forming step, for example, hot air Generally known devices such as ovens, open flame ovens, far infrared ovens, induction heating ovens and the like can be used. By heating the film of the upper layer paint, the aqueous solvent present in the film of the upper layer paint is dried, and then the polyurethane resin (a) and the water-soluble melamine resin (b) react to form the upper layer coating film 13 It is formed.
 一方、加熱後、上層塗膜13を冷却する方法は、特に制限されるものではないが、例えば、水冷(スプレー、水没等)、空冷(窒素ガス等の吹き付け等)などの周知の方法を利用することができる。 On the other hand, the method for cooling the upper layer coating film 13 after heating is not particularly limited, but for example, a known method such as water cooling (spray, submersion, etc.), air cooling (spray of nitrogen gas, etc.), etc. can do.
 上層塗膜形成工程において、特に、上層塗料の成膜後、加熱開始から最高到達温度までの加熱時間が1秒以上30秒以下となるような条件で加熱し、最高到達温度から30℃までの冷却時間が0.1秒以上5秒以下となるような条件で冷却して、上層塗膜13を形成することが好ましい。ここで、加熱時間及び冷却時間は、金属板の温度を熱電対で検知することで、測定する。 In the upper layer coating film forming step, in particular, after film formation of the upper layer paint, heating is performed under the condition that the heating time from the heating start to the highest reaching temperature is 1 second to 30 seconds, and from the highest reaching temperature to 30 ° C. It is preferable to form the upper coating film 13 by cooling under the condition that the cooling time is 0.1 seconds or more and 5 seconds or less. Here, the heating time and the cooling time are measured by detecting the temperature of the metal plate with a thermocouple.
 上層塗料の成膜後に、上記のような1秒以上30秒以下という短時間で加熱を行うと、水溶性メラミン樹脂(b)の自己収縮が更に抑制され、また、上記のような0.1秒以上5秒以下という短時間で冷却を行うと、水溶性メラミン樹脂(b)の拡散が抑制される。その結果、ポリウレタン樹脂(a)と反応した水溶性メラミン樹脂(b)がドメインを形成して、上層塗膜13中に個数平均粒径5nm以上20nmの粒状で分散し、かつ、上層塗膜13の表面から深さ15nm以内の表層に濃化した状態となり易い。このため、製造された塗装金属板1において、金属外観、耐薬品浸透性及び耐溶剤性が更に向上し易くなる。 If heating is performed in a short time such as 1 second to 30 seconds as described above after the film formation of the upper layer paint, the self-shrinkage of the water-soluble melamine resin (b) is further suppressed, and 0.1 as described above When the cooling is performed in a short time of 2 seconds to 5 seconds, the diffusion of the water-soluble melamine resin (b) is suppressed. As a result, the water-soluble melamine resin (b) reacted with the polyurethane resin (a) forms a domain, and is dispersed in the upper layer coating 13 in particles having a number average particle diameter of 5 nm to 20 nm. It tends to be in the state of being concentrated in the surface layer within 15 nm in depth from the surface of. For this reason, in the coated metal plate 1 manufactured, the metal appearance, the chemical resistance and the solvent resistance can be further easily improved.
 ここで、加熱時間が1秒未満である場合には、ポリウレタン樹脂(a)と水溶性メラミン樹脂(b)との反応が不十分となり、耐薬品浸透性及び耐溶剤性が低下することがある。一方、加熱時間が30秒を超える場合には、水溶性メラミン樹脂(b)が自己縮合し易くなり、自己縮合粒が大きくなると共に、塗膜の表層へ濃化する現象が生じ、製造された塗装金属板1において、金属外観及び耐薬品浸透性が低下することがある。 Here, if the heating time is less than 1 second, the reaction between the polyurethane resin (a) and the water-soluble melamine resin (b) may be insufficient and the chemical resistance and the solvent resistance may be lowered. . On the other hand, when the heating time exceeds 30 seconds, the water-soluble melamine resin (b) tends to be self-condensed, the self-condensed particles become large, and the phenomenon occurs that the film is concentrated to the surface layer. In the coated metal plate 1, the metal appearance and the chemical resistance may decrease.
 また、冷却時間が0.1秒未満である場合、冷却が急激に行われる結果上層塗膜13に割れが生じることがある。一方、冷却時間が5秒を超える場合には、水溶性メラミン樹脂(b)の拡散が生じ、製造された塗装金属板1において、金属外観及び耐薬品浸透性が低下することがある。 In addition, when the cooling time is less than 0.1 seconds, the upper layer coating film 13 may be cracked as a result of rapid cooling. On the other hand, when the cooling time exceeds 5 seconds, diffusion of the water-soluble melamine resin (b) occurs, and the metal appearance and chemical resistance permeability may decrease in the manufactured coated metal plate 1.
 金属外観、耐薬品浸透性及び耐溶剤性の観点から、加熱時間は、1秒以上20秒以下であることが好ましい。また、同様な観点から、冷却時間は、0.1秒以上2秒以下であることが好ましい。 The heating time is preferably 1 second or more and 20 seconds or less from the viewpoint of metal appearance, chemical resistance, and solvent resistance. Moreover, it is preferable that cooling time is 0.1 second or more and 2 seconds or less from the same viewpoint.
 なお、最高到達温度とその保持時間については、特に制限されるものではなく、用いた水系溶媒に応じて、水系溶媒の沸点以上となる最高到達温度を適宜設定した上で、例えば、0.1秒以上5秒以下程度の保持時間を設定すればよい。 In addition, the maximum reaching temperature and the holding time thereof are not particularly limited, and may be, for example, 0.1, after appropriately setting the maximum reaching temperature to be the boiling point or more of the aqueous solvent according to the aqueous solvent used. The holding time may be set in the range of seconds to 5 seconds.
 また、上層塗膜13で濃化部103を複数形成する場合には、まず、40~100℃の温度まで1~20秒で加熱する。次に、200℃超まで1~10秒で加熱する。その後、冷却する。このように上層塗膜13を形成することで、表層の濃化部103に加えて、表層以外の深さ位置にも濃化部103が形成される。 Further, in the case of forming a plurality of concentrated portions 103 with the upper layer coating film 13, first, heating is performed to a temperature of 40 to 100 ° C. for 1 to 20 seconds. Next, it is heated to over 200 ° C. in 1 to 10 seconds. Then cool. By forming the upper-layer coating film 13 in this manner, in addition to the concentrated portion 103 of the surface layer, the concentrated portion 103 is also formed at depth positions other than the surface layer.
 以上、本実施形態に係る上層塗膜形成工程について、詳細に説明した。 The upper layer coating film forming process according to the present embodiment has been described above in detail.
<下層塗膜形成工程について>
 続いて、本実施形態に係る塗装金属板の製造方法における、下層塗膜形成工程について説明する。
 本実施形態に係る塗装金属板の製造方法において、下層塗膜形成工程については、特に制限はなく、周知の下層塗料を第二塗料の一例として使用して、周知の方法で下層塗膜15を形成することができる。
<About the lower layer film formation process>
Then, the lower layer coating-film formation process in the manufacturing method of the coated metal plate which concerns on this embodiment is demonstrated.
In the method of producing a coated metal sheet according to the present embodiment, the lower coating film forming step is not particularly limited, and a known lower coating is used as an example of the second coating, and the lower coating 15 is formed by a known method. It can be formed.
 周知の方法の中でも、金属外観、耐薬品浸透性及び耐溶剤性の観点から、下層塗膜形成工程は、アニオン性官能基を含み、ガラス転移温度がポリウレタン樹脂(a)のガラス転移温度以下であるポリウレタン樹脂(c)と、エポキシ樹脂(d)、シランカップリング剤(e)、並びに、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素を含有する防錆剤(f)の少なくとも何れかと、水系溶媒と、を含有する下層塗料を、金属板11の少なくも片面上に成膜及び加熱した後冷却して、下層塗膜15を形成する工程であることが好ましい。 Among the well-known methods, from the viewpoint of metal appearance, chemical resistance and solvent resistance, the lower coating film forming step contains an anionic functional group, and the glass transition temperature is not higher than the glass transition temperature of the polyurethane resin (a) A certain polyurethane resin (c), an epoxy resin (d), a silane coupling agent (e), and at least one element selected from the group consisting of P, V, Ti, Si and Zr The lower layer paint containing at least one of the rust preventive agent (f) and the aqueous solvent is formed into a film and heated on at least one surface of the metal plate 11 and then cooled to form the lower layer coating film 15 Is preferred.
[ポリウレタン樹脂(c)について]
 先だって言及しているように、ポリウレタン樹脂(c)のガラス転移温度は、ポリウレタン樹脂(a)のガラス転移温度以下であることが好ましい。ポリウレタン樹脂(c)のガラス転移温度がポリウレタン樹脂(a)のガラス転移温度以下であると、下層塗膜15と上層塗膜13との密着性が向上し、耐薬品浸透性がより一層向上し易くなる。
[Polyurethane resin (c)]
As mentioned earlier, the glass transition temperature of the polyurethane resin (c) is preferably equal to or less than the glass transition temperature of the polyurethane resin (a). When the glass transition temperature of the polyurethane resin (c) is equal to or lower than the glass transition temperature of the polyurethane resin (a), the adhesion between the lower coating 15 and the upper coating 13 is improved, and the chemical resistance is further improved. It will be easier.
 ポリウレタン樹脂(c)のガラス転移温度は、80℃以上160℃以下の範囲内の値であり、かつ、ポリウレタン樹脂(a)のガラス転移温度以下(好ましくは、ポリウレタン樹脂(a)のガラス転移温度よりも5℃以上低い)ことが、より好ましい。ポリウレタン樹脂(c)のガラス転移温度が80℃未満である場合には、耐薬品浸透性が低下することがある。一方、ポリウレタン樹脂(c)のガラス転移温度が160℃を超える場合には、加工性が低下することがある。加工性が低下すると、下層塗膜15に割れ等が生じ、耐薬品浸透性及び耐溶剤性も低下する。ポリウレタン樹脂(c)のガラス転移温度は、耐薬品浸透性及び耐溶剤性の観点(特に耐薬品浸透性の観点)から、好ましくは100℃以上160℃以下の範囲内である。 The glass transition temperature of the polyurethane resin (c) is a value within the range of 80 ° C. or more and 160 ° C. or less, and less than or equal to the glass transition temperature of the polyurethane resin (a) (preferably, the glass transition temperature of the polyurethane resin (a) It is more preferable that the temperature is lower than 5 ° C.). If the glass transition temperature of the polyurethane resin (c) is less than 80 ° C., the chemical resistance may decrease. On the other hand, when the glass transition temperature of the polyurethane resin (c) exceeds 160 ° C., the processability may be lowered. When the processability is lowered, the lower coating film 15 is cracked and the like, and the chemical resistance and the solvent resistance are also lowered. The glass transition temperature of the polyurethane resin (c) is preferably in the range of 100 ° C. or more and 160 ° C. or less from the viewpoints of chemical resistance and solvent resistance (in particular, in terms of chemical resistance).
 なお、ポリウレタン樹脂(c)は、ガラス転移点温度80℃以上160℃以下のポリウレタン樹脂と、ガラス転移点温度20℃以上60℃以下のポリウレタン樹脂と、を含むポリウレタン樹脂であってもよい。ガラス転移温度が異なるポリウレタン樹脂を使用し、ポリウレタン樹脂(c)のガラス転移温度を調整することで、耐薬品浸透性がより一層向上し易くなる。 The polyurethane resin (c) may be a polyurethane resin containing a polyurethane resin having a glass transition temperature of 80 ° C. to 160 ° C. and a polyurethane resin having a glass transition temperature of 20 ° C. to 60 ° C. By using a polyurethane resin having a different glass transition temperature and adjusting the glass transition temperature of the polyurethane resin (c), chemical resistance can be further improved.
 なお、ポリウレタン樹脂(c)の具体的な種類としては、ポリウレタン樹脂(a)で例示した各種のポリウレタン樹脂を挙げることができる。 In addition, as a specific kind of polyurethane resin (c), the various polyurethane resin illustrated by the polyurethane resin (a) can be mentioned.
[エポキシ樹脂(d)について]
 エポキシ樹脂(d)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族型エポキシ樹脂等を挙げることができる。これらの樹脂の中でも、脂肪族型エポキシ樹脂が焼付により変色し難いため、エポキシ樹脂(d)として用いることが、特に好ましい。
[Epoxy resin (d)]
Examples of the epoxy resin (d) include bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, aliphatic epoxy resin and the like. Among these resins, since the aliphatic epoxy resin is hardly discolored by baking, it is particularly preferable to use as the epoxy resin (d).
 これらエポキシ樹脂(d)の具体的な種類としては、特に限定されるものではなく、市販の各種のエポキシ樹脂(d)を使用することが可能であるほか、ガラス転移温度が上記の範囲内となるようなものを自前で合成して、適宜使用することが可能である。 The specific type of these epoxy resins (d) is not particularly limited, and various commercially available epoxy resins (d) can be used, and the glass transition temperature is within the above range. It is possible to synthesize such a thing by itself and use it appropriately.
[シランカップリング剤(e)について]
 シランカップリング剤(e)としては、特に制限されるものではなく、公知の各種のシランカップリング剤を用いることが可能である。このようなシランカップリング剤として、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、ビス(トリメトキシシリルプロピル)アミン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等を挙げることができる。かかるシランカップリング剤を下層塗料に含有させることで、下層塗膜15の耐薬品浸透性を更に向上させることが可能となる。
[Silane Coupling Agent (e)]
The silane coupling agent (e) is not particularly limited, and various known silane coupling agents can be used. As such a silane coupling agent, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (amino) Ethyl) -3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, bis (trimethoxysilylpropyl) amine, 3-glycidoxypropyltrimethoxysilane, 3-glylic Examples thereof include cidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane and the like. By containing such a silane coupling agent in the lower layer paint, it is possible to further improve the chemical resistance of the lower layer coating film 15.
[防錆剤(f)について]
 本実施形態に係る下層塗膜形成工程では、防錆剤(f)として、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素を含有する防錆剤を使用することが可能である。かかる防錆剤(f)を下層塗料に含有させることで、下層塗膜15の耐食性を向上させることが可能となる。
[About the rust inhibitor (f)]
In the lower coating film forming step according to this embodiment, a rust inhibitor containing at least one element selected from the group consisting of P, V, Ti, Si and Zr as a rust inhibitor (f) is used. It is possible to use. The corrosion resistance of the lower coating film 15 can be improved by incorporating the rust inhibitor (f) in the lower coating material.
 防錆剤(f)として機能するPを含有する化合物としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類及びこれらの塩や、アミノトリ(メチレンホスホン酸)、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等のホスホン酸類及びこれらの塩や、フィチン酸等の有機リン酸類及びこれらの塩等を挙げることができる。 Examples of P-containing compounds that function as antirust agents (f) include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and the like, salts thereof, and aminotri (methylene phosphonic acid ), Phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylene phosphonic acid), diethylene triamine penta (methylene phosphonic acid) and salts thereof, organic phosphoric acids such as phytic acid, and salts thereof Etc. can be mentioned.
 防錆剤(f)として機能するVを含有する化合物としては、例えば、五酸化バナジウム、メタバナジン酸、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウム、三酸化バナジウム、二酸化バナジウム、オキシ硫酸バナジウム、バナジウムオキシアセチルアセトネート、バナジウムアセチルアセトネート、三塩化バナジウム、リンバナドモリブデン酸等を挙げることができる。また、5価のバナジウム化合物を水酸基、カルボニル基、カルボキシル基、1級~3級アミノ基、アミド基、リン酸基及びホスホン酸基からなる群から選ばれる少なくとも1種の官能基を有する有機化合物により、4価~2価に還元したもの、オキソバナジウムカチオンと、塩酸、硝酸、リン酸、硫酸などの無機酸アニオン又はギ酸、酢酸、プロピオン酸、酪酸、シュウ酸等の有機酸アニオンとの塩や、グリコール酸バナジル、デヒドロアスコルビン酸バナジルのような、有機酸とバナジル化合物のキレート等を用いることができる。 As a compound containing V which functions as a rust inhibitor (f), for example, vanadium pentoxide, metavanadic acid, ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride, vanadium trioxide, vanadium dioxide, vanadium oxysulfate, Examples thereof include vanadium oxyacetylacetonate, vanadium acetylacetonate, vanadium trichloride, phosphorus vanadomolybdic acid and the like. In addition, an organic compound having at least one functional group selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, a primary to tertiary amino group, an amide group, a phosphoric acid group and a phosphonic acid group in a pentavalent vanadium compound , A salt of oxovanadium cation and an inorganic acid anion such as hydrochloric acid, nitric acid, phosphoric acid or sulfuric acid, or an organic acid anion such as formic acid, acetic acid, propionic acid, butyric acid or oxalic acid And chelates of vanadyl compounds with organic acids such as vanadyl glycolate and vanadyl dehydroascorbate can be used.
 防錆剤(f)として機能するTiを含有する化合物としては、例えば、シュウ酸チタンカリウム、硫酸チタニル、塩化チタン、チタンラクテート、チタンイソプロポキシド、チタン酸イソプロピル、チタンエトキシド、チタン2-エチル-1-ヘキサノラート、チタン酸テトライソプロピル、チタン酸テトラ-n-ブチル、チタニアゾル、チタンフッ化水素酸又はその塩等を挙げることができる。 Examples of the Ti-containing compound which functions as a rust inhibitor (f) include, for example, titanium oxalate potassium, titanyl sulfate, titanium chloride, titanium lactate, titanium isopropoxide, isopropyl titanate, titanium ethoxide, titanium 2-ethyl oxide -1-Hexanolate, tetraisopropyl titanate, tetra-n-butyl titanate, titania sol, titanium hydrofluoric acid or salts thereof and the like can be mentioned.
 防錆剤(f)として機能するSiを含有する化合物としては、例えば、スノーテックスC、スノーテックスO、スノーテックスN、スノーテックスS、スノーテックスUP、スノーテックスPS-M、スノーテックスPS-L、スノーテックス20、スノーテックス30、スノーテックス40(何れも日産化学工業社製)、アデライトAT-20N、アデライトAT-20A、アデライトAT-20Q(何れも旭電化工業社製)などのコロイダルシリカや、アエロジル50、アエロジル130、アエロジル200、アエロジル300、アエロジル380、アエロジルTT600、アエロジルMOX80、アエロジルMOX170(何れも日本アエロジル社製)などの気相シリカ等を挙げることができる。 Examples of compounds containing Si that function as antirust agents (f) include Snowtex C, Snowtex O, Snowtex N, Snowtex S, Snowtex UP, Snowtex PS-M, and Snowtex PS-L. Colloidal silica such as Snowtex 20, Snowtex 30, Snowtex 40 (all manufactured by Nissan Chemical Industries, Ltd.), Adelite AT-20N, Adelite AT-20A, Adelight AT-20Q (both manufactured by Asahi Denka Kogyo Co., Ltd.) And aerosols such as Aerosil 50, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil MOX 80, Aerosil MOX 170 (all manufactured by Nippon Aerosil Co., Ltd.) and the like.
 防錆剤(f)として機能するZrを含有する化合物としては、例えば、硝酸ジルコニル、酢酸ジルコニル、硫酸ジルコニル、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムナトリウム、ジルコニウムアセテート、ジルコニウムフッ化水素酸又はその塩等を挙げることができる。 As a compound containing Zr which functions as an antirust agent (f), for example, zirconyl nitrate, zirconyl acetate, zirconyl sulfate, ammonium zirconium carbonate, potassium zirconium carbonate, sodium zirconium carbonate, zirconium acetate, zirconium hydrofluoric acid or the same Salt etc. can be mentioned.
[着色剤について]
 上記のような成分を含有する下層塗料に分散される着色剤としては、上層塗料と同様に、特に制限されるものではなく、公知のものを適宜使用することができる。このような着色剤として、例えば、酸化チタン、酸化亜鉛、炭酸カルシウム、酸化アルミニウム、硫酸バリウム、アルミニウム、酸化鉄、カーボンブラック等の各種の無機顔料や、シアニン、キナクリドン等の各種の有機顔料や、各種の染料等を用いることができる。
[About coloring agent]
The colorant to be dispersed in the lower layer paint containing the components as described above is not particularly limited as in the case of the upper layer paint, and known materials can be suitably used. As such a coloring agent, for example, various inorganic pigments such as titanium oxide, zinc oxide, calcium carbonate, aluminum oxide, barium sulfate, aluminum, iron oxide, carbon black and the like, various organic pigments such as cyanine and quinacridone, Various dyes and the like can be used.
[水系溶媒について]
 水系溶媒としては、上記上層塗料と同様に、水、又は、水と低級アルコールとの混合液等を用いることが可能である。かかる水系溶媒は、水を50質量%以上(好ましくは80質量%以上)含有することが好ましい。
[About aqueous solvent]
As the aqueous solvent, water, a mixed solution of water and a lower alcohol, or the like can be used as in the above-mentioned upper layer paint. The aqueous solvent preferably contains 50% by mass or more (preferably 80% by mass or more) of water.
 水としては、蒸留水、イオン交換水、超純水、又は、限外濾過水等を挙げることができる。また、低級アルコールとしては、メタノール、エタノール、ブタノール、イソプロピルアルコール等といった、炭素数1以上4以下のアルコールを挙げることができる。 As water, distilled water, ion exchange water, ultrapure water, ultrafiltered water, etc. can be mentioned. Moreover, as a lower alcohol, C1-C4 alcohol, such as methanol, ethanol, butanol, isopropyl alcohol etc., can be mentioned.
[含有量について]
 以上説明したような、ポリウレタン樹脂(c)、エポキシ樹脂(d)、シランカップリング剤(e)及び防錆剤(f)の含有量については、特に制限されるものではなく、下層塗膜15に求める特性に応じて、各成分の含有量を適宜決定すればよい。例えば、ポリウレタン樹脂(c)の含有量は、30~95質量%の範囲内とすることが可能であり、エポキシ樹脂(d)の含有量は、1~5質量%の範囲内とすることが可能である。また、シランカップリング剤(e)の含有量は、例えば10~40質量%の範囲内とすることが可能であり、防錆剤(f)の含有量は、例えば1~15質量%の範囲内とすることが可能である。これらポリウレタン樹脂(c)、エポキシ樹脂(d)、シランカップリング剤(e)及び防錆剤(f)の合計含有量が100質量%となるように、上記範囲内から各成分の含有量を適宜決定すればよい。 
[About the content]
The content of the polyurethane resin (c), the epoxy resin (d), the silane coupling agent (e) and the rust inhibitor (f) as described above is not particularly limited, and the lower coating film 15 The content of each component may be appropriately determined in accordance with the characteristics to be obtained. For example, the content of the polyurethane resin (c) can be in the range of 30 to 95% by mass, and the content of the epoxy resin (d) can be in the range of 1 to 5% by mass It is possible. Further, the content of the silane coupling agent (e) can be, for example, in the range of 10 to 40% by mass, and the content of the antirust agent (f) is, for example, in the range of 1 to 15% by mass It is possible to do inside. The content of each component is within the above range so that the total content of these polyurethane resin (c), epoxy resin (d), silane coupling agent (e) and rust inhibitor (f) is 100% by mass. It may be determined appropriately.
[成膜方法(塗布方法)、加熱方法(焼付け方法)及び冷却方法について]
 下層塗膜形成工程において、金属板11の少なくとも片面上に下層塗料を成膜及び加熱した後冷却する方法については、特に制限はなく、例えば、上層塗膜形成工程で説明したような、各種の成膜方法(塗装方法)、加熱方法及び冷却方法を利用することができる。また、下層塗料を塗布した金属板11の最高到達温度、加熱時間、保持時間及び冷却時間についても、特に制限は無く、適宜設定すればよい。
[About a film forming method (coating method), a heating method (baking method) and a cooling method]
There is no particular limitation on the method of forming and heating the lower layer coating on at least one side of the metal plate 11 in the lower layer coating forming step, and there is no particular limitation. For example, various methods as described in the upper layer coating forming step A film forming method (coating method), a heating method and a cooling method can be used. In addition, the maximum attainable temperature, the heating time, the holding time, and the cooling time of the metal plate 11 coated with the lower layer paint are not particularly limited, and may be set as appropriate.
<その他の成分について>
 本実施形態に係る塗装金属板の製造方法において、上層塗料及び下層塗料には、いずれも、ワックス、レベリング剤、消泡剤、増粘剤、分散剤等といった周知の添加剤を含有させてもよい。すなわち、本実施形態に係る塗装金属板において、上層塗膜11及び下層塗膜15は、いずれも、これら周知の添加剤を含有してもよい。
<About other ingredients>
In the method of producing a coated metal sheet according to the present embodiment, the upper layer paint and the lower layer paint may contain known additives such as a wax, a leveling agent, an antifoamer, a thickener, a dispersant, etc. Good. That is, in the coated metal sheet according to the present embodiment, the upper coating film 11 and the lower coating film 15 may contain any of these known additives.
<テクスチャ形成工程について>
 本実施形態に係る塗装金属板の製造方法では、上記のような上層塗料を塗布する金属板11の表面に、必要に応じて、梨地、荒らし、筋目(ヘアライン)、布目(サテン)、槌目(ハンマー)等といった、各種のテクスチャを形成してもよい。金属板11の表面に上記のようなテクスチャを予め形成することで、本実施形態に係る塗装金属板の意匠性を更に向上させることが可能となる。
<About the texture formation process>
In the method of producing a coated metal sheet according to the present embodiment, the surface of the metal sheet 11 to which the upper layer paint as described above is applied is, as required, textured, roughened, streaks (hair lines), weaves (satins), squares Various textures such as (hammer) may be formed. By previously forming the texture as described above on the surface of the metal plate 11, it is possible to further improve the design of the coated metal plate according to the present embodiment.
 ここで、上記のような各種のテクスチャを形成するための方法や用いる装置については、特に制限されるものではなく、公知の各種のものを適宜利用することが可能である。 Here, the method and apparatus for forming the various textures as described above are not particularly limited, and various known ones can be appropriately used.
 以上、本実施形態に係る塗装金属板の製造方法について、詳細に説明した。 As mentioned above, the manufacturing method of the paint metal plate concerning this embodiment was explained in detail.
 以下では、実施例及び比較例を示しながら、本発明に係る塗装金属板及び塗装金属板の製造方法について、より具体的に説明する。なお、以下に示す実施例は、本発明に係る塗装金属板及び塗装金属板の製造方法のあくまでも一例にすぎず、本発明に係る塗装金属板及び塗装金属板の製造方法が下記の例に限定されるものではない。 Below, the manufacturing method of a coated metal plate and a coated metal plate concerning the present invention is explained more concretely, showing an example and a comparative example. In addition, the Example shown below is only an example of the manufacturing method of the coating metal plate which concerns on this invention, and a coating metal plate only, and the manufacturing method of the coating metal plate which concerns on this invention, and a coating metal plate is limited to the following example. It is not something to be done.
(試験例1)<金属板(原板)>
 新日鐵住金株式会社製の溶融亜鉛めっき鋼板「NSシルバージンク(登録商標)」(以降、「GI」と称する。)、新日鐵住金株式会社製の電気亜鉛めっき鋼板「NSジンコート(登録商標)」(以降、「EG」と称する。)、新日鐵住金株式会社製の亜鉛-ニッケル合金めっき鋼板「NSジンクライト(登録商標)」(以降、「ZL」と称する。)、亜鉛―鉄合金めっき「NSシルバーアロイ(登録商標)」(以降、「GA」と称する)、アルミニウム板「JIS3004」(以降、「Al」と称する。)、ステンレス鋼板「SUS430」(以降、「SUS」と称する。)、新日鐵住金株式会社製の亜鉛-アルミニウム-マグネシウム-シリコン合金めっき鋼板「スーパーダイマ(登録商標)」(以降、「SD」と称する。)、日新製鋼株式会社製の亜鉛-アルミニウム-マグネシウム合金めっき鋼板「ZAM(登録商標)」(以降、「ZAM」と称する。)を、金属板(原板)として使用した。金属板の板厚は、それぞれ0.6mmであった。
(Test Example 1) <Metal plate (original plate)>
Hot-dip galvanized steel sheet "NS Silver Zinc (registered trademark)" manufactured by Nippon Steel & Sumikin Co., Ltd. (hereinafter referred to as "GI"), electrogalvanized steel sheet "NS Gin Coat (registered trademark) manufactured by Nippon Steel & Sumikin Co., Ltd. (Hereinafter referred to as “EG”), zinc-nickel alloy plated steel sheet “NS zincite (registered trademark)” (hereinafter referred to as “ZL”) manufactured by Nippon Steel & Sumikin Co., Ltd., zinc-iron Alloy plating "NS Silver Alloy (registered trademark)" (hereinafter referred to as "GA"), aluminum plate "JIS 3004" (hereinafter referred to as "Al"), stainless steel plate "SUS430" (hereinafter referred to as "SUS" ), Zinc-Aluminum-Magnesium-Silicon Alloy Plated Steel Sheet “Super Dima (registered trademark)” (hereinafter referred to as “SD”) manufactured by Nippon Steel & Sumikin Co., Ltd., Nisshin Steelmaking Co., Ltd. Zinc made Formula Company - aluminum - magnesium alloy plated steel sheet "ZAM (registered trademark)" (. Hereinafter referred to as "ZAM") was used as the metal plate (original plate). The thickness of each of the metal plates was 0.6 mm.
 ZLのめっき付着量は、片面あたり20g/mであり、めっき層中のニッケル量は、12質量%であった。また、GI、SD、GL、ZAMのめっき付着量は、それぞれ片面あたり60g/mであった。GAのめっき付着量は、片面あたり45g/mであった。EGのめっき付着量は、片面あたり20g/mであった。  The plating adhesion amount of ZL was 20 g / m 2 per one side, and the amount of nickel in the plating layer was 12% by mass. Moreover, the plating adhesion amount of GI, SD, GL, and ZAM was 60 g / m 2 per one side, respectively. The plating adhesion amount of GA was 45 g / m 2 per one side. The plating adhesion amount of EG was 20 g / m 2 per one side.
<塗料>
 本試験例では、上記のような金属板(原板)の片面上に、上層塗膜のみを有する図1Aに示したような1層構造、又は、下層塗膜及び上層塗膜を有する図1Bに示したような2層構造の塗装金属板を作製した。ここで、上層塗料及び下層塗料の調整に使用したポリウレタン樹脂を、以下の表1に示した。同様に、下層塗料の調整に使用したポリエステル樹脂、水溶性メラミン樹脂、シランカップリング剤、防錆剤、及び、着色剤を、それぞれ、以下の表2~表7に示した。
<Paint>
In this test example, the single-layer structure as shown in FIG. 1A having only the upper coating film, or the FIG. 1B having the lower coating film and the upper coating film on one surface of the metal plate (original plate) as described above. The coated metal plate of the two-layer structure as shown was produced. Here, polyurethane resins used for preparation of the upper layer paint and the lower layer paint are shown in Table 1 below. Similarly, polyester resins, water-soluble melamine resins, silane coupling agents, rust inhibitors, and colorants used for the preparation of the lower layer paint are shown in Tables 2 to 7 below, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[自作ポリウレタン樹脂A]
 1,3-ビス(イソシアネートメチル)シクロヘキサン145g、ジメチロールプロピオン酸20g、ネオペンチルグリコール15g、分子量1000のポリカーボネートジオール75g、溶剤としてアセトニトリル64gを加え、窒素雰囲気下、75℃に昇温して、3時間攪拌した。所定のアミン当量に達したことを確認し、この反応液を40℃まで降温させた後、トリエチルアミン(沸点89℃)30gを加え、ポリウレタンプレポリマーのアセトニトリル溶液を得た。この溶液300gを、水700gにホモディスパーを用いて分散させエマルション化し、溶液を40℃に保持し、鎖伸長剤としてエチレンジアミンヒドラジン一水和物35.6gを添加することで鎖伸長反応させた。続いて、反応液を50℃、150mmHgの減圧下でポリウレタンプレポリマー合成時に使用したアセトニトリルを留去することにより、自作ポリウレタン樹脂Aを得た。
 なお、原料として用いられたトリエチルアミンは、樹脂の精製工程で除去されている。
[Self-made polyurethane resin A]
Add 145 g of 1,3-bis (isocyanate methyl) cyclohexane, 20 g of dimethylol propionic acid, 15 g of neopentyl glycol, 75 g of polycarbonate diol having a molecular weight of 1000, 64 g of acetonitrile as a solvent, raise the temperature to 75 ° C under a nitrogen atmosphere, Stir for hours. After confirming that the predetermined amine equivalent was reached, the reaction solution was cooled to 40 ° C., and then 30 g of triethylamine (boiling point 89 ° C.) was added to obtain an acetonitrile solution of polyurethane prepolymer. 300 g of this solution was dispersed in 700 g of water using a homodisper to form an emulsion, the solution was kept at 40 ° C., and chain extension reaction was carried out by adding 35.6 g of ethylenediaminehydrazine monohydrate as a chain extender. Then, the self-made polyurethane resin A was obtained by distilling away the acetonitrile used at the time of 50 degreeC and a pressure reduction of 150 mmHg for polyurethane prepolymer synthesis at the reduced pressure.
In addition, the triethylamine used as a raw material is removed at the refinement | purification process of resin.
[自作ポリウレタン樹脂B]
 1,3-ビス(イソシアネートメチル)シクロヘキサン145g、ジメチロールプロピオン酸20g、ネオペンチルグリコール15g、分子量1000のポリカーボネートジオール75g、溶剤としてアセトニトリル64gを加え、窒素雰囲気下、75℃に昇温して、3時間攪拌した。所定のアミン当量に達したことを確認し、この反応液を40℃まで降温させた後、トリエチルアミン(沸点89℃)20.00gを加え、ポリウレタンプレポリマーのアセトニトリル溶液を得た。この溶液300gを、水700.00gにホモディスパーを用いて分散させエマルション化し、溶液を40℃に保持し、鎖伸長剤としてγ-(2-アミノエチル)アミノプロピルトリメトキシシラン21g、及びエチレンジアミンヒドラジン一水和物18gを添加することで鎖伸長反応させた。続いて、反応液を50℃、150mmHgの減圧下でポリウレタンプレポリマー合成時に使用したアセトニトリルを留去することにより、自作ポリウレタン樹脂Bを得た。
 なお、原料として用いられたトリエチルアミンは、樹脂の精製工程で除去されている。
[Self-made polyurethane resin B]
Add 145 g of 1,3-bis (isocyanate methyl) cyclohexane, 20 g of dimethylol propionic acid, 15 g of neopentyl glycol, 75 g of polycarbonate diol having a molecular weight of 1000, 64 g of acetonitrile as a solvent, raise the temperature to 75 ° C under a nitrogen atmosphere, Stir for hours. After confirming that the predetermined amine equivalent was reached, the reaction liquid was cooled to 40 ° C., and then 20.00 g of triethylamine (boiling point 89 ° C.) was added to obtain an acetonitrile solution of a polyurethane prepolymer. 300 g of this solution is dispersed in 70. 00 g of water using a homodisper to form an emulsion, the solution is kept at 40 ° C., 21 g of γ- (2-aminoethyl) aminopropyltrimethoxysilane as a chain extender, and ethylenediaminehydrazine The chain extension reaction was carried out by adding 18 g of monohydrate. Subsequently, the acetonitrile used at the time of polyurethane prepolymer synthesis was distilled off at 50 ° C. under a reduced pressure of 150 mmHg to obtain a self-made polyurethane resin B.
In addition, the triethylamine used as a raw material is removed at the refinement | purification process of resin.
 表1~表7に示した原料を使用し、表8及び表9の記載に従って水に各原料を所定量混合することで、上層塗料及び下層塗料をそれぞれ製造した。 The upper layer paint and the lower layer paint were respectively manufactured by using the materials shown in Tables 1 to 7 and mixing predetermined amounts of each material with water according to the description of Table 8 and Table 9.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 なお、上記表9において、下層塗料9、10、11では、主樹脂-1:100質量部に対して、主樹脂-2を15質量部の割合で調合した。 In Table 9, in the lower layer paints 9, 10 and 11, the main resin-2 was blended at a ratio of 15 parts by mass with respect to 100 parts by mass of the main resin-1.
<塗装金属板の製造>
 各種金属板を、FC-4336(日本パ-カライジング製)を2質量%含有する60℃温度の水溶液中に10秒間浸漬することで脱脂を行い、水洗後、乾燥させた。
<Manufacturing of painted metal sheets>
Various metal plates were degreased by immersion for 10 seconds in an aqueous solution at 60 ° C. temperature containing 2% by mass of FC-4336 (manufactured by Nippon Parkerizing Co., Ltd.), washed with water and dried.
 次に、上述のように製造した下層塗料を、ロールコーターにて乾燥膜厚で所定の膜厚となるように、それぞれ塗装した。熱風を吹き込んだ誘導加熱炉にて、金属板の最高到達板温が150℃となり、かつ、加熱開始から最高到達温度までの加熱時間が10秒となる条件で、下層塗料の膜を加熱(乾燥硬化)した。最高到達温度に達してから1秒後に、塗装された金属板へ水をスプレーにて拭きかけ、最高到達温度から30℃までの冷却時間が1秒となる条件で水冷した。なお、加熱時における最高到達温度の保持時間は、1秒とした。 Next, the lower layer paint manufactured as mentioned above was each coated with a roll coater so as to obtain a predetermined film thickness with a dry film thickness. In the induction heating furnace blown with hot air, the film of the lower layer paint is heated (dried) under the condition that the maximum temperature of the metal plate reaches 150 ° C and the heating time from the start of heating to the maximum temperature is 10 seconds Cured). One second after reaching the maximum reaching temperature, the coated metal plate was sprayed with water by a spray, and water cooling was performed under the condition that the cooling time from the maximum reaching temperature to 30 ° C. was 1 second. In addition, the holding time of the highest reach | attainment temperature at the time of a heating was 1 second.
 次に、上述のように製造した上層塗料を、ロールコーターにて乾燥膜厚で所定の膜厚となるように、それぞれ塗装した。熱風を吹き込んだ誘導加熱炉にて、金属板の最高到達板温が230℃となり、加熱開始から最高到達温度までの加熱時間が10秒となる条件で、上層塗料の膜を加熱(乾燥硬化)した。最高到達温度に達してから1秒後に、塗装された金属板へ水をスプレーにて拭きかけ、最高到達温度に達してから1秒後に、塗装された金属板へ水をスプレーにて拭きかけ、最高到達温度から30℃までの冷却時間が1秒となる条件で水冷した。なお、加熱時における最高到達温度の保持時間は、1秒とした。 Next, the upper layer paint manufactured as mentioned above was each coated with a roll coater so as to have a predetermined film thickness with a dry film thickness. In the induction heating furnace blown with hot air, the film temperature of the upper layer paint is heated (dry-cured) under the condition that the maximum temperature of the metal plate reaches 230 ° C and the heating time from the start of heating to the maximum temperature is 10 seconds. did. One second after reaching the highest reaching temperature, spray the water onto the painted metal plate with a spray, and one second after reaching the highest reaching temperature, wipe the water onto the painted metal plate with a spray. Water cooling was performed under the condition that the cooling time from the highest temperature to 30 ° C. was 1 second. In addition, the holding time of the highest reach | attainment temperature at the time of a heating was 1 second.
<水準>
 製造したそれぞれの塗装金属板のサンプルについて、上層塗膜及び下層塗膜の構成を分析した。
 具体的には、上層塗膜及び下層塗膜の構成部位(ウレタン結合骨格(UB)、トリアジン環骨格(TR)、エポキシ基(EP)、シランカップリング剤に由来するシロキサン結合(シラン)の有無については、フーリエ変換赤外分光光度計(FT-IR、PerkinElmer社製Frontier)を用いて塗膜を分析し、以下に示す振動ピークが観測されるか否かに基づき判断した。各構造が検出された場合は、表中に「有」と記載した。
  ウレタン結合骨格(UB):1540cm-1近傍に観測されるN-H変角振動の振動ピーク、及び、1730cm-1近傍に観測されるC=O伸縮振動の振動ピーク
  トリアジン環骨格(TR):1550、1450、815cm-1近傍に観測されるトリアジン環由来の振動ピーク
  エポキシ基(EP):910cm-1近傍に観測されるエポキシ基由来の振動ピーク
  シロキサン結合:1050cm-1近傍に観測されるSi-O-Si伸縮振動の振動ピーク
<Level>
The composition of the upper-layer coating film and the lower-layer coating film was analyzed about the sample of each manufactured coated metal plate.
Specifically, the upper coating film and the lower coating film constituting site (urethane bond skeleton (UB), triazine ring skeleton (TR), epoxy group (EP), presence of siloxane bond (silane) derived from silane coupling agent) The coating film was analyzed using a Fourier transform infrared spectrophotometer (FT-IR, PerkinElmer Frontier), and it was judged based on whether or not the vibration peak shown below was observed. When it was done, it described in the table as "presence".
Urethane bond backbone (UB): 1540cm -1 are observed in the vicinity of the N-H vibrational peak of bending vibration, and the vibration peak triazine ring skeleton of C = O stretching vibration is observed near 1730cm -1 (TR): 1550,1450,815Cm -1 vibrational peak epoxy group derived from triazine ring observed in the vicinity (EP): 910cm -1 from epoxy groups observed in the vicinity of the vibration peak siloxane bond: 1050 cm -1 Si observed in the vicinity Peak of -O-Si stretching vibration
 また、既述の方法に従って、上層塗膜において、表層に存在する濃化部の厚さ(濃化深さ)、及び、粒状のトリアジン部位(水溶性メラミン樹脂)の個数平均粒径(粒径)を、それぞれ測定した。また、第一塗膜の表面から0.2μmの深さ位置におけるN濃度N1と、第一塗膜と金属板との界面から第一塗膜側に0.2μmの深さ位置におけるN濃度N2との比率であるN1/N2(濃化倍率)について、既述の方法に従って測定した。更に、製造したそれぞれの塗装金属板のサンプルについて、既述の方法に従って、各塗膜のガラス転移温度(Tg)を測定した。
 また、表層濃化部を酸化オスミウムで染色し、透過型電子顕微鏡を用いて10万倍の倍率で観察したときに5nm以上のメラミン粒子が観察されるかどうか、及び、濃化部が複数形成されているかどうかを、既述の方法に従って判定した。
Further, according to the method described above, in the upper layer coating film, the thickness (depth of concentration) of the concentrated portion present in the surface layer, and the number average particle diameter (particle diameter) of the particulate triazine portion (water soluble melamine resin) ) Were each measured. Also, an N concentration N1 at a depth of 0.2 μm from the surface of the first coating and an N concentration N2 at a depth of 0.2 μm from the interface between the first coating and the metal plate on the first coating side The ratio of N1 / N2 (concentration factor) was measured according to the method described above. Furthermore, the glass transition temperature (Tg) of each coating film was measured according to the method described above for each of the manufactured coated metal sheet samples.
In addition, whether the surface concentrated part is stained with osmium oxide and observed at a magnification of 100,000 times using a transmission electron microscope, whether or not melamine particles of 5 nm or more are observed, and a plurality of concentrated parts are formed It was determined according to the method described above whether or not it was.
<評価方法>
 製造したそれぞれの塗装金属板について、以下に示す基準で評価を行った。
<Evaluation method>
Each of the manufactured coated metal sheets was evaluated based on the criteria shown below.
[金属外観] 
 製造したそれぞれの塗装金属板について、CIELAB(JISZ8729)のL*,a*,b*表色系を、コニカミノルタ製CR-400分光測色計(光源10°D65、SCI方式)で測定し、(優)A、B、C、D(劣)の4段階で評価した。
  A:L*が60以上、かつ、|a*|≦1
  B:L*が60未満、かつ、|a*|≦1
  C:L*が60未満、かつ、|a*|≧1
  D:L*が60未満、|a*|≧1、かつ、|b*|≧6
[Metal appearance]
The L *, a *, b * color system of CIELAB (JIS Z8729) was measured for each of the manufactured coated metal plates with a CR-400 spectrocolorimeter (light source 10 ° D 65, SCI method) manufactured by Konica Minolta, (Excellent) A, B, C, D (Degraded) rated in four steps.
A: L * is 60 or more, and | a * | ≦ 1
B: L * is less than 60 and | a * | ≦ 1
C: L * is less than 60 and | a * || 1
D: L * is less than 60, | a * | ≧ 1, and | b * | ≧ 6
[耐薬品浸透性試験]
 製造したそれぞれの塗装金属板を幅5cmに切断し、端面をすべてニトフロン(登録商標)テープで保護したサンプルを、5%硫酸水と5%水酸化ナトリウム水に20℃×24時間浸漬し、変色の程度を(優)A、B、C、D(劣)の4段階で評価した。
  A:変色なし
  A―B:ごくわずかに変色あり
  B:わずかに変色あり
  C:多くの変色あり
  D:多くの変色かつ塗膜剥離あり
[Chemical resistance penetration test]
Each coated metal plate manufactured is cut into a width of 5 cm, and all the end faces are protected with Nitoflon (registered trademark) tape, the sample is dipped in 5% sulfuric acid water and 5% sodium hydroxide water at 20 ° C for 24 hours to change color The degree of was evaluated in four grades of (excellent) A, B, C, D (inferior).
A: No color change A-B: Very slight color change B: Slight color change C: Many color change D: Many color change and film peeling
[加工性試験]
 製造したそれぞれの塗装金属板を幅5cmに切断し、JIS G3312に準じた試験方法により、20℃の雰囲気中で2T曲げを行った。具体的には、試験片と同一の塗板を2枚内側にはさみ、上層塗膜及び下層塗膜が形成されている表面を外側にして、180度密着曲げを行った。塗膜の亀裂を(優)A、B、C、D(劣)の4段階で評価した。
  A:亀裂なし
  B:わずかに亀裂あり
  C:多くの亀裂あり
  D:多くの亀裂かつ塗膜剥離あり
[Processability test]
Each coated metal plate manufactured was cut into a width of 5 cm, and 2 T bending was performed in an atmosphere of 20 ° C. by a test method according to JIS G3312. Specifically, two coated plates identical to the test piece were sandwiched inside, and the surface on which the upper coating film and the lower coating film were formed was placed outside, and the contact bending was performed 180 degrees. The cracks of the coating film were evaluated in four grades of (excellent) A, B, C and D (inferior).
A: no cracks B: slight cracks C: many cracks D: many cracks and peeling of coating
[耐汚染性試験]
 製造したそれぞれの塗装金属板に対して、マジックインキ(寺西化学工業株式会社)赤色を塗布し、24時間後にエタノールで拭き取り、インクの痕残りを(優)A、B、C、D(劣)の4段階で評価した。なお、痕残りが顕著なものについては、市販の分光測色計(光源10°D65、SCI方式)を用いて、試験前後でCIELAB(JISZ8729)の赤みを表すa*値を測定し、その差(Δa*)により、以下のとおり評価した。
  A:痕残りなし
  B:わずかに痕残りあり
  C:Δa*≦3
  D:Δa*>3
[Stain resistance test]
To each of the manufactured coated metal plates, apply Magic Ink (Teranishi Chemical Industry Co., Ltd.) red color, wipe it off with ethanol after 24 hours, and mark the traces of ink (excellent) A, B, C, D (inferior) It was evaluated in four stages. In addition, about the thing whose mark residue is remarkable, using a commercially available spectrocolorimeter (light source 10 ° D 65, SCI method), measure the a * value representing the redness of CIELAB (JIS Z8729) before and after the test, and the difference It was evaluated as follows by (Δa *).
A: No mark remaining B: Mark left slightly C: Δa * ≦ 3
D: Δa *> 3
 製造したそれぞれの塗装金属板の水準及び評価結果について、表10に一覧にして示した。なお、表10中の略称等については、次の通りである。略称等については他の表についても同様である。
  UB:ウレタン結合骨格
  TR:トリアジン環骨格
  EP:エポキシ基
  シラン:シロキサン結合
  防錆剤:防錆剤(f)
  濃化深さ:表層に形成されている濃化部(表層濃化部と呼称する場合がある)の厚さ
  粒径:トリアジン粒状物(水溶性メラミン樹脂)の個数平均粒径
  Tg:各塗膜のガラス転移温度
  Tg差:上層塗膜と下層塗膜とのガラス転移温度の差(上層塗膜のガラス転移温度-下層塗膜のガラス転移温度)
The level of each coated metal plate manufactured and the evaluation results are listed in Table 10 and listed. The abbreviations and the like in Table 10 are as follows. The same applies to the other tables for abbreviations and the like.
UB: Urethane bond frame TR: Triazine ring frame EP: Epoxy group Silane: Siloxane bond Antirust agent: Antirust agent (f)
Thickening depth: Thickness of thickened portion (sometimes referred to as surface thickened portion) formed on surface layer Particle diameter: Number average particle diameter of triazine particles (water-soluble melamine resin) Tg: Each coating Glass transition temperature of the film Tg difference: difference in glass transition temperature between upper and lower coating films (glass transition temperature of upper coating film-glass transition temperature of lower coating film)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記表10-1及び表10-2から明らかなように、本発明の実施例に該当する塗装金属板は、金属外観、耐薬品浸透性、耐溶剤性及び加工性に優れていることがわかる。 As apparent from the above Table 10-1 and Table 10-2, it can be understood that the coated metal sheet corresponding to the example of the present invention is excellent in metal appearance, chemical resistance, solvent resistance and processability. .
 一方、上記表10-2から明らかなように、上層塗膜13の表層に濃化層が形成されていない場合(表層を10万倍で観察したとき、個数平均粒径5nm以上のメラミン粒子が観察された場合)(比較例105)には、実施例よりも耐薬品浸透性が明らかに劣ることがわかる。上層塗膜13にウレタン結合骨格がない場合(比較例104)には、実施例よりも耐薬品浸透性が明らかに劣ることがわかる。トリアジン環骨格がなく上層塗膜の表層にも粒状のトリアジン部位が濃化していない場合(比較例103)には、実施例よりも耐薬品性浸透性及び耐溶剤性が明らかに劣ることがわかる。上層塗膜13のガラス転移点温度が80℃より小さい場合(比較例101)には、実施例よりも耐薬品性浸透性が明らかに劣ることがわかる。上層塗膜13のガラス転移点温度が170℃より大きい場合(比較例102)には、加工性が明らかに劣り、加工を施したとき耐薬品性浸透性及び耐溶剤性が低下することがわかる。 On the other hand, as apparent from the above Table 10-2, when a concentrated layer is not formed on the surface layer of the upper layer coating film 13 (when the surface layer is observed at 100,000 times, melamine particles having a number average particle diameter of 5 nm or more are In the case where it is observed (Comparative Example 105), it can be seen that the chemical resistance is clearly inferior to that of the example. In the case where the upper layer coating film 13 does not have a urethane bond skeleton (Comparative Example 104), it can be seen that the chemical resistance penetration is clearly inferior to that of the example. In the case where there is no triazine ring skeleton and the granular triazine portion is not concentrated also on the surface layer of the upper layer coating film (Comparative Example 103), it can be seen that the chemical resistance permeability and the solvent resistance are clearly inferior to those of Examples. . In the case where the glass transition temperature of the upper coating film 13 is less than 80 ° C. (Comparative Example 101), it can be seen that the chemical resistance permeability is clearly inferior to that of the example. In the case where the glass transition temperature of the upper coating film 13 is higher than 170 ° C. (Comparative Example 102), the processability is clearly inferior, and it can be seen that the chemical resistance permeability and the solvent resistance decrease when processing is performed. .
 また、表10-2から明らかなように、上層塗料がシリカを含む場合(比較例106)には、実施例よりも耐薬品浸透性及び耐汚染性が劣っていた。
 上層塗料が金属錯化合物を含む場合(比較例107,108,109)は、耐薬品浸透性が実施例よりも劣っていた。
Further, as is clear from Table 10-2, when the upper layer paint contains silica (Comparative Example 106), the chemical resistance and the stain resistance are inferior to those of Examples.
When the upper layer paint contained a metal complex (Comparative Examples 107, 108, 109), the chemical resistance was inferior to that of Examples.
 また、上層塗膜13において、粒状のトリアジン部位が表層から15nmを超えた位置に濃化している場合(実施例143)には、他の実施例に比べ加工性が低下して、加工を施したときに、耐薬品性浸透性及び耐溶剤性が低下することがわかる。また、上層塗膜13のガラス転移温度よりも下層塗膜15のガラス転移温度が高い場合(実施例146)には、他の実施例に比べ、耐薬品浸透性が劣ることがわかる。 Moreover, in the upper layer coating film 13, when the granular triazine portion is concentrated to a position beyond 15 nm from the surface layer (Example 143), the processability is lowered compared to the other examples, and the processing is performed. It can be seen that the chemical resistance and the solvent resistance decrease when the In addition, when the glass transition temperature of the lower coating film 15 is higher than the glass transition temperature of the upper coating film 13 (Example 146), it can be seen that the chemical resistance is inferior to that of the other examples.
(試験例2)<金属板(原板)>
 新日鐵住金株式会社製の電気亜鉛めっき鋼板「NSジンコート(登録商標)」(以降、「EG」と称する。)を、金属板(原板)として使用した。EGのめっき付着量は、片面あたり20g/mであった。
(Test Example 2) <Metal plate (original plate)>
An electrogalvanized steel sheet "NS Gin Coat (registered trademark)" (hereinafter referred to as "EG") manufactured by Nippon Steel & Sumikin Co., Ltd. was used as a metal sheet (original sheet). The plating adhesion amount of EG was 20 g / m 2 per one side.
<塗料>
 本試験例では、上記のような金属板(原板)の片面上に、上層塗膜のみを有する図1Aに示したような1層構造、又は、下層塗膜及び上層塗膜を有する図1Bに示したような2層構造の塗装金属板を作製した。
<Paint>
In this test example, the single-layer structure as shown in FIG. 1A having only the upper coating film, or the FIG. 1B having the lower coating film and the upper coating film on one surface of the metal plate (original plate) as described above. The coated metal plate of the two-layer structure as shown was produced.
 上層塗膜及び下層塗膜の形成に使用した市販樹脂、シランカップリング剤及び防錆剤は、以下の通りである。
  上層塗膜用ポリウレタン樹脂:試験例1におけるポリウレタン樹脂4
  下層塗膜用ポリウレタン樹脂:試験例1におけるポリウレタン樹脂3
  水溶性メラミン樹脂:試験例1におけるメラミン樹脂2
  エポキシ樹脂:試験例1におけるエポキシ樹脂1
  シランカップリング剤:試験例1におけるシランカップリング剤1
  防錆剤:試験例1における防錆剤2
  ワックス:ケミパールS100(三井化学社製)
The commercially available resin, silane coupling agent and rust inhibitor used to form the upper layer coating film and the lower layer coating film are as follows.
Polyurethane resin for upper layer coating film: Polyurethane resin 4 in Test Example 1
Polyurethane resin for lower layer coating: Polyurethane resin 3 in Test Example 1
Water-soluble melamine resin: Melamine resin 2 in Test Example 1
Epoxy resin: Epoxy resin 1 in Test Example 1
Silane Coupling Agent: Silane Coupling Agent 1 in Test Example 1
Rust inhibitor: Rust inhibitor 2 in Test Example 1
Wax: Chemipearl S100 (Mitsui Chemical Co., Ltd.)
 上層塗料は、表11に従った配合で、上記ポリウレタン樹脂、メラミン樹脂及びワックスを、それぞれ所定量混合して作製した。同様に、下層塗料は、表11に従った配合で、上記ポリウレタン樹脂、エポキシ樹脂、シランカップリング剤、防錆剤及び着色剤を、それぞれ所定量混合して作製した。 The upper layer paint was prepared by mixing predetermined amounts of the above-mentioned polyurethane resin, melamine resin and wax in the composition according to Table 11, respectively. Similarly, the lower layer paint was prepared by mixing predetermined amounts of the above-mentioned polyurethane resin, epoxy resin, silane coupling agent, rust inhibitor and coloring agent in the composition according to Table 11, respectively.
<塗装金属板の製造>
 各種金属板を、FC-4336(日本パ-カライジング製)を2質量%含有する60℃温度の水溶液中に10秒間浸漬することで脱脂を行い、水洗後、乾燥させた。
<Manufacturing of painted metal sheets>
Various metal plates were degreased by immersion for 10 seconds in an aqueous solution at 60 ° C. temperature containing 2% by mass of FC-4336 (manufactured by Nippon Parkerizing Co., Ltd.), washed with water and dried.
 次に、上述のように製造した下層塗料を、ロールコーターにて乾燥膜厚で0.5μmの膜厚となるように、それぞれ塗装した。熱風を吹き込んだ誘導加熱炉にて、金属板の最高到達板温が150℃となり、かつ、加熱開始から最高到達温度までの加熱時間が5秒となる条件で、下層塗料の膜を加熱(乾燥硬化)した。最高到達温度に達してから1秒後に、塗装された金属板へ水をスプレーにて拭きかけ、最高到達温度から30℃までの冷却時間が1秒となる条件で水冷した。なお、加熱時における最高到達温度の保持時間は、1秒とした。 Next, the lower layer paint produced as described above was coated by a roll coater to a dry film thickness of 0.5 μm. In the induction heating furnace blown with hot air, the film of the lower layer paint is heated (dried) under the condition that the maximum reached plate temperature of the metal plate is 150 ° C and the heating time from the start of heating to the maximum reached temperature is 5 seconds Cured). One second after reaching the maximum reaching temperature, the coated metal plate was sprayed with water by a spray, and water cooling was performed under the condition that the cooling time from the maximum reaching temperature to 30 ° C. was 1 second. In addition, the holding time of the highest reach | attainment temperature at the time of a heating was 1 second.
 次に、上述のように製造した上層塗料を、ロールコーターにて乾燥膜厚で10μmの膜厚となるように、それぞれ塗装した。熱風を吹き込んだ誘導加熱炉にて、金属板の最高到達板温が230℃となり、加熱開始から最高到達温度までの加熱時間が10秒となる条件で、上層塗料の膜を加熱(乾燥硬化)した。最高到達温度に達してから1秒後に、塗装された金属板へ水をスプレーにて拭きかけ、最高到達温度に達してから1秒後に、塗装された金属板へ水をスプレーにて拭きかけ、最高到達温度から30℃までの冷却時間が1秒となる条件で水冷した。なお、加熱時における最高到達温度の保持時間は、1秒とした。 Next, the upper layer paint produced as described above was coated by a roll coater to a dry film thickness of 10 μm. In the induction heating furnace blown with hot air, the film temperature of the upper layer paint is heated (dry-cured) under the condition that the maximum temperature of the metal plate reaches 230 ° C and the heating time from the start of heating to the maximum temperature is 10 seconds. did. One second after reaching the highest reaching temperature, spray the water onto the painted metal plate with a spray, and one second after reaching the highest reaching temperature, wipe the water onto the painted metal plate with a spray. Water cooling was performed under the condition that the cooling time from the highest temperature to 30 ° C. was 1 second. In addition, the holding time of the highest reach | attainment temperature at the time of a heating was 1 second.
<水準>
 製造したそれぞれの塗装金属板のサンプルについて、既述の方法に従って、上層塗膜において、粒状のトリアジン部位(水溶性メラミン樹脂)が濃化している領域の位置(濃化深さ)、及び、粒状のトリアジン部位(水溶性メラミン樹脂)の個数平均粒径(粒径)を測定した。また、粒状のトリアジン部位(水溶性メラミン樹脂)が濃化している領域に存在しているトリアジン部位の濃化度合いについて、既述の方法に従って測定した。更に、製造したそれぞれの塗装金属板のサンプルについて、既述の方法に従って、各塗膜のガラス転移温度(Tg)を測定した。
 また、表層濃化部を酸化オスミウムで染色し、透過型電子顕微鏡を用いて10万倍の倍率で観察したときに5nm以上のメラミン粒子が観察されるかどうか、及び、濃化部が複数形成されているかどうかを、既述の方法に従って判定した。
<Level>
About the sample of each coated metal plate manufactured, according to the method as stated above, the position (thickening depth) of the area | region where the granular triazine site | part (water-soluble melamine resin) is concentrated in the upper-layer coating film, The number average particle size (particle size) of the triazine moiety (water-soluble melamine resin) was measured. Further, the degree of concentration of the triazine moiety present in the region where the particulate triazine moiety (water-soluble melamine resin) is concentrated was measured according to the method described above. Furthermore, the glass transition temperature (Tg) of each coating film was measured according to the method described above for each of the manufactured coated metal sheet samples.
In addition, whether the surface concentrated part is stained with osmium oxide and observed at a magnification of 100,000 times using a transmission electron microscope, whether or not melamine particles of 5 nm or more are observed, and a plurality of concentrated parts are formed It was determined according to the method described above whether or not it was.
<評価方法>
 製造したそれぞれの塗装金属板について、金属外観、耐薬品浸透性試験、耐汚染性試験は試験例1と同様の評価を行った。加工性試験と加工部耐食性は以下の通り評価した。
<Evaluation method>
The metal appearance, the chemical resistance test, and the stain resistance test were evaluated in the same manner as in Test Example 1 for each of the manufactured coated metal sheets. The workability test and the corrosion resistance of the machined part were evaluated as follows.
[加工性試験]
 製造したそれぞれの塗装金属板を幅5cmに切断し、JIS G3312に準じた試験方法により、20℃の雰囲気中で6T曲げを行った。具体的には、試験片と同一の塗板を6枚内側にはさみ、上層塗膜及び下層塗膜が形成されている表面を外側にして、180度密着曲げを行った。塗膜の亀裂を(優)A、B、C、D(劣)の4段階で評価した。
  A:亀裂なし
  B:わずかに亀裂あり
  C:多くの亀裂あり
  D:多くの亀裂かつ塗膜剥離あり
[Processability test]
Each coated metal plate manufactured was cut into a width of 5 cm, and subjected to 6 T bending in an atmosphere of 20 ° C. by a test method according to JIS G3312. Specifically, the same coated plate as the test piece was sandwiched on the inner side of six sheets, and the surface on which the upper layer coating film and the lower layer coating film were formed was turned to the outside, and 180-degree contact bending was performed. The cracks of the coating film were evaluated in four grades of (excellent) A, B, C and D (inferior).
A: no cracks B: slight cracks C: many cracks D: many cracks and peeling of coating
[加工部耐食性試験]
 製造したそれぞれの塗装金属板を幅5cmに切断し、押し出し加工を行った。押し出し高さは、7mmとした。その後、JIS Z 2371に準じた塩水噴霧試験を240時間実施した。試験後、加工部の全体の面積における白錆発生面積率を、目視観察により求め、以下のとおり評価した。なお、白錆発生面積率とは、観察部位の面積に対する白錆発生部位の面積の百分率である。
  A:白錆発生面積率10%未満 
  B:白錆発生面積率10%以上25%未満
  C:白錆発生面積率25%以上50%未満
  D:白錆発生面積率50%以上75%未満
  E:白錆発生面積率75%以上
[Corrosion test on processed parts]
Each manufactured coated metal plate was cut into a width of 5 cm and subjected to extrusion processing. The extrusion height was 7 mm. Thereafter, a salt spray test according to JIS Z 2371 was performed for 240 hours. After the test, the white rusting area ratio in the entire area of the processed portion was determined by visual observation and evaluated as follows. The white rusting area ratio is a percentage of the area of the white rusting site to the area of the observation site.
A: White rust occurrence area rate less than 10%
B: White rust occurrence area rate 10% or more and less than 25% C: White rust occurrence area rate 25% or more and less than 50% D: White rust occurrence area rate 50% or more and less than 75% E: White rust occurrence area rate 75% or more
 製造したそれぞれの塗装金属板の水準及び評価結果について、表11に一覧にして示した。なお、表11中の略称等については、表10と同様である。
 ただし、(Wa)+(Wb)、(Wb)/(Wa)については、以下の通りである。
  (Wa)+(Wb):全固形分に対するポリウレタン樹脂(a)の含有量(Wa:単位、質量%)と、全固形分に対する水溶性メラミン樹脂(b)の含有量(Wb:単位、質量%)と、の合計含有量
  (Wb)/(Wa):全固形分に対するポリウレタン樹脂(a)の含有量(Wa)と、全固形分に対する水溶性メラミン樹脂(b)の含有量(Wb)と、の比率
The level and evaluation result of each coated metal plate manufactured are listed in Table 11 and listed. The abbreviations and the like in Table 11 are the same as in Table 10.
However, (Wa) + (Wb) and (Wb) / (Wa) are as follows.
(Wa) + (Wb): Content of polyurethane resin (a) to total solid content (Wa: unit, mass%) and content of water-soluble melamine resin (b) to total solid content (Wb: unit, mass) %) And the total content (Wb) / (Wa): the content (Wa) of the polyurethane resin (a) to the total solid content, and the content (Wb) of the water-soluble melamine resin (b) to the total solid content And the ratio of
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記表11から明らかなように、上層塗膜13に使用しているポリウレタン樹脂(a)及び水溶性メラミン樹脂(b)について、合計含有量(Wa)+(Wb)が90質量%以上100質量%以下となり、かつ、比率(Wb)/(Wa)が、0超過1以下となることで、製造された塗装金属板の耐薬品浸透性が、より向上することがわかる。 As apparent from Table 11 above, the total content (Wa) + (Wb) of the polyurethane resin (a) and the water-soluble melamine resin (b) used in the upper layer coating film 13 is 90 mass% or more and 100 mass It turns out that the chemical-resistance permeability of the manufactured coated metal plate improves more because it becomes% or less and ratio (Wb) / (Wa) becomes more than 0 and 1 or less.
(試験例3)<金属板(原板)>
 新日鐵住金株式会社製の電気亜鉛めっき鋼板「NSジンコート(登録商標)」(以降、「EG」と称する。)を、金属板(原板)として使用した。EGのめっき付着量は、片面あたり20g/mであった。
(Test Example 3) <Metal plate (original plate)>
An electrogalvanized steel sheet "NS Gin Coat (registered trademark)" (hereinafter referred to as "EG") manufactured by Nippon Steel & Sumikin Co., Ltd. was used as a metal sheet (original sheet). The plating adhesion amount of EG was 20 g / m 2 per one side.
<塗料>
 本試験例では、上記のような金属板(原板)の片面上に、上層塗膜のみを有する図1Aに示したような1層構造、又は、下層塗膜及び上層塗膜を有する図1Bに示したような2層構造の塗装金属板を作製した。
<Paint>
In this test example, the single-layer structure as shown in FIG. 1A having only the upper coating film, or the FIG. 1B having the lower coating film and the upper coating film on one surface of the metal plate (original plate) as described above. The coated metal plate of the two-layer structure as shown was produced.
 上層塗料として、試験例1における上層塗料-3を使用し、下層塗料として、試験例1における下層塗料-8を使用した。 The upper layer paint 3 in Test Example 1 was used as the upper layer paint, and the lower layer paint 8 in Test Example 1 was used as the lower layer paint.
<塗装金属板の製造>
 各種金属板を、FC-4336(日本パ-カライジング製)を2質量%含有する60℃温度の水溶液中に10秒間浸漬することで脱脂を行い、水洗後、乾燥させた。
<Manufacturing of painted metal sheets>
Various metal plates were degreased by immersion for 10 seconds in an aqueous solution at 60 ° C. temperature containing 2% by mass of FC-4336 (manufactured by Nippon Parkerizing Co., Ltd.), washed with water and dried.
 次に、上述のように製造した下層塗料を、ロールコーターにて乾燥膜厚で1.0μmの膜厚となるように、それぞれ塗装した。熱風を吹き込んだ誘導加熱炉にて、金属板の最高到達板温が150℃となり、かつ、加熱開始から最高到達温度までの加熱時間が5秒となる条件で、下層塗料の膜を加熱(乾燥硬化)した。最高到達温度に達してから1秒後に、塗装された金属板へ水をスプレーにて拭きかけ、最高到達温度から30℃までの冷却時間が1秒となる条件で水冷した。なお、加熱時における最高到達温度の保持時間は、1秒とした。 Next, the lower layer paint produced as described above was coated by a roll coater to a dry film thickness of 1.0 μm. In the induction heating furnace blown with hot air, the film of the lower layer paint is heated (dried) under the condition that the maximum reached plate temperature of the metal plate is 150 ° C and the heating time from the start of heating to the maximum reached temperature is 5 seconds Cured). One second after reaching the maximum reaching temperature, the coated metal plate was sprayed with water by a spray, and water cooling was performed under the condition that the cooling time from the maximum reaching temperature to 30 ° C. was 1 second. In addition, the holding time of the highest reach | attainment temperature at the time of a heating was 1 second.
 次に、上述のように製造した上層塗料を、ロールコーターにて乾燥膜厚で8μmの膜厚となるように、それぞれ塗装した。熱風を吹き込んだ誘導加熱炉にて、金属板の最高到達板温、加熱開始から最高到達温度までの加熱時間及び40~100℃での保持時間が表12に示した条件となるように、上層塗料の膜を加熱(乾燥硬化)した。最高到達温度に達してから1秒後に、塗装された金属板へ水をスプレーにて拭きかけ、最高到達温度から30℃までの冷却時間が表12に示した時間となる条件で水冷した。なお、加熱時における最高到達温度の保持時間は、1秒とした。 Next, the upper layer paint produced as described above was coated with a roll coater to a dry film thickness of 8 μm. In the induction heating furnace blown with hot air, the upper layer of the metal plate so that the heating time from the start of heating to the maximum reaching temperature and the holding time at 40 to 100 ° C become the conditions shown in Table 12 The paint film was heated (dried and cured). One second after reaching the maximum reaching temperature, the coated metal plate was sprayed with water by spraying, and water cooling was carried out under the condition that the cooling time from the maximum reaching temperature to 30 ° C. was the time shown in Table 12. In addition, the holding time of the highest reach | attainment temperature at the time of a heating was 1 second.
<水準>
 製造したそれぞれの塗装金属板のサンプルについて、既述の方法に従って、上層塗膜において、表層濃化部の厚さ(濃化深さ)、及び、粒状のトリアジン部位(水溶性メラミン樹脂)の個数平均粒径(粒径)を測定した。また、第一塗膜の表面から0.2μmの深さ位置におけるN濃度N1と第一塗膜と金属板との界面から第一塗膜側に0.2μmの深さ位置におけるN濃度N2との比率であるN1/N2について、既述の方法に従って測定した。更に、製造したそれぞれの塗装金属板のサンプルについて、既述の方法に従って、各塗膜のガラス転移温度(Tg)を測定した。
 また、表層濃化部を酸化オスミウムで染色し、透過型電子顕微鏡を用いて10万倍の倍率で観察したときに5nm以上のメラミン粒子が観察されるかどうか、及び、濃化部が複数形成されているかどうかを、既述の方法に従って判定した。
<Level>
About the sample of each coated metal plate manufactured, in the upper layer coating film, according to the method described above, the thickness (depth of thickening) of the surface layer concentrated portion and the number of particulate triazine sites (water soluble melamine resin) The average particle size (particle size) was measured. Also, the N concentration N1 at a depth of 0.2 μm from the surface of the first coating and the N concentration N2 at a depth of 0.2 μm from the interface between the first coating and the metal plate on the first coating side The ratio of N1 / N2 was measured according to the method described above. Furthermore, the glass transition temperature (Tg) of each coating film was measured according to the method described above for each of the manufactured coated metal sheet samples.
In addition, whether the surface concentrated part is stained with osmium oxide and observed at a magnification of 100,000 times using a transmission electron microscope, whether or not melamine particles of 5 nm or more are observed, and a plurality of concentrated parts are formed It was determined according to the method described above whether or not it was.
<評価方法> 
 製造したそれぞれの塗装金属板について、試験例1と同様の評価を行った。
<Evaluation method>
Evaluation similar to Experiment 1 was performed about each manufactured coated metal plate.
 製造したそれぞれの塗装金属板の水準及び評価結果について、表12に一覧にして示した。なお、表12中の略称等については、表10と同様である。 The level and evaluation result of each coated metal plate manufactured are listed in Table 12 and listed. The abbreviations and the like in Table 12 are the same as in Table 10.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記表12から明らかなように、上層塗料の成膜後、加熱開始から最高到達温度までの加熱時間が1秒以上30秒以下の条件で加熱し、最高到達温度から30℃までの冷却時間が0.1秒以上5秒以下の条件で冷却して、上層塗膜13を形成すると、得られた塗装金属板は、金属外観、耐薬品浸透性、加工性、耐溶剤性に優れ、特に、耐薬品浸透性に優れていた。
 また、40~100℃の温度で1~20秒保持し、次に、200℃超まで1~10秒で加熱し、その後冷却する方法で製造された第一塗膜では、濃化層が複数形成されていた(実施例315,316,317)。第一塗膜に濃化層が複数形成されていると、金属外観、耐薬品浸透性、加工性及び耐溶剤性の全てが優れていた。
As is apparent from Table 12 above, after film formation of the upper layer paint, the heating time from the heating start to the highest reaching temperature is heated under the condition of 1 second to 30 seconds, and the cooling time from the highest reaching temperature to 30 ° C. When the upper coating film 13 is formed by cooling under the conditions of 0.1 seconds to 5 seconds, the obtained coated metal sheet is excellent in metal appearance, chemical resistance, processability and solvent resistance, in particular, It was excellent in chemical resistance.
In addition, in the first coating film produced by the method of holding at a temperature of 40 to 100 ° C. for 1 to 20 seconds, and then heating to 200 ° C. for 1 to 10 seconds, and then cooling, a plurality of concentrated layers are provided. It was formed (Examples 315, 316, 317). When a plurality of concentrated layers were formed on the first coating, all of the metal appearance, chemical resistance, processability and solvent resistance were excellent.
 最高到達板温が160℃であった場合(比較例301)は、耐薬品浸透性及び耐溶剤性が劣っていた。 When the highest achieved board temperature was 160 ° C. (Comparative Example 301), chemical resistance and solvent resistance were inferior.
 ここで、上記実施例303の上層塗膜13の断面を酸化オスミウムにより染色した後、透過型電子顕微鏡(TEM)で観察するとともに、TEM-EDXにより、オスミウムの分布状態を観察した。得られた各種の顕微鏡画像を、図5A~図5Dに示した。図5A、図5C及び図5Dは、実施例303の上層塗膜13の断面TEM画像を示したものであり、図5Bは、酸化オスミウムで染色された実施例303の上層塗膜13をTEM-EDXで観察した場合における、オスミウムの元素マッピング画像を示したものである。 Here, a cross section of the upper layer coating film 13 of the above Example 303 was stained with osmium oxide, and then observed with a transmission electron microscope (TEM), and the distribution state of osmium was observed with TEM-EDX. The various microscope images obtained are shown in FIGS. 5A-5D. FIGS. 5A, 5 C and 5 D show cross-sectional TEM images of the upper coating film 13 of Example 303, and FIG. 5 B shows the upper coating film 13 of Example 303 stained with osmium oxide as a TEM- It shows an elemental mapping image of osmium when observed by EDX.
 図5Aから明らかなように、実施例303の上層塗膜13では、断面TEM画像において、表層側に黒い線状の領域が映っていることがわかる。図5Bに示した、オスミウムの元素マッピング画像を見ると、図5Aにおける黒い線状の領域に対応する部分には、トリアジン部位を選択的に染色するオスミウムの元素が線状に分布している。かかる結果から、図5Aにおける黒い線状の領域が、濃化部103に対応することがわかる。 As apparent from FIG. 5A, in the upper layer coating film 13 of Example 303, it can be seen that in the cross-sectional TEM image, a black linear region appears on the surface layer side. As seen from the elemental mapping image of osmium shown in FIG. 5B, in the portion corresponding to the black linear region in FIG. 5A, the osmium element that selectively stains the triazine site is distributed linearly. From these results, it can be seen that the black linear region in FIG. 5A corresponds to the darkened portion 103.
 また、図5Cは、図5Aにおける断面TEM画像のうち、上層塗膜13の中央部分を拡大して示したものである。図5Cを参照すると、断面TEM画像中に、黒い粒状物が写りこんでいることがわかる。かかる黒い粒状物の一つを拡大したものが、図5Dである。図5C及び図5Dに対応する領域を、図5Bで確認すると、かかる領域には、オスミウムの元素が分散していることがわかる。従って、これら分散しているオスミウムの部分が、トリアジン粒状物101に対応することがわかる。すなわち、図5C及び図5Dにおける黒い粒状物は、トリアジン粒状物101であることがわかる。 FIG. 5C is an enlarged view of a central portion of the upper coating film 13 in the cross-sectional TEM image in FIG. 5A. Referring to FIG. 5C, it can be seen that black particles appear in the cross-sectional TEM image. FIG. 5D is an enlarged view of one such black granular material. When the regions corresponding to FIGS. 5C and 5D are confirmed in FIG. 5B, it can be seen that the elements of osmium are dispersed in such regions. Therefore, it can be understood that the portion of the dispersed osmium corresponds to the triazine particles 101. That is, it can be seen that the black particles in FIGS. 5C and 5D are triazine particles 101.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that those skilled in the art to which the present invention belongs can conceive of various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also fall within the technical scope of the present invention.
   1  塗装金属板
  11  金属板
  13  上層塗膜(第一塗膜)
  15  下層塗膜(第二塗膜)
 101  トリアジン粒状物(分散型第二部位)
 103  濃化部(濃化型第二部位)
1 Painted metal plate 11 Metal plate 13 Upper layer coating (first coating)
Lower layer coating (second coating)
101 triazine particulate matter (dispersion type second part)
103 Thickened part (thickened second part)

Claims (21)

  1.  金属板と;
     前記金属板の少なくとも片面上に位置し、樹脂を含有する第一塗膜と;
    を備え、
     前記第一塗膜は:
      ウレタン結合骨格を有する第一部位と;
      トリアジン環骨格を有する第二部位と;
    を有し、
     前記第一塗膜のガラス転移温度は、85℃以上170℃以下であり、
     前記第二部位を酸化オスミウムで染色し、透過型電子顕微鏡を用いて10万倍の倍率で観察すると:
      個数平均粒径5~20nmの粒子が分散している分散型第二部位と;
      前記第一塗膜の表面から深さ15nmまでの位置に存在し、個数平均粒径5nm以上の粒子が観察されない濃化型第二部位と:
    が観察される
    ことを特徴とする、塗装金属板。
    With metal plates;
    A first coating film located on at least one side of the metal plate and containing a resin;
    Equipped with
    The first coating is:
    A first site having a urethane linkage;
    A second moiety having a triazine ring skeleton;
    Have
    The glass transition temperature of the first coating is 85 ° C. or more and 170 ° C. or less,
    When the second site is stained with osmium oxide and observed with a transmission electron microscope at a magnification of 100,000:
    A dispersed second part in which particles having a number average particle size of 5 to 20 nm are dispersed;
    A concentrated second portion which is present at a depth of 15 nm from the surface of the first coating film and in which particles having a number average particle diameter of 5 nm or more are not observed:
    A painted metal plate, characterized in that it is observed.
  2.  前記第一塗膜の表面から0.2μmの深さ位置におけるN濃度N1の、前記第一塗膜と前記金属板との界面から前記第一塗膜側に0.2μmの深さ位置におけるN濃度N2に対する比率であるN1/N2が1.2以上である
    ことを特徴とする、請求項1に記載の塗装金属板。
    N concentration N1 at a depth of 0.2 μm from the surface of the first coating, N at a depth of 0.2 μm from the interface between the first coating and the metal plate to the first coating The coated metal sheet according to claim 1, wherein N1 / N2 which is a ratio to the concentration N2 is 1.2 or more.
  3.  前記第一塗膜が、複数の前記濃化型第二部位を有する
    ことを特徴とする、請求項1又は2に記載の塗装金属板。
    The coated metal sheet according to claim 1, wherein the first coating film has a plurality of the concentrated second portions.
  4.  前記第一塗膜と前記金属板との間に第二塗膜を更に備え、
     前記第二塗膜のガラス転移温度は、前記第一塗膜のガラス転移温度以下である
    ことを特徴とする、請求項1~3の何れか1項に記載の塗装金属板。
    A second coating is further provided between the first coating and the metal plate,
    The coated metal sheet according to any one of claims 1 to 3, wherein a glass transition temperature of the second coating film is equal to or less than a glass transition temperature of the first coating film.
  5.  前記第二塗膜は、樹脂を含有し、かつ、ウレタン結合骨格を有する
    ことを特徴とする、請求項4に記載の塗装金属板。
    The coated metal sheet according to claim 4, wherein the second coating film contains a resin and has a urethane bond skeleton.
  6.  前記第二塗膜は、樹脂を含有し、かつ、エポキシ基を有する
    ことを特徴とする、請求項4又は5に記載の塗装金属板。
    The said 2nd coating film contains resin, and has an epoxy group, The coated metal plate of Claim 4 or 5 characterized by the above-mentioned.
  7.  前記第二塗膜は、樹脂を含有し、かつ、シロキサン結合を有する
    ことを特徴とする、請求項4~6の何れか1項に記載の塗装金属板。
    The coated metal sheet according to any one of claims 4 to 6, wherein the second coating film contains a resin and has a siloxane bond.
  8.  前記第二塗膜には、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素が含まれる
    ことを特徴とする、請求項4~7の何れか1項に記載の塗装金属板。
    The second coating film according to any one of claims 4 to 7, wherein any one or more elements selected from the group consisting of P, V, Ti, Si and Zr are contained. The painted metal plate described in.
  9.  前記第一塗膜のガラス転移温度は、前記第二塗膜のガラス転移温度よりも5℃以上高い
    ことを特徴とする、請求項4~8の何れか1項に記載の塗装金属板。
    The coated metal sheet according to any one of claims 4 to 8, wherein a glass transition temperature of the first coating is higher than a glass transition temperature of the second coating by 5 ° C or more.
  10.  前記第二塗膜の膜厚は、0.5μm以上15μm以下である
    ことを特徴とする、請求項4~9の何れか1項に記載の塗装金属板。
    The coated metal sheet according to any one of claims 4 to 9, wherein the film thickness of the second coating film is 0.5 μm or more and 15 μm or less.
  11.  前記第一塗膜の膜厚は、0.5μm以上15μm以下である
    ことを特徴とする、請求項1~10の何れか1項に記載の塗装金属板。
    The coated metal sheet according to any one of claims 1 to 10, wherein a film thickness of the first coating film is 0.5 μm or more and 15 μm or less.
  12.  前記第一塗膜及び前記第二塗膜の少なくとも何れか一方は、着色剤を含有する
    ことを特徴とする、請求項4~11の何れか1項に記載の塗装金属板。
    The coated metal sheet according to any one of claims 4 to 11, wherein at least one of the first coating film and the second coating film contains a colorant.
  13.  前記第二塗膜が着色剤として黒色顔料を含有する
    ことを特徴とする、請求項4~12の何れか1項に記載の塗装金属板。
    The coated metal sheet according to any one of claims 4 to 12, wherein the second coating film contains a black pigment as a colorant.
  14.  前記金属板の少なくとも一方の表面に、テクスチャが形成されている
    ことを特徴とする、請求項1~13の何れか1項に記載の塗装金属板。
    The coated metal sheet according to any one of claims 1 to 13, wherein a texture is formed on at least one surface of the metal sheet.
  15.  金属板の少なくとも片面上に所定の第一塗膜を有する塗装金属板の製造方法であって、
     前記金属板の少なくとも片面上に、アニオン性官能基を含みガラス転移温度が75℃以上160℃以下であるポリウレタン樹脂(a)と、トリアジン環含有水溶性硬化剤(b)と、水系溶媒と、を含有する第一塗料を塗装し、前記第一塗料の塗布された前記金属板を加熱することで前記第一塗膜を形成する
    ことを特徴とする、塗装金属板の製造方法。
    A method for producing a coated metal plate having a predetermined first coating film on at least one side of a metal plate,
    A polyurethane resin (a) containing an anionic functional group and having a glass transition temperature of 75 ° C. or more and 160 ° C. or less on at least one surface of the metal plate, a triazine ring-containing water soluble curing agent (b), and an aqueous solvent A method of producing a coated metal sheet, comprising: applying a first paint containing the mixture; and heating the metal plate to which the first paint has been applied to form the first coating film.
  16.  前記トリアジン環含有水溶性硬化剤(b)が、イミノ基を含むメラミン樹脂である
    ことを特徴とする、請求項15に記載の塗装金属板の製造方法。
    The method for producing a coated metal sheet according to claim 15, wherein the triazine ring-containing water-soluble curing agent (b) is a melamine resin containing an imino group.
  17.  前記第一塗料は、
     全固形分に対する前記ポリウレタン樹脂(a)の含有量(Wa)と、全固形分に対する前記トリアジン環含有水溶性硬化剤(b)の含有量(Wb)と、の合計含有量(Wa)+(Wb)が、下記の式(I)を満足し、かつ、
     前記全固形分に対する前記ポリウレタン樹脂(a)の含有量(Wa)と、前記全固形分に対する前記トリアジン環含有水溶性硬化剤(b)の含有量(Wb)と、の比率(Wb)/(Wa)が、下記の式(II)を満足する
    ことを特徴とする、請求項15又は16に記載の塗装金属板の製造方法。
      90質量%≦(Wa)+(Wb)≦100質量% ・・・式(I)
      0<(Wb)/(Wa)≦1          ・・・式(II)
    The first paint is
    Total content (Wa) + (content of the polyurethane resin (a) to total solids (Wa) and content of the triazine ring-containing water soluble curing agent (b) (wb) to total solids (Wa) Wb) satisfies the following formula (I), and
    The ratio (Wb) of the content (Wa) of the polyurethane resin (a) to the total solid content and the content (Wb) of the triazine ring-containing water-soluble curing agent (b) to the total solid content (Wb) The method for producing a coated metal sheet according to claim 15 or 16, characterized in that Wa) satisfies the following formula (II).
    90 mass% ≦ (Wa) + (Wb) ≦ 100 mass% Formula (I)
    0 <(Wb) / (Wa) ≦ 1 formula (II)
  18.  前記金属板と前記第一塗膜との間に所定の第二塗膜を更に有する塗装金属板の製造方法であって、
     前記第一塗料の塗装に先立ち、ガラス転移温度が前記ポリウレタン樹脂(a)のガラス転移温度以下であるポリウレタン樹脂(c)と、エポキシ樹脂(d)、シランカップリング剤(e)、並びに、P、V、Ti、Si及びZrからなる群より選択される何れか1種以上の元素を含有する防錆剤(f)の少なくとも何れかと、水系溶媒と、を含有する第二塗料を、前記金属板の少なくとも片面上に塗装し、当該第二塗料の塗布された前記金属板を加熱することで前記第二塗膜を形成する
    ことを特徴とする、請求項15~17の何れか1項に記載の塗装金属板の製造方法。
    A method for producing a coated metal sheet, further comprising a predetermined second coating film between the metal sheet and the first coating film, wherein
    Prior to the application of the first paint, a polyurethane resin (c) having a glass transition temperature not higher than the glass transition temperature of the polyurethane resin (a), an epoxy resin (d), a silane coupling agent (e), and P A second paint containing at least one of an anticorrosion agent (f) containing at least one element selected from the group consisting of V, Ti, Si and Zr, and an aqueous solvent; 18. The method according to any one of claims 15 to 17, characterized in that the second paint film is formed by coating on at least one surface of a plate and heating the metal plate to which the second paint is applied. The manufacturing method of the coated metal plate as described.
  19.  前記ポリウレタン樹脂(c)のガラス転移温度は、前記ポリウレタン樹脂(a)のガラス転移温度よりも5℃以上低い
    ことを特徴とする、請求項18に記載の塗装金属板の製造方法。
    The method for producing a coated metal sheet according to claim 18, wherein the glass transition temperature of the polyurethane resin (c) is lower than the glass transition temperature of the polyurethane resin (a) by 5 ° C or more.
  20.  前記第一塗膜を形成する際に、
     前記第一塗料の塗布された金属板の加熱開始から最高到達温度までの加熱時間が1秒以上30秒以下となるように、前記第一塗料の塗布された金属板を加熱し、
     前記最高到達温度から30℃までの冷却時間が0.1秒以上5秒以下となるように、前記第一塗料の塗布された金属板を冷却する
    ことを特徴とする、請求項15~19の何れか1項に記載の塗装金属板の製造方法。
    When forming the first coating,
    The metal plate coated with the first paint is heated such that the heating time from the heating start of the metal plate coated with the first paint to the highest reaching temperature is 1 second or more and 30 seconds or less,
    20. The metal plate coated with the first paint is cooled such that the cooling time from the highest temperature to 30 ° C. is 0.1 seconds or more and 5 seconds or less. The manufacturing method of the coated metal plate as described in any one.
  21.  前記加熱において、40~100℃の温度で1~20秒保持した後、1~10秒の前記加熱時間で200℃超まで加熱する
    ことを特徴とする、請求項20に記載の塗装金属板の製造方法。
    21. The coated metal sheet according to claim 20, wherein the heating is carried out by holding at a temperature of 40 to 100 ° C. for 1 to 20 seconds and then heating to over 200 ° C. for 1 to 10 seconds. Production method.
PCT/JP2018/040384 2017-10-30 2018-10-30 Coated metallic sheet and manufacturing method for coated metallic sheet WO2019088123A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880070229.9A CN111278648B (en) 2017-10-30 2018-10-30 Coated metal plate and method for producing coated metal plate
JP2019525038A JP6624346B2 (en) 2017-10-30 2018-10-30 Painted metal plate and method for manufacturing coated metal plate
KR1020207013532A KR102425956B1 (en) 2017-10-30 2018-10-30 Method for manufacturing a painted metal plate and a painted metal plate
MX2020004253A MX2020004253A (en) 2017-10-30 2018-10-30 Coated metallic sheet and manufacturing method for coated metallic sheet.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209460 2017-10-30
JP2017-209460 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019088123A1 true WO2019088123A1 (en) 2019-05-09

Family

ID=66332537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040384 WO2019088123A1 (en) 2017-10-30 2018-10-30 Coated metallic sheet and manufacturing method for coated metallic sheet

Country Status (5)

Country Link
JP (1) JP6624346B2 (en)
KR (1) KR102425956B1 (en)
CN (1) CN111278648B (en)
MX (1) MX2020004253A (en)
WO (1) WO2019088123A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338397A (en) * 2003-04-25 2004-12-02 Nippon Steel Corp Non-removable coating type lubricated plated steel sheet excellent in workability
JP2010285666A (en) * 2009-06-12 2010-12-24 Nippon Parkerizing Co Ltd Aqueous surface treating agent for metal material and surface coated metal material
WO2013161621A1 (en) * 2012-04-27 2013-10-31 日本パーカライジング株式会社 Surface-treated galvanized steel sheet having excellent wound and end face corrosion resistance and method for manufacturing same
JP2015129248A (en) * 2014-01-09 2015-07-16 関西ペイント株式会社 Film forming method for heat exchanger aluminum fin

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111675A (en) 1991-10-22 1993-05-07 Asahi Glass Kooto & Resin Kk Method for coating metallic sheet
JPH07313929A (en) 1994-05-21 1995-12-05 Yodogawa Steel Works Ltd Precoat metal and roll painting method thereof
JPH07331167A (en) 1994-06-08 1995-12-19 Sumitomo Metal Ind Ltd Coating composition and metal plate coated therewith
CA2338018C (en) * 2000-03-25 2005-12-06 Union Steel Manufacturing Co., Ltd. The method for manufacturing gravure transcription coating grater
JP4116945B2 (en) 2003-08-06 2008-07-09 新日本製鐵株式会社 Precoated metal plate with excellent bending workability
JP4324094B2 (en) 2004-12-24 2009-09-02 新日本製鐵株式会社 Painted metal plate with excellent workability and stain resistance
JP5295549B2 (en) * 2007-11-07 2013-09-18 株式会社Adeka Paint composition
JP6255160B2 (en) 2012-03-05 2017-12-27 新日鐵住金株式会社 Chromate-free painted metal sheet and water-based paint composition
JP6291773B2 (en) * 2013-10-03 2018-03-14 東洋インキScホールディングス株式会社 Resin composition, active energy ray-polymerizable adhesive, and laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338397A (en) * 2003-04-25 2004-12-02 Nippon Steel Corp Non-removable coating type lubricated plated steel sheet excellent in workability
JP2010285666A (en) * 2009-06-12 2010-12-24 Nippon Parkerizing Co Ltd Aqueous surface treating agent for metal material and surface coated metal material
WO2013161621A1 (en) * 2012-04-27 2013-10-31 日本パーカライジング株式会社 Surface-treated galvanized steel sheet having excellent wound and end face corrosion resistance and method for manufacturing same
JP2015129248A (en) * 2014-01-09 2015-07-16 関西ペイント株式会社 Film forming method for heat exchanger aluminum fin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T ECHNICAL DATASHEET CYMEL 385 RESIN, March 2017 (2017-03-01), Retrieved from the Internet <URL:https://www.palmerholland.com/Assets/User/Documents/Product/40580/5022/MITM00250.pdf> [retrieved on 20180115] *

Also Published As

Publication number Publication date
JPWO2019088123A1 (en) 2019-11-14
CN111278648B (en) 2021-11-05
CN111278648A (en) 2020-06-12
KR20200069343A (en) 2020-06-16
KR102425956B1 (en) 2022-07-28
JP6624346B2 (en) 2019-12-25
MX2020004253A (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP5108820B2 (en) Water-based surface treatment agent for precoat metal material, surface treatment metal material, and precoat metal material
CN103906578B (en) The chromate-free precoated metal sheet with metal tone appearance and the aqueous coating composition used in manufacturing thereof
US5578669A (en) Water-based polyurethane coating composition
CN104246010B (en) The surface treated zinc-based metal plated steel sheet of pars affecta and end face corrosion resistance excellence and manufacture method thereof
JP5183586B2 (en) Water-based paint surface treatment agent also used as a primer, surface-treated metal material, and pre-coated metal material
JP2006328445A (en) Water-based surface treating agent for precoat metal material, surface treating method and method for manufacturing precoat metal material
KR101290878B1 (en) Composition for adhesive layer formation for use for steel sheet having surface treated with multiple layers
KR101166212B1 (en) Surface-treated metal plate
CN103547446B (en) Panel
JP5369986B2 (en) Painted metal material and casing made of it
TW202225425A (en) Hot dipped Al-Zn-Si-Mg-Sr coated steel sheet, surface-treated steel sheet, and coated steel sheet
TW202223118A (en) Hot-dip Al-Zn-Si-Mg-plated steel sheet, surface-treated steel sheet, and coated steel sheet
JP6350768B1 (en) Pre-coated metal plate
JP5544782B2 (en) Paint composition for painted metal
JP6255160B2 (en) Chromate-free painted metal sheet and water-based paint composition
JP7143786B2 (en) Painted metal plate and its manufacturing method
WO2019088123A1 (en) Coated metallic sheet and manufacturing method for coated metallic sheet
JP2010247396A (en) Coated metal plate and electronic instrument box using the same
JP2008254313A (en) Precoated metal sheet, metal molded body formed by working the same and manufacturing method of precoated metal sheet
JP5602486B2 (en) Painted steel sheets, processed products, and flat panel TVs
JP2010247347A (en) Precoated cold-rolled steel sheet and method for manufacturing the same
JP2022018854A (en) Surface-treated steel sheet
JP6742142B2 (en) Galvanized welded steel and method for producing galvanized welded steel
JP6796100B2 (en) Coated galvanized steel sheet
JP2011038138A (en) Painted metal material and housing made by using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019525038

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013532

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18873732

Country of ref document: EP

Kind code of ref document: A1