WO2019087705A1 - Coating liquid, method for preparing coating liquid, and method for producing hydrogen gas sensitive film - Google Patents

Coating liquid, method for preparing coating liquid, and method for producing hydrogen gas sensitive film Download PDF

Info

Publication number
WO2019087705A1
WO2019087705A1 PCT/JP2018/037599 JP2018037599W WO2019087705A1 WO 2019087705 A1 WO2019087705 A1 WO 2019087705A1 JP 2018037599 W JP2018037599 W JP 2018037599W WO 2019087705 A1 WO2019087705 A1 WO 2019087705A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen gas
tungsten
coating liquid
film
sensitive film
Prior art date
Application number
PCT/JP2018/037599
Other languages
French (fr)
Japanese (ja)
Inventor
西澤 かおり
山田 保誠
吉村 和記
Original Assignee
国立研究開発法人産業技術総合研究所
西澤 かおり
山田 保誠
吉村 和記
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 西澤 かおり, 山田 保誠, 吉村 和記 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019550956A priority Critical patent/JP6892153B2/en
Publication of WO2019087705A1 publication Critical patent/WO2019087705A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/38Paints containing free metal not provided for above in groups C09D5/00 - C09D5/36
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods

Definitions

  • the present invention relates to a coating solution for producing a hydrogen gas sensitive film, a method for producing the coating solution, and a method for producing a hydrogen gas sensitive film.
  • the hydrogen gas-sensitive membrane has a low permeability by being exposed to hydrogen gas, and a high permeability by being exposed to the atmosphere.
  • the application of the hydrogen gas sensitive film is, for example, a hydrogen gas visualization sheet, a hydrogen gas sensor, a hydrogen gas sensitive smart window, and the like.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to apply a coating solution to a substrate, dry the applied film, and have a metal having sensitivity to hydrogen gas.
  • metal ions in the coating solution can be reduced in the air at a temperature of room temperature to 150 ° C. to form a metal catalyst, without using harmful gases or flammable gases. It is in providing a coating liquid.
  • a coating liquid according to an aspect of the present invention is With tungsten chloride, A C 1-4 monovalent alcohol dissolving the tungsten chloride; A reducing carboxylic acid dissolved in the alcohol; It is characterized in that it contains a metal compound which becomes a metal catalyst having sensitivity to hydrogen gas by being reduced by the carboxylic acid.
  • the carboxylic acid is oxalic acid.
  • the oxalic acid may be either an anhydride or a dihydrate.
  • the metal compound is a platinum group metal compound.
  • the compound of the platinum group metal is preferably at least one selected from the group consisting of palladium compounds, platinum compounds, and palladium-platinum alloy compounds.
  • the compound of the platinum group metal is palladium dichloride (PdCl 2 ), platinum dichloride (PtCl 2 ), platinum tetrachloride (PtCl 4 ), and hexachloroplatinic acid hexahydrate (H 2 PtCl 6. It is characterized in that it is at least one selected from the group consisting of 6H 2 O).
  • a method of producing a coating liquid according to an aspect of the present invention Tungsten chloride is mixed with a C 1-4 monovalent alcohol dissolving the tungsten chloride to prepare a tungsten solution, A carboxylic acid having reducibility is dissolved in the tungsten solution to prepare a precursor solution of tungsten oxide, It is characterized in that a compound of a metal serving as a metal catalyst having sensitivity to hydrogen gas by being reduced by the carboxylic acid is dissolved in the precursor solution to prepare a coating liquid.
  • a method of producing a hydrogen gas-sensitive film according to an aspect of the present invention The coating liquid according to any one of the above [1] to [6] is coated on a substrate to form a coated film, and the coated film is dried in the air at room temperature or more and 150 ° C. or less. A tungsten oxide film carrying the metal catalyst formed by reducing metal ions contained in the raw material of the metal catalyst is formed.
  • the coating liquid is applied to the substrate, the coated film is dried, and in the process of producing the film containing the metal catalyst having sensitivity to hydrogen gas, the harmful gas or the combustible gas
  • a coating solution is provided, which can reduce metal ions in the coating solution in the air at a temperature of room temperature or more and 150 ° C. or less to form a metal catalyst.
  • FIG. 1 is a flowchart showing a method of manufacturing a coating liquid according to one embodiment.
  • FIG. 2 is a view showing a measuring device for measuring the responsiveness of the hydrogen gas sensitive film.
  • FIG. 3 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-1.
  • FIG. 4 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 5 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-2.
  • 6 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 7 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-3.
  • FIG. 8 is an enlarged view of a region A surrounded by a broken line in FIG. FIG.
  • FIG. 9 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-4.
  • FIG. 10 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 11 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 2.
  • FIG. 12 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 13 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 3.
  • FIG. 14 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 15 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 4.
  • FIG. 16 is an enlarged view of a region A surrounded by a broken line in FIG. FIG.
  • FIG. 17 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 5-1.
  • FIG. 18 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 19 is an enlarged view of a region B surrounded by a broken line in FIG.
  • FIG. 20 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 5-2.
  • FIG. 21 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 22 is an enlarged view of a region B surrounded by a broken line in FIG.
  • FIG. 23 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-1.
  • FIG. 24 is an enlarged view of a region A surrounded by a broken line in FIG. FIG.
  • FIG. 25 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-2.
  • FIG. 26 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 27 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-3.
  • FIG. 28 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 29 is an enlarged view of a region B surrounded by a broken line in FIG.
  • FIG. 30 is an enlarged view of a region C surrounded by a broken line in FIG.
  • FIG. 31 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-1.
  • 32 is an enlarged view of a region A surrounded by a broken line in FIG. FIG.
  • FIG. 33 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-2.
  • FIG. 34 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 35 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-3.
  • FIG. 36 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 37 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 8.
  • FIG. 38 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 39 is a graph showing the responsiveness of the coating film according to Comparative Example 1-1.
  • the coating liquid according to the present embodiment includes (1) tungsten chloride, (2) a monohydric alcohol having 1 to 4 carbon atoms which dissolves tungsten chloride, (3) a carboxylic acid having reducibility, and (4) carbonic acid. And a compound of a metal that becomes a metal catalyst having a sensitivity to hydrogen gas by reduction with an acid (hereinafter, also simply referred to as a "metal compound").
  • the carboxylic acid of (3) is dissolved in the alcohol of (2).
  • the coating liquid may further contain components other than the above (1) to (4).
  • the coating liquid of the present embodiment is applied to a substrate to form a coating film, and the coating film is dried in the air at room temperature or more and 150 ° C. or less to obtain metal ions (eg, platinum group metal ions) contained in the metal compound.
  • metal ions eg, platinum group metal ions
  • a tungsten oxide film supporting a metal catalyst formed by reducing to a zero-valent metal for example, a platinum group metal
  • a tungsten oxide film carrying a metal catalyst is used as a hydrogen gas sensitive film.
  • the hydrogen gas sensitive membrane has a low permeability by being exposed to hydrogen gas, and a high permeability by being exposed to the atmosphere.
  • the application of the hydrogen gas sensitive film is, for example, a hydrogen gas visualization sheet, a hydrogen gas sensor, a hydrogen gas sensitive smart window, and the like.
  • the hydrogen gas-sensitive film may be made porous by carbon dioxide gas generated inside the coating film in the reduction reaction of metal ions contained in the metal compound. Carbon dioxide gas is generated by oxidizing the carboxylic acid during the drying of the coating film.
  • the porous hydrogen gas sensitive membrane has good gas permeability and good sensitivity to the surrounding atmosphere.
  • FIG. 1 is a flowchart showing a method of manufacturing a coating liquid according to one embodiment.
  • the manufacturing method of a coating liquid is not limited to the order of FIG.
  • (2) an alcohol may be added to a mixed powder in which (1) tungsten chloride, (3) carboxylic acid, and (4) a metal compound are mixed.
  • tungsten chloride and a C 1-4 monovalent alcohol dissolving tungsten chloride are mixed to prepare a tungsten solution.
  • the preparation method for example, the method described in Patent Document 8 is used.
  • tungsten chloride is not particularly limited, it is, for example, tungsten hexachloride (WCl 6 ).
  • monohydric alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propyl alcohol and i-propyl alcohol. You may combine and use multiple types of alcohol.
  • the reaction of tungsten hexachloride (WCl 6 ) with alcohol (ROH) forms W (OR) x Cl 6 -x .
  • tungsten oxide precursor solution (hereinafter, also simply referred to as a "precursor solution").
  • Tungsten oxide is not particularly limited, and is, for example, tungsten trioxide (WO 3 ).
  • the carboxylic acid has reducibility to metal ions contained in metal compounds to be added later to the precursor solution, and reduces metal ions to zero-valent metals during film formation to be performed later. Further, along with this reduction reaction, the carboxylic acid is oxidized to generate carbon dioxide gas, and a porous hydrogen gas sensitive film is obtained. Carboxylic acid can also be expected to play a role in stabilizing the precursor of tungsten oxide because it forms a chelate structure with tungsten in the precursor solution.
  • oxalic acid As a carboxylic acid having reducibility, oxalic acid, formic acid, citric acid, ascorbic acid and the like can be used. As the molecular weight of the carboxylic acid increases, carbon content tends to remain in the hydrogen gas-sensitive film after film formation. Therefore, oxalic acid and formic acid, which have a small molecular weight, are preferable. Among them, oxalic acid is more preferable because of ease of handling.
  • oxalic acid As oxalic acid, oxalic acid anhydride and oxalic acid dihydrate are commercially available products, and it is possible to use either, but the precursor solution using oxalic acid anhydride is more preferable. Is preferable in that the stability of
  • the addition amount of carboxylic acid to the amount of tungsten in the tungsten solution is preferably 1/5 to 2/5, more preferably 1/5, in molar ratio (carboxylic acid / tungsten).
  • the addition of the carboxylic acid to the tungsten solution can be carried out at room temperature, and can also be carried out in the atmosphere without the need for special atmosphere control.
  • the carboxylic acid can be dissolved in the tungsten solution at room temperature in air.
  • a metal compound as a raw material of the metal catalyst for example, a compound of a platinum group metal
  • the platinum group metal compound may be any one as long as it dissolves in the precursor solution, and is, for example, one or more selected from the group consisting of a palladium compound, a platinum compound, and a palladium platinum alloy compound. You may mix and use 2 or more types selected from the group which consists of a palladium compound, a platinum compound, and a palladium platinum alloy compound.
  • Any palladium compound may be used as long as it can be easily dissolved in a tungsten solution or a precursor solution of tungsten oxide, but it is easily available and effectively reduces palladium ions in the air at room temperature to 150 ° C. In order to achieve this, one having a small molecular weight is preferred, and one having a small valence is preferred. Particularly preferred is palladium dichloride (PdCl 2 ).
  • platinum compound may be used as long as it can be easily dissolved in a tungsten solution or a precursor solution of tungsten oxide, but it is easy to obtain and effectively reduces platinum ions at room temperature or more and 150 ° C. or less in the air. In order to achieve this, one having a small molecular weight is preferred, and one having a small valence is preferred.
  • platinum dichloride (PtCl 2 ) platinum tetrachloride (PtCl 4 ), and hexachloroplatinic acid hexahydrate (H 2 PtCl 6 .6H 2 O) can be given. Particularly preferred is platinum dichloride (PtCl 2 ).
  • the addition amount of the metal compound which is a raw material of the metal catalyst is preferably 1/10 to 1/50, more preferably 1/50, in molar ratio (metal serving as metal catalyst (for example, platinum group metal) / tungsten). It is suitable.
  • the addition to the precursor solution of the metal compound which is a raw material of a metal catalyst can be performed at room temperature, and can also be performed in air
  • the metal compound which is a raw material of the metal catalyst can be dissolved in the precursor solution at room temperature in the air.
  • step S13 of FIG. 1 It is desirable to store the coating solution prepared in step S13 of FIG. 1 in a light-shielded space under a dry atmosphere in order to maintain a longer and stable state.
  • the prepared coating solution is applied to a substrate to form a coated film.
  • a method of application a method capable of uniformly applying a solution with low viscosity, such as spin coating, dip coating, roll coating, etc. can be applied, and the material, size, thickness and the like of the used substrate It can be selected accordingly.
  • the prepared coating solution is applied to a substrate to form a coating film, and the coating film is dried at room temperature or more and 150 ° C. or less in the air to reduce metal ions contained in the metal compound to zero-valent metal.
  • a tungsten oxide film carrying a metal catalyst is formed. It is not necessary to dry the coating film of the present embodiment while exposing it to a harmful gas or a flammable gas, and can be performed in the atmosphere. Moreover, drying of the coating film of this embodiment can be performed at room temperature (for example, 10 degreeC or more and 35 degrees or less).
  • the drying temperature of the coating film is preferably 50 ° C. or more and 100 ° C. or less. If the drying temperature of a coating film is 100 degrees C or less, a resin substrate etc. can be used as a base material which apply
  • the resin substrate is formed of a resin having alcohol resistance and acid resistance, such as polyethylene, polypropylene, polycarbonate and the like.
  • the substrate is preferably transparent.
  • the thickness and size of the substrate to which the coating solution is applied are appropriately selected according to the application of the hydrogen gas-sensitive film, the application method of the coating solution, and the like, and are not particularly limited.
  • ultraviolet irradiation may be performed when the coating film is dried.
  • the wavelength of the ultraviolet light is, for example, 200 nm to 380 nm.
  • the drying temperature of the coating film may be room temperature.
  • a tungsten oxide film carrying a metal catalyst is used as a hydrogen gas sensitive film.
  • the hydrogen gas sensitive membrane has a low permeability by being exposed to hydrogen gas, and a high permeability by being exposed to the atmosphere.
  • the hydrogen gas sensitive film may be formed by applying the coating solution and drying the applied film only once, or may be formed by repeating the application of the coating solution and drying of the applied film multiple times. In the latter case, a plurality of tungsten oxide films constitute a hydrogen gas sensitive film.
  • the film thickness of the hydrogen gas-sensitive film is appropriately selected according to the application and the like.
  • the hydrogen gas-sensitive film may be made porous by carbon dioxide gas generated inside the coating film in the reduction reaction of metal ions contained in the metal compound. Carbon dioxide gas is generated by oxidizing the carboxylic acid during the drying of the coating film.
  • the porous hydrogen gas sensitive membrane has good gas permeability and good sensitivity to the surrounding atmosphere.
  • Example 1-1 First, according to the method described in Patent Document 8, super dehydrated ethanol and super dehydrated isopropyl alcohol are added to tungsten hexachloride (WCl 6 ) under ice-cold dry nitrogen atmosphere, and then stirring is continued at room temperature to obtain a tungsten solution Obtained.
  • the tungsten concentration in the tungsten solution was 0.25 mol / L.
  • oxalic acid anhydride 1.0 ⁇ 10 -3 mol of oxalic acid anhydride is measured in an eggplant flask, to which 20 ml of tungsten solution (W: 5.0 ⁇ 10 -3 mol) is added and stirred to obtain tungsten oxide A precursor solution was prepared.
  • the addition amount of oxalic acid anhydride relative to the amount of tungsten in the tungsten solution was 1/5 in molar ratio (oxalic acid anhydride / tungsten).
  • the coating solution was spin-coated on a cleaned glass substrate at 3000 rpm for 30 seconds to form a coated film, and the formed coated film was dried by heating for 5 minutes on a hot plate at 100 ° C. in air. .
  • the coating and drying operations were repeated five times to obtain a hydrogen gas-sensitive film.
  • the responsiveness of the obtained hydrogen gas-sensitive film was measured by the measuring device A shown in FIG.
  • the measuring apparatus A does not include the hydrogen gas-sensitive film 2 which is an object to be measured, and the glass substrate 1 on which the hydrogen gas-sensitive film 2 is formed.
  • FIG. 2 is a view showing a measuring device for measuring the responsiveness of the hydrogen gas sensitive film.
  • arrows indicate the flow of hydrogen-containing gas.
  • the hydrogen-containing gas is introduced by the mass flow controller 13, passes through the gap 16 between the glass cell 11 and the hydrogen gas sensitive film 2, and is released to the outside.
  • a hydrogen-containing gas a gas containing 4% by volume of hydrogen gas and 96% by volume of argon gas was used.
  • the measuring apparatus A includes a glass cell 11, a spacer 12, a mass flow controller 13, a light source 14, and a light receiver 15.
  • the glass cell 11 is disposed to face the hydrogen gas sensitive film 2 formed on the glass substrate 1.
  • the spacer 12 forms a gap 16 between the glass cell 11 and the hydrogen gas sensitive film 2 as a flow path of the hydrogen-containing gas.
  • the mass flow controller 13 controls the flow rate of the hydrogen-containing gas flowing in the gap 16.
  • the semiconductor laser device as the light source 14 emits a laser beam having a wavelength of 670 nm.
  • the photodiode as the light receiver 15 receives the laser beam emitted from the light source 14 and outputs a signal according to the intensity of the received laser beam.
  • the laser light emitted from the light source 14 passes through the glass substrate 1, the hydrogen gas sensitive film 2 and the glass cell 11 in this order, and is received by the light receiver 15.
  • the ratio of the intensity of the laser beam received by the light receiver 15 to the intensity of the laser beam emitted from the light source 14 is the transmittance.
  • the response of the hydrogen gas-sensitive film was determined by alternately supplying the hydrogen-containing gas to the gap 16 of FIG. 2 for 60 seconds and stopping the supply for 60 seconds, alternately, the transmittance of the laser light having a wavelength of 670 nm. It measured by measuring. The measurement results are shown in FIG. 3 and FIG. FIG. 3 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-1.
  • FIG. 4 is an enlarged view of a region A surrounded by a broken line in FIG. In FIG. 4, “ON” means switching from stop to supply of hydrogen-containing gas, and “off” means switch from supply of hydrogen-containing gas to stop. When the supply of the hydrogen-containing gas is stopped, the atmosphere enters the gap 16 from the outlet of the hydrogen-containing gas. The same applies to the other drawings.
  • the hydrogen gas-sensitive film is gradually colored between colorless and transparent (transparent state) and blue (colored state) A change in the color (state) of Thereafter, as shown in FIG. 4, the transmittance of the laser light changed in the range of about 16% to 60% each time the supply and stop of the hydrogen-containing gas were switched. From this result, it was confirmed that the hydrogen gas-sensitive film can be obtained only by drying at 100 ° C. in the atmosphere according to the coating liquid of Example 1-1. Also, the good response of the hydrogen gas sensitive membrane means that the hydrogen gas sensitive membrane is made porous. However, when the supply and stop of the hydrogen-containing gas were repeated, the metallic gloss derived from Pd was observed due to the reduction reaction with hydrogen gas, and the transmittance at the time of transparency tended to gradually decrease.
  • Example 1-2 In Example 1-2, hydrogen was applied under the same conditions as Example 1-1 except that ultraviolet irradiation at a wavelength of 365 nm was simultaneously performed during 5 minutes of heating and drying the coating film on a hot plate at 100 ° C. in the atmosphere. A gas sensitive film was deposited. The responsiveness of the resulting hydrogen gas-sensitive membrane is shown in FIGS.
  • FIG. 5 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-2. 6 is an enlarged view of a region A surrounded by a broken line in FIG.
  • the color of the hydrogen gas-sensitive film changes between colorless and blue on the entire surface of the film immediately after the start of repeated supply and stop of the hydrogen-containing gas, and the color of the laser light changes as shown in FIG.
  • the transmittance varied in the range of about 16% to 58%. From this result, it was confirmed that the time until response start (start of change of transmittance) can be shortened by using ultraviolet irradiation when drying the coating film.
  • Example 1-3 In Example 1-3, a hydrogen gas-sensitive film was formed under the same conditions as in Example 1-2 except that ultraviolet irradiation with a wavelength of 254 nm was performed instead of ultraviolet irradiation with a wavelength of 365 nm.
  • the responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. 7 and 8.
  • FIG. 7 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-3.
  • FIG. 8 is an enlarged view of a region A surrounded by a broken line in FIG.
  • the color of the hydrogen gas-sensitive film changes between colorless and transparent and blue immediately after the start of repeated supply and stop of the hydrogen-containing gas, but the response portion is only the center of the film, and the film outer periphery Remained dark blue and did not respond.
  • the laser light transmittance changed in the range of about 40% to 60% as shown in FIG. 8, but for the switching from stop to supply of hydrogen-containing gas
  • the response speed hereinafter also referred to as "coloring response speed”
  • the response speed to switching from supply of hydrogen-containing gas to stop hereinafter also referred to as "decoloring response speed” were slow.
  • Example 1-4 In Example 1-4, drying of the coating film is performed at room temperature (25 ° C.) in the air, and the coating film during the drying is irradiated with ultraviolet light of wavelength 365 nm for 5 minutes, and hydrogen is used under the same conditions as Example 1-2. A gas sensitive film was deposited. The responsiveness of the obtained hydrogen gas-sensitive membrane is shown in FIGS.
  • FIG. 9 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-4.
  • FIG. 10 is an enlarged view of a region A surrounded by a broken line in FIG.
  • Example 2 is an example except that the addition amount of oxalic acid anhydride relative to the amount of tungsten in the tungsten solution is increased from 1/5 to 2/5 in molar ratio (oxalic acid / tungsten) to prepare a precursor solution.
  • a hydrogen gas sensitive film was formed under the same conditions as 1-2. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS.
  • FIG. 11 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 2.
  • FIG. 12 is an enlarged view of a region A surrounded by a broken line in FIG.
  • the color of the hydrogen gas-sensitive film changes between colorless and blue on the entire surface of the film immediately after the start of repeated supply and stop of the hydrogen-containing gas, as shown in FIG.
  • the permeability changed in the range of about 22% to 62%, and it was confirmed that the film showed good sensitivity to hydrogen gas.
  • the response speed upon coloring and the response speed upon discoloring become slower by increasing the molar ratio (oxalic acid / tungsten). I understand.
  • the transmittance at the time of coloring and the transmittance at the time of decoloring deteriorate (the transmittance at the time of coloring increases and the transmittance at the time of decoloring decreases) ) Also confirmed.
  • Example 3 In Example 3, the coating liquid was prepared except that the addition amount of PdCl 2 with respect to the amount of tungsten in the precursor solution was reduced from 1/10 to 1/25 in molar ratio (Pd / tungsten). A hydrogen gas sensitive film was formed under the same conditions. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. 13 and 14.
  • FIG. 13 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 3.
  • FIG. 14 is an enlarged view of a region A surrounded by a broken line in FIG.
  • the color of the hydrogen gas-sensitive film changes between colorless and blue on the entire surface of the film immediately after the start of repeated supply and stop of the hydrogen-containing gas, and the color of the laser light changes as shown in FIG. It was confirmed that the permeability changed in the range of about 34% to 70%, and showed good sensitivity to hydrogen gas.
  • the response speed at coloring and the response speed at decoloring become slower by reducing the molar ratio (Pd / tungsten). It was found that the transmissivity at the time of transparency was improved by about 10%. However, a slight metallic sheen from Pd was expected, which was expected to be overcome by the reduction of the molar ratio (Pd / tungsten).
  • Example 4 In Example 4, a hydrogen gas-sensitive film was prepared under the same conditions as in Example 1-2 except that a precursor solution was prepared using citric acid instead of oxalic acid anhydride as the carboxylic acid to be added to the tungsten solution. Was deposited. As in Example 1-2, the amount of citric acid added to the amount of tungsten in the tungsten solution was 1/5 in molar ratio (citric acid / tungsten). The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS.
  • FIG. 15 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 4.
  • FIG. 16 is an enlarged view of a region A surrounded by a broken line in FIG.
  • Example 5-1 In Example 5-1, a hydrogen gas-sensitive film was prepared under the same conditions as Example 1-1 except that PtCl 2 was used instead of PdCl 2 as the metal compound to be added to the precursor solution. The film was formed. As in Example 1-1, the amount of PtCl 2 added to the amount of tungsten in the precursor solution was 1/10 in molar ratio (Pt / tungsten). The responsiveness of the obtained hydrogen gas-sensitive film is shown in FIGS.
  • FIG. 17 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 5-1.
  • FIG. 18 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 19 is an enlarged view of a region B surrounded by a broken line in FIG.
  • Example 1-1 unlike in the case of Example 1-1 (see FIG. 3), it is between about colorless and transparent and blue on the entire surface almost immediately after the start of repetition of supply and stop of hydrogen-containing gas.
  • the color of the hydrogen gas sensitive membrane has changed.
  • the transmittance of the laser light changed in the range of about 16% to 55%, and showed good sensitivity to hydrogen gas.
  • Pt the metal catalyst instead of Pd
  • the response speed at the time of coloring and the response speed at the time of decoloring can be improved. It became faster.
  • Example 1-1 when the supply and stop of the hydrogen-containing gas are further repeated, the metallic gloss derived from Pt is observed by the reduction reaction with hydrogen gas, and the transmittance at the time of transparency tends to gradually decrease. there were.
  • Example 5-2 In Example 5-2, hydrogen was applied under the same conditions as in Example 5-1 except that ultraviolet irradiation at a wavelength of 365 nm was simultaneously performed during 5 minutes of heating and drying the coated film on a hot plate at 100 ° C. in the atmosphere. A gas sensitive film was deposited. That is, in Example 5-2, a hydrogen gas-sensitive film was formed under the same conditions as in Example 1-2 except that PtCl 2 was used instead of PdCl 2 as the metal compound added to the precursor solution. The responsiveness of the obtained hydrogen gas-sensitive film is shown in FIGS.
  • FIG. 20 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 5-2.
  • FIG. 21 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 22 is an enlarged view of a region B surrounded by a broken line in FIG.
  • the color of the hydrogen gas-sensitive film changes between colorless and transparent and blue over the entire surface of the film immediately after the start of repeated supply and stop of hydrogen-containing gas, as shown in FIG. It was confirmed that the transmittance of the laser light changed in the range of about 14% to 46% and showed a good sensitivity to hydrogen gas.
  • the transmittance of the laser light changed in the range of about 14% to 46% and showed a good sensitivity to hydrogen gas.
  • Pt as the metal catalyst instead of Pd, the response speed at the time of coloring and the response speed at the time of decoloring can be improved. It became faster.
  • Example 6-1 In Example 6-1, the amount of PtCl 2 added to the amount of tungsten in the precursor solution was reduced by 1/10 to 1/50 in the molar ratio (Pt / tungsten) to prepare a coating solution, except for A hydrogen gas-sensitive film was formed under the same conditions as in 2.
  • the responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIG. 23 and FIG.
  • FIG. 23 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-1.
  • FIG. 24 is an enlarged view of a region A surrounded by a broken line in FIG.
  • Example 5-2 even if the molar ratio (Pt / Tungsten) is reduced from 1/10 to 1/50, as in Example 5-2, the inside of the film is immediately after the start of the repetition of the supply and stop of the hydrogen-containing gas.
  • the color of the hydrogen gas sensitive film changed between colorless and transparent and blue over the entire surface.
  • the transmittance of the laser light changed in the range of about 18% to 55%, and showed good sensitivity to hydrogen gas.
  • Example 5-2 the response speed at the time of coloring and the response speed at the time of decoloring were fast.
  • the metallic luster derived from Pt observed in Example 5-2 was not observed.
  • Example 6-2 In Example 6-2, a hydrogen gas-sensitive film was formed under the same conditions as in Example 6-1 except that the drying temperature of the coating film was lowered from 100 ° C. to 80 ° C. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. 25 and 26.
  • FIG. 25 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-2.
  • FIG. 26 is an enlarged view of a region A surrounded by a broken line in FIG.
  • the color of the hydrogen gas-sensitive film changes between colorless and blue on the entire surface of the film immediately after the start of repeated supply and stop of the hydrogen-containing gas, as shown in FIG. It was confirmed that the permeability changes in the range of about 20% to 65%, and shows good sensitivity to hydrogen gas.
  • the response speed at the time of coloring and the response speed at the time of decoloring were reduced due to the lowering of the drying temperature. Further, when the supply and stop of the hydrogen-containing gas were further repeated, a region which did not return to the transparent state while remaining blue-colored was observed in the outer peripheral portion of the film.
  • Example 6-3 In Example 6-3, a hydrogen gas-sensitive film was formed under the same conditions as in Example 6-2, except that ultraviolet irradiation was not performed at the time of drying of the coated film. The response of the obtained hydrogen gas-sensitive film is shown in FIGS.
  • FIG. 27 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-3.
  • FIG. 28 is an enlarged view of a region A surrounded by a broken line in FIG.
  • FIG. 29 is an enlarged view of a region B surrounded by a broken line in FIG.
  • FIG. 30 is an enlarged view of a region C surrounded by a broken line in FIG.
  • the coloring phenomenon from colorless and transparent to blue was observed immediately after the start of the repetition of the supply and stop of the hydrogen-containing gas, and the change was also fast, but the time until the decoloring phenomenon was observed I needed it.
  • the response speed at the time of coloring and the response speed at the time of decoloring became faster (see FIG. 29) when the number of repetitions of supply and stop of the hydrogen-containing gas exceeded 100 times (12000 seconds).
  • the response speed gradually decreased as the number of repetitions exceeded 400 times (48000 seconds) (see FIG. 30).
  • the film outer peripheral portion did not return to the transparent state while it was colored blue since about the time the number of repetitions exceeded 400 times.
  • the transmittance of the laser light changed in the range of 20% to 70% even if it was dried at 80 ° C. without ultraviolet irradiation, showing good sensitivity to hydrogen gas.
  • Example 7-1 a precursor solution is prepared using oxalic acid dihydrate instead of oxalic acid anhydride as the carboxylic acid added to the tungsten solution, and the metal added to the precursor solution Hydrogen gas sensitization under the same conditions as in Example 5-1 except that H 2 PtCl 6 ⁇ 6H 2 O was used instead of PtCl 2 as the compound and the coating solution was prepared with a molar ratio (Pt / tungsten) of 1/26. Film was deposited. As in Example 5-1, the amount of oxalic acid dihydrate added was 1/5 in molar ratio (oxalic acid dihydrate / tungsten) with respect to the amount of tungsten in the tungsten solution.
  • FIGS. 31 and 32 The responsiveness of the hydrogen gas sensitive membrane is shown in FIGS. 31 and 32.
  • FIG. 31 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-1.
  • 32 is an enlarged view of a region A surrounded by a broken line in FIG.
  • Example 7-2 In Example 7-2, hydrogen was applied under the same conditions as in Example 7-1, except that ultraviolet irradiation at a wavelength of 365 nm was simultaneously performed during 5 minutes of heating and drying the coated film on a hot plate at 100 ° C. in the atmosphere. A gas sensitive film was deposited. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIG. 33 and FIG. FIG. 33 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-2.
  • FIG. 34 is an enlarged view of a region A surrounded by a broken line in FIG.
  • Example 7-3 In Example 7-3, a hydrogen gas-sensitive film was formed under the same conditions as in Example 7-1 except that the coating film was dried by heating on a hot plate at 150 ° C. in the atmosphere. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. 35 and 36.
  • FIG. 35 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-3.
  • FIG. 36 is an enlarged view of a region A surrounded by a broken line in FIG.
  • Example 8 In Example 8, a precursor solution is prepared using citric acid instead of oxalic acid dihydrate as the carboxylic acid added to the tungsten solution, and H 2 PtCl 6 ⁇ relative to the amount of tungsten in the precursor solution.
  • a hydrogen gas-sensitive film was formed under the same conditions as in Example 7-2, except that the amount of addition of 6H 2 O was increased from 1/26 to 1/10 in molar ratio (Pt / tungsten) to prepare a coating solution. .
  • the addition amount of citric acid to the amount of tungsten in the tungsten solution was 1/5 in molar ratio (citric acid / tungsten).
  • FIG. 37 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 8.
  • FIG. 38 is an enlarged view of a region A surrounded by a broken line in FIG.
  • the color of the hydrogen gas-sensitive film gradually changed between colorless and transparent and blue.
  • the change in the transmittance of the laser light with ON and OFF was about 40% to 45%.
  • Comparative Example 1-1 In Comparative Example 1-1, the addition of H 2 PtCl 6 ⁇ 6H 2 O in the precursor solution prepared without the addition of carboxylic acids such as oxalic acid tungsten solution, H 2 PtCl for tungsten amount in the precursor solution Coating and drying were carried out under the same conditions as in Example 7-1 except that the amount of the added 6 ⁇ 6H 2 O was increased from 1/26 to 29/500 in molar ratio (Pt / tungsten) to prepare a coating solution. A film was formed. The responsiveness of the obtained coating film is shown in FIG. FIG. 39 is a graph showing the responsiveness of the coating film according to Comparative Example 1-1.
  • Comparative Example 1-2 In Comparative Example 1-2, coating was performed under the same conditions as Comparative Example 1-1 except that ultraviolet irradiation at a wavelength of 365 nm was simultaneously performed during 5 minutes of heating and drying the coated film on a hot plate at 100 ° C. in the atmosphere. A film was formed.
  • the coating liquid containing carboxylic acid was used.
  • the metal ion in the coating solution was able to be reduced in the air at a temperature of room temperature to 150 ° C. to form a metal catalyst without using harmful gas or flammable gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Paints Or Removers (AREA)
  • Catalysts (AREA)

Abstract

Provided is a coating liquid characterized by including: a tungsten chloride; a monovalent alcohol which has 1-4 carbon atoms and dissolves the tungsten chloride; a carboxylic acid which is dissolved in the alcohol and has reducibility; and a metal compound which becomes a metal catalyst having sensitivity to hydrogen gas when reduced by the carboxylic acid.

Description

コーティング液、コーティング液の製造方法、および水素ガス感応性膜の製造方法Coating liquid, method of manufacturing coating liquid, and method of manufacturing hydrogen gas sensitive film
 本発明は、水素ガス感応性膜を製造するためのコーティング液、コーティング液の製造方法、および水素ガス感応性膜の製造方法に関する。 The present invention relates to a coating solution for producing a hydrogen gas sensitive film, a method for producing the coating solution, and a method for producing a hydrogen gas sensitive film.
 従来から、金属触媒を担持させた酸化タングステンからなる水素ガス感応性膜が開発されている。水素ガス感応性膜は、水素ガスに晒されることにより透過率が低くなり、大気に晒されることにより透過率が高くなる。水素ガス感応性膜の用途は、例えば、水素ガス可視化シート、水素ガスセンサー、水素ガス感応性スマートウインドウ等である。 Conventionally, a hydrogen gas-sensitive film made of tungsten oxide supporting a metal catalyst has been developed. The hydrogen gas sensitive membrane has a low permeability by being exposed to hydrogen gas, and a high permeability by being exposed to the atmosphere. The application of the hydrogen gas sensitive film is, for example, a hydrogen gas visualization sheet, a hydrogen gas sensor, a hydrogen gas sensitive smart window, and the like.
 水素ガス感応性膜の製造方法としては、物理蒸着法の1つであるスパッタリング法等が多く提案されているが、より安価な湿式法も提案されている。 Although many sputtering methods which are one of physical vapor deposition methods are proposed as a manufacturing method of a hydrogen gas sensitive film | membrane, the less expensive wet method is also proposed.
 しかし、湿式法では多くの場合、水素ガス感応性膜の前駆体溶液を基板に塗布した後、これを高温で焼成処理する工程を必要とする為、耐熱性の低い基板を用いることが困難であるという問題点も指摘される(特許文献1~5参照)。 However, in many cases, it is difficult to use a substrate with low heat resistance because the wet process requires a step of baking the precursor solution of hydrogen gas sensitive film on a substrate and then baking the solution at a high temperature. The problem of being present is also pointed out (see Patent Documents 1 to 5).
 そこで、焼成処理の代わりに紫外線を照射するプロセスも報告されているが、その際には、ホルムアルデヒド、水素等の還元性のある有害ガス、可燃性ガスに晒しながら紫外線照射しなければならなかった(特許文献6~8参照)。 Therefore, a process of irradiating ultraviolet rays instead of baking treatment has also been reported, but in that case, the ultraviolet rays had to be irradiated while being exposed to reducing harmful gases such as formaldehyde and hydrogen and combustible gases. (See Patent Documents 6 to 8).
日本国特開2003-329592号公報Japanese Patent Application Laid-Open No. 2003-329592 日本国特開2003-166938号公報Japanese Patent Application Laid-Open No. 2003-166938 日本国特開2005-345338号公報Japanese Patent Application Laid-Open No. 2005-345338 日本国特開2005-331364号公報Japanese Patent Application Laid-Open No. 2005-331364 日本国特開2007-71866号公報Japanese Patent Application Laid-Open No. 2007-71866 日本国特開2010-2346号公報Japanese Unexamined Patent Publication No. 2010-2346 国際公開第2009/154216号WO 2009/154216 日本国特開2016-161507号公報Japanese Patent Application Laid-Open No. 2016-161507
 本発明は以上のような状況に鑑みてなされたものであって、その目的とするところは、基材にコーティング液を塗布し、その塗布膜を乾燥させて、水素ガスに対する感応性を有する金属触媒を含む膜を作製する過程において、有害ガスや可燃性ガスを使うことなく、コーティング液中の金属イオンを大気中、室温以上150℃以下の温度で還元させて金属触媒とすることができる、コーティング液を提供することにある。 The present invention has been made in view of the above circumstances, and the object of the present invention is to apply a coating solution to a substrate, dry the applied film, and have a metal having sensitivity to hydrogen gas. In the process of producing a film containing a catalyst, metal ions in the coating solution can be reduced in the air at a temperature of room temperature to 150 ° C. to form a metal catalyst, without using harmful gases or flammable gases. It is in providing a coating liquid.
 〔1〕本発明の一態様によるコーティング液は、
 塩化タングステンと、
 前記塩化タングステンを溶解する炭素数1~4の一価のアルコールと、
 前記アルコールに溶解され、還元性を有するカルボン酸と、
 前記カルボン酸によって還元されることによって水素ガスに対する感応性を有する金属触媒となる金属の化合物とを含むことを特徴とする。
[1] A coating liquid according to an aspect of the present invention is
With tungsten chloride,
A C 1-4 monovalent alcohol dissolving the tungsten chloride;
A reducing carboxylic acid dissolved in the alcohol;
It is characterized in that it contains a metal compound which becomes a metal catalyst having sensitivity to hydrogen gas by being reduced by the carboxylic acid.
 〔2〕前記カルボン酸がシュウ酸であることを特徴とする。シュウ酸は、無水物、二水和物のいずれでもよい。 [2] The carboxylic acid is oxalic acid. The oxalic acid may be either an anhydride or a dihydrate.
 〔3〕前記金属の化合物が、白金族金属の化合物であることを特徴とする。 [3] The metal compound is a platinum group metal compound.
 〔4〕前記白金族金属の化合物が、好ましくは、パラジウム化合物、白金化合物、及びパラジウム白金合金化合物からなる群より選ばれた1種以上であることを特徴とする。 [4] The compound of the platinum group metal is preferably at least one selected from the group consisting of palladium compounds, platinum compounds, and palladium-platinum alloy compounds.
 〔5〕前記白金族金属の化合物が、二塩化パラジウム(PdCl)、二塩化白金(PtCl)、四塩化白金(PtCl)、及び六塩化白金酸六水和物(HPtCl・6HO)からなる群より選ばれた1種以上であることを特徴とする。 [5] The compound of the platinum group metal is palladium dichloride (PdCl 2 ), platinum dichloride (PtCl 2 ), platinum tetrachloride (PtCl 4 ), and hexachloroplatinic acid hexahydrate (H 2 PtCl 6. It is characterized in that it is at least one selected from the group consisting of 6H 2 O).
 〔6〕前記金属触媒を担持した酸化タングステン膜の成膜に用いることを特徴とする。 [6] It is characterized in that it is used for film formation of a tungsten oxide film carrying the metal catalyst.
 〔7〕本発明の一態様によるコーティング液の製造方法は、
 塩化タングステンと、前記塩化タングステンを溶解する炭素数1~4の一価のアルコールとを混ぜて、タングステン溶液を調製し、
 還元性を有するカルボン酸を前記タングステン溶液に溶解して、酸化タングステンの前駆体溶液を調製し、
 前記カルボン酸によって還元されることによって水素ガスに対する感応性を有する金属触媒となる金属の化合物を前記前駆体溶液に溶解して、コーティング液を調製することを特徴とする。
[7] A method of producing a coating liquid according to an aspect of the present invention,
Tungsten chloride is mixed with a C 1-4 monovalent alcohol dissolving the tungsten chloride to prepare a tungsten solution,
A carboxylic acid having reducibility is dissolved in the tungsten solution to prepare a precursor solution of tungsten oxide,
It is characterized in that a compound of a metal serving as a metal catalyst having sensitivity to hydrogen gas by being reduced by the carboxylic acid is dissolved in the precursor solution to prepare a coating liquid.
 〔8〕本発明の一態様による水素ガス感応性膜の製造方法は、
 上記〔1〕~〔6〕のいずれか1つに記載のコーティング液を基材に塗布して塗布膜を形成し、前記塗布膜を大気中、室温以上150℃以下で乾燥することによって、前記金属触媒の原料に含まれる金属イオンを還元してなる前記金属触媒を担持した酸化タングステン膜を成膜することを特徴とする。
[8] A method of producing a hydrogen gas-sensitive film according to an aspect of the present invention,
The coating liquid according to any one of the above [1] to [6] is coated on a substrate to form a coated film, and the coated film is dried in the air at room temperature or more and 150 ° C. or less. A tungsten oxide film carrying the metal catalyst formed by reducing metal ions contained in the raw material of the metal catalyst is formed.
 本発明の一態様によれば、基材にコーティング液を塗布し、その塗布膜を乾燥させて、水素ガスに対する感応性を有する金属触媒を含む膜を作製する過程において、有害ガスや可燃性ガスを使うことなく、コーティング液中の金属イオンを大気中、室温以上150℃以下の温度で還元させて金属触媒とすることができる、コーティング液が提供される。 According to one aspect of the present invention, the coating liquid is applied to the substrate, the coated film is dried, and in the process of producing the film containing the metal catalyst having sensitivity to hydrogen gas, the harmful gas or the combustible gas A coating solution is provided, which can reduce metal ions in the coating solution in the air at a temperature of room temperature or more and 150 ° C. or less to form a metal catalyst.
図1は、一実施形態によるコーティング液の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method of manufacturing a coating liquid according to one embodiment. 図2は、水素ガス感応性膜の応答性を測定する測定装置を示す図である。FIG. 2 is a view showing a measuring device for measuring the responsiveness of the hydrogen gas sensitive film. 図3は、実施例1-1による水素ガス感応性膜の応答性を示すグラフである。FIG. 3 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-1. 図4は、図3に破線で囲む領域Aの拡大図である。FIG. 4 is an enlarged view of a region A surrounded by a broken line in FIG. 図5は、実施例1-2による水素ガス感応性膜の応答性を示すグラフである。FIG. 5 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-2. 図6は、図5に破線で囲む領域Aの拡大図である。6 is an enlarged view of a region A surrounded by a broken line in FIG. 図7は、実施例1-3による水素ガス感応性膜の応答性を示すグラフである。FIG. 7 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-3. 図8は、図7に破線で囲む領域Aの拡大図である。FIG. 8 is an enlarged view of a region A surrounded by a broken line in FIG. 図9は、実施例1-4による水素ガス感応性膜の応答性を示すグラフである。FIG. 9 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-4. 図10は、図9に破線で囲む領域Aの拡大図である。FIG. 10 is an enlarged view of a region A surrounded by a broken line in FIG. 図11は、実施例2による水素ガス感応性膜の応答性を示すグラフである。FIG. 11 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 2. 図12は、図11に破線で囲む領域Aの拡大図である。FIG. 12 is an enlarged view of a region A surrounded by a broken line in FIG. 図13は、実施例3による水素ガス感応性膜の応答性を示すグラフである。FIG. 13 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 3. 図14は、図13に破線で囲む領域Aの拡大図である。FIG. 14 is an enlarged view of a region A surrounded by a broken line in FIG. 図15は、実施例4による水素ガス感応性膜の応答性を示すグラフである。FIG. 15 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 4. 図16は、図15に破線で囲む領域Aの拡大図である。FIG. 16 is an enlarged view of a region A surrounded by a broken line in FIG. 図17は、実施例5-1による水素ガス感応性膜の応答性を示すグラフである。FIG. 17 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 5-1. 図18は、図17に破線で囲む領域Aの拡大図である。FIG. 18 is an enlarged view of a region A surrounded by a broken line in FIG. 図19は、図17に破線で囲む領域Bの拡大図である。FIG. 19 is an enlarged view of a region B surrounded by a broken line in FIG. 図20は、実施例5-2による水素ガス感応性膜の応答性を示すグラフである。FIG. 20 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 5-2. 図21は、図20に破線で囲む領域Aの拡大図である。FIG. 21 is an enlarged view of a region A surrounded by a broken line in FIG. 図22は、図20に破線で囲む領域Bの拡大図である。FIG. 22 is an enlarged view of a region B surrounded by a broken line in FIG. 図23は、実施例6-1による水素ガス感応性膜の応答性を示すグラフである。FIG. 23 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-1. 図24は、図23に破線で囲む領域Aの拡大図である。FIG. 24 is an enlarged view of a region A surrounded by a broken line in FIG. 図25は、実施例6-2による水素ガス感応性膜の応答性を示すグラフである。FIG. 25 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-2. 図26は、図25に破線で囲む領域Aの拡大図である。FIG. 26 is an enlarged view of a region A surrounded by a broken line in FIG. 図27は、実施例6-3による水素ガス感応性膜の応答性を示すグラフである。FIG. 27 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-3. 図28は、図27に破線で囲む領域Aの拡大図である。FIG. 28 is an enlarged view of a region A surrounded by a broken line in FIG. 図29は、図27に破線で囲む領域Bの拡大図である。FIG. 29 is an enlarged view of a region B surrounded by a broken line in FIG. 図30は、図27に破線で囲む領域Cの拡大図である。FIG. 30 is an enlarged view of a region C surrounded by a broken line in FIG. 図31は、実施例7-1による水素ガス感応性膜の応答性を示すグラフである。FIG. 31 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-1. 図32は、図31に破線で囲む領域Aの拡大図である。32 is an enlarged view of a region A surrounded by a broken line in FIG. 図33は、実施例7-2による水素ガス感応性膜の応答性を示すグラフである。FIG. 33 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-2. 図34は、図33に破線で囲む領域Aの拡大図である。FIG. 34 is an enlarged view of a region A surrounded by a broken line in FIG. 図35は、実施例7-3による水素ガス感応性膜の応答性を示すグラフである。FIG. 35 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-3. 図36は、図35に破線で囲む領域Aの拡大図である。FIG. 36 is an enlarged view of a region A surrounded by a broken line in FIG. 図37は、実施例8による水素ガス感応性膜の応答性を示すグラフである。FIG. 37 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 8. 図38は、図37に破線で囲む領域Aの拡大図である。FIG. 38 is an enlarged view of a region A surrounded by a broken line in FIG. 図39は、比較例1-1によるコーティング膜の応答性を示すグラフである。FIG. 39 is a graph showing the responsiveness of the coating film according to Comparative Example 1-1.
 以下、本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
 本実施形態によるコーティング液は、(1)塩化タングステンと、(2)塩化タングステンを溶解する炭素数1~4の一価のアルコールと、(3)還元性を有するカルボン酸と、(4)カルボン酸によって還元されることによって水素ガスに対する感応性を有する金属触媒となる金属の化合物(以下、単に「金属化合物」とも呼ぶ。)とを含む。上記(3)のカルボン酸は、上記(2)のアルコールに溶解される。尚、コーティング液は、上記(1)~(4)以外の成分をさらに含んでもよい。 The coating liquid according to the present embodiment includes (1) tungsten chloride, (2) a monohydric alcohol having 1 to 4 carbon atoms which dissolves tungsten chloride, (3) a carboxylic acid having reducibility, and (4) carbonic acid. And a compound of a metal that becomes a metal catalyst having a sensitivity to hydrogen gas by reduction with an acid (hereinafter, also simply referred to as a "metal compound"). The carboxylic acid of (3) is dissolved in the alcohol of (2). The coating liquid may further contain components other than the above (1) to (4).
 本実施形態のコーティング液を基材へ塗布して塗布膜を形成し、塗布膜を大気中、室温以上150℃以下で乾燥することにより、金属化合物に含まれる金属イオン(例えば白金族金属イオン)をゼロ価の金属(例えば白金族金属)に還元してなる金属触媒を担持した酸化タングステン膜が成膜される。本実施形態の塗布膜の乾燥は、有害ガスや可燃性ガスに晒しながら行うことは不要であり、大気中で行うことができる。これは、塗布膜の乾燥中に、カルボン酸が金属化合物に含まれる金属イオンをゼロ価の金属に還元するためである。 The coating liquid of the present embodiment is applied to a substrate to form a coating film, and the coating film is dried in the air at room temperature or more and 150 ° C. or less to obtain metal ions (eg, platinum group metal ions) contained in the metal compound. A tungsten oxide film supporting a metal catalyst formed by reducing to a zero-valent metal (for example, a platinum group metal) is formed. It is not necessary to dry the coating film of the present embodiment while exposing it to a harmful gas or a flammable gas, and can be performed in the atmosphere. This is because the carboxylic acid reduces the metal ion contained in the metal compound to a zero-valent metal during drying of the coating film.
 金属触媒を担持した酸化タングステン膜は、水素ガス感応性膜として用いられる。水素ガス感応性膜は、水素ガスに晒されることにより透過率が低くなり、大気に晒されることにより透過率が高くなる。水素ガス感応性膜の用途は、例えば、水素ガス可視化シート、水素ガスセンサー、水素ガス感応性スマートウインドウ等である。 A tungsten oxide film carrying a metal catalyst is used as a hydrogen gas sensitive film. The hydrogen gas sensitive membrane has a low permeability by being exposed to hydrogen gas, and a high permeability by being exposed to the atmosphere. The application of the hydrogen gas sensitive film is, for example, a hydrogen gas visualization sheet, a hydrogen gas sensor, a hydrogen gas sensitive smart window, and the like.
 水素ガス感応性膜は、金属化合物に含まれる金属イオンの還元反応の際に塗布膜の内部で発生する炭酸ガスによって多孔質化されてもよい。炭酸ガスは、カルボン酸が塗布膜の乾燥中に酸化されることにより発生する。多孔質化された水素ガス感応性膜は、良好な通気性を有し、周辺雰囲気に対し良好な感応性を有する。 The hydrogen gas-sensitive film may be made porous by carbon dioxide gas generated inside the coating film in the reduction reaction of metal ions contained in the metal compound. Carbon dioxide gas is generated by oxidizing the carboxylic acid during the drying of the coating film. The porous hydrogen gas sensitive membrane has good gas permeability and good sensitivity to the surrounding atmosphere.
 図1は、一実施形態によるコーティング液の製造方法を示すフローチャートである。尚、コーティング液の製造方法は、図1の順序に限定されない。例えば、(1)塩化タングステン、(3)カルボン酸、および(4)金属化合物を混ぜた混合粉末に対して、(2)アルコールを加えてもよい。 FIG. 1 is a flowchart showing a method of manufacturing a coating liquid according to one embodiment. In addition, the manufacturing method of a coating liquid is not limited to the order of FIG. For example, (2) an alcohol may be added to a mixed powder in which (1) tungsten chloride, (3) carboxylic acid, and (4) a metal compound are mixed.
 先ず、図1のステップS11において、塩化タングステンと、塩化タングステンを溶解する炭素数1~4の一価のアルコールとを混ぜて、タングステン溶液を調製する。その調製方法としては、例えば特許文献8に記載の方法が用いられる。塩化タングステンは、特に限定されないが、例えば六塩化タングステン(WCl)である。炭素数1~4の一価のアルコールとしては、メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコールなどが挙げられる。複数種類のアルコールを組合わせて用いてもよい。六塩化タングステン(WCl)とアルコール(ROH)とが反応すると、W(OR)Cl6-xが形成される。 First, in step S11 of FIG. 1, tungsten chloride and a C 1-4 monovalent alcohol dissolving tungsten chloride are mixed to prepare a tungsten solution. As the preparation method, for example, the method described in Patent Document 8 is used. Although tungsten chloride is not particularly limited, it is, for example, tungsten hexachloride (WCl 6 ). Examples of monohydric alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propyl alcohol and i-propyl alcohol. You may combine and use multiple types of alcohol. The reaction of tungsten hexachloride (WCl 6 ) with alcohol (ROH) forms W (OR) x Cl 6 -x .
 次いで、図1のステップS12において、タングステン溶液にカルボン酸を添加して、酸化タングステンの前駆体溶液(以下、単に「前駆体溶液」とも呼ぶ。)を調製する。酸化タングステンは、特に限定されないが、例えば三酸化タングステン(WO)である。 Next, in step S12 of FIG. 1, a carboxylic acid is added to the tungsten solution to prepare a tungsten oxide precursor solution (hereinafter, also simply referred to as a "precursor solution"). Tungsten oxide is not particularly limited, and is, for example, tungsten trioxide (WO 3 ).
 カルボン酸は、前駆体溶液に対し後で添加する金属化合物に含まれる金属イオンに対する還元性を有し、後に行われる成膜の際に、金属イオンをゼロ価の金属に還元する。また、この還元反応に伴いカルボン酸が酸化されて炭酸ガスが発生し、多孔質な水素ガス感応性膜が得られる。カルボン酸は、前駆体溶液中においてタングステンとキレート構造を作るため、酸化タングステンの前駆体を安定化させる役割も期待できる。 The carboxylic acid has reducibility to metal ions contained in metal compounds to be added later to the precursor solution, and reduces metal ions to zero-valent metals during film formation to be performed later. Further, along with this reduction reaction, the carboxylic acid is oxidized to generate carbon dioxide gas, and a porous hydrogen gas sensitive film is obtained. Carboxylic acid can also be expected to play a role in stabilizing the precursor of tungsten oxide because it forms a chelate structure with tungsten in the precursor solution.
 還元性を有するカルボン酸としては、シュウ酸、ギ酸、クエン酸、アスコルビン酸等が使用可能である。カルボン酸の分子量が大きいほど、成膜後の水素ガス感応性膜の膜中に炭素分が残存しやすくなるため、分子量が小さいシュウ酸、ギ酸が好適である。その中でも、取扱の容易さからシュウ酸がより好適である。 As a carboxylic acid having reducibility, oxalic acid, formic acid, citric acid, ascorbic acid and the like can be used. As the molecular weight of the carboxylic acid increases, carbon content tends to remain in the hydrogen gas-sensitive film after film formation. Therefore, oxalic acid and formic acid, which have a small molecular weight, are preferable. Among them, oxalic acid is more preferable because of ease of handling.
 シュウ酸はシュウ酸・無水物とシュウ酸・二水和物が市販品として入手可能であり、どちらを使用することも可能であるが、シュウ酸・無水物を利用する方が、前駆体溶液の安定性が向上する点で好ましい。 As oxalic acid, oxalic acid anhydride and oxalic acid dihydrate are commercially available products, and it is possible to use either, but the precursor solution using oxalic acid anhydride is more preferable. Is preferable in that the stability of
 カルボン酸の添加量は、多すぎても少なすぎても前駆体溶液の安定性や成膜後の水素ガス感応性膜の水素感応特性に悪影響を与える。タングステン溶液中のタングステン量に対するカルボン酸の添加量は、モル比(カルボン酸/タングステン)で1/5~2/5が好適であり、1/5がより好適である。 If the amount of carboxylic acid added is too large or too small, the stability of the precursor solution and the hydrogen sensitivity of the hydrogen gas sensitive film after film formation are adversely affected. The addition amount of carboxylic acid to the amount of tungsten in the tungsten solution is preferably 1/5 to 2/5, more preferably 1/5, in molar ratio (carboxylic acid / tungsten).
 カルボン酸のタングステン溶液への添加は、室温下で行うことができ、また、特別な雰囲気制御も必要なく大気中で行うことができる。大気中室温下で、カルボン酸をタングステン溶液に溶解させることができる。 The addition of the carboxylic acid to the tungsten solution can be carried out at room temperature, and can also be carried out in the atmosphere without the need for special atmosphere control. The carboxylic acid can be dissolved in the tungsten solution at room temperature in air.
 次いで、図1のステップS13において、前駆体溶液に金属触媒の原料である金属化合物、例えば白金族金属の化合物を添加して、コーティング液を調製する。白金族金属の化合物は、前駆体溶液に溶解するものであればよく、例えばパラジウム化合物、白金化合物、及びパラジウム白金合金化合物からなる群より選ばれた1種以上である。パラジウム化合物、白金化合物、及びパラジウム白金合金化合物からなる群より選ばれた2種以上を混合して使用してもよい。 Next, in step S13 of FIG. 1, a metal compound as a raw material of the metal catalyst, for example, a compound of a platinum group metal, is added to the precursor solution to prepare a coating liquid. The platinum group metal compound may be any one as long as it dissolves in the precursor solution, and is, for example, one or more selected from the group consisting of a palladium compound, a platinum compound, and a palladium platinum alloy compound. You may mix and use 2 or more types selected from the group which consists of a palladium compound, a platinum compound, and a palladium platinum alloy compound.
 パラジウム化合物としては、タングステン溶液、または酸化タングステンの前駆体溶液に容易に溶解できるものであれば良いが、入手しやすく、かつ、大気中、室温以上150℃以下でパラジウムイオンを効果的に還元するために、分子量が小さいものが好ましく、また、価数が小さいものが好ましい。特に好適なものとして、二塩化パラジウム(PdCl)が例示される。 Any palladium compound may be used as long as it can be easily dissolved in a tungsten solution or a precursor solution of tungsten oxide, but it is easily available and effectively reduces palladium ions in the air at room temperature to 150 ° C. In order to achieve this, one having a small molecular weight is preferred, and one having a small valence is preferred. Particularly preferred is palladium dichloride (PdCl 2 ).
 白金化合物としては、タングステン溶液、または酸化タングステンの前駆体溶液に容易に溶解できるものであれば良いが、入手しやすく、かつ、大気中、室温以上150℃以下で白金イオンを効果的に還元するために、分子量が小さいものが好ましく、また、価数が小さいものが好ましい。具体的には、二塩化白金(PtCl)、四塩化白金(PtCl)、及び六塩化白金酸六水和物(HPtCl・6HO)があげられる。特に好適なものとして、二塩化白金(PtCl)が例示される。 Any platinum compound may be used as long as it can be easily dissolved in a tungsten solution or a precursor solution of tungsten oxide, but it is easy to obtain and effectively reduces platinum ions at room temperature or more and 150 ° C. or less in the air. In order to achieve this, one having a small molecular weight is preferred, and one having a small valence is preferred. Specifically, platinum dichloride (PtCl 2 ), platinum tetrachloride (PtCl 4 ), and hexachloroplatinic acid hexahydrate (H 2 PtCl 6 .6H 2 O) can be given. Particularly preferred is platinum dichloride (PtCl 2 ).
 金属触媒の原料である金属化合物の添加量が多すぎると、金属化合物が前駆体溶液に完全に溶解することができないだけでなく、還元により析出する金属量が多くなるため水素ガス感応性膜の透明度が低下する。一方、金属触媒の原料である金属化合物の添加量が少なすぎると、成膜後の水素ガス感応性膜の水素感応特性が低下する。前駆体溶液中のタングステン量に対する金属化合物の添加量は、モル比(金属触媒となる金属(例えば白金族金属)/タングステン)で1/10~1/50が好適であり、1/50がより好適である。 When the addition amount of the metal compound which is a raw material of the metal catalyst is too large, not only the metal compound can not be completely dissolved in the precursor solution, but also the amount of metal deposited by reduction becomes large. Transparency is reduced. On the other hand, when the addition amount of the metal compound which is a raw material of a metal catalyst is too small, the hydrogen sensitivity characteristic of the hydrogen gas sensitive film after film formation will deteriorate. The addition amount of the metal compound to the amount of tungsten in the precursor solution is preferably 1/10 to 1/50, more preferably 1/50, in molar ratio (metal serving as metal catalyst (for example, platinum group metal) / tungsten). It is suitable.
 金属触媒の原料である金属化合物の前駆体溶液への添加は、室温下で行うことができ、また、特別な雰囲気制御も必要なく大気中で行うことができる。大気中室温下で、金属触媒の原料である金属化合物を前駆体溶液に溶解させることができる。 The addition to the precursor solution of the metal compound which is a raw material of a metal catalyst can be performed at room temperature, and can also be performed in air | atmosphere, without requiring special atmosphere control. The metal compound which is a raw material of the metal catalyst can be dissolved in the precursor solution at room temperature in the air.
 図1のステップS13により調製されたコーティング液は、より長く安定な状態を保つために、乾燥雰囲気下、遮光された空間で保管することが望ましい。 It is desirable to store the coating solution prepared in step S13 of FIG. 1 in a light-shielded space under a dry atmosphere in order to maintain a longer and stable state.
 調製されたコーティング液を基材へ塗布して塗布膜を形成する。塗布の方法としては、粘性の低い溶液を均一に塗布できる方法、例えば、スピンコート法、ディップコート法、ロールコート法などを適用することができ、用いる基材の材質、大きさ、厚み等に応じて適宜選択することができる。 The prepared coating solution is applied to a substrate to form a coated film. As a method of application, a method capable of uniformly applying a solution with low viscosity, such as spin coating, dip coating, roll coating, etc. can be applied, and the material, size, thickness and the like of the used substrate It can be selected accordingly.
 調製されたコーティング液を基材へ塗布して塗布膜を形成し、塗布膜を大気中、室温以上150℃以下で乾燥することにより、金属化合物に含まれる金属イオンをゼロ価の金属に還元してなる金属触媒を担持した酸化タングステン膜が成膜される。本実施形態の塗布膜の乾燥は、有害ガスや可燃性ガスに晒しながら行うことは不要であり、大気中で行うことができる。また、本実施形態の塗布膜の乾燥は、室温(例えば10℃以上35°以下)で行うことができる。 The prepared coating solution is applied to a substrate to form a coating film, and the coating film is dried at room temperature or more and 150 ° C. or less in the air to reduce metal ions contained in the metal compound to zero-valent metal. A tungsten oxide film carrying a metal catalyst is formed. It is not necessary to dry the coating film of the present embodiment while exposing it to a harmful gas or a flammable gas, and can be performed in the atmosphere. Moreover, drying of the coating film of this embodiment can be performed at room temperature (for example, 10 degreeC or more and 35 degrees or less).
 金属化合物に含まれる金属イオンの還元反応を促進するため、塗布膜の乾燥温度は好ましくは50℃以上100℃以下である。塗布膜の乾燥温度が100℃以下であれば、コーティング液を塗布する基材として、ガラス基板の他に、樹脂基板等も使用できる。樹脂基板は、耐アルコール性および耐酸性を有する樹脂、例えばポリエチレン、ポリプロピレン、ポリカーボネート等で形成される。基材は、透明なものであることが好ましい。コーティング液を塗布する基材の厚みや大きさは、水素ガス感応性膜の用途やコーティング液の塗布法などに応じて適宜選択され、特に限定されない。 In order to accelerate the reduction reaction of metal ions contained in the metal compound, the drying temperature of the coating film is preferably 50 ° C. or more and 100 ° C. or less. If the drying temperature of a coating film is 100 degrees C or less, a resin substrate etc. can be used as a base material which apply | coats a coating liquid other than a glass substrate. The resin substrate is formed of a resin having alcohol resistance and acid resistance, such as polyethylene, polypropylene, polycarbonate and the like. The substrate is preferably transparent. The thickness and size of the substrate to which the coating solution is applied are appropriately selected according to the application of the hydrogen gas-sensitive film, the application method of the coating solution, and the like, and are not particularly limited.
 金属化合物に含まれる金属イオンの還元反応を促進するため、塗布膜の乾燥時に紫外線照射が行われてもよい。紫外線の波長は、例えば200nm~380nmである。紫外線照射が行われる場合、塗布膜の乾燥温度は室温でもよい。 In order to accelerate the reduction reaction of metal ions contained in the metal compound, ultraviolet irradiation may be performed when the coating film is dried. The wavelength of the ultraviolet light is, for example, 200 nm to 380 nm. When ultraviolet irradiation is performed, the drying temperature of the coating film may be room temperature.
 金属触媒を担持した酸化タングステン膜は、水素ガス感応性膜として用いられる。水素ガス感応性膜は、水素ガスに晒されることにより透過率が低くなり、大気に晒されることにより透過率が高くなる。 A tungsten oxide film carrying a metal catalyst is used as a hydrogen gas sensitive film. The hydrogen gas sensitive membrane has a low permeability by being exposed to hydrogen gas, and a high permeability by being exposed to the atmosphere.
 水素ガス感応性膜は、コーティング液の塗布および塗布膜の乾燥を1回のみ行って形成されてもよいし、コーティング液の塗布および塗布膜の乾燥を複数回繰り返して形成されてもよい。後者の場合、複数の酸化タングステン膜で水素ガス感応性膜が構成される。水素ガス感応性膜の膜厚は、用途などに応じて適宜選択される。 The hydrogen gas sensitive film may be formed by applying the coating solution and drying the applied film only once, or may be formed by repeating the application of the coating solution and drying of the applied film multiple times. In the latter case, a plurality of tungsten oxide films constitute a hydrogen gas sensitive film. The film thickness of the hydrogen gas-sensitive film is appropriately selected according to the application and the like.
 水素ガス感応性膜は、金属化合物に含まれる金属イオンの還元反応の際に塗布膜の内部で発生する炭酸ガスによって多孔質化されてもよい。炭酸ガスは、カルボン酸が塗布膜の乾燥中に酸化されることにより発生する。多孔質化された水素ガス感応性膜は、良好な通気性を有し、周辺雰囲気に対し良好な感応性を有する。 The hydrogen gas-sensitive film may be made porous by carbon dioxide gas generated inside the coating film in the reduction reaction of metal ions contained in the metal compound. Carbon dioxide gas is generated by oxidizing the carboxylic acid during the drying of the coating film. The porous hydrogen gas sensitive membrane has good gas permeability and good sensitivity to the surrounding atmosphere.
 以下、コーティング液、コーティング液の製造方法、および水素ガス感応性膜の製造方法の具体例について説明する。また、得られた水素ガス感応性膜の応答性の評価結果について説明する。 Hereinafter, specific examples of the coating liquid, the method of manufacturing the coating liquid, and the method of manufacturing the hydrogen gas-sensitive film will be described. Moreover, the evaluation result of the responsiveness of the obtained hydrogen gas sensitive film | membrane is demonstrated.
 〔実施例1-1〕
 先ず、特許文献8記載の方法に従い、氷冷、乾燥窒素雰囲気下で、六塩化タングステン(WCl)に超脱水エタノールと超脱水イソプロピルアルコールを加え、その後、室温下で撹拌を続け、タングステン溶液を得た。タングステン溶液中のタングステン濃度は、0.25モル/Lとした。
Example 1-1
First, according to the method described in Patent Document 8, super dehydrated ethanol and super dehydrated isopropyl alcohol are added to tungsten hexachloride (WCl 6 ) under ice-cold dry nitrogen atmosphere, and then stirring is continued at room temperature to obtain a tungsten solution Obtained. The tungsten concentration in the tungsten solution was 0.25 mol / L.
 次いで、シュウ酸・無水物1.0×10-3モルをナスフラスコに測り取り、これに20mlのタングステン溶液(W:5.0×10-3モル)を加えて撹拌して、酸化タングステンの前駆体溶液を調製した。タングステン溶液中のタングステン量に対するシュウ酸・無水物の添加量は、モル比(シュウ酸・無水物/タングステン)で1/5とした。 Next, 1.0 × 10 -3 mol of oxalic acid anhydride is measured in an eggplant flask, to which 20 ml of tungsten solution (W: 5.0 × 10 -3 mol) is added and stirred to obtain tungsten oxide A precursor solution was prepared. The addition amount of oxalic acid anhydride relative to the amount of tungsten in the tungsten solution was 1/5 in molar ratio (oxalic acid anhydride / tungsten).
 1時間後、前駆体溶液に5.0×10-4モルのPdClを添加し、遮光してそのまま室温下で撹拌し、透明で褐色のコーティング液を調製した。前駆体溶液中のタングステン量に対するPdClの添加量は、モル比(Pd/タングステン)で1/10とした。 After 1 hour, 5.0 × 10 −4 moles of PdCl 2 was added to the precursor solution, and the mixture was shielded from light and stirred at room temperature as it was to prepare a clear brown coating solution. The amount of PdCl 2 added to the amount of tungsten in the precursor solution was 1/10 in molar ratio (Pd / tungsten).
 次いで、コーティング液を、洗浄済みのガラス基板上に3000rpm、30sの条件でスピンコートして塗布膜を形成し、形成した塗布膜を大気中100℃のホットプレート上で5分間加熱し乾燥させた。この塗布及び乾燥操作を5回繰り返し水素ガス感応性膜を得た。 Next, the coating solution was spin-coated on a cleaned glass substrate at 3000 rpm for 30 seconds to form a coated film, and the formed coated film was dried by heating for 5 minutes on a hot plate at 100 ° C. in air. . The coating and drying operations were repeated five times to obtain a hydrogen gas-sensitive film.
 得られた水素ガス感応性膜の応答性を、図2に示す測定装置Aで測定した。測定装置Aは、測定対象物である水素ガス感応性膜2、および水素ガス感応性膜2が形成されるガラス基板1を含まない。図2は、水素ガス感応性膜の応答性を測定する測定装置を示す図である。図2において、矢印は水素含有ガスの流れを表す。水素含有ガスは、マスフローコントローラ13によって導入され、ガラスセル11と水素ガス感応性膜2との隙間16を通り、外部に放出される。水素含有ガスとしては、水素ガスを4体積%、アルゴンガスを96体積%含むものを用いた。 The responsiveness of the obtained hydrogen gas-sensitive film was measured by the measuring device A shown in FIG. The measuring apparatus A does not include the hydrogen gas-sensitive film 2 which is an object to be measured, and the glass substrate 1 on which the hydrogen gas-sensitive film 2 is formed. FIG. 2 is a view showing a measuring device for measuring the responsiveness of the hydrogen gas sensitive film. In FIG. 2, arrows indicate the flow of hydrogen-containing gas. The hydrogen-containing gas is introduced by the mass flow controller 13, passes through the gap 16 between the glass cell 11 and the hydrogen gas sensitive film 2, and is released to the outside. As a hydrogen-containing gas, a gas containing 4% by volume of hydrogen gas and 96% by volume of argon gas was used.
 図2に示すように、測定装置Aは、ガラスセル11と、スペーサ12と、マスフローコントローラ13と、光源14と、受光器15とを備える。ガラスセル11は、ガラス基板1に成膜した水素ガス感応性膜2と対向配置される。スペーサ12は、ガラスセル11と水素ガス感応性膜2との間に、水素含有ガスの流路となる隙間16を形成する。マスフローコントローラ13は、隙間16を流れる水素含有ガスの流量を制御する。光源14としての半導体レーザ装置は、波長670nmのレーザー光を照射する。受光器15としてのフォトダイオードは、光源14から照射されたレーザー光を受光し、受光したレーザー光の強度に応じた信号を出力する。光源14から照射されたレーザー光は、ガラス基板1、水素ガス感応性膜2およびガラスセル11をこの順で通過し、受光器15で受光される。光源14から照射されるレーザー光の強度に対する、受光器15で受光されるレーザー光の強度の割合が透過率である。 As shown in FIG. 2, the measuring apparatus A includes a glass cell 11, a spacer 12, a mass flow controller 13, a light source 14, and a light receiver 15. The glass cell 11 is disposed to face the hydrogen gas sensitive film 2 formed on the glass substrate 1. The spacer 12 forms a gap 16 between the glass cell 11 and the hydrogen gas sensitive film 2 as a flow path of the hydrogen-containing gas. The mass flow controller 13 controls the flow rate of the hydrogen-containing gas flowing in the gap 16. The semiconductor laser device as the light source 14 emits a laser beam having a wavelength of 670 nm. The photodiode as the light receiver 15 receives the laser beam emitted from the light source 14 and outputs a signal according to the intensity of the received laser beam. The laser light emitted from the light source 14 passes through the glass substrate 1, the hydrogen gas sensitive film 2 and the glass cell 11 in this order, and is received by the light receiver 15. The ratio of the intensity of the laser beam received by the light receiver 15 to the intensity of the laser beam emitted from the light source 14 is the transmittance.
 水素ガス感応性膜の応答性は、図2の隙間16に水素含有ガスを60秒間供給すること、およびその供給を60秒間停止することを交互に繰り返しながら、波長670nmのレーザー光の透過率を測定することにより測定した。測定結果を図3および図4に示す。図3は、実施例1-1による水素ガス感応性膜の応答性を示すグラフである。図4は、図3に破線で囲む領域Aの拡大図である。図4において、「ON」とは水素含有ガスの停止から供給への切換を意味し、「OFF」とは水素含有ガスの供給から停止への切換を意味する。水素含有ガスの供給が停止されると、水素含有ガスの出口から隙間16に向けて大気が入り込む。尚、その他の図面において同様である。 The response of the hydrogen gas-sensitive film was determined by alternately supplying the hydrogen-containing gas to the gap 16 of FIG. 2 for 60 seconds and stopping the supply for 60 seconds, alternately, the transmittance of the laser light having a wavelength of 670 nm. It measured by measuring. The measurement results are shown in FIG. 3 and FIG. FIG. 3 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-1. FIG. 4 is an enlarged view of a region A surrounded by a broken line in FIG. In FIG. 4, “ON” means switching from stop to supply of hydrogen-containing gas, and “off” means switch from supply of hydrogen-containing gas to stop. When the supply of the hydrogen-containing gas is stopped, the atmosphere enters the gap 16 from the outlet of the hydrogen-containing gas. The same applies to the other drawings.
 図3に示すように、水素含有ガスの供給および停止を約20回(約2400秒)繰り返した後から、徐々に無色透明(透明状態)と青色(着色状態)の間で水素ガス感応性膜の色(状態)の変化が起こり始めた。その後、図4に示すように、水素含有ガスの供給および停止を切り替える度に、レーザー光の透過率が約16%~60%の範囲で変化した。この結果から、実施例1-1のコーティング液によれば、大気中において100℃で乾燥するだけで、水素ガス感応性膜を得られることが確認された。また、水素ガス感応性膜の応答性が良いことは、水素ガス感応性膜が多孔質化されていることを意味する。しかし、水素含有ガスの供給および停止を繰り返すと、水素ガスによる還元反応によってPd由来の金属光沢がみられ、透明時の透過率が徐々に減少する傾向にあった。 As shown in FIG. 3, after the supply and stop of the hydrogen-containing gas are repeated about 20 times (about 2400 seconds), the hydrogen gas-sensitive film is gradually colored between colorless and transparent (transparent state) and blue (colored state) A change in the color (state) of Thereafter, as shown in FIG. 4, the transmittance of the laser light changed in the range of about 16% to 60% each time the supply and stop of the hydrogen-containing gas were switched. From this result, it was confirmed that the hydrogen gas-sensitive film can be obtained only by drying at 100 ° C. in the atmosphere according to the coating liquid of Example 1-1. Also, the good response of the hydrogen gas sensitive membrane means that the hydrogen gas sensitive membrane is made porous. However, when the supply and stop of the hydrogen-containing gas were repeated, the metallic gloss derived from Pd was observed due to the reduction reaction with hydrogen gas, and the transmittance at the time of transparency tended to gradually decrease.
 〔実施例1-2〕
 実施例1-2では、塗布膜を大気中100℃のホットプレート上で加熱して乾燥する5分間の間に波長365nmの紫外線照射を同時に行った以外、実施例1-1と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図5および図6に示す。図5は、実施例1-2による水素ガス感応性膜の応答性を示すグラフである。図6は、図5に破線で囲む領域Aの拡大図である。
Example 1-2
In Example 1-2, hydrogen was applied under the same conditions as Example 1-1 except that ultraviolet irradiation at a wavelength of 365 nm was simultaneously performed during 5 minutes of heating and drying the coating film on a hot plate at 100 ° C. in the atmosphere. A gas sensitive film was deposited. The responsiveness of the resulting hydrogen gas-sensitive membrane is shown in FIGS. FIG. 5 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-2. 6 is an enlarged view of a region A surrounded by a broken line in FIG.
 図5に示すように水素含有ガスの供給および停止の繰り返し開始直後から膜内全面で無色透明と青色の間で水素ガス感応性膜の色が変化するとともに、図6に示すようにレーザー光の透過率が約16%~58%の範囲で変化した。この結果から、塗布膜の乾燥時に紫外線照射を用いることにより、応答開始(透過率の変化の開始)までの時間を短縮できることが確認された。 As shown in FIG. 5, the color of the hydrogen gas-sensitive film changes between colorless and blue on the entire surface of the film immediately after the start of repeated supply and stop of the hydrogen-containing gas, and the color of the laser light changes as shown in FIG. The transmittance varied in the range of about 16% to 58%. From this result, it was confirmed that the time until response start (start of change of transmittance) can be shortened by using ultraviolet irradiation when drying the coating film.
 〔実施例1-3〕
 実施例1-3では、波長365nmの紫外線照射の代わりに波長254nmの紫外線照射を行った以外、実施例1-2と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図7および図8に示す。図7は、実施例1-3による水素ガス感応性膜の応答性を示すグラフである。図8は、図7に破線で囲む領域Aの拡大図である。
Example 1-3
In Example 1-3, a hydrogen gas-sensitive film was formed under the same conditions as in Example 1-2 except that ultraviolet irradiation with a wavelength of 254 nm was performed instead of ultraviolet irradiation with a wavelength of 365 nm. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. 7 and 8. FIG. 7 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-3. FIG. 8 is an enlarged view of a region A surrounded by a broken line in FIG.
 図7に示すように水素含有ガスの供給および停止の繰り返し開始直後から、無色透明と青色の間で水素ガス感応性膜の色が変化したが、応答部分は膜中央部のみであり膜外周部は濃青色に着色したままで応答はしなかった。応答性が確認できた膜中央部では図8に示すようにレーザー光の透過率が約40%~60%の範囲で変化するようになったが、水素含有ガスの停止から供給への切換に対する応答速度(以下、「着色時の応答速度」とも呼ぶ。)および水素含有ガスの供給から停止への切換に対する応答速度(以下、「消色時の応答速度」とも呼ぶ)は遅かった。 As shown in FIG. 7, the color of the hydrogen gas-sensitive film changes between colorless and transparent and blue immediately after the start of repeated supply and stop of the hydrogen-containing gas, but the response portion is only the center of the film, and the film outer periphery Remained dark blue and did not respond. At the central part of the membrane where the response was confirmed, the laser light transmittance changed in the range of about 40% to 60% as shown in FIG. 8, but for the switching from stop to supply of hydrogen-containing gas The response speed (hereinafter also referred to as "coloring response speed") and the response speed to switching from supply of hydrogen-containing gas to stop (hereinafter also referred to as "decoloring response speed") were slow.
 〔実施例1-4〕
 実施例1-4では、塗布膜の乾燥を大気中室温(25℃)で行い、その乾燥中の塗布膜に波長365nmの紫外線を5分間照射した以外、実施例1-2と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図9および図10に示す。図9は、実施例1-4による水素ガス感応性膜の応答性を示すグラフである。図10は、図9に破線で囲む領域Aの拡大図である。
Example 1-4
In Example 1-4, drying of the coating film is performed at room temperature (25 ° C.) in the air, and the coating film during the drying is irradiated with ultraviolet light of wavelength 365 nm for 5 minutes, and hydrogen is used under the same conditions as Example 1-2. A gas sensitive film was deposited. The responsiveness of the obtained hydrogen gas-sensitive membrane is shown in FIGS. FIG. 9 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 1-4. FIG. 10 is an enlarged view of a region A surrounded by a broken line in FIG.
 図9および図10から明らかなように、波長365nmの紫外線を照射した場合、塗布膜の乾燥温度が室温であっても、ONおよびOFFに応じて色が変化する水素ガス感応性膜を作製できることが確認できた。 As is apparent from FIGS. 9 and 10, it is possible to produce a hydrogen gas-sensitive film whose color changes depending on ON and OFF even when the drying temperature of the coating film is room temperature when irradiated with ultraviolet light having a wavelength of 365 nm. Was confirmed.
 〔実施例2〕
 実施例2では、タングステン溶液中のタングステン量に対するシュウ酸・無水物の添加量をモル比(シュウ酸/タングステン)で1/5から2/5に増やして前駆体溶液を調製した以外、実施例1-2と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図11および図12に示す。図11は、実施例2による水素ガス感応性膜の応答性を示すグラフである。図12は、図11に破線で囲む領域Aの拡大図である。
Example 2
Example 2 is an example except that the addition amount of oxalic acid anhydride relative to the amount of tungsten in the tungsten solution is increased from 1/5 to 2/5 in molar ratio (oxalic acid / tungsten) to prepare a precursor solution. A hydrogen gas sensitive film was formed under the same conditions as 1-2. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. FIG. 11 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 2. FIG. 12 is an enlarged view of a region A surrounded by a broken line in FIG.
 図11に示すように水素含有ガスの供給および停止の繰り返し開始直後から膜内全面で無色透明と青色の間で水素ガス感応性膜の色が変化するとともに、図12に示すようにレーザー光の透過率が約22%~62%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。図12と、実施例1-2の図6とを比較すれば明らかなように、モル比(シュウ酸/タングステン)を増やすことによって着色時の応答速度および消色時の応答速度は遅くなることがわかった。また、水素含有ガスの供給および停止の繰り返し回数が増えるにつれ、着色時の透過率および消色時の透過率が悪くなる(着色時の透過率が大きくなり、消色時の透過率が小さくなる)ことも確認できた。 As shown in FIG. 11, the color of the hydrogen gas-sensitive film changes between colorless and blue on the entire surface of the film immediately after the start of repeated supply and stop of the hydrogen-containing gas, as shown in FIG. The permeability changed in the range of about 22% to 62%, and it was confirmed that the film showed good sensitivity to hydrogen gas. As apparent from comparison between FIG. 12 and FIG. 6 of Example 1-2, the response speed upon coloring and the response speed upon discoloring become slower by increasing the molar ratio (oxalic acid / tungsten). I understand. In addition, as the number of repetitions of supply and stop of the hydrogen-containing gas increases, the transmittance at the time of coloring and the transmittance at the time of decoloring deteriorate (the transmittance at the time of coloring increases and the transmittance at the time of decoloring decreases) ) Also confirmed.
 〔実施例3〕
 実施例3では、前駆体溶液中のタングステン量に対するPdClの添加量をモル比(Pd/タングステン)で1/10から1/25に減らしてコーティング液を調製した以外、実施例1-2と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図13および図14に示す。図13は、実施例3による水素ガス感応性膜の応答性を示すグラフである。図14は、図13に破線で囲む領域Aの拡大図である。
[Example 3]
In Example 3, the coating liquid was prepared except that the addition amount of PdCl 2 with respect to the amount of tungsten in the precursor solution was reduced from 1/10 to 1/25 in molar ratio (Pd / tungsten). A hydrogen gas sensitive film was formed under the same conditions. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. 13 and 14. FIG. 13 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 3. FIG. 14 is an enlarged view of a region A surrounded by a broken line in FIG.
 図13に示すように水素含有ガスの供給および停止の繰り返し開始直後から膜内全面で無色透明と青色の間で水素ガス感応性膜の色が変化するとともに、図14に示すようにレーザー光の透過率が約34%~70%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。図14と、実施例1-2の図6とを比較すれば明らかなように、モル比(Pd/タングステン)を減らすことによって着色時の応答速度および消色時の応答速度は遅くなったが、透明時の透過率が10%程度向上することがわかった。しかし、モル比(Pd/タングステン)の減少によって解消できると期待されたPd由来の金属光沢が僅かにみられた。 As shown in FIG. 13, the color of the hydrogen gas-sensitive film changes between colorless and blue on the entire surface of the film immediately after the start of repeated supply and stop of the hydrogen-containing gas, and the color of the laser light changes as shown in FIG. It was confirmed that the permeability changed in the range of about 34% to 70%, and showed good sensitivity to hydrogen gas. As apparent from the comparison between FIG. 14 and FIG. 6 of Example 1-2, the response speed at coloring and the response speed at decoloring become slower by reducing the molar ratio (Pd / tungsten). It was found that the transmissivity at the time of transparency was improved by about 10%. However, a slight metallic sheen from Pd was expected, which was expected to be overcome by the reduction of the molar ratio (Pd / tungsten).
 〔実施例4〕
 実施例4では、タングステン溶液に対し添加するカルボン酸としてシュウ酸・無水物の代わりにクエン酸を使用して前駆体溶液を調製した以外、実施例1-2と同じ条件で水素ガス感応性膜を成膜した。実施例1-2と同様に、タングステン溶液中のタングステン量に対するクエン酸の添加量は、モル比(クエン酸/タングステン)で1/5とした。得られた水素ガス感応性膜の応答性を図15および図16に示す。図15は、実施例4による水素ガス感応性膜の応答性を示すグラフである。図16は、図15に破線で囲む領域Aの拡大図である。
Example 4
In Example 4, a hydrogen gas-sensitive film was prepared under the same conditions as in Example 1-2 except that a precursor solution was prepared using citric acid instead of oxalic acid anhydride as the carboxylic acid to be added to the tungsten solution. Was deposited. As in Example 1-2, the amount of citric acid added to the amount of tungsten in the tungsten solution was 1/5 in molar ratio (citric acid / tungsten). The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. FIG. 15 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 4. FIG. 16 is an enlarged view of a region A surrounded by a broken line in FIG.
 図15に示すように水素含有ガスの供給および停止を約40回(約4800秒)繰り返した後から、徐々に膜内全面で無色透明と青色の間で水素ガス感応性膜の色が変化した。図15と、実施例1-2の図5とを比較すると明らかなように、カルボン酸として分子量の大きいクエン酸を使用した場合、応答開始(透過率の変化の開始)に時間がかかることがわかった。その後、図16に示すようにONおよびOFFに伴うレーザー光の透過率の変化幅は約30%であったが、水素含有ガスの供給および停止の繰り返し回数が増えるにつれ、透明時の透過率は下がっていった。 As shown in FIG. 15, after the supply and stop of the hydrogen-containing gas were repeated about 40 times (about 4800 seconds), the color of the hydrogen gas-sensitive film gradually changed between colorless and transparent and blue over the entire surface of the film. . As apparent from comparison between FIG. 15 and FIG. 5 of Example 1-2, when citric acid having a large molecular weight is used as the carboxylic acid, it takes time for the response to start (start of change in transmittance) all right. After that, as shown in FIG. 16, the change in the transmittance of the laser light with ON and OFF was about 30%, but as the number of repetitions of the supply and stop of the hydrogen-containing gas increases, the transmittance when transparent It went down.
 〔実施例5-1〕
 実施例5-1では、前駆体溶液に対し添加する金属化合物としてPdClの代わりにPtClを使用してコーティング液を調製した以外、実施例1-1と同じ条件で水素ガス感応性膜を成膜した。実施例1-1と同様に、前駆体溶液中のタングステン量に対するPtClの添加量は、モル比(Pt/タングステン)で1/10とした。得られた水素ガス感応性膜の応答性を図17~図19に示す。図17は、実施例5-1による水素ガス感応性膜の応答性を示すグラフである。図18は、図17に破線で囲む領域Aの拡大図である。図19は、図17に破線で囲む領域Bの拡大図である。
Example 5-1
In Example 5-1, a hydrogen gas-sensitive film was prepared under the same conditions as Example 1-1 except that PtCl 2 was used instead of PdCl 2 as the metal compound to be added to the precursor solution. The film was formed. As in Example 1-1, the amount of PtCl 2 added to the amount of tungsten in the precursor solution was 1/10 in molar ratio (Pt / tungsten). The responsiveness of the obtained hydrogen gas-sensitive film is shown in FIGS. FIG. 17 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 5-1. FIG. 18 is an enlarged view of a region A surrounded by a broken line in FIG. FIG. 19 is an enlarged view of a region B surrounded by a broken line in FIG.
 図17および図19に示すように、実施例1-1の場合(図3参照)と違い、水素含有ガスの供給および停止の繰り返し開始の略直後から膜内全面で無色透明と青色の間で水素ガス感応性膜の色が変化した。また、図18に示すように、レーザー光の透過率が約16%~55%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。また、図18と、実施例1-1の図4とを比較すれば明らかなように、金属触媒としてPdの代わりにPtを用いることにより、着色時の応答速度および消色時の応答速度が速くなった。しかし、実施例1-1と同様に、水素含有ガスの供給および停止をさらに繰り返すと、水素ガスによる還元反応によってPt由来の金属光沢がみられ、透明時の透過率が徐々に減少する傾向にあった。 As shown in FIGS. 17 and 19, unlike in the case of Example 1-1 (see FIG. 3), it is between about colorless and transparent and blue on the entire surface almost immediately after the start of repetition of supply and stop of hydrogen-containing gas. The color of the hydrogen gas sensitive membrane has changed. In addition, as shown in FIG. 18, it was confirmed that the transmittance of the laser light changed in the range of about 16% to 55%, and showed good sensitivity to hydrogen gas. Further, as apparent from comparison between FIG. 18 and FIG. 4 of Example 1-1, by using Pt as the metal catalyst instead of Pd, the response speed at the time of coloring and the response speed at the time of decoloring can be improved. It became faster. However, similar to Example 1-1, when the supply and stop of the hydrogen-containing gas are further repeated, the metallic gloss derived from Pt is observed by the reduction reaction with hydrogen gas, and the transmittance at the time of transparency tends to gradually decrease. there were.
 〔実施例5-2〕
 実施例5-2では、塗布膜を大気中100℃のホットプレート上で加熱して乾燥する5分間の間に波長365nmの紫外線照射を同時に行った以外、実施例5-1と同じ条件で水素ガス感応性膜を成膜した。つまり、実施例5-2では、前駆体溶液に対し添加する金属化合物としてPdClの代わりにPtClを使用した以外、実施例1-2と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図20~図22に示す。図20は、実施例5-2による水素ガス感応性膜の応答性を示すグラフである。図21は、図20に破線で囲む領域Aの拡大図である。図22は、図20に破線で囲む領域Bの拡大図である。
Example 5-2
In Example 5-2, hydrogen was applied under the same conditions as in Example 5-1 except that ultraviolet irradiation at a wavelength of 365 nm was simultaneously performed during 5 minutes of heating and drying the coated film on a hot plate at 100 ° C. in the atmosphere. A gas sensitive film was deposited. That is, in Example 5-2, a hydrogen gas-sensitive film was formed under the same conditions as in Example 1-2 except that PtCl 2 was used instead of PdCl 2 as the metal compound added to the precursor solution. The responsiveness of the obtained hydrogen gas-sensitive film is shown in FIGS. FIG. 20 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 5-2. FIG. 21 is an enlarged view of a region A surrounded by a broken line in FIG. FIG. 22 is an enlarged view of a region B surrounded by a broken line in FIG.
 図20および図22に示すように水素含有ガスの供給および停止の繰り返し開始直後から膜内全面で無色透明と青色の間で水素ガス感応性膜の色が変化するとともに、図21に示すようにレーザー光の透過率が約14%~46%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。図22と、実施例5-1の図19とを比較すれば明らかなように、加熱乾燥に紫外線照射を併用することにより、応答開始(透過率の変化の開始)までの時間を短縮できることが確認された。また、図21と、実施例1-2の図6とを比較すれば明らかなように、金属触媒としてPdの代わりにPtを用いることにより、着色時の応答速度および消色時の応答速度が速くなった。 As shown in FIG. 20 and FIG. 22, the color of the hydrogen gas-sensitive film changes between colorless and transparent and blue over the entire surface of the film immediately after the start of repeated supply and stop of hydrogen-containing gas, as shown in FIG. It was confirmed that the transmittance of the laser light changed in the range of about 14% to 46% and showed a good sensitivity to hydrogen gas. As apparent from comparison between FIG. 22 and FIG. 19 of Example 5-1, it is possible to shorten the time until response start (start of change of transmittance) by using ultraviolet irradiation together with heat drying. confirmed. Further, as apparent from comparison between FIG. 21 and FIG. 6 of Example 1-2, by using Pt as the metal catalyst instead of Pd, the response speed at the time of coloring and the response speed at the time of decoloring can be improved. It became faster.
 〔実施例6-1〕
 実施例6-1では、前駆体溶液中のタングステン量に対するPtClの添加量をモル比(Pt/タングステン)で1/10から1/50に減らしてコーティング液を調製した以外、実施例5-2と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図23および図24に示す。図23は、実施例6-1による水素ガス感応性膜の応答性を示すグラフである。図24は、図23に破線で囲む領域Aの拡大図である。
Example 6-1
In Example 6-1, the amount of PtCl 2 added to the amount of tungsten in the precursor solution was reduced by 1/10 to 1/50 in the molar ratio (Pt / tungsten) to prepare a coating solution, except for A hydrogen gas-sensitive film was formed under the same conditions as in 2. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIG. 23 and FIG. FIG. 23 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-1. FIG. 24 is an enlarged view of a region A surrounded by a broken line in FIG.
 図23に示すように、モル比(Pt/タングステン)を1/10から1/50に減らしても、実施例5-2と同様に、水素含有ガスの供給および停止の繰り返し開始直後から膜内全面で無色透明と青色の間で水素ガス感応性膜の色が変化した。また、図24に示すように、レーザー光の透過率が約18%~55%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。また、実施例5-2と同様に、着色時の応答速度および消色時の応答速度は速かった。加えて、実施例5-2では見られたPt由来の金属光沢はみられなかった。 As shown in FIG. 23, even if the molar ratio (Pt / Tungsten) is reduced from 1/10 to 1/50, as in Example 5-2, the inside of the film is immediately after the start of the repetition of the supply and stop of the hydrogen-containing gas. The color of the hydrogen gas sensitive film changed between colorless and transparent and blue over the entire surface. In addition, as shown in FIG. 24, it was confirmed that the transmittance of the laser light changed in the range of about 18% to 55%, and showed good sensitivity to hydrogen gas. Further, as in Example 5-2, the response speed at the time of coloring and the response speed at the time of decoloring were fast. In addition, the metallic luster derived from Pt observed in Example 5-2 was not observed.
 〔実施例6-2〕
 実施例6-2では、塗布膜の乾燥温度を100℃から80℃に下げた以外、実施例6-1と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図25および図26に示す。図25は、実施例6-2による水素ガス感応性膜の応答性を示すグラフである。図26は、図25に破線で囲む領域Aの拡大図である。
Example 6-2
In Example 6-2, a hydrogen gas-sensitive film was formed under the same conditions as in Example 6-1 except that the drying temperature of the coating film was lowered from 100 ° C. to 80 ° C. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. 25 and 26. FIG. 25 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-2. FIG. 26 is an enlarged view of a region A surrounded by a broken line in FIG.
 図25に示すように水素含有ガスの供給および停止の繰り返し開始直後から膜内全面で無色透明と青色の間で水素ガス感応性膜の色が変化するとともに、図26に示すようにレーザー光の透過率が約20%~65%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。しかし、図26と、実施例6-1の図24とを比較すれば明らかなように、乾燥温度の低下によって着色時の応答速度および消色時の応答速度は低下した。また、水素含有ガスの供給および停止をさらに繰り返すと、膜外周部において、青く着色したまま透明状態に戻らない領域が認められた。 As shown in FIG. 25, the color of the hydrogen gas-sensitive film changes between colorless and blue on the entire surface of the film immediately after the start of repeated supply and stop of the hydrogen-containing gas, as shown in FIG. It was confirmed that the permeability changes in the range of about 20% to 65%, and shows good sensitivity to hydrogen gas. However, as apparent from comparison of FIG. 26 with FIG. 24 of Example 6-1, the response speed at the time of coloring and the response speed at the time of decoloring were reduced due to the lowering of the drying temperature. Further, when the supply and stop of the hydrogen-containing gas were further repeated, a region which did not return to the transparent state while remaining blue-colored was observed in the outer peripheral portion of the film.
 〔実施例6-3〕
 実施例6-3では、塗布膜の乾燥時に紫外線照射を行わなかった以外、実施例6-2と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図27~図30に示す。図27は、実施例6-3による水素ガス感応性膜の応答性を示すグラフである。図28は、図27に破線で囲む領域Aの拡大図である。図29は、図27に破線で囲む領域Bの拡大図である。図30は、図27に破線で囲む領域Cの拡大図である。
Example 6-3
In Example 6-3, a hydrogen gas-sensitive film was formed under the same conditions as in Example 6-2, except that ultraviolet irradiation was not performed at the time of drying of the coated film. The response of the obtained hydrogen gas-sensitive film is shown in FIGS. FIG. 27 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 6-3. FIG. 28 is an enlarged view of a region A surrounded by a broken line in FIG. FIG. 29 is an enlarged view of a region B surrounded by a broken line in FIG. FIG. 30 is an enlarged view of a region C surrounded by a broken line in FIG.
 図27に示すように水素含有ガスの供給および停止の繰り返し開始直後から無色透明から青色への着色現象は見られ、その変化も速かったが、消色現象が見られるようになるまでに時間を要した。水素含有ガスの供給および停止の繰り返し回数が100回(12000秒)を超える頃から、着色時の応答速度および消色時の応答速度は速くなった(図29参照)。上記繰り返し回数が400回(48000秒)を超える頃から次第に応答速度は遅くなった(図30参照)。また、上記繰り返し回数が400回を超える頃から、膜外周部は、青く着色したまま透明状態に戻らなくなった。しかし、紫外線照射を行わずに80℃で乾燥させるだけでも、レーザー光の透過率が20%~70%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。 As shown in FIG. 27, the coloring phenomenon from colorless and transparent to blue was observed immediately after the start of the repetition of the supply and stop of the hydrogen-containing gas, and the change was also fast, but the time until the decoloring phenomenon was observed I needed it. The response speed at the time of coloring and the response speed at the time of decoloring became faster (see FIG. 29) when the number of repetitions of supply and stop of the hydrogen-containing gas exceeded 100 times (12000 seconds). The response speed gradually decreased as the number of repetitions exceeded 400 times (48000 seconds) (see FIG. 30). In addition, the film outer peripheral portion did not return to the transparent state while it was colored blue since about the time the number of repetitions exceeded 400 times. However, it was also confirmed that the transmittance of the laser light changed in the range of 20% to 70% even if it was dried at 80 ° C. without ultraviolet irradiation, showing good sensitivity to hydrogen gas.
 〔実施例7-1〕
 実施例7-1では、タングステン溶液に添加するカルボン酸としてシュウ酸・無水物の代わりにシュウ酸・二水和物を使用して前駆体溶液を調製し、且つ前駆体溶液に対し添加する金属化合物としてPtClの代わりにHPtCl・6HOを使用すると共にモル比(Pt/タングステン)を1/26としてコーティング液を調製した以外、実施例5-1と同じ条件で水素ガス感応性膜を成膜した。実施例5-1と同様に、タングステン溶液中のタングステン量に対するシュウ酸・二水和物の添加量は、モル比(シュウ酸・二水和物/タングステン)で1/5とした。水素ガス感応性膜の応答性を図31および図32に示す。図31は、実施例7-1による水素ガス感応性膜の応答性を示すグラフである。図32は、図31に破線で囲む領域Aの拡大図である。
Example 7-1
In Example 7-1, a precursor solution is prepared using oxalic acid dihydrate instead of oxalic acid anhydride as the carboxylic acid added to the tungsten solution, and the metal added to the precursor solution Hydrogen gas sensitization under the same conditions as in Example 5-1 except that H 2 PtCl 6 · 6H 2 O was used instead of PtCl 2 as the compound and the coating solution was prepared with a molar ratio (Pt / tungsten) of 1/26. Film was deposited. As in Example 5-1, the amount of oxalic acid dihydrate added was 1/5 in molar ratio (oxalic acid dihydrate / tungsten) with respect to the amount of tungsten in the tungsten solution. The responsiveness of the hydrogen gas sensitive membrane is shown in FIGS. 31 and 32. FIG. 31 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-1. 32 is an enlarged view of a region A surrounded by a broken line in FIG.
 図31に示すように水素含有ガスの供給および停止を約110回(約13200秒)繰り返した後から、徐々に無色透明(透明状態)と青色(着色状態)の間で水素ガス感応性膜の色の変化が起こり始めた。実施例5-1の場合(図17参照)と比べて応答開始(透過率の変化の開始)までに時間がかかったのは、四価のPtイオンを含むHPtCl・6HOは、二価のPtイオンを含むPtClに比べて、ゼロ価のPtへの還元反応が成膜時に不十分であったためと考えられる。その後、図32に示すようにレーザー光の透過率が約20%~70%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。また、実施例5-1の場合(図18参照)と同様、着色時の応答速度および消色時の応答速度は速かった。 As shown in FIG. 31, after the supply and stop of the hydrogen-containing gas are repeated about 110 times (about 13200 seconds), the hydrogen gas-sensitive film is gradually colored between colorless and transparent (transparent state) and blue (colored state) A color change began to occur. It took H 2 PtCl 6 · 6 H 2 O containing tetravalent Pt ion to take longer to start response (start of change of transmittance) compared to the case of Example 5-1 (see FIG. 17). It is considered that the reduction reaction to zero valent Pt is insufficient at the time of film formation as compared with PtCl 2 containing divalent Pt ions. After that, as shown in FIG. 32, it was confirmed that the transmittance of the laser light changed in the range of about 20% to 70%, and it showed good sensitivity to hydrogen gas. Further, as in the case of Example 5-1 (see FIG. 18), the response speed upon coloring and the response speed upon decoloring were fast.
 〔実施例7-2〕
 実施例7-2では、塗布膜を大気中100℃のホットプレート上で加熱して乾燥する5分間の間に波長365nmの紫外線照射を同時に行った以外、実施例7-1と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図33および図34に示す。図33は、実施例7-2による水素ガス感応性膜の応答性を示すグラフである。図34は、図33に破線で囲む領域Aの拡大図である。
Example 7-2
In Example 7-2, hydrogen was applied under the same conditions as in Example 7-1, except that ultraviolet irradiation at a wavelength of 365 nm was simultaneously performed during 5 minutes of heating and drying the coated film on a hot plate at 100 ° C. in the atmosphere. A gas sensitive film was deposited. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIG. 33 and FIG. FIG. 33 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-2. FIG. 34 is an enlarged view of a region A surrounded by a broken line in FIG.
 図33に示すように水素含有ガスの供給および停止を約80回(9600秒)繰り返した後から、徐々に無色透明(透明状態)と青色(着色状態)の間で水素ガス感応性膜の色の変化が起こり始めた。図33と、実施例7-1の図31とを比較すると明らかなように、加熱乾燥に紫外線照射を併用することにより、応答開始(透過率の変化の開始)が早くなることが確認された。その後、図34に示すようにレーザー光の透過率が約22%~76%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。図34と、実施例7-1の図32とを比較すると明らかなように、加熱乾燥に紫外線照射を併用することにより、着色時の応答速度および消色時の応答速度が速くなった。 As shown in FIG. 33, after the supply and stop of the hydrogen-containing gas are repeated about 80 times (9,600 seconds), the color of the hydrogen gas-sensitive film gradually between colorless and transparent (transparent state) and blue (colored state) Change began to take place. As apparent from comparison between FIG. 33 and FIG. 31 of Example 7-1, it was confirmed that response start (start of change of transmittance) is quickened by using ultraviolet irradiation together with heating and drying. . After that, as shown in FIG. 34, it was confirmed that the transmittance of the laser light changed in the range of about 22% to 76%, and showed a good sensitivity to hydrogen gas. As apparent from the comparison between FIG. 34 and FIG. 32 of Example 7-1, by using ultraviolet irradiation together with heat drying, the response speed at coloring and the response speed at decoloring became faster.
 〔実施例7-3〕
 実施例7-3では、塗布膜を大気中150℃のホットプレート上で加熱して乾燥する以外、実施例7-1と同じ条件で水素ガス感応性膜を成膜した。得られた水素ガス感応性膜の応答性を図35および図36に示す。図35は、実施例7-3による水素ガス感応性膜の応答性を示すグラフである。図36は、図35に破線で囲む領域Aの拡大図である。
Example 7-3
In Example 7-3, a hydrogen gas-sensitive film was formed under the same conditions as in Example 7-1 except that the coating film was dried by heating on a hot plate at 150 ° C. in the atmosphere. The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIGS. 35 and 36. FIG. 35 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 7-3. FIG. 36 is an enlarged view of a region A surrounded by a broken line in FIG.
 図35に示すように水素含有ガスの供給および停止を約25回(3000秒)繰り返した後から、徐々に無色透明(透明状態)と青色(着色状態)の間で水素ガス感応性膜の色の変化が起こり始めた。図35と、実施例7-1の図31とを比較すると明らかなように、乾燥温度が高くなることにより、応答開始(透過率の変化の開始)が早くなることが確認された。その後、図36に示すようにレーザー光の透過率が約35%~70%の範囲で変化し、水素ガスに対して良好な感応性を示すことが確認された。図36と、実施例7-1の図32とを比較すると明らかなように、乾燥温度が高くなると着色時の応答速度および消色時の応答速度が遅くなっていくこともわかった。 As shown in FIG. 35, after the supply and stop of the hydrogen-containing gas are repeated about 25 times (3000 seconds), the color of the hydrogen gas-sensitive film gradually between colorless and transparent (transparent state) and blue (colored state) Change began to take place. As apparent from the comparison between FIG. 35 and FIG. 31 of Example 7-1, it was confirmed that the response start (the start of the change of the transmittance) is quickened by the increase of the drying temperature. After that, as shown in FIG. 36, it was confirmed that the transmittance of the laser light changed in the range of about 35% to 70%, and it showed good sensitivity to hydrogen gas. As apparent from a comparison between FIG. 36 and FIG. 32 of Example 7-1, it was also found that the response speed at coloring and the response speed at decoloring become slower as the drying temperature becomes higher.
 〔実施例8〕
 実施例8では、タングステン溶液に添加するカルボン酸としてシュウ酸・二水和物の代わりにクエン酸を使用して前駆体溶液を調製し、且つ前駆体溶液中のタングステン量に対するHPtCl・6HOの添加量をモル比(Pt/タングステン)で1/26から1/10に増やしてコーティング液を調製した以外、実施例7-2と同じ条件で水素ガス感応性膜を成膜した。実施例7-2と同様に、タングステン溶液中のタングステン量に対するクエン酸の添加量は、モル比(クエン酸/タングステン)で1/5とした。得られた水素ガス感応性膜の応答性を図37および図38に示す。図37は、実施例8による水素ガス感応性膜の応答性を示すグラフである。図38は、図37に破線で囲む領域Aの拡大図である。
Example 8
In Example 8, a precursor solution is prepared using citric acid instead of oxalic acid dihydrate as the carboxylic acid added to the tungsten solution, and H 2 PtCl 6 ··· relative to the amount of tungsten in the precursor solution. A hydrogen gas-sensitive film was formed under the same conditions as in Example 7-2, except that the amount of addition of 6H 2 O was increased from 1/26 to 1/10 in molar ratio (Pt / tungsten) to prepare a coating solution. . As in Example 7-2, the addition amount of citric acid to the amount of tungsten in the tungsten solution was 1/5 in molar ratio (citric acid / tungsten). The responsiveness of the obtained hydrogen gas sensitive membrane is shown in FIG. 37 and FIG. FIG. 37 is a graph showing the responsiveness of the hydrogen gas-sensitive film according to Example 8. FIG. 38 is an enlarged view of a region A surrounded by a broken line in FIG.
 図37に示すように水素含有ガスの供給および停止を約80回(9600秒)繰り返した後から、徐々に無色透明と青色の間で水素ガス感応性膜の色が変化した。図37および図38に示すように、ONおよびOFFに伴うレーザー光の透過率の変化幅は約40%~45%であった。 As shown in FIG. 37, after the supply and stop of the hydrogen-containing gas were repeated about 80 times (9600 seconds), the color of the hydrogen gas-sensitive film gradually changed between colorless and transparent and blue. As shown in FIGS. 37 and 38, the change in the transmittance of the laser light with ON and OFF was about 40% to 45%.
 〔比較例1-1〕
 比較例1-1では、タングステン溶液にシュウ酸等のカルボン酸を添加することなく調製した前駆体溶液にHPtCl・6HOを添加し、前駆体溶液中のタングステン量に対するHPtCl・6HOの添加量をモル比(Pt/タングステン)で1/26から29/500に増やしてコーティング液を調製した以外、実施例7-1と同じ条件で塗布・乾燥を行い、コーティング膜を成膜した。得られたコーティング膜の応答性を図39に示す。図39は、比較例1-1によるコーティング膜の応答性を示すグラフである。
Comparative Example 1-1
In Comparative Example 1-1, the addition of H 2 PtCl 6 · 6H 2 O in the precursor solution prepared without the addition of carboxylic acids such as oxalic acid tungsten solution, H 2 PtCl for tungsten amount in the precursor solution Coating and drying were carried out under the same conditions as in Example 7-1 except that the amount of the added 6 · 6H 2 O was increased from 1/26 to 29/500 in molar ratio (Pt / tungsten) to prepare a coating solution. A film was formed. The responsiveness of the obtained coating film is shown in FIG. FIG. 39 is a graph showing the responsiveness of the coating film according to Comparative Example 1-1.
 図39から明らかなように、実施例7-1の場合に比べてモル比(Pt/タングステン)が多かったにもかかわらず、カルボン酸を添加しなかったため四価のPtイオンがゼロ価のPtに還元されず、水素含有ガスの供給および停止の繰り返しを10時間に亘って行っても全く応答は見られなかった。 As apparent from FIG. 39, although the molar ratio (Pt / tungsten) was higher than that of Example 7-1, the carboxylic acid was not added, and thus the tetravalent Pt ion had zero valent Pt. No response was observed even if the hydrogen-containing gas was repeatedly supplied and stopped for 10 hours.
 〔比較例1-2〕
 比較例1-2では、塗布膜を大気中100℃のホットプレート上で加熱して乾燥する5分間の間に波長365nmの紫外線照射を同時に行った以外、比較例1-1と同じ条件でコーティング膜を成膜した。
Comparative Example 1-2
In Comparative Example 1-2, coating was performed under the same conditions as Comparative Example 1-1 except that ultraviolet irradiation at a wavelength of 365 nm was simultaneously performed during 5 minutes of heating and drying the coated film on a hot plate at 100 ° C. in the atmosphere. A film was formed.
 比較例1-2では、加熱乾燥に紫外線照射を併用したため、カルボン酸を添加していなくても、水素含有ガスの供給および停止を100回(12000秒)繰り返した後から、徐々に無色透明(透明状態)と青色(着色状態)の間で色の変化が起こり始めたが、レーザー光の透過率の変化幅は小さかった。また、色が変化するエリアは水素含有ガスの出口(つまり大気の入口)付近に限定され、膜全面での応答は見られなかった。また、消色時の応答速度が遅いこともわかった。 In Comparative Example 1-2, since the ultraviolet irradiation was used in combination with the heating and drying, the supply and stop of the hydrogen-containing gas were repeated 100 times (12000 seconds) even if the carboxylic acid was not added. A change in color began to occur between the transparent state) and the blue color (colored state), but the change in the transmittance of the laser light was small. In addition, the area where the color changed was limited to the vicinity of the outlet of hydrogen-containing gas (that is, the inlet of the atmosphere), and no response was seen on the entire surface of the film. It was also found that the response speed at the time of decoloring was slow.
 〔まとめ〕
 上記実施例および上記比較例の実験条件等を表1にまとめる。
[Summary]
The experimental conditions and the like of the above example and the above comparative example are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
表1に示すように、上記実施例では、上記比較例とは異なり、カルボン酸を含むコーティング液を用いた。その結果、上記実施例では、上記比較例とは異なり、基材にコーティング液を塗布し、その塗布膜を乾燥させて、水素ガスに対する感応性を有する金属触媒を含む膜を作製する過程において、有害ガスや可燃性ガスを使うことなく、コーティング液中の金属イオンを大気中、室温以上150℃以下の温度で還元させて金属触媒とすることができた。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, in the above-mentioned example, unlike the above-mentioned comparative example, the coating liquid containing carboxylic acid was used. As a result, in the above example, unlike the above comparative example, in the process of applying the coating liquid to the base material and drying the applied film to produce a film containing a metal catalyst having sensitivity to hydrogen gas, The metal ion in the coating solution was able to be reduced in the air at a temperature of room temperature to 150 ° C. to form a metal catalyst without using harmful gas or flammable gas.
 以上、コーティング液、コーティング液の製造方法、および水素ガス感応性膜の製造方法の実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。 Although the embodiments of the coating liquid, the method of manufacturing the coating liquid, and the method of manufacturing the hydrogen gas-sensitive film have been described above, the present invention is not limited to the above embodiments and the like, and the present invention is described in the claims. Within the scope of the invention, various modifications and improvements are possible.
 本出願は、2017年11月6日に日本国特許庁に出願された特願2017-214050号に基づく優先権を主張するものであり、特願2017-214050号の全内容を本出願に援用する。 This application claims the priority based on Japanese Patent Application No. 2017-214050 filed on Nov. 6, 2017 to the Japanese Patent Office, and the entire contents of Japanese Patent Application No. 2017-214050 are incorporated into the present application. Do.
S11 タングステン溶液を調製するステップ
S12 酸化タングステンの前駆体溶液を調製するステップ
S13 コーティング液を調製するステップ
S11 Step of preparing tungsten solution S12 step of preparing tungsten oxide precursor solution step S13 of preparing coating solution

Claims (8)

  1.  塩化タングステンと、
     前記塩化タングステンを溶解する炭素数1~4の一価のアルコールと、
     前記アルコールに溶解され、還元性を有するカルボン酸と、
     前記カルボン酸によって還元されることによって水素ガスに対する感応性を有する金属触媒となる金属の化合物とを含むことを特徴とするコーティング液。
    With tungsten chloride,
    A C 1-4 monovalent alcohol dissolving the tungsten chloride;
    A reducing carboxylic acid dissolved in the alcohol;
    What is claimed is: 1. A coating liquid comprising: a compound of a metal serving as a metal catalyst having sensitivity to hydrogen gas by being reduced by the carboxylic acid.
  2.  前記カルボン酸がシュウ酸であることを特徴とする請求項1に記載のコーティング液。 The coating liquid according to claim 1, wherein the carboxylic acid is oxalic acid.
  3.  前記金属の化合物が、白金族金属の化合物であることを特徴とする請求項1に記載のコーティング液。 The coating liquid according to claim 1, wherein the metal compound is a platinum group metal compound.
  4.  前記白金族金属の化合物が、パラジウム化合物、白金化合物、及びパラジウム白金合金化合物からなる群より選ばれた1種以上であることを特徴とする請求項3に記載のコーティング液。 The coating liquid according to claim 3, wherein the compound of the platinum group metal is one or more selected from the group consisting of a palladium compound, a platinum compound, and a palladium-platinum alloy compound.
  5.  前記白金族金属の化合物が、二塩化パラジウム(PdCl)、二塩化白金(PtCl)、四塩化白金(PtCl)、及び六塩化白金酸六水和物(HPtCl・6HO)からなる群より選ばれた1種以上であることを特徴とする請求項3に記載のコーティング液。 The compound of the platinum group metal is palladium dichloride (PdCl 2 ), platinum dichloride (PtCl 2 ), platinum tetrachloride (PtCl 4 ), and hexachloroplatinic acid hexahydrate (H 2 PtCl 6 · 6H 2 O) It is 1 or more types selected from the group which consists of, The coating liquid of Claim 3 characterized by the above-mentioned.
  6.  前記金属触媒を担持した酸化タングステン膜の成膜に用いることを特徴とする請求項1に記載のコーティング液。 The coating liquid according to claim 1, which is used for forming a tungsten oxide film supporting the metal catalyst.
  7.  塩化タングステンと、前記塩化タングステンを溶解する炭素数1~4の一価のアルコールとを混ぜて、タングステン溶液を調製し、
     還元性を有するカルボン酸を前記タングステン溶液に溶解して、酸化タングステンの前駆体溶液を調製し、
     前記カルボン酸によって還元されることによって水素ガスに対する感応性を有する金属触媒となる金属の化合物を前記前駆体溶液に溶解して、コーティング液を調製することを特徴とするコーティング液の製造方法。
    Tungsten chloride is mixed with a C 1-4 monovalent alcohol dissolving the tungsten chloride to prepare a tungsten solution,
    A carboxylic acid having reducibility is dissolved in the tungsten solution to prepare a precursor solution of tungsten oxide,
    A method of producing a coating liquid, comprising: dissolving a compound of a metal serving as a metal catalyst having sensitivity to hydrogen gas by reduction with the carboxylic acid in the precursor solution to prepare a coating liquid.
  8.  請求項1に記載のコーティング液を基材に塗布して塗布膜を形成し、前記塗布膜を大気中、室温以上150℃以下で乾燥することによって、前記金属触媒の原料に含まれる金属イオンを還元してなる前記金属触媒を担持した酸化タングステン膜を成膜することを特徴とする水素ガス感応性膜の製造方法。 A coating solution according to claim 1 is applied to a substrate to form a coating film, and the coating film is dried in the air at room temperature or more and 150 ° C. or less to obtain metal ions contained in the raw material of the metal catalyst. A method for producing a hydrogen gas sensitive film, comprising forming a tungsten oxide film carrying the metal catalyst formed by reduction.
PCT/JP2018/037599 2017-11-06 2018-10-09 Coating liquid, method for preparing coating liquid, and method for producing hydrogen gas sensitive film WO2019087705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550956A JP6892153B2 (en) 2017-11-06 2018-10-09 Coating liquid, manufacturing method of coating liquid, and manufacturing method of hydrogen gas sensitive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-214050 2017-11-06
JP2017214050 2017-11-06

Publications (1)

Publication Number Publication Date
WO2019087705A1 true WO2019087705A1 (en) 2019-05-09

Family

ID=66332546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037599 WO2019087705A1 (en) 2017-11-06 2018-10-09 Coating liquid, method for preparing coating liquid, and method for producing hydrogen gas sensitive film

Country Status (2)

Country Link
JP (1) JP6892153B2 (en)
WO (1) WO2019087705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021152483A (en) * 2020-03-24 2021-09-30 国立研究開発法人産業技術総合研究所 Hydrogen gas sensitive film, coating liquid used for formation thereof, production method of coating liquid, and production method of hydrogen gas sensitive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329592A (en) * 2002-05-08 2003-11-19 Shinji Okazaki Method for manufacturing film for gas sensor
JP2007071866A (en) * 2005-08-10 2007-03-22 Tokyo Univ Of Science Film for gas sensor, element for gas sensor and method for manufacturing the element for gas sensor
JP2007170946A (en) * 2005-12-21 2007-07-05 Three M Innovative Properties Co Platinum composite tungsten oxide film and manufacturing method therefor
JP2017161272A (en) * 2016-03-08 2017-09-14 株式会社フジクラ Hydrogen gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329592A (en) * 2002-05-08 2003-11-19 Shinji Okazaki Method for manufacturing film for gas sensor
JP2007071866A (en) * 2005-08-10 2007-03-22 Tokyo Univ Of Science Film for gas sensor, element for gas sensor and method for manufacturing the element for gas sensor
JP2007170946A (en) * 2005-12-21 2007-07-05 Three M Innovative Properties Co Platinum composite tungsten oxide film and manufacturing method therefor
JP2017161272A (en) * 2016-03-08 2017-09-14 株式会社フジクラ Hydrogen gas sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAGUCHI, Y. ET AL.: "Improvement of hydrogen gas sensing property of the sol-gel derived Pt/ WO 3 thin film by Ti-doping", J. CERAM. SOC. JPN., vol. 123, no. 12, 1 December 2015 (2015-12-01), pages 1102 - 1105, XP055613898, ISSN: 1882-0743 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021152483A (en) * 2020-03-24 2021-09-30 国立研究開発法人産業技術総合研究所 Hydrogen gas sensitive film, coating liquid used for formation thereof, production method of coating liquid, and production method of hydrogen gas sensitive film
JP7360706B2 (en) 2020-03-24 2023-10-13 国立研究開発法人産業技術総合研究所 Hydrogen gas-sensitive film, coating liquid used for forming the film, method for producing the coating liquid, and method for producing the hydrogen gas-sensitive film

Also Published As

Publication number Publication date
JPWO2019087705A1 (en) 2020-12-10
JP6892153B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
Luty‐Błocho et al. Gold Nanoparticles Formation via Au (III) Complex Ions Reduction with l‐Ascorbic Acid
Zhao et al. Development of multifunctional photoactive self-cleaning glasses
EP2343125B1 (en) Hydrophilic films and components and structures using same
JPH09504768A (en) Method for forming functional glassy layer
Remita et al. Dose rate effect on bimetallic gold− palladium cluster structure
CN102782024A (en) Metal nanoparticle composite and process for production thereof
JP5818942B2 (en) Visible light responsive photocatalyst paint
WO2019087705A1 (en) Coating liquid, method for preparing coating liquid, and method for producing hydrogen gas sensitive film
WO2019087704A1 (en) Coating liquid, method for preparing coating liquid, and method for producing hydrogen gas sensitive film
JP6065528B2 (en) Composite film containing transition metal oxide and water-soluble polymer compound
CN104492432B (en) Hollow bimetal nano particles/titanium dioxide core shell structure and its preparation method and application
JP6501110B2 (en) Hydrogen gas sensitive film and method for producing the same
Singh et al. A new sustainable approach towards preparation of sunlight active Ag/AgBr Janus nanoparticles using non-toxic surface active ionic liquid
Ren et al. Pretreatment Effect on Ceria‐Supported Gold Nanocatalysts for CO Oxidation: Importance of the Gold–Ceria Interaction
JPS6065712A (en) Formation of silicon oxide coating film
Purcar et al. Efficient preparation of silver nanoparticles supported on hybrid films and their activity in the oxidation of styrene under microwave irradiation
JP2019137796A (en) Photochromic complex
US10221477B2 (en) Method for producing a hydrogen-detection sensor and resulting sensor
Zhao et al. Preparation and optical properties of Ag/PPy composite colloids
JP7360706B2 (en) Hydrogen gas-sensitive film, coating liquid used for forming the film, method for producing the coating liquid, and method for producing the hydrogen gas-sensitive film
Massera et al. Spatially controlled dissolution of Ag nanoparticles in irradiated SiO2 sol–gel film
JP2006182791A (en) Coating material for forming photocatalyst film
KR101979321B1 (en) A inorganic colar coating layer containg metal nanoparticles and method for manufauring the same
CN112661413A (en) Antibacterial anti-fingerprint glass, preparation method thereof and touch display product with glass
Hyodo et al. Basic Gas-Sensing Properties of Photoluminescent Eu2O3-Mixed SnO2-Based Materials with Submicron-Size Macropores

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874411

Country of ref document: EP

Kind code of ref document: A1