WO2019087640A1 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
WO2019087640A1
WO2019087640A1 PCT/JP2018/036427 JP2018036427W WO2019087640A1 WO 2019087640 A1 WO2019087640 A1 WO 2019087640A1 JP 2018036427 W JP2018036427 W JP 2018036427W WO 2019087640 A1 WO2019087640 A1 WO 2019087640A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
wavelength band
wavelength
source device
Prior art date
Application number
PCT/JP2018/036427
Other languages
French (fr)
Japanese (ja)
Inventor
修平 畑中
小谷 理
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019087640A1 publication Critical patent/WO2019087640A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to a light source device, and more particularly, to a light source device including a light source unit for generating light in at least a part of a desired wavelength band.
  • An endoscope including an imaging element for imaging a subject inside a subject, an image processing apparatus called a so-called video processor for generating an observation image of the subject captured by the endoscope, and a subject from the endoscope
  • An endoscope system including a light source device and the like for generating and emitting illumination light to be irradiated to a specimen is widely used in the medical field, the industrial field, and the like.
  • a light source device provided with a solid light source such as a light emitting diode (LED) or a semiconductor laser (laser diode LD) has been developed.
  • LED light emitting diode
  • laser diode LD semiconductor laser
  • Japanese Patent Laid-Open No. 2015-4902 shows a light source device which uses monochromatic solid-state light source by LED and outputs stable color light regardless of temperature change. There is.
  • JP-A-2012-47951 and JP-A-2015-72387 for example, a solid light source by a semiconductor laser for emitting excitation light, and a phosphor for converting the excitation light into fluorescence A light source device is disclosed.
  • the wavelength band of light generated from the solid-state light source shifts and deviates from a desired wavelength band due to the influence of fluctuations in drive current or temperature change. It is known that there is a risk.
  • the light source device for an endoscope using a semiconductor laser for example, a shift of about 5 nm with a very small wavelength occurs with respect to light near the center frequency 600 nm. Also, there is a possibility that the disadvantage that the desired image can not be obtained in the endoscope system may occur. For example, it is known that when the light wavelength of the light source is shifted to the short wavelength side in the mode in which deep blood vessels and bleeding points can be observed, the visibility of deep blood vessels and bleeding points may be reduced.
  • a light source device for reducing the influence of this wavelength shift conventionally, in a light source device in which a phosphor is irradiated with laser light as an excitation light source and fluorescence emitted from the phosphor is irradiated onto an observation target as illumination light. It is done.
  • the light source device detects the fluorescence generated from the phosphor excited by the excitation light generated from the light source with the light sensor, and when the output of the light sensor decreases, the wavelength of the light generated from the light source is It detects that it has shifted. Then, by detecting this wavelength shift, it is detected that the wavelength band of the excitation light has deviated from the desired wavelength band.
  • this light source device detects the wavelength shift of the excitation light which is the light source by detecting the fluorescence generated from the fluorescent substance with the light sensor, and the light source device does not apply to the light source device not using the fluorescent substance could not.
  • the present invention has been made in view of the above circumstances, and a light source that can detect that the wavelength of light emitted from the light source deviates from a desired wavelength band even if it is a light source device that does not use a phosphor It aims at providing an apparatus.
  • a light source device includes a light source unit for generating light in at least a part of a desired wavelength band and a predetermined light path of light generated by the light source unit.
  • a light control unit that changes the state of light to be output according to the wavelength of the emitted light, and the light output from the light control unit is received, and the received light is converted into a voltage and the change of the value of the voltage
  • a detection unit that detects the
  • FIG. 1 is a diagram showing a configuration of an endoscope system including a light source device according to a first embodiment of the present invention.
  • FIG. 2 is a view showing how light in a desired wavelength band emitted from the light source is shifted in the light source device of the first embodiment.
  • FIG. 3 shows the wavelength transition of the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) and the wavelength band in the light source device of the first embodiment. It is the figure which showed the relationship between the stop zone (normality) and the transmission zone (shift) in a restriction
  • FIG. 1 is a diagram showing a configuration of an endoscope system including a light source device according to a first embodiment of the present invention.
  • FIG. 2 is a view showing how light in a desired wavelength band emitted from the light source is shifted in the light source device of the first embodiment.
  • FIG. 3 shows the wavelength transition of the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength
  • FIG. 4 is a view of wavelength transition of the first state before wavelength shift and the third state after wavelength shift (after shift to the long wavelength side) in the light source device according to the second embodiment of the present invention; It is the figure which showed the relationship of the stop zone (normal) and the transmission zone (shift) in a wavelength zone limiting part.
  • FIG. 5 shows the transition of wavelength between the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) in the light source device according to the third embodiment of the present invention It is the figure which showed the relationship between the permeation
  • FIG. 6 shows the transition of wavelength between the first state before wavelength shift and the third state after wavelength shift (after shift to the long wavelength side) in the light source device according to the fourth embodiment of the present invention It is the figure which showed the relationship between the permeation
  • FIG. 7 is a view showing a configuration of an endoscope system including the light source device of the fifth embodiment of the present invention.
  • FIG. 8 is a view showing a state in which light of a desired wavelength band emitted from the light source is shifted in the light source device of the fifth embodiment.
  • FIG. 1 is a view showing a configuration of an endoscope system including a light source device according to a first embodiment of the present invention
  • FIG. 2 is a view showing a desired light source irradiated from a light source in the light source device according to the first embodiment. It is the figure which showed a mode when the light of the wavelength zone
  • an endoscope system 1 having a light source device includes an endoscope 2 for observing a subject and outputting an imaging signal, and the endoscope 2 connected to the endoscope 2.
  • a video processor 3 that receives an imaging signal and performs predetermined image processing, a light source device 4 that supplies illumination light for illuminating a subject, and a monitor device 5 that displays an observation image according to the imaging signal.
  • the endoscope 2 includes an objective optical system 21 disposed at the distal end of the insertion portion, the objective optical system 21 including a lens for receiving an object image, and an imaging element 22 disposed on the imaging surface of the objective optical system 21. And an illumination unit capable of applying predetermined illumination light to a subject.
  • the imaging element 22 is formed of, for example, a CMOS image sensor, forms an optical image from a subject on the imaging surface, photoelectrically converts light incident on each pixel in a photoelectric conversion unit, and outputs a predetermined imaging signal. It is supposed to be.
  • the illumination unit 23 is disposed at the tip of the light guide 24 extending from the light source device 4 to the inside of the endoscope 2 and emits illumination light generated by the light source device 4.
  • the video processor 3 receives an image signal from the endoscope 2 and a processor control unit 31 that controls various circuits in the endoscope 2 and the light source device 4 connected in addition to the video processor 3.
  • An image processing unit 32 that performs predetermined image processing; and a video output unit 33 that receives an image signal processed by the image processing unit 32 and generates a video signal to be displayed on the monitor device 5.
  • the light source device 4 includes a light source 43 that generates (emits) laser light with a predetermined center wavelength, and further, a drive unit 42 that drives the light source 43 and a light source that performs light emission control of the light source 43
  • the apparatus control unit 41 is mainly provided.
  • the light source 43 is a solid-state light source configured of three semiconductor lasers (laser diode LD; laser diode) such as a red semiconductor laser, a green semiconductor laser, and a blue semiconductor laser. Under the control of the control unit 41, the drive unit 42 is driven to emit red, green and blue laser beams, respectively.
  • laser diode LD laser diode
  • the drive unit 42 Under the control of the control unit 41, the drive unit 42 is driven to emit red, green and blue laser beams, respectively.
  • the configuration relating to the semiconductor laser for one color is shown as a representative. That is, the red semiconductor laser, the green semiconductor laser, and the blue semiconductor laser all have the same configuration, and the emission light path, the half mirror 44 described later, the filter 46 for wavelength shift detection, and the optical sensor 47 Each has a similar configuration.
  • the light source 43 serves as a light source unit for generating (emitting) light of at least a part of the desired wavelength band.
  • the half mirror 44 is disposed on the optical path OP1 of the laser light emitted from the light source 43 (red semiconductor laser, green semiconductor laser and blue semiconductor laser). As described above, the half mirror 44 is disposed on the optical path OP1 of each of the red, green and blue semiconductor lasers, but in FIG. 1 and FIG. Only for illustration.
  • the half mirror 44 is a light control unit that changes the state of light to be output according to the wavelength of the incident light (R light, G light, B light), and the light emitted from the light source 43 (R It has a function as an optical path separation unit that separates light, G light, and B light) into transmitted light and reflected light, respectively.
  • a condenser lens 45 is disposed on the optical path of the transmitted light (R light, G light, B light) transmitted through the half mirror 44 in each optical path system. That is, all the light (R light, G light, B light) transmitted through the half mirror 44 is condensed by the condenser lens 45, and thereafter, from the illumination unit 23 of the endoscope 2 via the light guide 24 It is supposed to be irradiated.
  • the reflected light from the half mirror 44 is received on the optical path OP2 of each reflected light (R light, G light, B light) reflected by the half mirror 44, and the received light is converted into a voltage.
  • An optical sensor (detection unit) 47 that detects a change in the value of the voltage is disposed.
  • a wavelength shift detection filter 46 for entering the reflected light is provided on the light entrance surface of each light sensor 47. It is done.
  • ⁇ Wavelength shift detection filter 46 as light control unit> The respective wavelength shift detection filters 46 shift to a short wavelength side by a certain wavelength from the light of the “desired wavelength band” and when light of the “desired wavelength band” is input as the reflected light. It has a function as a light control unit that makes the state of light to be output different depending on when shift light is input.
  • the wavelength shift detection filter 46 in the first embodiment serves as a wavelength band limiting unit that limits the transmission of the light of the “desired wavelength band”.
  • the wavelength band of light emitted from the semiconductor laser light source may be shifted and deviate from the desired wavelength band due to the influence of fluctuations in drive current or changes in ambient temperature. ing.
  • FIG. 3 shows the wavelength transition of the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) and the wavelength band in the light source device of the first embodiment. It is the figure which showed the relationship of the stop zone (normality) and the transmission zone (shift) in a restriction part (filter 46 for wavelength shift detection).
  • the wavelength shift detection filter 46 blocks at least the transmission of light of a desired wavelength band emitted from the light source 43, and A “transmission band” is formed to transmit light in a band shorter than the desired wavelength band ”.
  • the “cut-off band” in the filter for wavelength shift detection 46 is a first one in which the laser light (one of R light, G light, and B light as described above) emitted from the light source 43 is normal. This band corresponds to the state (indicated before wavelength shift in FIG. 3).
  • the filter 46 for wavelength shift detection is a band corresponding to the case where the normal laser light of the "desired wavelength band” is emitted from the light source 43, this "desired wavelength band” And a “blocking band” that blocks the transmission of light.
  • the laser beam (normal laser beam) radiate
  • the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 43 has a short wavelength This is a band corresponding to the case where the second state shifted to the side (described as after the wavelength shift in FIG. 3) is reached.
  • the filter for wavelength shift detection 46 is a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 43 to the short wavelength side. It has a "transmission band” that transmits light in the "wavelength band shifted to the short wavelength side".
  • the reflected light OP2 from the half mirror 44 is transmitted to the filter for wavelength shift detection 46 as shown in FIG. After being incident, the light is transmitted by the “transmission band” and is output as the reflected light OP3.
  • the laser beam (shifted laser beam) emitted from the light source 43 and reflected from the half mirror 44 is incident on the optical sensor 47 corresponding to the wavelength shift detection filter 46.
  • the light sensor 47 detects that the laser light emitted from the light source 43 has shifted to the short wavelength side by receiving the shifted laser light.
  • the red laser light of the center wavelength (for example, 600 nm) emitted from the light source 43 is shifted to the short wavelength side by a predetermined wavelength (for example, about 5 nm).
  • the wavelength shift detection filter 46 transmits the shifted reflected light OP2 reflected by the half mirror 44, and outputs it to the optical sensor 47 as a reflected light OP3.
  • the light sensor 47 receives the reflected light OP3 which is the shifted laser light, converts the received light OP3 into a voltage, and detects a change in the value of the voltage. Thus, the light sensor 47 detects that the red laser light emitted from the light source 43 is out of the “desired wavelength band” and shifted to the short wavelength side.
  • the specific example mentioned above gave the example which the red laser beam of center wavelength (for example, 600 [nm]) shifted to the short wavelength side.
  • the light source device of the first embodiment corresponds to the green semiconductor laser and the blue semiconductor laser even when the laser light of other colors (green laser light and blue laser light) is shifted to the short wavelength side.
  • the optical sensor 47 can detect the wavelength shift.
  • the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the short wavelength side even in the light source device which does not use the phosphor. Can be detected.
  • the light source device of the second embodiment is the same as the first embodiment in the main configuration, and only the differences from the first embodiment will be described here, and the description of the common parts will be omitted.
  • the first embodiment is characterized by “detecting that the wavelength of light emitted from the light source is shifted from the desired wavelength band to the short wavelength side”
  • the second embodiment is an embodiment of the present invention. And “detecting that the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the long wavelength side”.
  • FIG. 4 is a view of wavelength transition of the first state before wavelength shift and the third state after wavelength shift (after shift to the long wavelength side) in the light source device according to the second embodiment of the present invention; It is the figure which showed the relationship of the stop zone (normal) and the transmission zone (shift) in a wavelength zone limiting part.
  • the wavelength shift detection filter 46 which is a wavelength band limiting unit, receives a light of a "desired wavelength band" as the reflected light, and the light from the "desired wavelength band” is constant. It has a function as a light control unit that differs in the state of the light to be output when the shifted light shifted to the long wavelength side by the wavelength is input.
  • the wavelength shift detection filter 46 serves as a wavelength band limiting unit that limits the transmission of the light of the “desired wavelength band”.
  • the wavelength shift detection filter 46 blocks at least the transmission of light of a desired wavelength band emitted from the light source 43, and A “transmission band” is formed to transmit light in a band on the longer wavelength side than the desired wavelength band ”.
  • the “cut-off band” in the filter for wavelength shift detection 46 is a first one in which the laser light (one of R light, G light, and B light as described above) emitted from the light source 43 is normal. This band corresponds to the state (indicated before wavelength shift in FIG. 4).
  • the filter 46 for wavelength shift detection is a band corresponding to the case where the normal laser light of the “desired wavelength band” is emitted from the light source 43. It has a “blocking band” that blocks the transmission of light in the "wavelength band”.
  • the filter for wavelength shift detection 46 is shown in FIG. 1 described in the first embodiment. As described above, although the reflected light OP2 from the half mirror 44 is incident, the transmission of the reflected light OP2 is blocked by the "cut-off band".
  • the laser beam (normal laser beam) emitted from the light source 43 does not enter the light sensor 47 corresponding to the wavelength shift detection filter 46.
  • the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 43 has a long wavelength This is a band corresponding to the case where the third state shifted to the side (indicated as after the wavelength shift in FIG. 4) is reached.
  • the filter 46 for wavelength shift detection is a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 43 to the long wavelength side. It has a "transmission band” that transmits light in the "wavelength band shifted to the long wavelength side".
  • the wavelength shift detection filter 46 is a half as shown in FIG. 2 described in the first embodiment. After the reflected light OP2 from the mirror 44 is incident, it is transmitted by the "transmission band” and is output as the reflected light OP3.
  • the laser beam (shifted laser beam) emitted from the light source 43 and reflected from the half mirror 44 enters the optical sensor 47 corresponding to the filter for wavelength shift detection 46. It will be done.
  • the light sensor 47 detects that the laser light emitted from the light source 43 has shifted to the long wavelength side by receiving the shifted laser light.
  • the red laser light of the center wavelength (e.g., 600 [nm]) emitted from the light source 43 has a predetermined wavelength (e.g., 5 [nm]) on the long wavelength side. Degree) shift.
  • the wavelength shift detection filter 46 transmits the shifted reflected light OP2 reflected by the half mirror 44, and outputs it to the optical sensor 47 as a reflected light OP3.
  • the light sensor 47 receives the reflected light OP3 which is the shifted laser light, converts the received light OP3 into a voltage, and detects a change in the value of the voltage. Thus, the light sensor 47 detects that the red laser light emitted from the light source 43 is out of the “desired wavelength band” and shifted to the long wavelength side.
  • the specific example mentioned above gave the example which the red laser beam of center wavelength (for example, 600 [nm]) shifted to the long wavelength side.
  • the laser light of other colors green laser light and blue laser light
  • the wavelength shift can be detected.
  • the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the long wavelength side even in the light source device which does not use the phosphor. Can be detected.
  • the light source device of the third embodiment has the main configuration similar to that of the first embodiment, and only the differences from the first embodiment will be described here, and the description of the common parts will be omitted.
  • the third embodiment “detects that the wavelength of the light emitted from the light source has shifted from the desired wavelength band to the short wavelength side”, but the third embodiment is the third embodiment.
  • This embodiment is characterized in that the relationship between the “stopband” and the “transmission band” in the filter for wavelength shift detection 46 is different from the first embodiment.
  • FIG. 5 shows the transition of wavelength between the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) in the light source device according to the third embodiment of the present invention It is the figure which showed the relationship between the permeation
  • the wavelength shift detection filter 46 receives light of a “desired wavelength band” as the reflected light, and a certain wavelength of light from the light of the “desired wavelength band”. It has a function as a light control unit that makes the state of the light to be output different depending on when the shifted light shifted to the short wavelength side is input.
  • the wavelength shift detection filter 46 transmits at least a “desired wavelength band” light emitted from the light source 43 and a “transmission band”; A “blocking band” for blocking transmission of light in a band shorter than the wavelength band "is formed.
  • the “transmission band” in the filter for wavelength shift detection 46 is a first one in which the laser light (one of R light, G light, and B light as described above) emitted from the light source 43 is normal. This band corresponds to the state (indicated before wavelength shift in FIG. 5).
  • the filter 46 for wavelength shift detection is a band corresponding to the case where a normal laser beam of the "desired wavelength band" is emitted from the light source 43.
  • the "transmission band” transmits light of
  • the filter for detecting wavelength shift 46 in the third embodiment is as shown in FIG. 2 described in the first embodiment. After the reflected light OP2 from the half mirror 44 is incident, it is transmitted by the "transmission band” and is output as the reflected light OP3.
  • the laser beam (normal laser beam) emitted from the light source 43 and reflected from the half mirror 44 is incident on the optical sensor 47 corresponding to the wavelength shift detection filter 46.
  • the light sensor 47 detects that the laser light emitted from the light source 43 is in a normal state by receiving the normal laser light.
  • the “cut-off band” in the filter for wavelength shift detection 46 has a short wavelength of the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 43 This is a band corresponding to the case where the second state shifted to the side (described as after the wavelength shift in FIG. 5) is reached.
  • the filter 46 for wavelength shift detection is a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 43 to the short wavelength side. It has a “blocking band” for blocking light of "wavelength band shifted to the short wavelength side".
  • the filter for wavelength shift detection 46 in the third embodiment is the diagram described in the first embodiment. As shown in FIG. 1, the reflected light OP2 from the half mirror 44 is incident, but the transmission of the reflected light OP2 is blocked by the "blocking band”.
  • the laser beam (shifted laser beam) emitted from the light source 43 and reflected from the half mirror 44 does not enter the optical sensor 47 corresponding to the wavelength shift detection filter 46.
  • the light sensor 47 detects that the laser light emitted from the light source 43 has shifted to the short wavelength side by not receiving the shifted laser light.
  • the filter 46 for wavelength shift detection in the third embodiment is a half.
  • the shifted reflected light OP2 reflected by the mirror 44 is transmitted, and is output to the light sensor 47 as a reflected light OP3 (see FIG. 2).
  • the optical sensor 47 receives the reflected light OP3 which is the laser light in the normal state, converts the received light OP3 into a voltage and measures the voltage value, so that the red laser light emitted from the light source 43 It is recognized that the normal state is within the desired wavelength band.
  • the red laser light of the central wavelength (e.g., 600 [nm]) emitted from the light source 43 is shifted to the short wavelength side by a predetermined wavelength (e.g., about 5 [nm]).
  • the wavelength shift detection filter 46 blocks the shifted reflected light OP2 reflected by the half mirror 44 (see FIG. 1).
  • the value of the voltage related to the reflected light also changes.
  • the light sensor 47 detects the change in the voltage value to detect that the red laser light emitted from the light source 43 is out of the “desired wavelength band” and shifted to the short wavelength side.
  • the red laser light of the central wavelength (for example, 600 [nm]) is shifted to the short wavelength side.
  • the light source device of the third embodiment is the first embodiment.
  • the wavelength shift is performed in the light sensor 47 corresponding to the green semiconductor laser and the blue semiconductor laser, respectively. Can be detected.
  • the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the short wavelength side even in the light source device which does not use the phosphor. Can be detected.
  • the light source device of the fourth embodiment is the same as the first and second embodiments in the main configuration, and only the difference from the first embodiment is described here, and the description of the common parts is omitted. Do.
  • the fourth embodiment “detects that the wavelength of the light emitted from the light source has shifted from the desired wavelength band to the long wavelength side”, but the fourth embodiment is the fourth embodiment.
  • This embodiment is characterized in that the relationship between the "stopband” and the "transmission band” in the filter for wavelength shift detection 46 is different from the first and second embodiments.
  • FIG. 6 shows the transition of wavelength between the first state before wavelength shift and the third state after wavelength shift (after shift to the long wavelength side) in the light source device according to the fourth embodiment of the present invention It is the figure which showed the relationship between the permeation
  • the wavelength shift detection filter 46 receives a light of a "desired wavelength band" as the reflected light, and a predetermined wavelength of light from the light of the "desired wavelength band". It has a function as a light control unit that makes the state of the light to be output different depending on when the shifted light shifted to the long wavelength side is input.
  • the wavelength shift detection filter 46 transmits at least a “desired wavelength band” light emitted from the light source 43 and a “transmission band”; A “blocking band” for blocking transmission of light in a band on the longer wavelength side than the "wavelength band” is formed.
  • the “transmission band” in the filter for wavelength shift detection 46 is a first one in which the laser light (one of R light, G light, and B light as described above) emitted from the light source 43 is normal. This band corresponds to the state (indicated before wavelength shift in FIG. 6).
  • the filter 46 for wavelength shift detection is a band corresponding to the case where a normal laser beam of the "desired wavelength band" is emitted from the light source 43.
  • the "transmission band” transmits light of
  • the filter for detecting wavelength shift 46 in the fourth embodiment is as shown in FIG. 2 described in the first embodiment. After the reflected light OP2 from the half mirror 44 is incident, it is transmitted by the "transmission band” and is output as the reflected light OP3.
  • the laser beam (normal laser beam) emitted from the light source 43 and reflected from the half mirror 44 is incident on the optical sensor 47 corresponding to the wavelength shift detection filter 46.
  • the light sensor 47 detects that the laser light emitted from the light source 43 is in a normal state by receiving the normal laser light.
  • the “cut-off band” in the filter for wavelength shift detection 46 is a long wavelength of the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 43 This is a band corresponding to the case where the third state shifted to the side (indicated as after the wavelength shift in FIG. 6) is reached.
  • the filter for wavelength shift detection 46 is a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 43 to the long wavelength side and emitted. It has a "blocking band” for blocking light of "wavelength band shifted to the long wavelength side".
  • the filter for wavelength shift detection 46 in the fourth embodiment is the diagram described in the first embodiment. As shown in FIG. 1, the reflected light OP2 from the half mirror 44 is incident, but the transmission of the reflected light OP2 is blocked by the "blocking band”.
  • the laser beam (shifted laser beam) emitted from the light source 43 and reflected from the half mirror 44 does not enter the optical sensor 47 corresponding to the wavelength shift detection filter 46.
  • the light sensor 47 detects that the laser light emitted from the light source 43 has shifted to the long wavelength side by not receiving the shifted laser light.
  • the filter 46 for wavelength shift detection in the fourth embodiment is a half.
  • the shifted reflected light OP2 reflected by the mirror 44 is transmitted, and is output to the light sensor 47 as a reflected light OP3 (see FIG. 2).
  • the optical sensor 47 receives the reflected light OP3 which is the laser light in the normal state, converts the received light OP3 into a voltage and measures the voltage value, so that the red laser light emitted from the light source 43 It is recognized that the normal state is within the desired wavelength band.
  • the red laser light of the central wavelength (e.g., 600 [nm]) emitted from the light source 43 is shifted to the long wavelength side by a predetermined wavelength (e.g., about 5 [nm]).
  • the wavelength shift detection filter 46 blocks the shifted reflected light OP2 reflected by the half mirror 44 (see FIG. 1).
  • the value of the voltage related to the reflected light also changes.
  • the light sensor 47 detects the change in the voltage value to detect that the red laser light emitted from the light source 43 is out of the “desired wavelength band” and shifted to the long wavelength side.
  • the red laser light of the central wavelength (for example, 600 [nm]) is shifted to the long wavelength side.
  • the light source device of the fourth embodiment is the second embodiment. As in the embodiment, even when the laser light of another color (green laser light or blue laser light) is shifted to the long wavelength side, the wavelength shift in the light sensor 47 corresponding to the green semiconductor laser and the blue semiconductor laser Can be detected.
  • the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the long wavelength side even in the light source device not using the phosphor. Can be detected.
  • FIG. 7 is a view showing a configuration of an endoscope system including a light source device according to a fifth embodiment of the present invention
  • FIG. 8 is a view showing a desired light source irradiated from a light source in the light source device according to the fifth embodiment. It is the figure which showed a mode when the light of the wavelength zone
  • FIG. 9 shows the transition of the wavelength between the first state before the wavelength shift and the second state after the wavelength shift (after the shift to the short wavelength side) in the light source device of the fifth embodiment, It is the figure which showed the relationship between the permeation
  • the half mirror 44 is disposed on the optical path OP1 of the laser light emitted from the light source 43.
  • the half mirror 44 in the first embodiment is a light control unit that changes the state of light to be output according to the wavelength of the incident light (R light, G light, B light), and the light source 43 Has a function as an optical path separation unit that separates the emitted light (R light, G light, B light) into transmitted light and reflected light, respectively (see FIGS. 1 and 2).
  • the “desired wavelength band” A wavelength shift detection filter 46 having a function as a light control unit that differs in the state of the light to be output when the shifted light shifted to the short wavelength side by a certain wavelength from the light of FIG. 1, see Figure 2).
  • the light source device of the fifth embodiment is characterized in that a dichroic mirror 244 as a light control unit is disposed on the optical path OP11 of the laser light emitted from the light source 43.
  • an endoscope system 1 having a light source device includes an endoscope 2 for observing an object and outputting an imaging signal, as in the first embodiment.
  • a video processor 3 connected to the endoscope 2 to input the imaging signal and perform predetermined image processing, a light source device 204 for supplying illumination light for illuminating the subject, and an observation image according to the imaging signal And a monitor device 5 for displaying.
  • the endoscope 2 is disposed on the image forming plane of the objective optical system 21 and the objective optical system 21 including a lens for entering an object image, which is disposed at the distal end of the insertion portion.
  • the imaging device 22 is provided, and the illumination unit 23 capable of emitting predetermined illumination light to a subject.
  • the image pickup device 22 is formed of, for example, a CMOS image sensor, forms an optical image from a subject on the image pickup surface, photoelectrically converts light incident on each pixel in a photoelectric conversion unit, and converts a predetermined image pickup signal. It is designed to output.
  • the illumination unit 23 is disposed at the tip of the light guide 24 extending from the light source device 204 to the inside of the endoscope 2, and emits illumination light generated by the light source device 204. There is.
  • the video processor 3 includes a processor control unit 31 that controls various circuits in the connected endoscope 2 and light source device 204 in addition to the video processor 3, and an image signal from the endoscope 2. It comprises an image processing unit 32 for inputting and performing predetermined image processing, and a video output unit 33 for inputting an image signal processed by the image processing unit 32 and generating a video signal for displaying on the monitor device 5 .
  • the light source device 204 includes a light source 243 that generates (emits) laser light with a predetermined center wavelength, and further, a drive unit 242 that drives the light source 243 and light emission control of the light source 243 Mainly comprises a light source device control unit 241 that
  • the light source 243 is a solid-state light source configured of three semiconductor lasers (laser diode LD; laser diode) of a red semiconductor laser, a green semiconductor laser, and a blue semiconductor laser. And under the control of the light source device control unit 241, the drive unit 242 is driven to emit red, green and blue laser beams, respectively.
  • laser diode LD laser diode
  • the drive unit 242 is driven to emit red, green and blue laser beams, respectively.
  • FIGS. 7 and 8 show the configuration relating to the semiconductor laser of one color among the three-color semiconductor lasers in the light source 243. That is, the red semiconductor laser, the green semiconductor laser and the blue semiconductor laser all have the same configuration, and the emission light path, the dichroic mirror 244 described later and the light sensor 247 have the same configuration for each color semiconductor laser. It shall be.
  • the light source 243 serves as a light source unit for generating (emitting) light of at least a part of the desired wavelength band.
  • the dichroic mirror 244 is disposed on the optical path OP11 of the laser light emitted from the light source 243 (red semiconductor laser, green semiconductor laser and blue semiconductor laser). As described above, the dichroic mirror 244 is disposed on the optical path OP11 of each of the red, green and blue semiconductor lasers, but in FIGS. 7 and 8, one optical path system is used. Only for illustration.
  • the dichroic mirror 244 is a light control unit that changes the state of light to be output according to the state (normal state or shifted state) of the incident light (R light, G light, B light).
  • a wavelength band limiting unit that outputs light of a desired wavelength band (normal laser light) as transmitted light and reflects light of a wavelength band other than the desired wavelength band (shifted laser light) as reflected light It has a function.
  • a condenser lens 245 is disposed on the optical path of the transmitted light (R light, G light, B light) transmitted through the dichroic mirror 244 in each optical path system. That is, the light (R light, G light, B light) transmitted through the dichroic mirror 244 is all condensed by the condensing lens 245, and thereafter, from the illumination unit 23 of the endoscope 2 via the light guide 24 It is supposed to be irradiated.
  • the reflected light from the dichroic mirror 244 is received on the optical path OP12 of the reflected light (R light, G light, B light) which is each shifted laser light reflected by the dichroic mirror 244, and the received light is received And a light sensor (detection unit) 247 that detects a change in the value of the voltage.
  • the wavelength band of the light emitted from the semiconductor laser light source may be shifted due to the influence of the fluctuation of the drive current or the change of the ambient temperature, etc. It is known that there is.
  • FIG. 9 shows the wavelength transition between the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) and the wavelength band in the light source device of the fifth embodiment. It is the figure which showed the relationship of the transmission zone (normality) and the reflection zone (shift) in a restriction
  • the dichroic mirror 244 transmits at least a “transmission band” that transmits light (a normal laser light) of a “desired wavelength band” emitted from the light source 243;
  • a “reflection band” is formed to reflect light in a band shorter than the “desired wavelength band” (shifted laser light).
  • the laser light (one of R light, G light, and B light as described above) emitted from the light source 243 is in a first normal state (FIG. 9 is a band corresponding to the case of “before wavelength shift”.
  • the dichroic mirror 244 serves as a band corresponding to the case where normal laser light of the “desired wavelength band” is emitted from the light source 243, and light of this “desired wavelength band” Have a “transmission band” that transmits light.
  • the dichroic mirror 244 in the fifth embodiment is, as shown in FIG. Through and output. At this time, the laser light (normal laser light) emitted from the light source 243 does not enter the light sensor 247.
  • the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 243 is shifted to the short wavelength side This is a band corresponding to the case where the second state (indicated as after the wavelength shift in FIG. 9) is reached.
  • the dichroic mirror 244 serves as a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 243 while shifting to the short wavelength side. It has a "reflection band” that reflects the light of the wavelength band shifted to the side.
  • the dichroic mirror 244 reflects the incident laser light as shown in FIG. Output as
  • the laser light (shifted laser light) emitted from the light source 243 and reflected from the dichroic mirror 244 is input to the light sensor 247. Accordingly, the light sensor 247 detects that the laser light emitted from the light source 243 has shifted to the short wavelength side by receiving the shifted laser light.
  • the red laser light of the center wavelength (for example, 600 [nm]) emitted from the light source 243 is shifted to the short wavelength side by a predetermined wavelength (for example, about 5 [nm]).
  • the dichroic mirror 244 outputs the shifted laser light to the optical sensor 247 as the reflected light OP12.
  • the light sensor 247 receives the reflected light OP12 that is the shifted laser light, converts the received light OP12 into a voltage, and detects a change in the value of the voltage. Thus, the light sensor 247 detects that the red laser light emitted from the light source 243 is out of the “desired wavelength band” and shifted to the short wavelength side.
  • the specific example mentioned above gave the example which the red laser beam of center wavelength (for example, 600 [nm]) shifted to the short wavelength side.
  • the light source device of the fifth embodiment corresponds to the green semiconductor laser and the blue semiconductor laser even when the laser light of other colors (green laser light and blue laser light) is shifted to the short wavelength side.
  • the optical sensor 247 can detect the wavelength shift.
  • the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the short wavelength side even in the light source device which does not use the phosphor. Can be detected.
  • an example is given of detecting that the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the short wavelength side.
  • the present invention is not limited to this. It is also possible to detect that the wavelength of the light emitted from the light source has shifted from the desired wavelength band to the long wavelength side.
  • the present invention it is possible to provide a light source device capable of detecting that the wavelength of light emitted from the light source deviates from a desired wavelength band, even if the light source device does not use a phosphor.

Abstract

A light source device 4 is equipped with: a light source unit 43 for generating light of at least a portion of the desired wavelength bands; a wavelength shift detection filter 46 which is disposed on a predetermined optical path of the light generated by the light source unit 43 and changes, according to the wavelength of the incident light, the state of light to be output; and an optical sensor 47 for receiving the light output from the wavelength shift detection filter 46, converting the received light into a voltage, and detecting changes in the value of the voltage.

Description

光源装置Light source device
 本発明は、光源装置、詳しくは、所望の波長帯域のうち、少なくとも一部の波長帯域の光を発生させるための光源部を備える光源装置に関する。 The present invention relates to a light source device, and more particularly, to a light source device including a light source unit for generating light in at least a part of a desired wavelength band.
 被検体の内部の被写体を撮像する撮像素子を備える内視鏡、及び、内視鏡により撮像された被写体の観察画像を生成する、いわゆるビデオプロセッサと称する画像処理装置、および、内視鏡から被検体に対して照射する照明光を生成し出射する光源装置等を具備する内視鏡システムが、医療分野及び工業分野等において広く用いられている。 An endoscope including an imaging element for imaging a subject inside a subject, an image processing apparatus called a so-called video processor for generating an observation image of the subject captured by the endoscope, and a subject from the endoscope An endoscope system including a light source device and the like for generating and emitting illumination light to be irradiated to a specimen is widely used in the medical field, the industrial field, and the like.
 このような内視鏡システムにおける光源装置においては、近年、発光ダイオード(LED;light emitting diode)または半導体レーザ(レーザーダイオードLD;laser diode)等の固体光源を備える光源装置も開発されている。 In the light source device in such an endoscope system, recently, a light source device provided with a solid light source such as a light emitting diode (LED) or a semiconductor laser (laser diode LD) has been developed.
 上述の如き固体光源としては、たとえば、日本国特開2015-4902号公報には、LEDによる単色固体光源を使用し、温度変化にかかわらず安定した色の光を出力する光源装置が示されている。 As a solid-state light source as described above, for example, Japanese Patent Laid-Open No. 2015-4902 shows a light source device which uses monochromatic solid-state light source by LED and outputs stable color light regardless of temperature change. There is.
 また、日本国特開2012-47951号公報、日本国特開2015-72387号公報には、例えば励起光を射出する半導体レーザによる固体光源と、前記励起光を蛍光に変換する蛍光体と、を備える光源装置が開示されている。 Further, in JP-A-2012-47951 and JP-A-2015-72387, for example, a solid light source by a semiconductor laser for emitting excitation light, and a phosphor for converting the excitation light into fluorescence A light source device is disclosed.
 ここで、半導体レーザ光源は、その発光の波長および振幅のばらつきは比較的小さく、また、例えば、ピーク波長に対する相対光出力が50%となる波長の広がりも小さいことが知られている。さらに、半導体レーザは、波長だけでなく位相も揃う、いわゆる「コヒーレント光」を照射可能とすることから、近年、斯様な性質を利用して高精度な波長制御を要する内視鏡用光源装置においても採用されるようになっている。 Here, it is known that the variation of the wavelength and the amplitude of the light emission of the semiconductor laser light source is relatively small, and also the spread of the wavelength at which the relative light output with respect to the peak wavelength is 50% is small. Furthermore, since semiconductor lasers enable irradiation of so-called "coherent light", in which not only the wavelength but also the phase are aligned, in recent years, a light source device for endoscopes that requires high-precision wavelength control using such properties. Is also adopted in
 しかしながら、上述した如き半導体レーザ等の固体光源を用いた光源装置は、駆動電流の変動または温度の変化等の影響により、当該固体光源から発生する光の波長帯域がシフトし所望の波長帯域から外れる虞があることが知られている。 However, in the light source device using a solid-state light source such as a semiconductor laser as described above, the wavelength band of light generated from the solid-state light source shifts and deviates from a desired wavelength band due to the influence of fluctuations in drive current or temperature change. It is known that there is a risk.
 特に、半導体レーザを用いた内視鏡用光源装置においては、例えば、中心周波数600[nm]付近の光に対して5[nm]程度の極小さい波長分ほどのシフトが生じた場合であっても、内視鏡システムにおいて所望の画像が得られなくなるという不都合が生じる虞がある。例えば、深部血管および出血点を観察可能なモードにおいて、光源の光の波長が短波長側にシフトすると、深部血管および出血点の視認性低下を引き起こす虞があることが知られている。 In particular, in the light source device for an endoscope using a semiconductor laser, for example, a shift of about 5 nm with a very small wavelength occurs with respect to light near the center frequency 600 nm. Also, there is a possibility that the disadvantage that the desired image can not be obtained in the endoscope system may occur. For example, it is known that when the light wavelength of the light source is shifted to the short wavelength side in the mode in which deep blood vessels and bleeding points can be observed, the visibility of deep blood vessels and bleeding points may be reduced.
 この波長シフトの影響を軽減する光源装置として、従来、レーザ光を励起光源として蛍光体に照射し、蛍光体から発せられる蛍光を照明光として観察対象に照射する光源装置において、以下の例が知られている。 As a light source device for reducing the influence of this wavelength shift, conventionally, in a light source device in which a phosphor is irradiated with laser light as an excitation light source and fluorescence emitted from the phosphor is irradiated onto an observation target as illumination light. It is done.
 すなわち、係る光源装置は、光源から発生した励起光によって励起された蛍光体から発生する蛍光を光センサで検出し、当該光センサの出力が低下した場合に、当該光源から発生する光の波長がシフトしたことを検知するようになっている。そして、この波長シフトを検知することで、当該励起光の波長帯域が所望の波長帯域から外れたことを検知するようになっている。 That is, the light source device detects the fluorescence generated from the phosphor excited by the excitation light generated from the light source with the light sensor, and when the output of the light sensor decreases, the wavelength of the light generated from the light source is It detects that it has shifted. Then, by detecting this wavelength shift, it is detected that the wavelength band of the excitation light has deviated from the desired wavelength band.
 しかしながら、この光源装置は、蛍光体から発生する蛍光を光センサで検出することで、光源である励起光の波長シフトを検知するものであり、蛍光体を用いない光源装置においては適用することはできなかった。 However, this light source device detects the wavelength shift of the excitation light which is the light source by detecting the fluorescence generated from the fluorescent substance with the light sensor, and the light source device does not apply to the light source device not using the fluorescent substance could not.
 本発明は、上記事情に鑑みてなされたものであり、蛍光体を用いない光源装置であっても、光源から発せられる光の波長が所望の波長帯域から外れたことを検知することができる光源装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a light source that can detect that the wavelength of light emitted from the light source deviates from a desired wavelength band even if it is a light source device that does not use a phosphor It aims at providing an apparatus.
 本発明の一態様の光源装置は、所望の波長帯域のうち、少なくとも一部の波長帯域の光を発生させるための光源部と、前記光源部が発生した光の所定光路上に配置され、入光した光の波長に応じて出力する光の状態を異にする光制御部と、前記光制御部から出力された光を受光し、受光した光を電圧に変換すると共に当該電圧の値の変化を検知する検知部と、を具備する。 A light source device according to an aspect of the present invention includes a light source unit for generating light in at least a part of a desired wavelength band and a predetermined light path of light generated by the light source unit. A light control unit that changes the state of light to be output according to the wavelength of the emitted light, and the light output from the light control unit is received, and the received light is converted into a voltage and the change of the value of the voltage And a detection unit that detects the
図1は、本発明の第1の実施形態の光源装置を含む内視鏡システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of an endoscope system including a light source device according to a first embodiment of the present invention. 図2は、第1の実施形態の光源装置において、光源から照射される所望の波長帯域の光がシフトした際の様子を示した図である。FIG. 2 is a view showing how light in a desired wavelength band emitted from the light source is shifted in the light source device of the first embodiment. 図3は、第1の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(短波長側へのシフト後)の第2の状態との波長推移の様子と、波長帯域制限部における遮断帯域(正常)と透過帯域(シフト)の関係を示した図である。FIG. 3 shows the wavelength transition of the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) and the wavelength band in the light source device of the first embodiment. It is the figure which showed the relationship between the stop zone (normality) and the transmission zone (shift) in a restriction | limiting part. 図4は、本発明の第2の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(長波長側へのシフト後)の第3の状態との波長推移の様子と、波長帯域制限部における遮断帯域(正常)と透過帯域(シフト)の関係を示した図である。FIG. 4 is a view of wavelength transition of the first state before wavelength shift and the third state after wavelength shift (after shift to the long wavelength side) in the light source device according to the second embodiment of the present invention; It is the figure which showed the relationship of the stop zone (normal) and the transmission zone (shift) in a wavelength zone limiting part. 図5は、本発明の第3の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(短波長側へのシフト後)の第2の状態との波長推移の様子と、波長帯域制限部における透過帯域(正常)と遮断帯域(シフト)の関係を示した図である。FIG. 5 shows the transition of wavelength between the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) in the light source device according to the third embodiment of the present invention It is the figure which showed the relationship between the permeation | transmission band (normality) and the stop band (shift) in a wavelength band limitation part. 図6は、本発明の第4の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(長波長側へのシフト後)の第3の状態との波長推移の様子と、波長帯域制限部における透過帯域(正常)と遮断帯域(シフト)の関係を示した図である。FIG. 6 shows the transition of wavelength between the first state before wavelength shift and the third state after wavelength shift (after shift to the long wavelength side) in the light source device according to the fourth embodiment of the present invention It is the figure which showed the relationship between the permeation | transmission band (normality) and the stop band (shift) in a wavelength band limitation part. 図7は、本発明の第5の実施形態の光源装置を含む内視鏡システムの構成を示す図である。FIG. 7 is a view showing a configuration of an endoscope system including the light source device of the fifth embodiment of the present invention. 図8は、第5の実施形態の光源装置において、光源から照射される所望の波長帯域の光がシフトした際の様子を示した図である。FIG. 8 is a view showing a state in which light of a desired wavelength band emitted from the light source is shifted in the light source device of the fifth embodiment. 図9は、第5の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(短波長側へのシフト後)の第2の状態との波長推移の様子と、波長帯域制限部における透過帯域(正常)と反射帯域(シフト)の関係を示した図である。FIG. 9 shows the wavelength transition between the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) and the wavelength band in the light source device of the fifth embodiment. It is the figure which showed the relationship of the transmission zone (normality) and the reflection zone (shift) in a restriction | limiting part.
 以下、図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1の実施形態>
 図1は、本発明の第1の実施形態の光源装置を含む内視鏡システムの構成を示す図であり、図2は、第1の実施形態の光源装置において、光源から照射される所望の波長帯域の光がシフトした際の様子を示した図である。
First Embodiment
FIG. 1 is a view showing a configuration of an endoscope system including a light source device according to a first embodiment of the present invention, and FIG. 2 is a view showing a desired light source irradiated from a light source in the light source device according to the first embodiment. It is the figure which showed a mode when the light of the wavelength zone | band shifted.
 図1に示すように、本第1の実施形態の光源装置を有する内視鏡システム1は、被検体を観察し撮像信号を出力する内視鏡2と、当該内視鏡2に接続され前記撮像信号を入力し所定の画像処理を施すビデオプロセッサ3と、被検体を照明するための照明光を供給する光源装置4と、撮像信号に応じた観察画像を表示するモニタ装置5と、を有している。 As shown in FIG. 1, an endoscope system 1 having a light source device according to the first embodiment includes an endoscope 2 for observing a subject and outputting an imaging signal, and the endoscope 2 connected to the endoscope 2. There is a video processor 3 that receives an imaging signal and performs predetermined image processing, a light source device 4 that supplies illumination light for illuminating a subject, and a monitor device 5 that displays an observation image according to the imaging signal. doing.
 内視鏡2は、挿入部の先端部に配設された、被写体像を入光するレンズを含む対物光学系21と、対物光学系21における結像面に配設された撮像素子22と、被写体に対して所定の照明光を照射可能とする照明部23と、を備える。 The endoscope 2 includes an objective optical system 21 disposed at the distal end of the insertion portion, the objective optical system 21 including a lens for receiving an object image, and an imaging element 22 disposed on the imaging surface of the objective optical system 21. And an illumination unit capable of applying predetermined illumination light to a subject.
 前記撮像素子22は、例えばCMOSイメージセンサにより構成され、被写体からの光学像をその撮像面に結像し、各画素に入射した光を光電変換部において光電変換して所定の撮像信号を出力するようになっている。 The imaging element 22 is formed of, for example, a CMOS image sensor, forms an optical image from a subject on the imaging surface, photoelectrically converts light incident on each pixel in a photoelectric conversion unit, and outputs a predetermined imaging signal. It is supposed to be.
 前記照明部23は、光源装置4から内視鏡2の内部にかけて延設されるライトガイド24の先端部に配設され、光源装置4において生成された照明光を照射するようになっている。 The illumination unit 23 is disposed at the tip of the light guide 24 extending from the light source device 4 to the inside of the endoscope 2 and emits illumination light generated by the light source device 4.
 本実施形態においてビデオプロセッサ3は、当該ビデオプロセッサ3の他、接続された内視鏡2および光源装置4における各種回路を制御するプロセッサ制御部31と、内視鏡2からの画像信号を入力し、所定の画像処理を施す画像処理部32と、当該画像処理部32において処理された画像信号を入力しモニタ装置5において表示するための映像信号を生成する映像出力部33と、を備える。 In the present embodiment, the video processor 3 receives an image signal from the endoscope 2 and a processor control unit 31 that controls various circuits in the endoscope 2 and the light source device 4 connected in addition to the video processor 3. An image processing unit 32 that performs predetermined image processing; and a video output unit 33 that receives an image signal processed by the image processing unit 32 and generates a video signal to be displayed on the monitor device 5.
 <光源装置の構成>
 本実施形態において光源装置4は、所定の中心波長によるレーザ光を発生する(出射する)光源43を備え、さらに当該光源43を駆動する駆動部42、および、当該光源43の発光制御を行う光源装置制御部41を主に備える。
<Configuration of light source device>
In the present embodiment, the light source device 4 includes a light source 43 that generates (emits) laser light with a predetermined center wavelength, and further, a drive unit 42 that drives the light source 43 and a light source that performs light emission control of the light source 43 The apparatus control unit 41 is mainly provided.
 光源43は、本実施形態においては、赤色半導体レーザ、緑色半導体レーザおよび青色半導体レーザの3つの半導体レーザ(レーザーダイオードLD;laser diode)により構成される固体光源であり、プロセッサ制御部31および光源装置制御部41の制御下に駆動部42に駆動され、それぞれ赤色、緑色、青色レーザ光を発光するようになっている。 In the present embodiment, the light source 43 is a solid-state light source configured of three semiconductor lasers (laser diode LD; laser diode) such as a red semiconductor laser, a green semiconductor laser, and a blue semiconductor laser. Under the control of the control unit 41, the drive unit 42 is driven to emit red, green and blue laser beams, respectively.
 なお、図1,図2においては、光源43におけるこれら3色の半導体レーザのうち1色分の半導体レーザに係る構成を代表して示している。すなわち、赤色半導体レーザ、緑色半導体レーザおよび青色半導体レーザは、いずれも同様の構成をなし、その出射光路、後述するハーフミラー44、波長シフト検出用フィルタ46、光センサ47についても、各色半導体レーザごとに同様の構成を備えるものとする。 In FIGS. 1 and 2, among the three-color semiconductor lasers in the light source 43, the configuration relating to the semiconductor laser for one color is shown as a representative. That is, the red semiconductor laser, the green semiconductor laser, and the blue semiconductor laser all have the same configuration, and the emission light path, the half mirror 44 described later, the filter 46 for wavelength shift detection, and the optical sensor 47 Each has a similar configuration.
 このように光源43は、所望の波長帯域のうち、少なくとも一部の波長帯域の光を発生させる(出射させる)ための光源部としての役目を果たすようになっている。 As described above, the light source 43 serves as a light source unit for generating (emitting) light of at least a part of the desired wavelength band.
 本実施形態においては、光源43(赤色半導体レーザ、緑色半導体レーザおよび青色半導体レーザ)から出射したレーザ光の光路OP1上には、ハーフミラー44が配設される。なお、上述したようにハーフミラー44は、前記赤色半導体レーザ、緑色半導体レーザおよび青色半導体レーザの各色半導体レーザの光路OP1上に配設されるが、図1、図2においては1つの光路系についてのみ図示するものである。 In the present embodiment, the half mirror 44 is disposed on the optical path OP1 of the laser light emitted from the light source 43 (red semiconductor laser, green semiconductor laser and blue semiconductor laser). As described above, the half mirror 44 is disposed on the optical path OP1 of each of the red, green and blue semiconductor lasers, but in FIG. 1 and FIG. Only for illustration.
 前記ハーフミラー44は、入光した光(R光、G光、B光)の波長に応じて出力する光の状態を異にする光制御部であって、前記光源43が出射した光(R光、G光、B光)をそれぞれ透過光と反射光とに分離する光路分離部としての機能を有する。 The half mirror 44 is a light control unit that changes the state of light to be output according to the wavelength of the incident light (R light, G light, B light), and the light emitted from the light source 43 (R It has a function as an optical path separation unit that separates light, G light, and B light) into transmitted light and reflected light, respectively.
 また、それぞれの光路系におけるハーフミラー44を透過した透過光(R光、G光、B光)の光路上には集光レンズ45が配設される。すなわち、ハーフミラー44を透過した光(R光、G光、B光)は、いずれも集光レンズ45において集光され、その後、ライトガイド24を経由して内視鏡2の照明部23から照射されるようになっている。 A condenser lens 45 is disposed on the optical path of the transmitted light (R light, G light, B light) transmitted through the half mirror 44 in each optical path system. That is, all the light (R light, G light, B light) transmitted through the half mirror 44 is condensed by the condenser lens 45, and thereafter, from the illumination unit 23 of the endoscope 2 via the light guide 24 It is supposed to be irradiated.
 一方、ハーフミラー44により反射したそれぞれの反射光(R光、G光、B光)の光路OP2上には、当該ハーフミラー44からの反射光を受光し、受光した光を電圧に変換すると共に当該電圧の値の変化を検知する光センサ(検知部)47がそれぞれ配設されている。 On the other hand, the reflected light from the half mirror 44 is received on the optical path OP2 of each reflected light (R light, G light, B light) reflected by the half mirror 44, and the received light is converted into a voltage. An optical sensor (detection unit) 47 that detects a change in the value of the voltage is disposed.
 また、これら反射光(R光、G光、B光)の各光路OP2上であって当該各光センサ47の入光面には当該反射光を入光する波長シフト検出用フィルタ46が配設されている。 In addition, on the optical path OP2 of the reflected light (R light, G light, B light), a wavelength shift detection filter 46 for entering the reflected light is provided on the light entrance surface of each light sensor 47. It is done.
 <光制御部としての波長シフト検出用フィルタ46>
 前記それぞれの波長シフト検出用フィルタ46は、前記反射光として「所望の波長帯域」の光を入光したときと、当該「所望の波長帯域」の光から一定波長分ほど短波長側にシフトしたシフト光を入力したときとで出力する光の状態を異にする光制御部としての機能を有する。
<Wavelength shift detection filter 46 as light control unit>
The respective wavelength shift detection filters 46 shift to a short wavelength side by a certain wavelength from the light of the “desired wavelength band” and when light of the “desired wavelength band” is input as the reflected light. It has a function as a light control unit that makes the state of light to be output different depending on when shift light is input.
 また、本第1の実施形態における波長シフト検出用フィルタ46は、前記「所望の波長帯域」の光の透過を制限する波長帯域制限部としての役目を果たす。 Further, the wavelength shift detection filter 46 in the first embodiment serves as a wavelength band limiting unit that limits the transmission of the light of the “desired wavelength band”.
 なお、半導体レーザに関しては、その駆動電流の変動または周辺温度の変化等の影響により、当該半導体レーザ光源から照射する光の波長帯域がシフトし、所望の波長帯域から外れる虞があることが知られている。 With regard to semiconductor lasers, it is known that the wavelength band of light emitted from the semiconductor laser light source may be shifted and deviate from the desired wavelength band due to the influence of fluctuations in drive current or changes in ambient temperature. ing.
 図3は、第1の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(短波長側へのシフト後)の第2の状態との波長推移の様子と、波長帯域制限部(波長シフト検出用フィルタ46)における遮断帯域(正常)と透過帯域(シフト)の関係を示した図である。 FIG. 3 shows the wavelength transition of the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) and the wavelength band in the light source device of the first embodiment. It is the figure which showed the relationship of the stop zone (normality) and the transmission zone (shift) in a restriction part (filter 46 for wavelength shift detection).
 図3に示すように、本第1の実施形態において波長シフト検出用フィルタ46は、少なくとも当該光源43から出射する「所望の波長帯域」の光の透過を遮断する「遮断帯域」と、当該「所望の波長帯域」より短波長側の帯域の光を透過する「透過帯域」とを形成する。 As shown in FIG. 3, in the first embodiment, the wavelength shift detection filter 46 blocks at least the transmission of light of a desired wavelength band emitted from the light source 43, and A “transmission band” is formed to transmit light in a band shorter than the desired wavelength band ”.
 第1の実施形態において波長シフト検出用フィルタ46における「遮断帯域」は、光源43から出射するレーザ光(上述したように、R光、G光、B光のいずれか)が正常な第1の状態(図3中、波長シフト前と記す)にある場合に対応する帯域である。 In the first embodiment, the “cut-off band” in the filter for wavelength shift detection 46 is a first one in which the laser light (one of R light, G light, and B light as described above) emitted from the light source 43 is normal. This band corresponds to the state (indicated before wavelength shift in FIG. 3).
 換言すれば、第1の実施形態において波長シフト検出用フィルタ46は、光源43から「所望の波長帯域」の正常なレーザ光が出射されている場合に対応する帯域として、この「所望の波長帯域」の光の透過を遮断する「遮断帯域」を有する。 In other words, in the first embodiment, the filter 46 for wavelength shift detection is a band corresponding to the case where the normal laser light of the "desired wavelength band" is emitted from the light source 43, this "desired wavelength band" And a "blocking band" that blocks the transmission of light.
 光源43から「所望の波長帯域」の正常なレーザ光が出射されている場合、波長シフト検出用フィルタ46には、図1に示すようにハーフミラー44からの反射光OP2が入光されるが、この反射光OP2は、前記「遮断帯域」により光の透過が遮断されることとなる。 When normal laser light in the “desired wavelength band” is emitted from the light source 43, the reflected light OP2 from the half mirror 44 is incident on the wavelength shift detection filter 46 as shown in FIG. The transmission of light of this reflected light OP2 is cut off by the "cut-off band".
 そして、当該波長シフト検出用フィルタ46に対応する光センサ47には、光源43から出射するレーザ光(正常なレーザ光)は、入光しないこととなる。 And the laser beam (normal laser beam) radiate | emitted from the light source 43 will not inject into the optical sensor 47 corresponding to the said filter 46 for wavelength shift detection.
 一方、第1の実施形態において波長シフト検出用フィルタ46における「透過帯域」は、光源43から出射するレーザ光(R光、G光、B光)の少なくともいずれか1色のレーザ光が短波長側にシフトした第2の状態(図3中、波長シフト後と記す)に至った場合に対応する帯域である。 On the other hand, in the “transmission band” of the filter for detecting wavelength shift 46 in the first embodiment, the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 43 has a short wavelength This is a band corresponding to the case where the second state shifted to the side (described as after the wavelength shift in FIG. 3) is reached.
 換言すれば、第1の実施形態において波長シフト検出用フィルタ46は、光源43から「所望の波長帯域」のレーザ光が短波長側にシフトして出射されている場合に対応する帯域として、この「短波長側にシフトした波長帯域」の光を透過する「透過帯域」を有する。 In other words, in the first embodiment, the filter for wavelength shift detection 46 is a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 43 to the short wavelength side. It has a "transmission band" that transmits light in the "wavelength band shifted to the short wavelength side".
 光源43から「所望の波長帯域」のレーザ光が短波長側にシフトして出射されている場合、波長シフト検出用フィルタ46には、図2に示すようにハーフミラー44からの反射光OP2が入光された後、前記「透過帯域」により透過され、反射光OP3として出力される。 When the laser light in the “desired wavelength band” is emitted from the light source 43 while being shifted to the short wavelength side, the reflected light OP2 from the half mirror 44 is transmitted to the filter for wavelength shift detection 46 as shown in FIG. After being incident, the light is transmitted by the “transmission band” and is output as the reflected light OP3.
 そして、当該波長シフト検出用フィルタ46に対応する光センサ47には、ハーフミラー44から反射された、光源43から出射するレーザ光(シフトしたレーザ光)が入光されることとなる。 Then, the laser beam (shifted laser beam) emitted from the light source 43 and reflected from the half mirror 44 is incident on the optical sensor 47 corresponding to the wavelength shift detection filter 46.
 このとき光センサ47は、当該シフトしたレーザ光を受光することで光源43から出射するレーザ光が短波長側にシフトしたことを検知する。 At this time, the light sensor 47 detects that the laser light emitted from the light source 43 has shifted to the short wavelength side by receiving the shifted laser light.
 より具体的に、今、光源43から出射した中心波長(例えば、600[nm])の赤色レーザ光が、短波長側に所定の波長分(例えば、5[nm]程度)ほどシフトしたとする。このとき波長シフト検出用フィルタ46は、ハーフミラー44において反射した当該シフトした反射光OP2を透過し、反射光OP3として光センサ47に対して出力する。 More specifically, it is assumed that the red laser light of the center wavelength (for example, 600 nm) emitted from the light source 43 is shifted to the short wavelength side by a predetermined wavelength (for example, about 5 nm). . At this time, the wavelength shift detection filter 46 transmits the shifted reflected light OP2 reflected by the half mirror 44, and outputs it to the optical sensor 47 as a reflected light OP3.
 光センサ47は、このシフトしたレーザ光である反射光OP3の受光し、当該受光した光OP3を電圧に変換すると共に当該電圧の値の変化を検知する。これにより、光センサ47は、光源43から出射する赤色レーザ光が「所望の波長帯域」から外れ、短波長側にシフトしたことを検知する。 The light sensor 47 receives the reflected light OP3 which is the shifted laser light, converts the received light OP3 into a voltage, and detects a change in the value of the voltage. Thus, the light sensor 47 detects that the red laser light emitted from the light source 43 is out of the “desired wavelength band” and shifted to the short wavelength side.
 なお、上述した具体例は、中心波長(例えば、600[nm])の赤色レーザ光が短波長側にシフトした例を挙げた。しかし、本第1の実施形態の光源装置は、他の色(緑色レーザ光、青色レーザ光)のレーザ光が短波長側にシフトした場合についても、それぞれ緑色半導体レーザ、青色半導体レーザに対応する光センサ47において、その波長シフトを検知することができるようになっている。 In addition, the specific example mentioned above gave the example which the red laser beam of center wavelength (for example, 600 [nm]) shifted to the short wavelength side. However, the light source device of the first embodiment corresponds to the green semiconductor laser and the blue semiconductor laser even when the laser light of other colors (green laser light and blue laser light) is shifted to the short wavelength side. The optical sensor 47 can detect the wavelength shift.
 以上説明したように、本第1の実施形態の光源装置によると、蛍光体を用いない光源装置であっても、光源から発せられる光の波長が所望の波長帯域から短波長側にシフトしたことを検知することができる。 As described above, according to the light source device of the first embodiment, the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the short wavelength side even in the light source device which does not use the phosphor. Can be detected.
 <第2の実施形態>
 次に、本発明の第2の実施形態について説明する。
Second Embodiment
Next, a second embodiment of the present invention will be described.
 第2の実施形態の光源装置は、主たる構成は第1の実施形態と同様であり、ここでは第1の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。 The light source device of the second embodiment is the same as the first embodiment in the main configuration, and only the differences from the first embodiment will be described here, and the description of the common parts will be omitted.
 第1の実施形態が「光源から発せられる光の波長が所望の波長帯域から短波長側にシフトしたことを検知する」ことを特徴とするものであることに対して、第2の実施形態は、「光源から発せられる光の波長が所望の波長帯域から長波長側にシフトしたことを検知する」ことを特徴とするものである。 While the first embodiment is characterized by “detecting that the wavelength of light emitted from the light source is shifted from the desired wavelength band to the short wavelength side”, the second embodiment is an embodiment of the present invention. And “detecting that the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the long wavelength side”.
 図4は、本発明の第2の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(長波長側へのシフト後)の第3の状態との波長推移の様子と、波長帯域制限部における遮断帯域(正常)と透過帯域(シフト)の関係を示した図である。 FIG. 4 is a view of wavelength transition of the first state before wavelength shift and the third state after wavelength shift (after shift to the long wavelength side) in the light source device according to the second embodiment of the present invention; It is the figure which showed the relationship of the stop zone (normal) and the transmission zone (shift) in a wavelength zone limiting part.
 <第2の実施形態の波長シフト検出用フィルタ46>
 第2の実施形態において波長帯域制限部である波長シフト検出用フィルタ46は、前記反射光として「所望の波長帯域」の光を入光したときと、当該「所望の波長帯域」の光から一定波長分ほど長波長側にシフトしたシフト光を入力したときとで出力する光の状態を異にする光制御部としての機能を有する。
<Wavelength shift detection filter 46 of the second embodiment>
In the second embodiment, the wavelength shift detection filter 46, which is a wavelength band limiting unit, receives a light of a "desired wavelength band" as the reflected light, and the light from the "desired wavelength band" is constant. It has a function as a light control unit that differs in the state of the light to be output when the shifted light shifted to the long wavelength side by the wavelength is input.
 また、本第2の実施形態においても、前記波長シフト検出用フィルタ46は、前記「所望の波長帯域」の光の透過を制限する波長帯域制限部としての役目を果たす。 Also in the second embodiment, the wavelength shift detection filter 46 serves as a wavelength band limiting unit that limits the transmission of the light of the “desired wavelength band”.
 図4に示すように、本第2の実施形態において波長シフト検出用フィルタ46は、少なくとも当該光源43から出射する「所望の波長帯域」の光の透過を遮断する「遮断帯域」と、当該「所望の波長帯域」より長波長側の帯域の光を透過する「透過帯域」とを形成する。 As shown in FIG. 4, in the second embodiment, the wavelength shift detection filter 46 blocks at least the transmission of light of a desired wavelength band emitted from the light source 43, and A “transmission band” is formed to transmit light in a band on the longer wavelength side than the desired wavelength band ”.
 第2の実施形態において波長シフト検出用フィルタ46における「遮断帯域」は、光源43から出射するレーザ光(上述したように、R光、G光、B光のいずれか)が正常な第1の状態(図4中、波長シフト前と記す)にある場合に対応する帯域である。 In the second embodiment, the “cut-off band” in the filter for wavelength shift detection 46 is a first one in which the laser light (one of R light, G light, and B light as described above) emitted from the light source 43 is normal. This band corresponds to the state (indicated before wavelength shift in FIG. 4).
 換言すれば、第2の実施形態においても、波長シフト検出用フィルタ46は、光源43から「所望の波長帯域」の正常なレーザ光が出射されている場合に対応する帯域として、この「所望の波長帯域」の光の透過を遮断する「遮断帯域」を有する。 In other words, also in the second embodiment, the filter 46 for wavelength shift detection is a band corresponding to the case where the normal laser light of the “desired wavelength band” is emitted from the light source 43. It has a "blocking band" that blocks the transmission of light in the "wavelength band".
 第2の実施形態においても、光源43から「所望の波長帯域」の正常なレーザ光が出射されている場合、波長シフト検出用フィルタ46には、第1の実施形態において説明した図1に示すようにハーフミラー44からの反射光OP2が入光されるが、この反射光OP2は、前記「遮断帯域」により光の透過が遮断されることとなる。 Also in the second embodiment, when the normal laser light of the “desired wavelength band” is emitted from the light source 43, the filter for wavelength shift detection 46 is shown in FIG. 1 described in the first embodiment. As described above, although the reflected light OP2 from the half mirror 44 is incident, the transmission of the reflected light OP2 is blocked by the "cut-off band".
 そして、第2の実施形態においても、当該波長シフト検出用フィルタ46に対応する光センサ47には、光源43から出射するレーザ光(正常なレーザ光)は、入光しないこととなる。 Also in the second embodiment, the laser beam (normal laser beam) emitted from the light source 43 does not enter the light sensor 47 corresponding to the wavelength shift detection filter 46.
 一方、第2の実施形態において波長シフト検出用フィルタ46における「透過帯域」は、光源43から出射するレーザ光(R光、G光、B光)の少なくともいずれか1色のレーザ光が長波長側にシフトした第3の状態(図4中、波長シフト後と記す)に至った場合に対応する帯域である。 On the other hand, in the “transmission band” of the filter for detecting wavelength shift 46 in the second embodiment, the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 43 has a long wavelength This is a band corresponding to the case where the third state shifted to the side (indicated as after the wavelength shift in FIG. 4) is reached.
 換言すれば、第2の実施形態において波長シフト検出用フィルタ46は、光源43から「所望の波長帯域」のレーザ光が長波長側にシフトして出射されている場合に対応する帯域として、この「長波長側にシフトした波長帯域」の光を透過する「透過帯域」を有する。 In other words, in the second embodiment, the filter 46 for wavelength shift detection is a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 43 to the long wavelength side. It has a "transmission band" that transmits light in the "wavelength band shifted to the long wavelength side".
 光源43から「所望の波長帯域」のレーザ光が長波長側にシフトして出射されている場合、波長シフト検出用フィルタ46には、第1の実施形態において説明した図2に示すようにハーフミラー44からの反射光OP2が入光された後、前記「透過帯域」により透過され、反射光OP3として出力される。 When the laser light in the “desired wavelength band” is emitted from the light source 43 while shifting to the long wavelength side, the wavelength shift detection filter 46 is a half as shown in FIG. 2 described in the first embodiment. After the reflected light OP2 from the mirror 44 is incident, it is transmitted by the "transmission band" and is output as the reflected light OP3.
 そして、第2の実施形態においても、当該波長シフト検出用フィルタ46に対応する光センサ47には、ハーフミラー44から反射された、光源43から出射するレーザ光(シフトしたレーザ光)が入光されることとなる。 Also in the second embodiment, the laser beam (shifted laser beam) emitted from the light source 43 and reflected from the half mirror 44 enters the optical sensor 47 corresponding to the filter for wavelength shift detection 46. It will be done.
 このとき光センサ47は、当該シフトしたレーザ光を受光することで光源43から出射するレーザ光が長波長側にシフトしたことを検知する。 At this time, the light sensor 47 detects that the laser light emitted from the light source 43 has shifted to the long wavelength side by receiving the shifted laser light.
 より具体的に、今、第2の実施形態において、光源43から出射した中心波長(例えば、600[nm])の赤色レーザ光が、長波長側に所定の波長分(例えば、5[nm]程度)ほどシフトしたとする。このとき波長シフト検出用フィルタ46は、ハーフミラー44において反射した当該シフトした反射光OP2を透過し、反射光OP3として光センサ47に対して出力する。 More specifically, in the second embodiment, the red laser light of the center wavelength (e.g., 600 [nm]) emitted from the light source 43 has a predetermined wavelength (e.g., 5 [nm]) on the long wavelength side. Degree) shift. At this time, the wavelength shift detection filter 46 transmits the shifted reflected light OP2 reflected by the half mirror 44, and outputs it to the optical sensor 47 as a reflected light OP3.
 光センサ47は、このシフトしたレーザ光である反射光OP3の受光し、当該受光した光OP3を電圧に変換すると共に当該電圧の値の変化を検知する。これにより、光センサ47は、光源43から出射する赤色レーザ光が「所望の波長帯域」から外れ、長波長側にシフトしたことを検知する。 The light sensor 47 receives the reflected light OP3 which is the shifted laser light, converts the received light OP3 into a voltage, and detects a change in the value of the voltage. Thus, the light sensor 47 detects that the red laser light emitted from the light source 43 is out of the “desired wavelength band” and shifted to the long wavelength side.
 なお、上述した具体例は、中心波長(例えば、600[nm])の赤色レーザ光が長波長側にシフトした例を挙げた。しかし、本第2の実施形態の光源装置においては、他の色(緑色レーザ光、青色レーザ光)のレーザ光が長波長側にシフトした場合についても、それぞれ緑色半導体レーザ、青色半導体レーザに対応する光センサ47において、その波長シフトを検知することができるようになっている。 In addition, the specific example mentioned above gave the example which the red laser beam of center wavelength (for example, 600 [nm]) shifted to the long wavelength side. However, in the light source device of the second embodiment, even when the laser light of other colors (green laser light and blue laser light) is shifted to the long wavelength side, it corresponds to the green semiconductor laser and the blue semiconductor laser, respectively. In the optical sensor 47, the wavelength shift can be detected.
 以上説明したように、本第2の実施形態の光源装置によると、蛍光体を用いない光源装置であっても、光源から発せられる光の波長が所望の波長帯域から長波長側にシフトしたことを検知することができる。 As described above, according to the light source device of the second embodiment, the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the long wavelength side even in the light source device which does not use the phosphor. Can be detected.
 <第3の実施形態>
 次に、本発明の第3の実施形態について説明する。
Third Embodiment
Next, a third embodiment of the present invention will be described.
 第3の実施形態の光源装置は、主たる構成は第1の実施形態と同様であり、ここでは第1の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。 The light source device of the third embodiment has the main configuration similar to that of the first embodiment, and only the differences from the first embodiment will be described here, and the description of the common parts will be omitted.
 第3の実施形態は、第1の実施形態と同様に「光源から発せられる光の波長が所望の波長帯域から短波長側にシフトしたことを検知する」ものであるが、第3の実施形態は、第1の実施形態に対して波長シフト検出用フィルタ46における「遮断帯域」と「透過帯域」との関係を異にすることを特徴とする。 Similar to the first embodiment, the third embodiment “detects that the wavelength of the light emitted from the light source has shifted from the desired wavelength band to the short wavelength side”, but the third embodiment is the third embodiment. This embodiment is characterized in that the relationship between the “stopband” and the “transmission band” in the filter for wavelength shift detection 46 is different from the first embodiment.
 図5は、本発明の第3の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(短波長側へのシフト後)の第2の状態との波長推移の様子と、波長帯域制限部における透過帯域(正常)と遮断帯域(シフト)の関係を示した図である。 FIG. 5 shows the transition of wavelength between the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) in the light source device according to the third embodiment of the present invention It is the figure which showed the relationship between the permeation | transmission band (normality) and the stop band (shift) in a wavelength band limitation part.
 <第3の実施形態における波長シフト検出用フィルタ46>
 第3の実施形態の光源装置において波長シフト検出用フィルタ46は、前記反射光として「所望の波長帯域」の光を入光したときと、当該「所望の波長帯域」の光から一定波長分ほど短波長側にシフトしたシフト光を入力したときとで出力する光の状態を異にする光制御部としての機能を有する。
<Wavelength shift detection filter 46 in the third embodiment>
In the light source device according to the third embodiment, the wavelength shift detection filter 46 receives light of a “desired wavelength band” as the reflected light, and a certain wavelength of light from the light of the “desired wavelength band”. It has a function as a light control unit that makes the state of the light to be output different depending on when the shifted light shifted to the short wavelength side is input.
 図5に示すように、本第3の実施形態において波長シフト検出用フィルタ46は、少なくとも当該光源43から出射する「所望の波長帯域」の光を透過する「透過帯域」と、当該「所望の波長帯域」より短波長側の帯域の光の透過を遮断する「遮断帯域」とを形成する。 As shown in FIG. 5, in the third embodiment, the wavelength shift detection filter 46 transmits at least a “desired wavelength band” light emitted from the light source 43 and a “transmission band”; A "blocking band" for blocking transmission of light in a band shorter than the wavelength band "is formed.
 第3の実施形態において波長シフト検出用フィルタ46における「透過帯域」は、光源43から出射するレーザ光(上述したように、R光、G光、B光のいずれか)が正常な第1の状態(図5中、波長シフト前と記す)にある場合に対応する帯域である。 In the third embodiment, the “transmission band” in the filter for wavelength shift detection 46 is a first one in which the laser light (one of R light, G light, and B light as described above) emitted from the light source 43 is normal. This band corresponds to the state (indicated before wavelength shift in FIG. 5).
 換言すれば、第3の実施形態において波長シフト検出用フィルタ46は、光源43から「所望の波長帯域」の正常なレーザ光が出射されている場合に対応する帯域として、この「所望の波長帯域」の光を透過する「透過帯域」を有する。 In other words, in the third embodiment, the filter 46 for wavelength shift detection is a band corresponding to the case where a normal laser beam of the "desired wavelength band" is emitted from the light source 43. The "transmission band" transmits light of
 光源43から「所望の波長帯域」の正常なレーザ光が出射されている場合、第3の実施形態における波長シフト検出用フィルタ46には、第1の実施形態において説明した図2に示すように、ハーフミラー44からの反射光OP2が入光された後、前記「透過帯域」により透過され、反射光OP3として出力される。 When normal laser light in the “desired wavelength band” is emitted from the light source 43, the filter for detecting wavelength shift 46 in the third embodiment is as shown in FIG. 2 described in the first embodiment. After the reflected light OP2 from the half mirror 44 is incident, it is transmitted by the "transmission band" and is output as the reflected light OP3.
 そして、当該波長シフト検出用フィルタ46に対応する光センサ47には、ハーフミラー44から反射された、光源43から出射するレーザ光(正常なレーザ光)が入光されることとなる。 Then, the laser beam (normal laser beam) emitted from the light source 43 and reflected from the half mirror 44 is incident on the optical sensor 47 corresponding to the wavelength shift detection filter 46.
 このとき光センサ47は、当該正常なレーザ光を受光することで光源43から出射するレーザ光が正常な状態であることを検知する。 At this time, the light sensor 47 detects that the laser light emitted from the light source 43 is in a normal state by receiving the normal laser light.
 一方、第3の実施形態において波長シフト検出用フィルタ46における「遮断帯域」は、光源43から出射するレーザ光(R光、G光、B光)の少なくともいずれか1色のレーザ光が短波長側にシフトした第2の状態(図5中、波長シフト後と記す)に至った場合に対応する帯域である。 On the other hand, in the third embodiment, the “cut-off band” in the filter for wavelength shift detection 46 has a short wavelength of the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 43 This is a band corresponding to the case where the second state shifted to the side (described as after the wavelength shift in FIG. 5) is reached.
 換言すれば、第3の実施形態において波長シフト検出用フィルタ46は、光源43から「所望の波長帯域」のレーザ光が短波長側にシフトして出射されている場合に対応する帯域として、この「短波長側にシフトした波長帯域」の光を遮断する「遮断帯域」を有する。 In other words, in the third embodiment, the filter 46 for wavelength shift detection is a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 43 to the short wavelength side. It has a "blocking band" for blocking light of "wavelength band shifted to the short wavelength side".
 光源43から「所望の波長帯域」のレーザ光が短波長側にシフトして出射されている場合、第3の実施形態における波長シフト検出用フィルタ46には、第1の実施形態において説明した図1に示すように、ハーフミラー44からの反射光OP2が入光されるが、この反射光OP2は、前記「遮断帯域」により光の透過が遮断されることとなる。 When the laser light of the “desired wavelength band” is emitted from the light source 43 while being shifted to the short wavelength side, the filter for wavelength shift detection 46 in the third embodiment is the diagram described in the first embodiment. As shown in FIG. 1, the reflected light OP2 from the half mirror 44 is incident, but the transmission of the reflected light OP2 is blocked by the "blocking band".
 そして、当該波長シフト検出用フィルタ46に対応する光センサ47には、ハーフミラー44から反射された、光源43から出射するレーザ光(シフトしたレーザ光)は、入光しないこととなる。 Then, the laser beam (shifted laser beam) emitted from the light source 43 and reflected from the half mirror 44 does not enter the optical sensor 47 corresponding to the wavelength shift detection filter 46.
 このとき光センサ47は当該シフトしたレーザ光を受光しないことで光源43から出射するレーザ光が短波長側にシフトしたことを検知する。 At this time, the light sensor 47 detects that the laser light emitted from the light source 43 has shifted to the short wavelength side by not receiving the shifted laser light.
 より具体的に、今、光源43から出射した中心波長(例えば、600[nm])の赤色レーザ光が正常に出力されているとき、第3の実施形態における波長シフト検出用フィルタ46は、ハーフミラー44において反射した当該シフトした反射光OP2を透過し、反射光OP3として光センサ47に対して出力する(図2参照)。 More specifically, when the red laser light of the center wavelength (for example, 600 [nm]) emitted from the light source 43 is normally output, the filter 46 for wavelength shift detection in the third embodiment is a half. The shifted reflected light OP2 reflected by the mirror 44 is transmitted, and is output to the light sensor 47 as a reflected light OP3 (see FIG. 2).
 光センサ47は、この正常状態のレーザ光である反射光OP3の受光し、当該受光した光OP3を電圧に変換すると共に当該電圧値を測定することにより、光源43から出射する赤色レーザ光が「所望の波長帯域」内に収まる正常状態であると認識する。 The optical sensor 47 receives the reflected light OP3 which is the laser light in the normal state, converts the received light OP3 into a voltage and measures the voltage value, so that the red laser light emitted from the light source 43 It is recognized that the normal state is within the desired wavelength band.
 一方、光源43から出射した中心波長(例えば、600[nm])の赤色レーザ光が、短波長側に所定の波長分(例えば、5[nm]程度)ほどシフトしたとする。このとき波長シフト検出用フィルタ46は、ハーフミラー44において反射した当該シフトした反射光OP2を遮断する(図1参照)。 On the other hand, it is assumed that the red laser light of the central wavelength (e.g., 600 [nm]) emitted from the light source 43 is shifted to the short wavelength side by a predetermined wavelength (e.g., about 5 [nm]). At this time, the wavelength shift detection filter 46 blocks the shifted reflected light OP2 reflected by the half mirror 44 (see FIG. 1).
 光センサ47においては、それまで受光していた(正常状態のレーザ光である)反射光OP3の入光が途絶えることから、反射光に係る電圧の値も変化することになる。光センサ47は、この電圧値の変化を検出することにより、光源43から出射する赤色レーザ光が「所望の波長帯域」から外れ、短波長側にシフトしたことを検知する。 In the optical sensor 47, since the incoming light of the reflected light OP3 (which is the laser light in the normal state) which has been received until then is interrupted, the value of the voltage related to the reflected light also changes. The light sensor 47 detects the change in the voltage value to detect that the red laser light emitted from the light source 43 is out of the “desired wavelength band” and shifted to the short wavelength side.
 なお、上述した具体例は、中心波長(例えば、600[nm])の赤色レーザ光が短波長側にシフトした例を挙げたが、本第3の実施形態の光源装置は、第1の実施形態と同様に、他の色(緑色レーザ光、青色レーザ光)のレーザ光が短波長側にシフトした場合についても、それぞれ緑色半導体レーザ、青色半導体レーザに対応する光センサ47において、その波長シフトを検知することができるようになっている。 In the above-mentioned specific example, the red laser light of the central wavelength (for example, 600 [nm]) is shifted to the short wavelength side. However, the light source device of the third embodiment is the first embodiment. As in the embodiment, even when laser light of another color (green laser light or blue laser light) is shifted to the short wavelength side, the wavelength shift is performed in the light sensor 47 corresponding to the green semiconductor laser and the blue semiconductor laser, respectively. Can be detected.
 以上説明したように、本第3の実施形態の光源装置によっても、蛍光体を用いない光源装置であっても、光源から発せられる光の波長が所望の波長帯域から短波長側にシフトしたことを検知することができる。 As described above, according to the light source device of the third embodiment, the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the short wavelength side even in the light source device which does not use the phosphor. Can be detected.
 <第4の実施形態>
 次に、本発明の第4の実施形態について説明する。
Fourth Embodiment
Next, a fourth embodiment of the present invention will be described.
 第4の実施形態の光源装置は、主たる構成は第1、第2の実施形態と同様であり、ここでは第1の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。 The light source device of the fourth embodiment is the same as the first and second embodiments in the main configuration, and only the difference from the first embodiment is described here, and the description of the common parts is omitted. Do.
 第4の実施形態は、第2の実施形態と同様に「光源から発せられる光の波長が所望の波長帯域から長波長側にシフトしたことを検知する」ものであるが、第4の実施形態は、第1、第2の実施形態に対して波長シフト検出用フィルタ46における「遮断帯域」と「透過帯域」との関係を異にすることを特徴とする。 Similar to the second embodiment, the fourth embodiment “detects that the wavelength of the light emitted from the light source has shifted from the desired wavelength band to the long wavelength side”, but the fourth embodiment is the fourth embodiment. This embodiment is characterized in that the relationship between the "stopband" and the "transmission band" in the filter for wavelength shift detection 46 is different from the first and second embodiments.
 図6は、本発明の第4の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(長波長側へのシフト後)の第3の状態との波長推移の様子と、波長帯域制限部における透過帯域(正常)と遮断帯域(シフト)の関係を示した図である。 FIG. 6 shows the transition of wavelength between the first state before wavelength shift and the third state after wavelength shift (after shift to the long wavelength side) in the light source device according to the fourth embodiment of the present invention It is the figure which showed the relationship between the permeation | transmission band (normality) and the stop band (shift) in a wavelength band limitation part.
 <第4の実施形態における波長シフト検出用フィルタ46>
 第4の実施形態の光源装置において波長シフト検出用フィルタ46は、前記反射光として「所望の波長帯域」の光を入光したときと、当該「所望の波長帯域」の光から一定波長分ほど長波長側にシフトしたシフト光を入力したときとで出力する光の状態を異にする光制御部としての機能を有する。
<Wavelength shift detection filter 46 in the fourth embodiment>
In the light source device according to the fourth embodiment, the wavelength shift detection filter 46 receives a light of a "desired wavelength band" as the reflected light, and a predetermined wavelength of light from the light of the "desired wavelength band". It has a function as a light control unit that makes the state of the light to be output different depending on when the shifted light shifted to the long wavelength side is input.
 図6に示すように、本第4の実施形態において波長シフト検出用フィルタ46は、少なくとも当該光源43から出射する「所望の波長帯域」の光を透過する「透過帯域」と、当該「所望の波長帯域」より長波長側の帯域の光の透過を遮断する「遮断帯域」とを形成する。 As shown in FIG. 6, in the fourth embodiment, the wavelength shift detection filter 46 transmits at least a “desired wavelength band” light emitted from the light source 43 and a “transmission band”; A "blocking band" for blocking transmission of light in a band on the longer wavelength side than the "wavelength band" is formed.
 第4の実施形態において波長シフト検出用フィルタ46における「透過帯域」は、光源43から出射するレーザ光(上述したように、R光、G光、B光のいずれか)が正常な第1の状態(図6中、波長シフト前と記す)にある場合に対応する帯域である。 In the fourth embodiment, the “transmission band” in the filter for wavelength shift detection 46 is a first one in which the laser light (one of R light, G light, and B light as described above) emitted from the light source 43 is normal. This band corresponds to the state (indicated before wavelength shift in FIG. 6).
 換言すれば、第4の実施形態において波長シフト検出用フィルタ46は、光源43から「所望の波長帯域」の正常なレーザ光が出射されている場合に対応する帯域として、この「所望の波長帯域」の光を透過する「透過帯域」を有する。 In other words, in the fourth embodiment, the filter 46 for wavelength shift detection is a band corresponding to the case where a normal laser beam of the "desired wavelength band" is emitted from the light source 43. The "transmission band" transmits light of
 光源43から「所望の波長帯域」の正常なレーザ光が出射されている場合、第4の実施形態における波長シフト検出用フィルタ46には、第1の実施形態において説明した図2に示すように、ハーフミラー44からの反射光OP2が入光された後、前記「透過帯域」により透過され、反射光OP3として出力される。 When the normal laser light in the “desired wavelength band” is emitted from the light source 43, the filter for detecting wavelength shift 46 in the fourth embodiment is as shown in FIG. 2 described in the first embodiment. After the reflected light OP2 from the half mirror 44 is incident, it is transmitted by the "transmission band" and is output as the reflected light OP3.
 そして、当該波長シフト検出用フィルタ46に対応する光センサ47には、ハーフミラー44から反射された、光源43から出射するレーザ光(正常なレーザ光)が入光されることとなる。 Then, the laser beam (normal laser beam) emitted from the light source 43 and reflected from the half mirror 44 is incident on the optical sensor 47 corresponding to the wavelength shift detection filter 46.
 このとき光センサ47は、当該正常なレーザ光を受光することで光源43から出射するレーザ光が正常な状態であることを検知する。 At this time, the light sensor 47 detects that the laser light emitted from the light source 43 is in a normal state by receiving the normal laser light.
 一方、第4の実施形態において波長シフト検出用フィルタ46における「遮断帯域」は、光源43から出射するレーザ光(R光、G光、B光)の少なくともいずれか1色のレーザ光が長波長側にシフトした第3の状態(図6中、波長シフト後と記す)に至った場合に対応する帯域である。 On the other hand, in the fourth embodiment, the “cut-off band” in the filter for wavelength shift detection 46 is a long wavelength of the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 43 This is a band corresponding to the case where the third state shifted to the side (indicated as after the wavelength shift in FIG. 6) is reached.
 換言すれば、第4の実施形態において波長シフト検出用フィルタ46は、光源43から「所望の波長帯域」のレーザ光が長波長側にシフトして出射されている場合に対応する帯域として、この「長波長側にシフトした波長帯域」の光を遮断する「遮断帯域」を有する。 In other words, in the fourth embodiment, the filter for wavelength shift detection 46 is a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 43 to the long wavelength side and emitted. It has a "blocking band" for blocking light of "wavelength band shifted to the long wavelength side".
 光源43から「所望の波長帯域」のレーザ光が長波長側にシフトして出射されている場合、第4の実施形態における波長シフト検出用フィルタ46には、第1の実施形態において説明した図1に示すように、ハーフミラー44からの反射光OP2が入光されるが、この反射光OP2は、前記「遮断帯域」により光の透過が遮断されることとなる。 When the laser light in the “desired wavelength band” is emitted from the light source 43 while being shifted to the long wavelength side, the filter for wavelength shift detection 46 in the fourth embodiment is the diagram described in the first embodiment. As shown in FIG. 1, the reflected light OP2 from the half mirror 44 is incident, but the transmission of the reflected light OP2 is blocked by the "blocking band".
 そして、当該波長シフト検出用フィルタ46に対応する光センサ47には、ハーフミラー44から反射された、光源43から出射するレーザ光(シフトしたレーザ光)は、入光しないこととなる。 Then, the laser beam (shifted laser beam) emitted from the light source 43 and reflected from the half mirror 44 does not enter the optical sensor 47 corresponding to the wavelength shift detection filter 46.
 このとき光センサ47は当該シフトしたレーザ光を受光しないことで光源43から出射するレーザ光が長波長側にシフトしたことを検知する。 At this time, the light sensor 47 detects that the laser light emitted from the light source 43 has shifted to the long wavelength side by not receiving the shifted laser light.
 より具体的に、今、光源43から出射した中心波長(例えば、600[nm])の赤色レーザ光が正常に出力されているとき、第4の実施形態における波長シフト検出用フィルタ46は、ハーフミラー44において反射した当該シフトした反射光OP2を透過し、反射光OP3として光センサ47に対して出力する(図2参照)。 More specifically, when the red laser light of the center wavelength (for example, 600 [nm]) emitted from the light source 43 is normally output, the filter 46 for wavelength shift detection in the fourth embodiment is a half. The shifted reflected light OP2 reflected by the mirror 44 is transmitted, and is output to the light sensor 47 as a reflected light OP3 (see FIG. 2).
 光センサ47は、この正常状態のレーザ光である反射光OP3の受光し、当該受光した光OP3を電圧に変換すると共に当該電圧値を測定することにより、光源43から出射する赤色レーザ光が「所望の波長帯域」内に収まる正常状態であると認識する。 The optical sensor 47 receives the reflected light OP3 which is the laser light in the normal state, converts the received light OP3 into a voltage and measures the voltage value, so that the red laser light emitted from the light source 43 It is recognized that the normal state is within the desired wavelength band.
 一方、光源43から出射した中心波長(例えば、600[nm])の赤色レーザ光が、長波長側に所定の波長分(例えば、5[nm]程度)ほどシフトしたとする。このとき波長シフト検出用フィルタ46は、ハーフミラー44において反射した当該シフトした反射光OP2を遮断する(図1参照)。 On the other hand, it is assumed that the red laser light of the central wavelength (e.g., 600 [nm]) emitted from the light source 43 is shifted to the long wavelength side by a predetermined wavelength (e.g., about 5 [nm]). At this time, the wavelength shift detection filter 46 blocks the shifted reflected light OP2 reflected by the half mirror 44 (see FIG. 1).
 光センサ47においては、それまで受光していた(正常状態のレーザ光である)反射光OP3の入光が途絶えることから、反射光に係る電圧の値も変化することになる。光センサ47は、この電圧値の変化を検出することにより、光源43から出射する赤色レーザ光が「所望の波長帯域」から外れ、長波長側にシフトしたことを検知する。 In the optical sensor 47, since the incoming light of the reflected light OP3 (which is the laser light in the normal state) which has been received until then is interrupted, the value of the voltage related to the reflected light also changes. The light sensor 47 detects the change in the voltage value to detect that the red laser light emitted from the light source 43 is out of the “desired wavelength band” and shifted to the long wavelength side.
 なお、上述した具体例は、中心波長(例えば、600[nm])の赤色レーザ光が長波長側にシフトした例を挙げたが、本第4の実施形態の光源装置は、第2の実施形態と同様に、他の色(緑色レーザ光、青色レーザ光)のレーザ光が長波長側にシフトした場合についても、それぞれ緑色半導体レーザ、青色半導体レーザに対応する光センサ47において、その波長シフトを検知することができるようになっている。 In the above-mentioned specific example, the red laser light of the central wavelength (for example, 600 [nm]) is shifted to the long wavelength side. However, the light source device of the fourth embodiment is the second embodiment. As in the embodiment, even when the laser light of another color (green laser light or blue laser light) is shifted to the long wavelength side, the wavelength shift in the light sensor 47 corresponding to the green semiconductor laser and the blue semiconductor laser Can be detected.
 以上説明したように、本第4の実施形態の光源装置によっても、蛍光体を用いない光源装置であっても、光源から発せられる光の波長が所望の波長帯域から長波長側にシフトしたことを検知することができる。 As described above, even with the light source device of the fourth embodiment, the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the long wavelength side even in the light source device not using the phosphor. Can be detected.
 <第5の実施形態>
 次に、本発明の第5の実施形態について説明する。
Fifth Embodiment
Next, a fifth embodiment of the present invention will be described.
 図7は、本発明の第5の実施形態の光源装置を含む内視鏡システムの構成を示す図であり、図8は、第5の実施形態の光源装置において、光源から照射される所望の波長帯域の光がシフトした際の様子を示した図である。また、図9は、第5の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(短波長側へのシフト後)の第2の状態との波長推移の様子と、波長帯域制限部における透過帯域(正常)と反射帯域(シフト)の関係を示した図である。 FIG. 7 is a view showing a configuration of an endoscope system including a light source device according to a fifth embodiment of the present invention, and FIG. 8 is a view showing a desired light source irradiated from a light source in the light source device according to the fifth embodiment. It is the figure which showed a mode when the light of the wavelength zone | band shifted. Further, FIG. 9 shows the transition of the wavelength between the first state before the wavelength shift and the second state after the wavelength shift (after the shift to the short wavelength side) in the light source device of the fifth embodiment, It is the figure which showed the relationship between the permeation | transmission band (normality) and the reflection band (shift) in a wavelength band limitation part.
 上述したように、第1の実施形態の光源装置は、光源43から出射したレーザ光の光路OP1上にハーフミラー44を配設した。この第1の実施形態におけるハーフミラー44は、入光した光(R光、G光、B光)の波長に応じて出力する光の状態を異にする光制御部であって、前記光源43が出射した光(R光、G光、B光)をそれぞれ透過光と反射光とに分離する光路分離部としての機能を有する(図1、図2参照)。 As described above, in the light source device of the first embodiment, the half mirror 44 is disposed on the optical path OP1 of the laser light emitted from the light source 43. The half mirror 44 in the first embodiment is a light control unit that changes the state of light to be output according to the wavelength of the incident light (R light, G light, B light), and the light source 43 Has a function as an optical path separation unit that separates the emitted light (R light, G light, B light) into transmitted light and reflected light, respectively (see FIGS. 1 and 2).
 また、第1の実施形態における当該ハーフミラー44により反射した反射光の光路OP2上には、前記反射光として「所望の波長帯域」の光を入光したときと、当該「所望の波長帯域」の光から一定波長分ほど短波長側にシフトしたシフト光を入力したときとで出力する光の状態を異にする光制御部としての機能を有する波長シフト検出用フィルタ46を配設した(図1、図2参照)。 In addition, when light of a “desired wavelength band” enters as the reflected light on the optical path OP2 of the reflected light reflected by the half mirror 44 in the first embodiment, the “desired wavelength band” A wavelength shift detection filter 46 having a function as a light control unit that differs in the state of the light to be output when the shifted light shifted to the short wavelength side by a certain wavelength from the light of FIG. 1, see Figure 2).
 これに対して本第5の実施形態の光源装置は、光源43から出射したレーザ光の光路OP11上に、光制御部としてのダイクロイックミラー244を配設したことを特徴とする。 On the other hand, the light source device of the fifth embodiment is characterized in that a dichroic mirror 244 as a light control unit is disposed on the optical path OP11 of the laser light emitted from the light source 43.
 図7に示すように、本第5の実施形態の光源装置を有する内視鏡システム1は、第1の実施形態と同様に、被検体を観察し撮像信号を出力する内視鏡2と、当該内視鏡2に接続され前記撮像信号を入力し所定の画像処理を施すビデオプロセッサ3と、被検体を照明するための照明光を供給する光源装置204と、撮像信号に応じた観察画像を表示するモニタ装置5と、を有している。 As shown in FIG. 7, an endoscope system 1 having a light source device according to the fifth embodiment includes an endoscope 2 for observing an object and outputting an imaging signal, as in the first embodiment. A video processor 3 connected to the endoscope 2 to input the imaging signal and perform predetermined image processing, a light source device 204 for supplying illumination light for illuminating the subject, and an observation image according to the imaging signal And a monitor device 5 for displaying.
 第5の実施形態においても、内視鏡2は、挿入部の先端部に配設された、被写体像を入光するレンズを含む対物光学系21と、対物光学系21における結像面に配設された撮像素子22と、被写体に対して所定の照明光を照射可能とする照明部23と、を備える。 Also in the fifth embodiment, the endoscope 2 is disposed on the image forming plane of the objective optical system 21 and the objective optical system 21 including a lens for entering an object image, which is disposed at the distal end of the insertion portion. The imaging device 22 is provided, and the illumination unit 23 capable of emitting predetermined illumination light to a subject.
 また、前記撮像素子22は、例えばCMOSイメージセンサにより構成され、被写体からの光学像をその撮像面に結像し、各画素に入射した光を光電変換部において光電変換して所定の撮像信号を出力するようになっている。 Further, the image pickup device 22 is formed of, for example, a CMOS image sensor, forms an optical image from a subject on the image pickup surface, photoelectrically converts light incident on each pixel in a photoelectric conversion unit, and converts a predetermined image pickup signal. It is designed to output.
 さらに、前記照明部23は、光源装置204から内視鏡2の内部にかけて延設されるライトガイド24の先端部に配設され、光源装置204において生成された照明光を照射するようになっている。 Furthermore, the illumination unit 23 is disposed at the tip of the light guide 24 extending from the light source device 204 to the inside of the endoscope 2, and emits illumination light generated by the light source device 204. There is.
 第5の実施形態においてビデオプロセッサ3は、当該ビデオプロセッサ3の他、接続された内視鏡2および光源装置204における各種回路を制御するプロセッサ制御部31と、内視鏡2からの画像信号を入力し、所定の画像処理を施す画像処理部32と、当該画像処理部32において処理された画像信号を入力しモニタ装置5において表示するための映像信号を生成する映像出力部33と、を備える。 In the fifth embodiment, the video processor 3 includes a processor control unit 31 that controls various circuits in the connected endoscope 2 and light source device 204 in addition to the video processor 3, and an image signal from the endoscope 2. It comprises an image processing unit 32 for inputting and performing predetermined image processing, and a video output unit 33 for inputting an image signal processed by the image processing unit 32 and generating a video signal for displaying on the monitor device 5 .
 <光源装置の構成>
 本第5の実施形態において光源装置204は、所定の中心波長によるレーザ光を発生する(出射する)光源243を備え、さらに当該光源243を駆動する駆動部242、および、当該光源243の発光制御を行う光源装置制御部241を主に備える。
<Configuration of light source device>
In the fifth embodiment, the light source device 204 includes a light source 243 that generates (emits) laser light with a predetermined center wavelength, and further, a drive unit 242 that drives the light source 243 and light emission control of the light source 243 Mainly comprises a light source device control unit 241 that
 光源243は、本第5の実施形態においても、赤色半導体レーザ、緑色半導体レーザおよび青色半導体レーザの3つの半導体レーザ(レーザーダイオードLD;laser diode)により構成される固体光源であり、プロセッサ制御部31および光源装置制御部241の制御下に駆動部242に駆動され、それぞれ赤色、緑色、青色レーザ光を発光するようになっている。 Also in the fifth embodiment, the light source 243 is a solid-state light source configured of three semiconductor lasers (laser diode LD; laser diode) of a red semiconductor laser, a green semiconductor laser, and a blue semiconductor laser. And under the control of the light source device control unit 241, the drive unit 242 is driven to emit red, green and blue laser beams, respectively.
 なお、図7,図8においては、光源243におけるこれら3色の半導体レーザのうち1色分の半導体レーザに係る構成を代表して示している。すなわち、赤色半導体レーザ、緑色半導体レーザおよび青色半導体レーザは、いずれも同様の構成をなし、その出射光路、後述するダイクロイックミラー244、光センサ247についても、各色半導体レーザごとに同様の構成を備えるものとする。 FIGS. 7 and 8 show the configuration relating to the semiconductor laser of one color among the three-color semiconductor lasers in the light source 243. That is, the red semiconductor laser, the green semiconductor laser and the blue semiconductor laser all have the same configuration, and the emission light path, the dichroic mirror 244 described later and the light sensor 247 have the same configuration for each color semiconductor laser. It shall be.
 このように光源243は、所望の波長帯域のうち、少なくとも一部の波長帯域の光を発生させる(出射させる)ための光源部としての役目を果たすようになっている。 Thus, the light source 243 serves as a light source unit for generating (emitting) light of at least a part of the desired wavelength band.
 本第5の実施形態においては、光源243(赤色半導体レーザ、緑色半導体レーザおよび青色半導体レーザ)から出射したレーザ光の光路OP11上には、ダイクロイックミラー244が配設される。なお、上述したようにダイクロイックミラー244は、前記赤色半導体レーザ、緑色半導体レーザおよび青色半導体レーザの各色半導体レーザの光路OP11上に配設されるが、図7、図8においては1つの光路系についてのみ図示するものである。 In the fifth embodiment, the dichroic mirror 244 is disposed on the optical path OP11 of the laser light emitted from the light source 243 (red semiconductor laser, green semiconductor laser and blue semiconductor laser). As described above, the dichroic mirror 244 is disposed on the optical path OP11 of each of the red, green and blue semiconductor lasers, but in FIGS. 7 and 8, one optical path system is used. Only for illustration.
 前記ダイクロイックミラー244は、入光した光(R光、G光、B光)の状態(正常状態か、シフトした状態か)に応じて出力する光の状態を異にする光制御部であって、所望の波長帯域の光(正常のレーザ光)を透過光として出力すると共に、当該所望の波長帯域以外の波長帯域の光(シフトしたレーザ光)を反射光として反射する波長帯域制限部としての機能を有する。 The dichroic mirror 244 is a light control unit that changes the state of light to be output according to the state (normal state or shifted state) of the incident light (R light, G light, B light). A wavelength band limiting unit that outputs light of a desired wavelength band (normal laser light) as transmitted light and reflects light of a wavelength band other than the desired wavelength band (shifted laser light) as reflected light It has a function.
 また、それぞれの光路系におけるダイクロイックミラー244を透過した透過光(R光、G光、B光)の光路上には集光レンズ245が配設される。すなわち、ダイクロイックミラー244を透過した光(R光、G光、B光)は、いずれも集光レンズ245において集光され、その後、ライトガイド24を経由して内視鏡2の照明部23から照射されるようになっている。 A condenser lens 245 is disposed on the optical path of the transmitted light (R light, G light, B light) transmitted through the dichroic mirror 244 in each optical path system. That is, the light (R light, G light, B light) transmitted through the dichroic mirror 244 is all condensed by the condensing lens 245, and thereafter, from the illumination unit 23 of the endoscope 2 via the light guide 24 It is supposed to be irradiated.
 一方、ダイクロイックミラー244により反射したそれぞれのシフトしたレーザ光である反射光(R光、G光、B光)の光路OP12上には、当該ダイクロイックミラー244からの反射光を受光し、受光した光を電圧に変換すると共に当該電圧の値の変化を検知する光センサ(検知部)247がそれぞれ配設されている。 On the other hand, the reflected light from the dichroic mirror 244 is received on the optical path OP12 of the reflected light (R light, G light, B light) which is each shifted laser light reflected by the dichroic mirror 244, and the received light is received And a light sensor (detection unit) 247 that detects a change in the value of the voltage.
 なお、半導体レーザに関しては、上述したように、その駆動電流の変動または周辺温度の変化等の影響により、当該半導体レーザ光源から照射する光の波長帯域がシフトし、所望の波長帯域から外れる虞があることが知られている。 As for the semiconductor laser, as described above, the wavelength band of the light emitted from the semiconductor laser light source may be shifted due to the influence of the fluctuation of the drive current or the change of the ambient temperature, etc. It is known that there is.
 図9は、第5の実施形態の光源装置において、波長シフト前の第1の状態と波長シフト後(短波長側へのシフト後)の第2の状態との波長推移の様子と、波長帯域制限部における透過帯域(正常)と反射帯域(シフト)の関係を示した図である。 FIG. 9 shows the wavelength transition between the first state before wavelength shift and the second state after wavelength shift (after shift to the short wavelength side) and the wavelength band in the light source device of the fifth embodiment. It is the figure which showed the relationship of the transmission zone (normality) and the reflection zone (shift) in a restriction | limiting part.
 図9に示すように、本第5の実施形態においてダイクロイックミラー244は、少なくとも当該光源243から出射する「所望の波長帯域」の光(正常のレーザ光)を透過する「透過帯域」と、当該「所望の波長帯域」より短波長側の帯域の光(シフトしたレーザ光)を反射過する「反射帯域」とを形成する。 As shown in FIG. 9, in the fifth embodiment, the dichroic mirror 244 transmits at least a “transmission band” that transmits light (a normal laser light) of a “desired wavelength band” emitted from the light source 243; A “reflection band” is formed to reflect light in a band shorter than the “desired wavelength band” (shifted laser light).
 第5の実施形態においてダイクロイックミラー244における「透過帯域」は、光源243から出射するレーザ光(上述したように、R光、G光、B光のいずれか)が正常な第1の状態(図9中、波長シフト前と記す)にある場合に対応する帯域である。 In the “transmission band” of the dichroic mirror 244 in the fifth embodiment, the laser light (one of R light, G light, and B light as described above) emitted from the light source 243 is in a first normal state (FIG. 9 is a band corresponding to the case of “before wavelength shift”.
 換言すれば、第5の実施形態においてダイクロイックミラー244は、光源243から「所望の波長帯域」の正常なレーザ光が出射されている場合に対応する帯域として、この「所望の波長帯域」の光を透過する「透過帯域」を有する。 In other words, in the fifth embodiment, the dichroic mirror 244 serves as a band corresponding to the case where normal laser light of the “desired wavelength band” is emitted from the light source 243, and light of this “desired wavelength band” Have a “transmission band” that transmits light.
 光源243から「所望の波長帯域」の正常なレーザ光が出射されている場合、第5の実施形態におけるダイクロイックミラー244は、図7に示すように、入光したレーザ光を前記「透過帯域」により透過して出力する。このとき、前記光センサ247には、光源243から出射するレーザ光(正常なレーザ光)は、入光しないこととなる。 When the normal laser light of the "desired wavelength band" is emitted from the light source 243, the dichroic mirror 244 in the fifth embodiment is, as shown in FIG. Through and output. At this time, the laser light (normal laser light) emitted from the light source 243 does not enter the light sensor 247.
 一方、第5の実施形態においてダイクロイックミラー244における「反射帯域」は、光源243から出射するレーザ光(R光、G光、B光)の少なくともいずれか1色のレーザ光が短波長側にシフトした第2の状態(図9中、波長シフト後と記す)に至った場合に対応する帯域である。 On the other hand, in the “reflection band” of the dichroic mirror 244 in the fifth embodiment, the laser light of at least one color of the laser light (R light, G light, B light) emitted from the light source 243 is shifted to the short wavelength side This is a band corresponding to the case where the second state (indicated as after the wavelength shift in FIG. 9) is reached.
 換言すれば、第5の実施形態においてダイクロイックミラー244は、光源243から「所望の波長帯域」のレーザ光が短波長側にシフトして出射されている場合に対応する帯域として、この「短波長側にシフトした波長帯域」の光を反射する「反射帯域」を有する。 In other words, in the fifth embodiment, the dichroic mirror 244 serves as a band corresponding to the case where the laser light of the “desired wavelength band” is emitted from the light source 243 while shifting to the short wavelength side. It has a "reflection band" that reflects the light of the wavelength band shifted to the side.
 光源243から「所望の波長帯域」のレーザ光が短波長側にシフトして出射されている場合、ダイクロイックミラー244は、図8に示すように、入光したレーザ光を反射し、反射光OP12として出力する。 When the laser light of the “desired wavelength band” is shifted to the short wavelength side and emitted from the light source 243, the dichroic mirror 244 reflects the incident laser light as shown in FIG. Output as
 このとき、光センサ247には、ダイクロイックミラー244から反射された、光源243から出射するレーザ光(シフトしたレーザ光)が入光されることとなる。これにより光センサ247は、当該シフトしたレーザ光を受光することで光源243から出射するレーザ光が短波長側にシフトしたことを検知する。 At this time, the laser light (shifted laser light) emitted from the light source 243 and reflected from the dichroic mirror 244 is input to the light sensor 247. Accordingly, the light sensor 247 detects that the laser light emitted from the light source 243 has shifted to the short wavelength side by receiving the shifted laser light.
 より具体的に、今、光源243から出射した中心波長(例えば、600[nm])の赤色レーザ光が、短波長側に所定の波長分(例えば、5[nm]程度)ほどシフトしたとする。このときダイクロイックミラー244は、シフトしたレーザ光を反射光OP12として光センサ247に対して出力する。 More specifically, it is assumed that the red laser light of the center wavelength (for example, 600 [nm]) emitted from the light source 243 is shifted to the short wavelength side by a predetermined wavelength (for example, about 5 [nm]). . At this time, the dichroic mirror 244 outputs the shifted laser light to the optical sensor 247 as the reflected light OP12.
 光センサ247は、このシフトしたレーザ光である反射光OP12の受光し、当該受光した光OP12を電圧に変換すると共に当該電圧の値の変化を検知する。これにより、光センサ247は、光源243から出射する赤色レーザ光が「所望の波長帯域」から外れ、短波長側にシフトしたことを検知する。 The light sensor 247 receives the reflected light OP12 that is the shifted laser light, converts the received light OP12 into a voltage, and detects a change in the value of the voltage. Thus, the light sensor 247 detects that the red laser light emitted from the light source 243 is out of the “desired wavelength band” and shifted to the short wavelength side.
 なお、上述した具体例は、中心波長(例えば、600[nm])の赤色レーザ光が短波長側にシフトした例を挙げた。しかし、本第5の実施形態の光源装置は、他の色(緑色レーザ光、青色レーザ光)のレーザ光が短波長側にシフトした場合についても、それぞれ緑色半導体レーザ、青色半導体レーザに対応する光センサ247において、その波長シフトを検知することができるようになっている。 In addition, the specific example mentioned above gave the example which the red laser beam of center wavelength (for example, 600 [nm]) shifted to the short wavelength side. However, the light source device of the fifth embodiment corresponds to the green semiconductor laser and the blue semiconductor laser even when the laser light of other colors (green laser light and blue laser light) is shifted to the short wavelength side. The optical sensor 247 can detect the wavelength shift.
 以上説明したように、本第5の実施形態の光源装置によると、蛍光体を用いない光源装置であっても、光源から発せられる光の波長が所望の波長帯域から短波長側にシフトしたことを検知することができる。 As described above, according to the light source device of the fifth embodiment, the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the short wavelength side even in the light source device which does not use the phosphor. Can be detected.
 なお、第5の実施形態においては、光源から発せられる光の波長が所望の波長帯域から短波長側にシフトしたことを検知する例を挙げたが、これに限らず、ダイクロイックミラー244の設定により、光源から発せられる光の波長が所望の波長帯域から長波長側にシフトしたことを検知するようにすることもできる。 In the fifth embodiment, an example is given of detecting that the wavelength of the light emitted from the light source is shifted from the desired wavelength band to the short wavelength side. However, the present invention is not limited to this. It is also possible to detect that the wavelength of the light emitted from the light source has shifted from the desired wavelength band to the long wavelength side.
 本発明によれば、蛍光体を用いない光源装置であっても、光源から発せられる光の波長が所望の波長帯域から外れたことを検知することができる光源装置を提供することができる。 According to the present invention, it is possible to provide a light source device capable of detecting that the wavelength of light emitted from the light source deviates from a desired wavelength band, even if the light source device does not use a phosphor.
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能であることは勿論である。 The present invention is not limited to the above-described embodiment, and it goes without saying that various changes, modifications, and the like can be made without departing from the scope of the present invention.
 本出願は、2017年11月1日に日本国に出願された特願2017-212140号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。 This application is based on Japanese Patent Application No. 2017-212140 filed on Nov. 1, 2017 as a basis for claiming priority, and the above disclosure is incorporated herein by reference. It shall be quoted.

Claims (15)

  1.  所望の波長帯域のうち、少なくとも一部の波長帯域の光を発生させるための光源部と、
     前記光源部が発生した光の所定光路上に配置され、入光した光の波長に応じて出力する光の状態を異にする光制御部と、
     前記光制御部から出力された光を受光し、受光した光を電圧に変換すると共に当該電圧の値の変化を検知する検知部と、
     を具備することを特徴とする光源装置。
    A light source unit for generating light of at least a part of wavelength bands in a desired wavelength band;
    A light control unit which is disposed on a predetermined optical path of the light generated by the light source unit and which makes the state of light to be output different according to the wavelength of the incident light;
    A detection unit that receives the light output from the light control unit, converts the received light into a voltage, and detects a change in the value of the voltage;
    A light source device comprising:
  2.  前記光制御部は、前記所望の波長帯域の光を入光したときと、当該所望の波長帯域の光から一定波長シフトしたシフト光を入力したときとで出力する光の状態を異にする
     ことを特徴とする請求項1に記載の光源装置。
    The light control unit makes the state of the light to be output different between when the light of the desired wavelength band is input and when the shifted light whose wavelength is shifted from the light of the desired wavelength band is input. The light source device according to claim 1, characterized in that
  3.  前記光源部が発生した光の光路上に配置され、前記光を透過光と反射光とに分離する光路分離部をさらに備え、
     前記光制御部は、前記光路分離部により分離された前記反射光の光路上に配置され、前記反射光を入光する
     ことを特徴とする請求項2に記載の光源装置。
    The light source unit may further include an optical path separation unit disposed on an optical path of the light generated and separating the light into transmitted light and reflected light.
    The light source device according to claim 2, wherein the light control unit is disposed on the light path of the reflected light separated by the light path separation unit, and receives the reflected light.
  4.  前記光制御部は、前記所望の波長帯域の光の透過を制限する波長帯域制限部を備え、
     前記検知部は、前記波長帯域制限部を透過した光を受光する位置に配置され、当該受光した光を電圧に変換すると共に当該電圧の値の変化を検知する
     ことを特徴とする請求項3に記載の光源装置。
    The light control unit includes a wavelength band limiting unit that limits transmission of light in the desired wavelength band,
    The said detection part is arrange | positioned in the position which light-receives the light which permeate | transmitted the said wavelength zone limiting part, converts the said received light into a voltage, and detects the change of the value of the said voltage. The light source device as described.
  5.  前記検知部は、前記電圧の値が所定の値を超えたときに、前記光源部から発生する光の波長が前記所望の波長帯域からシフトしたことを検知する
     ことを特徴とする請求項4に記載の光源装置。
    The detection unit detects that the wavelength of light generated from the light source unit is shifted from the desired wavelength band when the value of the voltage exceeds a predetermined value. The light source device as described.
  6.  前記光制御部における前記波長帯域制限部は、少なくとも前記所望の波長帯域の光を遮断すると共に、当該所望の波長帯域よりも短い波長の光の透過する
     ことを特徴とする請求項5に記載の光源装置。
    The wavelength band limiting unit in the light control unit blocks light of at least the desired wavelength band and transmits light of a wavelength shorter than the desired wavelength band. Light source device.
  7.  前記光制御部における前記波長帯域制限部は、少なくとも前記所望の波長帯域の光を遮断すると共に、前記所望の波長帯域よりも長い波長の光の透過する
     ことを特徴とする請求項5に記載の光源装置。
    The wavelength band limiting section in the light control section blocks light of at least the desired wavelength band and transmits light of a wavelength longer than the desired wavelength band. Light source device.
  8.  前記光制御部における前記波長帯域制限部は、少なくとも前記所望の波長帯域の光を透過すると共に、当該所望の波長帯域よりも短い波長の光の遮断する
     ことを特徴とする請求項5に記載の光源装置。
    The wavelength band limiting unit in the light control unit transmits light of at least the desired wavelength band and blocks light of a wavelength shorter than the desired wavelength band. Light source device.
  9.  前記光制御部における前記波長帯域制限部は、少なくとも前記所望の波長帯域の光を遮断すると共に、前記所望の波長帯域よりも長い波長の光の透過する
     ことを特徴とする請求項5に記載の光源装置。
    The wavelength band limiting section in the light control section blocks light of at least the desired wavelength band and transmits light of a wavelength longer than the desired wavelength band. Light source device.
  10.  前記光制御部は、前記所望の波長帯域の光の透過光として出力すると共に、当該所望の波長帯域以外の波長帯域の光を反射光として反射する波長帯域制限部を備え、
     前記検知部は、前記波長帯域制限部において反射した光を受光する位置に配置され、当該受光した光を電圧に変換すると共に当該電圧の値の変化を検知する
     ことを特徴とする請求項2に記載の光源装置。
    The light control unit includes a wavelength band limiting unit that outputs the light of the desired wavelength band as transmitted light and reflects the light of wavelength bands other than the desired wavelength band as reflected light.
    The detection unit is disposed at a position for receiving the light reflected by the wavelength band limiting unit, converts the received light into a voltage, and detects a change in the value of the voltage. The light source device as described.
  11.  前記検知部は、前記電圧の値が所定の値を超えたときに、前記光源部から発生する光の波長が前記所望の波長帯域からシフトしたことを検知する
     ことを特徴とする請求項10に記載の光源装置。
    The detection unit detects that the wavelength of light generated from the light source unit has shifted from the desired wavelength band when the value of the voltage exceeds a predetermined value. The light source device as described.
  12.  前記光制御部における前記波長帯域制限部は、少なくとも前記所望の波長帯域の光を透過すると共に、当該所望の波長帯域よりも短い波長の光の反射する
     ことを特徴とする請求項11に記載の光源装置。
    The wavelength band limiting unit in the light control unit transmits light of at least the desired wavelength band and reflects light of a wavelength shorter than the desired wavelength band. Light source device.
  13.  前記光制御部における前記波長帯域制限部は、少なくとも前記所望の波長帯域の光を透過すると共に、前記所望の波長帯域よりも長い波長の光の反射する
     ことを特徴とする請求項11に記載の光源装置。
    The wavelength band limiting unit in the light control unit transmits light of at least the desired wavelength band and reflects light of a wavelength longer than the desired wavelength band. Light source device.
  14.  前記光源部は、第1の光を発生させる第1の光源部と、前記第1の光とは異なる第2の光を発生させる第2の光源部と、を有し、
     前記第1の光および前記第2の光の光路上に配置されて、前記第1の光を第1の透過光と第1の反射光とに分離し、且つ、前記第2の光を第2の透過光と第2の反射光とに分離する光路分離部、を更に有し、
     前記光検出器は、前記第1の透過光の光路上に位置して前記第1の透過光が照射される第1の光検出器と、前記第2の透過光の光路上に位置して前記第2の透過光が照射される第2の光検出器と、を有する
     ことを特徴とする請求項1に記載の光源装置。
    The light source unit includes a first light source unit that generates a first light, and a second light source unit that generates a second light different from the first light.
    It is disposed on the optical path of the first light and the second light to separate the first light into a first transmitted light and a first reflected light, and the second light is divided into a first light and a second reflected light. An optical path separation unit for separating into two transmitted light and second reflected light;
    The light detector is positioned on the light path of the first transmitted light and is positioned on the light path of the second transmitted light, the first light detector being irradiated with the first transmitted light The light source device according to claim 1, further comprising: a second light detector to be irradiated with the second transmitted light.
  15.  前記光源部は、第1の光を発生させる第1の光源部と、前記第1の光とは異なる第2の光を発生させる第2の光源部と、を有し、
     前記第1の光および前記第2の光の光路上に配置されて、前記第1の光を第1の透過光と第1の反射光とに分離し、且つ、前記第2の光を第2の透過光と第2の反射光とに分離する光路分離部、を更に有し、
     前記光検出器は、前記第1の反射光の光路上に位置して前記第1の反射光が照射される第1の光検出器と、前記第2の反射光の光路上に位置して前記第2の反射光が照射される第2の光検出器と、を有する
     ことを特徴とする請求項1に記載の光源装置。
    The light source unit includes a first light source unit that generates a first light, and a second light source unit that generates a second light different from the first light.
    It is disposed on the optical path of the first light and the second light to separate the first light into a first transmitted light and a first reflected light, and the second light is divided into a first light and a second reflected light. An optical path separation unit for separating into two transmitted light and second reflected light;
    The light detector is positioned on the light path of the first reflected light and is positioned on the light path of the second reflected light, the first light detector being irradiated with the first reflected light The light source device according to claim 1, further comprising: a second light detector to be irradiated with the second reflected light.
PCT/JP2018/036427 2017-11-01 2018-09-28 Light source device WO2019087640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-212140 2017-11-01
JP2017212140 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019087640A1 true WO2019087640A1 (en) 2019-05-09

Family

ID=66331431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036427 WO2019087640A1 (en) 2017-11-01 2018-09-28 Light source device

Country Status (1)

Country Link
WO (1) WO2019087640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111110175A (en) * 2019-12-31 2020-05-08 深圳开立生物医疗科技股份有限公司 Endoscope light source, light adjusting method and device thereof and endoscope system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198885A (en) * 1992-01-23 1993-08-06 Nec Corp Laser wavelength control equipment of ld module
JPH05243664A (en) * 1992-02-27 1993-09-21 Shimadzu Corp Semiconductor laser equipment
JPH11195839A (en) * 1998-01-05 1999-07-21 Nec Corp Laser diode light wavelength controller
US20030099265A1 (en) * 2001-11-23 2003-05-29 Agilent Technologies, Inc. Optical apparatus and method therefor
JP2004104562A (en) * 2002-09-11 2004-04-02 Toshiba Corp Optical transmitter and multi-wavelength optical communication system using it
JP2006252777A (en) * 2005-03-08 2006-09-21 Matsushita Electric Ind Co Ltd Image display device
JP2009004525A (en) * 2007-06-21 2009-01-08 Fujitsu Ltd Light source module
JP2015004902A (en) * 2013-06-24 2015-01-08 ウシオ電機株式会社 Simple color light source device and display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198885A (en) * 1992-01-23 1993-08-06 Nec Corp Laser wavelength control equipment of ld module
JPH05243664A (en) * 1992-02-27 1993-09-21 Shimadzu Corp Semiconductor laser equipment
JPH11195839A (en) * 1998-01-05 1999-07-21 Nec Corp Laser diode light wavelength controller
US20030099265A1 (en) * 2001-11-23 2003-05-29 Agilent Technologies, Inc. Optical apparatus and method therefor
JP2004104562A (en) * 2002-09-11 2004-04-02 Toshiba Corp Optical transmitter and multi-wavelength optical communication system using it
JP2006252777A (en) * 2005-03-08 2006-09-21 Matsushita Electric Ind Co Ltd Image display device
JP2009004525A (en) * 2007-06-21 2009-01-08 Fujitsu Ltd Light source module
JP2015004902A (en) * 2013-06-24 2015-01-08 ウシオ電機株式会社 Simple color light source device and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111110175A (en) * 2019-12-31 2020-05-08 深圳开立生物医疗科技股份有限公司 Endoscope light source, light adjusting method and device thereof and endoscope system

Similar Documents

Publication Publication Date Title
US20210007590A1 (en) Endoscopic light source and imaging system
JP5133595B2 (en) Illumination light detection optical system, and optical apparatus and endoscope apparatus including the same
EP3459428B1 (en) Endoscope and endoscopic system
US20190394371A1 (en) Dual path endoscope
JP6438178B1 (en) Light source system
JP2007175429A (en) Endoscopic apparatus
US20200337540A1 (en) Endoscope system
WO2016080130A1 (en) Observation apparatus
WO2015012096A1 (en) Medical observation apparatus
CN108024696B (en) Endoscope device
US20170360287A1 (en) Light source device and endoscope system
JP2019041947A (en) Endoscope system
US11076106B2 (en) Observation system and light source control apparatus
US20170048435A1 (en) Illuminating device, control method for illuminating device, and image acquisition system
JP2012078504A (en) Illumination device and observation system
US20170027426A1 (en) Light source apparatus
WO2019087640A1 (en) Light source device
US20170319055A1 (en) Endoscopic illumination system
WO2017199535A1 (en) Biological observation system
US20160038010A1 (en) Main body apparatus of endoscope and endoscope system
JP6425995B2 (en) Endoscope system and method of operating the same
JP6630702B2 (en) Light source device and endoscope system
WO2016120907A1 (en) Illumination device, endoscopic system, and color correction device
US20170273548A1 (en) Laser scanning observation apparatus
US20210369097A1 (en) Endoscope system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP