WO2019087591A1 - Communication system and gateway - Google Patents

Communication system and gateway Download PDF

Info

Publication number
WO2019087591A1
WO2019087591A1 PCT/JP2018/034225 JP2018034225W WO2019087591A1 WO 2019087591 A1 WO2019087591 A1 WO 2019087591A1 JP 2018034225 W JP2018034225 W JP 2018034225W WO 2019087591 A1 WO2019087591 A1 WO 2019087591A1
Authority
WO
WIPO (PCT)
Prior art keywords
gateway
ecu
communication
unit
signal
Prior art date
Application number
PCT/JP2018/034225
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 稲津
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019087591A1 publication Critical patent/WO2019087591A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]

Definitions

  • the present disclosure relates to communication systems and gateways.
  • ECUs electronice control units
  • in-vehicle network many electronic control units (hereinafter referred to as ECUs) are connected through an in-vehicle network, and these ECUs perform various vehicle control by transmitting and receiving data through the network. It is configured.
  • sensors are often connected to these ECUs in a one-to-one manner, and connecting the ECUs and the sensors with a wire harness (hereinafter referred to as a harness) increases the number of harnesses, which is not preferable.
  • An object of the present disclosure is to provide a communication system in which emission noise and cost can be suppressed while speeding up transmission processing from a gateway to an ECU, and a gateway configuring the system.
  • One aspect of the present disclosure includes: one or more electronic control devices (hereinafter referred to as an ECU), one or more gateways, and a sensor device that includes a sensor that senses a physical quantity and transmits a sensor signal to the gateway
  • the present invention is directed to a communication system configured to be connected by a network.
  • the gateway includes a transmission unit that enables unidirectional transmission using a communication line that can communicate with at least one target ECU among the ECUs at the first speed.
  • the ECU includes a transmitting / receiving unit that enables two-way communication with a gateway, a sensor device, or any of these gateways and the sensor device using a second speed network slower than the first speed.
  • the gateway transfers the sensor signal transmitted by the sensor device to the ECU through the communication line by the transmission unit, and the ECU transmits the control signal of the sensor device by the communication of the second speed network by the transmission / reception unit .
  • the gateway since the gateway transfers the sensor signal transmitted by the sensor device to the ECU in a single direction through the communication line that can communicate at the first speed, for example, a pair of twisted pairs for two-way communication Transmission processing can be speeded up to an extent that can not be realized using a cable.
  • the transmitting unit unilaterally transmits the sensor signal transmitted from the sensor device to the target ECU at the first speed, and the ECU can transmit the control signal of the sensor device using the network of the second speed. It can be configured without using a communication cable capable of bi-directional communication in a wide communication band where noise is large and expensive. Thus, the emission noise can be suppressed and the cost can also be suppressed.
  • FIG. 1 is a block diagram of a communication system in the first embodiment
  • FIG. 2 is an explanatory diagram of communication direction and communication speed
  • FIG. 3 is a block diagram of the gateway
  • FIG. 4 is an explanatory view schematically showing the contents of an Ethernet frame
  • FIG. 5 is an explanatory view schematically showing the contents of a CAN frame
  • FIG. 6 is a block diagram of the ECU
  • FIG. 7 is a diagram showing a network hierarchy of each communication node in a form adapted to the OSI reference model
  • FIG. 8 is a specific configuration diagram of the communication system
  • FIG. 1 is a block diagram of a communication system in the first embodiment
  • FIG. 2 is an explanatory diagram of communication direction and communication speed
  • FIG. 3 is a block diagram of the gateway
  • FIG. 4 is an explanatory view schematically showing the contents of an Ethernet frame
  • FIG. 5 is an explanatory view schematically showing the contents of a CAN frame
  • FIG. 6 is a block diagram of the ECU
  • FIG. 9 is a flowchart for explaining the processing operation of the gateway;
  • FIG. 10 is a block diagram of the communication system in the second embodiment,
  • FIG. 11 is a block diagram of the gateway;
  • FIG. 12 is a flowchart showing processing in the low power consumption mode,
  • FIG. 13 is a flowchart showing processing when a signal is detected on the Ethernet port,
  • FIG. 14 is a flowchart showing processing of the monitoring ECU in the third embodiment,
  • FIG. 15 is a flowchart showing processing of the monitoring ECU in the fourth embodiment,
  • FIG. 16 is a block diagram of a communication system in the fifth embodiment,
  • FIG. 17 is a block diagram of a communication system when applied to a vehicle front portion,
  • FIG. 18 is a block diagram of the communication system in the sixth embodiment,
  • FIG. 19 is a block diagram of a communication system in the seventh embodiment,
  • FIG. 20 is a block diagram of a gateway located downstream,
  • FIG. 21 is a block diagram of a
  • First Embodiment 1 to 9 show an explanatory view of the first embodiment.
  • a communication system 1 is mounted on a vehicle as shown in FIG.
  • the communication system 1 includes a network gateway (hereinafter referred to as a gateway) 2, a plurality of electronic control units (hereinafter referred to as ECUs) 3 to 9, and one or a plurality of sensor units 10 to a plurality of networks 14 to It is a system connected by 16.
  • a network gateway hereinafter referred to as a gateway
  • ECUs electronice control units
  • the sensor devices 10 to 13 are connected to the gateway 2 by, for example, Ethernet (registered trademark) via the network 14 capable of full duplex communication.
  • the sensor devices 10 to 13 sense physical quantities to be sensed respectively, and transmit the sensed sensor signals to the gateway 2 through the network 14.
  • the sensor devices 10 to 13 use LiDAR (Light Detention And Ranging) for performing distance measurement processing using, for example, camera devices 110 and 113 and a laser device, as shown in FIG. 8 and FIG.
  • a vehicle periphery monitoring sensor device such as a distance measuring device 112, a pressure sensor device 111 such as a collision detection sensor, a side collision sensor device 211, a wireless sensor device 213a, and a distance measuring device using a millimeter wave radar.
  • the gateway 2 is connected to a plurality of ECUs 3 to 9 by a bus network 15 capable of communicating at a relatively low second speed such as CAN or LIN.
  • the ECUs 3 to 9 can transmit control signals to the sensor devices 10 to 13 through the bus network 15 and the gateway 2 by low speed communication.
  • the control signal is a signal including various commands such as a sensor operation start / end command, and setting values for performing various settings, and can sufficiently control the sensor devices 10 to 13 even at a relatively low speed as compared with the image signal.
  • signals can be bi-directionally communicated through the bus network 15.
  • the gateway 2 is configured by connecting a communication line 16 different from the networks 14 and 15 described above to at least one ECU (hereinafter referred to as target ECU) 3.
  • FIG. 2 schematically shows a comparison of communication direction and communication speed.
  • the gateway 2 can transmit signals unidirectionally to the ECU 3 at a relatively high first speed (> second speed) through the communication line 16 using, for example, LVDS (Low Voltage Differential Signaling). There is.
  • the signal unidirectionally transmitted by the communication line 16 is a signal whose delay is not permitted or whose delay time is limited.
  • the ECU 3 does not allow the gateway 2 to perform transmission processing using the communication line 16.
  • the cable of the communication line 16 is configured by a harness with a pair of shield twist lines.
  • the cable of the communication line 16 is a cable for transmitting a monitoring sensor signal such as an image signal of a camera transmitted to the gateway 2 by the sensor devices 10 to 13, a ranging signal of a millimeter wave radar, or a ranging signal by LiDAR.
  • the communication band by this cable is set wider than the total band of the sensor signal bands transmitted by the sensor devices 10-13. Therefore, although it is necessary to consider the leakage of the electromagnetic noise due to the high speed communication, it is not necessary to provide many cables having a high speed communication band in both directions between the gateway 2 and the ECU 3 and emission noise can be suppressed.
  • the gateway 2 is installed near the windshield of the front of the vehicle, the ECU 3 is located in the trunk room at the rear of the vehicle, and the communication line connecting them extends several meters, Compared with a communication method (for example, Ethernet) using a pair of twisted wires, cable routing can be facilitated as much as possible.
  • a communication method for example, Ethernet
  • FIG. 3 functionally shows the internal block configuration of the gateway 2.
  • a plurality of input / output ports 21 to 24 are provided, and an LVDS port 25 and a CAN port 26 are provided.
  • the input / output ports 21-24 are ports connected to the sensor devices 10-13.
  • the LVDS port 25 is a port connected from the gateway 2 to the ECU 3.
  • the CAN port 26 is a port connected to the low speed network 15.
  • FIG. 4 schematically shows the contents of a frame (hereinafter, Ethernet frame) F1 adapted to the Ethernet format that the sensor devices 10 to 13 transmit to the gateway 2.
  • the Ethernet frame F1 is configured to include the CAN frame F2 so as to be enclosed inside the Ethernet header and the footer.
  • the CAN frame F2 consists of a CAN header, a payload and a CAN footer.
  • FIG. 5 shows the configuration of a frame (hereinafter referred to as CAN frame) F3 which constitutes a control signal that the ECUs 3 to 9 transmit to the sensor devices 10 to 13 through the gateway.
  • the CAN frame F3 is composed of a CAN header, a payload and a CAN footer.
  • the CAN frames F2 and F3 shown in FIG. 4 and FIG. 5 are simplified and represented by CAN header, payload and CAN footer in the figure, but these CAN header, payload and CAN footer are SOF, CANID, RTR, It represents a predefined CAN frame, such as a control field, ... EOF.
  • the gateway 2 shown in FIG. 3 includes a microcomputer and a signal processing IC.
  • the microcomputer is provided with a memory serving as a non-transitional tangible recording medium, and the microcomputer executes the program stored in the memory, and the signal processing IC executes the processing to realize each block shown in FIG. doing. Note that these blocks may be configured by hardware using, for example, an ASIC or the like.
  • a gateway setting unit 27 is provided inside the gateway 2.
  • the gateway 2 includes a CAN receiving unit 28, a CAN transmitting unit 29, a CAN Ethernet converting unit 30, an Ethernet CAN converting unit 31, an Ethernet transmitting unit 32, an Ethernet receiving unit 33, an Ethernet switch unit 34, and an Ethernet LVDS converting unit 35.
  • the CAN receiving unit 28 and the CAN transmitting unit 29 function as a transmitting and receiving unit.
  • the gateway setting unit 27 receives the Ethernet transmission unit 32, the Ethernet reception unit 33, the Ethernet switch unit 34, the Ethernet CAN conversion unit 31, and the CAN Ethernet conversion according to the control signal received through the CAN port 26 and the CAN reception unit 28.
  • the processing content of the unit 30 is realized.
  • the Ethernet transmission unit 32 and the Ethernet reception unit 33 are connected to the input / output ports 21 to 24, respectively.
  • the Ethernet receiving unit 33 receives sensor signals from the sensor devices 10 to 13 input from the input / output ports 21 to 24 as frames, and transmits the signals to the Ethernet switch unit 34.
  • the Ethernet switch unit 34 determines whether to distribute to the LVDS port 25 or the Ethernet transmission unit 32 according to the destination allocated inside the transmitted frame, and distributes the signal.
  • the Ethernet LVDS conversion unit 35 converts a frame of Ethernet format into a frame of format compatible with LVDS, and transmits the frame from the LVDS port 25 to the outside.
  • the Ethernet transmission unit 32 transmits data from one input / output port (for example, 21) corresponding to the destination to the sensor device (for example, 10). Thereby, full duplex communication processing by Ethernet can be performed between the gateway 2 and the sensor devices 10 to 13.
  • Ethernet CAN conversion unit 31 is connected to the input / output ports 21 to 24.
  • the Ethernet CAN conversion unit 31 has a frame conversion function of converting an Ethernet frame input to the input / output ports 21 to 24 into a format suitable for CAN communication.
  • the CAN transmission unit 29 is connected to the Ethernet CAN conversion unit 31.
  • the CAN transmission unit 29 is configured to transmit the frame converted by the Ethernet CAN conversion unit 31 from the CAN port 26 to the outside.
  • a CAN receiving unit 28 is connected to the CAN port 26.
  • the CAN reception unit 28 transmits the signal to the CAN Ethernet conversion unit 30 and the gateway setting unit 27.
  • the CAN reception unit 28 may refer to the CAN ID and determine which one of the CAN Ethernet conversion unit 30 and the gateway setting unit 27 to transmit according to the CAN ID, and may transmit either.
  • the CAN Ethernet conversion unit 30 has a frame conversion function of converting a CAN format frame into a frame compatible with Ethernet.
  • the CAN Ethernet conversion unit 30 converts the frame into a frame compatible with Ethernet and outputs the frame to the Ethernet reception unit 33.
  • the Ethernet receiving unit 33, the Ethernet switch unit 34, and the Ethernet transmitting unit 32 distribute the frames to the input / output ports 21 to 24 or the LVDS port 25 by performing the same process as described above.
  • the gateway 2 is provided with such a gateway function.
  • FIG. 6 is a block diagram showing the communication function of the ECU 3.
  • the ECU 3 includes one or more LVDS ports 41 and 42 and a CAN port 43.
  • the LVDS ports 41 and 42 indicate ports for receiving a signal through the communication line 16.
  • the ECU 3 includes a microcomputer 44 and a signal processing IC 45, and also includes an LVDS-MIPI (Mobile Industry Processor Interface) conversion unit 46, 47.
  • the LVDS-to-MIPI conversion units 46 and 47 convert the LVDS format into the format of the MIPI serial data transmission standard, and output the converted signal to the signal processing IC 45.
  • FIG. 6 is a block diagram showing the communication function of the ECU 3.
  • the ECU 3 includes one or more LVDS ports 41 and 42 and a CAN port 43.
  • the LVDS ports 41 and 42 indicate ports for receiving a signal through the communication line 16.
  • the ECU 3 includes a microcomputer 44 and a signal processing IC 45, and also includes an LVDS-MIPI (Mobile
  • two pairs of LVDS ports 41 and 42 and two LVDS-MIPI conversion units 46 and 47 are prepared, but one pair or three or more pairs may be prepared. By preparing only one pair, it is possible to reduce the number of receiving devices, thereby reducing cost and power consumption.
  • three or more pairs for example, 4 pairs to correspond to the four directions of the front, rear, left, and right of the vehicle, 8 to correspond to the eight directions where each direction of right front, right back, left front, left rear of the vehicle is added You may prepare a pair.
  • the signal processing IC 45 processes the contents of the signal and outputs various information to the microcomputer 44.
  • the microcomputer 44 and the signal processing IC 45 are configured to be able to communicate with each other, and the microcomputer 44 can output a control signal from the CAN port 43 according to the image processing result.
  • FIG. 7 shows a network hierarchy in each communication node, that is, the gateway 2, the ECU 3 and the sensor devices 10 to 13 in a form adapted to the OSI reference model.
  • the physical layer L1, the data link layer L2, the intermediate layers L3 to L6, and the application layer L7 are shown separately from the bottom.
  • a sensor application is mounted on the sensor devices 10 to 13 and the application layer L7 of the ECU 3, and TCP / IP or the like is mounted on a network layer or the like of the lower layers L3 to L6.
  • an Ethernet MAC layer is implemented in the data link layer L2.
  • a network adapter compatible with Ethernet is mounted as the physical layer L1 of the sensor devices 10 to 13, and an LVDS adapter is mounted as the physical layer L1 of the ECU 3.
  • Ethernet communication based on 1000BASE-T1 standard of ⁇ 1 Gbps is performed through the network 14 between the sensor devices 10 to 13 and the gateway 2, and the gateway 2 and ECU 3 are based on ⁇ 4 Gbps FPD-Link (registered trademark) High speed communication at the second speed is performed through the communication line 16.
  • Ethernet switch logic is implemented in the middle layers L3 to L6 of the gateway 2
  • Ethernet MAC layer is implemented in the data link layer L2
  • Ethernet adapter and LVDS adapter are implemented as the physical layer L1. .
  • the gateway 2 is located in the middle between the sensor devices 10 to 13 and the ECU 3 to transfer a large amount of data such as an image signal.
  • the above is a conceptual description of the configuration, but in the following, a specific example applied to the actual configuration in the vehicle will be described.
  • ADAS system The advanced driving support system 101 is a system for detecting and avoiding the possibility of an accident etc. in advance, and installed in vehicles as a system for improving vehicle safety and convenience in recent years. Is increasing.
  • the sensor unit U1 is installed at the front of the vehicle.
  • the various sensor devices 110 to 113 and a gateway 2 are incorporated in the sensor unit U1.
  • the various sensor devices 110 to 113 include, for example, a plurality of front camera devices 110 and 113 for mainly imaging right front and left front, pressure sensor devices 111 such as a collision detection sensor, and LiDAR (Light Detection and Ranging) Distance measuring device 112 by remote sensing technology.
  • the front camera device 110, the distance measuring device 112, and the gateway 2 are integrated as a sensor unit U1 in the same housing, and are installed, for example, at the back of a rearview mirror installed in a vehicle interior.
  • the pressure sensor device 111 is installed on a bumper or the like in the front of the vehicle and is configured of a pressure sensor for detecting a pedestrian collision.
  • a network 15 by CAN or LIN is looped from the front to the rear, and in order to realize the ADAS system 101, the image processing ECU 103 and the ECUs 103 such as the collision safety ECU 104 etc. It is connected to the network 15.
  • the image processing ECU 103 receives a large amount of data such as image signals of the camera devices 110 and 113 and a real-time distance measuring signal by the distance measuring device 112 from the gateway 2, performs image processing based on the received data, and supports various safe driving Data required for control processing is generated and output to the collision safety ECU 104 via the bus network 15.
  • the collision safety ECU 104 receives the safe driving support control data, detects, for example, a collision safety state, and instructs the engine control by outputting various commands to the engine ECU and the brake ECU (not shown) as necessary. And command the brake control.
  • a 1 Gbps Ethernet cable is relatively short distance between the gateway 2 and each front camera device 110, 113, and between the gateway 2 and the distance measuring device 112.
  • an Ethernet cable of 10 Mbps is connected between the gateway 2 and the pressure sensor device 111 by a short distance (for example, 1 to 3 m). There is.
  • the communication line 16 between the gateway 2 and the image processing ECU 103 is configured by connecting a communication cable of a long distance (for example, 5 m to 10 m) that can communicate using the LVDS technology. That is, the cable of the network 14 connected between the sensor devices 110, 112, 113 and the gateway 2 is shorter than the cable between the gateway 2 and the image processing ECU 103.
  • the influence of the emission noise due to the cable between the short distance connected gateway 2 and the sensor devices 110 to 113 is reduced. Since only one communication cable for long distance is connected between the gateway 2 and the image processing ECU 103, the influence of the emission noise can be reduced. In particular, expensive cables may be required in places where the effects of emission noise increase, but the cost can also be reduced because the number of cables can be reduced.
  • FIG. 9 is a flowchart for explaining the processing operation of the gateway 2.
  • Each of the sensor devices 110 to 113 sends a data frame to the gateway 2 through the network 14, but at this time sends data by the Ethernet frame F1.
  • the gateway 2 When the Ethernet frame received from the sensor devices 110 to 113 in S1 is received by the Ethernet receiving unit 33, the gateway 2 reads the destination MAC address set in the Ethernet frame in S2. When the gateway setting unit 27 determines that the destination MAC address matches the MAC address of the network adapter of the LVDS port 25, the gateway setting unit 27 sets the payload in the frame and the transmission source information, and the Ethernet switch unit 34 determines the transmission direction. It switches and sends to the side of the LVDS port 25.
  • the Ethernet LVDS conversion unit 35 detects a signal during transmission of the LVDS port 25 in S5, determines NO in S5 while the signal under transmission exists, stands by without converting data, and transmits If no signal is present, it is determined as YES in S5, the Ethernet frame is converted into a signal suitable for LVDS in S6, and the signal is sent out from the LVDS port 25 in S7.
  • the gateway 2 may perform LVDS in the order according to the priority predetermined in the memory. It is desirable that the signal be converted to a signal suitable for communication and sent out from the LVDS port 25.
  • the gateway 2 When the gateway 2 receives the Ethernet frame transmitted from the sensor devices 110 to 113 in S1 by the Ethernet receiving unit 33 and reads the destination MAC address in S2, the network adapter of the CAN port 26 has the destination MAC address of S8. If it is determined that they match the MAC address, the Ethernet switch unit 34 is switched to send a frame to the CAN port 26 in S9.
  • the CAN transmission unit 29 detects a signal being transmitted from the CAN port 26 from the network 15, and while there is a signal being transmitted to the network 15 in S10, the determination is NO in S10 and waits without converting data. If there is no signal being transmitted, it is determined as YES in S10, the Ethernet frame is converted into a CAN frame suitable for CAN communication in S11, and transmitted from the CAN port 26 in S12.
  • the gateway 2 When the gateway 2 receives the frame transmitted from the sensor device (for example, 110) in S1 and the destination MAC address is read by the Ethernet receiving unit 33 in S2, the destination MAC address is either LVDS port 25 or CAN port 26. However, if it is the MAC address of the network adapter for outputting to another sensor device (for example, 111), the Ethernet switch unit 34 is switched and sent to the Ethernet transmitting unit 32 side. The Ethernet transmission unit 32 performs transfer processing on the network adapter of the destination MAC address of the other sensor device (for example, 111) in S13. Thus, the gateway 2 can execute the transfer process.
  • the gateway 2 receives the control signal of the CAN frame F3 from the image processing ECU 103 and the collision safety ECU 104 by the CAN reception unit 28.
  • CANID is generally allocated to CAN frame F3
  • gateway 2 holds the correspondence between CANID and input / output ports 21 to 24 in the memory, input / output can be performed by referring to CANID in this frame. Any of the ports 21-24 can be derived.
  • the CAN Ethernet conversion unit 30 of the gateway 2 converts the received CAN frame into an Ethernet frame, and sends out the Ethernet frame from the input / output port (for example, 21) associated with the CAN ID.
  • the gateway 2 when the gateway 2 receives a control signal in the CAN frame from the image processing ECU 103 and the collision safety ECU 104, it may be broadcasted to all the sensor devices 110 to 113 as well as a specific sensor device (for example 111). good.
  • the ECU 3 transmits a control signal to the gateway 2 using the network 15 of the second speed, and the gateway 2 transmits a wide band frame such as an image signal to the ECU 3 through the communication line 16 of the first speed. It was made to transmit in one direction using.
  • a wide band signal including an image signal and a distance measurement signal is unidirectionally transmitted to the ECU 3 through the communication line 16 capable of communicating at a high speed first speed, so that the band shortage can be eliminated and the communication processing can be speeded up it can.
  • unidirectional communication makes it possible to eliminate the need for complicated negotiation, and to reduce the number of transmitting / receiving units by one as compared with bidirectional communication.
  • the communication system 1 it becomes sufficient to prepare only one pair of the Ethernet LVDS conversion unit 35 which is a simple transmission device and the LVDS-MIPI conversion unit 46 which is a reception device, thereby reducing cost and power consumption. it can.
  • the gateway 2 unilaterally transmits the sensor signals from the monitoring sensor devices 110 to 113 having monitoring sensors for monitoring the periphery of the vehicle to the ECU 3 through the communication line 16 which can communicate at a high speed first speed. Since the monitoring image signal can be transferred at high speed, the situation around the vehicle can be determined promptly, and the safety can be enhanced.
  • the gable length of the communication line 16 is set to be longer than the cable length of the network 14.
  • the cable of the communication line 16 is configured by a pair of shielded twist lines, it is not necessary to provide many communication cables having high-speed communication bands in the direction along the gateway 2 and the ECU 3 and emission noise can be suppressed. Cost can be reduced.
  • the target ECU 3 Since the target ECU 3 transmits the control signal through the gateway 2 using the CAN or LIN network 15 of the second speed, it can be connected to other ECUs 4 to 9 using the bus network 15 adapted in advance in the vehicle. As a result, there is no need to provide an extra communication cable again.
  • the communication information amount between the sensor devices 10 to 13 and 110 to 113 and the ECUs is large in the amount of so-called downward information communication from the sensor devices 10 to 13 and 110 to 113 to the ECU 3.
  • the so-called upward information communication amount to 110 to 113 is small. For this reason, even if a lower speed communication path is adopted as the communication path from the ECU 3 to the gateway 2, there is less possibility of problems such as frame loss and packet loss.
  • Second Embodiment 10 to 13 show additional explanatory views of the second embodiment.
  • the form which paid its attention to the sensor apparatus 110-113 installed in the vehicle front part was shown as a specific example in 1st Embodiment, the 2nd embodiment pays attention to the sensor apparatus 210-213a installed in the vehicle side part. An explanation will be given of the form.
  • a sensor for collision detection may be mounted on the side of the vehicle to enhance the safety performance due to the collision of the side of the vehicle, and the air bag system may be configured to operate according to the sensor information.
  • the keyless entry system for opening and closing the door installed in the vehicle side part by keyless may be mounted.
  • a side collision sensor device 211 for detecting a collision of the side of the vehicle A side-by-side LiDAR ranging device 212 and a wireless sensor device 213a may be applied, and these sensor devices 210 to 213a may all be connected to the same gateway 202 by a network 214.
  • the distance measuring device 212 and the side camera device 210 have the same functions as the distance measuring device 112 and the front camera devices 110 and 113 described above.
  • the side collision sensor device 211 is connected to the gateway 2 by a power supply line 214a by a power superposition communication system (PLC) called DSI3 / PSI5.
  • PLC power superposition communication system
  • the side collision sensor device 211 is supplied with power from the power supply unit 53 (see FIG. 11 described later) of the gateway 2 through the power supply line 214a and can be communicably connected by PLC using the power supply line 214a.
  • the wireless sensor device 213a can receive, for example, an open / close instruction of a door lock by an external operation by constantly turning on a wireless communication function that can be externally operated for keyless entry or smart entry.
  • the wireless sensor device 213a also has a wireless communication function by, for example, WiFi (registered trademark) or Bluetooth Low Energy (BLET (registered trademark)).
  • FIG. 11 shows an internal configuration block of the gateway 202.
  • the gateway 202 is provided with a DSI3 port 51, and a power supply unit 53 and a DSI3-Ethernet conversion unit 52 are connected to the DSI3 port 51.
  • the power supply unit 53 generates a stabilized power supply based on a battery voltage (not shown), and can supply power to the outside through the units 21 to 35, 52 constituting the gateway 202 and the DSI 3 port 51.
  • the DSI3 to Ethernet conversion unit 52 is connected to the Ethernet transmission unit 32 and the Ethernet reception unit 33. Therefore, the gateway 202 can supply power to the DSI 3 port 51 by the power supply unit 53 and can perform communication processing by the power superposition communication method (PLC) using the DSI 3 port 51.
  • PLC power superposition communication method
  • the gateway 202 is turned off while the vehicle is stopped. Also, the necessary minimum power is generated from the battery power supplied to operate in the low power consumption mode using this power, and when the ignition switch is turned on, the battery voltage is applied to each part 21 to 35, 52 and DSI3 port 51 The power is supplied to operate in the normal operation mode.
  • FIG. 12 shows the process when the gateway 2 detects a frame in the CAN port 26
  • FIG. 13 shows the frame in the Ethernet port 21-24. Shows the process in the case of detecting.
  • the gateway setting unit 27 has a predetermined Ethernet port 24.
  • the gateway setting unit 27 intermittently activates the CAN reception unit 28 as a signal detection unit, and the CAN reception unit 28 intermittently transmits the frames of the bus network 15 from the CAN port 26. To detect.
  • the gateway setting unit 27 intermittently activates the Ethernet receiving unit 33 as a signal detection unit, and the Ethernet receiving unit 33 intermittently detects the Ethernet frame of the network 14 from the Ethernet port 24. At this time, the gateway setting unit 27 functions as an intermittent activation unit.
  • the gateway setting unit 27 receives the CAN reception unit 28, the CAN Ethernet conversion unit 30, the Ethernet CAN conversion unit 31, the Ethernet reception It is preferable that the unit 33 and the Ethernet switch unit 34 be activated independently to be in the normal operation mode. At this time, the gateway setting unit 27 may activate the entire configuration of the internal block of the gateway 2, but the port (for example, the Ethernet port 24) that detected the signal and the port (for example, the LVDS port 25) that is the transfer destination from the port It is further desirable to activate the minimum required some communication blocks along the communication path of the frame to perform transfer processing. In such a case, the gateway setting unit 27 functions as a partial activation unit.
  • the gateway setting unit 27 activates the CAN reception unit 28 and the CAN Ethernet conversion unit 30 in S22. Then, the gateway setting unit 27 determines whether the CANID of the received frame is addressed to the gateway 202 in S23, and if not CANID addressed to the gateway 202, determines NO in S23 and sees it, but the gateway 202 is addressed If there is, the determination is YES in S23, and the Ethernet switch unit 34 is activated in S24.
  • the gateway 202 activates the Ethernet port 24 corresponding to the CAN ID in S25, and replaces the header of the CAN frame received in S26 with the Ethernet frame. Then, the gateway 202 sends the frame from the Ethernet port by the Ethernet transmission unit 32 in S27.
  • the gateway setting unit 27 of the gateway 202 can activate only the communication block (Ethernet switch unit 34) connected to the Ethernet port 24 corresponding to the CAN ID at the necessary timing, and communicate the signal detected by the CAN bus network 15 The data can be transferred to the Ethernet port 24 through the block (Ethernet switch unit 34). As a result, it is possible to activate the minimum necessary partial configuration and perform transfer processing.
  • the gateway setting unit 27 activates the Ethernet receiving unit 33 and the Ethernet switch unit 34 in S32. Then, the Ethernet receiving unit 33 refers to the Ethernet frame, reads the assigned destination MAC address, determines whether this MAC address is addressed to the gateway 202, and if not addressed to the gateway 202, NO at S33. However, if it is addressed to the gateway 202, YES is determined in S33, and the Ethernet CAN conversion unit 31 is activated. Then, in S35, the Ethernet frame F1 is converted to the CAN frame F2 excluding the Ethernet header and footer.
  • the CAN transmitter 29 transmits the CAN frame F2 from the CAN port 26 in S36.
  • the gateway setting unit 27 of the gateway 202 can start only the CAN port 26 and the communication block (Ethernet CAN conversion unit 31) along the communication path at the necessary timing, and the signal detected by the Ethernet port 24 is It can be transferred to the network 15. As a result, it is possible to activate the minimum necessary partial configuration and perform transfer processing.
  • the gateway setting unit 27 intermittently activates the CAN receiving unit 28, and the CAN receiving unit 28 detects a frame of the bus network 15 from the CAN port 26. Signal can be detected.
  • the gateway setting unit 27 intermittently activates the Ethernet receiving unit 33, and the Ethernet receiving unit 33 intermittently detects the Ethernet frame of the network 14 from the Ethernet port 24 so that the signal of the Ethernet port 24 can be detected.
  • the keyless entry system can be stably operated while achieving low power consumption.
  • FIG. 14 shows an additional explanatory view of the third embodiment.
  • the third embodiment shows a mode in which another ECU (for example, 4) intercepts and monitors a transmission signal (for example, control signal) that one ECU (for example, 3) transmits to the gateway 2.
  • a transmission signal for example, control signal
  • one ECU for example, 3
  • monitoring ECU4 ECU which monitors this signal
  • the bus network 15 is used.
  • the other monitoring ECU 4 since the other monitoring ECU 4 is also connected to the bus network 15, the signal transmitted to the gateway 2 can be intercepted.
  • the plurality of ECUs 3 and 4 to 9 can mutually monitor control signals addressed to the gateway 2.
  • the monitoring ECU 4 monitors a signal of the bus network 15 and a frame.
  • FIG. 14 shows the processing of the monitoring ECU 4 in a flowchart.
  • the monitoring ECU 4 detects a frame in the bus network 15 by the CAN receiving unit 28 in S41
  • the CANID is read in S42, and it is determined whether the CANID is addressed to the gateway 2 in S43.
  • the determination is YES in S43
  • the CAN frame is monitored, that is, monitored in S44.
  • the monitoring ECU 4 monitors by the gateway setting unit 27 whether the transmission signal transmitted at this time is normal or erroneous in S45.
  • the gateway setting unit 27 has a function as a monitoring unit. This determination method can be determined by confirming the content of the payload.
  • the frame when the frame is a remote frame, it is normal or erroneous by performing determination processing using a CRC sequence included in this frame Determination processing can be performed. It is also possible to confirm the content of the data field and determine whether it is normal or erroneous.
  • the gateway setting unit 27 of the monitoring ECU 4 ends the monitoring processing, but if it is determined that there is an error and abnormality, the determination is NO in S45, and the transmission ECU 3 completes transmission of the frame in S46. Determine if there is.
  • the monitoring ECU 4 can determine whether the transmission of the frame is completed by monitoring the frame transmitted by the transmission ECU 3 with the gateway setting unit 27 and the CAN receiving unit 28.
  • the monitoring ECU 4 determines YES in S46 and corrects the control signal, and then transmits the corrected control signal to the gateway 2.
  • the gateway setting unit 27 of the monitoring ECU 4 determines NO in S46, and causes the CAN transmission unit 29 to output a dominant "0" to the bus in S48. After destroying and correcting the control signal, the corrected control signal is sent to the gateway 2 in S49. At this time, the gateway setting unit 27 functions as a destruction unit.
  • the monitoring ECU 4 monitors the control signal transmitted by the transmission ECU 3 and corrects the control signal and sends it to the gateway 2 when the control signal is abnormal, even if the transmission ECU 3 transmits the control signal. Even if there is an abnormality, the monitoring ECU 4 can instead realize the control signal transmission function, and the reliability of the communication system can be enhanced.
  • FIG. 15 shows an additional explanatory view of the third embodiment.
  • another ECU 4 intercepts and monitors a signal (for example, a control signal) transmitted by the ECU 3 to the gateway 2.
  • a signal for example, a control signal
  • transmission ECU3 ECU which transmits a signal
  • monitoring ECU4 ECU which monitors this signal
  • FIG. 15 shows the processing of the monitoring ECU 4 in a flowchart.
  • the monitoring ECU 4 detects a frame in the bus network 15 in S51
  • the CANID is read in S52, and it is determined in S53 whether or not it is a frame from the transmission ECU 3.
  • the confirmation of this frame may generally be for a frame that the transmission ECU 3 periodically transmits, or may be for a frame including a specific signal (for example, a control signal).
  • the monitor ECU 4 can confirm the frame from the transmission ECU 3, the monitor ECU 4 determines YES in S53, and monitors or monitors the CAN frame in S54. Then, the monitoring ECU 4 refers to the CAN frame at this time, and determines in S55 whether the transmitting ECU 3 transmits a normal CAN frame.
  • the monitoring ECU 4 determines that the transmission ECU 3 is transmitting a normal CAN frame, it determines YES in S55 and ends the monitoring process, but if it determines that it is abnormal, the process proceeds to S56 and the transmission ECU 3 receives A setting change command for transmitting a signal to the monitoring ECU 4 is transmitted to the gateway 2 as a CAN frame, and an alternative operation of the transmission ECU 3 is started in S57. At this time, the gateway 2 rewrites and records the internal memory so as to transmit a transmission signal to the transmission ECU 3 to the monitoring ECU 4.
  • the monitoring ECU 4 determines whether the reception of the frame by the transmission ECU 3 is within a predetermined time (for example, 1 second) from the previous time. Although it ends, if it has deviated from fixed time, monitoring ECU4 will start substitution processing of transmitting ECU3 by performing processing of above-mentioned S56 and S57.
  • the monitoring ECU 4 monitors the presence or absence of an error in the frame transmitted to the gateway 2 by the transmitting ECU 3 using the network 15.
  • the monitoring ECU 4 transmits Instead of the ECU 3, a signal is transmitted.
  • the monitoring ECU 4 can substitute for the transmission function of the control signal instead of the transmission ECU 3, and the reliability of the communication system can be improved.
  • FIG. 16 shows an additional explanatory view of the fifth embodiment.
  • the gateway 2 outputs an LVDS signal to one ECU (for example, the image processing ECU 103) from one LVDS port 25.
  • the communication system 301 of FIG. 16 includes a gateway 302, and can transmit an LVDS signal to the image processing ECU 103 and the autonomous driving ECU 105 through communication lines 316a and 316b, respectively.
  • the configurations of the other sensor devices 10 to 13 and the networks 14 and 15 are the same as those of the first embodiment, and thus the description thereof is omitted.
  • the autonomous driving ECU 105 controls the engine, the brake, the steering, the indicator, etc. in the vehicle according to the image information etc. transmitted through the communication line 316b by the monitoring sensor device for monitoring the surroundings to command the autonomous driving control of the vehicle
  • An engine ECU (not shown) connected to the network 15, a brake ECU, etc. are configured to control the respective actuators according to a command from the automatic driving ECU 105.
  • the gateway 302 stores a table in which the sensor devices 10 to 13 and the ECUs 103, 105, ... of the transmission destination are individually associated in the internal memory, and the gateway 302 transmits sensor signals from the sensor devices 10 to 13. When received, data may be sent to one or more ECUs 103 and 105 stored corresponding to the memory table.
  • the plurality of ECUs 103 and 105 may transmit control signals having different set values.
  • a master-slave relationship is preset between the one ECU 103 and the other ECU 105 before shipment of the ECUs 103 and 105, and the gateway 302 and the ECUs 103 and 105 store the relationships in the memory, respectively.
  • the ECU 105 may instead transmit the control signal. good.
  • the gateway 302 may be configured to rewrite the setting value only when the two coincide with each other by individually receiving the setting values by the control signal of one ECU 103 and another ECU 105 by the CAN receiving unit 28.
  • the gateway 302 and the ECUs 103 and 105 store in advance in the memory the priorities of the ECUs 103 and 105 connected to the bus network 15, and the gateway 302 performs control transmitted from an ECU (for example, 105) having a high priority.
  • the set value by the signal may be effectively rewritten and transferred.
  • the gateway 302 can hold or rewrite the setting value according to the defined rule and transfer the control signal including the setting value.
  • FIG. 17 shows a specific example applied to the vehicle front portion.
  • FIG. 17 shows a configuration of a communication system 401 which replaces FIG. A difference from the configuration of FIG. 8 is that the communication system 401 has two or more image processing ECUs 103a and 103b.
  • the unit U 301 includes a gateway 302 and is configured by connecting the sensor devices 110 to 113 by the network 14.
  • the communication system 401 of the present embodiment is equipped with a plurality of image processing ECUs 103a and 103b.
  • the image processing ECUs 103a and 103b are connected to the bus network 15, respectively, and the gateway 302 transmits a frame to the respective image processing ECUs 103a and 103b through the LVDS port and the communication lines 316a and 316b.
  • the image processing ECUs 103a and 103b have the same function, and even if one of the image processing ECUs 103a fails, the other image processing ECU 103b is provided so as to be operable instead. Can increase the reliability of
  • the gateway 302 is set in the memory and the gateway setting unit 27 so as to send data to one of the image processing ECUs 103 a when receiving sensor signals from the sensor devices 110 to 113.
  • the other image processing ECU 103 b has a function of monitoring the transmission signal of one image processing ECU 103 a.
  • the other image processing ECU 103b detects an abnormality in the signal sent from one image processing ECU 103a, and the other image processing ECU 103b The processing of one image processing ECU 103a is executed instead. This can improve the reliability of the communication system.
  • one and the other image processing ECUs 103a and 103b may share one image processing operation. That is, since the processing load of image processing is relatively high compared to other processing, the temperature of hardware constituting the ECU is also high, and heat generation can be suppressed as much as possible by sharing the image processing operation.
  • FIG. 18 shows an additional explanatory view of the sixth embodiment.
  • FIG. 18 shows an alternative configuration to FIG.
  • FIG. 17 shows a mode in which the CAN or LIN bus network 15 is connected to the gateway 302
  • the gateway 302 in the communication system 501 shown in FIG. 18 of this embodiment, the gateway 302 is connected to the bus network 15.
  • the sensor devices 110 to 113 are connected to the bus network 515.
  • the bus network 515 is directly connected from each of the ECUs 103a, 103b, and 104 to the sensor devices 110 to 113 without the gateway 302, and the ECUs 103a, 103b, and 104 and the sensor devices 110 to 113 Control signals may be transmitted and received through the bus network 515. That is, the ECUs 103a, 103b, and 104 may use the bus network 515 to transmit control signals to the sensor devices 110 to 113 at a speed lower than that of other Ethernet or LVDS frame signals, that is, at the second speed.
  • Seventh Embodiment 19 and 20 show an additional explanatory view of the seventh embodiment.
  • the configuration of the communication system 601 is shown in FIG.
  • the communication system 601 includes a plurality of gateways 602a and 602b respectively connecting one or more sensor devices 10a to 12a and 10b to 12b
  • an LVDS is used to transmit sensor signals between the gateways 602a and 602b.
  • a uni-directional transmission technique may be used.
  • a plurality of sensor devices 10a to 12a are connected to the gateway 602a through the network 14a, and a plurality of sensor devices 10b to 12b are connected to the other gateway 602b through the network 14b.
  • the ECU 3 and the gateways 602a and 602b are connected by a bus network 15.
  • the upstream gateway 602b has, for example, the same configuration as that of the gateway 2 of FIG. 3 described in the first embodiment.
  • FIG. 20 shows a configuration example of the downstream gateway 602a.
  • the gateway 602a includes an LVDS port 61 for inputting an LVDS frame from the upstream gateway 602b in addition to the configuration of the gateway 2 shown in FIG. 3.
  • the LVDS Ethernet converter 62 Output to The LVDS Ethernet conversion unit 62 is configured to convert a signal from the upstream gateway 602 b input from the LVDS port 61 into an Ethernet frame and output the Ethernet frame to the Ethernet reception unit 33.
  • the other configuration is the same as that of FIG.
  • a communication line 16a for transmitting a signal by LVDS is connected between the downstream gateway 602a and the ECU 3, and the upstream gateway 602b is connected to the downstream gateway 602a.
  • Another communication line 16 b for transmitting an LVDS signal is connected.
  • the gateway 602b on the upstream side can transfer the sensor signal of each of the sensor devices 10b to 12b to the ECU 3 through the gateway 602a on the downstream side by LVDS.
  • the gateway 602a on the downstream side can also transmit sensor signals of the respective sensor devices 10a to 12a to the ECU 3 by LVDS.
  • the ECU 3 transmits the control signal to any one of the sensor devices 10a to 12a and 10b to 12b (for example, 10b) through the gateways 602a and 602b
  • the sensor device 10b transmits the sensor signal to the upstream gateway 602b.
  • the upstream gateway 602b receives a sensor signal from the connected target sensor device 10b, it can transfer it to the downstream gateway 602a, and the downstream gateway 602a can transfer it to the ECU 3 by LVDS.
  • the sensor signal of the sensor device 10b can be transmitted to the ECU 3 at a high communication speed.
  • FIG. 21 shows an additional explanatory view of the eighth embodiment.
  • the gateway 602 a may connect the sensor devices 10 b to 12 b via the Ethernet switch 702. Since the sensor devices 10b to 12b can transmit an Ethernet frame to the gateway 602a through the Ethernet switch 702, the sensor device 10b to 12b exhibits the same effects as those of the above-described embodiment.
  • the present invention is not limited to the above embodiment, and for example, the following modifications or expansions are possible.
  • the network 15 is connected between the ECUs 3 to 9 and the gateway 2, and the network 515 is connected to the image processing ECUs 103a and 103b and the collision safety ECU 104 and the sensor devices 110 to 113, respectively.
  • 103a, 103b, 104, the gateway 2 and the sensor devices 110 to 113 may be connected to each other.
  • 1, 101, 201, 301, 401, 501, 601, 701 are communication systems (101 is an ADAS system), 3 to 9, 103 to 105, 103a, 103b are ECUs (3, 103 are transmitting ECUs, 4 , 105 is a monitoring ECU), 10 to 13, 110 to 113, 210 to 213, 10a to 12a, 10b to 12b are sensor devices, 110 to 113, 210 to 213 are sensor devices (monitoring sensor devices), 14 to 16, 214, 515, 14a, 14b are networks, 15, 515 are bus networks (a network of two-speed communication of the second speed), 16, 316a, 316b, 16a are communication lines for transmitting signals by LVDS (single speed of the first Communication line for direction transmission, network), 28 is a CAN receiver (transmitter / receiver), 29 is a CAN transmitter (transmitter / receiver ), It shows the.
  • LVDS single speed of the first Communication line for direction transmission, network
  • 28 is a

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

This communication system is configured by connecting, by means of a network and communication lines (14-16; 214; 515; 14a, 14b; 316a, 316b; 16a), one or a plurality of electronic control devices (hereinafter referred to as ECUs) (3-9; 103-105; 103a, 103b), one or a plurality of gateways (2; 202; 302; 602a, 602b), and sensor devices (10-13; 110-113; 210-213; 10a-12a, 10b-12b), which are respectively provided with sensors for sensing physical quantities, and which respectively transmit sensor signals to the gateways. Using a communication line capable of performing communication at a first speed, the gateways forward, to the ECUs by means of a transmission unit (35), the sensor signals transmitted from the sensor devices, and the ECUs transmit control signals for the sensor devices by means of network communication at a second speed using transmission/reception units (28, 29), said second speed being slower than the first speed.

Description

通信システム及びゲートウェイCommunication system and gateway 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年10月31日に出願された日本特許出願番号2017-210494号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-210494 filed on October 31, 2017, the contents of which are incorporated herein by reference.
 本開示は、通信システム及びゲートウェイに関する。 The present disclosure relates to communication systems and gateways.
 従来、車載システムでは多数の電子制御装置(Electrical Control Unit:以下、ECUと略す)が車載ネットワークを通じて接続されており、これらのECUがネットワークを通じてデータを送受信することで各種の車両制御を行うように構成されている。従来、これらのECUにはセンサが1対1で接続されていることが多く、これらのECUとセンサとの間をワイヤハーネス(以下ハーネスと略す)で接続するとハーネスの本数が多くなり好ましくない。 Conventionally, in an in-vehicle system, many electronic control units (hereinafter referred to as ECUs) are connected through an in-vehicle network, and these ECUs perform various vehicle control by transmitting and receiving data through the network. It is configured. Conventionally, sensors are often connected to these ECUs in a one-to-one manner, and connecting the ECUs and the sensors with a wire harness (hereinafter referred to as a harness) increases the number of harnesses, which is not preferable.
 例えば特許文献1~3記載の技術のようにネットワークゲートウェイを導入することで、例えば多数のセンサ等からの情報を束ねて入力することができるようになりハーネスの本数を削減できる。 For example, by introducing a network gateway as in the techniques described in Patent Documents 1 to 3, it is possible to bundle and input information from, for example, a large number of sensors and the like, and the number of harnesses can be reduced.
特開2003-152762号公報Japanese Patent Application Publication No. 2003-152762 特開2011-4276号公報JP, 2011-4276, A 特開2014-072673号公報Unexamined-Japanese-Patent No. 2014-072673
 他方、近年、車両内で用いられる例えば車両周辺監視用の各種センサの信号要求精度が高まってきており、これに伴い、ネットワークを流れるデータが例えば高精細な画像情報となることもあることから通信量が格段に増加してきている。このため、特にゲートウェイとECUとの間の通信帯域が不足することが懸念されており、ゲートウェイからECUへの送信処理を高速化することが望まれている。高速化するとエミッションノイズの増加も懸念されるが、近年ではエミッションノイズを抑制することも要望されており、しかもコストを抑制することが望まれている。 On the other hand, in recent years, the signal request accuracy of various sensors used in vehicles, for example, for vehicle periphery monitoring, has been increased, and along with this, data flowing through the network may be, for example, high definition image information. The amount has increased dramatically. For this reason, there is concern that the communication band between the gateway and the ECU may be insufficient, and it is desired to speed up the transmission process from the gateway to the ECU. Although there is a concern about the increase in emission noise as the speed is increased, in recent years there has also been a demand to suppress emission noise, and it is also desired to suppress costs.
 本開示の目的は、ゲートウェイからECUへの送信処理を高速化しながらエミッションノイズ、コストを抑制できるようにした通信システム及びこのシステムを構成するゲートウェイを提供することにある。 An object of the present disclosure is to provide a communication system in which emission noise and cost can be suppressed while speeding up transmission processing from a gateway to an ECU, and a gateway configuring the system.
 本開示の一態様は、1又は複数の電子制御装置(以下、ECUと称す)と、1又は複数のゲートウェイと、物理量をセンシングするセンサを備え前記ゲートウェイにセンサ信号を送信するセンサ装置と、をネットワークにより接続して構成された通信システムを対象としている。このときゲートウェイは、ECUのうち少なくとも一つの対象ECUに第1速度で通信可能な通信線を用いて単方向送信可能にする送信部を備えている。ECUは、ゲートウェイ、センサ装置、又はこれらのゲートウェイ及びセンサ装置の双方、の何れかとの間で前記第1速度よりも遅い第2速度のネットワークを用いて双方向通信可能にする送受信部を備える。そしてゲートウェイは、センサ装置により送信されるセンサ信号を送信部により通信線でECUに転送し、ECUは、送受信部による第2速度のネットワークの通信によりセンサ装置の制御信号を送信するようにしている。
 この一態様によれば、ゲートウェイは、センサ装置により送信されるセンサ信号を第1速度で通信可能な通信線でECUに単方向に転送しているため、例えば双方向通信用の1組のツイストペアケーブルを用いては実現できない程度に送信処理を高速化できる。しかも、送信部がセンサ装置から送信されるセンサ信号を第1速度で対象ECUに単方向送信し、ECUは第2速度のネットワークを用いてセンサ装置の制御信号を送信できるようになるため、エミッションノイズが大きくコストの高い広通信帯域で双方向通信可能な通信ケーブルを用いることなく構成できる。これにより、エミッションノイズを抑制できると共にコストも抑制できる。
One aspect of the present disclosure includes: one or more electronic control devices (hereinafter referred to as an ECU), one or more gateways, and a sensor device that includes a sensor that senses a physical quantity and transmits a sensor signal to the gateway The present invention is directed to a communication system configured to be connected by a network. At this time, the gateway includes a transmission unit that enables unidirectional transmission using a communication line that can communicate with at least one target ECU among the ECUs at the first speed. The ECU includes a transmitting / receiving unit that enables two-way communication with a gateway, a sensor device, or any of these gateways and the sensor device using a second speed network slower than the first speed. Then, the gateway transfers the sensor signal transmitted by the sensor device to the ECU through the communication line by the transmission unit, and the ECU transmits the control signal of the sensor device by the communication of the second speed network by the transmission / reception unit .
According to this aspect, since the gateway transfers the sensor signal transmitted by the sensor device to the ECU in a single direction through the communication line that can communicate at the first speed, for example, a pair of twisted pairs for two-way communication Transmission processing can be speeded up to an extent that can not be realized using a cable. In addition, the transmitting unit unilaterally transmits the sensor signal transmitted from the sensor device to the target ECU at the first speed, and the ECU can transmit the control signal of the sensor device using the network of the second speed. It can be configured without using a communication cable capable of bi-directional communication in a wide communication band where noise is large and expensive. Thus, the emission noise can be suppressed and the cost can also be suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、以下のとおりである。
図1は、第1実施形態における通信システムの構成図であり、 図2は、通信方向及び通信速度の説明図であり、 図3は、ゲートウェイの構成図であり、 図4は、イーサネットフレームの内容を概略的に示す説明図であり、 図5は、CANフレームの内容を概略的に示す説明図であり、 図6は、ECUの構成図であり、 図7は、各通信ノードのネットワーク階層をOSI参照モデルに適合した形態で示す図であり、 図8は、通信システムの具体的構成図であり、 図9は、ゲートウェイの処理動作を説明するフローチャートであり、 図10は、第2実施形態における通信システムの構成図であり、 図11は、ゲートウェイの構成図であり、 図12は、低消費電力モードにおける処理を示すフローチャートであり、 図13は、イーサネットポートに信号を検出した場合の処理を示すフローチャートであり、 図14は、第3実施形態における監視ECUの処理を示すフローチャートであり、 図15は、第4実施形態における監視ECUの処理を示すフローチャートであり、 図16は、第5実施形態における通信システムの構成図であり、 図17は、車両フロント部に適用した場合の通信システムの構成図であり、 図18は、第6実施形態における通信システムの構成図であり、 図19は、第7実施形態における通信システムの構成図であり、 図20は、下流側に位置するゲートウェイの構成図であり、 図21は、第8実施形態における通信システムの構成図である。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is as follows.
FIG. 1 is a block diagram of a communication system in the first embodiment, FIG. 2 is an explanatory diagram of communication direction and communication speed, FIG. 3 is a block diagram of the gateway, FIG. 4 is an explanatory view schematically showing the contents of an Ethernet frame; FIG. 5 is an explanatory view schematically showing the contents of a CAN frame; FIG. 6 is a block diagram of the ECU, FIG. 7 is a diagram showing a network hierarchy of each communication node in a form adapted to the OSI reference model, FIG. 8 is a specific configuration diagram of the communication system, FIG. 9 is a flowchart for explaining the processing operation of the gateway; FIG. 10 is a block diagram of the communication system in the second embodiment, FIG. 11 is a block diagram of the gateway; FIG. 12 is a flowchart showing processing in the low power consumption mode, FIG. 13 is a flowchart showing processing when a signal is detected on the Ethernet port, FIG. 14 is a flowchart showing processing of the monitoring ECU in the third embodiment, FIG. 15 is a flowchart showing processing of the monitoring ECU in the fourth embodiment, FIG. 16 is a block diagram of a communication system in the fifth embodiment, FIG. 17 is a block diagram of a communication system when applied to a vehicle front portion, FIG. 18 is a block diagram of the communication system in the sixth embodiment, FIG. 19 is a block diagram of a communication system in the seventh embodiment, FIG. 20 is a block diagram of a gateway located downstream, FIG. 21 is a block diagram of a communication system in the eighth embodiment.
 以下、通信システム及びゲートウェイの幾つかの実施形態について図面を参照しながら説明する。以下に説明する各実施形態において、同一又は類似の動作を行う構成については、同一又は類似の符号を付している。そして第2実施形態以降の説明では、第1実施形態で説明した同一又は類似の構成及び同一又は類似の動作について必要に応じて説明を省略する。 Hereinafter, several embodiments of the communication system and the gateway will be described with reference to the drawings. In each embodiment described below, the same or similar reference numerals are given to components performing the same or similar operations. In the second and subsequent embodiments, the description of the same or similar configuration and the same or similar operation as described in the first embodiment will be omitted as necessary.
 (第1実施形態)
 図1から図9は第1実施形態の説明図を示している。車両には図1に示すように通信システム1が搭載されている。この通信システム1は、ネットワークゲートウェイ(以下、ゲートウェイと略す)2、複数の電子制御装置(以下、ECUと称す)3~9、及び、1又は複数のセンサ装置10~13を複数のネットワーク14~16により接続したシステムである。
First Embodiment
1 to 9 show an explanatory view of the first embodiment. A communication system 1 is mounted on a vehicle as shown in FIG. The communication system 1 includes a network gateway (hereinafter referred to as a gateway) 2, a plurality of electronic control units (hereinafter referred to as ECUs) 3 to 9, and one or a plurality of sensor units 10 to a plurality of networks 14 to It is a system connected by 16.
 このときセンサ装置10~13は、ゲートウェイ2との間で例えばイーサネット(登録商標)により全2重通信可能なネットワーク14で接続されている。センサ装置10~13は、それぞれのセンシング対象となる物理量をセンシングし、このセンシングされたセンサ信号をネットワーク14を通じてゲートウェイ2に送信する。センサ装置10~13は、後述の図8、図10等に具体例を示したように、それぞれ例えばカメラ装置110、113、レーザ装置を用いて測距処理を行うLiDAR(Light Detention And Ranging)による測距装置112、衝突検出センサなどの圧力センサ装置111、側突センサ装置211、ワイヤレスセンサ装置213a、その他、ミリ波レーダによる測距装置、などの車両周辺監視センサ装置による。 At this time, the sensor devices 10 to 13 are connected to the gateway 2 by, for example, Ethernet (registered trademark) via the network 14 capable of full duplex communication. The sensor devices 10 to 13 sense physical quantities to be sensed respectively, and transmit the sensed sensor signals to the gateway 2 through the network 14. The sensor devices 10 to 13 use LiDAR (Light Detention And Ranging) for performing distance measurement processing using, for example, camera devices 110 and 113 and a laser device, as shown in FIG. 8 and FIG. A vehicle periphery monitoring sensor device such as a distance measuring device 112, a pressure sensor device 111 such as a collision detection sensor, a side collision sensor device 211, a wireless sensor device 213a, and a distance measuring device using a millimeter wave radar.
 図1において、ゲートウェイ2は、複数のECU3~9との間で例えばCAN又はLINなどの比較的低速の第2速度で通信可能なバスネットワーク15で接続されている。図2に示すように、ECU3~9は、バスネットワーク15及びゲートウェイ2を通じて低速通信により制御信号をセンサ装置10~13に送信可能になっている。制御信号は、センサ動作開始/終了コマンドなどの各種コマンド、各種設定を行うための設定値を含む信号であり、画像信号に比較して比較的低速でも十分にセンサ装置10~13を制御可能になる。このため、この通信システム1においては、バスネットワーク15を通じて信号を双方向通信可能になっている。 In FIG. 1, the gateway 2 is connected to a plurality of ECUs 3 to 9 by a bus network 15 capable of communicating at a relatively low second speed such as CAN or LIN. As shown in FIG. 2, the ECUs 3 to 9 can transmit control signals to the sensor devices 10 to 13 through the bus network 15 and the gateway 2 by low speed communication. The control signal is a signal including various commands such as a sensor operation start / end command, and setting values for performing various settings, and can sufficiently control the sensor devices 10 to 13 even at a relatively low speed as compared with the image signal. Become. For this reason, in the communication system 1, signals can be bi-directionally communicated through the bus network 15.
 ゲートウェイ2は、少なくとも一つのECU(以下、対象ECUと称す)3との間で前述のネットワーク14及び15とは別の通信線16を接続して構成されている。 The gateway 2 is configured by connecting a communication line 16 different from the networks 14 and 15 described above to at least one ECU (hereinafter referred to as target ECU) 3.
 図2は通信方向及び通信速度の比較を概略的に示している。この通信システム1では、ゲートウェイ2がこの通信線16を通じて例えばLVDS(Low Voltage Differential Signaling)を用いてECU3に比較的高速の第1速度(>第2速度)で信号を単方向送信可能になっている。この通信線16により単方向送信される信号は、遅延が許されない又は遅延時間が限られている信号である。ECU3はゲートウェイ2に対し通信線16を利用した送信処理は不可とされている。 FIG. 2 schematically shows a comparison of communication direction and communication speed. In this communication system 1, the gateway 2 can transmit signals unidirectionally to the ECU 3 at a relatively high first speed (> second speed) through the communication line 16 using, for example, LVDS (Low Voltage Differential Signaling). There is. The signal unidirectionally transmitted by the communication line 16 is a signal whose delay is not permitted or whose delay time is limited. The ECU 3 does not allow the gateway 2 to perform transmission processing using the communication line 16.
 図示していないが、通信線16のケーブルは、一対のシールドツイスト線によるハーネスにより構成される。この通信線16のケーブルは、センサ装置10~13によりゲートウェイ2に送信されるカメラの画像信号、ミリ波レーダの測距信号、LiDARによる測距信号などの監視センサ信号を送信するためのケーブルであり、このケーブルによる通信帯域は、センサ装置10~13により送信されるセンサ信号の帯域の合計帯域より広く設定されている。したがって、高速通信による電磁ノイズの漏れを考慮する必要があるものの、ゲートウェイ2とECU3との間に双方向に高速通信帯域を備えるケーブルを多数設ける必要がなくなり、エミッションノイズを抑制できる。 Although not shown, the cable of the communication line 16 is configured by a harness with a pair of shield twist lines. The cable of the communication line 16 is a cable for transmitting a monitoring sensor signal such as an image signal of a camera transmitted to the gateway 2 by the sensor devices 10 to 13, a ranging signal of a millimeter wave radar, or a ranging signal by LiDAR. The communication band by this cable is set wider than the total band of the sensor signal bands transmitted by the sensor devices 10-13. Therefore, although it is necessary to consider the leakage of the electromagnetic noise due to the high speed communication, it is not necessary to provide many cables having a high speed communication band in both directions between the gateway 2 and the ECU 3 and emission noise can be suppressed.
 また例えば、ゲートウェイ2が車両前部のフロントガラス近辺に設置され、ECU3が車両後部のトランクルームに配置され、これらを接続する通信線の長さが数mに及んだとしても、通常の多数の一対のツイスト線を用いた通信方法(例えば、イーサネット)に比較してケーブルの引き回しを極力容易化できる。 Also, for example, even if the gateway 2 is installed near the windshield of the front of the vehicle, the ECU 3 is located in the trunk room at the rear of the vehicle, and the communication line connecting them extends several meters, Compared with a communication method (for example, Ethernet) using a pair of twisted wires, cable routing can be facilitated as much as possible.
 図3はゲートウェイ2の内部ブロック構成を機能的に示している。この図3に示すように、複数の入出力ポート21~24が設けられると共に、LVDSポート25、CANポート26が設けられている。入出力ポート21~24はセンサ装置10~13に接続されるポートである。またLVDSポート25はゲートウェイ2からECU3に接続されるポートである。また、CANポート26は、低速のネットワーク15に接続されるポートである。 FIG. 3 functionally shows the internal block configuration of the gateway 2. As shown in FIG. 3, a plurality of input / output ports 21 to 24 are provided, and an LVDS port 25 and a CAN port 26 are provided. The input / output ports 21-24 are ports connected to the sensor devices 10-13. The LVDS port 25 is a port connected from the gateway 2 to the ECU 3. Also, the CAN port 26 is a port connected to the low speed network 15.
 図4は、センサ装置10~13がゲートウェイ2に送信するイーサネットのフォーマットに適合したフレーム(以下、イーサネットフレーム)F1の内容を概略的に示している。図4に示すように、このイーサネットフレームF1は、イーサネットヘッダとフッタとの内側に囲まれるようにCANフレームF2を備えるように構成される。CANフレームF2は、CANヘッダ、ペイロード及びCANフッタからなる。また図5は、ECU3~9がゲートウェイを通じてセンサ装置10~13に送信する制御信号を構成するフレーム(以下CANフレーム)F3の構成を示している。このCANフレームF3は、CANヘッダ、ペイロード及びCANフッタからなる。図4及び図5に示されるCANフレームF2及びF3は、図示では簡略化してCANヘッダ、ペイロード、CANフッタにより表しているが、これらのCANヘッダ、ペイロード、CANフッタは、SOF、CANID、RTR、コントロールフィールド、…EOFなどの予め規定されたCANフレームを表している。 FIG. 4 schematically shows the contents of a frame (hereinafter, Ethernet frame) F1 adapted to the Ethernet format that the sensor devices 10 to 13 transmit to the gateway 2. As shown in FIG. 4, the Ethernet frame F1 is configured to include the CAN frame F2 so as to be enclosed inside the Ethernet header and the footer. The CAN frame F2 consists of a CAN header, a payload and a CAN footer. FIG. 5 shows the configuration of a frame (hereinafter referred to as CAN frame) F3 which constitutes a control signal that the ECUs 3 to 9 transmit to the sensor devices 10 to 13 through the gateway. The CAN frame F3 is composed of a CAN header, a payload and a CAN footer. The CAN frames F2 and F3 shown in FIG. 4 and FIG. 5 are simplified and represented by CAN header, payload and CAN footer in the figure, but these CAN header, payload and CAN footer are SOF, CANID, RTR, It represents a predefined CAN frame, such as a control field, ... EOF.
 図3に示されるゲートウェイ2は、図示しないが、マイコン及び信号処理ICを備えている。マイコンには非遷移的実体的記録媒体となるメモリが備えられており、マイコンがこのメモリに記憶されたプログラムを実行し信号処理ICが処理を実行することで、図3に示す各ブロックを実現している。なお、これらのブロックは例えばASICなどを用いてハードウェアで構成しても良い。 Although not shown, the gateway 2 shown in FIG. 3 includes a microcomputer and a signal processing IC. The microcomputer is provided with a memory serving as a non-transitional tangible recording medium, and the microcomputer executes the program stored in the memory, and the signal processing IC executes the processing to realize each block shown in FIG. doing. Note that these blocks may be configured by hardware using, for example, an ASIC or the like.
 ゲートウェイ2の内部にはゲートウェイ設定部27が設けられている。その他、ゲートウェイ2は、CAN受信部28、CAN送信部29、CANイーサネット変換部30、イーサネットCAN変換部31、イーサネット送信部32、イーサネット受信部33、イーサネットスイッチ部34、及び、イーサネットLVDS変換部35、を備える。CAN受信部28及びCAN送信部29は送受信部として機能する。 A gateway setting unit 27 is provided inside the gateway 2. In addition, the gateway 2 includes a CAN receiving unit 28, a CAN transmitting unit 29, a CAN Ethernet converting unit 30, an Ethernet CAN converting unit 31, an Ethernet transmitting unit 32, an Ethernet receiving unit 33, an Ethernet switch unit 34, and an Ethernet LVDS converting unit 35. And. The CAN receiving unit 28 and the CAN transmitting unit 29 function as a transmitting and receiving unit.
 ゲートウェイ設定部27は、CANポート26及びCAN受信部28を通じて受信される制御信号に応じて、イーサネット送信部32、イーサネット受信部33、イーサネットスイッチ部34、イーサネットCAN変換部31、及び、CANイーサネット変換部30としての処理内容を実現する。 The gateway setting unit 27 receives the Ethernet transmission unit 32, the Ethernet reception unit 33, the Ethernet switch unit 34, the Ethernet CAN conversion unit 31, and the CAN Ethernet conversion according to the control signal received through the CAN port 26 and the CAN reception unit 28. The processing content of the unit 30 is realized.
 入出力ポート21~24には、イーサネット送信部32及びイーサネット受信部33がそれぞれ接続されている。イーサネット受信部33は、入出力ポート21~24から入力されるセンサ装置10~13によるセンサ信号をフレームにより受信し、イーサネットスイッチ部34に送信する。イーサネットスイッチ部34は、送信されたフレームの内部に割り振られた宛先に応じてLVDSポート25に振り分けるかイーサネット送信部32に振り分けるか決定して信号を振り分ける。イーサネットLVDS変換部35は、イーサネットスイッチ部34からフレームが振り分けられるとイーサネットのフォーマットのフレームをLVDSに適合したフォーマットのフレームに変換し、LVDSポート25から外部に送信する。 The Ethernet transmission unit 32 and the Ethernet reception unit 33 are connected to the input / output ports 21 to 24, respectively. The Ethernet receiving unit 33 receives sensor signals from the sensor devices 10 to 13 input from the input / output ports 21 to 24 as frames, and transmits the signals to the Ethernet switch unit 34. The Ethernet switch unit 34 determines whether to distribute to the LVDS port 25 or the Ethernet transmission unit 32 according to the destination allocated inside the transmitted frame, and distributes the signal. When a frame is distributed from the Ethernet switch unit 34, the Ethernet LVDS conversion unit 35 converts a frame of Ethernet format into a frame of format compatible with LVDS, and transmits the frame from the LVDS port 25 to the outside.
 また、イーサネット送信部32は、イーサネットスイッチ部34からフレームが振り分けられると宛先に応じた一つの入出力ポート(例えば21)からセンサ装置(例えば10)に送信するようになっている。これにより、ゲートウェイ2とセンサ装置10~13との間ではイーサネットによる全二重の通信処理を実行できる。 Further, when a frame is distributed from the Ethernet switch unit 34, the Ethernet transmission unit 32 transmits data from one input / output port (for example, 21) corresponding to the destination to the sensor device (for example, 10). Thereby, full duplex communication processing by Ethernet can be performed between the gateway 2 and the sensor devices 10 to 13.
 また入出力ポート21~24にはイーサネットCAN変換部31が接続されている。このイーサネットCAN変換部31は、入出力ポート21~24に入力されるイーサネットによるフレームをCAN通信に適切なフォーマットに変換するフレーム変換機能を備える。このイーサネットCAN変換部31にはCAN送信部29が接続されており、CAN送信部29は、イーサネットCAN変換部31により変換されたフレームをCANポート26から外部に送信するように構成される。 Further, the Ethernet CAN conversion unit 31 is connected to the input / output ports 21 to 24. The Ethernet CAN conversion unit 31 has a frame conversion function of converting an Ethernet frame input to the input / output ports 21 to 24 into a format suitable for CAN communication. The CAN transmission unit 29 is connected to the Ethernet CAN conversion unit 31. The CAN transmission unit 29 is configured to transmit the frame converted by the Ethernet CAN conversion unit 31 from the CAN port 26 to the outside.
 またCANポート26にはCAN受信部28が接続されている。CAN受信部28はCANポート26を通じてバスネットワーク15の信号を受信するとCANイーサネット変換部30及びゲートウェイ設定部27に送信する。これに代えてCAN受信部28は、CANIDを参照しこのCANIDに応じてCANイーサネット変換部30及びゲートウェイ設定部27の何れに送信するか判定し何れかに送信するようにしても良い。
 CANイーサネット変換部30は、CANフォーマットによるフレームをイーサネットに適合するフレームに変換するフレーム変換機能を備える。このCANイーサネット変換部30は、CAN受信部28からCANフォーマットのフレームを受信すると、このフレームをイーサネットに適合したフレームに変換しイーサネット受信部33に出力する。イーサネット受信部33、イーサネットスイッチ部34及びイーサネット送信部32では、前述と同様の処理を行うことで入出力ポート21~24又はLVDSポート25にフレームを振り分ける。ゲートウェイ2にはこのようなゲートウェイ機能が設けられている。
Further, a CAN receiving unit 28 is connected to the CAN port 26. When receiving the signal of the bus network 15 through the CAN port 26, the CAN reception unit 28 transmits the signal to the CAN Ethernet conversion unit 30 and the gateway setting unit 27. Instead of this, the CAN reception unit 28 may refer to the CAN ID and determine which one of the CAN Ethernet conversion unit 30 and the gateway setting unit 27 to transmit according to the CAN ID, and may transmit either.
The CAN Ethernet conversion unit 30 has a frame conversion function of converting a CAN format frame into a frame compatible with Ethernet. When the CAN Ethernet conversion unit 30 receives a CAN format frame from the CAN reception unit 28, the CAN Ethernet conversion unit 30 converts the frame into a frame compatible with Ethernet and outputs the frame to the Ethernet reception unit 33. The Ethernet receiving unit 33, the Ethernet switch unit 34, and the Ethernet transmitting unit 32 distribute the frames to the input / output ports 21 to 24 or the LVDS port 25 by performing the same process as described above. The gateway 2 is provided with such a gateway function.
 図6はECU3の通信機能をブロック図により示している。この図6に示すように、ECU3は、1又は複数のLVDSポート41、42を備えると共に、CANポート43を備える。LVDSポート41、42は、通信線16による信号を受信するポートを示している。その他、ECU3は、マイコン44及び信号処理IC45を備えると共に、LVDS-MIPI(Mobile Industry Processor Interface)変換部46、47を備える。LVDS-MIPI変換部46、47は、LVDSのフォーマットをMIPIシリアルデータ伝送規格のフォーマットに変換し当該変換後の信号を信号処理IC45に出力する。この図6の構成では、LVDSポート41、42及びLVDS-MIPI変換部46、47をそれぞれ2対用意しているが1対でも良いし3対以上用意しても良い。1対だけ用意することで受信系機器を削減できるようになりコスト及び消費電力を低減できる。3対以上用意する場合、例えば車両の前後左右の4方向に対応するためには4対、車両の右前、右後、左前、左後の各方向を追加した8方向に対応するためには8対、用意してもよい。 FIG. 6 is a block diagram showing the communication function of the ECU 3. As shown in FIG. 6, the ECU 3 includes one or more LVDS ports 41 and 42 and a CAN port 43. The LVDS ports 41 and 42 indicate ports for receiving a signal through the communication line 16. In addition, the ECU 3 includes a microcomputer 44 and a signal processing IC 45, and also includes an LVDS-MIPI (Mobile Industry Processor Interface) conversion unit 46, 47. The LVDS-to- MIPI conversion units 46 and 47 convert the LVDS format into the format of the MIPI serial data transmission standard, and output the converted signal to the signal processing IC 45. In the configuration of FIG. 6, two pairs of LVDS ports 41 and 42 and two LVDS- MIPI conversion units 46 and 47 are prepared, but one pair or three or more pairs may be prepared. By preparing only one pair, it is possible to reduce the number of receiving devices, thereby reducing cost and power consumption. When preparing three or more pairs, for example, 4 pairs to correspond to the four directions of the front, rear, left, and right of the vehicle, 8 to correspond to the eight directions where each direction of right front, right back, left front, left rear of the vehicle is added You may prepare a pair.
 信号処理IC45はLVDSポート41又は42から画像信号を入力するとこの内容を画像処理してマイコン44に各種情報を出力する。マイコン44及び信号処理IC45は、相互に通信可能に構成されており、マイコン44は画像処理結果に応じてCANポート43から制御信号を出力可能になっている。 When an image signal is input from the LVDS port 41 or 42, the signal processing IC 45 processes the contents of the signal and outputs various information to the microcomputer 44. The microcomputer 44 and the signal processing IC 45 are configured to be able to communicate with each other, and the microcomputer 44 can output a control signal from the CAN port 43 according to the image processing result.
 図7は各通信ノード、すなわちゲートウェイ2、ECU3、センサ装置10~13におけるネットワーク階層をOSI参照モデルに適合した形態で示している。この図7には下から物理層L1、データリンク層L2、中間層L3~L6、アプリケーション層L7に分けて図示している。センサ装置10~13及びECU3のアプリケーション層L7にはセンサのアプリケーションが実装されており、その下層L3~L6のネットワーク層等にはTCP/IP等が実装されている。また、データリンク層L2にはイーサネットのMAC層が実装されている。 FIG. 7 shows a network hierarchy in each communication node, that is, the gateway 2, the ECU 3 and the sensor devices 10 to 13 in a form adapted to the OSI reference model. In FIG. 7, the physical layer L1, the data link layer L2, the intermediate layers L3 to L6, and the application layer L7 are shown separately from the bottom. A sensor application is mounted on the sensor devices 10 to 13 and the application layer L7 of the ECU 3, and TCP / IP or the like is mounted on a network layer or the like of the lower layers L3 to L6. In addition, an Ethernet MAC layer is implemented in the data link layer L2.
 センサ装置10~13の物理層L1としては、イーサネットに適合したネットワークアダプタが実装されており、ECU3の物理層L1としてはLVDSアダプタが実装されている。センサ装置10~13とゲートウェイ2とは例えば~1Gbpsの1000BASE-T1規格に準拠したイーサネット通信がネットワーク14を通じて行われ、また、ゲートウェイ2とECU3とは例えば~4GbpsのFPD-Link(登録商標)による第2速度の高速通信が通信線16を通じて行われる。またゲートウェイ2の中間層L3~L6にはイーサネットのスイッチロジックが実装されると共に、データリンク層L2にはイーサネットのMAC層が実装され、物理層L1としてはイーサネットアダプタ及びLVDSアダプタが実装されている。ゲートウェイ2は、これらのセンサ装置10~13とECU3との間の中間に位置して画像信号などの大量データを転送することになる。
 以上が概念的な構成説明となるが、以下では実際の車両内の構成に適用した具体例を説明する。
A network adapter compatible with Ethernet is mounted as the physical layer L1 of the sensor devices 10 to 13, and an LVDS adapter is mounted as the physical layer L1 of the ECU 3. For example, Ethernet communication based on 1000BASE-T1 standard of ~ 1 Gbps is performed through the network 14 between the sensor devices 10 to 13 and the gateway 2, and the gateway 2 and ECU 3 are based on ~ 4 Gbps FPD-Link (registered trademark) High speed communication at the second speed is performed through the communication line 16. In addition, Ethernet switch logic is implemented in the middle layers L3 to L6 of the gateway 2, and Ethernet MAC layer is implemented in the data link layer L2, and Ethernet adapter and LVDS adapter are implemented as the physical layer L1. . The gateway 2 is located in the middle between the sensor devices 10 to 13 and the ECU 3 to transfer a large amount of data such as an image signal.
The above is a conceptual description of the configuration, but in the following, a specific example applied to the actual configuration in the vehicle will be described.
 <車両のフロント部に適用した具体例>
 以下では、先進運転支援システム(ADAS:Advanced Driver Assistance System)101に適用した具体例について図8を参照して説明する。先進運転支援システム(以下ADASシステム)101は、事故などの可能性を事前に検知し回避するためのシステムであり、近年では車両の安全性及び利便性を向上するシステムとして車両に搭載されることが多くなってきている。このようなADASシステム101を実現するために、本実施形態では特に車両のフロント部に位置してセンサユニットU1が設置されている。
<Example applied to the front of the vehicle>
Hereinafter, a specific example applied to the advanced driver assistance system (ADAS) 101 will be described with reference to FIG. The advanced driving support system (hereinafter referred to as "ADAS system") 101 is a system for detecting and avoiding the possibility of an accident etc. in advance, and installed in vehicles as a system for improving vehicle safety and convenience in recent years. Is increasing. In order to realize such an ADAS system 101, in the present embodiment, in particular, the sensor unit U1 is installed at the front of the vehicle.
 このセンサユニットU1には各種のセンサ装置110~113及びゲートウェイ2が組み込まれている。各種のセンサ装置110~113は、例えば、右前方及び左前方を主に撮像するための複数の前方カメラ装置110,113、衝突検出センサなどの圧力センサ装置111、及びLiDAR(Light Detection and Ranging)によるリモートセンシング技術による測距装置112による。特に、前方カメラ装置110及び測距装置112並びにゲートウェイ2は同一筐体内にセンサユニットU1として一体化され、例えば車室内に設置されたルームミラーの裏部に設置されている。また圧力センサ装置111は、車両前部のバンパーなどに設置されており歩行者衝突検出用の圧力センサにより構成される。 Various sensor devices 110 to 113 and a gateway 2 are incorporated in the sensor unit U1. The various sensor devices 110 to 113 include, for example, a plurality of front camera devices 110 and 113 for mainly imaging right front and left front, pressure sensor devices 111 such as a collision detection sensor, and LiDAR (Light Detection and Ranging) Distance measuring device 112 by remote sensing technology. In particular, the front camera device 110, the distance measuring device 112, and the gateway 2 are integrated as a sensor unit U1 in the same housing, and are installed, for example, at the back of a rearview mirror installed in a vehicle interior. The pressure sensor device 111 is installed on a bumper or the like in the front of the vehicle and is configured of a pressure sensor for detecting a pedestrian collision.
 他方、車両内にはCANやLINによるネットワーク15が前部から後部まで張り巡らされており、ADASシステム101を実現可能にするため、画像処理ECU103、及び衝突安全ECU104などのECU103,104…がこのネットワーク15に接続されている。 On the other hand, in the vehicle, a network 15 by CAN or LIN is looped from the front to the rear, and in order to realize the ADAS system 101, the image processing ECU 103 and the ECUs 103 such as the collision safety ECU 104 etc. It is connected to the network 15.
 画像処理ECU103は、ゲートウェイ2から、カメラ装置110,113の画像信号、測距装置112によるリアルタイム測距信号などの大量のデータを受信し、この受信データに基づいて画像処理し、各種安全運転支援制御処理に必要なデータを生成し、バスネットワーク15を介して衝突安全ECU104に出力する。衝突安全ECU104は、この安全運転支援制御データを受信し、例えば衝突安全状態を検出し、必要に応じてエンジンECU及びブレーキECU(図示せず)などに各種指令を出力することでエンジン制御を指令したりブレーキ制御を指令したりする。 The image processing ECU 103 receives a large amount of data such as image signals of the camera devices 110 and 113 and a real-time distance measuring signal by the distance measuring device 112 from the gateway 2, performs image processing based on the received data, and supports various safe driving Data required for control processing is generated and output to the collision safety ECU 104 via the bus network 15. The collision safety ECU 104 receives the safe driving support control data, detects, for example, a collision safety state, and instructs the engine control by outputting various commands to the engine ECU and the brake ECU (not shown) as necessary. And command the brake control.
 このようなADASシステム101のネットワーク構成においては、ゲートウェイ2と各前方カメラ装置110,113との間、及び、ゲートウェイ2と測距装置112との間、に1Gbpsのイーサネットケーブルが比較的短距離(例えば数十cm~1m)で接続され、ゲートウェイ2と圧力センサ装置111との間には10Mbpsのイーサネットケーブルが短距離(例えば1~3m)だけ伸ばして設置され、これによりネットワーク14が構成されている。 In such a network configuration of the ADAS system 101, a 1 Gbps Ethernet cable is relatively short distance between the gateway 2 and each front camera device 110, 113, and between the gateway 2 and the distance measuring device 112. For example, an Ethernet cable of 10 Mbps is connected between the gateway 2 and the pressure sensor device 111 by a short distance (for example, 1 to 3 m). There is.
 そして、ゲートウェイ2と画像処理ECU103との間の通信線16は、LVDS技術を用いて通信可能な長距離(例えば5m~10m)の通信ケーブルを接続して構成されている。すなわち、センサ装置110、112、113とゲートウェイ2との間に接続されるネットワーク14のケーブルは、ゲートウェイ2と画像処理ECU103との間のケーブルよりも短くなっている。 The communication line 16 between the gateway 2 and the image processing ECU 103 is configured by connecting a communication cable of a long distance (for example, 5 m to 10 m) that can communicate using the LVDS technology. That is, the cable of the network 14 connected between the sensor devices 110, 112, 113 and the gateway 2 is shorter than the cable between the gateway 2 and the image processing ECU 103.
 このようなケーブル長を考慮すれば、短距離接続されたゲートウェイ2とセンサ装置110~113との間のケーブルによるエミッションノイズの影響は少なくなる。長距離の通信ケーブルはゲートウェイ2と画像処理ECU103との間に1本だけ接続されているため当該エミッションノイズの影響を少なくできる。特にエミッションノイズの影響が大きくなるような場所には高価なケーブルが必要な場合があるが、ケーブル数を削減できるためコストも削減できるようになる。 If such a cable length is considered, the influence of the emission noise due to the cable between the short distance connected gateway 2 and the sensor devices 110 to 113 is reduced. Since only one communication cable for long distance is connected between the gateway 2 and the image processing ECU 103, the influence of the emission noise can be reduced. In particular, expensive cables may be required in places where the effects of emission noise increase, but the cost can also be reduced because the number of cables can be reduced.
 <ゲートウェイ2によるデータ転送処理動作説明>
 以下、ゲートウェイ2によるデータ転送処理動作を説明する。図9はゲートウェイ2の処理動作を説明するフローチャートである。各センサ装置110~113は、ネットワーク14を通じてデータフレームをゲートウェイ2に送出するが、このときイーサネットフレームF1によりデータを送出する。
<Description of Data Transfer Processing Operation by Gateway 2>
Hereinafter, the data transfer processing operation by the gateway 2 will be described. FIG. 9 is a flowchart for explaining the processing operation of the gateway 2. Each of the sensor devices 110 to 113 sends a data frame to the gateway 2 through the network 14, but at this time sends data by the Ethernet frame F1.
 ゲートウェイ2は、S1においてセンサ装置110~113から送信されたイーサネットフレームをイーサネット受信部33により受信すると、S2においてこのイーサネットフレームに設定された宛先MACアドレスを読出す。ゲートウェイ設定部27は、この宛先MACアドレスがLVDSポート25のネットワークアダプタのMACアドレスに一致していると判定すると、フレーム内のペイロード及び送信元情報を設定して、イーサネットスイッチ部34により送出方向を切り替えてLVDSポート25の側に送出する。 When the Ethernet frame received from the sensor devices 110 to 113 in S1 is received by the Ethernet receiving unit 33, the gateway 2 reads the destination MAC address set in the Ethernet frame in S2. When the gateway setting unit 27 determines that the destination MAC address matches the MAC address of the network adapter of the LVDS port 25, the gateway setting unit 27 sets the payload in the frame and the transmission source information, and the Ethernet switch unit 34 determines the transmission direction. It switches and sends to the side of the LVDS port 25.
 このとき、イーサネットLVDS変換部35は、S5においてLVDSポート25の送信中信号を検出し、送信中信号が存在するうちにはS5でNOと判定してデータを変換することなく待機し、送信中信号が存在しなくなればS5でYESと判定して、S6においてイーサネットフレームをLVDSに適した信号に変換し、S7においてLVDSポート25から送出する。 At this time, the Ethernet LVDS conversion unit 35 detects a signal during transmission of the LVDS port 25 in S5, determines NO in S5 while the signal under transmission exists, stands by without converting data, and transmits If no signal is present, it is determined as YES in S5, the Ethernet frame is converted into a signal suitable for LVDS in S6, and the signal is sent out from the LVDS port 25 in S7.
 例えば、ゲートウェイ2は、複数のカメラ装置110、113又は測距装置112から同時又は予め定められた時間内にセンサ信号を受信したときには、メモリに予め定められている優先順位に応じた順序でLVDS通信に適した信号に変換し、LVDSポート25から送出するようにすることが望ましい。 For example, when the gateway 2 receives sensor signals from the plurality of camera devices 110 and 113 or the distance measuring device 112 simultaneously or within a predetermined time, the gateway 2 may perform LVDS in the order according to the priority predetermined in the memory. It is desirable that the signal be converted to a signal suitable for communication and sent out from the LVDS port 25.
 またゲートウェイ2は、S1においてセンサ装置110~113から送信されたイーサネットフレームをイーサネット受信部33により受信し、S2において宛先MACアドレスを読出したとき、この宛先MACアドレスがS8においてCANポート26のネットワークアダプタのMACアドレスに一致していると判定すると、イーサネットスイッチ部34を切り替えてS9においてCANポート26の側にフレームを送出する。 When the gateway 2 receives the Ethernet frame transmitted from the sensor devices 110 to 113 in S1 by the Ethernet receiving unit 33 and reads the destination MAC address in S2, the network adapter of the CAN port 26 has the destination MAC address of S8. If it is determined that they match the MAC address, the Ethernet switch unit 34 is switched to send a frame to the CAN port 26 in S9.
 このときCAN送信部29は、CANポート26の送信中信号をネットワーク15から検出し、S10においてネットワーク15に送信中信号が存在するうちはS10においてNOと判定してデータを変換することなく待機し、送信中信号が存在しなくなればS10でYESと判定して、S11においてイーサネットフレームをCAN通信に適したCANフレームに変換し、S12においてCANポート26から送出する。 At this time, the CAN transmission unit 29 detects a signal being transmitted from the CAN port 26 from the network 15, and while there is a signal being transmitted to the network 15 in S10, the determination is NO in S10 and waits without converting data. If there is no signal being transmitted, it is determined as YES in S10, the Ethernet frame is converted into a CAN frame suitable for CAN communication in S11, and transmitted from the CAN port 26 in S12.
 またゲートウェイ2は、S1においてセンサ装置(例えば110)から送信されたフレームを受信しS2において宛先MACアドレスをイーサネット受信部33により読み出したとき、この宛先MACアドレスがLVDSポート25又はCANポート26の何れでもなく他のセンサ装置(例えば111)に出力するためのネットワークアダプタのMACアドレスであったときには、イーサネットスイッチ部34を切り替えてイーサネット送信部32の側に送出する。イーサネット送信部32は、S13においてこの他のセンサ装置(例えば111)の宛先MACアドレスのネットワークアダプタに転送処理を実施する。これにより、ゲートウェイ2は転送処理を実行できる。 When the gateway 2 receives the frame transmitted from the sensor device (for example, 110) in S1 and the destination MAC address is read by the Ethernet receiving unit 33 in S2, the destination MAC address is either LVDS port 25 or CAN port 26. However, if it is the MAC address of the network adapter for outputting to another sensor device (for example, 111), the Ethernet switch unit 34 is switched and sent to the Ethernet transmitting unit 32 side. The Ethernet transmission unit 32 performs transfer processing on the network adapter of the destination MAC address of the other sensor device (for example, 111) in S13. Thus, the gateway 2 can execute the transfer process.
 他方、ゲートウェイ2が、画像処理ECU103、衝突安全ECU104からCAN受信部28によりCANフレームF3の制御信号を受信する。CANフレームF3には一般にCANIDが割り振られているが、ゲートウェイ2が、CANIDと入出力ポート21~24の対応関係をメモリに保持していると、このフレーム内のCANIDを参照することで入出力ポート21~24の何れかを導出できる。そしてゲートウェイ2のCANイーサネット変換部30はこの受信したCANフレームをイーサネットフレームに変換し、CANIDに対応づけられた入出力ポート(例えば21)からイーサネットフレームを送出する。 On the other hand, the gateway 2 receives the control signal of the CAN frame F3 from the image processing ECU 103 and the collision safety ECU 104 by the CAN reception unit 28. Although CANID is generally allocated to CAN frame F3, if gateway 2 holds the correspondence between CANID and input / output ports 21 to 24 in the memory, input / output can be performed by referring to CANID in this frame. Any of the ports 21-24 can be derived. Then, the CAN Ethernet conversion unit 30 of the gateway 2 converts the received CAN frame into an Ethernet frame, and sends out the Ethernet frame from the input / output port (for example, 21) associated with the CAN ID.
 例えば、ゲートウェイ2が、画像処理ECU103、衝突安全ECU104からCANフレームによる制御信号を受信したとき、特定のセンサ装置(例えば111)だけではなく全てのセンサ装置110~113にブロードキャスト送出するようにしても良い。 For example, when the gateway 2 receives a control signal in the CAN frame from the image processing ECU 103 and the collision safety ECU 104, it may be broadcasted to all the sensor devices 110 to 113 as well as a specific sensor device (for example 111). good.
 <本実施形態の概念的なまとめ、効果>
 本実施形態によれば、ECU3は第2速度のネットワーク15を用いてゲートウェイ2に制御信号を送信し、ゲートウェイ2は第1速度の通信線16によりECU3に画像信号等の広帯域のフレームをLVDS技術を用いて単方向送信するようにした。
<Conceptual summary of this embodiment, effect>
According to the present embodiment, the ECU 3 transmits a control signal to the gateway 2 using the network 15 of the second speed, and the gateway 2 transmits a wide band frame such as an image signal to the ECU 3 through the communication line 16 of the first speed. It was made to transmit in one direction using.
 例えば、この通信線16に代えてCAN又はイーサネットによる双方向の車載通信を用いたとしても大容量通信を必要とする画像伝送などに適用すると通信帯域が不足する。また、カメラ110の高精細な画像信号やLiDARによる測距信号は遅延時間を最小限とするために圧縮処理のようなデータ抑制、削減処理をすることが困難であった。本実施形態では、高速の第1速度で通信可能な通信線16によりECU3に画像信号や測距信号を含む広帯域信号を単方向送信しているため、帯域不足を解消でき、通信処理を高速化できる。 For example, even if bi-directional on-vehicle communication by CAN or Ethernet is used instead of the communication line 16, the communication band will be insufficient when applied to image transmission requiring large capacity communication. In addition, it is difficult to perform data suppression and reduction processing such as compression processing in order to minimize the delay time of the high definition image signal of the camera 110 and the distance measurement signal by LiDAR. In this embodiment, a wide band signal including an image signal and a distance measurement signal is unidirectionally transmitted to the ECU 3 through the communication line 16 capable of communicating at a high speed first speed, so that the band shortage can be eliminated and the communication processing can be speeded up it can.
 しかも、単方向通信を用いることにより複雑なネゴシエーションを不要にできると共に、双方向通信に比較して送受信部を1対削減できるようになる。この結果、通信システム1内では、シンプルな送信系機器であるイーサネットLVDS変換部35、受信系機器であるLVDS-MIPI変換部46を1対用意すれば足りるようになり、コスト及び消費電力を低減できる。 Moreover, using unidirectional communication makes it possible to eliminate the need for complicated negotiation, and to reduce the number of transmitting / receiving units by one as compared with bidirectional communication. As a result, in the communication system 1, it becomes sufficient to prepare only one pair of the Ethernet LVDS conversion unit 35 which is a simple transmission device and the LVDS-MIPI conversion unit 46 which is a reception device, thereby reducing cost and power consumption. it can.
 ゲートウェイ2は、車両周辺を監視する監視センサを備えた監視センサ装置110~113によるセンサ信号を高速の第1速度で通信可能な通信線16でECU3に単方向送信するようにしているため、例えば監視用の画像信号を高速転送できるようになり、車両周辺状況を早急に判断できるようになり安全性を高めることができる。 The gateway 2 unilaterally transmits the sensor signals from the monitoring sensor devices 110 to 113 having monitoring sensors for monitoring the periphery of the vehicle to the ECU 3 through the communication line 16 which can communicate at a high speed first speed. Since the monitoring image signal can be transferred at high speed, the situation around the vehicle can be determined promptly, and the safety can be enhanced.
 また本実施形態では、例えば車両フロント部に適用したときに、通信線16のゲーブル長がネットワーク14のケーブル長よりも長くなるように設置されている。例えば通信線16のケーブルは一対のシールドツイスト線により構成されているため、ゲートウェイ2とECU3との間に沿う方向に高速通信帯域を備える通信ケーブルを多数設ける必要がなくなり、エミッションノイズを抑制できると共にコストを抑制できる。 Further, in the present embodiment, for example, when applied to a vehicle front portion, the gable length of the communication line 16 is set to be longer than the cable length of the network 14. For example, since the cable of the communication line 16 is configured by a pair of shielded twist lines, it is not necessary to provide many communication cables having high-speed communication bands in the direction along the gateway 2 and the ECU 3 and emission noise can be suppressed. Cost can be reduced.
 対象ECU3が、第2速度のCAN又はLINのネットワーク15を用いてゲートウェイ2を通じて制御信号を送信するようにしているため、予め車内に適合したバスネットワーク15を用いて他のECU4~9と接続できるようになり、余分な通信ケーブルを改めて設ける必要がなくなる。 Since the target ECU 3 transmits the control signal through the gateway 2 using the CAN or LIN network 15 of the second speed, it can be connected to other ECUs 4 to 9 using the bus network 15 adapted in advance in the vehicle. As a result, there is no need to provide an extra communication cable again.
 特に、センサ装置10~13、110~113及びECUの間の通信情報量は、センサ装置10~13、110~113からECU3への所謂下りの情報通信量が多く、ECU3からセンサ装置10~13、110~113への所謂上りの情報通信量は少ない。このため、ECU3からゲートウェイ2への通信経路として、より低速な通信経路を採用してもフレームロス、パケットロスなどの不具合を生じる虞が少なくなる。 In particular, the communication information amount between the sensor devices 10 to 13 and 110 to 113 and the ECUs is large in the amount of so-called downward information communication from the sensor devices 10 to 13 and 110 to 113 to the ECU 3. , The so-called upward information communication amount to 110 to 113 is small. For this reason, even if a lower speed communication path is adopted as the communication path from the ECU 3 to the gateway 2, there is less possibility of problems such as frame loss and packet loss.
 (第2実施形態)
 図10から図13は第2実施形態の追加説明図を示している。第1実施形態では、車両前部に設置されたセンサ装置110~113に着目した形態を具体例として示したが、第2実施形態では、車両側部に設置されたセンサ装置210~213aに着目した形態を説明する。
Second Embodiment
10 to 13 show additional explanatory views of the second embodiment. Although the form which paid its attention to the sensor apparatus 110-113 installed in the vehicle front part was shown as a specific example in 1st Embodiment, the 2nd embodiment pays attention to the sensor apparatus 210-213a installed in the vehicle side part. An explanation will be given of the form.
 例えば車両側部には、当該車両側部の衝突による安全性能を高めるため衝突検知用のセンサが搭載され、このセンサ情報に応じてエアバッグシステムを作動させるように構成されていることがある。また、車両側部に設置されたドアをキーレスにより開閉するためのキーレスエントリシステムが搭載されていることもある。 For example, a sensor for collision detection may be mounted on the side of the vehicle to enhance the safety performance due to the collision of the side of the vehicle, and the air bag system may be configured to operate according to the sensor information. Moreover, the keyless entry system for opening and closing the door installed in the vehicle side part by keyless may be mounted.
 このようなとき、車両側部に設置されるセンサ装置210~213aとしては、車両側方を撮像するための側方カメラ装置210と共に、車両側部の衝突を検知するための側突センサ装置211、側方LiDARによる測距装置212、及び、ワイヤレスセンサ装置213aを適用し、これらのセンサ装置210~213aが全て同一のゲートウェイ202にネットワーク214で接続されることがある。測距装置212及び側方カメラ装置210は、前述した測距装置112、及び前方カメラ装置110,113とそれぞれ同様の機能を備える。 In such a case, as the sensor devices 210 to 213a installed on the side of the vehicle, together with the side camera device 210 for imaging the side of the vehicle, a side collision sensor device 211 for detecting a collision of the side of the vehicle A side-by-side LiDAR ranging device 212 and a wireless sensor device 213a may be applied, and these sensor devices 210 to 213a may all be connected to the same gateway 202 by a network 214. The distance measuring device 212 and the side camera device 210 have the same functions as the distance measuring device 112 and the front camera devices 110 and 113 described above.
 側突センサ装置211は、DSI3/PSI5と称される電力重畳通信方式(PLC)によりゲートウェイ2と電力供給線214aで接続されている。この場合、側突センサ装置211は、ゲートウェイ2の電源供給部53(後述図11参照)から電力供給線214aを通じて電力供給されると共にこの電力供給線214aを用いてPLCにより通信接続できる。 The side collision sensor device 211 is connected to the gateway 2 by a power supply line 214a by a power superposition communication system (PLC) called DSI3 / PSI5. In this case, the side collision sensor device 211 is supplied with power from the power supply unit 53 (see FIG. 11 described later) of the gateway 2 through the power supply line 214a and can be communicably connected by PLC using the power supply line 214a.
 またワイヤレスセンサ装置213aは、キーレスエントリ又はスマートエントリ用に外部から操作可能にするワイヤレス通信機能を常時オンにすることで外部操作により例えばドアロックの開閉指示受付可能になっている。またワイヤレスセンサ装置213aは、例えばWiFi(登録商標)又はBLE(Bluetooth Low Energy)(Bluetooth は、登録商標)によるワイヤレス通信機能を備える。 In addition, the wireless sensor device 213a can receive, for example, an open / close instruction of a door lock by an external operation by constantly turning on a wireless communication function that can be externally operated for keyless entry or smart entry. The wireless sensor device 213a also has a wireless communication function by, for example, WiFi (registered trademark) or Bluetooth Low Energy (BLET (registered trademark)).
 図11はゲートウェイ202の内部構成ブロックを示している。この図11に示すように、ゲートウェイ202にはDSI3ポート51が設けられており、このDSI3ポート51には電源供給部53及びDSI3-イーサネット変換部52が接続されている。電源供給部53は、図示しないバッテリ電圧により安定化電源を生成し、ゲートウェイ202を構成する各部21~35、52、及びDSI3ポート51を通じて外部に電源供給可能になっている。 FIG. 11 shows an internal configuration block of the gateway 202. As shown in FIG. 11, the gateway 202 is provided with a DSI3 port 51, and a power supply unit 53 and a DSI3-Ethernet conversion unit 52 are connected to the DSI3 port 51. The power supply unit 53 generates a stabilized power supply based on a battery voltage (not shown), and can supply power to the outside through the units 21 to 35, 52 constituting the gateway 202 and the DSI 3 port 51.
 DSI3-イーサネット変換部52は、イーサネット送信部32及びイーサネット受信部33に接続されている。このため、ゲートウェイ202は、DSI3ポート51に電源供給部53により電源供給できると共に、DSI3ポート51を用いて電力重畳通信方式(PLC)により通信処理できる。その他の構成は、第1実施形態と同様であるためその説明を省略する。 The DSI3 to Ethernet conversion unit 52 is connected to the Ethernet transmission unit 32 and the Ethernet reception unit 33. Therefore, the gateway 202 can supply power to the DSI 3 port 51 by the power supply unit 53 and can perform communication processing by the power superposition communication method (PLC) using the DSI 3 port 51. The other configuration is the same as that of the first embodiment, and thus the description thereof is omitted.
 このように、車両走行中だけ動作するエアバッグシステムと、例えばバッテリ電源などで省電力動作するキーレスエントリシステムとが混在しているときには、ゲートウェイ202は、車両停止中にイグニッションスイッチがオフされていても供給されるバッテリ電源から必要最小限の電源を生成してこの電源を用いて低消費電力モードで動作し、イグニッションスイッチがオンされるとバッテリ電圧から各部21~35、52及びDSI3ポート51に電源供給して通常動作モードにて動作する。 As described above, when the air bag system operating only while the vehicle is traveling and the keyless entry system performing power saving operation by, for example, battery power are mixed, the gateway 202 is turned off while the vehicle is stopped. Also, the necessary minimum power is generated from the battery power supplied to operate in the low power consumption mode using this power, and when the ignition switch is turned on, the battery voltage is applied to each part 21 to 35, 52 and DSI3 port 51 The power is supplied to operate in the normal operation mode.
 <低消費電力モードの処理>
 図12及び図13は低消費電力モードにおける処理を示しており、図12はゲートウェイ2がCANポート26にフレームを検出した場合の処理を示し、図13はゲートウェイ2がイーサネットポート21~24にフレームを検出した場合の処理を示している。
<Processing of low power consumption mode>
12 and 13 show the process in the low power consumption mode, FIG. 12 shows the process when the gateway 2 detects a frame in the CAN port 26, and FIG. 13 shows the frame in the Ethernet port 21-24. Shows the process in the case of detecting.
 車両停止中、すなわちイグニッションスイッチがオフしているときにおいても、ゲートウェイ2にはバッテリ電圧が供給されており、この供給電源に応じて動作するが、ゲートウェイ設定部27は、予め定められたイーサネットポート24、ここではキーレスエントリ用のワイヤレスセンサ装置213aが接続されているポート24、及び、CANポート26だけを有効に起動させて動作を受付け、その他のポート21~23、25による受信を無効化して低消費電力モードで動作する。低消費電力モードでは、ゲートウェイ設定部27は、CAN受信部28、CANイーサネット変換部30、イーサネットCAN変換部31、イーサネット受信部33、及びイーサネットスイッチ部34を低消費電力化してスリープ状態で動作させている。 Even when the vehicle is stopped, that is, even when the ignition switch is off, the battery voltage is supplied to the gateway 2 and it operates according to the supplied power, but the gateway setting unit 27 has a predetermined Ethernet port 24. Here, only port 24 to which the wireless sensor device 213a for keyless entry is connected, and only the CAN port 26 are activated to accept the operation, and the reception by the other ports 21 to 23 and 25 is disabled. Operate in low power mode. In the low power consumption mode, the gateway setting unit 27 reduces the power consumption of the CAN reception unit 28, the CAN Ethernet conversion unit 30, the Ethernet CAN conversion unit 31, the Ethernet reception unit 33, and the Ethernet switch unit 34 to operate in the sleep state. ing.
 そして、イグニッションスイッチがオフしている間に、ゲートウェイ設定部27がCAN受信部28を信号検出部として間欠的に起動し、CAN受信部28がCANポート26からバスネットワーク15のフレームを間欠的に検出する。またゲートウェイ設定部27が、イーサネット受信部33を信号検出部として間欠的に起動し、イーサネット受信部33がイーサネットポート24からネットワーク14のイーサネットフレームを間欠的に検出する。このときゲートウェイ設定部27は間欠起動部として機能する。 Then, while the ignition switch is turned off, the gateway setting unit 27 intermittently activates the CAN reception unit 28 as a signal detection unit, and the CAN reception unit 28 intermittently transmits the frames of the bus network 15 from the CAN port 26. To detect. The gateway setting unit 27 intermittently activates the Ethernet receiving unit 33 as a signal detection unit, and the Ethernet receiving unit 33 intermittently detects the Ethernet frame of the network 14 from the Ethernet port 24. At this time, the gateway setting unit 27 functions as an intermittent activation unit.
 このときCANポート26に信号を検出したり、イーサネットポート24に信号を検出したりすると、ゲートウェイ設定部27は、これらのCAN受信部28、CANイーサネット変換部30、イーサネットCAN変換部31、イーサネット受信部33及びイーサネットスイッチ部34を独立して起動して通常動作モードにすると良い。このときゲートウェイ設定部27は、ゲートウェイ2の内部ブロックの構成を全部起動しても良いが、信号を検出したポート(例えばイーサネットポート24)と当該ポートから転送先のポート(例えばLVDSポート25)のフレームの通信経路に沿った必要最小限の一部の通信ブロックを起動して転送処理を行うようにすることがさらに望ましい。このようなときゲートウェイ設定部27は一部起動部として機能する。 At this time, when a signal is detected in the CAN port 26 or a signal is detected in the Ethernet port 24, the gateway setting unit 27 receives the CAN reception unit 28, the CAN Ethernet conversion unit 30, the Ethernet CAN conversion unit 31, the Ethernet reception It is preferable that the unit 33 and the Ethernet switch unit 34 be activated independently to be in the normal operation mode. At this time, the gateway setting unit 27 may activate the entire configuration of the internal block of the gateway 2, but the port (for example, the Ethernet port 24) that detected the signal and the port (for example, the LVDS port 25) that is the transfer destination from the port It is further desirable to activate the minimum required some communication blocks along the communication path of the frame to perform transfer processing. In such a case, the gateway setting unit 27 functions as a partial activation unit.
 <CANフレームを検出したとき>
 例えば、図12のS21においてCANポート26が制御信号のデータフレームを検出すると、ゲートウェイ設定部27は、S22においてCAN受信部28及びCANイーサネット変換部30を起動する。そしてゲートウェイ設定部27は、受信したフレームのCANIDがS23においてゲートウェイ202宛てであるか否かを判定し、ゲートウェイ202宛てのCANIDでなければS23にてNOと判定して見送るが、ゲートウェイ202宛てであればS23にてYESと判定し、S24においてイーサネットスイッチ部34を起動する。
<When a CAN frame is detected>
For example, when the CAN port 26 detects a data frame of a control signal in S21 of FIG. 12, the gateway setting unit 27 activates the CAN reception unit 28 and the CAN Ethernet conversion unit 30 in S22. Then, the gateway setting unit 27 determines whether the CANID of the received frame is addressed to the gateway 202 in S23, and if not CANID addressed to the gateway 202, determines NO in S23 and sees it, but the gateway 202 is addressed If there is, the determination is YES in S23, and the Ethernet switch unit 34 is activated in S24.
 そして、ゲートウェイ202は、S25においてCANIDに対応したイーサネットポート24を起動し、S26において受信したCANフレームのヘッダをイーサネットフレームに付け替える。そして、ゲートウェイ202は、S27においてイーサネット送信部32によりイーサネットポートからフレームを送出する。これによりゲートウェイ202のゲートウェイ設定部27は、必要なタイミングで、CANIDに応じたイーサネットポート24に通ずる通信ブロック(イーサネットスイッチ部34)だけを起動でき、CANのバスネットワーク15に検出された信号を通信ブロック(イーサネットスイッチ部34)を通じてイーサネットポート24へ転送できる。これにより、必要最小限の一部の構成を起動して転送処理を行うことができる。 Then, the gateway 202 activates the Ethernet port 24 corresponding to the CAN ID in S25, and replaces the header of the CAN frame received in S26 with the Ethernet frame. Then, the gateway 202 sends the frame from the Ethernet port by the Ethernet transmission unit 32 in S27. As a result, the gateway setting unit 27 of the gateway 202 can activate only the communication block (Ethernet switch unit 34) connected to the Ethernet port 24 corresponding to the CAN ID at the necessary timing, and communicate the signal detected by the CAN bus network 15 The data can be transferred to the Ethernet port 24 through the block (Ethernet switch unit 34). As a result, it is possible to activate the minimum necessary partial configuration and perform transfer processing.
 <イーサネットポート24から信号を検出したとき>
 また逆に、例えば、図13のS31においてイーサネットポート24にフレームを検出すると、ゲートウェイ設定部27は、S32においてイーサネット受信部33及びイーサネットスイッチ部34を起動する。そして、イーサネット受信部33は、イーサネットフレームを参照し、付与されている宛先MACアドレスを読み出し、このMACアドレスがゲートウェイ202宛てであるか否かを判定し、ゲートウェイ202宛てでなければS33にてNOと判定して見送るが、ゲートウェイ202宛てであればS33にてYESと判定し、イーサネットCAN変換部31を起動する。そしてS35においてイーサネットフレームF1からイーサネットヘッダ及びフッタを除いてCANフレームF2に変換する。そしてCAN送信部29が、S36においてCANポート26からCANフレームF2を送出する。これにより、ゲートウェイ202のゲートウェイ設定部27は、必要なタイミングでCANポート26及びその通信経路に沿った通信ブロック(イーサネットCAN変換部31)だけを起動でき、イーサネットポート24に検出された信号をバスネットワーク15に転送できる。これにより、必要最小限の一部の構成を起動して転送処理を行うことができる。
<When a signal is detected from Ethernet port 24>
Conversely, for example, when a frame is detected in the Ethernet port 24 in S31 of FIG. 13, the gateway setting unit 27 activates the Ethernet receiving unit 33 and the Ethernet switch unit 34 in S32. Then, the Ethernet receiving unit 33 refers to the Ethernet frame, reads the assigned destination MAC address, determines whether this MAC address is addressed to the gateway 202, and if not addressed to the gateway 202, NO at S33. However, if it is addressed to the gateway 202, YES is determined in S33, and the Ethernet CAN conversion unit 31 is activated. Then, in S35, the Ethernet frame F1 is converted to the CAN frame F2 excluding the Ethernet header and footer. Then, the CAN transmitter 29 transmits the CAN frame F2 from the CAN port 26 in S36. As a result, the gateway setting unit 27 of the gateway 202 can start only the CAN port 26 and the communication block (Ethernet CAN conversion unit 31) along the communication path at the necessary timing, and the signal detected by the Ethernet port 24 is It can be transferred to the network 15. As a result, it is possible to activate the minimum necessary partial configuration and perform transfer processing.
 <本実施形態の概念的なまとめ、効果>
 例えば、イグニッションスイッチがオフしている間に、ゲートウェイ設定部27がCAN受信部28を間欠的に起動し、CAN受信部28がCANポート26からバスネットワーク15のフレームを検出することで、ネットワーク15の信号を検出できる。
<Conceptual summary of this embodiment, effect>
For example, while the ignition switch is turned off, the gateway setting unit 27 intermittently activates the CAN receiving unit 28, and the CAN receiving unit 28 detects a frame of the bus network 15 from the CAN port 26. Signal can be detected.
 また、ゲートウェイ設定部27が、イーサネット受信部33を間欠的に起動し、イーサネット受信部33がイーサネットポート24からネットワーク14のイーサネットフレームを間欠的に検出することでイーサネットポート24の信号を検出できる。これにより、低消費電力化を図りながらキーレスエントリシステムを安定的に動作させることができる。 In addition, the gateway setting unit 27 intermittently activates the Ethernet receiving unit 33, and the Ethernet receiving unit 33 intermittently detects the Ethernet frame of the network 14 from the Ethernet port 24 so that the signal of the Ethernet port 24 can be detected. As a result, the keyless entry system can be stably operated while achieving low power consumption.
 (第3実施形態)
 図14は第3実施形態の追加説明図を示している。第3実施形態では、一のECU(例えば3)がゲートウェイ2に送信する送信信号(例えば制御信号)を他のECU(例えば4)が傍受して監視する形態を示す。以下では、信号を送信するECUを「送信ECU3」と称し、この信号を監視するECUを「監視ECU4」と称する。
Third Embodiment
FIG. 14 shows an additional explanatory view of the third embodiment. The third embodiment shows a mode in which another ECU (for example, 4) intercepts and monitors a transmission signal (for example, control signal) that one ECU (for example, 3) transmits to the gateway 2. Below, ECU which transmits a signal is called "transmission ECU3", and ECU which monitors this signal is called "monitoring ECU4."
 第1実施形態でも説明したように、ある送信ECU3が制御信号をゲートウェイ2に送信するときにはバスネットワーク15を用いている。このとき他の監視ECU4もまたバスネットワーク15に接続されているため、このゲートウェイ2に送信されている信号を傍受できる。このため、複数のECU3及び4~9は、ゲートウェイ2宛ての制御信号を相互にモニタできることになる。本実施形態では、監視ECU4が、このバスネットワーク15の信号、フレームを監視する形態を説明する。 As described in the first embodiment, when a transmitting ECU 3 transmits a control signal to the gateway 2, the bus network 15 is used. At this time, since the other monitoring ECU 4 is also connected to the bus network 15, the signal transmitted to the gateway 2 can be intercepted. For this reason, the plurality of ECUs 3 and 4 to 9 can mutually monitor control signals addressed to the gateway 2. In the present embodiment, an embodiment will be described in which the monitoring ECU 4 monitors a signal of the bus network 15 and a frame.
 図14は監視ECU4の処理をフローチャートで示している。図14に示すように、監視ECU4が、S41においてCAN受信部28によりバスネットワーク15にフレームを検出したときには、S42においてCANIDを読出し、S43においてCANIDがゲートウェイ2宛てであるか否かを判定し、ゲートウェイ2宛てであるときにはS43にてYESと判定し、S44においてCANフレームをモニタ、すなわち監視する。監視ECU4は、S45においてこのとき送信された送信信号が正常であるか、誤りがあるかをゲートウェイ設定部27により監視する。ゲートウェイ設定部27は監視部としての機能を備える。この判定方法は、ペイロードの内容を確認することで判定することができ、例えばフレームがリモートフレームであるときにはこのフレームに含まれるCRCシーケンスを用いて判定処理することで正常であるか、誤りがあるかの判定処理を行うことができる。また、データフィールドの内容を確認して正常であるか、誤りがあるかの判定処理を行うこともできる。 FIG. 14 shows the processing of the monitoring ECU 4 in a flowchart. As shown in FIG. 14, when the monitoring ECU 4 detects a frame in the bus network 15 by the CAN receiving unit 28 in S41, the CANID is read in S42, and it is determined whether the CANID is addressed to the gateway 2 in S43. When it is addressed to the gateway 2, the determination is YES in S43, and the CAN frame is monitored, that is, monitored in S44. The monitoring ECU 4 monitors by the gateway setting unit 27 whether the transmission signal transmitted at this time is normal or erroneous in S45. The gateway setting unit 27 has a function as a monitoring unit. This determination method can be determined by confirming the content of the payload. For example, when the frame is a remote frame, it is normal or erroneous by performing determination processing using a CRC sequence included in this frame Determination processing can be performed. It is also possible to confirm the content of the data field and determine whether it is normal or erroneous.
 監視ECU4のゲートウェイ設定部27は、正常であれば監視処理を終了するが、誤りがあり異常であると判定すればS45にてNOと判定し、S46にて送信ECU3がフレームを送信完了しているか否かを判定する。監視ECU4は、送信ECU3により送信されているフレームをゲートウェイ設定部27及びCAN受信部28により監視することでフレームが送信完了されたか否かを判定できる。 If normal, the gateway setting unit 27 of the monitoring ECU 4 ends the monitoring processing, but if it is determined that there is an error and abnormality, the determination is NO in S45, and the transmission ECU 3 completes transmission of the frame in S46. Determine if there is. The monitoring ECU 4 can determine whether the transmission of the frame is completed by monitoring the frame transmitted by the transmission ECU 3 with the gateway setting unit 27 and the CAN receiving unit 28.
 そして監視ECU4は、送信ECU3からフレームを送信完了しているようであれば、S46でYESと判定して制御信号を訂正した後、訂正した後の制御信号をゲートウェイ2に送出する。 Then, if the transmission of the frame from the transmission ECU 3 is completed, the monitoring ECU 4 determines YES in S46 and corrects the control signal, and then transmits the corrected control signal to the gateway 2.
 逆に、監視ECU4のゲートウェイ設定部27は、フレームが送信完了されていない場合には、S46でNOと判定し、S48においてCAN送信部29によりドミナント「0」をバスに出力させることでフレームを破壊し、制御信号を訂正した後、S49において訂正した制御信号をゲートウェイ2に送出する。このときゲートウェイ設定部27は破壊部として機能することになる。 Conversely, if the frame has not been completely transmitted, the gateway setting unit 27 of the monitoring ECU 4 determines NO in S46, and causes the CAN transmission unit 29 to output a dominant "0" to the bus in S48. After destroying and correcting the control signal, the corrected control signal is sent to the gateway 2 in S49. At this time, the gateway setting unit 27 functions as a destruction unit.
 これにより、送信ECU3が送信した制御信号を監視ECU4がモニタし、制御信号に異常を生じているときには、制御信号を訂正してゲートウェイ2に送出できるようになり、たとえ制御信号を送信する送信ECU3が異常を生じていたとしても、監視ECU4が制御信号の送信機能を代わりに実現することができ、通信システムの信頼性を高めることができる。 As a result, the monitoring ECU 4 monitors the control signal transmitted by the transmission ECU 3 and corrects the control signal and sends it to the gateway 2 when the control signal is abnormal, even if the transmission ECU 3 transmits the control signal. Even if there is an abnormality, the monitoring ECU 4 can instead realize the control signal transmission function, and the reliability of the communication system can be enhanced.
 <本実施形態の概念的なまとめ、効果>
 要するに、監視ECU4は、送信ECU3がゲートウェイ2にフレームを送信するときにフレームを監視し当該フレームの誤りの有無をゲートウェイ設定部27により監視するようにしている。これにより、たとえ送信ECU3が送信する制御信号に異常を生じていたとしても、監視ECU4が信号の送信機能を代わりに実現することができ、通信システムの信頼性を高めることができる。また、ゲートウェイ設定部27は、フレームに誤りが有ると判定したときにはCAN送信部29によりドミナントを出力することでフレームを破壊するようにしているため、誤った信号を転送することがなくなる。
<Conceptual summary of this embodiment, effect>
In short, when the transmitting ECU 3 transmits a frame to the gateway 2, the monitoring ECU 4 monitors the frame and causes the gateway setting unit 27 to monitor whether there is an error in the frame. Thereby, even if the control signal transmitted by the transmission ECU 3 is abnormal, the monitor ECU 4 can realize the signal transmission function instead, and the reliability of the communication system can be improved. In addition, when the gateway setting unit 27 determines that the frame has an error, the CAN transmission unit 29 outputs the dominant signal to destroy the frame, so that an erroneous signal is not transferred.
 (第4実施形態)
 図15は第3実施形態の追加説明図を示している。第3実施形態でも同様に、ECU3がゲートウェイ2に送信する信号(例えば制御信号)を他のECU4が傍受して監視する形態を示す。以下では、信号を送信するECUを「送信ECU3」と称し、この信号を監視するECUを「監視ECU4」と称する。
Fourth Embodiment
FIG. 15 shows an additional explanatory view of the third embodiment. Similarly, in the third embodiment, another ECU 4 intercepts and monitors a signal (for example, a control signal) transmitted by the ECU 3 to the gateway 2. Below, ECU which transmits a signal is called "transmission ECU3", and ECU which monitors this signal is called "monitoring ECU4."
 図15は監視ECU4の処理をフローチャートで示している。図15に示すように、監視ECU4が、S51においてバスネットワーク15にフレームを検出したときには、S52においてCANIDを読出し、S53において送信ECU3からのフレームであるか否かを判定する。このフレームの確認は、一般的に送信ECU3が定期的に送信するフレームを対象としても良いし、特定の信号(例えば制御信号)を含むフレームを対象としても良い。 FIG. 15 shows the processing of the monitoring ECU 4 in a flowchart. As shown in FIG. 15, when the monitoring ECU 4 detects a frame in the bus network 15 in S51, the CANID is read in S52, and it is determined in S53 whether or not it is a frame from the transmission ECU 3. The confirmation of this frame may generally be for a frame that the transmission ECU 3 periodically transmits, or may be for a frame including a specific signal (for example, a control signal).
 監視ECU4は、送信ECU3からのフレームを確認できればS53にてYESと判定し、S54においてCANフレームをモニタ、すなわち監視する。そして監視ECU4は、このときのCANフレームを参照し、S55において送信ECU3が正常なCANフレームを送信しているか否かを判定する。監視ECU4は、送信ECU3が正常なCANフレームを送信していると判定すれば、S55にてYESと判定して監視処理を終了するが、異常と判定すればS56に移行して送信ECU3への信号を監視ECU4に送信するための設定変更コマンドをCANフレームとしてゲートウェイ2に送出し、S57において送信ECU3の代替動作を開始する。このときゲートウェイ2は、送信ECU3への送信信号を監視ECU4に送信するように内部メモリを書換えて記録する。 If the monitor ECU 4 can confirm the frame from the transmission ECU 3, the monitor ECU 4 determines YES in S53, and monitors or monitors the CAN frame in S54. Then, the monitoring ECU 4 refers to the CAN frame at this time, and determines in S55 whether the transmitting ECU 3 transmits a normal CAN frame. If the monitoring ECU 4 determines that the transmission ECU 3 is transmitting a normal CAN frame, it determines YES in S55 and ends the monitoring process, but if it determines that it is abnormal, the process proceeds to S56 and the transmission ECU 3 receives A setting change command for transmitting a signal to the monitoring ECU 4 is transmitted to the gateway 2 as a CAN frame, and an alternative operation of the transmission ECU 3 is started in S57. At this time, the gateway 2 rewrites and records the internal memory so as to transmit a transmission signal to the transmission ECU 3 to the monitoring ECU 4.
 また監視ECU4は、S53において送信ECU3からのフレームでないと判定したときには、送信ECU3によるフレームの受信が前回から一定時間(例えば1秒)以内であるか否かを判定し、一定時間内であれば終了するが、一定時間から外れていれば前述のS56及びS57の処理を行うことで、監視ECU4が送信ECU3の代替処理を開始する。 If it is determined in S53 that the frame is not a frame from the transmission ECU 3, the monitoring ECU 4 determines whether the reception of the frame by the transmission ECU 3 is within a predetermined time (for example, 1 second) from the previous time. Although it ends, if it has deviated from fixed time, monitoring ECU4 will start substitution processing of transmitting ECU3 by performing processing of above-mentioned S56 and S57.
 <本実施形態の概念的まとめ、効果>
 要するに、監視ECU4は、送信ECU3がネットワーク15を用いてゲートウェイ2に送信するフレームの誤りの有無を監視し、前回から一定時間以内に前記送信ECUからフレームを受信していないときには、監視ECU4が送信ECU3の代わりに代替して信号を送信するようにしている。これにより、監視ECU4が、送信ECU3の代わりに制御信号の送信機能を代替できるようになり、通信システムの信頼性を高めることができる。
<Conceptual summary of this embodiment, effect>
In short, the monitoring ECU 4 monitors the presence or absence of an error in the frame transmitted to the gateway 2 by the transmitting ECU 3 using the network 15. When the frame is not received from the transmitting ECU within a predetermined time from the previous time, the monitoring ECU 4 transmits Instead of the ECU 3, a signal is transmitted. As a result, the monitoring ECU 4 can substitute for the transmission function of the control signal instead of the transmission ECU 3, and the reliability of the communication system can be improved.
 (第5実施形態)
 図16は第5実施形態の追加説明図を示している。例えば第1実施形態では、ゲートウェイ2が一つのLVDSポート25から一つのECU(例えば画像処理ECU103)にLVDSによる信号を出力する形態を示したが、図16に示すように、複数のECU(例えば画像処理ECU103、自動運転ECU105)にLVDSポートから出力するようにしても良い。この図16の通信システム301は、ゲートウェイ302を備え、画像処理ECU103、自動運転ECU105にそれぞれ通信線316a、316bを通じてLVDSによる信号を送信可能になっている。その他のセンサ装置10~13やネットワーク14、15の構成は第1実施形態と同様であるため説明を省略する。
Fifth Embodiment
FIG. 16 shows an additional explanatory view of the fifth embodiment. For example, in the first embodiment, the gateway 2 outputs an LVDS signal to one ECU (for example, the image processing ECU 103) from one LVDS port 25. However, as shown in FIG. It may be made to output to the image processing ECU 103 and the automatic operation ECU 105) from the LVDS port. The communication system 301 of FIG. 16 includes a gateway 302, and can transmit an LVDS signal to the image processing ECU 103 and the autonomous driving ECU 105 through communication lines 316a and 316b, respectively. The configurations of the other sensor devices 10 to 13 and the networks 14 and 15 are the same as those of the first embodiment, and thus the description thereof is omitted.
 ここで自動運転ECU105は、周辺監視する監視センサ装置により通信線316bを通じて送信される画像情報等に応じて車両内のエンジン、ブレーキ、ステアリング、表示器等を制御し、車両を自動運転制御指令するECUであり、この自動運転ECU105の指令に応じて、ネットワーク15に接続された図示しないエンジンECU、ブレーキECU等が各アクチュエータを制御するように構成される。 Here, the autonomous driving ECU 105 controls the engine, the brake, the steering, the indicator, etc. in the vehicle according to the image information etc. transmitted through the communication line 316b by the monitoring sensor device for monitoring the surroundings to command the autonomous driving control of the vehicle An engine ECU (not shown) connected to the network 15, a brake ECU, etc. are configured to control the respective actuators according to a command from the automatic driving ECU 105.
 このとき図16に図示したゲートウェイ302には図3に示したLVDSポート25を複数設けることが望ましいが、これらの複数のLVDSポート25には同一のデータを送出するようにしても良い。また、ゲートウェイ302が、センサ装置10~13と送信先のECU103,105…とを個別に対応させたテーブルを内部のメモリに記憶しておき、ゲートウェイ302が、センサ装置10~13からセンサ信号を受信したときに、メモリのテーブルに対応して記憶された一つ又は複数のECU103、105にデータを送出するようにしても良い。 At this time, although it is desirable to provide a plurality of LVDS ports 25 shown in FIG. 3 in the gateway 302 shown in FIG. 16, the same data may be sent out to the plurality of LVDS ports 25. In addition, the gateway 302 stores a table in which the sensor devices 10 to 13 and the ECUs 103, 105, ... of the transmission destination are individually associated in the internal memory, and the gateway 302 transmits sensor signals from the sensor devices 10 to 13. When received, data may be sent to one or more ECUs 103 and 105 stored corresponding to the memory table.
 またECU103,105が、バスネットワーク15を通じてゲートウェイ302に制御信号を送出するときに、複数のECU103,105が互いに異なる設定値を備えた制御信号を送出することもある。このような場合、各ECU103、105の出荷前に一のECU103と他のECU105との間に主従関係を予め設定しておき、ゲートウェイ302及びECU103,105がそれぞれこの関係をメモリに記憶し、第2又は第3実施形態に示したように、一のECU103の送信信号を他のECU105が監視して送信ECU103の送信信号に異常があれば、ECU105が代わりに制御信号を送信するようにしても良い。 When the ECUs 103 and 105 transmit control signals to the gateway 302 through the bus network 15, the plurality of ECUs 103 and 105 may transmit control signals having different set values. In such a case, a master-slave relationship is preset between the one ECU 103 and the other ECU 105 before shipment of the ECUs 103 and 105, and the gateway 302 and the ECUs 103 and 105 store the relationships in the memory, respectively. As shown in the second or third embodiment, even if the other ECU 105 monitors the transmission signal of one ECU 103 and there is an abnormality in the transmission signal of the transmission ECU 103, the ECU 105 may instead transmit the control signal. good.
 またゲートウェイ302は、CAN受信部28により、一のECU103、他のECU105の制御信号による設定値をそれぞれ個別に受信することで、両者が一致した場合だけ設定値を書換えるようにしても良い。 In addition, the gateway 302 may be configured to rewrite the setting value only when the two coincide with each other by individually receiving the setting values by the control signal of one ECU 103 and another ECU 105 by the CAN receiving unit 28.
 また、ゲートウェイ302及びECU103,105は、バスネットワーク15に接続されたECU103,105の優先順位を予めメモリに記憶しておき、ゲートウェイ302は、優先順位の高いECU(例えば105)から送信された制御信号による設定値を有効に書換えして転送するようにしても良い。これにより、制御信号の設定値の矛盾を生じたとしても、ゲートウェイ302は、定められた規則に応じて設定値を保持又は書き換えて設定値を含む制御信号を転送できる。 In addition, the gateway 302 and the ECUs 103 and 105 store in advance in the memory the priorities of the ECUs 103 and 105 connected to the bus network 15, and the gateway 302 performs control transmitted from an ECU (for example, 105) having a high priority. The set value by the signal may be effectively rewritten and transferred. Thus, even if a contradiction occurs in the setting value of the control signal, the gateway 302 can hold or rewrite the setting value according to the defined rule and transfer the control signal including the setting value.
 <車両フロント部に適用した具体例>
 図17は車両フロント部に適用した具体例を示している。図17は、図8に代わる通信システム401の構成を示している。図8の構成と異なるところは、通信システム401が、画像処理ECU103a,103bを2つ以上搭載しているところにある。ユニットU301は、ゲートウェイ302を備え、センサ装置110~113をネットワーク14により接続して構成される。
<Example applied to the front of the vehicle>
FIG. 17 shows a specific example applied to the vehicle front portion. FIG. 17 shows a configuration of a communication system 401 which replaces FIG. A difference from the configuration of FIG. 8 is that the communication system 401 has two or more image processing ECUs 103a and 103b. The unit U 301 includes a gateway 302 and is configured by connecting the sensor devices 110 to 113 by the network 14.
 本実施形態の通信システム401は、複数の画像処理ECU103a,103bを搭載している。これらの画像処理ECU103a,103bは、それぞれバスネットワーク15に接続されていると共に、ゲートウェイ302がそれぞれの画像処理ECU103a,103bにLVDSポート及び通信線316a,316bを通じてフレームを送出する。 The communication system 401 of the present embodiment is equipped with a plurality of image processing ECUs 103a and 103b. The image processing ECUs 103a and 103b are connected to the bus network 15, respectively, and the gateway 302 transmits a frame to the respective image processing ECUs 103a and 103b through the LVDS port and the communication lines 316a and 316b.
 画像処理ECU103a,103bは、互いに同一の機能を備えているもので、一方の画像処理ECU103aがたとえ故障したとしても、他方の画像処理ECU103bが代わりに動作可能に設けられており、これにより通信システムの信頼性を高めることができる。 The image processing ECUs 103a and 103b have the same function, and even if one of the image processing ECUs 103a fails, the other image processing ECU 103b is provided so as to be operable instead. Can increase the reliability of
 ゲートウェイ302は、各センサ装置110~113からセンサ信号を受信すると、一方の画像処理ECU103aにデータを送出するようにメモリ、ゲートウェイ設定部27に設定されている。 The gateway 302 is set in the memory and the gateway setting unit 27 so as to send data to one of the image processing ECUs 103 a when receiving sensor signals from the sensor devices 110 to 113.
 そして第2又は第3実施形態で説明したように、他方の画像処理ECU103bが一方の画像処理ECU103aの送出信号を監視する機能を備えている。この場合、一方の画像処理ECU103aに不具合が生じ当該画像処理ECU103aが正常動作継続困難になると、他方の画像処理ECU103bが一方の画像処理ECU103aの送出信号の異常を検出し、他方の画像処理ECU103bが一方の画像処理ECU103aの処理を代わりに実行する。これにより通信システムの信頼性を高めることができる。 Then, as described in the second or third embodiment, the other image processing ECU 103 b has a function of monitoring the transmission signal of one image processing ECU 103 a. In this case, when a problem occurs in one image processing ECU 103a and the normal operation of the image processing ECU 103a becomes difficult, the other image processing ECU 103b detects an abnormality in the signal sent from one image processing ECU 103a, and the other image processing ECU 103b The processing of one image processing ECU 103a is executed instead. This can improve the reliability of the communication system.
 また、一方及び他方の画像処理ECU103a及び103bが1つの画像処理動作を分担するようにしても良い。すなわち、画像処理は、他の処理よりも比較的処理負荷が高くなるためECUを構成するハードウェアの温度も高くなることから、画像処理動作を分担することで発熱を極力抑制できる。 Further, one and the other image processing ECUs 103a and 103b may share one image processing operation. That is, since the processing load of image processing is relatively high compared to other processing, the temperature of hardware constituting the ECU is also high, and heat generation can be suppressed as much as possible by sharing the image processing operation.
 (第6実施形態)
 図18は第6実施形態の追加説明図を示している。図18は、図17に代わる構成例を示している。図17においては、ゲートウェイ302にCANやLINのバスネットワーク15が接続されている形態を示したが、本実施形態の図18に示す通信システム501は、ゲートウェイ302がバスネットワーク15に接続されておらず、各センサ装置110~113がバスネットワーク515に接続されている形態を示している。
Sixth Embodiment
FIG. 18 shows an additional explanatory view of the sixth embodiment. FIG. 18 shows an alternative configuration to FIG. Although FIG. 17 shows a mode in which the CAN or LIN bus network 15 is connected to the gateway 302, in the communication system 501 shown in FIG. 18 of this embodiment, the gateway 302 is connected to the bus network 15. In the first embodiment, the sensor devices 110 to 113 are connected to the bus network 515.
 この図18に示すように、各ECU103a、103b、104からゲートウェイ302を介することなくセンサ装置110~113にバスネットワーク515を直接接続し、各ECU103a、103b、104とセンサ装置110~113とは、バスネットワーク515を通じて制御信号を送受信するようにしても良い。すなわちECU103a、103b、104は、バスネットワーク515を用いて他のイーサネット又はLVDSによるフレーム信号よりも低速、すなわち第2速度で制御信号をセンサ装置110~113に送信するようにしても良い。 As shown in FIG. 18, the bus network 515 is directly connected from each of the ECUs 103a, 103b, and 104 to the sensor devices 110 to 113 without the gateway 302, and the ECUs 103a, 103b, and 104 and the sensor devices 110 to 113 Control signals may be transmitted and received through the bus network 515. That is, the ECUs 103a, 103b, and 104 may use the bus network 515 to transmit control signals to the sensor devices 110 to 113 at a speed lower than that of other Ethernet or LVDS frame signals, that is, at the second speed.
 (第7実施形態)
 図19及び図20は第7実施形態の追加説明図を示している。図19に通信システム601の構成を示す。通信システム601が、1又は複数のセンサ装置10a~12a、10b~12bをそれぞれ接続した複数のゲートウェイ602a、602bを備えているときには、これらのゲートウェイ602a,602bの間のセンサ信号の送信処理にLVDSによる単方向送信技術を用いても良い。
Seventh Embodiment
19 and 20 show an additional explanatory view of the seventh embodiment. The configuration of the communication system 601 is shown in FIG. When the communication system 601 includes a plurality of gateways 602a and 602b respectively connecting one or more sensor devices 10a to 12a and 10b to 12b, an LVDS is used to transmit sensor signals between the gateways 602a and 602b. A uni-directional transmission technique may be used.
 図19に示す構成では、ゲートウェイ602aには、複数のセンサ装置10a~12aがネットワーク14aを通じて接続されており、他のゲートウェイ602bにも複数のセンサ装置10b~12bがネットワーク14bを通じて接続されている。そしてECU3と各ゲートウェイ602aおよび602bとはバスネットワーク15により接続されている。上流側のゲートウェイ602bは、例えば第1実施形態で説明した図3のゲートウェイ2の構成と同様の構成である。 In the configuration shown in FIG. 19, a plurality of sensor devices 10a to 12a are connected to the gateway 602a through the network 14a, and a plurality of sensor devices 10b to 12b are connected to the other gateway 602b through the network 14b. The ECU 3 and the gateways 602a and 602b are connected by a bus network 15. The upstream gateway 602b has, for example, the same configuration as that of the gateway 2 of FIG. 3 described in the first embodiment.
 また図20は下流側のゲートウェイ602aの構成例を示している。このゲートウェイ602aは、図3に示したゲートウェイ2の構成と共に、上流側のゲートウェイ602bからLVDSによるフレームを入力するLVDSポート61を備えており、LVDSポート61から信号を入力すると、LVDSイーサネット変換部62に出力する。LVDSイーサネット変換部62は、LVDSポート61から入力される上流側のゲートウェイ602bからの信号をイーサネットフレームに変換し、イーサネット受信部33に出力するように構成される。その他の構成は図3の構成と同様である。 FIG. 20 shows a configuration example of the downstream gateway 602a. The gateway 602a includes an LVDS port 61 for inputting an LVDS frame from the upstream gateway 602b in addition to the configuration of the gateway 2 shown in FIG. 3. When a signal is inputted from the LVDS port 61, the LVDS Ethernet converter 62 Output to The LVDS Ethernet conversion unit 62 is configured to convert a signal from the upstream gateway 602 b input from the LVDS port 61 into an Ethernet frame and output the Ethernet frame to the Ethernet reception unit 33. The other configuration is the same as that of FIG.
 図19に説明を戻すと、下流側のゲートウェイ602aとECU3との間にはLVDSによる信号を送信するための通信線16aが接続されており、上流側のゲートウェイ602bはその下流側のゲートウェイ602aにLVDSによる信号を送信するための別の通信線16bが接続されている。これにより、上流側のゲートウェイ602bは、各センサ装置10b~12bのセンサ信号をLVDSにより下流側のゲートウェイ602aを通じてECU3に転送できる。また、下流側のゲートウェイ602aもまた、各センサ装置10a~12aのセンサ信号をLVDSによりECU3に送信できる。 Referring back to FIG. 19, a communication line 16a for transmitting a signal by LVDS is connected between the downstream gateway 602a and the ECU 3, and the upstream gateway 602b is connected to the downstream gateway 602a. Another communication line 16 b for transmitting an LVDS signal is connected. Thereby, the gateway 602b on the upstream side can transfer the sensor signal of each of the sensor devices 10b to 12b to the ECU 3 through the gateway 602a on the downstream side by LVDS. Further, the gateway 602a on the downstream side can also transmit sensor signals of the respective sensor devices 10a to 12a to the ECU 3 by LVDS.
 このため、ECU3が制御信号を各ゲートウェイ602a,602bを通じてセンサ装置10a~12a、10b~12bの何れか(例えば10bとする)に送信すると、センサ装置10bは、上流側のゲートウェイ602bにセンサ信号を送出する。上流側のゲートウェイ602bは、接続されている対象のセンサ装置10bからセンサ信号を受信すると下流側のゲートウェイ602aに転送し、さらに下流側のゲートウェイ602aがLVDSによりECU3に転送できる。これにより、センサ装置10bのセンサ信号を高い通信速度でECU3に送信できる。 Therefore, when the ECU 3 transmits the control signal to any one of the sensor devices 10a to 12a and 10b to 12b (for example, 10b) through the gateways 602a and 602b, the sensor device 10b transmits the sensor signal to the upstream gateway 602b. Send out. When the upstream gateway 602b receives a sensor signal from the connected target sensor device 10b, it can transfer it to the downstream gateway 602a, and the downstream gateway 602a can transfer it to the ECU 3 by LVDS. Thus, the sensor signal of the sensor device 10b can be transmitted to the ECU 3 at a high communication speed.
 (第8実施形態)
 図21は第8実施形態の追加説明図を示している。図19の通信システム601に代えて示す図21の通信システム701に示すように、ゲートウェイ602aは、イーサネットスイッチ702を介してセンサ装置10b~12bを接続するようにしても良い。センサ装置10b~12bは、イーサネットスイッチ702を通じてイーサネットフレームをゲートウェイ602aに送信できるため、前述実施形態と同様の作用効果を奏することになる。
Eighth Embodiment
FIG. 21 shows an additional explanatory view of the eighth embodiment. As shown in the communication system 701 of FIG. 21 shown instead of the communication system 601 of FIG. 19, the gateway 602 a may connect the sensor devices 10 b to 12 b via the Ethernet switch 702. Since the sensor devices 10b to 12b can transmit an Ethernet frame to the gateway 602a through the Ethernet switch 702, the sensor device 10b to 12b exhibits the same effects as those of the above-described embodiment.
 (他の実施形態)
 前述実施形態に限定されるものではなく、例えば、以下に示す変形又は拡張が可能である。
 ネットワーク15はECU3~9とゲートウェイ2との間、ネットワーク515は画像処理ECU103a、103b、衝突安全ECU104とセンサ装置110~113との間、をそれぞれ接続する形態を示したが、これらのECU3~9,103a,103b,104とゲートウェイ2とセンサ装置110~113との双方を接続するネットワークを用いても良い。
(Other embodiments)
The present invention is not limited to the above embodiment, and for example, the following modifications or expansions are possible.
The network 15 is connected between the ECUs 3 to 9 and the gateway 2, and the network 515 is connected to the image processing ECUs 103a and 103b and the collision safety ECU 104 and the sensor devices 110 to 113, respectively. , 103a, 103b, 104, the gateway 2 and the sensor devices 110 to 113 may be connected to each other.
 図面中、1,101,201,301,401,501,601,701は通信システム(101はADASシステム)、3~9,103~105,103a,103bはECU(3,103は送信ECU、4,105は監視ECU)、10~13,110~113,210~213,10a~12a,10b~12bはセンサ装置、110~113,210~213はセンサ装置(監視センサ装置)、14~16,214,515,14a,14bはネットワーク、15,515はバスネットワーク(第2速度の双方向通信のネットワーク)、16,316a,316b,16aはLVDSによる信号を送信する通信線(第1速度の単方向送信の通信線、ネットワーク)、28はCAN受信部(送受信部)、29はCAN送信部(送受信部)、を示す。 In the drawing, 1, 101, 201, 301, 401, 501, 601, 701 are communication systems (101 is an ADAS system), 3 to 9, 103 to 105, 103a, 103b are ECUs (3, 103 are transmitting ECUs, 4 , 105 is a monitoring ECU), 10 to 13, 110 to 113, 210 to 213, 10a to 12a, 10b to 12b are sensor devices, 110 to 113, 210 to 213 are sensor devices (monitoring sensor devices), 14 to 16, 214, 515, 14a, 14b are networks, 15, 515 are bus networks (a network of two-speed communication of the second speed), 16, 316a, 316b, 16a are communication lines for transmitting signals by LVDS (single speed of the first Communication line for direction transmission, network), 28 is a CAN receiver (transmitter / receiver), 29 is a CAN transmitter (transmitter / receiver ), It shows the.
 前述実施形態の構成、処理内容を組み合わせて構成することもできる。前述実施形態の一部を、課題を解決できる限りにおいて省略した態様も実施形態と見做すことが可能である。また、請求の範囲に記載した文言によって特定される要件の本質を逸脱しない限度において、考え得るあらゆる態様も実施形態と見做すことが可能である。 It is also possible to combine the configuration and processing contents of the above-described embodiment. The aspect which abbreviate | omitted a part of above-mentioned embodiment as long as a subject can be solved can also be considered as embodiment. In addition, any conceivable aspect can be considered as an embodiment without departing from the essence of the requirements specified by the words described in the claims.
 また本開示は、前述した実施形態に準拠して記述したが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。 Further, although the present disclosure has been described based on the above-described embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, various combinations and forms as well as other combinations and forms including one element or more or less or less are also within the scope and the scope of the present disclosure.

Claims (11)

  1.  1又は複数の電子制御装置(以下、ECUと称す)(3~9;103~105;103a,103b)と、
     1又は複数のゲートウェイ(2;202;302;602a,602b)と、
     物理量をセンシングするセンサを備え前記ゲートウェイにセンサ信号を送信するセンサ装置(10~13;110~113;210~213;10a~12a,10b~12b)と、
     をネットワーク及び通信線(14~16;214;515;14a,14b;316a,316b;16a)により接続して構成された通信システム(1,101,201,301,401,501,601,701)であり、
     前記ゲートウェイは、前記ECUのうち少なくとも一つの対象ECUに第1速度で通信可能な通信線(16;316a,316b;16a)を用いて単方向送信可能にする送信部(35)を備え、
     前記ECUは、前記ゲートウェイ、前記センサ装置、又はこれらの前記ゲートウェイ及び前記センサ装置の双方、の何れかとの間で前記第1速度よりも遅い第2速度のネットワーク(15;515)を用いて双方向通信可能にする送受信部(28,29)を備え、
     前記ゲートウェイは、前記センサ装置により送信されるセンサ信号を前記送信部により前記第1速度で通信可能な通信線で前記ECUに転送し、
     前記ECUは、前記送受信部による第2速度のネットワークの通信により前記センサ装置の制御信号を送信する通信システム。
    One or more electronic control units (hereinafter referred to as ECU) (3 to 9; 103 to 105; 103a, 103b);
    One or more gateways (2; 202; 302; 602a, 602b),
    A sensor device (10 to 13; 110 to 113; 210 to 213; 10a to 12a, 10b to 12b) including a sensor that senses a physical quantity and transmitting a sensor signal to the gateway;
    Communication system (1, 101, 201, 301, 401, 501, 601, 701) configured by connecting the network and communication lines (14 to 16; 214; 515; 14a, 14b; 316a, 316b; 16a) And
    The gateway includes a transmission unit (35) that enables unidirectional transmission using a communication line (16; 316a, 316b; 16a) that can communicate with at least one target ECU among the ECUs at a first speed,
    The ECU is connected to either the gateway, the sensor device, or both of the gateway device and the sensor device using a second speed network (15; 515) slower than the first speed. A transmitter / receiver unit (28, 29) that enables two-way communication;
    The gateway transfers the sensor signal transmitted by the sensor device to the ECU via a communication line that can be communicated at the first speed by the transmitter.
    A communication system in which the ECU transmits a control signal of the sensor device by communication of a second speed network by the transmitting and receiving unit.
  2.  前記センサ装置は、車両周辺を監視する監視センサを備えた監視センサ装置(110~113;210~213)を備え、
     前記ゲートウェイは、前記監視センサ装置により監視されたセンサ信号を前記通信線で前記ECUに単方向送信する請求項1記載の通信システム。
    The sensor device includes a monitoring sensor device (110 to 113; 210 to 213) including a monitoring sensor that monitors the periphery of the vehicle,
    The communication system according to claim 1, wherein the gateway unilaterally transmits the sensor signal monitored by the monitoring sensor device to the ECU through the communication line.
  3.  前記ゲートウェイと前記ECUとの間の第1のネットワーク(16)のケーブル長が、前記センサ装置と前記ゲートウェイとの間に接続される第2のネットワーク(14)のケーブル長よりも長い請求項1または2記載の通信システム。 The cable length of the first network (16) between the gateway and the ECU is longer than the cable length of the second network (14) connected between the sensor device and the gateway The communication system according to or 2.
  4.  前記ゲートウェイ(202)と前記センサ装置(211)との間が、電力供給線(214a)により接続され、前記電力供給線を用いて電力重畳通信により通信接続する請求項1から3の何れか一項に記載の通信システム。 The power supply line (214a) is connected between the gateway (202) and the sensor device (211), and the communication connection is made by the power superposition communication using the power supply line. The communication system described in the section.
  5.  前記ゲートウェイの前記送信部により単方向送信された対象ECU(3)が、前記送受信部により前記第2速度のネットワークとしてCAN又はLINを用いて前記ゲートウェイを通じて前記制御信号を送信する請求項1から4の何れか一項に記載の通信システム。 The target ECU (3) unidirectionally transmitted by the transmission unit of the gateway transmits the control signal through the gateway using the CAN or LIN as the second speed network by the transmission / reception unit The communication system according to any one of the above.
  6.  前記ECUのうち、前記ゲートウェイにフレームを前記第2速度のネットワークを用いて送信するECUを送信ECU(3;103)とし、前記第2速度のネットワークを監視することで前記送信ECUの送信信号を監視するECUを監視ECU(4;105)としたときに、
     前記監視ECUは、前記送信ECUが前記送受信部により前記ゲートウェイに前記フレームを送信するときに前記フレームを監視し当該フレームの誤りの有無を監視する監視部(S44、S54)を備える請求項1から5の何れか一項に記載の通信システム。
    Among the ECUs, an ECU that transmits a frame to the gateway using the second speed network is a transmission ECU (3; 103), and the transmission signal of the transmission ECU is monitored by monitoring the second speed network. When the monitoring ECU is the monitoring ECU (4; 105),
    The monitoring ECU includes a monitoring unit (S44, S54) that monitors the frame when the transmission ECU transmits the frame to the gateway by the transmitting and receiving unit, and monitors the presence or absence of an error in the frame. The communication system according to any one of 5.
  7.  前記監視部により前記フレームに誤りが有ると判定されたときには当該フレームを破壊する破壊部(S48)をさらに備える請求項6記載の通信システム。 The communication system according to claim 6, further comprising: a destruction unit (S48) that destroys the frame when it is determined by the monitoring unit that the frame has an error.
  8.  前記監視部は、前記送信ECUが前記第2速度のネットワークを用いて前記ゲートウェイに送信する前記フレームを監視し、前回から一定時間以内に前記送信ECUから前記フレームを受信していないときには、前記監視ECUが前記送信ECUの代わりに代替して信号を送信する請求項6または7記載の通信システム。 The monitoring unit monitors the frame transmitted by the transmission ECU to the gateway using the network at the second speed, and when the frame is not received from the transmission ECU within a predetermined time from the previous time, the monitoring is performed. 8. The communication system according to claim 6, wherein an ECU transmits a signal instead of the transmission ECU.
  9.  前記ゲートウェイは、車両内にてイグニッションスイッチがオフの間に前記第1速度で通信可能な前記通信線又は前記第2速度で通信可能なネットワークの信号を検出するための内部ブロックの一部又は全部の信号検出部(28,33)を間欠的に起動する間欠起動部(27)を備える請求項1から8の何れか一項に記載の通信システム。 The gateway is a part or all of an internal block for detecting a signal of the communication line that can communicate at the first speed or a network that can communicate at the second speed while the ignition switch is off in the vehicle. The communication system according to any one of claims 1 to 8, further comprising an intermittent activation unit (27) for intermittently activating the signal detection unit (28, 33) of (1).
  10.  前記間欠起動部により起動された前記信号検出部によりネットワークに信号を検出したときには、信号に付与されている宛先を読み出し、転送先の他の通信線又は前記ネットワークまでの通信経路に沿った一部の通信ブロック(34,31)を起動する一部起動部(27)を備え、
     前記ゲートウェイは、前記一部起動部により起動された前記通信ブロックを通じて前記他の通信線又は前記ネットワークに転送させる請求項9記載の通信システム。
    When a signal is detected in the network by the signal detection unit activated by the intermittent activation unit, the destination attached to the signal is read, and another communication line as a transfer destination or a part along the communication path to the network A partial activation unit (27) for activating the communication block (34, 31) of
    The communication system according to claim 9, wherein the gateway transfers the data to the other communication line or the network through the communication block activated by the partial activation unit.
  11.  請求項1から10の何れか一項に記載の通信システムを構成するゲートウェイ。 The gateway which comprises the communication system as described in any one of Claims 1-10.
PCT/JP2018/034225 2017-10-31 2018-09-14 Communication system and gateway WO2019087591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017210494A JP2019083450A (en) 2017-10-31 2017-10-31 Communication system and gateway
JP2017-210494 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019087591A1 true WO2019087591A1 (en) 2019-05-09

Family

ID=66331606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034225 WO2019087591A1 (en) 2017-10-31 2018-09-14 Communication system and gateway

Country Status (2)

Country Link
JP (1) JP2019083450A (en)
WO (1) WO2019087591A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112243209A (en) * 2019-07-18 2021-01-19 松下知识产权经营株式会社 Communication device and communication system
JP2021083059A (en) * 2019-11-22 2021-05-27 株式会社オートネットワーク技術研究所 In-vehicle relay device and relay method
EP3985890A1 (en) * 2020-10-15 2022-04-20 Nxp B.V. Physical layer device with precision timing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778309B1 (en) 2019-08-15 2022-04-13 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Autonomous vehicle and system for autonomous vehicle
CN112634371B (en) 2019-09-24 2023-12-15 阿波罗智联(北京)科技有限公司 Method and device for outputting information and calibrating camera
JP7314856B2 (en) * 2020-04-23 2023-07-26 株式会社デンソー In-vehicle measuring device unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746665A (en) * 1993-07-30 1995-02-14 Mazda Motor Corp Multiplex transmitter
JP2007320486A (en) * 2006-06-02 2007-12-13 Hino Motors Ltd Automatic braking control device
WO2010144900A1 (en) * 2009-06-12 2010-12-16 Magna Electronics Inc. Scalable integrated electronic control unit for vehicle
US20140160291A1 (en) * 2012-12-05 2014-06-12 Magna Electronics Inc. Vehicle vision system utilizing camera synchronization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746665A (en) * 1993-07-30 1995-02-14 Mazda Motor Corp Multiplex transmitter
JP2007320486A (en) * 2006-06-02 2007-12-13 Hino Motors Ltd Automatic braking control device
WO2010144900A1 (en) * 2009-06-12 2010-12-16 Magna Electronics Inc. Scalable integrated electronic control unit for vehicle
US20140160291A1 (en) * 2012-12-05 2014-06-12 Magna Electronics Inc. Vehicle vision system utilizing camera synchronization

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112243209A (en) * 2019-07-18 2021-01-19 松下知识产权经营株式会社 Communication device and communication system
JP2021083059A (en) * 2019-11-22 2021-05-27 株式会社オートネットワーク技術研究所 In-vehicle relay device and relay method
WO2021100548A1 (en) * 2019-11-22 2021-05-27 株式会社オートネットワーク技術研究所 Onboard relay device and relay method
JP7207278B2 (en) 2019-11-22 2023-01-18 株式会社オートネットワーク技術研究所 In-vehicle relay device and relay method
US12069152B2 (en) 2019-11-22 2024-08-20 Autonetworks Technologies, Ltd. In-vehicle relay device and relay method
EP3985890A1 (en) * 2020-10-15 2022-04-20 Nxp B.V. Physical layer device with precision timing

Also Published As

Publication number Publication date
JP2019083450A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2019087591A1 (en) Communication system and gateway
JP6500875B2 (en) In-vehicle network system and communication control method in in-vehicle network system
JP4974706B2 (en) In-vehicle communication device and in-vehicle communication system
US11316926B2 (en) In-vehicle network system
US8935454B2 (en) Connectors transmitting/receiving an input/output signal as a communication signal, communication harness with the connectors, and the communication system with the connectors
JP7076997B2 (en) In-vehicle system and detector hub
US20120189302A1 (en) On-vehicle communication system, optical communication harness and optical distribution apparatus
JP7226511B2 (en) Power distribution method, program, distributor
JP5680048B2 (en) Automatic control system, contact information collection and distribution device, and slave station of automatic control system
EP3214826B1 (en) Wired-wireless hybrid communication system and wired-wireless hybrid communication method
JP7031720B2 (en) In-vehicle control device
US20170008464A1 (en) Communication system
EP3651418B1 (en) Network system
WO2014188487A1 (en) Train information management device and train information management method
US20220006667A1 (en) Relay device system
CN109327365B (en) Method for transmitting data between a rotation angle sensor and an engine control device or evaluation unit
CN206096835U (en) Formula automobile communication system is monopolized to non -
US11689296B2 (en) On-board communication system, optical coupler, and on-board device
JP6551244B2 (en) In-vehicle control system
JP2014187544A (en) Communication system, communication node, and communication method
US9485139B2 (en) Communication node, communication system, and method for performing a communication
JP6969528B2 (en) Relay system
JP2011055112A (en) Communication system and communication device
JP2015039924A (en) On-vehicle network system
JP5406079B2 (en) In-vehicle communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874889

Country of ref document: EP

Kind code of ref document: A1