WO2019085805A1 - 无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备 - Google Patents

无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备 Download PDF

Info

Publication number
WO2019085805A1
WO2019085805A1 PCT/CN2018/111707 CN2018111707W WO2019085805A1 WO 2019085805 A1 WO2019085805 A1 WO 2019085805A1 CN 2018111707 W CN2018111707 W CN 2018111707W WO 2019085805 A1 WO2019085805 A1 WO 2019085805A1
Authority
WO
WIPO (PCT)
Prior art keywords
neck
camera
optical
human
projector
Prior art date
Application number
PCT/CN2018/111707
Other languages
English (en)
French (fr)
Inventor
陈慧军
张琛
齐海坤
章强
王雅洁
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US16/759,985 priority Critical patent/US11490821B2/en
Publication of WO2019085805A1 publication Critical patent/WO2019085805A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes

Definitions

  • the invention relates to the technical field of medicine, in particular to a method, a device and an imaging device for detecting a non-contact neck breathing and pulse signal.
  • the physiological signals of the human body play an important role in many medical imaging devices.
  • detecting respiratory and pulse signals can properly control the imaging process and improve imaging quality.
  • the imaging speed of many imaging devices is limited by physical principles or techniques, the use of respiratory signals for gated imaging is the key to successful lung and liver imaging in many imaging devices in clinical use.
  • imaging relies more on the accurate acquisition of respiratory and pulse signals.
  • magnetic resonance neck imaging such as the carotid artery jumping with the pulse, and the laryngeal tissue moving with the breath.
  • the measurement of the respiratory signal mainly relies on the technique of chest and abdomen belt, wherein the most important technique is to prevent a retractable wire in the chest, and the inductance formed by the guiding coil can follow the breathing movement of the human body.
  • the change in the area of the lead coil is measured to measure the respiratory signal, but it needs to be placed before the patient is positioned, and the accuracy of the detection of calm breathing is not sufficient.
  • a small number of studies have used optical measurement methods to measure respiratory signals in the chest and abdomen, but they have not been combined with imaging systems, and there is no precedent for measurement in the neck; pulse signal detection mainly through ECG or detection Finger veins are obtained, the operation is more complicated, and there is contact. When the test is worn for a long time, the detector will feel uncomfortable. More importantly, in the neck imaging, the respiratory signal measured on the chest and abdomen and the measurement at the fingertips. The pulse signal has a certain delay and there are certain problems in guiding the imaging process.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • Another object of the present invention is to provide a detection device based on optical contactless neck breathing and pulse signals.
  • an embodiment of the present invention provides a method for detecting an optical contactless neck breathing and pulse signal, comprising the steps of: collecting 3D topographical information of a human neck; The 3D topographical information is obtained from the body's respiratory and electrocardiographic signals.
  • the 3D shape information of the human neck can be collected, thereby obtaining the respiratory signal and the ECG signal of the human body according to the collected 3D topographical information, thereby reducing Measuring the breathing signal of the human body and the delay of the ECG signal, effectively improving the accuracy of the measurement, not only the operation is simple, but also can correctly control the imaging process, improve the imaging quality, and reduce the problems in guiding the imaging process.
  • optical contactless neck breathing and pulse signal detecting method may further have the following additional technical features:
  • the acquiring 3D topography information of the human neck further comprises: connecting the optical center line of the camera and the projector parallel to the reference plane, and the optical axis of the camera is vertical At the reference plane, the height of the neck of the human body is obtained.
  • the height of the human neck is obtained by the following formula:
  • H is the distance between the camera and the axis of the projector
  • L is the distance between the camera and the reference plane
  • d is the aberration
  • v is the image distance.
  • the method further includes: projecting, by the projector, the structured light covering the panoramic view to the human neck, wherein the light emitted by the projector is visible light or invisible infrared light And the visible light or the invisible infrared light is constant structure light; the 3D shape of the human neck is obtained by processing and recognizing the optical mode captured by the camera, and obtaining the topography parameter in combination with the calibration. Profile information.
  • another embodiment of the present invention provides a detection device based on an optical contactless neck breathing and pulse signal, comprising: an acquisition module for collecting 3D topographical information of a human neck; and an acquisition module,
  • the utility model is configured to obtain a respiratory signal and an electrocardiographic signal of the human body according to the 3D topography information of the human neck.
  • the optical non-contact neck breathing and pulse signal detecting device of the embodiment of the invention can collect the 3D shape information of the human neck, thereby obtaining the respiratory signal and the electrocardiogram signal of the human body according to the collected 3D shape information, thereby reducing Measuring the breathing signal of the human body and the delay of the ECG signal, effectively improving the accuracy of the measurement, not only the operation is simple, but also can correctly control the imaging process, improve the imaging quality, and reduce the problems in guiding the imaging process.
  • optical non-contact neck breathing and pulse signal detecting apparatus may further have the following additional technical features:
  • the acquisition module includes: a camera and a projector; and an acquisition unit, configured to connect, by the optical line of the camera and the projector, parallel to a reference plane, and The optical axis of the camera is perpendicular to the reference plane to obtain the height of the neck of the human body.
  • the collecting unit obtains the height of the human neck by the following formula:
  • H is the distance between the camera and the axis of the projector
  • L is the distance between the camera and the reference plane
  • d is the aberration
  • v is the image distance.
  • the method further includes: a control unit, configured to project the panoramic structured light to the human neck by the projector, wherein the light emitted by the projector is visible light or Invisible infrared light, and the visible light or the invisible infrared light is constant structured light; the acquiring unit is configured to process and recognize the optical mode captured by the camera, and obtain the topographic parameter by combining the calibration Obtaining 3D topography information of the human neck.
  • a control unit configured to project the panoramic structured light to the human neck by the projector, wherein the light emitted by the projector is visible light or Invisible infrared light, and the visible light or the invisible infrared light is constant structured light
  • the acquiring unit is configured to process and recognize the optical mode captured by the camera, and obtain the topographic parameter by combining the calibration Obtaining 3D topography information of the human neck.
  • a further embodiment of the present invention provides a medical imaging apparatus comprising the above-described optical non-contact neck breathing and pulse signal detecting apparatus.
  • the medical imaging device can collect 3D shape information of the human neck, thereby obtaining the respiratory signal and the electrocardiogram signal of the human body according to the collected 3D shape information, thereby reducing the delay of measuring the respiratory signal and the ECG signal of the human body, thereby effectively improving the measurement.
  • the accuracy is not only easy to operate, but also can improve the accuracy of the measurement.
  • FIG. 1 is a flow chart of a method for detecting an optical contactless neck breathing and pulse signal in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a detecting device based on an optical contactless neck breathing and pulse signal according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the structure of structured light according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a control module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a detecting device based on an optical contactless neck breathing and pulse signal according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method for detecting an optical contactless neck respiration and pulse signal according to an embodiment of the present invention.
  • the method for detecting an optical non-contact neck breathing and pulse signal includes the following steps:
  • step S101 3D topographical information of the human neck is acquired.
  • acquiring 3D topography information of the human neck further includes: connecting the optical center line of the camera and the projector parallel to the reference plane, and the optical axis of the camera is perpendicular to the reference plane, The height of the human neck.
  • the embodiment of the present invention can simplify the measurement, such as making the optical center line O c O p of the camera and the projector parallel to the reference plane. And the optical axis of the camera is perpendicular to the reference plane.
  • the height of the human neck is obtained by the following formula:
  • H is the distance between the camera and the axis of the projector
  • L is the distance from the camera to the reference plane
  • d is the aberration
  • v is the image distance.
  • the embodiment of the present invention can obtain the height h of the human neck according to the triangle similarity principle, and can be obtained by similar triangles:
  • D is the distance between the position R of the light emitted by the projector and the position O of the projector light seen by the camera after the object is not present in the system, assuming that the camera is a convex lens imaging principle,
  • the image distance is v, which can be obtained by the aberration d obtained by the measuring camera:
  • the height h of the human neck can be derived:
  • the parameters such as H, v, L can be determined by calibration with a known standard template, the aberration d of the laser projection captured by the camera on the reference plane and the surface of the object can be calculated.
  • the actual height h of the surface point of the object, and the length and width of the surface of the object can also be calculated from the corresponding parameters.
  • the method of the embodiment of the present invention further includes: projecting, by the projector, a panoramic structured light to the human neck, wherein the light emitted by the projector is visible light or invisible infrared light. And the visible light or the invisible infrared light are constant structured light; the 3D shape information of the human neck is obtained by processing and recognizing the optical mode captured by the camera, and obtaining the topographic parameters in combination with the calibration.
  • the embodiment of the present invention can project a panoramic structured light to a human neck by a projector (such as a laser projector), and the present invention can be used as long as it can be projected by the projector and can be photographed by the camera.
  • Embodiments can measure their 3D topography.
  • the light emitted by the projector may be visible light or invisible infrared light, and the mode of emission may be constant structured light, as shown in FIG. 3, and FIG. 3(a) shows a parallel operation.
  • the structured light mode, FIG. 3(b) shows a sin wave structured light, and further, may be other modes such as random code structured light; the embodiment of the present invention can process and recognize the optical mode captured by the camera.
  • the 3D topography of the whole field is calculated, which makes the operation simpler, and can correctly control the imaging process, reducing the problems in guiding the imaging process.
  • the method of the embodiment of the present invention since the method of the embodiment of the present invention does not require multiple projections, it can perform 3D topography measurement with high time resolution; the time resolution depends on the acquisition speed at which the camera can capture clear images, and It is this feature that ensures that the method of the embodiment of the present invention can measure the 3D topography of the human body surface in "real time", thereby correctly controlling the imaging process, improving the imaging quality, and reducing the problems in guiding the imaging process.
  • step S102 the respiratory signal and the electrocardiographic signal of the human body are obtained according to the 3D topography information of the human neck.
  • the method of the embodiment of the invention may require the camera to capture a clear image at a frame rate between 500 frames and 1000 frames per second, thereby reducing the measurement of the body's respiratory signal and The delay of the electrocardiographic signal is effective to improve the accuracy of the measurement.
  • the photographing position of the camera of the embodiment of the present invention may be as shown in the drawing, and is not specifically limited herein.
  • the 3D shape information of the human neck can be collected, thereby obtaining the respiratory signal and the electrocardiogram signal of the human body according to the collected 3D topography information.
  • Reduce the measurement of the human body's respiratory signal and ECG signal delay effectively improve the accuracy of the measurement, not only simple operation, non-contact detection, but also real-time measurement of the 3D shape of the human neck, so as to correctly carry out the imaging process Control, improve imaging quality, and reduce problems in guiding imaging.
  • FIG. 5 is a schematic structural view of an apparatus for detecting an optical contactless neck breathing and pulse signal according to an embodiment of the present invention.
  • the optical non-contact neck breathing and pulse signal detecting apparatus 10 includes an acquisition module 100 and an acquisition module 200.
  • the collection module 100 is configured to collect 3D topography information of a human neck.
  • the obtaining module 200 is configured to obtain a respiratory signal and an electrocardiographic signal of the human body according to the 3D topography information of the human neck.
  • the device 10 of the embodiment of the invention can obtain the respiratory signal and the electrocardiogram signal of the human body through the 3D topography information of the human neck, thereby reducing the delay of measuring the respiratory signal and the ECG signal of the human body, thereby improving the accuracy of the measurement, and Correctly control the imaging process to improve image quality.
  • the acquisition module 100 includes a camera, a projector, and an acquisition unit.
  • the acquisition unit is configured to connect the optical center line of the camera and the projector parallel to the reference plane, and the optical axis of the camera is perpendicular to the reference plane to obtain the height of the human neck.
  • the collecting unit obtains the height of the human neck by the following formula:
  • H is the distance between the camera and the axis of the projector
  • L is the distance from the camera to the reference plane
  • d is the aberration
  • v is the image distance.
  • the embodiment of the present invention can obtain the height h of the human neck according to the triangle similarity principle, and can be obtained by similar triangles:
  • D is the distance between the position R of the light emitted by the projector and the position O of the projector light seen by the camera after the object is not present in the system, assuming that the camera is a convex lens imaging principle,
  • the image distance is v, which can be obtained by the aberration d obtained by the measuring camera:
  • the height h of the human neck can be derived:
  • the parameters such as H, v, L can be determined by calibration with a known standard template, the aberration d of the laser projection captured by the camera on the reference plane and the surface of the object can be calculated.
  • the actual height h of the surface point of the object, and the length and width of the surface of the object can also be calculated from the corresponding parameters.
  • the apparatus 10 of the embodiment of the present invention further includes: a control unit and an acquisition unit.
  • the control unit is configured to project a panoramic structured light to the human neck through the projector, wherein the light emitted by the projector is visible light or invisible infrared light, and the visible light or the invisible infrared light is constant structured light.
  • the acquisition unit is configured to process and recognize the optical mode captured by the camera, and obtain the topographical parameters in combination with the calibration to obtain the 3D topography information of the human neck.
  • control unit can project the panoramic structured light to the human neck by controlling the projector (such as a laser projector), and the present invention can be implemented as long as it is an area that the projector can project and can be photographed by the camera.
  • the 3D shape can be measured.
  • the light emitted by the projector may be visible light or invisible infrared light, and the mode of emission may be constant structured light, as shown in FIG. 3, and FIG. 3(a) shows a parallel operation.
  • the structured light mode, Figure 3 (b) shows a sin wave structure light, in addition, it can be other modes such as random code structure light; the acquisition unit can process and recognize the optical mode captured by the camera, and combine The corresponding parameters calculated by the system calibration calculate the 3D topography of the whole field, which makes the operation simpler, and can correctly control the imaging process, reducing the problems in guiding the imaging process.
  • the 3D topography information of the human neck can be collected, thereby obtaining the respiratory signal and the electrocardiogram signal of the human body according to the collected 3D topographical information. It can reduce the delay of measuring the respiratory signal and ECG signal of the human body, effectively improve the accuracy of measurement, not only simple operation, but also realize non-contact detection, and also can measure the 3D shape of the patient's neck in real time, so as to correctly carry out the imaging process. Control, improve imaging quality, and reduce problems in guiding imaging.
  • embodiments of the present invention also propose a medical imaging apparatus comprising the above-described optical non-contact neck breathing and pulse signal detecting apparatus.
  • the medical imaging device can collect 3D shape information of the human neck, thereby obtaining the respiratory signal and the electrocardiogram signal of the human body according to the collected 3D shape information, thereby reducing the delay of measuring the respiratory signal and the ECG signal of the human body, thereby effectively improving the measurement.
  • the accuracy is not only simple to operate, but also enables non-contact detection, and it can also measure the 3D shape of the patient's neck in real time, so as to correctly control the imaging process, improve the imaging quality, and reduce the problems in guiding the imaging process.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physiology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备,其中,方法包括:实时采集人体颈部的3D形貌信息;根据人体颈部的3D形貌信息得到人体的呼吸信号和心电信号。该方法可以通过人体颈部的3D形貌信息得到人体的呼吸信号和心电信号,不但降低测量人体的呼吸信号和心电信号的延迟,提高测量的精确度,而且可以正确的对医学磁共振成像过程进行控制,提高成像质量。

Description

无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备
相关申请的交叉引用
本申请要求清华大学于2017年10月30日提交的、发明名称为“无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备”的、中国专利申请号“201711034416.5”的优先权。
技术领域
本发明涉及医学技术领域,特别涉及一种无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备。
背景技术
人体的生理信号,特别是呼吸和脉搏信号,在很多医学成像设备中都有重要作用。例如,在CT和磁共振成像中,探测呼吸和脉搏信号可以正确的对成像过程进行控制,提高成像质量。由于很多成像设备的成像速度受到物理原理或者技术的限制,在很多正在临床使用的成像设备来说,使用呼吸信号进行门控成像是能够成功进行肺部和肝部成像的关键,而对于不停在跳动的心脏来说,成像更是依赖呼吸和脉搏信号的准确获取。在磁共振颈部成像方面也是如此,比如颈动脉会随着脉搏跳动,而喉部组织会随着呼吸运动。
相关技术中,测量呼吸信号主要依靠的是胸腹带技术,其中,最主要的一种技术是在胸部防治一圈可伸缩的导线,依靠该导线圈成的电感可以随着人体的呼吸运动带来的导线圈面积的改变来测量呼吸信号,但其需要在病人定位前安置好,而且对于平静呼吸探测准确度不够。近年来,也有少量研究使用光学测量方法在胸腹部进行呼吸信号的测量,但其并未与成像系统进行结合,也未有在颈部进行测量的先例;脉搏信号的探测主要通过心电或者探测指脉来获得,操作较为复杂,而且有接触,受试长时间佩戴探测装置会感觉身体不适,更为重要的是,在颈部成像中,在胸腹部测量的呼吸信号和在指尖测量的脉搏信号有一定延迟,而且在指导成像过程中会有一定问题。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种基于光学无接触颈部呼吸和脉搏信号的检测方法,该方法可以提高测量的精确度,且可以提高成像质量。
本发明的另一个目的在于提出一种基于光学无接触颈部呼吸和脉搏信号的检测装置。
本发明的再一个目的在于提出一种医学成像设备。
为达到上述目的,本发明一方面实施例提出了一种基于光学无接触颈部呼吸和脉搏信号的检测方法,包括以下步骤:采集人体颈部的3D形貌信息;根据所述人体颈部的3D形貌信息得到人体的呼吸信号和心电信号。
本发明实施例的基于光学无接触颈部呼吸和脉搏信号的检测方法,可以采集人体颈部的3D形貌信息,从而根据采集到的3D形貌信息得到人体的呼吸信号和心电信号,降低测量人体的呼吸信号和心电信号的延迟,有效提高测量的精确度,不但操作简单,而且还可以正确的对成像过程进行控制,提高成像质量,减少在指导成像过程中的问题。
另外,根据本发明上述实施例的基于光学无接触颈部呼吸和脉搏信号的检测方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述采集人体颈部的3D形貌信息,进一步包括:通过摄像机和投影仪的光心连线平行于参考平面,且所述摄像机的光轴垂直于所述参考平面,得到所述人体颈部的高度。
进一步地,在本发明的一个实施例中,通过以下公式得到所述人体颈部的高度,所述公式为:
Figure PCTCN2018111707-appb-000001
其中,H为所述摄像机和所述投影仪的轴心之间的距离,L为所述摄像机到所述参考平面之间的距离,d为像差,v为像距。
进一步地,在本发明的一个实施例中,还包括:通过所述投影仪对所述人体颈部投影覆盖全景的结构光,其中,所述投影仪发射的光为可见光或者不可见的红外光,且所述可见光或者不可见的红外光均为恒定结构光;通过对所述摄像机拍摄得到的光学模式进行处理和识别,并结合标定时得到形貌参数,得到所述人体颈部的3D形貌信息。
为达到上述目的,本发明另一方面实施例提出了一种基于光学无接触颈部呼吸和脉搏信号的检测装置,包括:采集模块,用于采集人体颈部的3D形貌信息;获取模块,用于根据所述人体颈部的3D形貌信息得到人体的呼吸信号和心电信号。
本发明实施例的基于光学无接触颈部呼吸和脉搏信号的检测装置,可以采集人体颈部的3D形貌信息,从而根据采集到的3D形貌信息得到人体的呼吸信号和心电信号,降低测量人体的呼吸信号和心电信号的延迟,有效提高测量的精确度,不但操作简单,而且还可以正确的对成像过程进行控制,提高成像质量,减少在指导成像过程中的问题。
另外,根据本发明上述实施例的基于光学无接触颈部呼吸和脉搏信号的检测装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述采集模块包括:摄像机和投影仪;采集单 元,用于通过所述摄像机和所述投影仪的光心连线平行于参考平面,且所述摄像机的光轴垂直于所述参考平面,得到所述人体颈部的高度。
进一步地,在本发明的一个实施例中,所述采集单元通过以下公式得到所述人体颈部的高度,所述公式为:
Figure PCTCN2018111707-appb-000002
其中,H为所述摄像机和所述投影仪的轴心之间的距离,L为所述摄像机到所述参考平面之间的距离,d为像差,v为像距。
进一步地,在本发明的一个实施例中,还包括:控制单元,用于通过所述投影仪对所述人体颈部投影覆盖全景的结构光,其中,所述投影仪发射的光为可见光或者不可见的红外光,且所述可见光或者不可见的红外光均为恒定结构光;获取单元,用于通过对所述摄像机拍摄得到的光学模式进行处理和识别,并结合标定时得到形貌参数,得到所述人体颈部的3D形貌信息。
为达到上述目的,本发明再一方面实施例提出了一种医学成像设备,其包括上述的基于光学无接触颈部呼吸和脉搏信号的检测装置。该医学成像设备可以采集人体颈部的3D形貌信息,从而根据采集到的3D形貌信息得到人体的呼吸信号和心电信号,降低测量人体的呼吸信号和心电信号的延迟,有效提高测量的精确度,不但操作简单,而且还可以有效提高测量的精确度,
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的基于光学无接触颈部呼吸和脉搏信号的检测方法的流程图;
图2为根据本发明一个具体实施例的基于光学无接触颈部呼吸和脉搏信号的检测装置的结构示意图;
图3为根据本发明一个实施例的结构光的模式示意图;
图4为根据本发明一个实施例的控制模块示意图;
图5为根据本发明实施例的基于光学无接触颈部呼吸和脉搏信号的检测装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的基于光学无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备,首先将参照附图描述根据本发明实施例提出的基于光学无接触颈部呼吸和脉搏信号的检测方法。
图1是本发明实施例的基于光学无接触颈部呼吸和脉搏信号的检测方法的流程图。
如图1所示,该基于光学无接触颈部呼吸和脉搏信号的检测方法包括以下步骤:
在步骤S101中,采集人体颈部的3D形貌信息。
其中,在本发明的一个实施例中,采集人体颈部的3D形貌信息,进一步包括:通过摄像机和投影仪的光心连线平行于参考平面,且摄像机的光轴垂直于参考平面,得到人体颈部的高度。
可以理解的是,如图2所示,为了得到人体颈部的高度h,本发明实施例可以将测量简单化,如使摄像机和投影仪的光心连线O cO p平行于参考平面,并且将摄像机的光轴垂直于参考平面。
进一步地,在本发明的一个实施例中,通过以下公式得到人体颈部的高度,公式为:
Figure PCTCN2018111707-appb-000003
其中,H为摄像机和投影仪的轴心之间的距离,L为摄像机到参考平面之间的距离,d为像差,v为像距。
可以理解的是,如图2所示,本发明实施例可以根据三角形相似原理得到人体颈部的高度h,由三角形相似可以得到:
Figure PCTCN2018111707-appb-000004
其中,D是系统中没有物体时摄像机可以看到投影仪发射出来的光线的位置R和放上物体后摄像机看到的投影仪光线的位置O之间的距离,假设摄像机为凸透镜成像原理,其像距为v,可以由测量摄像机所获得的像差d获得:
Figure PCTCN2018111707-appb-000005
从而根据公式(1)和(2)可以推导出人体颈部的高度h:
h*L=(H-h)*D
h*L+h*D=H*D
Figure PCTCN2018111707-appb-000006
Figure PCTCN2018111707-appb-000007
可以理解的是,如果可以通过已知的标准模板通过标定,可以确定H,v,L等参数的话,就可以通过测量摄像机拍摄下来的激光投影在参考平面和物体表面的像差d来计算出物体表面点的实际高度h,并且物体表面的长度和宽度也可以通过相应的参数计算得到。
进一步地,在本发明的一个实施例中,本发明实施例的方法还包括:通过投影仪对人体颈部投影覆盖全景的结构光,其中,投影仪发射的光为可见光或者不可见的红外光,且可见光或者不可见的红外光均为恒定结构光;通过对摄像机拍摄得到的光学模式进行处理和识别,并结合标定时得到形貌参数,得到人体颈部的3D形貌信息。
可以理解的是,本发明实施例可以通过投影仪(如激光投影仪)对人体颈部投影覆盖全景的结构光,并且只要是投影仪能够投射到的而且可以被摄像机拍摄下来的区域,本发明实施例可以测量其3D形貌。其中,投影仪发射的光可以为可见光也可以为不可见的红外光,且其发射的模式可以为恒定结构光,如图3所示,图3(a)显示的是一种可以工作的平行结构光模式,图3(b)显示的是一种sin波结构光,此外,还可以是随机码结构光等其他模式;本发明实施例可以通过对摄像机拍摄下来的光学模式进行处理和识别,并结合系统标定时计算出的相应参数计算出整场的3D形貌,从而使得操作较为简单,而且可以正确的对成像过程进行控制,减少在指导成像过程中的问题。
另外,由于本发明实施例的方法因为不需要多次投影,因此,其可以以很高的时间分辨率进行3D形貌测量;其时间分辨率取决于摄像机可以采集清晰图像的采集速度,而且正是这个特性保证了本发明实施例的方法可以“实时”的测量人体表面的3D形貌,从而可以正确的对成像过程进行控制,提高成像质量,减少在指导成像过程中的问题。
在步骤S102中,根据人体颈部的3D形貌信息得到人体的呼吸信号和心电信号。
可以理解的是,为了可以采集到呼吸信号和心电信号,本发明实施例的方法可以要求摄像机采集清晰图像的帧率在每秒500帧到1000帧之间,从而降低测量人体的呼吸信号和心电信号的延迟,有效提高测量的精确度,其中,如图4所示,本发明实施例的摄像机的拍摄位置可以如图所示,在此不做具体限制。
根据本发明实施例提出的基于光学无接触颈部呼吸和脉搏信号的检测方法,可以采集人体颈部的3D形貌信息,从而根据采集到的3D形貌信息得到人体的呼吸信号和心电信号,降低测量人体的呼吸信号和心电信号的延迟,有效提高测量的精确度,不但操作简单,实 现无接触检测,而且还可以实时测量人体颈部的3D形貌,从而正确的对成像过程进行控制,提高成像质量,减少在指导成像过程中的问题。
其次参照附图描述根据本发明实施例提出的基于光学无接触颈部呼吸和脉搏信号的检测装置。
图5是本发明实施例的基于光学无接触颈部呼吸和脉搏信号的检测装置的结构示意图。
如图5所示,该基于光学无接触颈部呼吸和脉搏信号的检测装置10包括:采集模块100和获取模块200。
其中,采集模块100用于采集人体颈部的3D形貌信息。获取模块200用于根据人体颈部的3D形貌信息得到人体的呼吸信号和心电信号。本发明实施例的装置10可以通过人体颈部的3D形貌信息得到人体的呼吸信号和心电信号,不但降低测量人体的呼吸信号和心电信号的延迟,从而提高测量的精确度,并且可以正确的对成像过程进行控制,提高成像质量。
其中,在本发明的一个实施例中,采集模块100包括:摄像机、投影仪和采集单元。其中,采集单元用于通过摄像机和投影仪的光心连线平行于参考平面,且摄像机的光轴垂直于参考平面,得到人体颈部的高度。
进一步地,在本发明的一个实施例中,采集单元通过以下公式得到人体颈部的高度,公式为:
Figure PCTCN2018111707-appb-000008
其中,H为摄像机和投影仪的轴心之间的距离,L为摄像机到参考平面之间的距离,d为像差,v为像距。
可以理解的是,如图2所示,本发明实施例可以根据三角形相似原理得到人体颈部的高度h,由三角形相似可以得到:
Figure PCTCN2018111707-appb-000009
其中,D是系统中没有物体时摄像机可以看到投影仪发射出来的光线的位置R和放上物体后摄像机看到的投影仪光线的位置O之间的距离,假设摄像机为凸透镜成像原理,其像距为v,可以由测量摄像机所获得的像差d获得:
Figure PCTCN2018111707-appb-000010
从而根据公式(1)和(2)可以推导出人体颈部的高度h:
h*L=(H-h)*D
h*L+h*D=H*D
Figure PCTCN2018111707-appb-000011
Figure PCTCN2018111707-appb-000012
可以理解的是,如果可以通过已知的标准模板通过标定,可以确定H,v,L等参数的话,就可以通过测量摄像机拍摄下来的激光投影在参考平面和物体表面的像差d来计算出物体表面点的实际高度h,并且物体表面的长度和宽度也可以通过相应的参数计算得到。
进一步地,在本发明的一个实施例中,本发明实施例的装置10还包括:控制单元和获取单元。
其中,控制单元用于通过投影仪对人体颈部投影覆盖全景的结构光,其中,投影仪发射的光为可见光或者不可见的红外光,且可见光或者不可见的红外光均为恒定结构光。获取单元用于通过对摄像机拍摄得到的光学模式进行处理和识别,并结合标定时得到形貌参数,得到人体颈部的3D形貌信息。
可以理解的是,控制单元可以通过控制投影仪(如激光投影仪)对人体颈部投影覆盖全景的结构光,并且只要是投影仪能够投射到的而且可以被摄像机拍摄下来的区域,本发明实施例可以测量其3D形貌。其中,投影仪发射的光可以为可见光也可以为不可见的红外光,且其发射的模式可以为恒定结构光,如图3所示,图3(a)显示的是一种可以工作的平行结构光模式,图3(b)显示的是一种sin波结构光,此外,还可以是随机码结构光等其他模式;获取单元可以通过对摄像机拍摄下来的光学模式进行处理和识别,并结合系统标定时计算出的相应参数计算出整场的3D形貌,从而使得操作较为简单,而且可以正确的对成像过程进行控制,减少在指导成像过程中的问题。
根据本发明实施例提出的基于光学无接触颈部呼吸和脉搏信号的检测装置,可以采集人体颈部的3D形貌信息,从而根据采集到的3D形貌信息得到人体的呼吸信号和心电信号,降低测量人体的呼吸信号和心电信号的延迟,有效提高测量的精确度,不但操作简单,实现无接触检测,而且还可以实时测量病人颈部的3D形貌,从而正确的对成像过程进行控制,提高成像质量,减少在指导成像过程中的问题。
此外,本发明的实施例还提出了一种医学成像设备,该医学成像设备包括上述的基于光学无接触颈部呼吸和脉搏信号的检测装置。该医学成像设备可以采集人体颈部的3D形貌信息,从而根据采集到的3D形貌信息得到人体的呼吸信号和心电信号,降低测量人体的呼吸信号和心电信号的延迟,有效提高测量的精确度,不但操作简单,实现无接触检测,而且还可以实时测量病人颈部的3D形貌,从而正确的对成像过程进行控制,提高成像质 量,减少在指导成像过程中的问题。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

  1. 一种基于光学无接触颈部呼吸和脉搏信号的检测方法,其特征在于,包括以下步骤:
    采集人体颈部的3D形貌信息;
    根据所述人体颈部的3D形貌信息得到人体的呼吸信号和心电信号。
  2. 根据权利要求1所述的基于光学无接触颈部呼吸和脉搏信号的检测方法,其特征在于,所述采集人体颈部的3D形貌信息,进一步包括:
    通过摄像机和投影仪的光心连线平行于参考平面,且所述摄像机的光轴垂直于所述参考平面,得到所述人体颈部的高度。
  3. 根据权利要求2所述的基于光学无接触颈部呼吸和脉搏信号的检测方法,其特征在于,还包括:
    通过所述投影仪对所述人体颈部投影覆盖全景的结构光,其中,所述投影仪发射的光为可见光或者不可见的红外光,且所述可见光或者不可见的红外光均为恒定结构光;
    通过对所述摄像机拍摄得到的光学模式进行处理和识别,并结合标定时得到形貌参数,得到所述人体颈部的3D形貌信息。
  4. 一种基于光学无接触颈部呼吸和脉搏信号的检测装置,其特征在于,包括:
    采集模块,用于采集人体颈部的3D形貌信息;
    获取模块,用于根据所述人体颈部的3D形貌信息得到人体的呼吸信号和心电信号。
  5. 根据权利要求4所述的基于光学无接触颈部呼吸和脉搏信号的检测装置,其特征在于,所述采集模块包括:
    摄像机和投影仪;
    采集单元,用于通过所述摄像机和所述投影仪的光心连线平行于参考平面,且所述摄像机的光轴垂直于所述参考平面,得到所述人体颈部的高度。
  6. 根据权利要求5所述的基于光学无接触颈部呼吸和脉搏信号的检测装置,其特征在于,还包括:
    控制单元,用于通过所述投影仪对所述人体颈部投影覆盖全景的结构光,其中,所述投影仪发射的光为可见光或者不可见的红外光,且所述可见光或者不可见的红外光均为恒定结构光;
    获取单元,用于通过对所述摄像机拍摄得到的光学模式进行处理和识别,并结合标定时得到形貌参数,得到所述人体颈部的3D形貌信息。
  7. 一种医学成像设备,其特征在于,包括:如权利要求4-6任一项所述的基于光学无接触颈部呼吸和脉搏信号的检测装置。
PCT/CN2018/111707 2017-10-30 2018-10-24 无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备 WO2019085805A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/759,985 US11490821B2 (en) 2017-10-30 2018-10-24 Non-contact neck-based respiratory and pulse signal detection method, apparatus, and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711034416.5A CN107550467A (zh) 2017-10-30 2017-10-30 无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备
CN201711034416.5 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019085805A1 true WO2019085805A1 (zh) 2019-05-09

Family

ID=61032146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111707 WO2019085805A1 (zh) 2017-10-30 2018-10-24 无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备

Country Status (3)

Country Link
US (1) US11490821B2 (zh)
CN (1) CN107550467A (zh)
WO (1) WO2019085805A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2958003C (en) 2016-02-19 2022-04-05 Paul Stanley Addison System and methods for video-based monitoring of vital signs
CN107550467A (zh) 2017-10-30 2018-01-09 清华大学 无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备
US10939824B2 (en) 2017-11-13 2021-03-09 Covidien Lp Systems and methods for video-based monitoring of a patient
AU2018400475B2 (en) 2018-01-08 2024-03-07 Covidien Lp Systems and methods for video-based non-contact tidal volume monitoring
EP3806727A1 (en) 2018-06-15 2021-04-21 Covidien LP Systems and methods for video-based patient monitoring during surgery
WO2020033613A1 (en) * 2018-08-09 2020-02-13 Covidien Lp Video-based patient monitoring systems and associated methods for detecting and monitoring breathing
US11617520B2 (en) 2018-12-14 2023-04-04 Covidien Lp Depth sensing visualization modes for non-contact monitoring
CN109499010B (zh) * 2018-12-21 2021-06-08 苏州雷泰医疗科技有限公司 基于红外和可见光三维重建的放射治疗辅助系统及其方法
US11315275B2 (en) 2019-01-28 2022-04-26 Covidien Lp Edge handling methods for associated depth sensing camera devices, systems, and methods
US11484208B2 (en) 2020-01-31 2022-11-01 Covidien Lp Attached sensor activation of additionally-streamed physiological parameters from non-contact monitoring systems and associated devices, systems, and methods
CN111558148B (zh) * 2020-03-23 2023-06-20 未来穿戴技术有限公司 颈部按摩仪的健康检测方法及颈部按摩仪
WO2022118068A1 (en) 2020-12-03 2022-06-09 Alberghini Marco Device for measuring the respiratory act

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813462A (zh) * 2010-04-16 2010-08-25 天津理工大学 单处理器控制的三维形貌光学测量系统及测量方法
CN101868690A (zh) * 2007-11-22 2010-10-20 罗伯特.博世有限公司 用于获取三维形貌的装置和方法
WO2016127173A1 (en) * 2015-02-06 2016-08-11 The University Of Akron Optical imaging system and methods thereof
WO2016187461A1 (en) * 2015-05-19 2016-11-24 Google Inc. Optical central venous pressure measurement
CN106885533A (zh) * 2017-03-03 2017-06-23 哈尔滨理工大学 三维傅里叶变换胸腹表面测量方法
CN107550467A (zh) * 2017-10-30 2018-01-09 清华大学 无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备
CN107843863A (zh) * 2017-10-30 2018-03-27 清华大学 基于3d形貌测量的磁共振成像矫正方法、装置及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868690A (zh) * 2007-11-22 2010-10-20 罗伯特.博世有限公司 用于获取三维形貌的装置和方法
CN101813462A (zh) * 2010-04-16 2010-08-25 天津理工大学 单处理器控制的三维形貌光学测量系统及测量方法
WO2016127173A1 (en) * 2015-02-06 2016-08-11 The University Of Akron Optical imaging system and methods thereof
WO2016187461A1 (en) * 2015-05-19 2016-11-24 Google Inc. Optical central venous pressure measurement
CN106885533A (zh) * 2017-03-03 2017-06-23 哈尔滨理工大学 三维傅里叶变换胸腹表面测量方法
CN107550467A (zh) * 2017-10-30 2018-01-09 清华大学 无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备
CN107843863A (zh) * 2017-10-30 2018-03-27 清华大学 基于3d形貌测量的磁共振成像矫正方法、装置及设备

Also Published As

Publication number Publication date
US20200329976A1 (en) 2020-10-22
CN107550467A (zh) 2018-01-09
US11490821B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2019085805A1 (zh) 无接触颈部呼吸和脉搏信号的检测方法、装置及成像设备
US11020082B2 (en) Method of reducing the x-ray dose in an x-ray system
US7545279B2 (en) Condition-analyzing device
JP4439882B2 (ja) 放射線画像処理装置及び処理方法
EP3264987B1 (en) A system and method for increasing the accuracy of a medical imaging device
CN104739418A (zh) 一种基于立体视觉的呼吸门控系统及控制方法
KR20130026041A (ko) 의료 영상의 일부 정보를 활용한 장기 영상 생성 방법 및 장치
Eastwood et al. Predicting sleep apnea from three-dimensional face photography
Patel et al. In vivo measurement of pediatric vocal fold motion using structured light laser projection
JP2016182518A (ja) コンピューター断層撮像を制御するための方法及びシステム
Chatterjee et al. Real-time respiration rate measurement from thoracoabdominal movement with a consumer grade camera
Sommer et al. Estimation of inferior-superior vocal fold kinematics from high-speed stereo endoscopic data in vivo
CN114845629A (zh) 用于呼吸监测的体表光学成像
KR20150129506A (ko) 의료 영상 정합 방법 및 그 장치
WO2012142972A1 (zh) 一种医学成像部件位置改变后对其快速精确定标的方法
KR20140057867A (ko) 열화상을 이용한 스트레스 지수 측정 시스템
CN115474951B (zh) 用于控制对象的医学成像检查的方法、医学成像系统和计算机可读数据存储介质
TWI685327B (zh) 生理訊號偵測系統
CN110507285A (zh) 一种皮肤病患者用的护理装置
KR101792234B1 (ko) 수면성 호흡장애 진단장치 및 표시방법
CN107843863B (zh) 基于3d形貌测量的磁共振成像矫正方法、装置及设备
Hill et al. Touchless respiratory monitor preliminary data and results
KR100963844B1 (ko) 유효시야 잘림방지를 위한 단일광자방출단층촬영기의촬영방법
KR102184001B1 (ko) 수술용 네비게이션을 위한 영상 정합 장치 및 영상 정합 방법
JP2022505955A (ja) 画像装置のための空間的位置合わせ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873390

Country of ref document: EP

Kind code of ref document: A1