WO2019085558A1 - 一种宝石的处理方法及改性宝石 - Google Patents
一种宝石的处理方法及改性宝石 Download PDFInfo
- Publication number
- WO2019085558A1 WO2019085558A1 PCT/CN2018/097792 CN2018097792W WO2019085558A1 WO 2019085558 A1 WO2019085558 A1 WO 2019085558A1 CN 2018097792 W CN2018097792 W CN 2018097792W WO 2019085558 A1 WO2019085558 A1 WO 2019085558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gemstone
- radiation
- space
- diamond
- modified
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
- C01B32/28—After-treatment, e.g. purification, irradiation, separation or recovery
Definitions
- the invention relates to the field of gemstones, in particular to a method for treating gemstones and modified gemstones.
- Gems generally include natural jewels and artificial gems, and natural jewels include natural gemstones, natural jade, and natural organic gemstones.
- Natural gemstones are mineral single crystals (which can contain twin crystals) that are produced by nature, have beautiful appearance (color, transparency, purity, luster, special optical effects, etc.), durable, rare, and can be processed into decorative articles. For example, emerald crystals, diamonds, etc.
- Natural jade refers to mineral aggregates produced by nature, with aesthetics, durability, scarcity and process value. A few are amorphous, including jade, nephrite, turquoise, agate, natural glass and so on.
- Natural organic gemstones are solid materials that are produced by natural organisms and are partially or wholly composed of organic materials, such as corals, ambers, ivory, pearls, cultured pearls, etc. Artificial gemstones generally include synthetic gemstones, artificial gemstones, split gemstones, recreated gemstones, etc. Synthetic gemstones are crystalline or amorphous materials that are partially or completely artificially produced. The physical properties, chemical composition and crystal structure of these materials correspond to them. Natural gemstones are basically the same, such as synthetic rubies, synthetic sapphires, etc. Synthetic gemstones refer to crystalline and amorphous materials made by hand, but these materials have no natural counterparts, such as artificial barium titanate.
- a jewel is a jewel that combines two or more materials by artificial means and gives an overall impression on the shape, such as flattening opal.
- Re-engineered gemstones are made by melting some crumbs and fragments of natural gemstones. Commonly, reconstituted amber, recreated turquoise, etc.
- the doping inside the gemstone, crystal defects such as point defects, line defects and other structures will make the gemstone have special color and performance, which makes the gemstone have higher value.
- point defects, line defects, and surface defects inside the diamond also give the diamond some excellent properties, such as toughness.
- the doping of nitrogen and boron in the interior of the diamond will make the diamond show yellow and blue, while the NV color inside the diamond is the main reason for the diamond to show pink.
- the point defects, line defects and surface defects inside the diamond also make the diamond An important factor in color.
- the colored gemstones produced in the natural environment are of high value.
- a natural rare pink diamond weighing 24.78 carats was sold at a high price of 45.75 million U.S. dollars in 2010.
- Zircon, amethyst, topaz, diamond and rutile have such examples.
- the methods for causing dislocations, color centers, and defects inside the diamond are mainly particle radiation, doping, and high temperature and high pressure treatment.
- the defects and color centers caused by the coloring methods in the prior art are mainly concentrated on the extremely shallow position of the diamond surface, and the uneven distribution of the defects causes the color distribution of the diamond to be uneven, forming an "umbrella"-like structure, which affects the uniformity of the material. Sex, but also affect the appearance.
- the difference between the value of the artificially processed gemstones and the gemstones produced by the natural environment is enormous.
- it is an all-natural process to use the radiation in space to create point, line and surface defects inside the gemstone, thereby changing the appearance, color and clarity of the gemstone.
- the present invention provides a method for treating a gemstone and a modified gemstone, which utilizes natural resources to treat the gemstone.
- the invention treats the gemstone by utilizing the radiation and high vacuum environment in the space environment, and the radiation can change the internal microstructure of the gemstone, thereby causing the color, the clarity, the weight and the optical phenomenon of the gem to change, thereby changing the value of the gemstone.
- the present invention is incorporated into the specification of the present invention by the contents of CN201711064011.6 and 201711065835.5.
- An aspect of the present invention provides a method of processing a gemstone, characterized in that the gemstone is placed in a space radiation environment having a height of at least 20 Km from the ground to receive radiation of space rays. The gemstone is placed in the space radiation environment to cause the space radiation particles to interact with the gemstone.
- the height from the ground is preferably 200 Km or more, and more preferably 300 KM or more.
- Specific methods include launching a gem-fixed device into space through a launch vehicle, a space shuttle, etc., or synthesizing the gem directly in space, and mechanically controlling the gemstone by mechanical or manual methods. Placed inside and outside the satellite, space capsule, and receives space radiation.
- the method includes applying protection to the gemstone to prevent and/or attenuate corrosion of atomic oxygen prior to the gemstone receiving radiation from the space ray.
- the protection applied to the gemstone is to form at least one protective layer on the surface of the gemstone or to place the gemstone in a closed container.
- the protective layer has a thickness of 10 mm or less. Further, the protective layer has a thickness of 5 mm or less, further, 100 ⁇ m or less, further, 50 ⁇ m or less, further 1 ⁇ m or less, further, 500 nm or less and not less than 1 nm.
- the protective layer has a thickness of, for example, 1 nm or more, or 5 nm, 10 nm or more, or even 50 nm or more.
- the thickness of the protective layer is set according to the concentration of atomic oxygen and other corrosive substances in the environment, and is not particularly limited.
- the protective layer does not affect or minimize the radiation that affects the space ray.
- the thickness of the protective layer is too high to block external rays from entering the interior of the gemstone. Therefore, the protective layer is as thin as possible in the case of being sufficient to protect the gem from atomic oxygen corrosion.
- the protective layer can be a single type of material or a composite material.
- the protective layer is formed of one or more materials selected from the group consisting of a polymer material, a metal, and an inorganic non-metal material.
- the polymer material is selected from the group consisting of polyether ketones, polyesters, polyethers, polyamims, polyamides, polyphenylene sulfides, poly(meth)acrylates, and polyolefins. At least one of the groups consisting of classes.
- the inorganic non-metal material is selected from at least one material selected from the group consisting of diamond-like, synthetic diamond, silica, titania, and zirconia.
- the magnesium, aluminum, titanium, chromium, copper, gold, silver, or the like and at least one of the group consisting of magnesium, aluminum, titanium, chromium, copper, gold, silver, and the like.
- the protective layer may be one or more layers.
- the gemstone is a diamond.
- the gemstone is a natural diamond.
- the protective layer is one or two of diamond-like or synthetic diamond.
- the protective layer can be applied by any suitable method.
- the protective layer is formed on the surface of the gemstone by any one of coating, vapor deposition, magnetron sputtering, and vapor deposition, but is not limited thereto.
- Any suitable method can be used to remove the protective layer.
- it is by means of grinding, ultrasonic cleaning, laser cutting, etc., but is not limited thereto.
- Another aspect of the present invention also provides a modified gemstone which is treated by the above method.
- the present invention further provides a method of modifying a gemstone in a simulated space environment and a modified gemstone obtained thereby.
- a specific embodiment thereof is a method for treating a gemstone, the method comprising treating the gemstone with a radiation beam containing protons, wherein the difference between the highest energy and the lowest energy of the proton is at least 5 MeV.
- the radiation ray further comprises at least one ray selected from the group consisting of electrons, gamma rays, and neutrons.
- the radiation rays have different sources, including but not limited to the following: the first one uses a cyclotron or a linear accelerator capable of generating different energy protons, and separately injects protons having different energies in batches; The use of cyclotrons or linear accelerators that produce different energy protons simultaneously inject protons with different energies; the third is to use the same cyclotron/linear accelerator to produce protons of different energies by adjusting the set parameters of the control accelerator.
- the method also applies protection to the diamond to prevent and/or attenuate the corrosion of atomic oxygen prior to processing the diamond, for which no further details are provided.
- the present invention treats the gemstone with a radiation beam containing protons wherein the proton has a maximum energy difference of at least 5 MeV, resulting in a modified gemstone.
- the present invention treats gemstones using proton-containing radiation rays having a larger energy distribution, the protons in the radiation having a relatively more dispersed energy distribution, resulting in a more uniform internal defect/color center distribution of the treated gemstone.
- electrons, gamma rays, neutrons, etc. have better penetrating ability relative to protons, and the defects/color centers caused by them can be distributed deeper in the sample.
- Protons have a large interaction with gemstone atoms, resulting in more defects and color centers.
- proton-containing radiation rays they use electrons, gamma rays, etc. with greater penetrating power. Processing, products with more defects, more color centers, and more uniform defect/color center distribution can be obtained.
- the method for treating a gemstone provided by the present invention and the modified gemstone obtained thereby are the gemstones placed at a height of at least 20 Km above ground to receive radiation of space rays.
- the height from the ground is preferably 200 Km or more, and more preferably 300 Km or more.
- the gemstone is processed through the natural environment of space to obtain a modified gemstone.
- the radiation in space is mainly from the Milky Way cosmic rays, the solar cosmic rays, the Earth's radiation belt, and the variety of radiation, including protons, electrons, neutrons, gamma rays, heavy ions, and various radiations have a wide range of energy.
- the invention provides a diamond modification method and the modified diamond obtained thereby, the diamond is treated with a radiation beam containing protons, wherein the difference between the highest energy and the lowest energy of the proton is at least 5 MeV, thereby obtaining a Modified diamond.
- the present invention treats diamond using proton-containing radiation rays having a larger energy distribution, the protons in the radiation having a relatively more dispersed energy distribution, resulting in a more uniform internal defect/color center distribution of the diamond being processed.
- electrons, gamma rays, neutrons, etc. have better penetrating ability relative to protons, and the defects/color centers caused by them can be distributed deeper in the sample.
- Protons have a large interaction with diamond atoms, resulting in more defects and color centers.
- proton-containing radiation rays electrons, gamma rays, etc. with greater penetrating power are used. Processing, products with more defects, more color centers, and more uniform defect/color center distribution can be obtained.
- Figure 1 is a schematic view of a protective layer applied to a gemstone provided by the present invention
- FIG. 2 is a schematic view showing the protection of placing a gemstone in a closed container according to the present invention
- Figure 3 is a pre-irradiation Raman spectrum of the sample of Example 1;
- Example 4 is a post-irradiation Raman spectrum of the sample of Example 1;
- Figure 5 is a partially enlarged view of the Raman spectrum of the sample of Example 1 after irradiation
- the present invention provides a method of treating a gemstone that places the gemstone in a space radiation environment at a height of at least 20 Km from the ground to receive radiation from space radiation.
- the gemstone is placed in the space radiation environment to cause the space radiation particles to interact with the gemstone.
- the use of natural rays having different energy distributions preferably using various radiations in the vicinity of the space into outer space, further preferably using various rays on the satellite, space capsule orbit, including but not limited to rays of the earth's radiation band , solar cosmic rays, galaxy cosmic rays, and a wide variety of radiation, including protons, electrons, neutrons, gamma rays, heavy ions, and various radiations have a wide energy distribution, so their penetration capabilities are different
- the gems produce defects/color centers of different types and different distribution areas, so that the internal defects/color centers of the treated gemstones are more densely distributed, thereby being able to overcome due to a single type.
- the single-energy-distributed ray-treated gemstone has a single defect, a low density, and a non-uniform distribution.
- the gemstone may be emitted from the ground into a space radiation environment or may be synthesized in a space radiation environment.
- the present invention further provides a method of modifying a gemstone in a simulated space environment and a modified gemstone obtained thereby.
- the method includes treating the diamond with a radiation beam comprising protons, wherein the energy difference between the highest energy and the lowest energy of the proton is at least 5 MeV.
- the radiation rays according to the present invention are preferably at least one of the groups of free electrons, gamma rays, and neutrons, and the protons in the radiation rays comprise a wide energy distribution, the radiation rays having different sources, including Not limited to the following:
- the first is to use a cyclotron or linear accelerator that can generate different energy protons, and to inject multiple protons with different energies in batches;
- the second is to use a cyclotron that can generate different energy protons or
- the linear accelerator simultaneously injects protons with different energies;
- the third is to use the same cyclotron/linear accelerator to generate protons of different energies by adjusting the set parameters of the control accelerator.
- the gemstones of the present invention include naturally mined or synthetic gemstones, as well as treated gemstones.
- the treated gemstones include gemstones that are initially irradiated using a radiation source, such as low energy proton radiation treatment using a single energy distribution.
- the gemstone is also protected before the gem receives the radiation from the space ray.
- the applied protection method requires both blocking and/or weakening the corrosion of atomic oxygen and other corrosive substances without blocking the external rays from entering the interior of the gemstone.
- the gemstone can be placed in an atom-free oxygen or a less atomic oxygen environment.
- at least one protective layer is formed on the surface of the gemstone or the gemstone is placed in a closed container.
- the less atomic oxygen environment according to the present invention is a relative value, which means that after the protective layer is applied on the surface of the gemstone or the gemstone is placed in the closed container, the surface of the gemstone is contacted due to the barrier effect of the protective layer and/or the closed container.
- the amount of atomic oxygen in the environment is less than the amount of atomic oxygen that the surface of the gemstone is exposed to when the gemstone surface is not protected.
- the environment in which the gemstone is located is the less atomic oxygen environment of the present invention.
- the atomic oxygen concentration in the environment in contact with the surface of the gemstone is much lower than 1 ⁇ 10 19 /cm 3 , so the environment in which the gemstone is located is a less atomic oxygen environment than the surrounding environment.
- the gems subjected to the atomic oxygen etching are reduced by 20% or more, further preferably by 50% or more, and further preferably by 90% or more, by weight of the etching which is subjected to no protection. Most preferred is the absence of atomic oxygen in the environment.
- Fig. 1 is a schematic view showing the application of a protective layer on the surface of a gemstone, the protective layer 1 being located on the outer surface of the gemstone 2, wherein the protective layer has a thickness of 10 mm or less. Further, the protective layer has a thickness of 5 mm or less, further, 100 ⁇ m or less, further 50 ⁇ m or less, further 1 ⁇ m or less, further 500 nm or less and not less than 1 nm. The thickness of the protective layer should not be too high, and too high will block external rays from entering the interior of the gemstone.
- the protective layer may be any material or any shape capable of blocking the action of atomic oxygen, and may be a single type of material or a composite material, for example, one or more of a polymer material, a metal, and an inorganic non-metal material, and also It can be one or more layers.
- the polymer material is preferably a group of free polyether ketones, polyesters, polyethers, polyamims, polyamides, polyphenylene sulfides, poly(meth)acrylates, and polyolefins.
- the inorganic non-metal material is preferably formed of at least one of the group consisting of diamond-like, synthetic diamond, silica, titania, and zirconia; the metal material preferably has a contrast to the ray Smallly influential materials are preferably materials such as magnesium and aluminum.
- the protective layer is formed on the surface of the gemstone by coating, vapor deposition, magnetron sputtering, evaporation, or the like.
- the hermetic container may be in a variety of shapes, such as a cubic hollow box, a hollow sphere, a hemispherical cover, or the like, having any suitable shape.
- the closed container used requires a device that is capable of partially or completely isolating atomic oxygen and/or other corrosive materials, preferably having no or substantially no or substantially no blocking effect on the external radiation.
- the material of the closed container is not limited. As long as it has a material capable of blocking all or part of atomic oxygen and/or other corrosive substances, a material having no or substantially no or little blocking effect on external rays can be used for forming.
- the container or a portion of the container include, but are not limited to, polyimide, polysulfone, polystyrene, polybenzimidazole, silica, alumina, and the like.
- the following example uses a Type IIa diamond in a ground simulation experiment and an outboard exposure test outside the space capsule.
- the specific test method for the extra-vehicle exposure test is to transport the test satellite to the satellite orbit with a height of more than 300KM from the ground through the launching of the diamond in the material test box in the test satellite, and expose the gemstone to the space radiation of the orbit. In the environment, it runs with the satellite for one year and returns to the ground with the material test chamber.
- the silica protective coating is prepared on the surface of the gemstone by depositing a certain thickness of silica on the surface of the gemstone by reactive magnetron sputtering, specifically including cleaning the surface of the gemstone and placing it on the magnetic after drying.
- reactive magnetron sputtering specifically including cleaning the surface of the gemstone and placing it on the magnetic after drying.
- the diamond samples to be tested were characterized by UV-VIS, and the optical transmittance of the samples was measured using a Lambda 950 UV/VIS spectrophotometer manufactured by Perkin-Elmer, in which the spectral test range was 400-2000 nm, scanning. The rate was 480 nm/min, the wavelength resolution was 2 nm, and the test slit width was 15 mm.
- This embodiment uses a method of simulating a space environment for testing.
- the linear accelerator is used to control the energy distribution of electrons and protons.
- the energy of the control electrons were 0.1 MeV, 1 MeV, 5 MeV, 7 MeV, 9 MeV and 15 MeV, respectively, and the proton energy was 0.1 MeV, 1 MeV, 5 MeV, 7 MeV and 10 MeV, respectively.
- the flux controlling the electrons and protons is substantially evenly distributed at the eleven different energy points, so that the total flux of the final protons and electrons is 1 ⁇ 10 15 /cm 2 .
- the synthetic IIa diamond was used for the irradiation experiment to obtain the product 1.
- the Raman spectrum characterization results of the product are shown in Figure 3-5.
- the HR800 Raman spectrometer manufactured by Horiba JY of France is used as a laser confocal micro-Raman spectrometer.
- the test selected the excitation band to be 488 nm, the laser was an argon ion laser, and the power was 20 mW, and the Raman spectrum was tested.
- the product Raman spectrometer test it can be found that new Raman peaks appear at 1420cm-1, 2020cm-1, 2566cm-1, 2789cm-1, 3290cm-1, 3710cm-1, indicating that the diamond sample is irradiated. A large number of different types of defects have appeared.
- Synthetic type IIa diamond was used to deposit a 3 micron thick silicon dioxide film on the surface by reactive magnetron sputtering.
- the diamond film deposited diamond was placed in an atomic oxygen environment.
- the cumulative atomic oxygen injection amount during the treatment is 5 ⁇ 10 20 atoms/cm 3 .
- the energy and distribution of electrons and protons were controlled by the conditions of Example 1, so that the total flux of the final protons and electrons was 1 ⁇ 10 16 /cm 2 .
- the sample was placed in a solvent and the protective layer was peeled off under ultrasonic treatment to obtain Product 2.
- the diamond deposited with the silicon dioxide film is placed in an atomic oxygen environment, wherein the cumulative atomic oxygen injection amount during the treatment is 5 ⁇ 10 20 atoms/cm 3 .
- the energy and the distribution of electrons and protons were controlled by the conditions of Example 1, so that the total flux of the final protons and electrons was 1 ⁇ 10 16 /cm 2 to obtain the product 3.
- a synthetic type IIa diamond was taken, and a polyimide solution was applied to the surface thereof, and dried and solidified to a dry film thickness of 5 ⁇ m.
- the polyimide-coated diamond was placed in an atomic oxygen atmosphere, and the cumulative atomic oxygen injection amount during the treatment was 5 ⁇ 10 20 atoms/cm 3 .
- the energy and distribution of electrons and protons were controlled in the same manner as in Example 1 so that the total flux of the final protons and electrons was 1 ⁇ 10 16 /cm 2 .
- the sample was placed in a solvent and the protective layer was peeled off under ultrasonic treatment to obtain product 4.
- Synthetic type IIa diamond was used to deposit a 0.1 micron thick titanium alloy film on the surface by reactive magnetron sputtering.
- the diamond film deposited diamond was placed in an atomic oxygen environment. , wherein the cumulative atomic oxygen injection amount during the treatment is 5 ⁇ 10 20 atoms/cm 3 .
- the energy and distribution of electrons and protons were controlled by the conditions of Example 1, so that the total flux of the final protons and electrons was 1 ⁇ 10 16 /cm 2 .
- the sample was placed in a solvent and the protective layer was peeled off under ultrasonic treatment to obtain a product 5.
- Synthetic type IIa diamond is used to deposit 1 micron thick silicon dioxide on the surface of the gemstone by reactive magnetron sputtering, including cleaning the surface of the gemstone, drying it, and placing it in a vacuum chamber of a magnetron sputtering coating device. To 100 ° C, argon gas was introduced, pre-sputtered, sputtered silica, and finally a protective layer of silicon dioxide was obtained on the surface of the gemstone.
- the method of reactive magnetron sputtering was prior art.
- the diamond is fixed in the material experiment box of the test satellite, and the test satellite is transported to the satellite orbit with a height of more than 300KM from the launch vehicle, and the gemstone is exposed to the space radiation environment of the orbit, and the satellite runs for one year, and Return to the ground with the material test chamber, place the sample in a solvent, and peel off the protective layer under ultrasonic treatment to obtain product 6.
- Synthetic Type IIa diamonds are transported to the satellite orbits with a height of more than 300KM from the launch vehicle, and the gemstones are exposed to the space radiation environment of the orbit, running with the satellite for one year, and returning to the ground with the material test chamber. After washing, sample 7 was obtained.
- the tested diamond samples were characterized by UV-VIS.
- the optical transmittance of the samples was measured using a Lambda 950 UV/VIS spectrophotometer manufactured by Perkin-Elmer.
- the spectral range was 400-2000 nm.
- the rate was 480 nm/min, the wavelength resolution was 2 nm, and the test slit width was 15 mm. All the obtained samples were observed under a light microscope to observe the color morphology, and the surface morphology was observed under a scanning electron microscope.
- the experimental results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Adornments (AREA)
Abstract
本发明提供了一种宝石的处理方法及改性宝石。宝石的处理方法包括将宝石置于离地高度至少为20Km的太空辐射环境中,以接收太空射线的辐射,通过太空的自然环境对宝石进行处理,得到改性宝石。在宝石接收太空射线的辐射之前,对宝石施加保护以阻止和/或减弱原子氧的腐蚀。改性宝石由本发明所述的处理方法处理而成。本发明另外提供一种模拟太空环境对宝石进行处理的方法,使用包含质子的辐射射线处理所述宝石,其中所述质子的最高能量和最低能量的能量差至少为5MeV。采用本发明,可以增加宝石内部缺陷的种类和密度,改善/改性宝石缺陷分布状态的问题。
Description
本发明涉及宝石领域,特别涉及一种宝石的处理方法及改性宝石。
宝石一般包括天然珠宝玉石和人工宝石,天然珠宝玉石包括天然宝石、天然玉石、天然有机宝石。天然宝石是指由自然界产出,具有美观(颜色、透明度、纯净度、光泽、特殊光学效应等因素构成)、耐久、稀少性,可加工成装饰品的矿物单晶(可含双晶),如,祖母绿晶体、钻石等。天然玉石是指由自然界产出的,具有美观、耐久、稀少性和工艺价值的矿物集合体,少数为非晶质体,包括翡翠、软玉、绿松石、玛瑙、天然玻璃等。天然有机宝石是指由自然界生物生成,部分或全部由有机物组成可用于装饰的固体材料,如珊瑚、琥珀、象牙、珍珠、养殖珍珠等。人工宝石一般包括合成宝石、人造宝石、拼合宝石、再造宝石等,合成宝石是指部分或完全由人工制造的晶质或非晶质材料,这些材料的物理性质、化学成分及晶体结构与其相对应的天然宝石基本相同,如合成红宝石、合成蓝宝石等。人造宝石是指由人工制造的晶质和非晶质材料,但这些材料没有天然对应物,如人造钛酸锶。拼合宝石是指两种或两种以上材料经人工方法拼合在一起,在外形上给人以整体琢型印象的宝石,如拼合欧泊。再造宝石是指将一些天然宝石的碎屑、碎块熔结后制成,常见的有再造琥珀、再造绿松石等。
宝石内部的掺杂、晶体缺陷如点缺陷、线缺陷等结构,会使得宝石具有特殊的色泽和性能,从而使得宝石具有更高的价值。特别是对于钻石,钻石内部的点缺陷、线缺陷、面缺陷也会使得钻石具有一些优异的性能,比如韧性。在钻石的内部掺杂氮、硼会使得钻石显示黄色、蓝色,而钻石内部的N-V色心则是使得钻石显示粉色的主要原因,钻石内部的点缺陷、线缺陷、面缺陷也是使得钻石显色的重要因素。
目前,在自然环境下生成的彩色宝石具有极高的价值,一枚重达24.78克拉的天然稀有粉色钻石在2010年拍出了4575万美元的高价。虽然现有技术中有通过人工的手段,使得宝石着色的方法。目前,对由晶格缺陷产生的颜色,人们往往通过热处理或放射线处理来改变颜色,锆石、紫水晶、黄玉、钻石和金红石等都有这种例子。使得钻石内部出现位错、色心、缺陷的方法主要有粒子辐射、掺杂、高温高压处理。但是,现有技术中的着色方法造成的缺 陷及色心主要集中在钻石的表面极浅的位置,缺陷分布不均匀导致钻石的色泽分布不均匀,形成“伞”状结构,既影响材料的均匀性,又影响外观。人工处理得到的宝石与天然环境生成的宝石所具备的价值差距巨大。不同于人工着色的方法,利用太空中的辐射使宝石内部产生点、线、面缺陷,从而改变宝石外观、色泽、澄净度的过程是一个全自然的过程。现有技术中,并无利用太空辐射通过长时间利用太空中自然射线的辐射生产彩色宝石的方法。
发明内容
有鉴于此,本发明的主要目的在于提供一种宝石的处理方法及改性宝石,采用自然资源的手段,处理宝石。本发明通过借助太空环境中的辐射、高真空环境,对宝石进行处理,辐射可以使得宝石内部微观结构发生变化,进而导致宝石的颜色、净度、重量、光学现象发生变化,达到改变宝石价值的目的。本发明作为CN201711064011.6、201711065835.5专利的后续申请,将CN201711064011.6、201711065835.5中的内容引用至本发明的说明书中。
为达到上述目的,本发明的技术方案是这样实现的:
本发明的一方面提供一种宝石的处理方法,其特征在于,将宝石置于离地高度至少为20Km的太空辐射环境中,以接收太空射线的辐射。将所述宝石置于所述太空辐射环境中,使太空辐射粒子与宝石发生相互作用。
所述离地高度优选为200Km以上,更优选为300KM以上。具体的方法包括通过运载火箭、航天飞机等运载工具,将固定有宝石的装置发射至太空中,或者直接在太空中合成所述宝石,并通过机械控制的方法或人工的方法,将所述宝石置于卫星、太空舱内外,接受太空辐射。
优选的,所述方法包括在所述宝石接收太空射线的辐射之前,对所述宝石施加保护以阻止和/或减弱原子氧的腐蚀。
优选的,对所述宝石施加的保护为在所述宝石的表面形成至少一层保护层或将所述宝石置于密闭容器。
优选的,所述保护层厚度为10mm以下。进一步地,所述保护层厚度为5mm以下,进一步地,100微米以下,进一步地,50微米以下,进一步地,1微米以下,进一步地,500纳米以下且不小于1纳米。
进一步地,所述保护层厚度例如在1纳米以上,或者在5纳米、10纳米或20纳米以上,甚至在50纳米以上。
保护层的厚度根据环境中原子氧及其他腐蚀性物质的浓度来设定,并没有特别的限制。保护层不影响或尽可能小的影响太空射线的辐射。保护层的厚度过高,会阻挡外部射线进入宝石的内部。因此,在足以保护宝石免受原子氧腐蚀的情况下,保护层尽可能地薄。
所述保护层可以为单一种类材料或者复合材料。
优选的,所述保护层由选自由高分子材料、金属、无机非金属材料所组成的组中的一种或多种材料形成。
优选的,所述高分子材料选自由聚醚酮类、聚酯类、聚醚类、聚酰亚类胺、聚酰胺类、聚苯硫醚类、聚(甲基)丙烯酸酯类和聚烯烃类所组成组中的至少一种。
优选的,所述无机非金属材料选自由类金刚石、人造金刚石、二氧化硅、二氧化钛和二氧化锆所组成组中的至少一种材料形成。
优选的,所述镁、铝、钛、铬、铜、金、银等以及镁、铝、钛、铬、铜、金、银等合金所组成组中的至少一种。
进一步地,保护层可以为一层或多层。
优选的,所述宝石为钻石。
优选的,所述宝石为天然钻石。
优选的,所述保护层为类金刚石或人造金刚石中的一种或两种。
可采用任何适合的方法来施加保护层。例如,所述保护层通过涂覆、气相沉积、磁控溅射、蒸镀中任意一种方法形成于所述宝石的表面,但不限于此。
可采用任何合适的方法来去除保护层。例如,通过磨抛、超声清洗、激光切割等方法,但不限于此。
本发明的另一方面还提供了一种改性宝石,所述改性宝石由上述方法处理而成。
本发明进一步提供一种模拟太空环境对宝石进行改性的方法及由此获得的改性宝石。其具体方案为:一种宝石的处理方法,该方法包括使用包含质子的辐射射线处理所述宝石,其中所述质子的最高能量和最低能量的能量差至少为5MeV。
优选的,所述辐射射线进一步包括选自由电子、γ射线、中子所组成组中的至少一种射线。所述辐射射线具有不同的来源,包括但不限于下几种:第一种是使用能产生不同能量质子的回旋加速器或直线加速器,分批次多次分别注入具有不同能量的质子;第二种是使用能产生不同能量质子的回旋加速器或直线加速器,同时注入具有不同能量的质子;第三种是使用同一台回旋加速器/直线加速器,通过调节控制加速器的设定参数从而产生不同能量的质子。
优选的,所述方法在处理所述金刚石之前,同样对所述金刚石施加保护以阻止和/或减弱原子氧的腐蚀,对此,不再赘述。
本发明使用包含质子的辐射射线处理所述宝石,其中所述质子的最高能量和最低能量的能量差至少为5MeV,从而得到一种改性宝石。本发明使用具有较大能量分布的包含质子的辐射射线处理宝石,该辐射射线中的质子具有相对比较分散的能量分布,从而使得被处理的宝石内部缺陷/色心分布更均匀。同时,电子、伽马射线、中子等相对于质子,具有更好的穿透能力,其造成的缺陷/色心可以分布在样品更深的位置。质子与宝石原子具有较大的相互作用,造成比较多、位置比较浅的缺陷/色心,在采用含有质子的辐射射线处理的同时,采用具有更大穿透能力的电子、伽马射线等射线处理,可以获得缺陷、色心较多,且缺陷/色心分布更加均匀的产品。
本发明可以具有如下有益效果:
本发明提供的一种宝石的处理方法及由此获得的改性宝石,是将宝石置于离地高度至少为20Km以上,以接收太空射线的辐射。所述离地高度优选为200Km以上,更优选为300Km以上。从而得到一种缺陷/色心种类更多、密度更高、分布更均匀的宝石。通过太空的自然环境对宝石进行处理,得到改性宝石。太空中的辐射主要来源于银河宇宙射线、太阳宇宙射线、地球辐射带,而且辐射的种类繁多,包括了质子、电子、中子、伽马射线、重离子,而且各种辐射具有很宽的能量分布,因而其穿透能力各有不同,利用各种射线的穿透能力的差异,让宝石产生不同深度、种类的缺陷/色心,使得被处理的宝石内部缺陷/色心种类更多、密度越高、分布更均匀,从而可以克服由于单一种类、单一能量分布的射线处理宝石带来的缺陷/色心种类单一、密度低、分布不均等缺陷。
本发明提供的一种金刚石改性方法及由此获得的改性金刚石,使用包含质子的辐射射线处理所述金刚石,其中所述质子的最高能量和最低能量的能量差至少为5MeV,从而得到一种改性金刚石。本发明使用具有较大能量分布的包含质子的辐射射线处理金刚石,该辐射射线中的质子具有相对比较分散的能量分布,从而使得被处理的金刚石内部缺陷/色心分布更均匀。同时,电子、伽马射线、中子等相对于质子,具有更好的穿透能力,其造成的缺陷/色心可以分布在样品更深的位置。质子与金刚石原子具有较大的相互作用,造成比较多、位置比较浅的缺陷/色心,在采用含有质子的辐射射线处理的同时,采用具有更大穿透能力的电子、伽马射线等射线处理,可以获得缺陷、色心较多,且缺陷/色心分布更加均匀的产品。
图1为本发明提供的为宝石施加保护层的示意图;
图2为本发明提供的将宝石放置在密闭容器中进行保护的示意图;
图3为实施例1样品的辐照前拉曼光谱图;
图4为实施例1样品的辐照后拉曼光谱图;
图5为实施例1样品的辐照后拉曼光谱图局部放大图;
本发明提供了一种宝石的处理方法,该方法将宝石置于离地高度至少为20Km的太空辐射环境中,以接收太空射线的辐射。将所述宝石置于所述太空辐射环境中,使太空辐射粒子与宝石发生相互作用。使用天然的具有不同能量分布的射线,优选使用临近空间到外太空中的各种辐射,进一步优选使用卫星、太空舱轨道上的各种射线,所述的射线包括但不限于地球辐射带的射线、太阳宇宙射线、银河宇宙射线,而且辐射的种类繁多,包括了质子、电子、中子、伽马射线、重离子,而且各种辐射具有很宽的能量分布,因而其穿透能力各有不同,利用各种射线的种类区别及穿透能力的差异,让宝石产生不同种类、不同分布区域的缺陷/色心,使得被处理的宝石内部缺陷/色心分布更密,从而可以克服由于单一种类、单一能量分布的射线处理宝石带来的缺陷/色心种类单一、密度低、分布不均匀等的情况。在本发明的实施方式中,所述宝石可以由地面发射到太空辐射环境中,也可以在太空辐射环境中合成。
本发明进一步提供了模拟太空环境对宝石进行改性的方法及由此获得的改性宝石。该方法包括使用包含质子的辐射射线处理所述钻石,其中,质子的最高能量和最低能量的能量差至少为5MeV。
本发明所述的辐射射线优选自由电子、γ射线、中子所组成组中的至少一种射线,这些辐射射线中的质子包含较宽的能量分布,所述辐射射线具有不同的来源,包括但不限于下几种:第一种是使用能产生不同能量质子的回旋加速器或直线加速器,分批次多次分别注入具有不同能量的质子;第二种是使用能产生不同能量质子的回旋加速器或直线加速器,同时注入具有不同能量的质子;第三种是使用同一台回旋加速器/直线加速器,通过调节控制加速器的设定参数从而产生不同能量的质子。
本发明所述的宝石包括天然开采的或合成的宝石,还包括经过处理的宝石。所述的经过处理的宝石包括使用辐射源初步辐射处理的宝石,例如使用单一能量分布的低能质子辐射处理。
在宝石接收太空射线的辐射之前,还要对宝石施加保护。施加的保护方法要求既要阻止 和/或减弱原子氧及其他腐蚀性物质的腐蚀又不会太多阻挡外部射线进入宝石的内部,具体的,可以将宝石置于无原子氧或少原子氧环境中,进一步的,可以为在宝石的表面形成至少一层保护层或将宝石置于密闭容器中。本发明所述的少原子氧环境是一个相对值,是指在宝石表面施加了保护层或将宝石置于密闭容器中以后,由于保护层和/或密闭容器的阻隔作用,宝石表面接触到的环境中的原子氧数量小于不在宝石表面施加任何防护时,宝石表面所接触到的原子氧数量,此时宝石所处的环境即为本发明所述的少原子氧环境。例如,在一个原子氧浓度为1×10
19个/cm
3的环境中,在对宝石表面施加了保护层或将宝石置于密闭容器中后仍然可能有部分原子氧穿过保护层或密闭容器,但宝石表面接触到的环境中的原子氧浓度远远低于1×10
19个/cm
3,因而宝石所处的环境相对于周围环境来说是少原子氧环境。优选的,宝石在施加保护后,受到的原子氧刻蚀相对于不施加保护时受到的刻蚀以重量计算,减少20%以上,进一步优选的减少50%以上,进一步优选的减少90%以上,最优选的是环境中无原子氧存在。
图1为在宝石表面施加保护层的示意图,保护层1位于宝石2的外表面,其中,保护层厚度10mm以下。进一步地,所述保护层厚度5mm以下,进一步地,100微米以下,进一步地,50微米以下,进一步地,1微米以下,进一步地,500纳米以下且不小于1纳米。保护层的厚度不可以过高,过高会阻挡外部射线进入宝石的内部。保护层为能起到阻隔原子氧作用的任何材料、任何形状均可,可以为单一种类材料或者复合材料,例如为高分子材料、金属、无机非金属材料中的一种或多种,也还可以为一层或多层。高分子材料为优选自由聚醚酮类、聚酯类、聚醚类、聚酰亚类胺、聚酰胺类、聚苯硫醚类、聚(甲基)丙烯酸酯类和聚烯烃类所组成组中的至少一种高分子材料形成;无机非金属材料优选为由类金刚石、人造金刚石、二氧化硅、二氧化钛和二氧化锆所组成组中的至少一种材料形成;金属材料优选对射线具有较小影响的材料,优选镁、铝等材料。保护层通过涂覆、气相沉积、磁控溅射、蒸镀等方法形成于所述宝石的表面。
图2为将宝石放置在密闭容器中进行保护的示意图,密闭容器可以为多种形状,例如,立方体型的空心盒子、空心球、半球形罩等具有任何合适形状的密闭容器。所用密闭容器要求能部分或者全部隔绝原子氧和/或其他腐蚀性物质的器件,优选的对外部射线没有或基本没有或者具有较小的阻挡作用。对密闭容器的材质没有限定,只要满足有能阻隔全部或部分原子氧和/或其他腐蚀性物质的材质,优选的对外部射线没有或基本没有或有较少的阻挡作用的材料均可用于形成所述容器或所述容器的一部分。具体的例子包括聚酰亚胺、聚砜、聚苯乙烯、聚苯并咪唑、二氧化硅、氧化铝等,但不限于此。
下面结合附图及具体实施例对本发明再作进一步详细的说明。
方法及设备
以下实施例采用IIa型钻石于地面模拟实验,以及于太空舱外进行舱外暴露试验。舱外暴露试验具体的试验方法是通过将钻石固定于试验卫星中的材料实验箱,通过运载火箭,将试验卫星运送至离地高度大于300KM的卫星轨道,将宝石暴露于所处轨道的太空辐射环境中,随卫星运转1年,并随材料试验箱返回地面。
实施例中在宝石表面制备二氧化硅保护镀层的方法为,通过反应磁控溅射的方法,在宝石表面沉积一定厚度的二氧化硅,具体包括将宝石表面清洗干净,烘干之后置于磁控溅射镀膜设备真空室内,加热至100℃,通入氩气,预溅射、溅射二氧化硅,最终在宝石表面获得一定厚度的二氧化硅保护层,反应磁控溅射的方法为现有技术。
将待试验的钻石样品置于UV-VIS中进行表征,采用Perkin-Elmer公司生产的Lambda950型UV/VIS分光光度计对样品的光学透过率进行测量,其中光谱测试范围为400~2000nm,扫描速率480nm/min,波长分辨率为2nm,测试狭缝宽度为15mm。
实施例一
本实施例采用模拟太空环境的方式进行试验。采用直线加速器分别控制电子、质子的能量分布。控制电子的能量大小分别为0.1MeV、1MeV、5MeV、7MeV、9MeV和15MeV,控制质子的能量分别为0.1MeV、1MeV、5MeV、7MeV和10MeV。控制电子、质子的通量在所述的十一个不同的能量点基本均匀分布,使最终的质子、电子的总通量为1×1015个/cm2。采用合成IIa型钻石,进行辐照实验,得到产品1,产品拉曼光谱表征结果见图3-5。采用法国Horiba JY公司生产的HR800型的拉曼光谱仪,仪器为激光共聚焦显微拉曼光谱仪。测试选择激发波段为488nm,激光器为氩离子激光器,功率为20mw,对其拉曼光谱进行测试。通过产品的拉曼光谱仪的测试,可以发现在1420cm-1、2020cm-1、2566cm-1、2789cm-1、3290cm-1、3710cm-1处出现新的拉曼峰,说明钻石样品在经过辐照后出现了大量不同种类的缺陷。
实施例二
取合成IIa型钻石,通过反应磁控溅射的方法,在其表面沉积3微米厚的二氧化硅薄膜,为模拟太空的原子氧环境,将沉积了二氧化硅薄膜的钻石置于原子氧环境中,其中处理过程中累计原子氧注入量为5×10
20个atom/cm
3。采用实施例1的条件控制电子、质子的能量大小及分布,使最终的质子、电子的总通量为1×10
16个/cm
2。再将样品置于溶剂 中,在超声处理下剥离所述保护层,得到产品2。
实施例三
取合成IIa型钻石,为模拟太空的原子氧环境,将沉积了二氧化硅薄膜的钻石置于原子氧环境中,其中处理过程中累计原子氧注入量为5×10
20个atom/cm
3,采用实施例1的条件控制电子、质子的能量大小及分布,使最终的质子、电子的总通量为1×10
16个/cm
2,得到产品3。
实施例四
取合成IIa型钻石,在其表面涂覆聚酰亚胺溶液,干燥固化,干膜厚度为5微米。为模拟太空的原子氧环境,将涂覆了聚酰亚胺的钻石置于原子氧环境中,处理期间累计原子氧注入量为5×10
20个atom/cm
3。按照实施例1的方法控制电子、质子的能量大小及分布,使最终的质子、电子的总通量为1×10
16个/cm
2。再将样品置于溶剂中,在超声处理下剥离所述的保护层,得到产品4。
实施例五
取合成IIa型钻石,通过反应磁控溅射的方法,在其表面沉积0.1微米厚的钛合金薄膜,为模拟太空的原子氧环境,将沉积了二氧化硅薄膜的钻石置于原子氧环境中,其中处理过程中累计原子氧注入量为5×10
20个atom/cm
3。采用实施例1的条件控制电子、质子的能量大小及分布,使最终的质子、电子的总通量为1×10
16个/cm
2。再将样品置于溶剂中,在超声处理下剥离所述保护层,得到产品5。
实施例六
取合成IIa型钻石,通过反应磁控溅射的方法,在宝石表面沉积1微米厚的二氧化硅,具体包括将宝石表面清洗干净,烘干之后置于磁控溅射镀膜设备真空室内,加热至100℃,通入氩气,预溅射、溅射二氧化硅,最终在宝石表面获得一定厚度的二氧化硅保护层,反应磁控溅射的方法为现有技术。将钻石固定于试验卫星中的材料实验箱,通过运载火箭,将试验卫星运送至离地高度大于300KM的卫星轨道,将宝石暴露于所处轨道的太空辐射环境中,随卫星运转1年,并随材料试验箱返回地面,再将样品置于溶剂中,在超声处理下剥离所述的保护层,得到产品6。
实施例七
取合成IIa型钻石,通过运载火箭,将试验卫星运送至离地高度大于300KM的卫星轨道,将宝石暴露于所处轨道的太空辐射环境中,随卫星运转1年,并随材料试验箱返回地面,清洗后得到样品7。
将试验后的钻石样品置于UV-VIS中进行表征,采用Perkin-Elmer公司生产的Lambda950型UV/VIS分光光度计对样品的光学透过率进行测量,其中光谱测试范围为400~2000nm,扫描速率480nm/min,波长分辨率为2nm,测试狭缝宽度为15mm。并将所有获得的样品置于光学显微镜下观察其颜色形貌,置于扫描电镜下观察表面形貌。实验结果见表1。
表1
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不同限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (14)
- 一种宝石的处理方法,其特征在于,将宝石置于离地高度至少为20Km的太空辐射环境中,以接收太空射线的辐射。
- 根据权利要求1所述的宝石处理方法,其特征在于将宝石置于离地高度至少为200Km的太空辐射环境中,以接收太空射线的辐射。
- 根据权利要求1-2任一项所述的宝石处理的方法,其特征在于,所述方法包括在所述宝石接收太空射线的辐射之前,对所述宝石施加保护以阻止和/或减弱原子氧的腐蚀。
- 根据权利要求3所述的宝石处理的方法,其特征在于,对所述宝石施加的保护为在所述宝石的表面形成至少一层保护层或将所述宝石置于密闭容器中。
- 根据权利要求4所述的宝石处理的方法,其特征在于,所述保护层厚度小于100微米。
- 根据权利要求4所述的宝石处理的方法,其特征在于,所述保护层由选自由高分子材料、金属、无机非金属材料所组成的组中的一种或多种材料形成。
- 根据权利要求6所述的宝石处理的方法,其特征在于,所述高分子材料选自由聚醚酮类、聚酯类、聚醚类、聚酰亚类胺、聚酰胺类、聚苯硫醚类、聚(甲基)丙烯酸酯类和聚烯烃类所组成组中的至少一种。
- 根据权利要求6所述的宝石处理的方法,其特征在于,所述无机非金属材料为无机氧化物,优选类金刚石、人造金刚石、二氧化硅、二氧化钛和二氧化锆所组成组中的至少一种。
- 根据权利要求6所述的宝石处理的方法,其特征在于,所述金属材料选自由镁、铝、钛、铬、铜、金、银等以及镁、铝、钛、铬、铜、金、银等合金所组成组中的至少一种。
- 根据权利要求1-9任一项所述的宝石处理的方法,所述宝石为钻石。
- 一种改性宝石,其特征在于,所述改性宝石由权利要求1-10中任一项所述的方法处理而成。
- 一种宝石处理的方法,其特征在于:所述方法包括使用包含质子的辐射射线处理所述宝石,其中所述质子的最高能量和最低能量的能量差至少为5MeV。
- 根据权利要求12所述的宝石处理的方法,其特征在于,所述辐射射线进一步包括选自由电子、γ射线、中子所组成组中的至少一种射线。
- 一种改性宝石,其特征在于,所述改性宝石由权利要求12-13中任一项所述的方法处理而成。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711065835.5A CN107892297B (zh) | 2017-11-02 | 2017-11-02 | 一种金刚石的处理方法及改性金刚石 |
CN201711064011.6A CN107840331B (zh) | 2017-11-02 | 2017-11-02 | 一种金刚石改性的方法及改性金刚石 |
CN201711064011.6 | 2017-11-02 | ||
CN201711065835.5 | 2017-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019085558A1 true WO2019085558A1 (zh) | 2019-05-09 |
Family
ID=66331293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/097792 WO2019085558A1 (zh) | 2017-11-02 | 2018-07-31 | 一种宝石的处理方法及改性宝石 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019085558A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1084489A (zh) * | 1993-08-23 | 1994-03-30 | 复旦大学 | 一种从石墨或含碳固体物制备金刚石的方法 |
CN107840331A (zh) * | 2017-11-02 | 2018-03-27 | 长沙新材料产业研究院有限公司 | 一种金刚石改性的方法及改性金刚石 |
CN107892297A (zh) * | 2017-11-02 | 2018-04-10 | 长沙新材料产业研究院有限公司 | 一种金刚石的处理方法及改性金刚石 |
-
2018
- 2018-07-31 WO PCT/CN2018/097792 patent/WO2019085558A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1084489A (zh) * | 1993-08-23 | 1994-03-30 | 复旦大学 | 一种从石墨或含碳固体物制备金刚石的方法 |
CN107840331A (zh) * | 2017-11-02 | 2018-03-27 | 长沙新材料产业研究院有限公司 | 一种金刚石改性的方法及改性金刚石 |
CN107892297A (zh) * | 2017-11-02 | 2018-04-10 | 长沙新材料产业研究院有限公司 | 一种金刚石的处理方法及改性金刚石 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Avasthi et al. | Synthesis of metal–polymer nanocomposite for optical applications | |
CN107840331B (zh) | 一种金刚石改性的方法及改性金刚石 | |
US7732011B2 (en) | Method to produce tone-controlled colors in colorless crystals | |
Popok et al. | Immersion of low-energy deposited metal clusters into poly (methyl methacrylate) | |
US6872422B2 (en) | Process for imparting and enhancement of colours in gemstone minerals and gemstone minerals obtained thereby | |
WO2019085558A1 (zh) | 一种宝石的处理方法及改性宝石 | |
Mohanty et al. | Energetic ion irradiation of American diamond in a plasma focus device and characterization of irradiated material | |
Sokura et al. | Electron-microscopy study of ordered silver nanoparticles synthesized in a ZnO: Al polycrystalline film | |
CN107892297B (zh) | 一种金刚石的处理方法及改性金刚石 | |
Cutroneo et al. | Characterization of thin films for TNSA laser irradiation | |
Stepanov et al. | Characterization of the surface of silver ion-implanted silicon by optical reflectance | |
KR100644929B1 (ko) | 이온주입과 열처리에 의한 발색된 다이아몬드의 제조방법 | |
Intarasiri et al. | Color improvement of rubies by ion beam technique | |
Caricato et al. | Wavelength, fluence and substrate-dependent room temperature pulsed laser deposited B-enriched thick films | |
Mikhailov et al. | Effect of proton irradiation on the optical properties of coating based on ZnO powder and liquid K2SiO3 | |
Shah et al. | Study of the structural and electrical properties of silicon ion irradiated zirconium nitride thin films | |
Hassan et al. | Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films | |
Ribeiro et al. | Plasmonic Au nanoparticles by ion implantation | |
Kumar et al. | Creation of uniformly dispersed nitrogen-vacancy centers in nano-diamonds by low energy ion-irradiation | |
Zatsepin et al. | Modification of MgAl 2 O 4 electron-optic properties by pulsed ion beam | |
Skorupa et al. | A study of the blue photoluminescence emission from thermally-grown, Si+-implanted SiO2 films after short-time annealing | |
RU2434977C1 (ru) | Способ получения алмазов фантазийного желтого и черного цвета | |
Procházka et al. | Characterisation of irradiation-induced defects in ZnO single crystals | |
Zaier et al. | Tuning the morphology of silver nanostructures photochemically coated on glass substrates: an effective approach to large-scale functional surfaces | |
Vartanyan et al. | Changes in morphology and optical properties of silver island films on transparent dielectric substrates under exposure to laser radiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18873315 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18873315 Country of ref document: EP Kind code of ref document: A1 |