WO2019085181A1 - 显示装置的驱动方法与驱动装置 - Google Patents

显示装置的驱动方法与驱动装置 Download PDF

Info

Publication number
WO2019085181A1
WO2019085181A1 PCT/CN2017/116323 CN2017116323W WO2019085181A1 WO 2019085181 A1 WO2019085181 A1 WO 2019085181A1 CN 2017116323 W CN2017116323 W CN 2017116323W WO 2019085181 A1 WO2019085181 A1 WO 2019085181A1
Authority
WO
WIPO (PCT)
Prior art keywords
gray scale
color
scale display
color system
display voltage
Prior art date
Application number
PCT/CN2017/116323
Other languages
English (en)
French (fr)
Inventor
单剑锋
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US15/750,672 priority Critical patent/US10621929B2/en
Publication of WO2019085181A1 publication Critical patent/WO2019085181A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve

Definitions

  • the present application relates to the field of display technologies, and in particular, to a driving method and a driving device for a display device.
  • the transmittance of different wavelengths is related to the phase delay, and the transmittance and wavelength have different degrees of performance.
  • the phase delay of different wavelengths will also change to different degrees. Affects the penetration performance of different wavelengths.
  • the display characteristics of the VA (Vertical Alignment) mode when the voltage drive is changed from a high voltage to a low voltage, the color purity is obviously affected, specifically: the color saturation is quite vivid at a high voltage; When driving down, the color is reduced.
  • VA Vertical Alignment
  • a driving method of a display device comprising the steps of:
  • the original gray scale display voltage corresponding to the target color system is assigned to the mapped gray scale display voltage corresponding to the target color system.
  • the target color system is a solid color
  • the step of assigning the original gray scale display voltage corresponding to the target color system to the mapped gray scale display voltage corresponding to the target color system further includes:
  • the step of assigning the original gray scale display voltage corresponding to the target color system to the mapped gray scale display voltage corresponding to the target color system includes:
  • the original gray scale display voltages corresponding to the respective color systems are assigned to the mapped gray scale display voltages corresponding to the respective color systems.
  • the step of acquiring the target color system to generate the color shift gray scale display voltage corresponding to the color shift includes:
  • the color gradation display voltage corresponding to the color gradation corresponding to the target color is obtained.
  • the display voltage of each gray scale in the mapped gray scale display voltage corresponding to the target color system is the display voltage difference between the current gray scale and the previous gray scale in the original gray scale corresponding to the target color system.
  • the step of acquiring the target color system to be adjusted includes:
  • the color with the largest color shift value is used as the target color system.
  • the step of acquiring the target color system to be adjusted includes:
  • the color with the smallest color shift value is used as the target color system.
  • the step of acquiring the target color system to be adjusted includes:
  • the color with the largest color shift value and the second largest color with the color shift value are used as the target color system.
  • a driving device for a display device comprising:
  • Color selection module set to obtain the target color system to be adjusted
  • a gray scale voltage obtaining module is configured to obtain an original gray scale display voltage corresponding to a target color system in the input signal and a color shift gray scale display voltage corresponding to the target color system to generate a color shift;
  • the gray scale voltage mapping module is configured to delete a portion of the original gray scale display voltage corresponding to the target color system that is smaller than the color shift gray scale display voltage, and obtain a mapped gray scale display voltage corresponding to the target color system;
  • the gray scale voltage distribution module is configured to allocate the original gray scale display voltage corresponding to the target color system to the mapped gray scale display voltage corresponding to the target color system.
  • the target color system is a solid color
  • the gray scale voltage mapping module is configured to obtain an original gray scale display voltage corresponding to each color system in the input signal, and the original gray scale display voltage corresponding to each color system is smaller than the color shift gray scale.
  • the portion of the display voltage is deleted, and the mapped gray scale display voltage corresponding to each color system is obtained; the gray scale voltage mapping module is configured to assign the original gray scale display voltage corresponding to each color system to the mapped gray scale display voltage corresponding to each color system.
  • the color selection module includes:
  • the color selection module includes:
  • the selection module includes:
  • the gray scale voltage acquisition module is configured to obtain a chromaticity change graph of the target color system, and obtain a color shift gray scale corresponding to the target color system according to the chromaticity change graph. Show voltage.
  • the target color system is a solid color
  • the gray scale voltage mapping module is configured to obtain an original gray scale display voltage corresponding to each color system in the input signal, and the original gray scale display voltage corresponding to each color system is smaller than the color shift gray scale. The part of the display voltage is deleted, and the mapped gray scale display voltage corresponding to each color system is obtained;
  • the gray scale voltage mapping module is configured to allocate the original gray scale display voltages corresponding to the respective color systems to the mapped gray scale display voltages corresponding to the respective color systems.
  • the display voltage of each gray scale in the mapped gray scale display voltage corresponding to the target color system is the display voltage difference between the current gray scale and the previous gray scale in the original gray scale corresponding to the target color system.
  • a driving method of a display device comprising the steps of:
  • the color with the smallest color shift value is used as the target color system, or the color with the largest color shift value is used as the target color system, or the color with the largest color shift value and the second largest color with the color shift value are used as the target color system.
  • the target color is a solid color
  • the gray scale display voltage corresponding to each color system is allocated to the mapped gray scale display voltage corresponding to each color system, wherein the display gray voltage of each gray scale display voltage corresponding to the target color system is the original gray corresponding to the target color system.
  • the voltage difference is displayed between the current gray level and the previous gray level in the order.
  • the driving method and the driving device of the display device of the present application acquire the target color system to be adjusted, obtain the original gray scale display voltage corresponding to the target color system in the input signal, and the color shift gray scale display voltage corresponding to the target color system to generate the color shift.
  • the portion of the original gray scale display voltage corresponding to the target color system that is smaller than the color shift gray scale display voltage is deleted, the mapped gray scale display voltage is obtained, and the original gray scale display voltage is distributed to the image.
  • the gray scale shows the voltage. During the whole process, the low gray level that affects the vividness performance in the target color system is deleted, which can effectively improve the color shift image quality of the display device.
  • Figure 1 is a schematic diagram of a chromaticity change curve of red
  • Figure 2 is a schematic diagram of the chromaticity change curve of green
  • Figure 3 is a schematic diagram of the chromaticity change curve of blue
  • FIG. 4 is a schematic flow chart of one embodiment of a driving method of a display device according to the present application.
  • FIG. 5 is a schematic structural view of one embodiment of a driving device of a display device of the present application.
  • FIG. 6 is a schematic structural view of a driving method and apparatus for a display device according to the present invention applied to a display device.
  • Display devices due to refractive index and wavelength dependence, different wavelength transmittances are related to phase delay, exhibiting different degrees of transmittance and wavelength, and different wavelength phase delays will occur as voltage drives change. Different degrees of variation affect the penetration performance of different wavelengths.
  • CIE Commission Internationale de L'Eclairage, International Commission on Illumination 1976 chromaticity diagram
  • the voltage drive changes from high voltage to low voltage, it obviously affects the color purity, high voltage The color saturation is quite vivid.
  • the voltage is driven down, the color brightness is reduced, that is, when the 8-bit display can display 0 to 255 different gray scale display, the high gray scale is obviously bright, but the low gray color is bright. Degree drops.
  • a driving method of a display device includes the following steps:
  • the selection of the target color system to be adjusted can be selected on the one hand based on the actual situation, and on the other hand, the color shift corresponding to each color system can be selected.
  • the color deviation of the R, G, and B colors is more serious than other color systems. Therefore, solving all or a single color shift defect in the R, G, and B colors can effectively improve the overall color shift of the large viewing angle.
  • the color shift corresponding to the R, G, and B colors may be referred to, and the color with the most severe color shift or the least color shift is selected as the target color system.
  • S400 Acquire an original gray scale display voltage corresponding to the target color system in the input signal and a color shift gray scale display voltage corresponding to the target color system.
  • the so-called gray scale is to divide the brightness change between the brightest and the darkest into several parts, so as to facilitate the screen brightness control corresponding to the signal input.
  • the original grayscale and display corresponding to the color system in the input signal Device performance related, for example, an 8-bit display, the color system corresponding to the original gray scale has 28, that is, 0 to 255 gray scale. Therefore, the original gray level corresponding to the target color system in the input signal for the 8-bit display is 0 to 255.
  • the color vividness of R at the 56 gray scale begins to be affected by the different phase retardation ratios of different wavelengths and the GB sub-image.
  • the influence of the light leakage is reduced, that is, the color point corresponding to the R color corresponds to the gray point.
  • the critical point is 56, and the gray level of the 0 to 55 gray color is the gray level corresponding to the color deviation. In other words, the gray level is 0 to 55.
  • the color point corresponding to the color shift corresponding to the gray level has a critical point of 32, and the 0 to 31 gray scale portion is the gray scale corresponding to the color shift of the G color.
  • the 0 to 31 gray scale portion belongs to the color shift gray scale of the G color; At the 60th gray level, the color vividness begins to be affected by the different phase retardation ratios of different wavelengths and the light color of the RG sub-pixels is reduced.
  • the color point corresponding to the B color corresponds to the gray point.
  • the critical point is 60,0.
  • the gray level of ⁇ 59 is the gray level corresponding to the B color.
  • Each gray scale has a corresponding gray scale display voltage.
  • the initial gray scale of the R color is 0 to 255, and the initial gray scale display voltage is V0 to V255, and the color shift gray scale is 0 to 55, and its color
  • the gray scale display voltage is V0 ⁇ V55
  • the initial gray scale of G color is 0 ⁇ 255, the initial gray scale display voltage is V0 ⁇ V255, the color shift gray scale is 0 ⁇ 29, and the color shift gray scale display voltage is V0 ⁇ V29
  • the initial gray scale of B color is 0 ⁇ 255, the initial gray scale display voltage is V0 ⁇ V255, the color shift gray scale is 0 ⁇ 59, and the color shift gray scale display voltage is V0 ⁇ V59.
  • step S400 is to obtain that the B color original gray scale display voltage is V0 V V255, and the color shift gray scale display voltage is V0 V V59, then in step S600 The portion of the original gray scale display voltage V0 to V255 in which the color shift gray scale display voltages V0 to V59 is deleted is obtained, and the mapped gray scale display voltages V60 to V255 corresponding to the improved color B color are obtained.
  • the processing method similar to the above is adopted for the improvement of the display to be the R color or the G color, and details are not described herein again.
  • the 8-bit RGB grayscale display color of the liquid crystal display (which can display 0 to 255 gray scales) is adjusted, and when the input signal input is 0 to 255, the color shift tendency of the R, G, and B displays is changed.
  • Establish LUT (Look-Up-Table) to check the table value (after the LUT writes the data to the storage medium in advance, each time a signal is input, it is equal to inputting an address to look up the table, find the content corresponding to the address, and then output ), the purpose is to remove gray scales that are easy to produce color shift in low gray scale.
  • S800 The original gray scale display voltage corresponding to the target color system is allocated to the mapped gray scale display voltage corresponding to the target color system.
  • the display voltage corresponding to each gray scale of the mapped gray scale display voltage corresponding to the target color system is the display voltage between the current gray scale and the previous gray scale in the original gray scale corresponding to the target color system. Difference.
  • the current gray scale display voltage in the mapped gray scale map gray scale display color voltage initial value + (the previous gray scale display voltage in the original gray scale - the current gray scale display voltage in the original gray scale).
  • the target color system is B color in step S200
  • the original color gray scale display voltage of the B color is V0 to V255
  • the color is grayed out.
  • the step display voltage is V0 to V59
  • the portion of the original gray scale display voltages V0 to V255 in the color gray scale display voltages V0 to V59 is deleted in step S600, and the mapped gray scale display voltage V60 to V255 corresponding to the improved color B color is obtained.
  • the original gray scale display voltages V0 to V255 corresponding to the improved color B color are reassigned to the mapped gray scale display voltages V60 to V255.
  • the initial value of the mapped gray scale display voltage corresponding to the target color B color is V60, and the maximum value is V255.
  • the display voltage increased for each gray scale is the target color B color.
  • the voltage difference between the current gray scale and the previous gray scale in the corresponding original gray scale is assumed, that is, the original gray scale display voltage of the target color system B in the input signal is assumed to be V1
  • the corresponding mapped gray scale display voltage is V60+ ( V1-V0), and so on. See Table 1 below for details.
  • Table 1 is a table showing the correspondence between the original gray scale display voltage and the mapped gray scale display voltage.
  • the driving method of the display device of the present application acquires a target color system to be adjusted, acquires an original gray scale display voltage corresponding to a target color system in an input signal, and a color shift gray scale display voltage corresponding to a target color system to generate a color shift, and the target color system is obtained.
  • the portion of the corresponding original gray scale display voltage that is less than the color shift gray scale display voltage is deleted, the mapped gray scale display voltage is obtained, and the original gray scale display voltage is allocated to the mapped gray scale display voltage.
  • the low gray level that affects the vividness performance in the target color system is deleted, which can effectively improve the color shift image quality of the display device.
  • the step of acquiring the target color system to generate the color shift gray scale display voltage corresponding to the color shift includes:
  • the target color system is obtained to generate a color shift gray scale corresponding to the color shift, thereby obtaining a color shift gray scale display voltage.
  • the chromaticity change curve can be specifically referred to FIG. 1 , FIG. 2 and FIG. 3 . Based on the curve, the color shift gray scale corresponding to each color system can be accurately obtained, that is, the color shift gray scale corresponding to the color shift of the target color system can be obtained. Chromaticity curves can be drawn from historical empirical data as well as experimental data.
  • the step of acquiring the target color system to be adjusted includes:
  • the color with the largest color shift value is used as the target color system.
  • the step of acquiring the target color system to be adjusted includes:
  • the color with the smallest color shift value is used as the target color system.
  • the color shift value is a parameter value set to characterize the degree of color shift, and the larger the color shift value is, the corresponding color shift condition The more serious, on the contrary, the smaller the color shift value, the less serious the corresponding color shift condition.
  • the color shift values corresponding to the respective color systems are sequentially sorted in order from large to small or from small to large, and a sequence of color shift conditions of each color system is obtained, and then selected therefrom.
  • the color with the largest color shift value (the most severe color shift condition), or the color with the smallest color shift value (the least color shift condition).
  • the step of acquiring the target color system to be adjusted includes:
  • the color with the largest color shift value and the second largest color with the color shift value are used as the target color system.
  • the color shift condition data corresponding to each color line in the input signal can be acquired based on the chromaticity change curve corresponding to each color system.
  • the second color with a color shift value refers to a color with a severe color shift. For example, there are currently red, green, and blue, and the corresponding color shift values from large to small are red, green, and blue, and the color with the largest color shift value is red, and the color shift is the most serious; The second largest color of the color shift value is green, and the color shift is severe. The color with the smallest color shift value is blue, and the color shift is the least serious.
  • the target color system is a solid color
  • the step of assigning the original gray scale display voltage corresponding to the target color system to the mapped gray scale display voltage corresponding to the target color system further includes:
  • the step of assigning the original gray scale display voltage corresponding to the target color system to the mapped gray scale display voltage corresponding to the target color system includes:
  • the original gray scale display voltages corresponding to the respective color systems are assigned to the mapped gray scale display voltages corresponding to the respective color systems.
  • the original gray scale display voltage of each color system in the input signal (excluding the target color system) is also adjusted.
  • the adjustment may specifically be that the original gray scale display voltage of the non-target color system in each color system is aligned with the mapped gray scale display voltage corresponding to the target color system, that is, the original gray scale display voltage corresponding to each color system is smaller than the color shift gray scale display voltage.
  • the part is deleted, and the mapped gray scale display voltage corresponding to each color system is obtained.
  • the color system in the input signal further includes the R color and the G color
  • the original gray scale display voltage is V0 to V255.
  • the color gray scale display voltage of the B color is V0 to V59
  • the gray scale display voltage of the B color is V60 to V255.
  • the other color systems (R color and G color) in the input signal are aligned with the mapped gray scale display voltages V60 to V255 of the B color, that is, The R color and G color original gray scale display voltage (V0 ⁇ V255) is less than the B color color gray scale display voltage part (V0 ⁇ V59) is deleted, the R color map gray scale display voltage is V60 ⁇ V255, G color
  • the mapped gray scale display voltage is V60 to V255, and the original gray scale display voltages V0 to V255 of the respective color systems are redistributed to the mapped gray scale display voltages V60 to V255.
  • the target color system is a solid color
  • the driving method of the display device of the present application includes the steps of:
  • the color with the smallest color shift value is used as the target color system, or the color with the largest color shift value is used as the target color system, or the color with the largest color shift value and the color with the second largest color shift value are used as the target color system;
  • the original gray scale display voltages corresponding to the respective color systems are assigned to the mapped gray scale display voltages corresponding to the respective color systems.
  • the color systems to be improved include R color, G color, and B color.
  • the color shift gray scale display voltage of R color is V0 ⁇ V55
  • the color shift gray scale display voltage of G color is V0 ⁇ V31
  • the color shift gray scale display voltage of B color is V0 ⁇ V59.
  • the original gray scale display voltage of each color system in the input signal is V0 to V255, and the portion of the original gray scale display voltage corresponding to the target color system that is smaller than the color shift gray scale display voltage is deleted, thereby obtaining the mapping gray of the R color.
  • the display voltage of the order is V56 ⁇ V255
  • the gray scale display voltage of the G color is V32 ⁇ V255
  • the gray scale display voltage of the B color is V60 ⁇ V255
  • the original gray scale display voltage of each color system is assigned to the mapped gray scale.
  • Display voltage specifically: reallocating the original gray scale display voltages V0-V255 to the mapped grayscale display voltages V56-V255 for the R color; reallocating the original grayscale display voltages V0-V255 to the mapped grayscale display voltage for the G color V32 to V255; the original gray scale display voltages V0 to V255 are reallocated to the mapped gray scale display voltages V60 to V255 for the B color.
  • the display voltage increased by each gray level in the distribution process is the display voltage difference between the current gray level and the previous gray level in the corresponding original gray level. For details, refer to Table 1 above.
  • the color to be improved is the pure color with the most color shift - B color.
  • Table 2 is a table showing the correspondence between the original gray scale display voltage and the mapped gray scale display voltage for each color after the alignment with the most severe color shift.
  • the color system to be improved is the solid color with the least color shift - G color
  • Table 3 is a table showing the correspondence between the original gray scale display voltage and the mapped gray scale display voltage of each color after the solid color alignment with the least color discontinuity.
  • the color with the most severe color shift is selected as the target color, and the other colors maintain the original input signal.
  • the color with the most color shift is B color
  • the color shift gray scale display voltage is V0 to V59
  • its color shift gray scale is deleted in its original gray scale display voltage V0 to V255.
  • the voltage portion is displayed, and the mapped gray scale display voltage is V60-V255.
  • the original input signal is maintained for other colors in the input signal, and then the original gray-scale display voltages V0-V255 are redistributed to the mapped gray-scale display voltage V60-V255. , as shown in Table 4 below.
  • Table 4 shows that the B color with severe color shift is the target color system, and the other colors maintain a list of correspondence between the gray scale display voltage corresponding to the original input signal and the original gray scale display voltage.
  • the colors to be improved include the most severe color and the second most severe color, and the other colors maintain the original input signal.
  • the color with the most color shift is B color, and the color shift is severe.
  • the color of the color is R color
  • the color gray scale display voltage of B color is V0 ⁇ V59
  • its color shift gray scale part is deleted in the original gray scale display voltage V0 ⁇ V255
  • the mapped gray scale display voltage is obtained as V60 ⁇ V255.
  • the color gray scale display voltage of R color is V0 ⁇ V55
  • its color shift gray scale part is deleted in its original gray scale display voltage V0 ⁇ V255
  • the mapped gray scale display voltage is obtained as V56 ⁇ V255, for the input signal.
  • the other color systems maintain the gray scale of the original input signal, and then reallocate the original gray scale display voltages V0 to V255 to the mapped gray scale display voltages V60 to V255 for the B color; and redistribute the original gray scale display voltages V0 to V255 for the R colors to
  • the gray scale display voltages V56 to V255 are mapped, as shown in Table 5 below.
  • Table 5 shows that the B color and the severe R color are the target color systems, and the other colors maintain the correspondence between the gray scale display voltage corresponding to the original input signal and the original gray scale display voltage.
  • a driving device for a display device includes:
  • the color selection module 200 is configured to obtain a target color system to be adjusted
  • the gray scale voltage obtaining module 400 is configured to obtain an original gray scale display voltage corresponding to the target color system in the input signal and a color shift gray scale display voltage corresponding to the target color system to generate a color shift;
  • the gray scale voltage mapping module 600 is configured to delete a portion of the original gray scale display voltage corresponding to the target color system that is smaller than the color shift gray scale display voltage, and obtain a mapped gray scale display voltage corresponding to the target color system;
  • the gray scale voltage distribution module 800 is configured to allocate the original gray scale display voltage corresponding to the target color system to the mapped gray scale display voltage corresponding to the target color system.
  • the color system selection module 200 acquires the target color system to be adjusted, and the gray scale voltage acquisition module 400 acquires the original gray scale display voltage corresponding to the target color system in the input signal and the color shift corresponding to the target color system.
  • the gray scale voltage display module 600 deletes a portion of the original gray scale display voltage corresponding to the target color system that is smaller than the color shift gray scale display voltage, and obtains a mapped gray scale display voltage, and the gray scale voltage distribution module 800
  • the original grayscale display voltage is assigned to the mapped grayscale display voltage.
  • the low gray level that affects the vividness performance in the target color system is deleted, which can effectively improve the color shift image quality of the display device.
  • the color selection module 200 includes:
  • the obtaining unit is configured to obtain color shift data corresponding to each color system in the input signal
  • the grayscale acquisition module 400 is further configured to acquire a chromaticity change graph of the target color system, and obtain a color shift grayscale corresponding to the target color gradation according to the chromaticity change graph.
  • the driving method or driving device of the display device of the present application should be provided as a plurality of types of display devices, as shown in FIG. 6.
  • the display device can be any type of display device, such as an LCD (Liquid Crystal Display), an OLED (Organic Electroluminescence Display) display device, and a QLED (Quantum Dot). Light Emitting Diodes, quantum dot light emitting diodes) display devices or curved display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置的驱动方法与驱动装置,其中,驱动方法包括:获取待调整的目标色系(S200),获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压(S400),将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得映射灰阶显示电压(S600),将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压(S800)。

Description

显示装置的驱动方法与驱动装置
相关申请的交叉引用
本申请要求于2017年11月03日提交中国专利局、申请号为2017110693611、申请名称为“显示装置的驱动方法与驱动装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及显示装置的驱动方法与驱动装置。
背景技术
液晶显示器由于折射率与波长相关性,不同波长穿透率与相位延迟相关,呈现穿透率与波长有不同程度的表现,并且随着电压驱动变化,不同波长相位延迟亦会产生不同程度的变化影响不同波长的穿透率表现。
以VA(Vertical Alignment,垂直对准)模式的显示器特性为例,当电压驱动由高电压往低压变化时,明显地对色彩纯度产生影响,具体为:高电压时色彩饱和度相当鲜艳;当电压往下驱动时,色彩鲜艳度下降。以8比特显示器可以呈现0~255不同灰阶显示为例,高灰阶明显饱和度相当鲜艳,但低灰阶色彩鲜艳度下降。
发明内容
基于此,有必要针对一般显示设备的色偏画质存在缺陷的问题,提供一种色偏画质得到显著改善的显示装置的驱动方法与驱动装置。
一种显示装置的驱动方法,包括步骤:
获取待调整的目标色系;
获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色 偏对应的色偏灰阶显示电压;
将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得目标色系对应的映射灰阶显示电压;
将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压。
在其中一个实施例中,目标色系为纯色,将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压的步骤之前还包括:
获取输入信号中各色系对应的原始灰阶显示电压;
将各色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压的步骤包括:
将各色系对应原始灰阶显示电压分配至各色系对应的映射灰阶显示电压。
在其中一个实施例中,获取目标色系产生色偏对应的色偏灰阶显示电压步骤包括:
获取目标色系的色度变化曲线图;
根据色度变化曲线图,获取目标色系产生色偏对应的色偏灰阶显示电压。
在其中一个实施例中,目标色系对应的映射灰阶显示电压中每一灰阶增加的显示电压为目标色系对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值。
在其中一个实施例中,获取待调整的目标色系的步骤包括:
获取输入信号中各色系对应的色偏情况数据;
将色偏值最大的颜色作为目标色系。
在其中一个实施例中,获取待调整的目标色系的步骤包括:
获取输入信号中各色系对应的色偏情况数据;
将色偏值最小的颜色作为目标色系。
在其中一个实施例中,获取待调整的目标色系的步骤包括:
获取输入信号中各色系对应的色偏情况数据;
将色偏值最大的颜色与色偏值第二大的颜色作为目标色系。
一种显示装置的驱动装置,包括:
色系选取模块,设置为获取待调整的目标色系;
灰阶电压获取模块,设置为获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压;
灰阶电压映射模块,设置为将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得目标色系对应的映射灰阶显示电压;
灰阶电压分配模块,设置为将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压。
在其中一个实施例中,目标色系为纯色,灰阶电压映射模块设置为获取输入信号中各色系对应的原始灰阶显示电压,将各色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;灰阶电压映射模块设置为将各色系对应原始灰阶显示电压分配至各色系对应的映射灰阶显示电压。
在其中一个实施例中,色系选取模块包括:
获取单元,设置为获取输入信号中各色系对应的色偏情况数据;
选取单元,设置为将色偏值最小的颜色作为目标色系。
在其中一个实施例中,色系选取模块包括:
获取单元,设置为获取输入信号中各色系对应的色偏情况数据;
选取单元,设置为将色偏值最大的颜色作为目标色系。
在其中一个实施例中,系选取模块包括:
获取单元,设置为获取输入信号中各色系对应的色偏情况数据;
选取单元,设置为将色偏值最大的颜色与色偏值第二大的颜色作为目标色系。
在其中一个实施例中,灰阶电压获取模块设置为获取目标色系的色度变化曲线图,根据色度变化曲线图,获取目标色系产生色偏对应的色偏灰阶显 示电压。
在其中一个实施例中,目标色系为纯色,灰阶电压映射模块设置为获取输入信号中各色系对应的原始灰阶显示电压,将各色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
灰阶电压映射模块设置为将各色系对应原始灰阶显示电压分配至各色系对应的映射灰阶显示电压。
在其中一个实施例中,目标色系对应的映射灰阶显示电压中每一灰阶增加的显示电压为目标色系对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值。
一种显示装置的驱动方法,包括步骤:
获取输入信号中各色系对应的色偏情况数据
将色偏值最小的颜色作为目标色系,或,将色偏值最大的颜色作为目标色系,又或,将色偏值最大的颜色与色偏值第二大的颜色作为目标色系,目标色系为纯色;
获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压;
获取输入信号中各色系对应的原始灰阶显示电压;
将各色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
将各色系对应原始灰阶显示电压分配至各色系对应的映射灰阶显示电压,其中,目标色系对应的映射灰阶显示电压中每一灰阶增加的显示电压为目标色系对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值。
本申请显示装置的驱动方法与驱动装置,获取待调整的目标色系,获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压,将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得映射灰阶显示电压,将原始灰阶显示电压分配至映 射灰阶显示电压。整个过程中,将目标色系中存在的影响鲜艳度表现的低灰阶删除,能够有效改善显示设备的色偏画质。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为红色的色度变化曲线示意图;
图2为绿色的色度变化曲线示意图;
图3为蓝色的色度变化曲线示意图;
图4为本申请显示装置的驱动方法其中一个实施例的流程示意图;
图5为本申请显示装置的驱动装置其中一个实施例的结构示意图;
图6为本发明显示装置的驱动方法与装置应用于显示装置的结构示意图。
具体实施方式
为了使本申请的发明目的、技术方案及技术效果更加清楚明白,以下结合附图对本申请的具体实施例进行描述。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不限定本申请。
显示设备(例如液晶显示器)由于折射率与波长相关性,不同波长穿透率与相位延迟相关,呈现穿透率与波长有不同程度的表现,并且随着电压驱动变化,不同波长相位延迟亦会产生不同程度的变化影响不同波长的穿透率表现。如CIE(Commission Internationale de L′Eclairage,国际照明委员会)1976色度坐标图上,以VA模式的显示器特性来看,当电压驱动由高电压往低压变化时,明显对色彩纯度产生影响,高电压时色彩饱和度相当鲜艳,当电压往下驱动时,色彩鲜艳度下降,亦即以8比特显示器可以呈现0~255不同灰阶显示时,高灰阶明显饱和度相当鲜艳但低灰阶色彩鲜艳度下降。
进一步研究发现,如图1、图2以及图3所示,当面板的V-T曲线设计在公开版本2.2的情况下,RGB(red、green、blue,红、绿、蓝)个别的CIE1976色度变化,可以观察到R在56灰阶时候色彩鲜艳度开始受到不同波长相位延迟比例不同的影响及GB子象素漏光的影响颜色鲜艳度下降,G在32灰阶时侯色彩鲜艳度开始受到不同波长相位延迟比例不同的影响及RB子象素漏光的影响颜色鲜艳度下降,B在60灰阶时侯色彩鲜艳度开始受到不同波长相位延迟比例不同的影响及RG子象素漏光的影响颜色鲜艳度下降。进一步研究发现,RGB各颜色色彩鲜艳度的下降亦反应在视角观察上,水平方向上观察视角60度的RGB各颜色色彩鲜艳度随灰阶变化的趋势,与正视角所观察情况相同,高电压时色彩饱和度相当鲜艳,当电压往下驱动时,色彩鲜艳度下降。
更进一步研究发现,显示设备各种代表性色系的大视角与正视视角色偏变化,可以明显发现,偏R、G、B色的色系大视角色偏情况均较其他色系来得严重,因此解决R、G、B色的色偏缺陷可以大大提升大视角的整体色偏改善。
如图3所示,一种显示装置的驱动方法,包括步骤:
S200:获取待调整的目标色系。
待调整的目标色系的选择一方面可以基于实际情况的需要进行选取,另一方面还可以参考各色系对应的色偏情况进行选取。如之前,偏R、G、B色的色系大视角色偏情况均较其他色系来得严重,因此解决R、G、B色中全部或单个色偏缺陷可以有效改善大视角的整体色偏情况,即,我们可以选择R、G、B色中全部或部分颜色作为目标色系。进一步的,还可以参考R、G、B色对应的色偏情况,选取色偏最严重或色偏最不严重的颜色作为目标色系。
S400:获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压。
所谓灰阶,是将最亮与最暗之间的亮度变化,区分为若干份,以便于进行信号输入相对应的屏幕亮度管控。输入信号中色系对应的原始灰阶与显示 设备性能相关,例如8比特的显示器,其色系对应的原始灰阶有28个,即0~255灰阶。因此,针对8比特的显示器的输入信号中目标色系对应的原始灰阶即为0~255。
灰阶显示电压与灰阶之间存在对应关系,因此,需获取产生色偏对应的色偏灰阶显示电压时,只需先获取产生色偏对应的色偏灰阶。如之前所述,颜色在低灰阶情况下会产生色偏情况,每个不同的颜色都有产生色偏对应的临界点灰阶,该临界点灰阶以下的灰阶均为色系产生色偏对应的灰阶。具体可以参见图1、图2以及图3,在图1、图2以及图3中,可以观察到R在56灰阶时侯色彩鲜艳度开始受到不同波长相位延迟比例不同的影响及GB子象素漏光的影响颜色鲜艳度下降,即R色对应的产生色偏对应灰阶的临界点为56,0~55灰阶部分为R色产生色偏对应的灰阶,换言之,0~55灰阶部分属于R色的色偏灰阶(低灰阶);G在32灰阶时侯色彩鲜艳度开始受到不同波长相位延迟比例不同的影响及RB子象素漏光的影响颜色鲜艳度下降,即G色对应的产生色偏对应灰阶的临界点为32,0~31灰阶部分为G色产生色偏对应的灰阶,换言之,0~31灰阶部分属于G色的色偏灰阶;B在60灰阶时侯色彩鲜艳度开始受到不同波长相位延迟比例不同的影响及RG子象素漏光的影响颜色鲜艳度下降,即B色对应的产生色偏对应灰阶的临界点为60,0~59灰阶部分为B色产生色偏对应的灰阶。每个灰阶有对应灰阶显示电压,在上述实例中,R色的初始灰阶为0~255,其初始灰阶显示电压为V0~V255,其色偏灰阶为0~55,其色偏灰阶显示电压为V0~V55;G色的初始灰阶为0~255,其初始灰阶显示电压为V0~V255,其色偏灰阶为0~29,其色偏灰阶显示电压为V0~V29;B色的初始灰阶为0~255,其初始灰阶显示电压为V0~V255,其色偏灰阶为0~59,其色偏灰阶显示电压为V0~V59。
S600:将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得目标色系对应的映射灰阶显示电压。
具体来说,若步骤S200得出目标色系为B色,步骤S400得出B色原始灰阶显示电压为V0~V255,其色偏灰阶显示电压为V0~V59,则在本步骤S600 中将原始灰阶显示电压V0~V255中色偏灰阶显示电压V0~V59的部分删除,获得改善色系B色对应的映射灰阶显示电压V60~V255。针对需改善显示为R色或为G色均采用上述类似的处理方式,在此不再赘述。更具体来说,针对液晶显示器8比特RGB灰阶显示颜色(可显示0~255灰阶)进行调整设计,当输入信号输入为0~255时针对R、G、B显示器自身色偏变化趋势,建立LUT(Look-Up-Table,显示查找表)查表值(LUT把数据事先写入存储介质后,每当输入一个信号就等于输入一个地址进行查表,找出地址对应的内容,然后输出),目的将低灰阶容易产生色偏的灰阶去除。
S800:将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压。
具体来说,这个分配过程中,目标色系对应的映射灰阶显示电压中每一灰阶增加的显示电压为目标色系对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值。换言之,映射灰阶中当前灰阶显示电压=映射灰阶显示颜色电压初始值+(原始灰阶中上一灰阶显示电压-原始灰阶中当前灰阶显示电压)。
下面将更进一步采用具体实例,并采用表格具体数据详细解释上述关系,若步骤S200得出目标色系为B色,步骤S400得出B色原始灰阶显示电压为V0~V255,其色偏灰阶显示电压为V0~V59,步骤S600中将原始灰阶显示电压V0~V255中色偏灰阶显示电压V0~V59的部分删除,获得改善色系B色对应的映射灰阶显示电压V60~V255,则在本步骤S800是将改善色系B色对应的原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V60~V255中。具体来说,目标色系B色对应的映射灰阶显示电压的初始值为V60,最大值为V255,针对V60~V255中的区间值,每一灰阶增加的显示电压为目标色系B色对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值,即假设输入信号中目标色系B的原始灰阶显示电压为V1,其对应的映射灰阶显示电压为V60+(V1-V0),依次类推。具体可以参见下述表1。
表1 为色系原始灰阶显示电压与映射灰阶显示电压之间对应关系表。
Figure PCTCN2017116323-appb-000001
Figure PCTCN2017116323-appb-000002
Figure PCTCN2017116323-appb-000003
本申请显示装置的驱动方法,获取待调整的目标色系,获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压,将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得映射灰阶显示电压,将原始灰阶显示电压分配至映射灰阶显示电压。整个过程中,将目标色系中存在的影响鲜艳度表现的低灰阶删除,能够有效改善显示设备的色偏画质。
在其中一个实施例中,获取目标色系产生色偏对应的色偏灰阶显示电压步骤包括:
获取目标色系的色度变化曲线图;
根据色度变化曲线图,获取目标色系产生色偏对应的色偏灰阶,进而获得色偏灰阶显示电压。
色度变化曲线具体可以参见图1、图2以及图3,基于该曲线可以准确获取各色系对应的色偏灰阶,即可以获取目标色系产生色偏对应的色偏灰阶。色度变化曲线图可以通过历史经验数据以及实验数据绘制获得。
在其中一个实施例中,获取待调整的目标色系的步骤包括:
获取输入信号中各色系对应的色偏情况数据;
将色偏值最大的颜色作为目标色系。
在其中一个实施例中,获取待调整的目标色系的步骤包括:
获取输入信号中各色系对应的色偏情况数据;
将色偏值最小的颜色作为目标色系。
色偏值是设置为表征色偏程度的参数值,色偏值越大其对应的色偏情况 越严重,反之,色偏值越小其对应的色偏情况越不严重。在这里,可以基于输入信号中各色系对应的色偏情况数据,按照各色系对应的色偏值从大到小或从小到大的顺序依次排序,获得各色系色偏情况序列,之后再从中选择色偏值最大(色偏情况最严重)的颜色,或从中选择色偏值最小(色偏情况最不严重)的颜色。
在其中一个实施例中,获取待调整的目标色系的步骤包括:
获取输入信号中各色系对应的色偏情况数据;
将色偏值最大的颜色与色偏值第二大的颜色作为目标色系。
输入信号中各色系对应的色偏情况数据,可以基于各色系对应的色度变化曲线获取。色偏值第二大的颜色是指色偏情况次严重的颜色。例如当前有红色、绿色以及蓝色,其对应的色偏值从大到小的色偏情况序列为红色、绿色、蓝色,则色偏值最大的颜色为红色,其色偏情况最严重;色偏值第二大的颜色为绿色,其色偏情况次严重;色偏值最小的颜色为蓝色,其色偏情况最不严重。
在其中一个实施例中,目标色系为纯色,将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压的步骤之前还包括:
获取输入信号中各色系对应的原始灰阶显示电压;
将各色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压的步骤包括:
将各色系对应原始灰阶显示电压分配至各色系对应的映射灰阶显示电压。
在本实施例中,除了针对目标色系的灰阶显示电压进行调整之外,还将输入信号中各色系中(不含目标色系)的原始灰阶显示电压进行调整。该调整具体可以是将各色系中非目标色系的原始灰阶显示电压与目标色系对应的映射灰阶显示电压对齐,即将各色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压。
以目标色系为B色为例,假设输入信号中色系还包括R色和G色,其原始灰阶显示电压为V0~V255,基于图1、图2以及图3以及上述表1可知,B色的色偏灰阶显示电压为V0~V59,则B色的映射灰阶显示电压为V60~V255。在本实施例中,针对输入信号中其他色系(R色和G色),将输入信号中其他色系(R色和G色)与B色的映射灰阶显示电压V60~V255对齐,即将R色和G色原始灰阶显示电压(V0~V255)中小于B色的色偏灰阶显示电压的部分(V0~V59)删除,得到R色映射灰阶显示电压为V60~V255,G色映射灰阶显示电压为V60~V255,再将各色系的原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V60~V255中。
在其中一个实施例中,目标色系为纯色,本申请一种显示装置的驱动方法包括步骤:
获取输入信号中各色系对应的色偏情况数据
将色偏值最小的颜色作为目标色系,或,将色偏值最大的颜色作为目标色系,又或,将色偏值最大的颜色与色偏值第二大的颜色作为目标色系;
获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压;
获取输入信号中各色系对应的原始灰阶显示电压;
将各色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
将各色系对应原始灰阶显示电压分配至各色系对应的映射灰阶显示电压。
为更进一步详细说明本申请显示装置的驱动方法在上述几个实施例中的技术方案,下面将采用具体应用实例并结合具体数据进行说明。
需改善的色系包括R色、G色以及B色。
基于图1、图2以及图3研究发现,R色的色偏灰阶显示电压为V0~V55,G色的色偏灰阶显示电压为V0~V31,B色的色偏灰阶显示电压为V0~V59。输入信号中各色系的原始灰阶显示电压为V0~V255,将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,即可得到R色的映射灰 阶显示电压为V56~V255,G色的映射灰阶显示电压为V32~V255,B色的映射灰阶显示电压为V60~V255,再将各个色系的原始灰阶显示电压分配至映射灰阶显示电压,具体为:针对R色将原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V56~V255;针对G色将原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V32~V255;针对B色将原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V60~V255。针对每个色系,在分配过程中每一个灰阶增加的显示电压为对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值,具体可以参见上述表1。
需改善的色系为色偏最严重的纯色——B色。
针对色偏最严重的纯色进行对齐,具体针对色偏最严重的B色进行对齐,将各色系中的原始灰阶显示电压中小于B色对应的色偏灰阶显示电压的部分删除,得到各色系的映射灰阶显示电压为V60~V255,之后再将原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V60~V255,具体如下表2。
表2为针对色偏最严重的纯色对齐后,各色系原始灰阶显示电压与映射灰阶显示电压之间对应关系表。
Figure PCTCN2017116323-appb-000004
Figure PCTCN2017116323-appb-000005
需改善的色系为色偏最不严重的纯色——G色
针对色偏最不严重的纯色进行对齐,具体针对色偏最不严重的G色进行对齐,将各色系中的原始灰阶显示电压中小于G色对应的色偏灰阶显示电压的部分删除,得到各色系的映射灰阶显示电压为V32~V255,之后再将原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V32~V255,具体如下表3。
表3为针对色偏最不严重的纯色对齐后,各色系原始灰阶显示电压与映射灰阶显示电压之间对应关系表。
Figure PCTCN2017116323-appb-000006
Figure PCTCN2017116323-appb-000007
选择色偏最严重的颜色作为目标色系,其他色系维持原输入信号。
基于图1、图2以及图3可知,色偏最严重的颜色为B色,其色偏灰阶显示电压为V0~V59,在其原始灰阶显示电压V0~V255中删除其色偏灰阶显示电压部分,得到其映射灰阶显示电压为V60~V255,针对输入信号中其他色系维持原输入信号,之后再将原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V60~V255,具体如下表4。
表4为色偏严重的B色为目标色系,其他色系维持原输入信号对应的灰阶显示电压与原始灰阶显示电压之间对应关系列表。
Figure PCTCN2017116323-appb-000008
Figure PCTCN2017116323-appb-000009
需改善的颜色包括色偏最严重颜色以及次严重的颜色,其他色系维持原输入信号。
基于图1、图2以及图3可知,色偏最严重的颜色为B色,色偏次严重 的颜色为R色,B色的色偏灰阶显示电压为V0~V59,在其原始灰阶显示电压V0~V255中删除其色偏灰阶部分,得到其映射灰阶显示电压为V60~V255,R色的色偏灰阶显示电压为V0~V55,在其原始灰阶显示电压V0~V255中删除其色偏灰阶部分,得到其映射灰阶显示电压为V56~V255,针对输入信号中其他色系维持原输入信号的灰阶,之后针对B色将原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V60~V255;针对R色原始灰阶显示电压V0~V255重新分配至映射灰阶显示电压V56~V255,具体如下表5。
表5为色偏严重的B色和次严重的R色为目标色系,其他色系维持原输入信号对应的灰阶显示电压与原始灰阶显示电压之间对应关系列表
Figure PCTCN2017116323-appb-000010
Figure PCTCN2017116323-appb-000011
如图5所示,一种显示装置的驱动装置,包括:
色系选取模块200,设置为获取待调整的目标色系;
灰阶电压获取模块400,设置为获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压;
灰阶电压映射模块600,设置为将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得目标色系对应的映射灰阶显示电压;
灰阶电压分配模块800,设置为将目标色系对应的原始灰阶显示电压分配至目标色系对应的映射灰阶显示电压。
本申请显示装置的驱动装置,色系选取模块200获取待调整的目标色系,灰阶电压获取模块400获取输入信号中目标色系对应的原始灰阶显示电压以及目标色系产生色偏对应的色偏灰阶显示电压,灰阶电压映射模块600将目标色系对应的原始灰阶显示电压中小于色偏灰阶显示电压的部分删除,获得映射灰阶显示电压,灰阶电压分配模块800将原始灰阶显示电压分配至映射灰阶显示电压。整个过程中,将目标色系中存在的影响鲜艳度表现的低灰阶删除,能够有效改善显示设备的色偏画质。
在其中一个实施例中,色系选取模块200包括:
获取单元,设置为获取输入信号中各色系对应的色偏情况数据
选取单元,设置为将色偏值最小的颜色作为目标色系,或,将色偏值最大的颜色作为目标色系,又或,将色偏值最大的颜色与色偏值第二大的颜色作为目标色系。
在其中一个实施例中,灰阶获取模块400还设置为获取目标色系的色度变化曲线图,根据色度变化曲线图,获取目标色系产生色偏对应的色偏灰阶。
需要指出的是,本申请显示装置的驱动方法或驱动装置可应设置为多种类型的显示装置,如图6所示。具体来说,显示装置可以为任意类型的显示装置,例如LCD(Liquid Crystal Display,液晶显示装置)、OLED(Organic Electroluminesence Display,有机电激光显示)显示装置、QLED(Quantum Dot  Light Emitting Diodes,量子点发光二极管)显示装置或曲面显示装置等。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种显示装置的驱动方法,包括步骤:
    获取待调整的目标色系;
    获取输入信号中所述目标色系对应的原始灰阶显示电压以及所述目标色系产生色偏对应的色偏灰阶显示电压;
    将所述目标色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得所述目标色系对应的映射灰阶显示电压;
    将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压。
  2. 根据权利要求1所述的显示装置的驱动方法,所述目标色系为纯色;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤之前还包括:
    获取输入信号中各色系对应的原始灰阶显示电压;
    将所述各色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤包括:
    将所述各色系对应原始灰阶显示电压分配至所述各色系对应的映射灰阶显示电压。
  3. 根据权利要求1所述的显示装置的驱动方法,获取所述目标色系产生色偏对应的色偏灰阶显示电压步骤包括:
    获取所述目标色系的色度变化曲线图;
    根据所述色度变化曲线图,获取所述目标色系产生色偏对应的色偏灰阶显示电压。
  4. 根据权利要求3所述的显示装置的驱动方法,所述目标色系为纯色;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤之前还包括:
    获取输入信号中各色系对应的原始灰阶显示电压;
    将所述各色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤包括:
    将所述各色系对应原始灰阶显示电压分配至所述各色系对应的映射灰阶显示电压。
  5. 根据权利要求1所述的显示装置的驱动方法,所述目标色系对应的映射灰阶显示电压中每一灰阶增加的显示电压为所述目标色系对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值。
  6. 根据权利要求1所述的显示装置的驱动方法,所述获取待调整的目标色系的步骤包括:
    获取所述输入信号中各色系对应的色偏情况数据;
    将色偏值最大的颜色作为所述目标色系。
  7. 根据权利要求6所述的显示装置的驱动方法,所述目标色系为纯色;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤之前还包括:
    获取输入信号中各色系对应的原始灰阶显示电压;
    将所述各色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤包括:
    将所述各色系对应原始灰阶显示电压分配至所述各色系对应的映射灰阶显示电压。
  8. 根据权利要求1所述的显示装置的驱动方法,所述获取待调整的目标色系的步骤包括:
    获取所述输入信号中各色系对应的色偏情况数据;
    将色偏值最小的颜色作为所述目标色系。
  9. 根据权利要求8所述的显示装置的驱动方法,所述目标色系为纯色;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤之前还包括:
    获取输入信号中各色系对应的原始灰阶显示电压;
    将所述各色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤包括:
    将所述各色系对应原始灰阶显示电压分配至所述各色系对应的映射灰阶显示电压。
  10. 根据权利要求1所述的显示装置的驱动方法,所述获取待调整的目标色系的步骤包括:
    获取所述输入信号中各色系对应的色偏情况数据;
    将色偏值最大的颜色与色偏值第二大的颜色作为所述目标色系。
  11. 根据权利要求10所述的显示装置的驱动方法,所述目标色系为纯色;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤之前还包括:
    获取输入信号中各色系对应的原始灰阶显示电压;
    将所述各色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
    所述将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压的步骤包括:
    将所述各色系对应原始灰阶显示电压分配至所述各色系对应的映射灰阶显示电压。
  12. 一种显示装置的驱动装置,包括:
    色系选取模块,设置为获取待调整的目标色系;
    灰阶电压获取模块,设置为获取输入信号中所述目标色系对应的原始灰阶显示电压以及所述目标色系产生色偏对应的色偏灰阶显示电压;
    灰阶电压映射模块,设置为将所述目标色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得所述目标色系对应的映射灰阶显示电压;
    灰阶电压分配模块,设置为将所述目标色系对应的原始灰阶显示电压分配至所述目标色系对应的映射灰阶显示电压。
  13. 根据权利要求11所述的显示装置的驱动装置,所述目标色系为纯色;
    所述灰阶电压映射模块设置为获取输入信号中各色系对应的原始灰阶显示电压,将所述各色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
    所述灰阶电压映射模块设置为将所述各色系对应原始灰阶显示电压分配至所述各色系对应的映射灰阶显示电压。
  14. 根据权利要求11所述的显示装置的驱动装置,所述色系选取模块包括:
    获取单元,设置为获取所述输入信号中各色系对应的色偏情况数据;
    选取单元,设置为将色偏值最小的颜色作为所述目标色系。
  15. 根据权利要求11所述的显示装置的驱动装置,所述色系选取模块包括:
    获取单元,设置为获取所述输入信号中各色系对应的色偏情况数据;
    选取单元,设置为将色偏值最大的颜色作为所述目标色系。
  16. 根据权利要求11所述的显示装置的驱动装置,所述色系选取模块包括:
    获取单元,设置为获取所述输入信号中各色系对应的色偏情况数据;
    选取单元,设置为将色偏值最大的颜色与色偏值第二大的颜色作为所述目标色系。
  17. 根据权利要求11所述的显示装置的驱动装置,灰阶电压获取模块设 置为获取所述目标色系的色度变化曲线图,根据所述色度变化曲线图,获取所述目标色系产生色偏对应的色偏灰阶显示电压。
  18. 根据权利要求17所述的显示装置的驱动装置,所述目标色系为纯色;
    所述灰阶电压映射模块设置为获取输入信号中各色系对应的原始灰阶显示电压,将所述各色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
    所述灰阶电压映射模块设置为将所述各色系对应原始灰阶显示电压分配至所述各色系对应的映射灰阶显示电压。
  19. 根据权利要求11所述的显示装置的驱动装置,所述目标色系对应的映射灰阶显示电压中每一灰阶增加的显示电压为所述目标色系对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值。
  20. 一种显示装置的驱动方法,包括步骤:
    获取所述输入信号中各色系对应的色偏情况数据
    将色偏值最小的颜色作为所述目标色系,或,将色偏值最大的颜色作为所述目标色系,又或,将色偏值最大的颜色与色偏值第二大的颜色作为所述目标色系,所述目标色系为纯色;
    获取输入信号中所述目标色系对应的原始灰阶显示电压以及所述目标色系产生色偏对应的色偏灰阶显示电压;
    获取输入信号中各色系对应的原始灰阶显示电压;
    将所述各色系对应的原始灰阶显示电压中小于所述色偏灰阶显示电压的部分删除,获得各色系对应的映射灰阶显示电压;
    将所述各色系对应原始灰阶显示电压分配至所述各色系对应的映射灰阶显示电压,其中,所述目标色系对应的映射灰阶显示电压中每一灰阶增加的显示电压为所述目标色系对应的原始灰阶中当前灰阶与上一灰阶之间显示电压差值。
PCT/CN2017/116323 2017-11-03 2017-12-15 显示装置的驱动方法与驱动装置 WO2019085181A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/750,672 US10621929B2 (en) 2017-11-03 2017-12-15 Driving method and apparatus for display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711069361.1 2017-11-03
CN201711069361.1A CN107742508B (zh) 2017-11-03 2017-11-03 显示装置的驱动方法与驱动装置

Publications (1)

Publication Number Publication Date
WO2019085181A1 true WO2019085181A1 (zh) 2019-05-09

Family

ID=61233248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116323 WO2019085181A1 (zh) 2017-11-03 2017-12-15 显示装置的驱动方法与驱动装置

Country Status (3)

Country Link
US (1) US10621929B2 (zh)
CN (1) CN107742508B (zh)
WO (1) WO2019085181A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808647B (zh) 2017-10-10 2019-06-11 惠科股份有限公司 液晶显示驱动方法、装置及设备
CN107945751B (zh) 2017-10-10 2019-09-17 惠科股份有限公司 液晶显示驱动方法、装置及设备
CN109994084A (zh) * 2018-12-30 2019-07-09 东莞市爱协生智能科技有限公司 计算机可读存储介质和应用该介质的数字gamma校正装置
CN111653237B (zh) * 2020-06-22 2021-09-24 云谷(固安)科技有限公司 显示控制方法、显示控制装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040155837A1 (en) * 2003-01-29 2004-08-12 Chunghwa Picture Tubes Ltd. Plasma display panel with gray level white balance device
US20090079682A1 (en) * 2005-03-31 2009-03-26 Asahi Yamato Method for driving liquid crystal display apparatus
CN102509541A (zh) * 2011-12-15 2012-06-20 深圳市华星光电技术有限公司 色彩调整装置、色彩调整方法以及显示器
CN102752608A (zh) * 2011-11-21 2012-10-24 新奥特(北京)视频技术有限公司 一种实现快速色彩校正的方法和装置
CN103268759A (zh) * 2008-09-16 2013-08-28 夏普株式会社 数据处理装置、液晶显示装置、电视接收机以及数据处理方法
CN104021767A (zh) * 2013-03-01 2014-09-03 刘鸿达 伽码曲线调整方法与其伽码电压产生器和显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060114205A1 (en) * 2004-11-17 2006-06-01 Vastview Technology Inc. Driving system of a display panel
KR101280310B1 (ko) * 2005-05-27 2013-07-01 티피오 디스플레이스 코포레이션 디스플레이 구동 방법
TWI399719B (zh) * 2008-08-07 2013-06-21 Innolux Corp 顯示裝置與其顯示方法
KR101930880B1 (ko) * 2012-02-23 2018-12-20 삼성디스플레이 주식회사 액정 표시 장치 및 그 구동 방법
CN103106884B (zh) * 2013-02-05 2015-11-25 深圳市华星光电技术有限公司 一种改善液晶屏的视角肤色色偏的方法及系统
US9728148B2 (en) * 2013-08-08 2017-08-08 Sharp Kabushiki Kaisha Liquid crystal display apparatus and method of driving the liquid crystal display apparatus
US10229640B2 (en) * 2015-03-02 2019-03-12 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving same
CN104658502B (zh) * 2015-03-09 2018-03-13 深圳市华星光电技术有限公司 一种液晶显示器的驱动方法及驱动装置
CN106157869B (zh) * 2016-06-30 2019-11-05 京东方科技集团股份有限公司 一种显示图像的色偏修正方法、修正装置及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040155837A1 (en) * 2003-01-29 2004-08-12 Chunghwa Picture Tubes Ltd. Plasma display panel with gray level white balance device
US20090079682A1 (en) * 2005-03-31 2009-03-26 Asahi Yamato Method for driving liquid crystal display apparatus
CN103268759A (zh) * 2008-09-16 2013-08-28 夏普株式会社 数据处理装置、液晶显示装置、电视接收机以及数据处理方法
CN102752608A (zh) * 2011-11-21 2012-10-24 新奥特(北京)视频技术有限公司 一种实现快速色彩校正的方法和装置
CN102509541A (zh) * 2011-12-15 2012-06-20 深圳市华星光电技术有限公司 色彩调整装置、色彩调整方法以及显示器
CN104021767A (zh) * 2013-03-01 2014-09-03 刘鸿达 伽码曲线调整方法与其伽码电压产生器和显示装置

Also Published As

Publication number Publication date
CN107742508B (zh) 2020-02-07
US20200027409A1 (en) 2020-01-23
CN107742508A (zh) 2018-02-27
US10621929B2 (en) 2020-04-14

Similar Documents

Publication Publication Date Title
KR102194571B1 (ko) 데이터 변환부와 데이터 변환부의 데이터 변환 방법
WO2019085181A1 (zh) 显示装置的驱动方法与驱动装置
RU2660628C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
US8743152B2 (en) Display apparatus, method of driving display apparatus, drive-use integrated circuit, driving method employed by drive-use integrated circuit, and signal processing method
WO2020224387A1 (zh) 驱动方法、驱动装置、显示设备和计算机可读介质
TWI469082B (zh) 處理影像訊號之方法
WO2016061944A1 (zh) 白光oled显示装置及其显示控制方法、显示控制装置
WO2020024479A1 (zh) 曲面屏幕的亮斑补偿方法及装置
RU2654349C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
CN109243384B (zh) 显示设备及其驱动方法、驱动装置和计算机可读介质
US20150070406A1 (en) Display apparatus and liquid crystal display apparatus
US9990878B2 (en) Data clipping method using red, green, blue and white data, and display device using the same
US11322103B2 (en) Driving method and driving device of display panel and display device
TWI441150B (zh) 液晶顯示裝置及其驅動方法
JP6410279B2 (ja) Wrgb方式の液晶表示パネルの表示駆動方法
TWI547931B (zh) 控制顯示器的方法
WO2019137004A1 (zh) 显示面板的驱动方法及装置
WO2016070455A1 (zh) 液晶面板及其像素单元设定方法
CN104332143B (zh) 显示装置及其色彩转换方法
JP6611494B2 (ja) 画像表示装置及びその制御方法
WO2019080446A1 (zh) 显示装置的驱动方法及显示装置
WO2019080286A1 (zh) 显示装置的驱动方法及显示装置
TWI660634B (zh) 雙介質顯示面板之驅動方法及應用其之電子裝置及顯示系統
CN108898987B (zh) 一种灰阶转换方法、灰阶转换装置及显示装置
KR20150140514A (ko) 투명 디스플레이 장치의 색 보상 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930590

Country of ref document: EP

Kind code of ref document: A1