WO2019084878A1 - 一种充电漏电流检测电路 - Google Patents

一种充电漏电流检测电路 Download PDF

Info

Publication number
WO2019084878A1
WO2019084878A1 PCT/CN2017/109150 CN2017109150W WO2019084878A1 WO 2019084878 A1 WO2019084878 A1 WO 2019084878A1 CN 2017109150 W CN2017109150 W CN 2017109150W WO 2019084878 A1 WO2019084878 A1 WO 2019084878A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage current
charging
module
signal
circuit
Prior art date
Application number
PCT/CN2017/109150
Other languages
English (en)
French (fr)
Inventor
戴国峰
Original Assignee
深圳驿普乐氏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳驿普乐氏科技有限公司 filed Critical 深圳驿普乐氏科技有限公司
Priority to PCT/CN2017/109150 priority Critical patent/WO2019084878A1/zh
Publication of WO2019084878A1 publication Critical patent/WO2019084878A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a charging leakage current detecting circuit.
  • Leakage current protection which involves personal and property safety, is a very important function of charging piles.
  • the leakage current protection used by the charging pile adopts AC type leakage current protection device, which is mainly designed for power frequency sinusoidal AC leakage current. After detecting a large enough sinusoidal AC leakage current signal, the power supply is cut off, and the AC type charging pile leakage protection device is used. Unable to detect DC leakage current. Since the electric vehicle power system has a high-voltage battery pack of 200V to 750VDC, when the battery pack is damaged to the ground or to the insulation of the grid side, the leakage current generated by the battery pack is no longer only a power signal of a sinusoidal waveform. DC leakage current may occur; when DC leakage current occurs, the AC type charging pile leakage current protection device cannot be correctly detected, resulting in improper protection, resulting in personal electric shock or electrical fire accident.
  • the technical problem mainly solved by the present invention is that the existing AC type charging pile leakage current protection device cannot detect the DC leakage current. When the DC leakage current is generated, the AC type charging pile leakage current protection device cannot perform correct detection and protection, and there will be a personal body. Risk of electric shock or electrical fire accidents.
  • the present invention provides a charging leakage current detecting circuit for detecting a charging leakage current when charging a load through a power supply line, the circuit comprising: a leakage current sensor, a self-oscillating module, and a low pass The filter module and the control module, wherein: the leakage current sensor comprises a toroidal core and a detection winding, the detected power supply line passes through the toroidal core, and the detection winding wound around the toroidal core realizes a leakage current detection function.
  • the block includes a detecting winding wound on the toroidal core and a self-oscillating circuit; the self-oscillating module is oscillated continuously within a set oscillation frequency range, and when a leakage current is generated on the power supply line, the leakage current sensor is detecting the winding The induced current is detected at the terminal, and the induced current passes through the self-oscillation circuit to output two signals: a leakage current detection signal and an oscillator frequency signal, wherein the leakage current detection signal is output to the low-pass filter module, and the oscillator frequency signal is output to the control. Module.
  • the low-pass filter module receives the leakage current detection signal outputted by the self-oscillating module, filters the high-frequency excitation current, obtains the detected leakage current signal, and transmits the signal to the control module.
  • the control module is configured to detect the leakage current signal and the oscillator frequency signal in real time, and perform real-time judgment, and output a control signal according to the judgment result.
  • the DC leakage current can be accurately detected, the AC leakage current can be accurately detected, and the AC leakage current having the DC component can be output, and the abnormal signal of the detection result can be output. It can be used for leakage current alarm, warning and/or protection functions of the charging circuit, which greatly improves the safety of people and property.
  • FIG. 1 is a schematic diagram of a charging leakage current detecting circuit of an embodiment
  • FIG. 2 is a waveform diagram of a DC leakage current detection voltage of an embodiment
  • Fig. 3 is a waveform diagram of an alternating current leakage current detecting voltage of another embodiment.
  • a charging leakage current detecting circuit used in the embodiment of the present invention is shown in FIG.
  • the circuit includes a self-oscillation module 103, a low-pass filter module 104, and a control module 105.
  • the module and the power supply line 101 and the leakage current sensor 102 are connected together to form a circuit for implementing a charging leakage current detecting function.
  • the specific instructions are as follows:
  • the power supply line 101 is used for transmitting the charging current to realize the charging function of the circuit; at the same time, the leakage current to be detected may also be generated in the power supply line.
  • the current through the power line can be a single phase AC source, a three phase AC source, or a DC source.
  • the DC and AC two-wire power supply lines are illustrated in FIG. 1 as an example.
  • the leakage current sensor 102 is configured to detect leakage current generated on the power supply line.
  • the leakage current sensor 102 can adopt a toroidal magnetic core as shown in FIG. 1, and the detection winding 121 is wound around the toroidal magnetic core.
  • the power supply line 101 passes through the hollow portion of the leakage current sensor 102, and realizes the leakage current detection function by realizing the electromagnetic coupling between the leakage current on the power supply line and the detection winding 121 through the magnetic core of the leakage current sensor.
  • the sum of the current vectors passing through the power supply line 101 in the leakage current sensor 102 is equal to zero, and therefore, the current passing through the power supply line 101 generates a vector of the magnetic flux in the leakage current sensor 102.
  • the sum is equal to zero, so that no induced current is generated in the detecting winding 121 of the leakage current sensor, and the charging circuit maintains normal power supply.
  • the detected leakage current I includes a leakage current signal on the power supply line and a high-frequency excitation current generated when the leakage current sensor is electromagnetically coupled.
  • the self-excited oscillation module 103 includes a detection coil 121 of a leakage current sensor and a self-oscillation circuit 131.
  • the self-oscillation circuit 131 includes a first operational amplifier U1, a second resistor R2, a third resistor R3, and a fourth resistor R4.
  • the first operational amplifier U1 is powered by a circuit system +12/-12V.
  • Ua is the voltage of the U1 inverting input pin 2
  • Ub is the voltage of the U1 forward input pin 3
  • Uc is the voltage of the U1 output pin 6.
  • One end of the detecting winding 121 is connected to one end of the fourth resistor R4, the inverting input terminal pin 2 of the first operational amplifier, and one end of the first resistor R1 of the low-pass filter module 104, and the other end of the detecting winding 121 and the third resistor R3 are connected.
  • One end of the first operational amplifier U1 is connected to the control module 105; one end of the second resistor R2 is connected to the other end of the third resistor R3 and the positive input terminal pin 3 of the first operational amplifier U1;
  • the positive power terminal pin 4 of the first operational amplifier U1 is connected to the system power supply +12V, the negative power terminal pin 7 is connected to the system power supply -12V, and the other ends of the second resistor R2 and the fourth resistor R4 are connected to the system ground.
  • the low pass filter module 104 includes at least one resistor R1 and one capacitor C1, and an operational amplifier can also be used to design a low pass filter. As shown in FIG. 1 , one end of the first resistor R1 is connected to an output end of the self-excited oscillation module 103 , that is, one end of the detecting winding 121 , and the other end of the first resistor R1 is connected to one end of the first capacitor C1 and the control module 105; The other end of a capacitor C1 is connected to the system ground. Ud is the output signal of the low pass filter module and can represent the magnitude of the leakage current signal 141. The cutoff frequency of the low pass filter module is greater than the frequency of the detected leakage current and less than the oscillation frequency of the circuit.
  • the working process of the self-oscillation circuit 131 is as follows:
  • the detected leakage current signal on the detection winding 121 passes through the self-oscillation module 103, and is output as a leakage current detection signal for further low-pass filtering module 104 processing and an oscillator frequency signal 132 determined by the control module 105.
  • control module 105 can perform detection control using a single chip microcomputer, or can use an analog circuit or a digital analog hybrid circuit.
  • the control module 105 receives the oscillator frequency signal output by the self-oscillating module and the leakage current signal of the low-pass filter module in real time, and performs real-time determination, and outputs a control signal according to the determination result.
  • Control signal 151 includes abnormal leakage current state signal.
  • the abnormal leakage current state means that the leakage current signal exceeds the standard, the oscillator does not oscillate, and any one of the indicators of the oscillator frequency is abnormal.
  • the control signal 151 output by the control circuit 105 can be used for leakage current alarm, prompting and/or protection functions of the charging circuit.
  • the leakage current signal sensed by the detection winding 121 is 1/300 A.
  • the voltage induced on R4 is 10 ⁇ * 1 / 300 A.
  • the voltage Ud of d is sampled at 33.33 mV.
  • Figure 2 shows the voltage waveforms of the Ua, Ub, Uc, and Ud points in the actual circuit.
  • the Ud voltage detected by the leakage current detection circuit is also about 33mV, which is consistent with the theoretical calculation accuracy.
  • Figure 3 shows the voltage waveforms of the Ua, Ub, Uc, and Ud points in the actual circuit.
  • the Ud voltage detected by the leakage current detecting circuit is also an AC voltage, and the maximum amplitude is about 33 mV, which is consistent with the theoretical calculation accuracy.
  • a switch module 106 can be added to the power supply line 101.
  • the control module 105 outputs a control signal 151, and the switch module 106 receives the control signal 151.
  • the switch state is normally closed, and the power supply and the load of the power supply line 101 are turned on, and the control signal 151 is abnormal in the leakage current state.
  • the switch module 106 starts the protection function, the switch state is off, and the charging of the load is stopped.
  • the switch module 106 can be a contactor or a relay, or can be other mechanical devices or the like.
  • the charging leakage current detecting circuit may further increase the leakage current alarm module according to the leakage current signal 141 and the output of the control signal 151 in the circuit, and provide an audible and visual alarm when the leakage current is detected, prompting the operator Pay attention to safety; you can also increase the leakage current display module to accurately monitor the leakage current.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电漏电流检测电路,用于在通过功率电源线(101)对负载进行充电时检测充电漏电流,电路包括:漏电流传感器(102)包括环形磁芯和检测绕组(121),被检测的功率电源线穿过环形磁芯,和缠绕在环形磁芯的检测绕组一起实现漏电流的检出功能;漏电流传感器与自激振荡模块(103)、低通滤波模块(104)相连,输出经过处理的漏电流信号(141)和振荡器频率信号(132),控制模块(105)实时接收漏电流信号和振荡器频率信号并判断,输出包括漏电流异常状态的控制信号(151)。该控制信号可以用于充电电路的漏电流报警、提示和/或保护功能。使用该充电漏电流检测电路,可以检测单相交流电源、三相交流电源或直流电源的漏电流,工作范围广,准确性高。

Description

一种充电漏电流检测电路 技术领域
本发明涉及充电漏电流检测电路。
背景技术
根据节能与新能源汽车产业发展规划(2012-2020年)的规划,到2015年,纯电动汽车和插电式混合动力汽车累计产销量力争达到50万辆;到2020年,纯电动汽车和插电式混合动力汽车生产能力达200万辆、累计产销量超过500万辆,燃料电池汽车、车用氢能源产业与国际同步发展。充电设施建设与新能源汽车产销规模相适应,根据“十三五”规划,预计到2020年,集中式充换电站将增长到1.2万座,分散式充电桩数量将增长100倍达到450万个。
漏电流保护,涉及到人身及财产安全,是充电桩的一个非常重要的功能。现在充电桩使用的漏电流保护采用AC型漏电流保护装置,主要是针对工频正弦交流漏电流来设计的,检测到足够大的正弦交流漏电流信号后切断电源,AC型充电桩漏电保护装置无法检测直流漏电流。由于电动汽车动力系统中,存在200V~750VDC的高压电池包,当该电池包对地或对电网侧绝缘产生损坏的情况下,该电池包产生的漏电流不再只是正弦波形的工频信号,可能出现直流漏电流;当直流漏电流产生时,AC型充电桩漏电流保护装置无法正确的检测,从而导致不能正确的保护,造成人身触电或电气火灾事故。
发明内容
本发明主要解决的技术问题是现有AC型充电桩漏电流保护装置无法检测直流漏电流,当直流漏电流产生时,AC型充电桩漏电流保护装置无法进行正确的检测和保护,会有人身触电或电气火灾事故风险。
为解决上述技术问题,本发明提出一种充电漏电流检测电路,用于在通过功率电源线对负载进行充电时检测充电漏电流,所述电路包括:漏电流传感器、自激振荡模块、低通滤波模块和控制模块,其中:漏电流传感器包括环形磁芯和检测绕组,被检测的功率电源线穿过环形磁芯,和缠绕在环形磁芯的检测绕组一起实现漏电流的检出功能。自激振荡模 块,包括缠绕在环形磁芯上的检测绕组和自激振荡电路;该自激振荡模块一直振荡在设定的振荡频率范围内,当功率电源线上产生漏电流时,漏电流传感器在检测绕组端检出感应电流,感应电流通过自激振荡电路后输出两个信号:漏电流检出信号和振荡器频率信号,其中漏电流检出信号输出到低通滤波模块,振荡器频率信号输出到控制模块。低通滤波模块,接收自激振荡模块输出的漏电流检出信号,用于滤除高频激磁电流,得到检出的漏电流信号,并将该信号传给控制模块。控制模块,用于实时检测漏电流信号以及振荡器频率信号,并进行实时判断,根据判断结果输出控制信号。
依据上述实施例的一种充电漏电流检测电路,能准确的检测到直流漏电流,也能准确的检测到交流漏电流,以及具有直流分量的交流漏电流,并能输出检测结果的异常信号,可用于充电电路的漏电流报警、提示和/或保护功能,大大提升了人身及财产的安全。
附图说明
图1为一种实施例的充电漏电流检测电路示意图;
图2为一种实施例的直流漏电流检测电压波形图;
图3为另一种实施例的交流漏电流检测电压波形图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此, 说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
在本发明实施例中所采用的一种充电漏电流检测电路参见图1。电路中包括:自激振荡模块103、低通滤波模块104和控制模块105,上述模块和功率电源线101、漏电流传感器102连接在一起形成电路,用于实现充电漏电流检测功能。具体说明如下:
功率电源线101,用于传输充电电流,实现电路的充电功能;同时,功率电源线中也可能会产生待检测的漏电流。通过该功率电源线的电流可以是单相交流电源、三相交流电源或直流电源。在本实施例中,图1中以直流、交流二线功率电源线为例说明。
漏电流传感器102,用于检出功率电源线上产生的漏电流。漏电流传感器102可采用如图1所示的环形磁芯,环形磁芯上缠绕检测绕组121。功率电源线101从漏电流传感器102的空心部分穿过,通过漏电流传感器的磁芯实现功率电源线上的漏电流和检测绕组121之间的电磁耦合,实现漏电流的检出功能。
在功率电源线上没有漏电流的状态下,漏电流传感器102中功率电源线101上通过的电流矢量和等于零,因此,功率电源线101上通过的电流在漏电流传感器102中产生磁通的矢量和等于零,这样在漏电流传感器的检测绕组121中没有感应电流产生,充电电路保持正常供电。
当功率电源线101上产生漏电流时,通过漏电流传感器102的电流矢量和不等于零,因此在漏电流传感器中产生的磁通矢量也不为零,这时,在检测绕组121上会输出检出漏电流I。所述检出漏电流I包括功率电源线上的漏电流信号和漏电流传感器电磁耦合时产生的高频激磁电流两部分信号。
在本实施例中,如图1所示,自激振荡模块103包括漏电流传感器的检测线圈121和自激振荡电路131。自激振荡电路131包括:第一运算放大器U1、第二电阻R2、第三电阻R3、第四电阻R4。第一运算放大器U1采用电路系统+12/-12V供电。Ua为U1反向输入端管脚2的电压,Ub为U1正向输入端管脚3的电压,Uc为U1输出端管脚6的电压。 检测绕组121的一端与第四电阻R4的一端、第一运算放大器的反向输入端管脚2和低通滤波模块104的第一电阻R1一端相连,检测绕组121的另一端与第三电阻R3的一端、第一运算放大器U1的输出端管脚6和控制模块105相连;第二电阻R2的一端与第三电阻R3的另一端、第一运算放大器U1的正向输入端管脚3相连;第一运算放大器U1的正电源端管脚4与系统电源+12V相连,负电源端管脚7与系统电源-12V相连;第二电阻R2、第四电阻R4的另一端均与系统地相连。
低通滤波模块104至少包含一个电阻R1和一个电容C1,也可以采用运算放大器设计低通滤波器。如图1所示,第一电阻R1一端与自激振荡模块103的输出端,即检测绕组121的一端相连,第一电阻R1的另一端与第一电容C1的一端、控制模块105相连;第一电容C1的另一端与系统地相连。Ud为低通滤波模块的输出信号,可以表示漏电流信号141的大小。低通滤波模块的截止频率大于被检测漏电流的频率,小于电路的振荡频率。
在本实施例中,自激振荡电路131的工作过程如下:
假设状态1:Ua电压>Ub电压,则Uc电压为-12V,Ub电压=R2/(R2+R3)*(-12V),检测绕组121的电流I逐步增加(图1中I标示的箭头方向定义为正方向),Ua电压=-R4*I;随着时间增加,电流I也增加,Ua电压越来越负,电路进入状态2;
状态2:Ua电压<Ub电压时,Uc电压由-12V变为+12V,此时,Ub电压=R2/(R2+R3)*(+12V),检测绕组121的电流I逐步减小(图1中I标示的箭头方向定义为正方向),随着时间增加,电流由正变负,Ua电压=-R4*I,则Ua由负变正,随着电流I的绝对值逐步变大,Ua电压逐渐增加,当Ua电压>Ub电压时,Uc电压由+12V变为-12V,振荡器回到状态1。
检测绕组121上的检出漏电流信号通过自激振荡模块103之后,输出为用于进一步低通滤波模块104处理的漏电流检出信号和控制模块105判断的振荡器频率信号132。
在本实施例中,控制模块105可以采用单片机进行检测控制,也可以采用模拟电路或数字模拟混合电路。控制模块105实时接收自激振荡模块输出的振荡器频率信号和低通滤波模块的漏电流信号,并进行实时判断,根据判断结果输出控制信号。控制信号151包括漏电流状态异常 信号。漏电流状态异常是指漏电流信号超标、振荡器不振荡、振荡器频率超标中任何一个指标异常。控制电路105输出的控制信号151,可以用于充电电路的漏电流报警、提示和/或保护功能。
下面以具体的电路参数和电压波形为例进行说明。
在本实施例中,假设:当漏电流传感器102的检测绕组121的圈数n=300,检出漏电流为I,功率电源线101直接穿过漏电流传感器102,可以看做圈数n0=1圈,漏电流电流为I0,因为I0·n0=I·n,所以I=I0/300。
同时,假设:R2=100Ω,R3=3KΩ,R4=10Ω,低通滤波模块104的带宽设置为700Hz(一般B型漏电流可分为400-700-1000Hz三个等级),则Ua,Ub,Uc和Ud的测得电压波形如图2所示。
从图2可以看出,假设当前功率电源线101上的直流漏电流为1A,那么检测绕组121感应到的漏电流信号为1/300A。在R4上感应的电压为10Ω*1/300A,理论上,d点采样的电压Ud=33.33mV。图2可以看到实际电路中Ua,Ub,Uc,Ud各点的电压波形图,本漏电流检测电路检测到的Ud电压也在33mV左右,与理论计算准确度一致。
在另一个实施例中,假设当前功率电源线101上的交流漏电流为1A。图3可以看到实际电路中Ua,Ub,Uc,Ud各点的电压波形图,本漏电流检测电路检测到的Ud电压也是交流电压,最大幅度约为33mV,与理论计算准确度一致。
在另一个实施例中,如图1所示,在功率电源线101上可以增加开关模块106。控制模块105输出控制信号151,开关模块106接收控制信号151,当电路正常充电时,开关状态为常闭,接通功率电源线101的电源和负载两端,当控制信号151为漏电流状态异常时,开关模块106启动保护功能,开关状态为断开,停止对负载继续进行充电。开关模块106可以为接触器或继电器,也可以是其他机械器件等。
在另外的实施例中,充电漏电流检测电路还可以根据电路中漏电流信号141、控制信号151的输出,增加漏电流报警模块,用于在检测到漏电流时发出声光报警,提示操作人员注意安全;也可以增加漏电流显示模块,对漏电流准确监控。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (8)

  1. 一种充电漏电流检测电路,用于在通过功率电源线对负载进行充电时检测充电漏电流,其特征在于,所述电路包括:
    漏电流传感器、自激振荡模块、低通滤波模块和控制模块,其中:
    漏电流传感器包括环形磁芯和检测绕组,被检测的功率电源线穿过环形磁芯,和缠绕在环形磁芯的检测绕组一起实现漏电流的检出功能;
    自激振荡模块,包括缠绕在环形磁芯上的检测绕组和自激振荡电路;该自激振荡模块一直振荡在设定的振荡频率范围内,当功率电源线上产生漏电流时,漏电流传感器在检测绕组端检出感应电流,感应电流通过自激振荡电路后输出两个信号:漏电流检出信号和振荡器频率信号,其中漏电流检出信号输出到低通滤波模块,振荡器频率信号输出到控制模块;
    低通滤波模块,接收自激振荡模块输出的漏电流检出信号,用于滤除高频激磁电流,得到检出的漏电流信号,并将该信号传给控制模块;
    控制模块,用于实时检测漏电流信号以及振荡器频率信号,并进行实时判断,根据判断结果输出控制信号。
  2. 如权利要求1所述的充电漏电流检测电路,其特征在于,所述自激振荡电路包括第一运算放大器、第二电阻、第三电阻和第四电阻;检测绕组的一端与第四电阻的一端、第一运算放大器的反向输入端和低通滤波模块相连,检测绕组的另一端与第三电阻的一端、第一运算放大器的输出端和控制模块相连;第二电阻的一端与第三电阻的另一端、第一运算放大器的正向输入端相连;第二电阻、第四电阻的另一端均与系统地相连。
  3. 如权利要求1所述的充电漏电流检测电路,其特征在于,所述低通滤波模块包括第一电阻和第一电容;第一电阻一端与自激振荡模块的输出端相连,另一端与第一电容的一端和控制模块相连;第一电容的另一端与系统地相连。
  4. 如权利要求1所述的充电漏电流检测电路,其特征在于,所述控制模块采用单片机、模拟电路或数字模拟混合电路实现功能。
  5. 如权利要求1所述的充电漏电流检测电路,其特征在于,所述控制信号包括漏电流状态异常信号,所述漏电流状态异常是指漏电流信号超标、振荡器不振荡、振荡器频率超标中任何一个指标异常。
  6. 如权利要求1所述的充电漏电流检测电路,其特征在于,所述充电漏电流检测电路还包括开关模块,用于接收控制模块输出的控制信号,根据控制信号状态执行操作:当控制信号为漏电流状态异常时,所述开关模块将切断电源与负载的连接,启动电路的保护功能;当控制信号为漏电流状态正常时,所述开关模块将保持电源与负载的连接,执行电路的充电功能。
  7. 如权利要求5所述的充电漏电流检测电路,其特征在于,控制电路输出的控制信号用于充电电路的漏电流报警、提示和/或保护功能。
  8. 如权利要求6所述的充电桩漏电流检测电路,其特征在于,所述开关模块采用接触器、继电器或机械开关器件实现功能。
PCT/CN2017/109150 2017-11-02 2017-11-02 一种充电漏电流检测电路 WO2019084878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109150 WO2019084878A1 (zh) 2017-11-02 2017-11-02 一种充电漏电流检测电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109150 WO2019084878A1 (zh) 2017-11-02 2017-11-02 一种充电漏电流检测电路

Publications (1)

Publication Number Publication Date
WO2019084878A1 true WO2019084878A1 (zh) 2019-05-09

Family

ID=66332813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109150 WO2019084878A1 (zh) 2017-11-02 2017-11-02 一种充电漏电流检测电路

Country Status (1)

Country Link
WO (1) WO2019084878A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882172B1 (en) * 2002-04-16 2005-04-19 Transmeta Corporation System and method for measuring transistor leakage current with a ring oscillator
CN201397357Y (zh) * 2009-04-07 2010-02-03 绵阳市维博电子有限责任公司 大孔径直流漏电流检测传感器
CN202870229U (zh) * 2012-10-09 2013-04-10 浙江埃菲生能源科技有限公司 一种漏电流检测保护电路
CN107703823A (zh) * 2017-11-02 2018-02-16 深圳驿普乐氏科技有限公司 一种充电漏电流检测电路
CN207408789U (zh) * 2017-11-02 2018-05-25 深圳驿普乐氏科技有限公司 一种充电漏电流检测和保护电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882172B1 (en) * 2002-04-16 2005-04-19 Transmeta Corporation System and method for measuring transistor leakage current with a ring oscillator
CN201397357Y (zh) * 2009-04-07 2010-02-03 绵阳市维博电子有限责任公司 大孔径直流漏电流检测传感器
CN202870229U (zh) * 2012-10-09 2013-04-10 浙江埃菲生能源科技有限公司 一种漏电流检测保护电路
CN107703823A (zh) * 2017-11-02 2018-02-16 深圳驿普乐氏科技有限公司 一种充电漏电流检测电路
CN207408789U (zh) * 2017-11-02 2018-05-25 深圳驿普乐氏科技有限公司 一种充电漏电流检测和保护电路

Similar Documents

Publication Publication Date Title
CN204679548U (zh) 一种单线圈磁调制式剩余电流检测装置
CN102624325B (zh) 马达驱动器系统、接地故障检测方法以及共模扼流器系统
JP5920469B2 (ja) 電源装置
CN106463944B (zh) 用于检测变压器的断相条件的方法
US20130094598A1 (en) Apparatus, system, and method for detecting a foreign object in an inductive wireless power transfer system
CN104641244B (zh) 用于检测和测量绝缘故障的装置
CN105529796B (zh) 一种蓄电池充电电路及库内辅机测试装置
JP2015515844A (ja) 車両内の連続成分を含む漏れ電流の検出
RU2526834C2 (ru) Способ компенсации погрешности трансформатора тока
CN105675966A (zh) 一种基于差值计算方式的故障电弧检测方法及其保护装置
CN104422825A (zh) 一种直流电源对地绝缘阻抗检测装置和方法
CN107703823A (zh) 一种充电漏电流检测电路
JP5560432B2 (ja) 変圧器故障判定器
CN103368128A (zh) 机车辅助电源系统接地故障保护装置和电力机车
CN104104330A (zh) 一种用于光伏储能系统的绝缘检测系统及其方法
CN111413545B (zh) 车载充电机的绝缘阻抗检测电路和绝缘阻抗检测方法
WO2019084878A1 (zh) 一种充电漏电流检测电路
JP2009033789A (ja) 充電監視装置
CN105785173B (zh) 一种逆变器交流滤波电感的智能检测装置及其检测方式
CN107478975A (zh) 一种储能电站的绝缘检测系统
CN207408789U (zh) 一种充电漏电流检测和保护电路
JPH10309031A (ja) 交直両用漏電検出器
CN206306843U (zh) 电动汽车及其漏电保护电路
EP3879285B1 (en) Insulation detection circuit of vehicle-mounted bidirectional charger and detection method therefor
CN111817258B (zh) 一种基于改进的直流分量法的磁调制式直流漏电保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930685

Country of ref document: EP

Kind code of ref document: A1