WO2019084850A1 - 一种电梯元件参数校准方法、装置、设备及存储介质 - Google Patents

一种电梯元件参数校准方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2019084850A1
WO2019084850A1 PCT/CN2017/108946 CN2017108946W WO2019084850A1 WO 2019084850 A1 WO2019084850 A1 WO 2019084850A1 CN 2017108946 W CN2017108946 W CN 2017108946W WO 2019084850 A1 WO2019084850 A1 WO 2019084850A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
elevator component
parameter
value
component
Prior art date
Application number
PCT/CN2017/108946
Other languages
English (en)
French (fr)
Inventor
李小明
章飞
李基源
李良
薄明心
仲兆峰
Original Assignee
日立楼宇技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立楼宇技术(广州)有限公司 filed Critical 日立楼宇技术(广州)有限公司
Priority to CN201780001526.3A priority Critical patent/CN108124442B/zh
Priority to PCT/CN2017/108946 priority patent/WO2019084850A1/zh
Publication of WO2019084850A1 publication Critical patent/WO2019084850A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0037Performance analysers

Definitions

  • Embodiments of the present invention relate to elevator technology, and in particular, to an elevator component parameter calibration method, apparatus, device, and storage medium.
  • the various components in the elevator have a certain life and maintenance cycle, which is called the parameter value of the elevator component.
  • the parameter calibration of the elevator components is usually carried out in the following manner, and the parameter values are manually set according to historical experience and/or instructions; when the components reach the set parameter values, the small batch components are extracted for testing until the components are damaged to obtain actual component parameters. Value; the component parameter value obtained in the small batch test is used as the component calibration value, and the component parameter value is manually adjusted according to the component calibration value.
  • the parameter calibration method of the above components has the following defects.
  • the invention provides a method, a device, a device and a storage medium for calibrating elevator component parameters, so as to realize automatic calibration of parameter values of elevator components, improve accuracy of component parameter values and improve work efficiency.
  • an embodiment of the present invention provides a method for calibrating an elevator component parameter, the method comprising:
  • a parameter value of the first elevator component type in the elevator component parameter table is used as a parameter calibration value of the first elevator component type.
  • the method further includes:
  • the acquired parameter value of the first elevator component is increased as the The parameter value of the first elevator element described in the elevator component parameter table.
  • the method further includes:
  • the parameter value of the first elevator component type in the elevator component parameter table is used as a parameter calibration value of the first elevator component type, and specifically includes:
  • the parameter value of the first elevator component type in the elevator component parameter table is taken as the first Parameter calibration value for elevator component type.
  • the periodically obtaining the parameter values of each elevator component in the operation includes:
  • the parameter value of the first elevator component type in the stored elevator component parameter table is updated according to the acquired elevator component parameter values, and specifically includes:
  • the parameter value of the first elevator element in the stored elevator component parameter table is incremented by one.
  • the method further includes:
  • the parameter value of the first elevator component type in the elevator component parameter table is used as a parameter calibration value of the first elevator component type.
  • the parameter value of the first elevator component type in the stored elevator component parameter table is updated according to the obtained elevator component parameter values, and specifically includes:
  • Calculating at least one of the acquired first elevator elements when the number of the first elevator elements reaches the preset number of components An average value of the parameter values of the first elevator component, and calculating a parameter value of the first elevator component type according to the average value and a preset proportional coefficient.
  • an embodiment of the present invention further provides an elevator component parameter calibration apparatus, the apparatus comprising:
  • a parameter value obtaining module configured to periodically acquire parameter values of each elevator component that is operated
  • a parameter value first updating module configured to: when the first elevator component in each elevator is not faulty, update a parameter value of the first elevator component type in the stored elevator component parameter table according to the acquired elevator component parameter values;
  • the parameter calibration value obtaining module is configured to use a parameter value of the first elevator component type in the elevator component parameter table as a parameter calibration value of the first elevator component type.
  • the device further includes:
  • a parameter value second updating module configured to increase the acquired parameter when the first elevator component in each elevator is not faulty, and the parameter value of the first elevator component type does not exist in the stored elevator component parameter table
  • the parameter value of an elevator element is used as a parameter value of the first elevator element in the elevator component parameter table.
  • an embodiment of the present invention further provides an apparatus, where the apparatus includes:
  • One or more processors are One or more processors;
  • a memory for storing one or more programs
  • the one or more programs are executed by the one or more processors such that the one or more processors implement an elevator component parameter calibration method as previously described.
  • an embodiment of the present invention further provides a computer readable storage medium having stored thereon a computer program, the program being executed by the processor to implement an elevator component parameter calibration method as described above.
  • the invention periodically acquires the elevator component parameter values in operation, and when the first elevator component in each elevator is not faulty, updates the stored first elevator component parameter list in the elevator component parameter table according to the acquired elevator component parameter values.
  • the parameter value is used as the parameter calibration value of the first elevator component type in the elevator component parameter table, which solves the problem that the elevator component parameter value calibration needs manual participation adjustment and the test data is limited in the prior art.
  • the problem is that the parameter value of the automatic calibration of the elevator component is realized, and the accuracy of the calibration value of the elevator component parameter is improved, and the work efficiency is also improved.
  • FIG. 1 is a flow chart of a method for calibrating an elevator component parameter in the first embodiment of the present invention
  • FIG. 2 is a flow chart of a method for calibrating an elevator component parameter in Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural diagram of an elevator component parameter calibration apparatus according to Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural diagram of an apparatus in Embodiment 4 of the present invention.
  • FIG. 1 is a flowchart of a method for calibrating an elevator component parameter according to a first embodiment of the present invention.
  • the embodiment is applicable to automatically calibrating an elevator component parameter value, and the method can be performed by an elevator component parameter calibration device. It can be implemented in software and/or hardware, and the device can be configured in a device, such as a computer or the like. As shown in FIG. 1 , the method specifically includes the following steps:
  • Step S110 periodically obtaining parameter values of each elevator component in operation
  • the elevator component parameter value represents the service life of the elevator component
  • the elevator component type includes an elevator button, a door machine, a wire rope, an indicator light (lighting and emergency light), a frequency converter, a brake, and a limit.
  • the evaluation criteria of the specific service life need to be selected according to the component type, and are not specifically limited herein.
  • the evaluation criterion indicating the service life is the number of times the elevator button is triggered, that is, the parameter value of the elevator button referred to herein refers to the number of triggers.
  • the parameter values of each elevator component are obtained by periodically collecting and collecting the elevator during actual operation.
  • the periodicity referred to herein may be every 3 minutes or every 2 minutes.
  • statistical analysis is performed based on the actual running data of the elevator to determine a time interval that matches the actual situation.
  • the manner in which the values of the elevator component parameters in operation can be periodically acquired is based on the fact that, due to the actual situation, the service life of the component, that is, the parameter value of the component is a relatively large value, such as the parameters for the elevator button.
  • the value, that is, the number of triggers is on the order of 10,000 and above.
  • the elevator component parameters that are ultimately required are obtained.
  • the impact of the accuracy of the results of the calibration values is also very limited and can be ignored. More importantly, this can reduce the data processing capacity and the occupied storage space to a certain extent on the basis of ensuring the accuracy and real-time performance of the obtained elevator component parameter values.
  • Step S120 When the first elevator component in each elevator is not faulty, update according to the acquired values of the elevator component parameters. a parameter value of the first elevator component type in the stored elevator component parameter table;
  • the first elevator element may represent the elevator element to be calibrated, ie the elevator element that is currently required to be serviced.
  • the fault refers to the fact that the elevator component cannot work normally. For example, if the elevator button fails, the function of floor selection, user going upstairs or downstairs, and alarm prompt cannot be realized by pressing a button.
  • Each elevator element has a corresponding identification for distinguishing between individual elevator elements and for dividing whether they belong to the same elevator component type.
  • the identifier of the elevator component type is preset to be composed of 4 digits, and the identifier of the elevator component is composed of 4 digits followed by a numerical number, wherein the first 4 digits are used to indicate which type of elevator component belongs to, and thus, For two elevator elements, it can be determined whether they belong to the same elevator component type by identifying whether the first 4 digits in their identification are the same.
  • the identifier of the elevator button is 0100.
  • the identification may be 0100-1, 0100-2 or 0100-3 respectively, and the first 4 digits based on the identification of each elevator component are 0100, and the elevator button is The logo is 0100, and it can be seen that each elevator button can be divided into the elevator component type of the elevator button. It can be understood that the setting rules of the specific elevator component and the identifier of the elevator component type are set according to actual conditions, and are not specifically limited herein.
  • the parameter values of the elevator component type are stored in the elevator component parameter table, and in addition, the update time of the parameter value of the elevator component type, the elevator work number, and the number of calibrations are stored.
  • the parameter value of the first elevator component type stored in the elevator component parameter table is updated according to each elevator component parameter value acquired at this time.
  • the first elevator component is each elevator button
  • the parameter value of the corresponding elevator button is updated, and the update may be performed on the basis of the current parameter value.
  • the sum of the number of triggers is performed, and each time the trigger is executed, the accumulating operation of the parameter values is performed.
  • the accumulated value is consistent with the number of triggers, that is, the elevator button is triggered once, and the parameter value is incremented by one.
  • the parameter value of the first elevator component type stored in the elevator component parameter table is updated by updating the parameter value of the first elevator component type in the elevator component parameter table, and the parameter for acquiring the first elevator component type is subsequently obtained.
  • Calibration values provide data support.
  • the elevator component parameter table also stores the update time of the parameter value of the elevator component type, optionally, when the parameter value of the first elevator component type is updated, the corresponding update time is also performed. Recording and saving the record to the elevator component parameter table can be used as one of the basis for subsequent updating of the parameter value of the first elevator component type.
  • Step S130 using the parameter value of the first elevator component type in the elevator component parameter table as the parameter calibration value of the first elevator component type.
  • the elevator component since the parameter value of the first elevator component type stored in the elevator component parameter table is updated in real time according to the parameter value of the first elevator component in the periodically acquired operation, the elevator component
  • the parameter value of the first elevator component type in the parameter table may represent the latest first elevator component type that can be obtained at the current time.
  • the parameter value is based on this as the parameter calibration value of the first elevator component type, which can be used as the parameter setting value of the first elevator component type, when the acquired parameters of the first elevator component in operation
  • an alarm prompt is issued to remind the user to perform maintenance or replacement to ensure that the elevator component can work normally, and the elevator can operate normally.
  • the original storage parameter value when updating the parameter value of the first elevator component type in the stored elevator component parameter table, the original storage parameter value may be retained or overwritten, wherein the reservation is to add a new parameter value storage item, which is overwritten. That is, the original storage parameter value is replaced by the updated parameter value, and the original storage parameter value is deleted.
  • the specific implementation manner is set according to actual conditions, and is not specifically limited herein.
  • the original storage parameter value is retained, and after the set period is exceeded, the data is deleted, which ensures that the historical data is queried within the set period, and the historical data saved due to exceeding the set period is lost. Sex also takes up memory issues.
  • the technical solution of the embodiment by periodically acquiring the elevator component parameter values in operation, when the first elevator component in each elevator is not faulty, updating the stored elevator component parameter table according to the acquired elevator component parameter values.
  • the parameter value of the first elevator component type, the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type, which solves the problem that the adjustment of the elevator component parameter value needs manual intervention in the prior art.
  • the problem of limited test data realizes the automatic calibration of the parameter values of the elevator components, and improves the accuracy of the calibration values of the elevator component parameters as well as the work efficiency.
  • the parameter value of the first elevator component type in the stored elevator component parameter table is updated according to the acquired elevator component parameter values.
  • the method further includes:
  • the acquired parameter value of the first elevator component is increased as the elevator component parameter table.
  • the parameter value of the first elevator element is not faulty, and the parameter value of the first elevator component type does not exist in the stored elevator component parameter table.
  • the stored elevator component parameter table does not have the parameter value of the first elevator component type, that is, when the above two conditions are simultaneously satisfied Adding a storage item of the parameter value of the elevator component to the elevator component parameter table, that is, obtaining the parameter value of the first elevator component as the parameter value of the first elevator component in the elevator component parameter table.
  • the parameter values of the respective elevator component types are stored in the elevator parameter table, so as to provide data support for obtaining the parameter calibration values of the first elevator component type.
  • the method further includes:
  • the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type, which may specifically include:
  • the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type.
  • the preset condition refers to a difference between a parameter value of the updated first elevator component type stored in the current elevator component parameter table and a parameter value of the first elevator component parameter type before the update.
  • the absolute value of the value needs to be satisfied, and the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type only when the absolute value of the difference satisfies the condition.
  • the condition that the absolute value of the difference needs to be satisfied may be that the absolute value of the difference is greater than or equal to a preset threshold, or the absolute value of the difference may be in a preset value range, where The preset threshold and the preset value range can be set according to actual conditions, and are not specifically limited herein.
  • the first elevator component type is an elevator button
  • the parameter value is the number of triggers
  • the preset threshold may be set to 1000 times
  • the difference is The absolute value to be satisfied is in the preset value range.
  • the parameter calibration value of the elevator button is not updated; when the absolute value of the difference is When the size is too large, the parameter value of the acquired elevator button may be inaccurate due to a system error. In this case, the parameter calibration value of the elevator button is not required to be updated temporarily, and the cause is subsequently determined. After that, the parameter value acquisition and the parameter value update operation are performed again.
  • the parameter value of the first elevator component type in the elevator component parameter table is taken as the first elevator component type only after the preset condition is satisfied.
  • the parameter calibration value that is, the update operation of the parameter calibration value of the first elevator component type is ensured, and the parameter calibration value of the first elevator component type is ensured to be effective, and the data processing amount is also reduced to some extent.
  • periodically obtaining the parameter values of the elevator components in operation may specifically include:
  • the elevator components of each elevator in operation are monitored.
  • the purpose of monitoring the elevator components of each elevator in operation is to obtain the values of the elevator component parameters in operation, that is, during the monitoring process, the parameter values of the elevator components are correspondingly obtained.
  • the parameter value of the first elevator component type in the stored elevator component parameter table is updated according to the acquired elevator component parameter values, Specifically, it may include:
  • the parameter value of the first elevator component in the stored elevator component parameter table is incremented by one.
  • the triggering refers to the elevator component being in use
  • the trigger refers to the operation in which the elevator button is pressed.
  • the parameter value of the first elevator component type stored in the elevator parameter table is updated in real time, so as to provide data support for obtaining the parameter calibration value of the first elevator component type.
  • the method further includes:
  • the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type.
  • the parameter value of the first elevator component type stored in the elevator parameter table is no longer increased, and the parameter value acquired at this time is taken as the first elevator component.
  • Type parameter calibration value For example, when the first elevator component is an elevator button, when the first elevator component is detected to be faulty, the parameter value of the elevator button stored in the elevator component parameter table is used as the parameter calibration value of the elevator button.
  • updating the parameter value of the first elevator component type in the stored elevator component parameter table according to the obtained elevator component parameter values may specifically include:
  • the elevator component parameter table stores parameter values for each of the first elevator components, i.e., a storage item corresponding to a parameter value for a first elevator component.
  • the parameter values of the respective first elevator elements stored in the elevator component parameter table are updated according to the acquired elevator component parameter values.
  • the number of the first elevator elements obtained is three, which are the first elevator element A, the first elevator element B and the first elevator element C respectively. Accordingly, the elevator component parameter table has the first one.
  • the preset number threshold is used as a basis for batch reaching, that is, when the number of acquired first elevator components reaches a preset threshold, that is, when the batch fulfillment condition is satisfied.
  • the average value is calculated according to the parameter values of the plurality of first elevator elements that are currently acquired, and the parameter values of the first elevator component type are calculated according to the average value and the preset proportional coefficient.
  • the preset first elevator component number threshold is K
  • the preset proportional coefficient is ⁇
  • x i represents the acquired parameter value of the first elevator component.
  • the parameter value of the first elevator component type obtained by the above manner is made closer to the actual elevator component usage state, and further It is more reasonable to subsequently use the parameter value of the first elevator component type as the parameter calibration value of the first elevator component type.
  • FIG. 2 is a flowchart of a method for calibrating an elevator component parameter according to a second embodiment of the present invention.
  • the embodiment is applicable to automatically calibrating an elevator component parameter value, and the method can be performed by an elevator component parameter calibration device. It can be implemented in software and/or hardware, and the device can be configured in a device, such as a computer or the like. As shown in FIG. 2, the method specifically includes the following steps:
  • Step S200 monitoring elevator components of each elevator in operation
  • Step S210 determining whether there is a parameter value of the first elevator component type in the stored elevator component parameter table; if yes, executing step S220; if not, executing step S230;
  • Step S220 when the first elevator element in each elevator is triggered, it is determined whether the first elevator element is faulty; if yes, step S280 is performed; if not, step S240 is performed;
  • Step S230 adding a storage item of the parameter value of the first elevator component type in the elevator component parameter table, and returning Go to step S220;
  • Step S240 updating parameter values of each first elevator component in the stored elevator component parameter table according to the acquired elevator component parameter values
  • Step S250 it is determined whether the number of the obtained first elevator elements reaches the preset component number threshold; if yes, step S260 is performed; if not, proceed to step S250;
  • Step S260 calculating an average value of the acquired parameter values of the at least one first elevator component, and calculating a parameter value of the first elevator component type according to the average value and the preset proportional coefficient;
  • Step S270 determining whether the parameter value of the first elevator component type satisfies the preset condition in the elevator component parameter table; if yes, executing step S280; if not, executing step S290;
  • Step S280 the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type
  • step S290 the parameter calibration value of the first elevator component type remains unchanged.
  • the acquisition process of the elevator component type parameter calibration value may be implemented by a big data acquisition system.
  • the big data collection system may include an elevator platform, a communication platform, a big data platform (or a cloud storage platform), and a host computer platform, wherein the elevator platform includes an elevator component, an acquisition board, and a DTU (Data Transfer Unit) of each elevator.
  • the elevator platform includes an elevator component, an acquisition board, and a DTU (Data Transfer Unit) of each elevator.
  • DTU is a wireless terminal device specially used to convert serial data into IP data or convert IP data into serial data through wireless communication network; communication platform for data interaction between DTU and big data platform; big data
  • the platform refers to a data collection platform that cannot be captured, managed and processed by conventional software tools within a certain time range, and can analyze and mine a large number of acquired elevator component parameter values, which may include data storage, machine self-learning, and pre-diagnosis.
  • the data storage part includes the following contents: (1) elevator basic data: elevator work number and component function, etc.; (2) elevator component operation record: elevator component type identification, operation/run times and operation time Etc.; (3) basic parameters of elevator components: elevator component type identification, self-study Batch, elevator component parameter value, elevator component type parameter value and elevator component type parameter value update time, etc.; (4) elevator component type parameter value calculation rules: elevator component identification, elevator component type identification and calculation rules, etc.; It is mainly used to set the calculation rules, that is, the calculation rules stored in the data storage part of the big data platform are the same as the calculation rules set in the upper computer.
  • the parameter values of the elevator components are obtained by triggering each elevator component in the elevator platform, and the parameter values of the elevator components are sequentially sent to the communication platform through the main board and the DTU, and the communication platform transmits the received data to the big data platform, and the data platform of the big data platform.
  • the analysis process is performed to obtain the parameter calibration value of the elevator component type, and the parameter calibration value of the elevator component type is sent to the DTU through the data acquisition platform, so as to update the parameter calibration value of the elevator component type in the elevator platform.
  • the technical solution of the embodiment is to periodically obtain the values of the elevator component parameters in operation, and when the first elevator component in each elevator is not faulty, update according to the acquired values of the elevator component parameters.
  • the parameter value of the first elevator component type in the stored elevator component parameter table, and the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type, and the elevator component parameters in the prior art are solved.
  • the value calibration needs to be manually involved in the adjustment and the test data is limited.
  • the parameter value of the automatic calibration of the elevator component is realized, and the accuracy of the calibration value of the elevator component parameter is improved, and the work efficiency is also improved.
  • FIG. 3 is a schematic structural diagram of an elevator component parameter calibration apparatus according to Embodiment 3 of the present invention.
  • the embodiment is applicable to automatically calibrating an elevator component parameter value, and the apparatus may be implemented by using software and/or hardware.
  • the device can be configured in a device, such as typically a computer or the like. As shown in FIG. 3, the device specifically includes:
  • the parameter value obtaining module 310 is configured to periodically acquire each elevator component parameter value in operation
  • the parameter value first updating module 320 is configured to: when the first elevator component in each elevator is not faulty, update the parameter value of the first elevator component type in the stored elevator component parameter table according to the acquired elevator component parameter values;
  • the parameter calibration value obtaining module 330 is configured to use a parameter value of the first elevator component type in the elevator component parameter table as a parameter calibration value of the first elevator component type.
  • the parameter value acquisition module 310 periodically acquires the elevator component parameter values in operation, and the parameter value first update module 320, when the first elevator component in each elevator is not faulty, according to the acquired
  • the elevator component parameter value updates the parameter value of the first elevator component type in the stored elevator component parameter table
  • the parameter calibration value acquisition module 330 calibrates the parameter value of the first elevator component type in the elevator component parameter table as the parameter of the first elevator component type
  • the device further includes:
  • a parameter value second updating module configured to: when the first elevator component in each elevator is not faulty, and the parameter value of the first elevator component type does not exist in the stored elevator component parameter table, the acquired first elevator is increased The parameter value of the component is taken as the parameter value of the first elevator component in the elevator component parameter table.
  • the device is further configured to:
  • the parameter calibration value obtaining module 330 is specifically configured to:
  • the elevator component parameter table is The parameter value of the first elevator component type is used as the parameter calibration value for the first elevator component type.
  • the parameter value obtaining module 310 is specifically configured to:
  • the elevator components of each elevator in operation are monitored.
  • the parameter value first update module 320 is specifically configured to:
  • the parameter value of the first elevator component in the stored elevator component parameter table is incremented by one.
  • the parameter value first update module 320 is further configured to:
  • the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type.
  • the parameter value first update module 320 is specifically configured to:
  • the elevator component parameter calibration apparatus may perform the elevator component parameter calibration method provided by any embodiment of the present invention, and has a corresponding functional module and a beneficial effect of the execution method.
  • FIG. 4 is a schematic structural diagram of a device according to Embodiment 4 of the present invention.
  • FIG. 4 illustrates a block diagram of an exemplary device 412 suitable for use in implementing embodiments of the present invention.
  • the device 412 shown in FIG. 4 is merely an example and should not impose any limitation on the function and scope of use of the embodiments of the present invention.
  • device 412 is embodied in the form of a general purpose computing device.
  • Components of device 412 may include, but are not limited to, one or more processors 416, system memory 428, and a bus 418 coupled to different system components, including system memory 428 and processor 416.
  • Bus 418 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MAC) bus, an Enhanced ISA Bus, a Video Electronics Standards Association (VESA) local bus, and peripheral component interconnects ( PCI) bus.
  • ISA Industry Standard Architecture
  • MAC Micro Channel Architecture
  • VESA Video Electronics Standards Association
  • PCI peripheral component interconnects
  • Device 412 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by device 412, including volatile and non-volatile media, removable and non-removable media.
  • System memory 428 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) 430 and/or cache memory 432.
  • Device 412 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 434 can be used to read and write non-removable, non-volatile magnetic media (not shown in Figure 4, commonly referred to as a "hard disk drive”).
  • a disk drive for reading and writing to a removable non-volatile disk such as a "floppy disk”
  • a removable non-volatile disk such as a CD-ROM, DVD-ROM
  • each drive can be coupled to bus 418 via one or more data medium interfaces.
  • Memory 428 can include at least one program product having a set (e.g., at least one) of program modules configured to perform the functions of various embodiments of the present invention.
  • Program/utility 440 having a set (at least one) of program modules 442, which may be stored, for example, in memory 428, such program program 442 includes, but is not limited to, an operating system, one or more applications, other program modules, and program data. An implementation of the network environment may be included in each or some of these examples.
  • Program module 442 typically performs the functions and/or methods of the embodiments described herein.
  • Device 412 can also be in communication with one or more external devices 414 (eg, a keyboard, pointing device, display 424, etc.), and can also communicate with one or more devices that enable a user to interact with the device 412, and/or Device 412 can communicate with any device (e.g., network card, modem, etc.) that is in communication with one or more other computing devices. This communication can take place via an input/output (I/O) interface 422. Also, device 412 can communicate with one or more networks (e.g., a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through network adapter 420. As shown, network adapter 420 communicates with other modules of device 412 via bus 418.
  • I/O input/output
  • network adapter 420 communicates with other modules of device 412 via bus 418.
  • device 412 may be utilized in connection with device 412, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives. And data backup storage systems, etc.
  • the processor 416 performs various function applications and data processing by running a program stored in the system memory 428, for example, an elevator component parameter calibration method provided by an embodiment of the present invention, including:
  • the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type.
  • the fifth embodiment of the present invention further provides a computer readable storage medium, where the computer program is stored, and the program is executed by the processor to implement an elevator component parameter calibration method according to an embodiment of the present invention.
  • the method includes :
  • the parameter value of the first elevator component type in the elevator component parameter table is used as the parameter calibration value of the first elevator component type.
  • the computer storage medium of the embodiments of the present invention may employ any combination of one or more computer readable mediums.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium can be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above.
  • a computer readable storage medium can be any tangible medium that can contain or store a program, which can be used by or in connection with an instruction execution system, apparatus or device.
  • a computer readable signal medium may include a data signal that is propagated in the baseband or as part of a carrier, carrying computer readable program code. Such propagated data signals can take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer readable signal medium can also be any computer readable medium other than a computer readable storage medium, which can transmit, propagate, or transport a program for use by or in connection with the instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, fiber optic cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present invention may be written in one or more programming languages, or a combination thereof, including an object oriented programming language - such as Java, Smalltalk, C++, and also conventional. Procedural programming language - such as the "C" language or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer, partly on the remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer via any kind of network, including a local area network (LAN) or wide area network (WAN), or can be connected to an external computer (eg, using an Internet service provider) Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider Internet service provider

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

一种电梯元件参数校准方法、装置、设备及存储介质。该方法包括:周期性获取运行中的各电梯元件参数值(S110);当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值(S120);将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值(S130)。解决了现有技术中电梯元件参数值校准需要人工参与进行调整且测试数据有限的问题,实现了自动校准电梯元件的参数值,在提高了电梯元件参数校准值的准确性的同时也提高了工作效率。

Description

一种电梯元件参数校准方法、装置、设备及存储介质 技术领域
本发明实施例涉及电梯技术,尤其涉及一种电梯元件参数校准方法、装置、设备及存储介质。
背景技术
随着互联网技术的发展,特别是大数据时代的兴起,正在影响着各行各业,在新的市场环境下,电梯数量越来越多,与此对应的是数量更为庞大的电梯元件数据,如楼层的选择按键等,这对其维护工作提出了更大的挑战。
电梯中的各种元件都有一定的寿命和维护周期,将其称为电梯元件的参数值。目前对电梯元件的参数校准通常采用以下方式进行,根据历史经验和/或说明书手动设置参数值;当元件到达设定参数值时,提取小批量元件进行测试,直到元件损坏从而得到实际的元件参数值;将小批量测试得到的元件参数值作为元件校准值,根据元件校准值手动调整元件参数值。
上述元件的参数校准方式存在以下方面的缺陷,其一,由于整个过程中需要工作人员的参与,人工操作本身存在固有的弊端,如误操作等;其二,从获取的数据的准确性角度来看,由于测试的数据有限,加之工作环境的差异,以及人员经验参差不齐等因素,导致元件参数设置容易出现较大的偏差;其三,从工作量角度来看,由于电梯元件种类、材质等越来越多,导致人工测试的工作量越来越大。
发明内容
本发明提供一种电梯元件参数校准方法、装置、设备及存储介质,以实现自动校准电梯元件的参数值,提高元件参数值的准确性以及提高工作效率。
第一方面,本发明实施例提供了一种电梯元件参数校准方法,该方法包括:
周期性获取运行中的各电梯元件参数值;
当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值;
将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值。
进一步的,所述当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值之前,该方法还包括:
当各电梯中的第一电梯元件未故障时,且存储的电梯元件参数表中不存在所述第一电梯元件类型的参数值时,将增加获取到的第一电梯元件的参数值作为所述电梯元件参数表中所述第一电梯元件的参数值。
进一步的,所述将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值之前,该方法还包括:
判断所述电梯元件参数表中,所述第一电梯元件类型的参数值是否满足预设条件;
所述将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值,具体包括:
若所述电梯元件参数表中,所述第一电梯元件类型的参数值满足所述预设条件,则将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值。
进一步的,所述周期性获取运行中的各电梯元件参数值,具体包括:
监测运行中的各电梯的电梯元件;
所述当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,具体包括:
当各电梯中的第一电梯元件被触发时,判断所述第一电梯元件是否故障;
若所述第一电梯元件未故障,则将存储的电梯元件参数表中第一电梯元件的参数值加1。
进一步的,所述当各电梯中的第一电梯元件被触发时,判断所述第一电梯元件是否故障之后,该方法还包括:
若所述第一电梯元件出现故障,则将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值。
进一步的,所述根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,具体包括:
根据获取到的各电梯元件参数值更新存储的电梯元件参数表中每个所述第一电梯元件的参数值;
当获取到的所述第一电梯元件的个数达到预设元件个数阈值时,计算获取到的至少一个 所述第一电梯元件的参数值的平均值,并根据所述平均值和预设比例系数计算所述第一电梯元件类型的参数值。
第二方面,本发明实施例还提供了一种电梯元件参数校准装置,该装置包括:
参数值获取模块,用于周期性获取运行的各电梯元件参数值;
参数值第一更新模块,用于当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值;
参数校准值获取模块,用于将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值。
进一步的,该装置还包括:
参数值第二更新模块,用于当各电梯中的第一电梯元件未故障时,且存储的电梯元件参数表中不存在所述第一电梯元件类型的参数值时,将增加获取到的第一电梯元件的参数值作为所述电梯元件参数表中所述第一电梯元件的参数值。
第三方面,本发明实施例还提供了一种设备,该设备包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如前文所述的电梯元件参数校准方法。
第四方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如前文所述的电梯元件参数校准方法。
本发明通过周期性获取运行中的各电梯元件参数值,当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值,解决了现有技术中电梯元件参数值校准需要人工参与进行调整且测试数据有限的问题,实现了自动校准电梯元件的参数值,在提高了电梯元件参数校准值的准确性的同时也提高了工作效率。
附图说明
图1是本发明实施例一中的一种电梯元件参数校准方法的流程图;
图2是本发明实施例二中的一种电梯元件参数校准方法的流程图;
图3是本发明实施例三中的一种电梯元件参数校准装置的结构示意图;
图4是本发明实施例四中的一种设备的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图1为本发明实施例一提供的一种电梯元件参数校准方法的流程图,本实施例可适用于自动校准电梯元件参数值的情况,该方法可以由电梯元件参数校准装置来执行,该装置可以采用软件和/或硬件的方式实现,该装置可以配置于设备中,例如典型的是计算机等。如图1所示,该方法具体包括如下步骤:
步骤S110、周期性获取运行中的各电梯元件参数值;
在本发明的具体实施例中,电梯元件参数值表示的是电梯元件的使用寿命,电梯元件类型包括电梯按钮、门机、钢丝绳、指示灯(照明灯和应急灯)、变频器、制动器、限速器、缓冲器、变压器、整流器、接触器、电磁继电器和安全钳等。相应的,具体使用寿命的评价标准需要根据元件类型进行选择,在此不作具体限定。示例性的,如当电梯元件类型为电梯按钮时,表示其使用寿命的评价标准是电梯按钮被触发的次数,即这里所说的电梯按钮的参数值指的是触发次数。
需要说明的是,各电梯元件参数值是电梯在实际运行过程中进行周期性采集获取的。这里所说的周期性可以是每隔3分钟或每隔2分钟,优选的,根据电梯实际运行的数据进行统计分析,确定与实际情况匹配的时间间隔。可以采用周期性获取运行中的各电梯元件参数值的方式是基于下述事实:由于实际情况中,元件的使用寿命,也即元件的参数值是一个比较大的数值,如对于电梯按钮的参数值,也即触发次数来说,其数量级在万级及其以上,因此,相比于实时获取电梯元件参数值的方式,即使中间遗漏了有限次的触发次数,对最终需要得到的电梯元件参数校准值的结果的准确性的影响也是很有限的,可以忽略不计。更为重要的是,这样可以实现在保证获取到的电梯元件参数值的准确性及实时性的基础上,一定程度上减少了数据处理量及占用的存储空间。
步骤S120、当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新 存储的电梯元件参数表中第一电梯元件类型的参数值;
在本发明的具体实施例中,第一电梯元件可以表示待校准电梯元件,即当前需要对其进行维护的电梯元件。所说的故障指的是电梯元件无法正常工作,示例性的,如电梯按钮失效,无法通过按动按钮来实现楼层选择、用户上楼或下楼以及报警提示等功能。每个电梯元件都有一个对应的标识,该标识用于区别各个电梯元件以及用于划分是否属于同一电梯元件类型。示例性的,预先设定电梯元件类型的标识由4位数字组成,电梯元件的标识由4位数字后加数字编号构成,其中,前4位数字用于指示属于哪类电梯元件类型,因而,对于两个电梯元件来说,可以通过识别其标识中的前4位是否相同来判断是否属于同一电梯元件类型。如电梯按钮的标识为0100,对于各个电梯按钮来说,标识可以分别为0100-1、0100-2或0100-3,基于每个电梯元件的标识的前4位均为0100,而电梯按钮的标识即为0100,可知各个电梯按钮均可划分入电梯按钮这一电梯元件类型中。当然可以理解的是,具体电梯元件及电梯元件类型的标识的设定规则,根据实际情况进行设定,在此不作具体限定。
电梯元件参数表中存储有电梯元件类型的参数值,除此之外,还存储有电梯元件类型的参数值的更新时间、电梯工号和校准次数等内容。当各电梯中的第一元件未出现故障时,根据此时获取到的各电梯元件参数值更新存储在电梯元件参数表中的第一电梯元件类型的参数值。可选的,如第一电梯元件为各个电梯按钮,当检测到电梯按钮被触发时,便将对应的电梯按钮的参数值进行更新,这里所说的更新可以为在当前参数值的基础上进行触发次数的累加,每触发一次,便执行参数值的累加操作,其中,通常累加值与触发次数保持一致,即电梯按钮触发一次便相应的将其参数值加1。通过对电梯元件参数表中的第一电梯元件类型的参数值进行更新操作,使得电梯元件参数表中存储的第一电梯元件类型的参数值是最新的,为后续获取第一电梯元件类型的参数校准值提供数据支持。
需要说明的是,由于电梯元件参数表中还存储有电梯元件类型的参数值的更新时间,因而,可选的,在更新第一电梯元件类型的参数值的同时,也将对应的更新时间进行记录并将该记录保存至电梯元件参数表中,可以作为后续是否需要对第一电梯元件类型的参数值进行更新的依据之一。
步骤S130、将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
在本发明的具体实施例中,由于电梯元件参数表中存储的第一电梯元件类型的参数值是根据周期性获取的运行中的第一电梯元件的参数值进行实时更新的,因而,电梯元件参数表中的第一电梯元件类型的参数值可以代表当前时刻能够获取到的最新的第一电梯元件类型 的参数值,基于此,将其作为第一电梯元件类型的参数校准值,后续可将该参数校准值作为第一电梯元件类型的参数设置值,当获取的运行中的第一电梯元件的参数值达到该参数设置值或参数设置值和参数值的差小于预设阈值时,便发出报警提示,提醒用户进行维修或替换,保证电梯元件可以正常工作,进而电梯可以正常运行。
需要说明的是,更新存储的电梯元件参数表中的第一电梯元件类型的参数值时,原存储参数值可以保留也可以被覆盖,其中,保留即是新增一条参数值存储项,被覆盖即是由更新后的参数值替换原存储参数值,原存储参数值被删除。具体实现方式根据实际情况进行设定,在此不作具体限制。优选的,原存储参数值保留,超过设定期限后,在对其进行删除,这样可以保证在设定期限内查询到历史数据的同时,避免了由于超过设定期限保存的历史数据失去了实效性还占用内存的问题。
本实施例的技术方案,通过周期性获取运行中的各电梯元件参数值,当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值,解决了现有技术中电梯元件参数值校准需要人工参与进行调整且测试数据有限的问题,实现了自动校准电梯元件的参数值,在提高了电梯元件参数校准值的准确性的同时也提高了工作效率。
进一步的,在上述技术方案的基础上,当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值之前,该方法还包括:
当各电梯中的第一电梯元件未故障时,且存储的电梯元件参数表中不存在第一电梯元件类型的参数值时,将增加获取到的第一电梯元件的参数值作为电梯元件参数表中第一电梯元件的参数值。
在本发明的具体实施例中,当各电梯中的第一电梯元件未故障时,并且存储的电梯元件参数表中不存在第一电梯元件类型的参数值时,即同时满足上述两个条件时,在电梯元件参数表中增加一条该电梯元件的参数值的存储项,即将获取到的第一电梯元件的参数值作为电梯元件参数表中第一电梯元件的参数值。
通过本步骤操作,使得电梯参数表中存储有各个电梯元件类型的参数值,以便于后续对获取第一电梯元件类型的参数校准值提供数据支持。
进一步的,在上述技术方案的基础上,将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值之前,该方法还包括:
判断电梯元件参数表中,第一电梯元件类型的参数值是否满足预设条件。
进一步的,在上述技术方案的基础上,将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值,具体可以包括:
若电梯元件参数表中,第一电梯元件类型的参数值满足预设条件,则将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
在本发明的具体实施例中,预设条件指的是当前电梯元件参数表中存储的更新后的第一电梯元件类型的参数值与未更新前的第一电梯元件参数类型的参数值的差值的绝对值需要满足的条件,只有当该差值的绝对值满足条件时,才将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
需要说明的是,上述差值的绝对值需要满足的条件具体可以为当上述差值的绝对值大于或等于预设阈值,也可以为上述差值的绝对值处于预设取值范围,其中,预设阈值和预设取值范围可以根据实际情况进行设定,在此不作具体限定。示例性的,如第一电梯元件类型为电梯按钮,相应的,参数值为触发次数,可以设定预设阈值为1000次,预设取值范围为500-3000次,优选的,上述差值的绝对值需要满足的条件为处于预设取值范围,这是由于当差值的绝对值过小时,如3次时,便没有更新电梯按钮的参数校准值的必要;当差值的绝对值过大时,便可能出现由于系统出错,导致的获取的电梯按钮的参数值不准确的问题,这种情况下,也暂时不需要对电梯按钮的参数校准值进行更新操作,待后续查明原因后,再重新进行参数值获取以及参数值更新操作。
通过判断电梯元件参数表中,第一电梯元件类型的参数值是否满足预设条件,只有满足预设条件后,才将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值,即才进行第一电梯元件类型的参数校准值的更新操作,保证了第一电梯元件类型的参数校准值具有实效性的同时,也一定程度上减少了数据处理量。
进一步的,在上述技术方案的基础上,周期性获取运行中的各电梯元件参数值,具体可以包括:
监测运行中的各电梯的电梯元件。
在本发明的具体实施例中,监测运行中的各电梯的电梯元件目的在于获取运行中的各电梯元件参数值,即在监测过程中,便相应的获取到了各电梯元件的参数值。
进一步的,在上述技术方案的基础上,当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,具体可以包括:
当各电梯中的第一电梯元件被触发时,判断第一电梯元件是否故障;
若第一电梯元件未故障,则将存储的电梯元件参数表中第一电梯元件的参数值加1。
在本发明的具体实施例中,当各电梯中的第一电梯元件被触发时,启动判断第一电梯元件是否故障的操作,其中,触发指的是电梯元件处于使用状态,示例性的,如当第一电梯元件为电梯按钮时,触发指的是电梯按钮被按下的操作。当监测到电梯按钮未故障时,将电梯元件参数表中存储的该电梯按钮的触发次数加1,即参数值加1。
通过本步骤操作,使得电梯参数表中存储的第一电梯元件类型的参数值得到实时更新,以便于后续对获取第一电梯元件类型的参数校准值提供数据支持。
进一步的,在上述技术方案的基础上,当各电梯中的第一电梯元件被触发时,判断第一电梯元件是否故障之后,该方法还包括:
若第一电梯元件出现故障,则将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
在本发明的具体实施例中,当第一电梯元件出现故障时,电梯参数表中存储的第一电梯元件类型的参数值便不再增加,将此时获取到的参数值作为第一电梯元件类型的参数校准值。示例性的,如当第一电梯元件为电梯按钮时,当监测到第一电梯元件出现故障时,将电梯元件参数表中存储的该电梯按钮的参数值作为电梯按钮的参数校准值。
进一步的,在上述技术方案的基础上,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,具体可以包括:
根据获取到的各电梯元件参数值更新存储的电梯元件参数表中每个所述第一电梯元件的参数值;
在本发明的具体实施例中,电梯元件参数表中存储有每个第一电梯元件的参数值,即针对一个第一电梯元件便对应有一项参数值的存储项。根据获取到的各电梯元件参数值更新存储在电梯元件参数表中对应的各个第一电梯元件的参数值。示例性的,如获取的第一电梯元件的个数有3个,分别为第一电梯元件A、第一电梯元件B和第一电梯元件C,相应的,电梯元件参数表中便有第一电梯元件A的参数值的存储项A、第一电梯元件B的参数值的存储项B和第一电梯元件C的参数值的存储项C,当第一电梯元件A被触发时,便相应地更新电梯元件参数表中的存储项A,当第一电梯元件B被触发时或当第一电梯元件C被触发时,基于同样的方式,分别对电梯元件参数表中的存储项B和存储项C进行更新。
当获取到的第一电梯元件的个数达到预设元件个数阈值时,计算获取到的至少一个第一电梯元件的参数值的平均值,并根据平均值和预设比例系数计算第一电梯元件类型的参数值。
在本发明的具体实施例中,预设个数阈值作为批次达成的依据,即当获取到的第一电梯元件的个数达到预设个数阈值时,即满足批次达成条件时,便根据目前获取到的多个第一电梯元件的参数值计算得到其平均值,并根据该平均值和预设的比例系数计算得到第一电梯元件类型的参数值。
示例性的,如预设第一电梯元件个数阈值为K,预设比例系数为η,xi表示获取到的第一电梯元件的参数值,
Figure PCTCN2017108946-appb-000001
表示计算得到的第一电梯元件的参数值的平均值,X表示第一电梯元件类型的参数值,其中,i=1,2,3,...,K;η∈(0,1]。当获取到的所述第一电梯元件的个数达到所述个数阈值时,即满足批次达成条件时,根据获取到的多个第一电梯元件的参数值xi计算得到其平均值
Figure PCTCN2017108946-appb-000002
具体的,
Figure PCTCN2017108946-appb-000003
根据平均值
Figure PCTCN2017108946-appb-000004
和预设比例系数η计算得到第一电梯元件类型的参数值X,具体的,
Figure PCTCN2017108946-appb-000005
需要说明的是,上述个数阈值和比例系数的取值需要根据实际情况进行设定,在此不作具体限定。示例性的,如K=10000,η=0.9。
由于计算得到的第一电梯元件类型的参数值是基于大量第一电梯元件的参数值,因而,使得通过上述方式得到的第一电梯元件类型的参数值更加接近于实际电梯元件的使用状态,进而后续将第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值便更加合理。
实施例二
图2为本发明实施例二提供的一种电梯元件参数校准方法的流程图,本实施例可适用于自动校准电梯元件参数值的情况,该方法可以由电梯元件参数校准装置来执行,该装置可以采用软件和/或硬件的方式实现,该装置可以配置于设备中,例如典型的是计算机等。如图2所示,该方法具体包括如下步骤:
步骤S200、监测运行中的各电梯的电梯元件;
步骤S210、判断存储的电梯元件参数表中是否存在第一电梯元件类型的参数值;若是,则执行步骤S220;若否,则执行步骤S230;
步骤S220、当各电梯中的第一电梯元件被触发时,判断第一电梯元件是否故障;若是,则执行步骤S280;若否,则执行步骤S240;
步骤S230、在电梯元件参数表中增加一条第一电梯元件类型的参数值的存储项,并返回 执行步骤S220;
步骤S240、根据获取到的各电梯元件参数值更新存储的电梯元件参数表中每个第一电梯元件的参数值;
步骤S250、判断获取到的第一电梯元件的个数是否达到预设元件个数阈值;若是,则执行步骤S260;若否,则继续执行步骤S250;
步骤S260、计算获取到的至少一个第一电梯元件的参数值的平均值,并根据平均值和预设比例系数计算第一电梯元件类型的参数值;
步骤S270、判断电梯元件参数表中,第一电梯元件类型的参数值是否满足预设条件;若是,则执行步骤S280;若否,则执行步骤S290;
步骤S280、将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值;
步骤S290、第一电梯元件类型的参数校准值保持不变。
在本发明的具体实施例中,具体的,可以通过大数据采集系统来实现上述电梯元件类型参数校准值的获取过程。大数据采集系统可以包括电梯平台、通信平台、大数据平台(或云存储平台)和上位机平台,其中,电梯平台包括各电梯的电梯元件、采集板和DTU(Data Transfer Unit,数据传输单元)等部分,DTU是专门用于将串口数据转换为IP数据或将IP数据转换为串口数据通过无线通信网络进行传送的无线终端设备;通信平台,用于DTU和大数据平台的数据交互;大数据平台指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合平台,可以实现对获取的大量电梯元件参数值进行分析和挖掘,具体可以包括数据存储、机器自学习、预诊断和数据挖掘等部分,其中,数据存储部分包括如下内容:(1)电梯基础数据:电梯工号和元件功能等;(2)电梯元件操作记录:电梯元件类型标识、操作/运行次数和操作时间等;(3)电梯元件基本参数:电梯元件类型标识、自学习批次、电梯元件参数值、电梯元件类型参数值和电梯元件类型参数值更新时间等;(4)电梯元件类型参数值计算规则:电梯元件标识、电梯元件类型标识和计算规则等;上位机平台主要用于进行计算规则的设置,即大数据平台中数据存储部分存储的计算规则与上位机中设置的计算规则是相同的。
通过触发电梯平台中的各个电梯元件获取电梯元件的参数值,电梯元件的参数值依次通过主板、DTU发送给通信平台,通信平台再将接收到的数据发送给大数据平台,大数据平台对数据进行分析处理得到电梯元件类型的参数校准值,并通过数据采集平台将电梯元件类型的参数校准值发送给DTU,实现电梯平台中该电梯元件类型的参数校准值的更新。
本实施例的技术方案,本实施例的技术方案,通过周期性获取运行中的各电梯元件参数值,当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值,解决了现有技术中电梯元件参数值校准需要人工参与进行调整且测试数据有限的问题,实现了自动校准电梯元件的参数值,在提高了电梯元件参数校准值的准确性的同时也提高了工作效率。
实施例三
图3为本发明实施例三提供的一种电梯元件参数校准装置的结构示意图,本实施例可适用于自动校准电梯元件参数值的情况,该装置可以采用软件和/或硬件的方式实现,该装置可以配置于设备中,例如典型的是计算机等。如图3所示,该装置具体包括:
参数值获取模块310,用于周期性获取运行中的各电梯元件参数值;
参数值第一更新模块320,用于当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值;
参数校准值获取模块330,用于将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
本实施例的技术方案,通过参数值获取模块310周期性获取运行中的各电梯元件参数值,参数值第一更新模块320当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,参数校准值获取模块330将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值,解决了现有技术中电梯元件参数值校准需要人工参与进行调整且测试数据有限的问题,实现了自动校准电梯元件的参数值,在提高了电梯元件参数校准值的准确性的同时也提高了工作效率。
进一步的,在上述技术方案的基础上,该装置还包括:
参数值第二更新模块,用于当各电梯中的第一电梯元件未故障时,且存储的电梯元件参数表中不存在第一电梯元件类型的参数值时,将增加获取到的第一电梯元件的参数值作为电梯元件参数表中第一电梯元件的参数值。
进一步的,在上述技术方案的基础上,该装置还用于:
判断电梯元件参数表中,第一电梯元件类型的参数值是否满足预设条件。
进一步的,在上述技术方案的基础上,参数校准值获取模块330具体用于:
若电梯元件参数表中,第一电梯元件类型的参数值满足预设条件,则将电梯元件参数表 中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
进一步的,在上述技术方案的基础上,参数值获取模块310具体用于:
监测运行中的各电梯的电梯元件。
进一步的,在上述技术方案的基础上,参数值第一更新模块320具体用于:
当各电梯中的第一电梯元件被触发时,判断第一电梯元件是否故障;
若第一电梯元件未故障,则将存储的电梯元件参数表中第一电梯元件的参数值加1。
进一步的,在上述技术方案的基础上,参数值第一更新模块320还用于:
若第一电梯元件出现故障,则将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
进一步的,在上述技术方案的基础上,参数值第一更新模块320具体用于:
根据获取到的各电梯元件参数值更新存储的电梯元件参数表中每个所述第一电梯元件的参数值;
当获取到的第一电梯元件的个数达到预设元件个数阈值时,计算获取到的至少一个第一电梯元件的参数值的平均值,并根据平均值和预设比例系数计算第一电梯元件类型的参数值。
本发明实施例所提供的电梯元件参数校准装置可执行本发明任意实施例所提供的电梯元件参数校准方法,具备执行方法相应的功能模块和有益效果。
实施例四
图4为本发明实施例四提供的一种设备的结构示意图。图4示出了适于用来实现本发明实施方式的示例性设备412的框图。图4显示的设备412仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图4所示,设备412以通用计算设备的形式表现。设备412的组件可以包括但不限于:一个或者多个处理器416,系统存储器428,连接于不同系统组件(包括系统存储器428和处理器416)的总线418。
总线418表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
设备412典型地包括多种计算机系统可读介质。这些介质可以是任何能够被设备412访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器428可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)430和/或高速缓存存储器432。设备412可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统434可以用于读写不可移动的、非易失性磁介质(图4未显示,通常称为“硬盘驱动器”)。尽管图4中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线418相连。存储器428可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块442的程序/实用工具440,可以存储在例如存储器428中,这样的程序模块442包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块442通常执行本发明所描述的实施例中的功能和/或方法。
设备412也可以与一个或多个外部设备414(例如键盘、指向设备、显示器424等)通信,还可与一个或者多个使得用户能与该设备412交互的设备通信,和/或与使得该设备412能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口422进行。并且,设备412还可以通过网络适配器420与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器420通过总线418与设备412的其它模块通信。应当明白,尽管图4中未示出,可以结合设备412使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
处理器416通过运行存储在系统存储器428中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的一种电梯元件参数校准方法,包括:
周期性获取运行中的各电梯元件参数值;
当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值;
将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
实施例五
本发明实施例五还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明实施例所提供的一种电梯元件参数校准方法,该方法包括:
周期性获取运行中的各电梯元件参数值;
当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值;
将电梯元件参数表中第一电梯元件类型的参数值作为第一电梯元件类型的参数校准值。
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言-诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言-诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种电梯元件参数校准方法,其特征在于,包括:
    周期性获取运行中的各电梯元件参数值;
    当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值;
    将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值。
  2. 根据权利要求1所述的方法,其特征在于,所述当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值之前,所述方法还包括:
    当各电梯中的第一电梯元件未故障时,且存储的电梯元件参数表中不存在所述第一电梯元件类型的参数值时,将增加获取到的第一电梯元件的参数值作为所述电梯元件参数表中所述第一电梯元件的参数值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值之前,所述方法还包括:
    判断所述电梯元件参数表中,所述第一电梯元件类型的参数值是否满足预设条件;
    所述将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值,包括:
    若所述电梯元件参数表中,所述第一电梯元件类型的参数值满足所述预设条件,则将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值。
  4. 根据权利要求1或2所述的方法,其特征在于,所述周期性获取运行中的各电梯元件参数值,包括:
    监测运行中的各电梯的电梯元件;
    所述当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,包括:
    当各电梯中的第一电梯元件被触发时,判断所述第一电梯元件是否故障;
    若所述第一电梯元件未故障,则将存储的电梯元件参数表中第一电梯元件的参数值加1。
  5. 根据权利要求4所述的方法,其特征在于,所述当各电梯中的第一电梯元件被触发时,判断所述第一电梯元件是否故障之后,所述方法还包括:
    若所述第一电梯元件出现故障,则将所述电梯元件参数表中所述第一电梯元件类型的参 数值作为所述第一电梯元件类型的参数校准值。
  6. 根据权利要求1或2所述的方法,其特征在于,所述根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值,包括:
    根据获取到的各电梯元件参数值更新存储的电梯元件参数表中每个所述第一电梯元件的参数值;
    当获取到的所述第一电梯元件的个数达到预设元件个数阈值时,计算获取到的至少一个所述第一电梯元件的参数值的平均值,并根据所述平均值和预设比例系数计算所述第一电梯元件类型的参数值。
  7. 一种电梯元件参数校准装置,其特征在于,包括:
    参数值获取模块,用于周期性获取运行的各电梯元件参数值;
    参数值第一更新模块,用于当各电梯中的第一电梯元件未故障时,根据获取到的各电梯元件参数值更新存储的电梯元件参数表中第一电梯元件类型的参数值;
    参数校准值获取模块,用于将所述电梯元件参数表中所述第一电梯元件类型的参数值作为所述第一电梯元件类型的参数校准值。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    参数值第二更新模块,用于当各电梯中的第一电梯元件未故障时,且存储的电梯元件参数表中不存在所述第一电梯元件类型的参数值时,将增加获取到的第一电梯元件的参数值作为所述电梯元件参数表中所述第一电梯元件的参数值。
  9. 一种设备,其特征在于,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-6中任一项所述的电梯元件参数校准方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-6中任一项所述的电梯元件参数校准方法。
PCT/CN2017/108946 2017-11-01 2017-11-01 一种电梯元件参数校准方法、装置、设备及存储介质 WO2019084850A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780001526.3A CN108124442B (zh) 2017-11-01 2017-11-01 一种电梯元件参数校准方法、装置、设备及存储介质
PCT/CN2017/108946 WO2019084850A1 (zh) 2017-11-01 2017-11-01 一种电梯元件参数校准方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108946 WO2019084850A1 (zh) 2017-11-01 2017-11-01 一种电梯元件参数校准方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2019084850A1 true WO2019084850A1 (zh) 2019-05-09

Family

ID=62234374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108946 WO2019084850A1 (zh) 2017-11-01 2017-11-01 一种电梯元件参数校准方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN108124442B (zh)
WO (1) WO2019084850A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113682911B (zh) * 2021-08-24 2023-04-25 日立楼宇技术(广州)有限公司 一种采样方式的设置、电梯的故障检测方法及相关装置
CN114476888A (zh) * 2022-01-13 2022-05-13 永大电梯设备(中国)有限公司 电梯参数备份及应用方法与系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153830A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 测量可用度的方法、装置及收集端
CN102033802A (zh) * 2010-11-11 2011-04-27 广东威创视讯科技股份有限公司 一种统计显示设备累计运行时间的装置及其方法
CN102521930A (zh) * 2011-10-19 2012-06-27 福建联迪商用设备有限公司 支付终端模块使用次数检测方法及装置
CN103248873A (zh) * 2013-05-02 2013-08-14 大连海创高科信息技术有限公司 一种智慧电梯及运行方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409646B (zh) * 2007-10-12 2012-08-29 华为技术有限公司 一种性能参数监视方法、装置、系统、网管设备及节点
CN103852719B (zh) * 2012-11-29 2016-11-16 海洋王(东莞)照明科技有限公司 按键开关通断计数电路
CN204302454U (zh) * 2014-12-01 2015-04-29 宁波科海翔电子科技有限公司 开关寿命测试装置
CN204575682U (zh) * 2015-04-30 2015-08-19 申龙电梯股份有限公司 一种电梯用接触器寿命测试装置
CN107247229A (zh) * 2017-06-09 2017-10-13 湖南中车时代通信信号有限公司 易损耗的机械元件的使用寿命的检测方法和电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153830A (zh) * 2006-09-28 2008-04-02 华为技术有限公司 测量可用度的方法、装置及收集端
CN102033802A (zh) * 2010-11-11 2011-04-27 广东威创视讯科技股份有限公司 一种统计显示设备累计运行时间的装置及其方法
CN102521930A (zh) * 2011-10-19 2012-06-27 福建联迪商用设备有限公司 支付终端模块使用次数检测方法及装置
CN103248873A (zh) * 2013-05-02 2013-08-14 大连海创高科信息技术有限公司 一种智慧电梯及运行方法

Also Published As

Publication number Publication date
CN108124442B (zh) 2020-05-05
CN108124442A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
CN110868336B (zh) 数据管理方法、装置和计算机可读存储介质
CN107766299B (zh) 数据指标异常的监控方法及其系统、存储介质、电子设备
US11461037B2 (en) Data collection system and data collection method
US11238673B2 (en) Automatic inspection system and method for controlling automatic inspection system
CN112633384A (zh) 基于图像识别模型的对象识别方法、装置和电子设备
US20140067804A1 (en) Workflow generation server and method of generating workflow
WO2018184304A1 (zh) 一种网元健康状态的检测方法及设备
US20140244563A1 (en) Operation information prediction computer, operation information prediction method and program
US20170082986A1 (en) Building management device, wide area management system, data acquiring method, and program
WO2019084850A1 (zh) 一种电梯元件参数校准方法、装置、设备及存储介质
CN110647447A (zh) 用于分布式系统的异常实例检测方法、装置、设备和介质
CN112032031B (zh) 一种空压机的云数据分析方法、装置及系统
US20170284692A1 (en) Systems and methods for generating operational intelligence for heating ventilation and air conditioning (hvac) devices
WO2014166232A1 (zh) 一种预测设备器件寿命的方法及装置
CN117149565A (zh) 云平台关键性能指标的状态检测方法、装置、设备及介质
CN116414608A (zh) 异常检测方法、装置、设备及存储介质
CN115035481A (zh) 一种图像物距融合方法、装置、设备及存储介质
CN113962398A (zh) 量子计算机自动化管控方法、系统、服务器及存储介质
CN116095198B (zh) 一种实验室数据中心的智能搭建方法及系统
CN115292146B (zh) 一种系统容量预估方法、系统、设备及存储介质
CN116071886B (zh) 一种基于动态零值的烟雾报警方法、装置、设备及介质
CN116449810B (zh) 一种故障排查方法、装置、电子设备及存储介质
CN116109617A (zh) 一种图像质量管理方法、系统、设备及介质
CN117330925A (zh) 一种led的寿命预测方法、装置及电子设备
JP2023151804A (ja) 作業用機器管理システム、作業用機器管理方法及び作業用機器管理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 24/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17930798

Country of ref document: EP

Kind code of ref document: A1